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a greater amount of time. A big thanks to our secretaries Sigrid and Marianne for taking 

care of both large and small technicalities and logistic issues. Sigrid, thanks for all the 

chats and shared moments of frustration (“let’s organise a conference”), which made me 

wonder if you could be even more sarcastic (*eye roll*). A special thanks to my fellow 

assistants Niels, Emmanuel and Ilias for the fluent interactions on student-related 

matters. Niels, thanks for taking over during the final months of the writing process and 
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“Take almost any path you please, and ten to one it carries you  

down in a dale and leaves you there by a pool in the stream.” 

Herman Melville in Moby Dick (1851) 
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Summary 

Decreasing water availability and increasing global population cause tremendous 

pressures on the currently prevailing freshwater sources. It has become clear that 

synergies within freshwater management are required to simultaneously tackle the need 

for (i) improved water quality, (ii) increased water storage, (iii) efficient land use and 

(iv) preventing invasion impacts. Literature provides several options to tackle these 

threats in a simultaneous manner, including technological advancements and nature-

based solutions. The latter entails the use of integrated constructed wetlands, which link 

the terrestrial with the aquatic system and house a variety of beneficial services to 

society. Yet, to avoid inefficient management, attention should be given to (i) identifying 

the biotic group with the highest potential to steer biotic development, (ii) determining 

locations suitable for species survival and (iii) defining the threat by invasive species. 

Based on these issues, three themes were created to tackle these contemporary 

challenges and provide perspectives for decision makers and conservation managers. 

The first theme explores existing experiences in literature to create a conceptual 

framework. Secondly, attention is directed towards data-driven model development, 

with specific focus on the use and preparation of publicly available data followed by the 

development of abiotic habitat suitability models to infer species-specific habitat 

preferences. Lastly, the third theme applies autecological experiments to support both 

proactive and reactive management to mitigate invasion impacts. Finally, this work 

concludes with a comprehensive discussion and several promising perspectives. 

Within the first theme, the literature review is divided into two main parts: (1) ecosystem 

services provided by wetlands and (2) advantages and disadvantages of data-driven 

habitat suitability models. First, Chapter 2 describes how wetlands support sustainable 

development by providing pollutant reduction and by influencing biotic and abiotic 

interactions, ultimately concluding that macrophytes have a steering role regarding 

wetland community composition and functioning. Moreover, model selection, data 

quality assurance and controlled experiments are identified as attention points and 

addressed in subsequent chapters. For instance, Chapter 3 describes the different steps 

within model development, including the conceptual framework, technique selection, 

model calibration and model validation. Advantages and disadvantages of five data-

driven techniques (decision trees, generalised linear models, artificial neural networks, 

fuzzy logic and Bayesian belief networks) are discussed in a comparative context, along 

with various performance metrics to quantify model calibration and validation. The 

chapter concludes by recommending decision trees as a purely data-driven technique 

and thereby especially endorses the use of random forests. 
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The second theme discusses the development of macrophyte-specific habitat suitability 

models and starts by elaborating on data cleaning prior to model training. Within 

Chapter 5, the accuracy of four imputation techniques is discussed, being variable-

specific mean, least square regression, k nearest neighbours and the missForest 

algorithm. A total of 720 data sets with artificially missing data is imputed and supports 

the overall conclusion that the missForest algorithm performs best. Subsequently, 

outliers, false absences and redundant variables are identified in Chapter 6 by applying 

a range of potential threshold values. The results illustrate that model performance is 

clearly affected by data pre-processing and that a set of threshold values can be inferred 

to identify outliers (τo = 3), false absences (τa = 5 %), correlated variables (τc = 0.7) and 

irrelevant variables (τi = 10 %). The chapter concludes by indicating that serial data pre-

processing improves model performance, while the presence of false absences in the test 

data deflates model validation scores. Lastly, building on these results, macrophyte-

specific abiotic habitat suitability models are developed in Chapter 7 thereby 

supporting relatively good discriminative and classification power. In addition, a set of 

major habitat descriptors is inferred along with their characteristic optimal conditions: 

temperature (> 17 °C), nitrate-N (0.5 mg∙L-1 up to 1.5 mg∙L-1), oxygen (4 mg∙L-1 up to 7 

mg∙L-1), ammonium-N (0.3 mg∙L-1 up to 0.5 mg∙L-1) and pH (7 up to 8.5). Yet, further 

fine-tuning of these ranges can be obtained via species-specific analyses. 

Within the third and last theme, the focus is aimed towards avoiding the impact of 

invasive alien species by relying on proactive and reactive management. More 

specifically, Chapter 8 introduces three indices to predict the invasive behaviour of the 

alien Lemna minuta in comparison with the native L. minor, being the functional 

response, the relative growth rate and the biomass-based nutrient removal. L. minor 

shows to remove more nutrients and develop more biomass, causing the chapter to 

conclude that the selected indices are insufficient to infer invasion potential. In contrast, 

reactive management is discussed in Chapter 9 by exposing both Lemna spp. to nine 

different scenarios combining removal frequency (‘none’, ‘low’ and ‘high’) and biomass 

introduction frequency (‘none’, ‘low’ and ‘high’). The results indicate slightly higher 

growth rates for L. minuta compared to L. minor and a negative feedback due to 

overcrowding. Moreover, it shows that total biomass benefits from species introduction 

and that dominance by the host species decreases in time. Both chapters highlight the 

need for more testing, considering their limited extrapolation power. 

To conclude this work, Chapter 10 summarises the findings of all chapters and 

illustrates the added value towards wetland conservation, with specific attention 

towards the pressures caused by climate change and invasive alien species. Moreover, 

alternative techniques for data collection, cleaning and analysis are introduced, along 

with the promising perspective of integrating field observations and experiments in 

order to merge the strengths of correlative and mechanistic modelling.
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Samenvatting 

De afnemende waterbeschikbaarheid en toenemende wereldbevolking zorgen voor een 

enorme druk op de nog beschikbare zoetwaterbronnen. Dit onderstreept het belang van 

synergiën in het zoetwaterbeheer om op een simultane wijze tegemoet te komen aan de 

vraag naar (i) verbeterde waterkwaliteit, (ii) toegenomen wateropslag, (iii) efficiënter 

landgebruik en (iv) verlaagde invasie-impact. De wetenschappelijke literatuur omvat 

verscheidene opties om deze uitdagingen aan te gaan, waaronder technologische 

vooruitgang en natuur-gebaseerde oplossingen. Laatstgenoemde omvat het gebruik van 

geïntegreerde artificiële wetlands, die gekenmerkt worden door het creëren van een link 

tussen het terrestrische en het aquatische systeem en het voorzien van een variëteit van 

gunstige diensten voor de maatschappij. Echter, om inefficiënt beheer tegen te gaan, 

dient er aandacht besteed te worden aan (i) de identificatie van de biotische groep met 

het hoogste potentieel om biotische ontwikkeling te sturen, (ii) het bepalen van de 

locaties die geschikt zijn voor het overleven van de beschouwde soorten en (iii) het 

definiëren van de bedreiging gecreëerd door invasieve soorten.  

Gebaseerd op deze uitdagingen en aandachtspunten, werden drie thema’s afgelijnd en 

behandeld om perspectieven te voorzien voor beleidsmakers en conservatoren. Het 

eerste thema omvat het beschrijven van de bestaande ervaring die in de literatuur 

vermeld worden teneinde een conceptueel kader te creëren. Vervolgens wordt er, 

gebaseerd op het ontwikkelde conceptuele kader, extra aandacht gegeven aan het 

ontwikkelen van datagedreven modellen. Deze ontwikkeling omvat een specifieke focus 

op het gebruik en de voorbereiding van publiek toegankelijke data, gevolgd door het 

ontwikkelen van abiotische habitatgeschiktheidsmodellen om geprefereerde 

habitatomstandigheden af te leiden. Het derde thema behandelt het gebruik van 

autecologische experimenten ter ondersteuning van proactief en reactief beheer met 

betrekking tot het mitigeren van invasie-impacts. Uiteindelijk sluit het werk af met een 

discussie en de identificatie van enkele veelbelovende toekomstperspectieven. 

Binnen het eerste thema wordt het literatuuronderzoek opgesplitst in twee delen: (1) de 

ecosysteemdiensten die door wetlands worden voortgebracht en (2) de voor- en nadelen 

van datagedreven habitatgeschiktheidsmodellen. Allereerst wordt er in Hoofdstuk 2 

beschreven hoe wetlands bijdragen tot duurzame ontwikkeling door het voorzien van 

polluentverwijdering en door het beïnvloeden van verscheidene biotische en abiotische 

interacties. Er wordt besloten dat macrofyten een sturende rol hebben in de 

ontwikkeling van het beschouwde aquatische systeem en dat modelselectie, 

kwaliteitscontrole en gecontroleerde experimenten belangrijke aandachtspunten zijn. 

Deze elementen worden bijgevolg stapsgewijs in de volgende hoofdstukken behandeld.  
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Bijvoorbeeld, in Hoofdstuk 3 worden de verschillende stappen in het modelleerproces 

beschreven, inclusief conceptueel kader, techniekselectie, modelkalibratie en 

modelvalidatie. De voor- en nadelen van vijf verschillende modelleertechnieken 

(beslissingsbomen, veralgemeende lineaire modellen, artificiële neurale netwerken, 

vage logica en Bayesiaanse netwerken) worden bediscussieerd in een vergelijkende 

setting, tezamen met meerdere performantie-indices om modelkalibratie en –validatie 

te beschrijven. Het hoofdstuk sluit af met het aanraden van beslissingsbomen als zuivere 

datagedreven modelleertechniek, met een specifieke vermelding van de random forest 

benadering. 

Na de techniekselectie wordt data omtrent macrofytaanwezigheid verzameld, 

gekarakteriseerd en voorbereid voor het extraheren van patronen. Het opkuisen van 

data is relatief tijdsintensief en behandelt ontbrekende gegevens, extreme waarden, 

valse afwezigheden en redundante variabelen. In Hoofdstuk 5 wordt dieper ingegegaan 

op de aanwezigheid van ontbrekende gegevens door de nauwkeurigheid van vier 

imputatietechnieken te beschreven, namelijk het variabele-specifieke gemiddelde, least 

square regressie, k nearest neighbours en het ensemble-gebaseerde missForest algoritme. 

De analyse omvat het artificieel verwijderen van data uit 720 datasets, gevolgd door 

imputatie en bepaling van de behaalde nauwkeurigheid. Er wordt besloten dat het 

missForest algoritme de hoogste nauwkeurigheid voorziet van de geselecteerde 

technieken.  

Vervolgens worden extreme waarden, valse afwezigheden en redundante variabelen 

geïdentificeerd en geëlimineerd in Hoofdstuk 6, hetgeen resulteert in een analyse van 

de potentiële drempelwaarden. De resultaten illustreren dat modelperformantie 

beïnvloed wordt door het voorbehandelen van de beschikbare data en dat een set van 

drempelwaarden kan afgeleid worden om extreme waarden (τo = 3), valse afwezigheden 

(τa = 5 %), gecorreleerde variabelen (τc = 0.7) en irrelevante variabelen (τi = 10 %) te 

verwijderen. Het hoofdstuk sluit af met de observatie dat het voorbehandelen van data 

een positief effect heeft op modelperformantie, terwijl valse afwezigheden in de 

validatiedata kunnen leiden tot een lagere performantiescore.  

