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Abstract

In this contribution, we present a Calderón preconditioner for a novel single-
source equation to efficiently model electromagnetic scattering problems in-
volving high magnetic contrasts. Through analysis of the spectral proper-
ties of the system matrix after discretization, it is shown that this formula-
tion does not break down when high permeabilities are present, which was
an unresolved problem of the Calderón preconditioned Poggio-Miller-Chan-
Harrington-Wu-Tsai method. The adopted discretization scheme, which in-
volves Rao-Wilton-Glisson and Buffa-Christiansen basis functions, allows for
an easy integration in existing commercial Method of Moments software. The
efficiency and accuracy of the presented method is corroborated by numerical
examples.
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1. Introduction

Boundary integral equations (BIEs) play a key role in the numerical mod-
eling of (time-harmonic) electromagnetic (EM) scattering problems. They
allow to analyze the interaction of EM fields with piecewise homogeneous me-
dia. In general, a faster convergence of the iterative solution is obtained when
compared to alternative methods such as the finite element (FE) method,
since only the surfaces of the scattering objects are discretized, leading to
fewer unknowns. In case the problem includes heterogeneous regions, hybrid
FE-BIE formulations may be adopted to take advantage of the efficiency of
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the BIE, and the ability of the FE method to model heterogeneous media
[1].

The simulation of homogeneous penetrable bodies is often performed us-
ing the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) equation [2].
The PMCHWT operator contains the electric field integral operator (EFIO)
T , whose spectrum is neither bounded from above nor below. Consequently,
the spectrum of the PMCHWT operator inherits these properties, result-
ing in dense-mesh discretization breakdown [3]. This means that the con-
dition number of the system matrix of the discretized PMCHWT operator
will rise as the mesh becomes denser, i.e., as the discretized operator ap-
proaches the continuous operator. To resolve these breakdown issues, pre-
conditioners based on the Calderón identities were developed for first-kind
BIE problems in [4], and more specifically for the EFIO in [5]. Later, mul-
tiplicative Calderón preconditioning has been examined for both the EFIO
[6] and the PMCHWT operator [3]. Calderón preconditioners make use of
the self-regularizing property of both (continuous) operators, meaning that
their squares have eigenvalues that do not converge to zero or infinity. This
can be deduced from the Calderón identity T 2 = K2 − 1

4
and the compact-

ness of K, the magnetic field integral operator (MFIO) [3, 6, 7]. Hence,
after preconditioning of the EFIO or the PMCHWT operator with itself, a
well-conditioned system of equations will be obtained. The transition of the
continuous expression to a discrete formulation is possible by introducing the
Buffa-Christiansen (BC) basis functions [8], which are defined as a linear com-
bination of Rao-Wilton-Glisson (RWG) functions [9] on the baricentrically
refined mesh. As a consequence, both the Calderón preconditioned EFIO
(CP-EFIO) and the Calderón preconditioned PMCHWT (CP-PMCHWT)
operator are well-conditioned and dense-mesh breakdown is alleviated, at
least under the assumption that the dielectric and magnetic contrast be-
tween object and exterior region remains low in case of the CP-PMCHWT
operator. Indeed, it can be shown [3] that the ratio of the eigenvalue accu-
mulation points of the system matrix of the latter operator equals (ke/ki)2,
with ke and ki the wavenumber of the background medium and the scatter-
ing object, respectively. This is a measure for the convergence time of the
iterative solution [10]. In the numerical study in [11], there is indeed mention
of reduced efficiency of the CP-PMCHWT method when large dielectric con-
trasts are present. Furthermore, convergence problems arise when simulating
at resonances and negative material parameters.

In [12, 13, 14], intrinsically well-conditioned formulations for electromag-
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netic scattering problems were obtained by introducing a local FE approx-
imation of the Dirichlet-to-Neumann (DtN) operator. This DtN operator
links the magnetic and electric current on the scatterer surface. Such formu-
lations are known as on-surface radiation condition (OSRC) methods. In the
realm of BIEs for 2D transmission problems, a DtN operator was employed
in [15], based on the Calderón identities. This DtN operator was approx-
imated by regularizing operators, leading to generalized combined source
integral equations (GCSIE). Later, this formalism was extended to 3D elec-
tromagnetic transmission problems, resulting in intrinsically well-conditioned
integral equations [16].