Ter afsluiting van dit thema worden, op basis van deze resultaten, macrofyt-specifieke 

abiotische habitatgeschiktheidsmodellen ontwikkeld in Hoofdstuk 7, waarbij een 

goede discriminatie en classificatie bekomen wordt. Meer nog, een set van belangrijke 

habitatdescriptoren kan afgeleid worden, met karakteristieke optimale waarden voor 

macrofyt-aanwezigheid: temperatuur (> 17 °C), nitraat-stikstof (tussen 0.5 mg∙L-1 en 1.5 

mg∙L-1), zuurstof (tussen 4 mg∙L-1 en 7 mg∙L-1), ammonium-stikstof (tussen 0.3 mg∙L-1 en 

0.5 mg∙L-1) en pH (tussen 7 en 8.5). Verdere detaillering van deze waardes kan bekomen 

worden via soort-specifieke analyses. 
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Binnen het derde en laatste thema wordt de focus gelegd op het vermijden en 

verminderen van de impact veroorzaakt door invasieve uitheemse soorten met behulp 

van proactief en reactief beheer. In Hoofdstuk 8 worden drie indices voor het 

voorspellen van invasief gedrag voorgesteld en vervolgens toegepast om de uitheemse 

macrofyt Lemna minuta te vergelijken met de inheemse L. minor, namelijk de 

functionele respons, de relatieve groeisnelheid en een biomassa-gebaseerde 

nutriëntverwijdering. Binnen de bestudeerde nutriëntrange toont de inheemse L. minor 

een groter vermogen om nutriënten te verwijderen en biomassa te ontwikkelen, hetgeen 

veldobservaties tegenspreekt. Het hoofdstuk concludeert dat de gekozen indices 

onvoldoende zijn om het invasiepotentieel van invasieve uitheemse macrofyten te 

bepalen.  

Vervolgens wordt in Hoofdstuk 9 een reactief beheer toegepast en besproken, volgend 

op het blootstellen van beide Lemna spp. aan negen verschillende scenario’s die 

verwijderingsfrequentie (‘geen’, ‘laag’ en ‘hoog’) en introductiefrequentie (‘geen’, ‘laag’ 

en ‘hoog’) combineren. De resultaten tonen een hogere groeisnelheid voor de uitheemse 

L. minuta vergeleken met de inheemse L. minor en een algemene afname in tijd door 

een toename in densiteit. Tevens wordt aangetoond dat de totale biomassa toeneemt 

door de introductie van biomassa en dat de biomassaverhouding tussen beide soorten 

afneemt in de tijd. De variatie in respons toont aan dat verdere studies aangeraden zijn 

om zowel proactief als reactief beheer te ondersteunen. 

Om dit werk te eindigen, vat Hoofdstuk 10 alle resultaten samen, waarmee de 

toegevoegde waarde naar het behoud en herstel van wetlands, met extra aandacht naar 

de druk die klimaatsverandering en invasieve soorten uitoefenen, wordt geïllustreerd. 

Alternatieve en supplementaire technieken voor dataverzameling, -reiniging en  

–analyse worden vermeld, tezamen met het potentieel van de verdere integratie van 

veldobservaties en experimenten om de sterktes van correlatieve en mechanistische 

modellen te combineren. 
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Introduction 

  

Highlights 

- Ongoing population growth, globalisation and climate change pressurise 

freshwater systems 

- Wetlands provide various ecosystem services and are a valuable conservation 

option 

- Application of models and autecological experiments is imperative to support 

freshwater management 
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Abstract 

Water is essential to life on Earth, yet for centuries, running water has been considered 

a low-cost and energy-efficient disposal system for human settlements. With rising 

population levels, pressures on prevailing freshwater systems have increased rapidly, 

being additionally exacerbated by rising food and personal hygiene demands. As a 

response, the United Nations developed a calendar with 17 Sustainable Development 

Goals, to be completed by 2030, all of which are interconnected and allow for a certain 

degree of integration. It is clear that synergies within freshwater management are 

required to simultaneously tackle the need for (i) improved water quality, (ii) increased 

water storage, (iii) more efficient land use and (iv) inhibiting the effect of invasive alien 

species. To this end, wetland systems provide a potential starting point as they act as an 

important link between the terrestrial and aquatic system, while housing a variety of 

beneficial services to society. More specifically, attention should be given to (i) identify 

the biotic group with the highest potential to steer biotic development, (ii) determine 

locations suitable for species survival and (iii) define the threat by invasive alien species. 

These challenges are to be tackled by combining experience, experiments and models, 

with the latter increasingly relying on the growing field of artificial intelligence and 

publicly accessible data. By considering these issues, a series of research questions and 

objectives is defined and used for outlining the structure of this work. 

 

  



INTRODUCTION 

3 

1.1 Setting the scene 

1.1.1 Global pressures and threats 

Water is essential to life on Earth. It has been the basis for the first steps in the evolution 

process and has driven the development of human settlements for centuries. The 

uniqueness of such a resource being available throughout the world and originating 

from a huge, interconnected reservoir has not only supported the development of and 

revolutions within human history, but has also caused its abuse. For centuries, running 

water has been considered a low-cost and energy-efficient disposal system for human 

settlements, discharging liquid and solid wastes and relying on natural dilution and 

attenuation.  

With relatively low historical population densities and wastewater mostly consisting of 

easily-degradable organic compounds, impacts on water quantity and quality due to 

extraction and discharge remained highly localised. This all changed with the start of 

the first Industrial Revolution during which water was viewed as a valuable energy 

source (Tvedt, 2010), seeding machine development, production proliferation and 

increased discharge of unwanted by-products. Continued reliance on the inherent 

attenuation power of nature caused uninterrupted and unregulated discharges, 

reflecting the ‘Tragedy of the Commons’: When something is freely accessible to all, it 

will be abused and overexploited until it becomes monetised and available to only a few 

(Hardin, 1968).  

One of the main drivers underlying this tragedy is the uninterrupted growth of the global 

population, which crossed the virtual threshold of 1 billion around 1800 and has 

increased ever since. In 2020, the world population reached 7.8 billion people (Figure 

1.1), while projections estimate the existence of 10 billion people by 2057 (United 

Nations, 2020). Rising food and personal hygiene demands pressurise the prevailing 

freshwater systems at a qualitative and quantitative level. More importantly, these 

pressures are being exacerbated by land use alterations and global climate change, 

causing disruptions of hydrological cycles on local, regional and global scales (IPCC, 

2014; Verdonschot et al., 2013). For instance, the first signs of these detrimental 

interactions are hard to ignore and include reports on the shrinkage of reservoirs and 

glaciers (Boomer et al., 2000; Roe et al., 2017), changes in frequency and intensity of 

rain patterns (Berg et al., 2013) and increased faecal contamination of drinking water 

(UNESCO, 2017). These effects are expected to escalate in the future, thereby becoming 

either a cause for conflict or an opportunity for cooperation (Barnaby, 2009; Pearse-

Smith, 2012; Shultz, 2003). 
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Figure 1.1: Evolution of the world’s population. In 1950, only 2.5 billion people lived on Earth, 

which has increased to 7.8 billion in 2020 (black dotted line) and is estimated to reach 10 billion 

by 2057 (grey dotted line). The inherent uncertainty of forecasts is depicted by a light grey ribbon 

surrounding the mean estimation (dashed black line) and reflects the difference caused by the 

considered fertility range. Data retrieved from United Nations (2020). 

Aside from the direct effects of altered hydrological cycles on the provisioning of water 

to society, also indirect effects are expected to increase due to modified water budgets 

within ecosystems (IPCC, 2014; UNESCO and UN-Water, 2020). Similar to human-

oriented communities, natural systems depend on clean and abundant water for their 

development and to sustain their intrinsic complex interactions. Meanwhile, these 

systems provide a plethora of water-related ecosystem services (ES) that are intrinsically 

linked with water quality (e.g. purification) and water quantity (e.g. storage). These 

examples only represent a fraction of all the benefits that society can enjoy from natural 

systems, though their sustainable exploitation is challenged by delayed socio-economic 

acceptance and political impetus (Friberg et al., 2017; Jähnig et al., 2011). To improve 

understanding and awareness, additional distinction is made between provisioning (e.g. 

food, fibres), cultural (e.g. aesthetics, recreational) and supporting (e.g. nutrient cycling, 

soil formation) services (Millenium Ecosystem Assessment, 2005), along with several 

efforts to valuate ES (Costanza et al., 2014). Still, each of these services relies on natural 

processes within a stable and functional ecosystem.  

Unfortunately, pressures arising at the abiotic level threaten ecosystem structure and 

functioning, thereby negatively affecting the intensity of the provided ES. Habitat 

fragmentation, alterations in land use, chemical pollution and invasive alien species 

represent only a few underlying causes of the current biodiversity crisis (Harrison et al., 

2018; He et al., 2019), with species extinction rates and reductions in wildlife populations 

reaching unprecedented levels (Vitousek et al., 1997; WWF, 2018). These observations 

call for immediate management measures, despite the inherent complexity of stressor 

interactions. 
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1.1.2 Responding to freshwater pressures 

Clean and abundant water acts as a cornerstone for socio-economic development, 

making it an undeniable human right. With the ongoing pressures in mind, the United 

Nations created the Sustainable Development calendar for 2030 as a sequel to the 

Millennium Development Goals, which ended in 2015. Within the new framework, 17 

Sustainable Development Goals (SDGs) have been identified to support future 

development with attention to social, economic and environmental aspects (United 

Nations, 2015).  

All SDGs are closely linked to each other, yet focus on different aspects of sustainable 

development. Issues related to freshwater are the main topic in SDG 6 (Clean water and 

sanitation) and SDG 15 (Life on land) and, despite being part of different SDGs, allow to 

be partially tackled simultaneously. For instance, treatment of wastewater prior to its 

discharge reduces the pollutant load into the environment, allowing for lower 

purification costs (into clean water) and providing less pressure on the biotic 

communities within the water. With 2.1 billion people lacking access to safe drinking 

water and about 80 % of all wastewater entering the environment without treatment, 

the urgency to accelerate efforts within water-related goals is unambiguously clear and 

consolidates the declaration of the International Decade for Action on Water, running 

from 2018 until 2028 (UNESCO, 2017; United Nations, 2020; WHO/UNICEF, 2017). 