In [17], a Calderón preconditioned single-source equation, based on the
DtN operator, was introduced that does not suffer from dense-mesh break-
down for electromagnetic scattering problems involving arbitrarily high di-
electric contrasts (including conductive or negative index media). In this
paper, we present a comparable method, based on the Neumann-to-Dirichlet
(NtD) operator Y , that does not break down when arbitrarily high perme-
abilities are present. The NtD operator maps the trace of the magnetic field
on the boundary of a scattering object onto the tangential electric field on
this boundary. The ill-conditioning of the discretization of Y will be re-
solved by making use of the regularizing property of the electric field integral
operator T on the NtD operator [1]. The numerical solution of this novel
formulation involves RWG and BC basis functions, which allows for integra-
tion in existing numerical solvers that make use of the conventional RWG
basis functions.

This paper is structured as follows. In Section 2, the integral represen-
tation of the electromagnetic fields is first derived, starting from Maxwell’s
equations. Next, the derivation of the novel formulation is given. It is com-
pared to the CP-PMCHWT and the method in [17]. In Section 3, the dis-
cretization of the proposed method is discussed. Afterwards, the extension
to scattering problems with multiple objects is introduced. In Section 4, the
eigenvalue spectrum of the corresponding system matrix is derived, to ana-
lyze the convergence of the iterative solution. Lastly, in Section 5, numerical
examples are given to demonstrate the effectiveness of the proposed method.

2. Boundary Integral Equation Formulations

Assume a time-harmonic electromagnetic field (ei,hi) with ejωt time de-
pendence. This field impinges on an isotropic and homogeneous dielectric
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Figure 1: In (a), a homogeneous object Ωi is embedded in a homogeneous background
medium Ωe. An electromagnetic field (ei,hi) impinges on Ωi, which generates a scattered
field (es,hs). In (b), we have the equivalent problem, where the object is now filled with
the medium of Ωe and surface currents j and m reside on Γ, generating (es,hs).

object Ωi with permittivity εi and permeability µi, embedded in a homo-
geneous background medium characterized by εe and µe. This results in a
scattered electromagnetic field (es,hs) (see Fig. 1(a)). In general, an analyt-
ical solution for this scattering problem does not exist. However, a numerical
solution can be obtained by first applying the surface equivalence theorem
[18], stating that the scattered field in the external region can be generated by
equivalent current sources j and m on the boundary Γ of the object after fill-
ing Ωi with the medium of Ωe (Fig. 1(b)). In this equivalent problem, which
involves current sources j and m in a homogeneous and infinite medium, the
Maxwell equations simplify to:

∇× e = −jωµeh−m, (1)

∇× h = jωεee + j, (2)

∇ · e =
ρe
εe

(3)

and
∇ · h =

ρm
µe
. (4)

Here, e and h are the total electric and magnetic field, respectively. The
electric and magnetic charges are given by ρe and ρm. The externally applied
currents on Γ satisfy:

j = un × h = un × (hi + hs) (5)
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and
m = −un × e = −un × (ei + es), (6)

with un the normal on Γ pointing towards Ωe. The surface equivalence
principle states that this choice of currents generates the correct scattered
fields in Ωe and null fields in Ωi.

From (1)-(4) one can derive an expression for e and h as a function of
the magnetic vector potential A and the electric vector potential F [18].
First, assume ρm = m = 0. In this case, the electromagnetic fields (eA,hA),
generated by ρe and j are found as a function of the magnetic potential A.
They can be written as follows:

eA = −jωA +
1

jωεeµe
∇(∇ ·A), (7)

hA =
1

µe
∇×A, (8)

where A is the solution of

∇2A + (ke)2A = −µej, (9)

after applying the Lorentz gauge. In (9), ke = ω
√
εeµe is the wavenumber

of the exterior region. Similarly, by assuming that ρe = j = 0, one can
determine the electromagnetic fields (eF ,hF ), generated by ρm and m. They
can be written as a function of the electric potential F, as follows:

hF = −jωF +
1

jωεeµe
∇(∇ · F), (10)

eF =
−1

εe
∇× F, (11)

where F is the solution of

∇2F + (ke)2F = −εem. (12)

The solutions of the Helmholtz equations in (9) and (12) are obtained by in-
troducing the Green function. After superposition of (eA,hA) and (eF ,hF ),
one can derive the tangential scattered electromagnetic fields on the bound-
ary Γ generated by j and m:
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lim
r∈Ωe→Γ

(
−un × es

un × hs

)
=

(
Kke + I

2
−ηeTke

1
ηe
Tke Kke + I

2

)(
m
j

)
, (13)

with the impedance ηe,i =
√
µe,i/εe,i, identity operator I, and the integral

operators Tke,i and Kke,i defined as

Tke,i(x)(r) = −jke,iun ×
∫

Γ

e−jk
e,i|r−r′|

4π|r − r′|
x(r′) dr′

+
1

jke,i
un × p.v.