The abovementioned local anthropogenic activities negatively affect the provisioning of 

sufficient and qualitative water, while increased travel and trade at a global scale 

continuously transport organisms outside their native range, both intentionally and 

accidentally (Perrings et al., 2002). The introduction of an alien organism (see Box 1.1 

for related terminology) into a suitable environment can both improve and threaten 

community composition, while additionally affecting economic activities and human 

health (Born et al., 2005; Pejchar and Mooney, 2009; Strayer, 2010). For instance, the 

megafauna in Australia are all introduced species, including species that are at risk or 

extinct in their native range (Lundgren et al., 2018). In contrast, the invasion of the zebra 

mussel (Dreissena polymorpha) has caused a widespread occurrence within the 

Mississippi basin and has led to the clogging of multiple water intake pipes (Ludyanskiy 

et al., 1993). Similarly, the floating water hyacinth (Eichhornia crassipes) has become a 

common inhabitant of tropical lake systems around the world, yet blocks several aquatic 

transport routes (Villamagna and Murphy, 2010). The resulting ecological and economic 

impacts have been so severe that both species earned a spot in the IUCN List of the 100 

worst invasive species (IUCN, 2019). Currently, border control represents the most-

developed proactive management measure to impede the introduction of alien species, 

though the increasing number of reports on alien species indicates a need for alternative 

and supplementary measures in order to avoid expensive (and often ineffective) 

eradication programs (Early et al., 2016; Williams and Grosholz, 2008). 
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Box 1.1: Terminology biological invasions 

A variety of terminology and definitions is used within the field of biological invasions, 

which impedes transparent communication and challenges decision-making 

(Blackburn et al., 2011; Colautti and MacIsaac, 2004). For instance, Colautti and 

MacIsaac (2004) consider a species to be invasive when depicting a significant spread 

in the new geographical range, while Davis and Thompson (2000) state that a severe 

impact is required prior to being considered invasive. While redefining the complete 

field of biological invasions is beyond the scope of this work, it is clear that overall 

transparency can be improved by defining the terminology to be used throughout the 

following chapters. 

Each species is characterised by a specific geographical range in which it naturally 

occurs, survives and reproduces. Species occurring within their natural geographic 

range are referred to as native species. In contrast, species can be transported outside 

their native range by anthropogenic activities and be introduced in a new 

environment. These species are referred to as alien species, exotic species, non-

native species or non-indigenous species. When species have the tendency to 

completely colonise and outcompete the prevailing populations after their arrival in a 

new site (be it within or outside the native range), they are considered to be invasive. 

Hence, within a specific geographical area, both native and alien species can display 

invasive behaviour. 

For a species to be classified as an Invasive Alien Species (IAS), it has to go through 

several stages and overcome multiple barriers, which has been summarised in various 

conceptual frameworks. For instance, Blackburn et al. (2011) combine the individual-

based approach of Richardson et al. (2000) and the population-based approach of 

Williamson and Fitter (1996) in a unified framework with the following four stages: 

(1) Transport, (2) Introduction, (3) Establishment and (4) Spread/Colonise.  

Each of these stages is characterised by one (or more) barrier(s). More specifically, 

geographical restrictions limit the number of species that will be transported, while 

cultivation/captivity impedes the introduction of a selected set of species into a new 

environment. The latter represents an optional barrier, as many other species (e.g. 

plants, fungi, invertebrates) have the capacity to be unintentionally transported and 

directly introduced in the new environment. Following introduction, species need to 

be able to survive and reproduce within their new environment in order to become an 

established and self-sustaining population. Lastly, successful spread is reached when 

overcoming the dispersal and subsequent environmental barrier. With each barrier, a 

fraction of alien species is lost and considered unfit to significantly impact native 

communities in the long term (Blackburn et al., 2011; Williamson and Fitter, 1996). 
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The identification of these pressures and underlying driving forces helps in pinpointing 

bottlenecks and developing responses to mitigate impacts, following the conceptual 

DPSIR (Driving Force – Pressure – State – Impact – Response) approach (Vannevel, 2018; 

Verdonschot et al., 2013). Increased awareness on the state and the intrinsic value of 

natural ecosystems has kick-started research on the applicability and potential of 

ecosystem management (see Box 1.2 for related terminology) to counter anthropogenic 

pressures. So far, positive results have been obtained for projects aiming to improve 

abiotic conditions by implementing re-meandering, breaking down weirs and installing 

wastewater treatment plants (Jähnig et al., 2011; Lorenz et al., 2009).  

In contrast, pilot studies on biological restoration following these abiotic improvements 

have provided mixed results due to the high spatiotemporal and biological complexity 

of natural ecosystems (Hilderbrand et al., 2005; Verdonschot et al., 2013). For instance, 

dispersal limitations, biotic resistance and the absence of a proper ecosystem engineer 

are only a few processes that can cause a significant temporal delay to reach the project-

specific goals. To counter these delays, manual introduction can help accelerating 

natural succession, though relies on species-specific assessment of habitat suitability 

and significant monetary investments (Lu et al., 2012; Zhang et al., 2017).  

From this, it is clear that cooperation and integration of individual freshwater 

management activities is required to simultaneously tackle the need for (i) improved 

water quality, (ii) increased water storage, (iii) more efficient land use and (iv) limiting 

the impact of invasive alien species. Such synergies occur naturally near the border of 

existing ecosystems, ecotopes and habitats by locally integrating and fine-tuning 

characteristics of all contributing components (Banks-Leite and Ewers, 2009). The 

resulting complexity and extensiveness tend to vary greatly in function of the severity in 

change, ranging from highly abrupt (e.g. rocky cliffs, glacial lakes) to smooth (e.g. local 

topographic depressions, estuaries). Moreover, due to the recurring difficulty in defining 

a clear border between neighbouring habitats, the transition zone can be relatively wide 

and cover an additional habitat type (Banks-Leite and Ewers, 2009; Strayer et al., 2003). 

For instance, wetlands are characterised by a smooth transition between the aquatic and 

terrestrial system and tend to develop differently depending on the prevailing 

environmental conditions. Consequently, a variety of subtypes exists, including fens, 

bogs, peatlands, marshes, mangroves and swamps, which share only the presence of a 

hydric soil as a common factor and leave proper delineation open for discussion (Dodds 

and Whiles, 2010; Gopal, 2016; Keddy, 2010; Kivaisi, 2001). In fact, wetlands combine 

aquatic and terrestrial characteristics and thereby provide a potential starting point to 

look for synergies and convey ecological conservation (Junk et al., 2014; Kingsford et al., 

2016). Throughout the remainder of this work, wetlands will be considered as ‘systems 

with a continuously waterlogged soil’. 
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Box 1.2: Terminology ecosystem management 

Managing ecosystems entails all anthropogenic actions that directly and indirectly 

affect ecosystem composition and functioning, ultimately aiming to reach human-

defined goals. Due to this variety of available actions, it is considered useful to 

introduce management-specific terminology and what it entails with respect to goal 

definition and field activities. 

A first distinction can be made between preservation and conservation. 

Preservation aims at maintaining ecosystems in their pristine state, without society 

experiencing economic benefits. Conservation is less strict and aims at improving 

natural conditions (e.g. landscapes, biodiversity) while simultaneously considering 

potential benefits (i.e. ecosystem services) to and cooperation with society (Sarkar, 

1999). Hence, conservation can be considered as more complex than preservation as 

it requires more fine-tuning with a human element. 

Conservation plays at a large spatial scale and underlies several international 

agreements, including the definition of RAMSAR sites, Aichi targets and sustainable 

development goals (CBD, 2020; United Nations, 2015). To reach conservation at a 

large scale, small-scale activities and implementations are of importance. These can 

be broadly classified into (1) Protection, (2) Restoration and (3) Construction. 

Protection aims at the maintenance of an ecosystem and preventing its decline by 

eliminating pressures, without causing an increase in area of the considered system 

(sometimes referred to as mitigation) (Jackson et al., 1995).  

Restoration focuses on the improvement of the prevailing conditions in order to 

support natural development towards natural or historical conditions (Jackson et al., 

1995; Jackson and Hobbs, 2009). Depending on the author, restoration efforts can be 

considered in a broader sense and additionally include actions that (i) improve specific 

ecosystem functions (enhancement) and (ii) re-create structure and/or functioning 

without aiming towards historical conditions, distinguishing between a relatively high 

(reclamation) and low (rehabilitation) similarity with the reference ecosystem 

(Aronson et al., 1993; Harris et al., 2006; Jackson et al., 1995; Jackson and Hobbs, 

2009).  

Lastly, construction supports the premise that ecosystems can be built at locations 

where they never occurred before in order to mitigate losses elsewhere or to locally 

improve the production of ecosystem services. Often, these actions are also referred 

to as representing creation, reallocation or establishment of the preferred artificial 

system (Aronson et al., 1993; Jackson et al., 1995). 
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1.1.3 Wetlands as a starting point 

Natural wetlands have been around for as long as humans stroll around the world, but 

their area has decreased ever since (Kingsford et al., 2016). Population growth, increased 

urbanisation and industrial development are only a few of the driving forces that have 

steered this downward trend and that have, along with other land transformations, 

caused the loss of at least 50 % (and potentially up to 87 %) of all wetland area around 

the world (Davidson, 2014; van Asselen et al., 2013; Vitousek et al., 1997). With wetlands 

providing key environmental processes and being identified as one of the highest-valued 

habitats per unit area (Costanza et al., 2014; Millenium Ecosystem Assessment, 2005), 

they inherently affect local and regional ecosystems at the abiotic and biotic level 

(Zedler, 2003). Hence, wetland protection and restoration are of key importance to 

avoid future degradation and to regain lost functions on land (SDG 15 – Life on land) 

(Kingsford et al., 2016; United Nations, 2015). 

Artificial wetlands help to mitigate these losses by mimicking natural wetland 

conditions (Kadlec and Wallace, 2008; Scholz et al., 2007), though are frequently built 

as single-purpose systems, including food production (e.g. rice paddies), flood 

protection (e.g. controlled flood areas) and pollution mitigation (e.g. reed beds). 

Application of the latter to fight point and diffuse pollution sources has received 

increased attention throughout the past fifty years, focusing on design, applicability, 

resilience, type of substrate and vegetation (Auvinen et al., 2016; Karathanasis et al., 

2003; Kivaisi, 2001; Park and Polprasert, 2008; Rousseau et al., 2004a; Vymazal, 2010). 

Due to their low capital and maintenance costs, constructed treatment wetlands (CTWs) 

represent a viable pollution mitigation measure in remote areas (Kivaisi, 2001; Vymazal, 

2011a; Zhi and Ji, 2012), providing sanitation and cleaner water (SDG 6 – Clean water 

and sanitation) (United Nations, 2015). 

Throughout the last two decades, multi-purpose designs that combine biodiversity 

increase and pollutant removal have been simultaneously introduced as the ‘Water 

Harmonica’ concept (Kampf and Claassen, 2004) and the ‘Integrated Constructed 

Wetland’ (ICW) concept (Scholz et al., 2007). Within these concepts, CTWs are 

designed to provide both pollutant removal and landscape integration, while 

establishing a range of habitats to support increased biological diversity (Boets et al., 

2011; Harrington and McInnes, 2009; Scholz et al., 2007). Nevertheless, reports on the 

combined pollutant reduction and biodiversity boost provided by ICW systems remain 

limited as most studies focus on the water treatment function (Becerra-Jurado et al., 

2012; Benyamine et al., 2004; Hansson et al., 2005). Further studies are therefore crucial 

to narrow the resulting gap between the conceptual framework and practical 

implementation. 
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1.2 Delineation of the study and research objectives 

1.2.1 Identification of the working field 

Integrated constructed wetlands (ICWs) rely on a complex interplay of physical, 

chemical and biological processes that deserve attention during decision-making and 

prior to implementing on-site measures. More specifically, the success of ICWs (either 

after construction or restoration) ultimately depends heavily on (1) the integration in its 

surrounding, (2) the degree of pollutant removal and (3) the resulting augmented 

biodiversity. With the current freshwater biodiversity crisis in mind (Harrison et al., 

2018; He et al., 2019), the majority of this work is dedicated to the biodiversity potential 

of ICWs, without completely ignoring the physical and chemical aspects. 