∫
Γ

∇e
−jke,i|r−r′|

4π|r − r′|
∇′ · x(r′) dr′ (14)

and

Kke,i(x)(r) = un × p.v.
∫

Γ

∇× e−jk
e,i|r−r′|

4π|r − r′|
x(r′) dr′, (15)

with ki = ω
√
εiµi, the wavenumber of the interior region. The notation

P (x)(r) in (14) and (15) denotes that an operator P acts on function x,
which depends on the variable r. The principal value is designated by p.v.

Furthermore, the surface equivalence principle states that the fields in
Ωi are generated by −j and −m, consequently resulting in zero fields in Ωe.
This leads to the following relation:

lim
r∈Ωi→Γ

(
−un × es

un × hs

)
=

(
−Kki + I

2
ηiTki

− 1
ηi
Tki −Kki + I

2

)(
m
j

)
. (16)

The scattered tangential fields in the left hand side of (16) are equal to the
total tangential fields, since we assume that there are no sources inside Ωi.

2.1. CP-PMCHWT Equation

In this section, the derivation of the CP-PMCHWT equation is summa-
rized. This method will be employed in Section 5 as numerical validation of
the results of the novel method. The PMCHWT formulation is obtained by
subtracting (16) from (13). We obtain [2, 3]:

P

(
m
j

)
=

(
Kke +Kki −ηeTke − ηiTki
Tke
ηe

+
Tki
ηi

Kke −Kki

)(
m
j

)
=

(
un × ei

−un × hi

)
. (17)

This equation is uniquely solvable. However, the eigenvalue spectrum of the
system matrix, P, in (17) is not bounded from below nor above, meaning that
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dense-mesh breakdown will occur. This leads to a slow iterative convergence
and inaccurate solutions when solving the discretized problem. We may
alleviate this problem by introducing a CP for the PMCHWT equation:

P 2

(
m
j

)
= P

(
un × ei

−un × hi

)
. (18)

It can be shown [3] that the eigenvalues of the CP-PMCHWT accumulate
at −ki/(4ke) and −ke/(4ki). The introduction of this preconditioner hence
resolves the issues for low dielectric contrast media, as the system matrix will
be well-posed and bounded. For high contrast media, |ki| will become large,
and the accumulation points will tend to infinity and zero, respectively. This
is detrimental for the conditioning of the CP-PMCHWT. Hence, a novel for-
mulation is needed, with an operator that is well-posed and continuous in
the limit for |ki| going to infinity. The derivation of a novel formulation that
remains well-conditioned for high magnetic contrast media is given in Sec-
tion 2.2. The derivation of a comparable method for high dielectric contrast
media [17] is described in Section 2.3.

2.2. Derivation of a CP for high magnetic contrasts

In this section, a novel formulation that remains well-conditioned for high
magnetic contrasts is derived. From (16), taking into account (5) and (6),
we obtain the following relation for the tangential fields on Γ, if we approach
this boundary from the inside:

lim
r∈Ωi→Γ

(un × h) = −Tk
i

ηi
(−un × e) + (−Kki +

I
2

)(un × h). (19)

This allows us to derive an exact NtD operator Yki , with the property

lim
r∈Ωi→Γ

Yki(un × h) = −un × e, (20)

which is defined as

Yki = −ηiT −1
ki

(Kki +
I
2

). (21)

It is assumed that ki is not a resonant wavenumber of the scattering object,
such that Yki exists and is unique [19].

At this point, we introduce a virtual electric current J on Γ, replacing
j and m (see Fig. 2), and we impose that this source generates the same
scattered electromagnetic fields in Ωe as in the original scattering problem
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Figure 2: The object is filled with the medium of Ωe and a surface current density J,
replacing j and m, and generating the same scattered fields (es,hs) in Ωe of Fig. 1(a), is
introduced on Γ.

in Fig. 1(a). This means that the scattered electromagnetic fields in Ωe are
derived from the magnetic vector potential A in (7)-(9), with F = 0. By
using (13) and (20), and by taking into account the incident field in Ωe and
the continuity of the tangential fields across Γ, following relation is found:

lim
r∈Ωe→Γ

(
Yki(un × h)

un × h

)
=

(
Kke + I

2
−ηeTke

1
ηe
Tke Kke + I

2

)(
0
J

)
+

(
−un × ei

un × hi

)
, (22)

with 0 the magnetic current, which is put to zero.
Notice that, in general, J is no longer equal to j = un×h. Hence, un×h,

which no longer generates scattered fields, is also an unknown in (22). The
scattered fields are, hence, solely generated by J. We can now rewrite (22)
as follows:

lim
r∈Ωe→Γ

(
Kke + I

2
−I

−ηeTke −Yki

)(
J

un × h

)
=

(
−un × hi

un × ei

)
. (23)

The equations in (23) should not be solved for J in this form, as the resulting
system matrix after discretization would be ill-conditioned and would lead
to a slow convergence of the Krylov iterative solution. Furthermore, (21)
would have to be determined explicitly, which has to be avoided due to the
presence of the inverse T −1

ki
operator, leading to a computational complexity

of O(N3).
These problems can be remedied by introducing following Calderón pre-

conditioner:

C =

(
I 0
0 1

ηi
Tki

)
. (24)
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After left multiplication of (23) with (24), and by using (21), we get:

lim
r∈Ωe→Γ

(
Kke + I

2
−I

−ηe

ηi
TkiTke Kki + I

2

)(
J

un × h

)
=

(
−un × hi

1
ηi
Tki(un × ei)

)
(25)

In Section 4, it will be shown that the single-source equations in (25) lead to
a well-conditioned system matrix after discretization for high magnetic con-
trasts. Furthermore, (25) can be solved with a complexity of O(NiterN logN)
after implementation of the multilevel fast multipole method (MLFMM) [20].

The downside of this novel formulation is that it does not alleviate the
ill-conditioning for problems involving high dielectric contrasts. However, in
Section 2.3, a formulation that remains well-conditioned for high dielectric
contrasts is summarized. The full derivation is given in [17].

2.3. CP for high dielectric contrasts

From (16), taking into account (5) and (6), we first obtain an expression
for the inverse of the NtD operator – the DtN operator – introduced in (21):

Y−1
ki

=
1

ηi
T −1
ki

(Kki +
I
2

), (26)

which has the property

lim
r∈Ωi→Γ

Y−1
ki

(−un × e) = un × h. (27)

We next assume that the scattered electromagnetic fields in Ωe are gen-
erated by a virtual magnetic current M on Γ. The virtual electric current J
is set to zero. After some calculations [17], the following system of equations
is found:

lim
r∈Ωe→Γ

(
Kke + I

2
−I

1
ηe
Tke −Y−1

ki

)(
M

−un × e

)
=

(
un × ei

−un × hi

)
. (28)

After preconditioning (28) with the CP

C =

(
I 0
0 −ηiTki

)
, (29)

we finally obtain the following matrix system:

lim
r∈Ωe→Γ

(
Kke + I

2
−I

− ηi

ηe
TkiTke Kki + I

2

)(
M

−un × e

)
=

(
un × ei

ηiTki(un × hi)

)
. (30)
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It can be proven [17] that this method remains well-conditioned when scatter-
ing objects with high dielectric contrasts and high conductivities are involved.
However, for high magnetic contrasts, the method becomes ill-conditioned.
For such problems, the formulation in Section 2.2 can be employed.