The biological response to the prevailing abiotic conditions and dynamics can be 

inferred from experiments, models or a combination of both. More importantly, both 

data sources entail a continuum that ranges from a simplified to a highly complex 

approach. For instance, experiments can be performed under controlled laboratory 

conditions with a single treatment factor, though can be as complex as restoring 

hydraulic conditions and assessing the difference in species richness over time. 

Similarly, models to infer species-specific habitat suitability and distribution patterns 

can be purely data-driven (empirical) or completely mechanistic (process-based), yet 

the design and application of all models is greatly determined by their intended usage. 

This variety in experiment and model complexity requires a further delineation of the 

working field considered throughout this work. Given the increasing importance of 

environmental data science in decision-making and the growing amount of publicly-

available occurrence data sets (Gibert et al., 2018a; Maldonado et al., 2015), it was 

decided to work with data-driven modelling techniques. These models allow for 

inferring species-specific habitat preferences, though tend to be challenged by a lack of 

data or by limited integration of species dynamics. This is especially the case for rare and 

alien species, which advocates the use of simplified experiments to infer and forecast 

species-specific behaviour. In short, both models and experiments are considered and 

applied to support the biotic restoration and construction of ICWs. 

Aside from this conceptual delineation, several boundary conditions require 

specification prior to identifying the knowledge gaps and associated study objectives. 

Firstly, the physical design is assumed to promote relatively high hydraulic retention 

times and to represent inclined banks that allow for a gradient in water depth (and 

associated microhabitats). Secondly, the chemical conditions mainly represent a 

wastewater polishing stage and are, therefore, assumed to reflect elevated nutrient 

levels. Thirdly, the geographic location is focused on Belgium and the Netherlands and 

assumes a similar climate (i.e. no important steering climatic variables).  



INTRODUCTION 

11 

1.2.2 Research objectives 

The conceptual delineation of the study area (see Section 1.2.1) creates a transparent 

foundation for outlining the practical research objectives of this work. These objectives 

help to link and streamline individual studies and can be easily divided into three major 

themes: (1) literature review, (2) data-driven modelling and (3) autecological 

experiments.  

To start, literature provides an essential basis to narrow the practical working field 

further. More specifically, ICWs have already been introduced in Section 1.1.3, though 

deserve a more in-depth description of the various chemical processes and biotic 

interactions that take place within. Similarly, a variety of data-driven modelling 

techniques exists, which merits a detailed qualitative comparison prior to technique 

selection. Specific research objectives related to the literature review on ICWs and 

modelling techniques are provided in Section 1.2.2.1. 

Secondly, data-driven modelling is not limited to technique selection, but also includes 

data cleaning and pre-processing in order to improve the quality of the data. This is 

especially the case when dealing with publicly available data, as these often contain 

noise and impure information (Maldonado et al., 2015). The geographical delineation of 

the study allows the use of the Limnodata Neerlandica (Knoben and van der Wal, 2015), 

which is characterised by a relatively high spatiotemporal coverage. The structure of this 

data set supports the development of models trained with presence-absence data, which 

narrows the number of techniques to be considered in the first theme. Specific research 

objectives related to data-driven modelling are introduced in Section 1.2.2.2. 

Thirdly, experiments provide valuable information when insufficient data is available for 

model development. The conceptual framework entails open water systems with 

elevated nutrient levels and are, similar to other freshwater systems, exposed to the 

introduction of alien species. Only a fraction of the introduced alien species survives 

(see Box 1.1), though these survivors can drastically affect ecosystem structure and 

functioning. Therefore, alien species with a negative effect on native species are best 

known in advance to support proactive management. In contrast, when such a species 

is already present, reactive management is needed to reduce its impact. Data-driven 

models are generally incapable of providing appropriate answers to these questions, 

which highlights the importance of experiments. Specific research objectives related to 

these autecological experiments are summarised in Section 1.2.2.3. 

Throughout this work, these three themes are dealt with in the presented order, and 

subdivided in a series of research questions and related objective. For each theme, a 

visual representation is provided, along with the identification of the chapter dealing 

with the objective(s).  
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1.2.2.1 Theme 1: Exploring experiences 

When working with integrated constructed wetlands, identification of a biotic group 

that represents habitat modifiers is recommended as they shape and transform the local 

ecosystem. Hence, the first research question is summarised as: “Which biotic groups are 

relatively strong habitat modifiers?” (Figure 1.2). An answer to this question is obtained 

by creating an overview of how biotic groups interact in shallow eutrophic freshwater 

systems (Objective 1.1) and determining which group has a relatively large impact on 

both the abiotic conditions and biotic community (Objective 1.2).  

Secondly, a detailed description of the system under study is essential to construct the 

overall framework. Therefore, the second research question within this theme entails: 

“What hampers implementing Integrated Constructed Wetlands (ICWs)?” (Figure 1.2). 

An answer to this question is obtained by summarising wastewater treatment 

performance of constructed wetlands (Objective 1.3) and elaborating on the desired 

functions to identify current knowledge gaps (Objective 1.4).  

Lastly, species occurrence is highly dependent on the prevailing abiotic conditions and 

biotic interactions, which can be combined in a modelling framework. Yet, as the 

number of available techniques increases rapidly, the following research question 

remains: “What options exist for correlative habitat suitability modelling?” (Figure 1.2). 

By comparing a selection of modelling techniques (Objective 1.5) and describing the 

overall modelling framework (Objective 1.6), an answer to this question is provided. 

 

Figure 1.2: Content of the first theme, including research questions and underlying 

objectives. Research question 1.1 and 1.2 are discussed in Chapter 2, while research question 1.3 is 

discussed in Chapter 3 (see further). 
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1.2.2.2 Theme 2: Model development 

When developing ecological models, natural processes and interactions are simplified 

to ease interpretation by complexity reduction (Wilson et al., 2011). Therefore, model 

results should be interpreted with care, especially when publicly available data is used. 

This real-world data is generally in need of cleaning to improve the overall information 

density prior to being used, thereby positively affecting model fit and related results 

(Maldonado et al., 2015; Zhang et al., 2003). Hence, the first research question of this 

theme can be summarised as: “How to prepare the available data to improve model 

performance?” (Figure 1.3). An answer to this question is obtained by identifying and 

applying a technique to deal with missing data (Objective 2.1), along with exploring data 

cleaning procedures and related threshold selection to increase the information content 

(Objective 2.2). With data and time being valuable aspects during modelling, related 

gains or losses will be juxtaposed with changes in accuracy. 

Subsequently, the pre-processed data act as information source for the development of 

predictive models in order to identify those locations that will benefit from artificial 

introduction. Moreover, it also allows to identify locations that remain unsuitable for 

native species, yet suitable for invasive alien species. Therefore, the second research 

question of this theme entails: “How applicable is the selected modelling technique?” 

(Figure 1.3). By developing species-specific models (Objective 2.3), derive species-

specific habitat descriptors (Objective 2.4) and applying these models within a 

management framework (Objective 2.5), an answer to this research question is obtained. 

 

Figure 1.3: Content of the second theme, including research questions and underlying 

objectives. Research question 2.1 is discussed in Chapters 5 and 6, while research question 2.2 is 

discussed in Chapter 7 (see further). 
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1.2.2.3 Theme 3: Autecological experiments 

Management of invasive alien species is significantly supported by the development of 

correlative habitat suitability and species distribution models (Boets et al., 2010; 

Gallardo et al., 2012). Yet, the data-driven nature of most modelling techniques relies on 

the presence of these non-indigenous species within the non-native range, thereby 

hampering their application to support proper proactive management. Hence, the first 

research question within this theme is summarised as: “Can functional traits be used to 

infer invasive behaviour of alien species?” (Figure 1.4). An answer to this question is 

obtained by selecting traits according to the SMART guidelines (Specific – Measurable – 

Attainable – Relevant – Time-bound) (Objective 3.1), followed by the comparison of field 

observations with the achieved trait results (Objective 3.2). 

Secondly, management of freshwater sites that have been invaded by an alien species 

can be based on developed habitat suitability or species distribution models. Yet, only a 

fraction of modelling techniques is able to substantially include temporal dynamics, 

which illustrates a major drawback of model-based management. Moreover, it 

represents the basis of the second research question within this experiment-based 

theme: “How does partial biomass removal affect species productivity?” (Figure 1.4). By 

experimentally determining biomass production and ratio under different pressures 

(Objective 3.3) and comparing the response of a native and alien population (Objective 

3.4), an answer to this research question is obtained. 

 

Figure 1.4: Content of the third theme, including research questions and underlying 

objectives. Research question 3.1 is discussed in Chapter 8, while research question 3.2 is 

discussed in Chapter 9 (see further). 
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1.3 Thesis roadmap 

To answer the abovementioned research questions, several steps are taken, analysed and 

discussed throughout this thesis, separated in 10 different chapters. The content of most 

chapters and how they tackle a specific research question has already been shortly 

presented in Figure 1.2, Figure 1.3 and Figure 1.4, though merits a more elaborate 

description to reflect the overall structure and continuity of this work. Throughout the 

following paragraphs, the content of each chapter is introduced along with its relevance 

and contribution to the aforementioned research questions, which is ultimately 

summarised in a comprehensive scheme (see Figure 1.5). 

Within this first chapter, the general background of the study is provided to introduce 

the societal relevance and scientific necessity of this work. Attention is given to the 

importance of water in society, as well as the value of aquatic ecosystems and the 

provided services. Due to the connection between aquatic and terrestrial systems, 

wetlands are considered to be a prominent starting point for combining water 

treatment, storage and purification along with a positive note towards the improvement 

of terrestrial biodiversity and river conservation. Based on this starting point, a series of 

research questions with underlying objectives are identified to steer and frame all 

subsequent chapters. 

In Chapter 2, additional focus is given to the concept of Integrated Constructed 

Wetlands (ICWs) and the identification of interactions among several biotic groups 

within shallow eutrophic freshwater systems. Specific attention is given to pollutant 

removal within constructed wetlands and the structuring role of macrophytes in many 

aquatic systems. The chapter concludes with a summary of key issues that need further 

investigation to support the implementation of ICWs as a multi-purpose technique 

dealing with water pollution and biodiversity improvement. The majority of subsequent 

chapters elaborates on one (or more) of the key issues identified here. 

Next, Chapter 3 dives into the world of data-driven habitat suitability and species 

distribution models by discussing the advantages and drawbacks of five modelling 

techniques. Application of these techniques within ecosystem management is illustrated 

by means of examples, while highlighting the different steps and approaches to be 

considered during model development. The chapter includes an introduction to 

decision trees, generalised linear models, artificial neural networks, fuzzy logic and 

Bayesian belief networks as well as a description on model conceptualisation, 

requirements, calibration and evaluation. Moreover, it provides an introduction to the 

potential of and criticism on ecological modelling to support environmental 

management. The chapter concludes with the endorsement of a promising data-driven 

modelling technique. 
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Subsequently, Chapter 4 provides a general description of the data and modelling 

technique underlying the following chapters. An in-depth description of the data set is 

provided (spatiotemporal coverage, number of instances, number of explanatory 

variables, number of species, missing data, …), as well as a more detailed discussion of 

the selected model algorithm. Moreover, the methodology and experimental design 

behind the applied data cleaning are touched upon. Finally, the focus species of the 

autecological experiments are introduced. 