3. Discretization

In this section, the discretization of the integral equations of Section 2.2
is described. The current J and tangential magnetic field un × h, both

belonging to the Sobolev space H
− 1

2
div (Γ) [21], have to be expanded in a set

of basis functions {ai}1≤i≤N , belonging to the same space. The RWG basis
functions are chosen, hence:

J ≈
N∑
i=1

(α)iai (31)

lim
r∈Ωe→Γ

(un × h) ≈
N∑
i=1

(β)iai, (32)

with α and β collecting the expansion coefficients of J and un × h, re-
spectively. Testing the identity operator, and consequently also Kki and

Kke , with rotated BC basis functions ({un × bi})1≤i≤N ∈ H
− 1

2
curl(Γ) leads to

more accurate results, also for nonsmooth boundaries, when compared to
the original method, which involves expansion and testing of these terms
with RWG functions [22, 23, 24]. To test Tke , rotated RWG functions

({un × ai})1≤i≤N ∈ H
− 1

2
curl(Γ) should be used. Tki is expanded into BC ba-

sis functions ({bi})1≤i≤N ∈ H
− 1

2
div (Γ). This operator should be tested with

rotated BC functions. The discretized equations can now be written as

(
Kke + 1

2
G −G

−ηe

ηi
Tki(−G−1)TTke Kki + 1

2
G

)(
α
β

)
=

(
−Hi

1
ηi
Tki(−G−1)TEi

)
, (33)

with

(Tke)ij =

∫
Γ

(un(r)× ai(r)) · Tke(aj)(r)dr, (34)

(Tki)ij =

∫
Γ

(un(r)× bi(r)) · Tki(bj)(r)dr, (35)
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(Kke)ij =

∫
Γ

(un(r)× bi(r)) · Kke(aj)(r)dr, (36)

(Kki)ij =

∫
Γ

(un(r)× bi(r)) · Kki(aj)(r)dr, (37)

(G)ij =

∫
Γ

(un(r)× bi(r)) · aj(r)dr, (38)

Ei
i =

∫
Γ

(un(r)× ai(r)) · (un(r)× e(r))dr, (39)

Hi
i =

∫
Γ

(un(r)× bi(r)) · (un(r)× h(r))dr, (40)

for 1 ≤ i, j ≤ N . The mixed Gram matrix G arises after discretization of
the identity operator I, and links the basis functions to the test functions.

This derivation for one scattering object in a homogeneous medium can
be extended to a formulation including multiple scatterers and junctions.
The system matrix for M objects will then have the following form:

Ke
11+1

2
G11 · · · Ke

1M+1
2
G1M −G11 · · · −G1M

...
. . .

...
...

. . .
...

Ke
M1+1

2
GM1 · · · Ke

MM+1
2
GMM −GM1 · · · −GMM

−ηe
η1
T i11G

′
11T

e
11 · · · −ηe

η1
T i11G

′
11T

e
1M Ki

11+1
2
G11· · · 0

...
. . .

...
...

. . .
...

−ηe
ηM
T iMMG

′
MMT

e
M1· · ·

−ηe
ηM
T iMMG

′
MMT

e
MM 0 · · · KiMM+1

2
GMM





α1
...
αM
β1
...
βM



=



I11· · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · IMM 0 · · · 0
0 · · · 0 η1T

i
11G

′
11· · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · ηNT iMMG
′
MM





−H i
1

...
−H i

M

Ei
1

...
Ei
M


,

(41)

with Iaa the unit matrix with dimensions equal the number of expansion func-
tions of medium a, ηa the impedance of medium a, and G′ = (−G−1)T . The
subscripts a and b accompanying the K, T and I operator denote the restric-
tions on the operator’s image and domain, meaning that test and expansion
functions reside on object a and b, respectively.
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4. Spectral Properties

In this section, we elaborate on the properties of the iterative solution of
system matrix

A =

(
Kke + 1

2
G −G

−ηe

ηi
Tki(−G−1)TTke Kki + 1

2
G

)
. (42)

The behavior of the convergence of the solution for scattering problems in-
cluding high magnetic contrasts is of particular interest. For this purpose,
the position of the eigenvalue accumulation points of A is derived below.
First, notice that A can be rewritten as

A =

( 1
2
I −I

−ηe

ηi
Tki(−G−1)TTkeG

−1 1
2
I

)(
G 0
0 G

)
+

(
Kke 0

0 Kki

)
, (43)

with I the N ×N unit matrix.
The second term in the right hand side (rhs) of (43) is compact on smooth

surfaces, since the block diagonal matrices are compact on smooth surfaces,
and the off-diagonal matrix blocks are zero. For nonsmooth surfaces, the
near-field interactions of Kk are no longer weak, which compromises the
compactness of the operator [22]. However, in [23], it was shown that the
mixed discretization scheme of Kk, which is used in this paper, delivers a
much better accuracy for nonsmooth geometries than the classical testing
scheme of Kk with RWG functions. It can, hence, be assumed that the
eigenvalues of the rightmost matrix in the rhs of (43) cluster at zero and are
bounded. This term will consequently not have a meaningful influence on
the eigenvalue accumulation points of A [3].

The second matrix in the first term of the rhs of (43) is composed of two
diagonal blocks containing the Gram matrix (38). This factor is an artifact
of the discretization of (25) in nonorthonormal bases. Nevertheless, since G
is diagonally dominant and well-conditioned, this matrix will merely lead to
a small perturbation of the eigenvalues of the first matrix in the rhs of (43).
Hence, the spectral properties of A will depend on the spectrum of

B =

( 1
2
I −I

−ηe

ηi
Tki(−G−1)TTkeG

−1 1
2
I

)
. (44)

The eigenvalues and, hence, the eigenvalue accumulation points λi of B, can
be found by solving det(B − λiI) = 0, which can be rewritten as:
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det[(
1

2
− λi)2I − ηe

ηi
Tki(−G−1)TTkeG

−1] = 0. (45)

The eigenvalue accumulation points ξi of Tki(−G−1)TTkeG
−1 are known, and

given by ξ1 = −ki
4ke

and ξ2 = −ke
4ki

[3]. These accumulations points are solutions
of

det[Tki(−G−1)TTkeG
−1 − ξiI] = 0, (46)

which can be rewritten as(ηi
ηe
)N

det[(
ηe

ηi
Tki(−G−1)TTkeG

−1)− ηe

ηi
ξiI] = 0. (47)

After combining (45) and (47), and after filling in the values of ξi, we obtain:

(
1

2
− λi)2 = − εi

4εe
(48)

and

(
1

2
− λi)2 = − µe

4µi
, (49)

of which the solutions are given by

λ1,± =
1

2
± 1

2

√
εi

εe
j (50)

and

λ2,± =
1

2
± 1

2

√
µe

µi
j. (51)

From (50) and (51), one can conclude that the eigenvalue accumulation
points will not tend to zero or infinity given the following conditions. First,
the exterior region should have a low relative permeability (e.g., vacuum).
Second, the dielectric contrast of the object should not become arbitrary
large. Last, the permittivity of the object should not tend to -εe, while its
permeability should not tend to -µe or 0. In these circumstances, it can be
seen that the eigenvalue accumulation points do not go to zero or infinity for
arbitrary low or high (complex) permeability, see Fig. 3. The system matrix
is hence well-posed and bounded. In Fig. 4, the ratio of the eigenvalue
accumulation points of the CP-PMCHWT equation is given for comparison.
It should be noticed that even for relatively low material contrasts (e.g.,
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Figure 3: Ratio |λmax|
|λmin| of the eigenvalue accumulation points of (44) as a function of the

relative permittivity and permeability of an object embedded in free space. Similar results
are obtained when µr and εr are complex. This value remains approximately constant as
a function of µr, and rises proportionally to

√
εr, for µr →∞. For µr → −1, µr → 0 and

εr → −1 and εr →∞, the system matrix becomes singular.

εr = 5, µr=5), the ratio already is an order of magnitude higher than that
of (33).

In the absence of resonances, the corresponding convergence speed of the
scattering problem will be fast. For high frequencies, resonances might occur.
In this case, the eigenvalue accumulation points remain the same, but the
radius around which the eigenvalues are scattered increases [3]. This will
lead to a worse condition number and reduced accuracy in the immediate
neighborhood of these resonance frequencies. The CP-PMCHWT method
also suffers from physical resonances, but not from spurious ones, as it is a
double-source formulation.

In [17], a similar method was developed that remained well conditioned
for an arbitrary dielectric contrast. This dual method is valid under the
condition that the external region has a low permittivity, and that the per-
meability of the object is low.