In Chapter 5, the first step in cleaning the available data is performed. More specifically, 

different approaches to deal with missing data are introduced to avoid the traditional 

information loss caused by removing the incomplete instances from the data set. Four 

techniques replacing the missing value by a data-derived value (i.e. ‘data imputation’) 

are discussed in more detail, being mean value, least squares, k-nearest neighbours and 

missForest. The application of each technique to a range of differently-sized data sets 

provides a conclusion on the most accurate technique, while mentioning computation 

time as a side aspect during method evaluation. 

Following data selection and preparation, Chapter 6 discusses the potential of further 

data pre-processing in concert with the selected algorithm, while identifying a lack of 

clear guidelines. The removal of redundant variables and potentially faulty instances is 

expected to reduce overall data complexity, to improve model performance and to 

decrease computation time. Throughout the chapter, four techniques are dealt with in 

more detail: (i) instance removal based on outliers, (ii) instance removal based on false 

absences, (iii) variable removal based on correlation score and (iv) variable removal 

based on variable importance. The chapter concludes with a statement on the effects of 

data pre-processing on model performance and provides a suggestion for further 

research. 

Next, Chapter 7 builds further on the findings of Chapter 5 (imputation technique) and 

Chapter 6 (data pre-processing) and combines them in the development of species-

specific abiotic habitat suitability models. For each species, model fit is improved by 

optimising hyperparameter settings and comparing final model performance with 

baseline and null model performance. Based on these models, species-specific variable 

importance is derived, while additionally providing the opportunity to assess the effect 

of different management scenarios. Finally, the chapter concludes with an overview of 

the identified steering variables and how management effects depend on the starting 

conditions within the system under consideration, while highlighting that controlled 

experiments can improve understanding of the dynamic interactions occurring within 

ecosystems. 
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After the model-based approach, Chapter 8 considers the application of controlled 

laboratory experiments to define invasive behaviour of an alien species. Two highly 

similar species are exposed to a range of nutrient concentrations under optimal growing 

conditions, while a selection of functional traits is being monitored. Based on ecological 

theory, it is expected that an invasive species exhibits higher performance either at the 

level of resource intake or biomass production. Finally, a conclusion on the applicability 

of the selected traits for inferring invasive potential of alien species is provided. 

In contrast, Chapter 9 elaborates on the post-establishment phase, where an invasive 

alien species is continuously introduced in a new environment and threatens native 

populations. Management of these native species by means of harvesting can disturb 

natural conditions and benefit the alien species. Meanwhile, biomass removal of an 

invasive alien species can help creating opportunities for the re-colonisation by (a) 

native species. Within this chapter, a dynamic interaction of management and 

introduction pressure is applied on the same species from Chapter 8 and is studied to 

infer the potential detrimental effects of management without prior study. Based on 

these observations, management suggestions are formulated to conclude this chapter. 

Finally, Chapter 10 combines all the observations into a general discussion, followed by 

a conclusion for future freshwater management. Within this chapter, the answers to the 

research questions and objectives identified in the first chapter are summarised and re-

framed in a bigger story. More specifically, the chapter discusses the application of the 

suggested modelling technique in combination with the appropriate data pre-processing 

and hyperparameter optimisation and subsequently couples back with the need for 

restoring and constructing wetlands. Moreover, attention is given to the threat posed by 

invasive alien species and how performed experiments help in identifying solutions and 

challenges for both proactive and reactive management. Ultimately, the chapter 

concludes with an introduction to the future perspectives of ecosystem modelling and 

invasive species management. 

From this, it is clear that all chapters are linked and provide a linear story throughout 

the whole thesis. Each chapter tackles a specific research question and the underlying 

objectives (see Figure 1.2, Figure 1.3 and Figure 1.4), while often building on previous 

chapters. A complete overview of this work and how the chapters are linked, is provided 

in Figure 1.5. 
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Figure 1.5: Roadmap of this thesis. Three main themes can be identified: (1) Summarising 

available information by means of literature review (Setting the scene); (2) Optimise the available 

data via imputation and pre-processing and develop habitat suitability models (Modelling) and (3) 

Perform controlled experiments to complement the models (Experiments). 
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Key issues for implementing  

artificial multifunctional  

wetlands1 

  

                                                 
1 This chapter is redrafted from Van Echelpoel, W.; Donoso, N. and Goethals, P. L. M. (in preparation) 

Paving the way for implementing artificial multifunctional wetlands 

Highlights 

- Macrophytes support habitat structuring and positive biotic interactions 

- Habitat suitability models provide potential to identify suitable species 

- Chemical treatment and biotic improvement can be combined 
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Abstract 

Wetland management requires a spectrum of scientific and socioeconomic input, 

especially within the framework of water purification and ecosystem development. 

Combining both ecosystem services into a single system is challenging, as detailed 

knowledge on and experience with this kind of integrated constructed wetlands is 

lacking. Therefore, information on the treatment performance of and the biotic 

interactions within wetlands is combined here to identify issues to be tackled prior to 

the implementation of multifunctional wetlands. On the one hand, pollutant reduction 

in natural treatment systems is highly variable and case-dependent, as illustrated by the 

removal efficiencies for BOD (50 – 90 %), nitrogen (14 – 86 %) and phosphorus (35 – 91 

%). Further understanding on how processes are affected by environmental conditions 

and how discharges affect the receiving water body are crucial for wide-scale application. 

On the other hand, a variety of biotic interactions occurs within shallow water systems 

and illustrates the essential role of macrophytes towards habitat creation. Their steering 

role regarding wetland community structure and functioning affects the physical, 

chemical and biological level and suggests that macrophytes are a potential starting 

point for wetland restoration and construction. Inference of the preferred abiotic 

conditions by means of occurrence-based correlative habitat suitability models provides 

potential, though highly depends on the quality of the available data, while biotic 

interactions are even harder to predict. Hence, additional attention towards model 

development, data quality assurance and controlled experiments offer the opportunity 

to fill these knowledge gaps. Moreover, specific attention should be given to invasive 

alien species as they often possess functional traits that differ from native species and, 

when given an opportunity following land use alterations or climate change, can alter 

the composition and functioning of native communities. Despite these challenges, 

artificial treatment wetlands provide the opportunity to counteract the ongoing loss of 

wetlands and related ecosystem services. 
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2.1 Setting the scene 

In previous chapter, the concept of Integrated Constructed Wetlands (ICW) indicated 

the potential of artificial wetlands to mimic the intrinsic multifunctionality of natural 

wetlands. It highlighted that such integrated artificial wetlands combine both pollutant 

removal and biodiversity improvement, thereby directly affecting the surrounding local 

environment. Moreover, the effects of wetland presence resonate through space (and 

time), as wetlands increase landscape heterogeneity and provide potential for nutrient 

retention and cycling at the regional scale (Comín et al., 2001; Gopal, 2016). At the 

watershed scale, they act as water buffer zones and increase connectivity between green 

zones, while regulating climate at the global scale (Gopal, 2016; Jenkins et al., 2010; 

Mitsch and Gosselink, 2000) (see Figure 2.1). Typically, these effects take place faster at 

a smaller scale, while being temporally lagged at the larger scale.  

The benefits of wetland presence are not limited to supporting a variety of 

environmental processes and cycles, but extends to providing the potential to combat 

current ecological, economic and societal issues including the occurrence of algae 

blooms in eutrophic freshwater systems, the presence of dead zones near river mouths 

and coasts (Breitburg et al., 2018), the salinisation of coastal and freshwater wetlands 

(Herbert et al., 2015), the ongoing acidification of rivers and lakes (Weiss et al., 2018), 

the increasing rainfall intensity and flooding frequency (Kundzewicz et al., 2014), the 

depletion of groundwater (Döll et al., 2014), global and personal human health issues 

(Hartig et al., 2014) and the required development towards a more circular economy 

(Singh and Ordoñez, 2016), as exemplified by Figure 2.1.  

 

 

Figure 2.1: Examples of ecosystem processes and services provided by wetlands. Several 

processes are beneficial towards both ecosystem functioning and society (e.g. purifying water, 

mitigating floods), while others are more specifically beneficial towards the environment (e.g. 

restoring groundwater levels) or society (e.g. improving human health). 
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Optimising and safeguarding these ecosystem services requires a concert of scientific, 

societal and economic input that ultimately results in the protection, restoration or 

construction of wetlands (Jackson et al., 1995; Kingsford et al., 2016; Whigham, 1999). 

Protection requires the least input as it merely applies to (mostly) pristine systems with 

relatively high ecological and economical value. The prevailing conditions within these 

systems support a stable and undisturbed situation and a diverse biological community. 

Wetlands displaying a decrease in ecological quality (ongoing or historical) may benefit 

from human intervention, hence restoration is often applied. Yet, despite the availability 

of existing principles, restoration actions are carried out on a case-by-case basis with low 

repeatability (Keddy, 1999). Finally, wetland construction is performed to mimic natural 

systems and profit from the delivered ecosystem services. For instance, constructed 

treatment wetlands (CTWs) are highly tuned systems for the mere optimisation of 

pollutant removal. The majority of these systems consists of a herbaceous species 

growing in a substrate with wastewater flowing either on top (free water surface; FWS) 

or through (sub-surface flow; SSF) the substrate (Vymazal, 2010). 

Within this chapter, specific attention is given to the construction of wetlands that allow 

(i) direct interaction with the atmosphere, (ii) the presence of both shallow and deep 

zones, (iii) the establishment of macrophytes and (iv) the creation of microhabitats via 

compartmentalisation. To avoid confusion with natural wetlands, terminology from the 

field of artificial treatment wetlands will be used further on, referring to the preferred 

wetland as a Free Water Surface (FWS) wetland (Gopal, 2016; Kadlec, 2009; Vymazal, 

2010). The construction and restoration of these FWS CTWs provide a unique 

opportunity to create a single answer to two separate problems: (i) direct discharge of 

eutrophic wastewaters into the environment and (ii) loss of wetland-related biodiversity 

and the according ecosystem services. Therefore, an assessment is made throughout the 

following sections of both the chemical processes and biotic interactions occurring 

within the FWS system, with specific attention towards phytoplankton, periphyton, 

zooplankton, macroinvertebrates, macrophytes and fish. This contrasts with the main 

biotic focus brought forward in Section 1.2.1, but was considered essential when 

introducing ICWs. 