5. Numerical Examples

In this section, we present numerical examples to validate the effectiveness
and accuracy of the proposed method. All systems are solved iteratively with
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Figure 4: Ratio |λmax|
|λmin| of the eigenvalue accumulation points of the CP-PMCHWT [3]

method as a function of the relative permittivity and permeability of an object embedded

in free space. |λmax|
|λmin| increases quickly for increasing scatterer contrast, proportionally to

εrµr. Remark that the scale of both axes of this figure is orders of magnitude lower than
that of Fig. 3. For εr = µr = 200 the ratio is already 3 orders of magnitude higher than
that of the system matrix in (33).
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Figure 5: Electromagnetic scattering at a sphere with radius of 1 m, at 1 MHz. A linearly
polarized plane wave (ei(r) = uxe

−jkuz·r) impinges on this sphere, which is consecutively
filled with different materials. The far field RCS is evaluated in the xz-plane (spanned
by ke and ei), for θ varying from 0◦ (towards bottom of sphere) to 180◦ (towards top of
sphere).

the generalized minimal residual (GMRES) method [25], without restarts,
within a convergence threshold of 10−5. The CP-PMCHWT, which is used
as comparison, is implemented as described in [26], Section II.D.

First, the accuracy, condition number and convergence speed of a simple
scattering problem involving a homogeneous sphere in a homogeneous back-
ground medium is considered. The condition number is defined as the ratio
of the highest and lowest singular value of the system matrix. A linearly
polarized plane wave (ei(r) = uxe

−jkuz ·r) impinges on this sphere at a fre-
quency of 1 MHz. We compare the numerical solution to the analytical Mie
series solution [27]. In Fig. 6, the condition number of the system matrix
corresponding to a spherical scatterer with a radius of 1 m is given for both
(33) and the CP-PMCHWT method, as a function of magnetic contrast, for
different mesh densities. These densities are defined by the mesh parameter
h = λ/δ, with λ the wavelength of the impinging wave in vacuum, and δ the
average mesh edge length. It can be seen that the condition number of the
proposed method rises slightly as a function of scatterer permeability for low
magnetic contrasts (µr < 10). The condition number then converges to a
stable, low value for high magnetic contrasts. It should be noticed that the
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condition number does not depend on the mesh density; dense-mesh break-
down does not occur. In comparison, the CP-PMCHWT method shows a
stable condition number that is an order of magnitude higher than that of
the proposed method for low magnetic contrasts (µr < 10). Furthermore,
for high magnetic contrasts, the condition number becomes proportional to
the scatterer permeability. In Fig. 7, the corresponding number of itera-
tions until convergence (rms error < 10−5) are plotted for both methods as
a function of scatterer permeability, for different mesh densities. We observe
similar results as in Fig. 6, i.e., the convergence time increases slightly for low
magnetic contrasts for the proposed method, and converges to a low value
for high contrasts. The number of iterations until convergence of the CP-
PMCHWT method rises proportionally to the permeability of the scatterer,
becoming higher than the proposed method when µr ≈ 100. For low mate-
rial contrasts, the convergence speed of the CP-PMCHWT method is higher,
even though it has a higher condition number than the proposed method,
which might appear counterintuitive. In these circumstances, the condition
number is not the decisive factor in the determination of the convergence
speed. This is also influenced by the eigenvalue distribution of the system
matrix, and not solely by the ratio of the largest and smallest eigenvalues.
A similar behavior was observed in [17].

To test the accuracy of the proposed method, the radar cross sections
(RCSs) of a sphere composed of a material with a high permeability, a meta-
material (εr < 0 and µr < 0) and a material with a high complex permeability
are compared to the analytical Mie series solution in Fig. 8. There is a very
good correspondence between analytical and numerical results, with a root
mean square (rms) difference smaller than 0.1%, calculated with the Lebedev
quadrature [28], for the three investigated examples .

Next, simultaneous scattering at four objects is considered. The problem
is visualized in Fig. 9. The accuracy of this solution may be investigated by
first filling the cube, cuboid and cylinder with a vacuum, and the sphere with
a dielectric material (εr = 4, µr = 4). In this way, the solution can again
be compared to the Mie series solution, as the currents on the nonspherical
objects should generate a zero scattered electromagnetic field in Ωe. The
rms error stays below 2.5% for both simulated frequencies. This is more
than the error examined for the single spherical scatterer in Fig. 8, which is
due to the presence of sharp wedges on the vacuum objects (see Section 4).
Nevertheless, this error remains rather small, and sufficiently accurate results
are still obtained.

17



101 102 103 104
101

102

103

104

105

µr

C
on

d
it

io
n

N
u
m

b
er

h = 1247
h = 1746
h = 2482
h = 2646

Figure 6: Condition number of the proposed method (full line) and the CP-PMCHWT
method (dashed line) as a function of permeability (with εr = 1), for a spherical scatterer
with radius of 1 m. The incoming plane wave ei(r) = uxe

−jkuz·r impinges along the z-axis
at a frequency of 1 MHz. Data are given for different mesh densities h.
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Figure 7: Number of iterations until convergence (residual error < 10−5) of the proposed
method (full line) and the CP-PMCHWT method (dashed line) as a function of perme-
ability (with εr = 1) for a spherical scatterer with radius of 1 m. The incoming plane wave
ei(r) = uxe

−jkuz·r impinges along the z-axis at a frequency of 1 MHz. Data are given for
different mesh densities h.
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Figure 8: RCS of scattering at a sphere with radius of 1 m and mesh parameter h = 1920,
consecutively filled with three materials (εr = 10, µr = 200 / εr = −10, µr = −2 /
εr = 10, µr = 1 − 1000j). The impinging plane wave is given by ei(r) = uxe

−jkuz·r, at
a frequency of 1 MHz. The RCS is plotted in the xz-plane for θ varying over 180◦. The
results (symbols) are validated by the analytical Mie series expansion (line). The rms
difference between both solutions is smaller than 0.1% for the three investigated cases.

Next, we fill all objects with a contrast material, as clarified in the caption
of Fig. 9. In Fig. 10 and Fig. 11, the RCSs corresponding to this scattering
problem are given for different frequencies, in the xz- and xy-plane, respec-
tively. In Table 1, the condition number and number of iterations until con-
vergence for this scattering problem are given, for different mesh densities.
Notice that for all investigated cases, both the condition number and the
convergence time remain low, and do not vary much when the mesh density
increases.

6. Conclusion

In this paper, we have presented a novel, Calderón preconditioned single-
source BIE. It was proven that this formulation is well-conditioned for electro-
magnetic scattering problems including arbitrarily high magnetic contrasts.
The conditioning, convergence speed and accuracy of this method were inves-
tigated for a wide range of scatterer permeabilities. For high magnetic con-
trasts, the system matrix of the proposed method is better conditioned and
the iterative solution converges faster, when compared to the CP-PMCHWT
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Figure 9: Electromagnetic scattering at four objects. A linearly polarized plane wave
(ei(r) = uxe

−jkuz·r) impinges on a sphere with a radius of 1 m (εr = 4, µr = 4), a cube
with a length of 2 m (εr = 15, µr = 15), a cuboid with a height of 2 m and a length of
1 m (εr = 4, µr = 100) and a cylinder with a radius of 0.5 m and a height of 2 m (εr = 4,
µr = 1− 100j).

h f condition nr. nr. of iter.

75.49 10 MHz 266.63 213
754.9 1 MHz 239.87 136
83.39 10 MHz 287.39 194
833.9 1 MHz 265.82 114
100.6 10 MHz 305.01 212
1006 1 MHz 258.22 128
112.9 10 MHz 392.41 209
1129 1 MHz 311.47 127
132.3 10 MHz 287.87 205
1323 1 MHz 283.98 121

Table 1: Condition number and number of iterations until convergence (residual error
< 10−5) for the scattering problem of Fig. 9, for different frequencies and mesh densities.
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Figure 10: RCS of the scattering problem depicted in Fig. 9, for different frequencies of
the incoming plane wave. The RCSs are plotted in the xz-plane, with θ = 180◦ in the
direction of propagation of the impinging wave. The mesh parameter h equals 1323 at
f =1 MHz and 132.3 at f =10 MHz, respectively.
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Figure 11: RCS of the scattering problem depicted in Fig. 9, for different frequencies of
the incoming plane wave. The RCSs are plotted in the xy-plane, with θ = 180◦ in the
direction of propagation of the impinging wave. The mesh parameter h equals 1323 at
f =1 MHz and 132.3 at f =10 MHz, respectively.
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[5] S. H. Christiansen, J.-C. Nédélec, A preconditioner for the electric field
integral equation based on Calderón formulas, SIAM Journal on Numer-
ical Analysis 40 (3) (2002) 1100–1135.

[6] F. P. Andriulli, K. Cools, H. Bağci, F. Olyslager, A. Buffa, S. Chris-
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