The aim is to create an overview of how specific biotic groups interact in shallow 

eutrophic freshwater systems and, from that, derive which biotic group(s) can provide a 

biological basis for developing a complex community. By tackling these two objectives, 

an answer is provided to RQ1.1 from Chapter 1. In addition, information on the biotic 

interactions and chemical treatment performance is combined to identify key issues to 

improve the implementation of multifunctional artificial wetlands, thereby answering 

RQ1.2. Therefore, this chapter concludes with a summary of the identified key issues. 
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2.2 Pollutant removal within constructed treatment wetlands 

Wetlands receive the majority of their resources from terrestrial systems and offer a 

useful combination of conditions for supporting the biogeochemical cycles locally 

(Keddy, 2010). For instance, due to their sink function, wetlands accumulate relatively 

high amounts of carbon (Dodds and Whiles, 2010), which is used as a food source by 

the prevailing microorganism community (see Box 2.1). Aside from creating new 

biomass, gaseous carbon-based by-products are excreted by these microorganisms, 

including CO2 (under aerobic conditions) and CH4 (under anaerobic conditions). Yet, 

due to the high amount of carbon within the wetland, oxygen is often depleted 

throughout the majority of the water column, causing mostly anaerobic conditions to 

occur. Consequently, wetlands tend to contribute to climate change by exhausting CH4 

and N2O, which are created in anaerobic conditions and have a higher global warming 

potential than CO2 (i.e. around 28 and 265 times at the century scale (IPCC, 2014), 

respectively). At the water surface, however, oxygen diffuses into the water column and 

allows for the presence of an aerobic boundary layer. Due to this layer, a heterogeneous 

environment exists, with complementary processes occurring in the top (aerobic) and 

bottom (anoxic) layers.  

These biochemical processes have been the basis for applying a wetland configuration 

within the framework of water treatment, with wastewater originating from domestic, 

agricultural, industrial and storm water sources (Kadlec and Wallace, 2008; Vymazal, 

2010). Similar to conventional treatment systems, these natural counterparts rely on the 

activity of microorganisms to mineralise or transform waste products into new resources 

(i.e. nutrients, see further) without extensively applying chemicals, electricity or 

artificial aeration, although research on how these factors impact treatment 

performance is ongoing (Donoso et al., 2019; Gao et al., 2017).  

The microbial conversion of organic material into new resources supports the survival 

and reproduction of primary producers (phytoplankton, macrophytes). Moreover, due 

to their sink function and associated biogeochemical processes, freshwater wetlands can 

produce up to 10 times more biomass than lakes and streams (i.e. around 1100 g∙m-2∙y-1 

versus 110 g∙m-2∙y-1, respectively) (Dodds and Whiles, 2010). This biomass, in turn, acts 

as a food source for heterotrophic organisms (zooplankton, macroinvertebrates, fish), 

including herbivores and detritivores. Hence, the presence of these biogeochemical 

processes provides the basis for complex food web development. 

Within the remainder of this section, the attention is focused on (1) the most frequently 

occurring and reported pollutants within CTWs and (2) additional key aspects that 

require study to improve and evaluate the applicability of CTWs. The different biotic 

groups that benefit from the provided resources will be discussed in the next section 

(see Section 2.3). 
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Box 2.1: Microorganisms in constructed treatment wetlands 

The terminology ‘microorganism’ as used here overarches several biotic groups, 

including Archaea, bacteria, fungi and microscopic algae. The identification and 

classification of microorganisms is increasing, though researchers acknowledge the 

idea that the majority remains undiscovered (Cavicchioli et al., 2019; Saccá et al., 

2017). The composition of such a microorganism community is highly case-dependent 

and often hard to control due to the complex interplay and dependency among 

species. For instance, He et al. (2017) indicated that the increased usage of saltwater 

to replace freshwater during activated sludge treatment potentially affects the 

performance of the system and illustrated that increased salinity decreased bacterial 

activity and sludge floc size. Nevertheless, microorganism presence remains essential 

in developing and maintaining the biogeochemical nutrient cycles that underlie the 

high-valued attenuation capacity of natural systems (Cavicchioli et al., 2019; Saccá et 

al., 2017).  

Within the considered FWS CTWs, microorganisms can occur in the sediment, in the 

sludge layer, suspended in the water column and attached to alternative substrates 

(including stones, vegetation, liners and pipes). The latter often combines with non-

motile algae and the resulting micro-community is generally referred to as periphyton, 

which is described in more detail in Section 2.3.1.2, along with its importance for 

supporting the development of aquatic food webs. Transformation of pollutants 

throughout CTWs is highly dependent on the activity of these microorganisms and 

therefore benefits from the creation of additional surface area. Consequently, higher 

removal efficiencies are theoretically obtained for treatment systems characterised by 

a flow through a substrate (i.e. subsurface flow) rather than on top of a substrate (i.e. 

free water surface), although this has been contradicted by field observations (Kadlec, 

2009). 

Presence of microorganisms within CTWs is crucial for developing aquatic food webs, 

while a variety of factors (e.g. temperature, wastewater type, macrophyte presence) 

dynamically influences the prevailing community composition. For instance, Wang et 

al. (2016) observed that reduced temperatures negatively affected the performance of 

the microorganisms and, consequently, the removal efficiency of the system. 

Moreover, they found that plant presence has a positive effect on microbial 

abundance, being further extended by Hernández-Crespo et al. (2016) who stated that 

combining multiple plant species supports a more diverse microbial community. 
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2.2.1 Wastewater pollutants and removal within CTWs 

Within this subsection, specific attention is given to total suspended solids (SS), 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen 

(tN) and total phosphorus (tP), as they are the main focus of both legislation and 

research. Complementary topics dealt with in literature include metals, pharmaceuticals 

and personal care products (PPCP), pesticides, faecal contamination and endocrine 

disruptors (ED) (Vymazal, 2009).  

SS represent all the particulate matter being suspended in the water column, covering a 

fraction of the overall BOD, COD, tN and tP content. Due to the low flow conditions 

within FWS CTWs, SS is mostly reduced via settling and complemented with 

decantation and filtering (e.g. due to macrophyte presence) supporting removal 

efficiencies up to 80 % (Kadlec and Wallace, 2008; Rousseau et al., 2004b; Verhoeven 

and Meuleman, 1999). Consequential to the settling of SS, a sludge layer is formed at the 

bottom, being a mix of non-degradable (e.g. sand, silt) and degradable solids, allowing 

the latter to dissociate and, ultimately, dissolve within the water column or dissipate 

into the atmosphere. The mineralisation underlying this dissociation is a complex 

concert of pollutant-specific processes (see further), often resulting in reduced sludge 

volumes. 

Within both the settled solids and water column, organic pollutants (BOD and COD) 

are subjected to biochemical processes conducted by microbial activity. Both aerobic 

respiration (conversion of organic-C into CO2) and anaerobic fermentation (conversion 

of organic-C into CH4) support the (partial) removal of BOD and, hence, COD (Kadlec 

and Wallace, 2008). The openness of FWS allows for the diffusion of oxygen into the 

water column, yet this rate tends to be lower than the overall oxygen demand and causes 

oxygen depletion near the bottom. The resulting gradient separates the aerobic layers 

with CO2-production at the surface from the anaerobic layers with CH4-production near 

the bottom. Still, removal efficiencies up to 90 % for BOD and 80 % for COD have been 

reported, though these can be as low as 50 % for BOD and 60 % for COD (Galanopoulos 

et al., 2013; Healy et al., 2007; Kivaisi, 2001; Wang et al., 2017).  

At nutrient level, both sedimentation and microbial activity play a role, though the 

importance of each process depends on the type of nutrient under consideration. For 

instance, the nitrogen cycle is highly diverse, including anions (NO2
− and NO3

−), cations 

(NH4
+) and gaseous forms (NH3, N2O and N2). With N2 being the main component of the 

atmosphere, the transformation of organically bound nitrogen via ammonification 

(production of NH4
+ and NH3 following a pH-based equilibrium), nitrification 

(conversion of NH4
+ into NO3

− via NO2
− in aerobic conditions) and denitrification 

(conversion of NO3
− into N2 in anaerobic conditions with a C-source) into nitrogen gas 

(see Figure 2.2) does not pose any significant environmental impact.  
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However, the gaseous nitrous oxide (N2O) produced during incomplete denitrification 

potentially leaks into the atmosphere where it contributes to global warming (IPCC, 

2014; Song et al., 2012). Moreover, with nitrification occurring in the aerobic top layer 

and denitrification taking place in the anaerobic (sludge) layer (Figure 2.2) (Vymazal, 

2010), the overall nitrogen removal efficiency is highly dependent on the diffusion 

process, resulting in lower values compared to carbon removal efficiencies (up to 86 %, 

but going as low as 14 % (Wang et al., 2017)). Nevertheless, when all conditions are 

present to support ammonification, nitrification and denitrification, FWS CTW can 

remove nitrogen indefinitely (Zedler, 2003). 

 

Figure 2.2: Illustration of the nitrogen cycle within wetlands. Dissolved ammonium (𝑁𝐻4
+) 

equilibrates with ammonia (𝑁𝐻3), which is oxidised to nitrite (𝑁𝑂2
−) and nitrate (𝑁𝑂3

−) in the 

aerobic zone. In the anaerobic zone, nitrite is reduced to nitrous oxide (𝑁2𝑂) and nitrogen gas 

(𝑁2). The latter two can escape into the atmosphere as a gas, as well as ammonia (𝑁𝐻3). 

In contrast to carbon and nitrogen removal, limits occur with respect to phosphorus 

removal due to the absence of a gaseous form. Phosphate-ions (PO4
3−) adsorb on the 

substrate surface, which, over time, results in lower removal efficiencies due to 

saturation effects (Bolton et al., 2019; Vohla et al., 2011). For instance, Wang et al. (2017) 

reported a decrease in phosphorus removal efficiency from 91 % down to only 35 % due 

to saturation effects within the substrate. Studies on characteristic substrate saturation 

curves indicate that phosphorus breakthrough in operational CTWs can be delayed by 

using different substrates (Bolton et al., 2019; Park and Polprasert, 2008). 

Unfortunately, no stand-alone solutions to this substrate saturation are currently 

available, which implies that CTWs cannot act as completely independent treatment 

systems.  

Each of these removal processes is steered by a plethora of abiotic variables, ranging 

from manageable (e.g. retention time, substrate depth) to unmanageable (e.g. 

temperature, precipitation) variables. Research related to these variables indicates an 

improved performance within a warmer climate, broad open spaces and higher retention 

times (Garfí et al., 2012; Kadlec, 2009; Kotti et al., 2010).  
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For instance, Wang et al. (2017) observed that cold climates had an upper limit of 80 % 

removal for BOD, while Kadlec and Wallace (2008) reported BOD removal efficiencies 

over 80 % in warm climates, thereby illustrating the positive effect of increased 

metabolic rates of the prevailing microorganism assemblage due to elevated 

temperatures (Kadlec, 2009). In contrast, the removal of SS is negatively correlated with 

temperature, as elevated microorganism productivity increases their suspension 

potential, hence causing higher SS levels to occur within the wetland effluent compared 

to the influent (Kadlec and Wallace, 2008). 

Similarly, steering biotic variables range from manageable (e.g. presence of vegetation) 

to limitedly or completely unmanageable (e.g. microorganism assemblage). The effect 

of macrophyte presence on pollutant removal has been studied for decades and has been 

reported as one of the factors controlling temperature and nitrogen removal in wetlands 

(García-Lledó et al., 2011; Vymazal, 2007; Vymazal, 2013; Wang et al., 2017). 

Macrophytes influence pollutant removal at several levels. For instance, plant structures 

within the water column provide a surface for microorganisms to grow and interact, 

thereby supporting improved contact between the organic pollutants in the water phase 

and the heterotrophic bacteria (Brix, 1997; Fan et al., 2016). Moreover, within the root 

zone, oxygen is released and results in micro-aeration of the substrate, thereby locally 

supporting the presence of aerobic bacteria active in the oxidation of both organic 

matter and nitrogen compounds (Brix, 1997; Vymazal, 2013). Contrasting these indirect 

effects, a direct effect on nutrients is exerted via uptake and assimilation into biomass 

(Beutel et al., 2014; Dierberg et al., 2002). However, this type of nutrient removal has 

been observed to account for maximally 10 % of the total incoming load and is 

potentially returned to the water phase when biomass is not harvested (Hernández-

Crespo et al., 2016; Merlin et al., 2002; Park and Polprasert, 2008). 

The extensive range of variables identified to exert an influence on wetland performance 

in combination with the reported case studies to be found throughout literature, 

illustrates that many research gaps still exist, especially due to the limited comparability 

of different systems (Thomaz and Cunha, 2010). Moreover, the effect of these variables 

is not restricted to altering pollutant removal, but extends to the water body receiving 

the effluent of the treatment system. Similar to the effect of conventional wastewater 

treatment plants (Ort and Siegrist, 2009; Zhou et al., 2009), both quantity and quality 

of the effluent have the potential to cause changes in the abiotic conditions downstream 

of the CTW discharge point. However, the intensity of these changes remains highly 

dependent on the actual flow of the discharge, which is often several magnitudes smaller 

than conventional systems due to being applied at a smaller scale. Despite the 

importance of discharge flow, attention in the following section is mostly directed at the 

treatment performance of artificial wetlands.  
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2.2.2 Improving treatment to accommodate clean water and sanitation 

Constructed treatment wetlands provide the potential to reduce the amount of 

incoming suspended solids and biodegradable organic compounds up to 85 % and 80 

%, respectively, although this highly depends on the type of water being treated (Hijosa-

Valsero et al., 2010; Verhoeven and Meuleman, 1999). However, environmental 

conditions greatly affect microbial processes, causing difficulty in reaching stable 

effluent concentrations, while the absence of strong oxidative compounds within the 

treatment system impedes the removal of highly recalcitrant organic compounds 

(Donoso et al., 2018). This provides two main areas for further research: (i) improve the 

understanding of how prevailing conditions affect the treatment efficiency and (ii) 

determine the potential impact of recalcitrant compounds on freshwater conditions. 

Improved understanding of the treatment performance implies the combination of 

experiments, analyses and simulations. A multitude of experimental studies discussing 

separate case-studies can be found in literature, applying a range of wastewater 

compositions (Garfí et al., 2012; Wang et al., 2017), different kinds of vegetation (Maine 

et al., 2007; Vymazal, 2013) and a variety of substrate types (Sakadevan and Bavor, 1998; 

Vohla et al., 2011), yet provide a limited basis to support an overall, holistic comparison. 

For instance, Donoso et al. (2017) assessed the operating conditions (i.e. temperature, 

water flow) of FWS CTWs treating diffuse nutrient pollution and concluded that FWS 

CTWs provide an alternative measure to fight the eutrophication of waterways. Despite 

the fact that this result supports the applicability of FWS CTW as a mitigation measure, 

only superficial information related to the influence of prevailing conditions on 

treatment performance can be extracted from this type of studies. This highlights the 

need of more in-depth research to obtain a better process-based understanding of CTW 

performance and the inherent influence of environmental conditions.  

Secondly, despite providing relatively high removal efficiencies for specific pollutants, 

trace concentrations do occur within effluents that are discharged into the environment, 

especially in the case of recalcitrant compounds. Effects caused by their discharge are 

highly case-specific and depend on the prevailing freshwater conditions on the one hand 

and on the pollutant load and discharge frequency on the other hand. For instance, 

exceeding the official effluent standards causes an unequivocal drop in absolute water 

quality, while the relative change can be higher for high-quality compared to low-quality 

surface waters. To illustrate this, Donoso et al. (2018) studied the relevance of COD 

discharge limits for CTWs treating animal manure by assessing the occurrence of 

macroinvertebrates in the receiving river. They observed the presence of pollution-

sensitive taxa downstream of the discharge point, despite the standard-exceeding COD 

concentrations in the effluent, suggesting that the existing COD-standards might be too 

stringent.  
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Aside from indicating the limited environmental effect, Donoso et al. (2018) did not 

specify the COD compound composition, making this kind of conclusion inference 

overly simplistic and inappropriate towards other types of wastewater. For instance, 

high concentrations of insecticides can result in high COD concentrations in the 

effluent, simultaneously causing drastic effects on the downstream macroinvertebrate 

assemblage. Hence, a more in-depth characterisation of COD compounds and how they 

behave within the CTW is required prior to adapting the standards. 

Progress within these fields is crucial to optimise the treatment process and limit the 

environmental impact. This requires the collective consideration of societal, 

environmental and operational aspects (Becerra Jurado et al., 2009; Mereta et al., 2012; 

Truu et al., 2009), as illustrated in Figure 2.3. However, most studies only focus on a 

subset of these aspects, with limited research applying a holistic approach. For instance, 

De Troyer et al. (2016), assessed the water quality of the rivers and wetlands around 

Jimma (Ethiopia), considering both chemical and biological indicators. They 

acknowledged the potential of wetlands as a promising technique for wastewater 

treatment, though concluded that further societal awareness and stakeholder 

participation were needed to implement CTWs in regions affected by water pollution, 

limited sanitation and overall poverty. Similarly, other reports highlighted the capacity 

of natural and CTWs for wastewater treatment, while concluding that implementation 

is impeded due to stakeholders lacking insight into the integrated functioning of CTW 

ecosystems (Donoso et al., 2017; Hefting et al., 2013; Vymazal, 2010). These observations 

highlight the need for (i) including societal aspects into CTW research and (ii) assigning 

a budget for educating and involving local communities, confirming that restoration 

success is determined by merging science, society and politics (Catalano et al., 2019; 

Jähnig et al., 2011). 

 

Figure 2.3: Illustration of the required input to improve implementation of constructed 

treatment wetlands. By combining only two aspects, successful long term implementation is 

impeded due to the lack of societal, environmental or operational input.  
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2.3 Biodiversity improvement by constructed wetlands 

2.3.1 Occurrence of and interactions between key biotic groups 

Wetlands are highly diverse and complex systems and support the survival of a variety 

of biotic groups. Here, only a selection of them is discussed as an in-depth discussion of 

each group separately goes beyond the scope of this chapter. More specifically, the aim 

of this section is to identify the biotic group that provides a relatively strong steering 

effect on the development of a complex biotic community, by focusing on their 

functioning within the trophic food chain and contribution to creating a concert of 

microhabitats. Therefore, two primary producers are considered (phytoplankton and 

macrophytes) along with grazers (zooplankton, macroinvertebrates and fish) and 

aquatic predators (macroinvertebrates and fish), supplemented with a mixed group of 

autotrophic and heterotrophic organisms (periphyton). Despite the interactions 

displayed by amphibians, mammals, bats and birds as important energy linkages with 

the terrestrial system (Chawaka et al., 2018; Gopal, 2016; Parker et al., 2019), they are 

not discussed here. An overview of the selected biotic groups and additional information 

can be found in Table 2.1 and subsequent sections. 

Table 2.1: Glossary for the biotic groups discussed within this chapter. For each biotic group 

(phytoplankton, periphyton, zooplankton, macroinvertebrates, macrophytes and fish) a short 

description and main subgroups are provided. Their importance within shallow, eutrophic systems 

is further specified throughout the group-specific subsections. 

Biotic group Description 

Phytoplankton Free-floating group of microscopic organisms containing 

chlorophyll to capture sunlight, with most important subgroups 

being the cyanobacteria, green algae, diatoms and dinoflagellates. 

Within shallow freshwater systems, Bacillariophyceae, 

Chlorophyceae, Cyanophyceae and Euglenophyceae are frequently 

reported (Calero et al., 2015; Chen et al., 2011b; Travaini-Lima et al., 

2016; Vincent and Kirkwood, 2014), with varying community 

composition depending on both climatic and operating conditions. 

Their growth is supported by sunlight, carbon dioxide (CO2) and 

nutrients. 

 

Periphyton Group of microscopic organisms consisting of green algae, 

cyanobacteria and (heterotrophic) microorganisms. They mostly 

occur in symbiosis attached to submerged surfaces, including 

substrate, vegetation and non-natural constructions. Their growth 

is supported by the interaction between the autotrophic (sunlight, 

carbon dioxide and nutrients) and heterotrophic (organic 

compounds and by-products) species. 

 

(Continues on next page) 
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(Continued) 

Biotic group Description 

Zooplankton Actively moving organisms that lack chlorophyll to provide in their 

energy requirements, hence their heterotrophic feeding behaviour. 

The most important groups to be considered within shallow 

freshwater systems are cladocerans, rotifers, copepods and 

ostracods. Their growth is mainly supported by the presence of 

phytoplankton, detritus and other zooplankton species. Several 

species belong to the Crustacea and are key primary consumers in 

lotic systems (Dodds and Whiles, 2010). 

 

Macroinvertebrates Macroinvertebrates are small organisms without a backbone, but 

large enough to be seen with the naked eye. They mostly live in the 

benthic layer, but species living near the water surface and within 

the water column exist as well. They feed on detritus, plankton 

(both suspended and settled), other invertebrates and plants. 

Macroinvertebrate monitoring is a common technique to assess the 

biological water quality as this group is rather diverse and ranges 

from pollution-sensitive to pollution-tolerant taxa, making them 

ideal surrogates for assessing wetland health (Balcombe et al., 

2005a).  

 

Macrophytes Macrophytes represent all types of aquatic vegetation that can be 

found within a shallow water body and in the littoral zones of 

rivers, lakes and oceans. A distinction is made between 

nonvascular (e.g. mosses, known as bryophytes) and vascular (e.g. 

reed, duckweed) plants, of which the latter is often subdivided in 

emergent, submerged and floating plants (Dodds and Whiles, 

2010). Macrophytes require nutrients, carbon dioxide and sunlight 

to create new biomass, hence a vast amount of research on their 

applicability as pollutant removers (i.e. phytoremediation) has 

been performed (Brisson and Chazarenc, 2009; Hernández-Crespo 

et al., 2016; Rodríguez and Brisson, 2015; Tanner, 1996). 

 

Fish Highly diverse group with more than 10 000 freshwater species, 

feeding on a variety of food sources, ranging from phytoplankton 

over macroinvertebrates and macrophytes to other fish (Batzer et 

al., 2000; Dodds and Whiles, 2010). The most common freshwater 

fish orders (> 2000 species) are Cypriniformes, Siluriformes and 

Perciformes (Dodds and Whiles, 2010). 
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2.3.1.1 Phytoplankton 

Considering the low flow and prevailing eutrophic conditions, FWS CTW provide an 

optimal environment for phytoplankton to grow and prosper, especially when the 

hydraulic retention time is high and macrophyte cover is limited (Luyiga and Kiwanuka, 

2003). Within these systems, phytoplankton communities often indicate a dependence 

on system design, climatic conditions and nutrient concentrations. For instance, 

Travaini-Lima et al. (2016) associated the observed increase in biomass of Kirchneriella 

lunaris (class Chlorophycaceae) during the dry season with elevated nutrient levels 

entering the system. Similarly, Chen et al. (2011b) linked the difference in phytoplankton 

community between three different CTWs treating domestic wastewater with the 

prevailing total phosphorus concentration. 

The value of phytoplankton within shallow freshwater systems is ambiguous and highly 

dependent on abundance (Zimmer et al., 2003). For instance, at low concentrations, 

they mainly take up nutrients and carbon dioxide to create new biomass through 

photosynthesis, thereby positively supporting the development of higher trophic levels. 

In contrast, exudates originating as by-products from metabolic processes can decrease 

flocculation and subsequent settling of suspended solids, thereby negatively affecting 

transparency and, thus, wetland treatment performance (Sun et al., 2013).  

At high concentrations, algae blooms can develop due to the uncontrolled proliferation 

in eutrophic conditions, which can lead to fluctuating oxygen levels that reach complete 

absence of oxygen. Limitation of oxygen supports the production and volatilisation of 

ammonia and negatively influences organisms that rely on respiration for their energy 

balance (e.g. macroinvertebrates, fish), which ultimately limits their survival (Luyiga 

and Kiwanuka, 2003; Miranda and Hodges, 2000). Moreover, some species (especially 

cyanobacteria) excrete toxic compounds threatening fish population and human health 

(Dodds and Whiles, 2010; Vincent and Kirkwood, 2014), requiring a bottom-up 

(nutrient control) or top-down (biological or chemical control) approach.  

More specifically, macrophytes compete with phytoplankton for nutrients and limit the 

amount of light entering the water, hence limiting the presence of algae (Travaini-Lima 

et al., 2016; Zimmer et al., 2003). Simultaneously, the excretion of allelochemicals (e.g. 

phenolic compounds) can inhibit algae growth, although this highly depends on the 

specific macrophyte-algae interaction (Zhong et al., 2016). In contrast to this resource 

limitation, zooplankton and fish exert a top-down control strategy as they feed on 

phytoplankton (Fontanarrosa et al., 2010). For example, Calero et al. (2015) observed an 

increase in zooplankton biomass up to 64 % in the Albufera Lake FWS CTW along a 

decrease of phytoplankton biomass, suggesting the presence of a trophic interaction.  
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2.3.1.2 Periphyton 

Due to the artificial nature of CTWs, surface areas for colonisation by periphyton can be 

optimised to improve the contact between pollutants and bacteria within the treatment 

system (Gao et al., 2019). Simultaneously, the reduced flow conditions support the 

settlement of suspended solids and, hence, the penetration of light through the water 

column. Improved light conditions benefit the development of algae within the 

periphyton layer where bacterial mineralisation provides additional resources to create 

algal biomass (Ishida et al., 2008; Sand-Jensen and Borum, 1991; Toet et al., 2003). 

Periphyton in natural systems consists of a complex microbial community and can be 

characterised by a highly dynamic species turnover without major effects on the overall 

periphyton functioning (Liu et al., 2016). Due to this complex composition and dynamics 

of the periphyton layer, most studies report on treatment efficiency and ignore or only 

partially describe the species composition (Rooney et al., 2020; Zamorano et al., 2018). 

Yet, Cronk and Mitsch (1994) analysed the periphyton composition of four wetlands 

under different hydrologic conditions and observed Bacillariophycaceae (4 genera), 

Chlorophyta (6 genera) and Cyanophyta (1 genus), though acknowledged that the 

system might have been too immature to support a developed periphyton community. 

Presence of periphyton is controlled by both abiotic and biotic conditions. The 

composition of the periphyton layer depends on (1) the presence of degradable organic 

compounds (mineralisation by bacteria) and (2) the presence of absorbable nutrients 

(photosynthesis by algae). The relative presence of these resources contributes to the 

final periphyton composition (Wu et al., 2018). At the biotic level, both indirect and 

direct interactions occur and reflect a certain degree of similarity with phytoplankton. 

Competition of periphytic algae with phytoplankton and macrophytes for nutrients can 

occur (Sand-Jensen and Borum, 1991), though is countered by the symbiosis with 

mineralising bacteria in the vicinity (Liu et al., 2017).  

In contrast, shading by phytoplankton and macrophytes has a clear negative effect on 

light availability and, thus, on the development of algae within the periphyton layer 

(Sand-Jensen and Borum, 1991; Toet et al., 2003). In addition, periphyton is exposed to 

grazing by organisms from higher trophic levels. A variety of zooplankton, 

macroinvertebrate and fish species rely on the presence of periphyton to provide in their 

nutritional needs (Batzer and Resh, 1991; Rooney et al., 2020; Sand-Jensen and Borum, 

1991). 

Aside from providing a positive contribution to the overall pollutant reduction in the 

treatment system, additional support for the development of macrophytes can be 

provided. Macrophytes covered with periphyton can benefit from the locally produced 

nutrients instead of relying on the diffusion of nutrients within the water column (Gao 

et al., 2019). 



CHAPTER 2 

36 

2.3.1.3 Zooplankton 

Due to the low-flow conditions and potential high phytoplankton presence (see above), 

FWS CTWs act as nurseries for zooplankton with biomass increasing throughout the 

system, especially when macrophytes are present (Calero et al., 2015; Hernández-Crespo 

et al., 2017). The zooplankton community is frequently dominated by cladocerans or 

rotifers and exceeds diversity in drains and rivers (Eivers et al., 2017), with sporadic 

seasonal variation in community composition (Beaver et al., 1998; Calero et al., 2015; 

Travaini-Lima et al., 2016). For instance, Travaini-Lima et al. (2016) observed that 

rotifers dominated in both the rainy and dry season, with overall higher zooplankton 

density during the rainy season. Similarly, Calero et al. (2015) found clear seasonal 

fluctuations in zooplankton biomass, with rotifer dominance in summer, copepod 

dominance in winter and cladocerans dominating in spring.  

At the biotic level, zooplankton is mainly influenced by phytoplankton, fish and 

macrophytes, either directly or indirectly (Table 2.2). The interactions with 

phytoplankton and fish represent a straightforward trophic cascade interaction, with 

zooplankton feeding on phytoplankton and fish consuming zooplankton (Calero et al., 

2015; Cao et al., 2007). More importantly, the selective preying by fish causes shifts in 

zooplankton communities and has a tendency of altering the male-to-female ratio (thus 

affecting the associated population dynamics) (Bramm et al., 2009).  

Macrophytes act supportively as a refuge area for zooplankton to escape from fish 

predation (diel horizontal migration, DHM) and provide a habitat for cladoceran 

diapausing eggs (Calero et al., 2015; Castro-Castellon et al., 2016; Travaini-Lima et al., 

2016). Yet, despite the creation of physical habitats, macrophytes negatively affect light 

conditions (e.g. dense duckweed mats) and thereby reduce the quality and quantity of 

the zooplankton community, resulting in a lower zooplankton diversity compared to 

high light conditions (Bramm et al., 2009; Fontanarrosa et al., 2010). Moreover, when 

planktivorous fish abundance is high, predation pressure increases and DHM becomes 

limited (Meerhoff et al., 2007).  

Still, high zooplankton densities are not necessarily linked with high phytoplankton 

densities. For instance, Kampf and Claassen (2004) observed high zooplankton 

densities while phytoplankton was almost absent and inferred that zooplankton also 

survived by consuming bacteria. As such, they suggested to culture Daphnia magna with 

treatment plant effluents prior to their use as food source for sticklebacks (Kampf and 

Claassen, 2004). 
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2.3.1.4 Macroinvertebrates 

Despite the relatively high pollutant levels, specific macroinvertebrates are able to 

survive within FWS CTWs due to the presence of adequate food sources (Becerra Jurado 

et al., 2009; Boets et al., 2011; Céréghino et al., 2008; Chen et al., 2011b; Hsu et al., 2011). 

Recurring observations in natural and artificial wetlands include Coleoptera and 

Hemiptera as dominating orders and the influences of season and wetland conditions 

on macroinvertebrate community composition (Becerra Jurado et al., 2009; Boets et al., 

2011; Céréghino et al., 2008; Fairchild et al., 2000).  

For instance, Becerra Jurado et al. (2009) found 123 taxa in 15 constructed wetlands 

treating wastewater, dominated by Coleoptera (45 %) and Hemiptera (17 %), though did 

not provide a detailed study on the influence of season. In contrast, Boets et al. (2011) 

investigated a single FWS CTW in summer and autumn and reported a higher taxa 

diversity in summer dominated by Corixidae (Hemiptera) and Chironomidae (Diptera), 

next to an overall increase in diversity along the treatment path (representing a decrease 

in nutrient levels). Additionally, Robson and Clay (2005) observed that seasonal 

wetlands had less taxa than perennial wetlands due to higher levels of temporal 

variation, although both could still be considered as taxon-rich. 

Macroinvertebrates experience direct and indirect influences, originating from 

zooplankton, fish, macrophytes and even higher-order animals (Table 2.2), though 

indicate to be highly taxon-specific. For instance, Corixidae and Veliidae (Hemiptera) 

benefit from fish presence, while being part of the diet of dabbling ducks (Balcombe et 

al., 2005a). Similarly, Planorbidae (Mollusca) benefit from the presence of macrophytes 

because of their grazing activity, but can be suppressed by predatory fish, which results 

in a simultaneous positive effect on epiphytic chironomid larvae (Batzer et al., 2000). 

Still, macroinvertebrates provide several useful functions within wetlands, ranging from 

litter decomposition over plant community regulation to nutrient cycling towards 

higher trophic levels (including waterfowl and anurans), due to their place in the food 

chain and the potential of several insects to switch from an aquatic to a terrestrial stage 

in their life cycle (Balcombe et al., 2005a; Dodds and Whiles, 2010; Hsu et al., 2011; 

Knight et al., 2001).  

Wetlands are said to be easily colonised by macroinvertebrates, requiring about four to 

five years to reach maximal species diversity (Hansson et al., 2005). This can be 

facilitated by proximity of other ponds (i.e. high connectivity) (Céréghino et al., 2008; 

Nelson et al., 2000), although Robson and Clay (2005) did not observe a specific species 

assemblage of closely located sites. Most importantly, macroinvertebrates within these 

FWS CTWs are highly system-specific due to the unique prevailing abiotic conditions 

and thereby contribute to the overall catchment diversity (Becerra Jurado et al., 2009; 

Céréghino et al., 2008). 
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2.3.1.5 Macrophytes 

Nutrient concentrations within FWS CTWs are sufficiently high for macrophytes to 

grow, with presences reported in a variety of wetland types, ranging from small-scale 

domestic wastewater treatment systems over floating wetlands to large-scale restoration 

wetlands (Castro-Castellon et al., 2016). Vegetation is often emergent, including 

common reed (Phragmites australis), cattail (Typha latifolia and T. angustifolia), sedge 

(Carex acutiformis) and bulrush (Schoenoplectus spp.) (Brisson and Chazarenc, 2009; 

Castro-Castellon et al., 2016; Rodríguez and Brisson, 2015), though also floating plants 

have been reported, including water hyacinth (Eichhornia crassipes), water lettuce 

(Pistia stratiotes) and duckweed (Lemna spp.) (Hsu et al., 2011; O’Farrell et al., 2009).  

Observed effects, including microaeration of the root zone, provision of substrate for 

periphyton development and limiting sediment resuspension, suggest that certain 

macrophyte species are effective ecosystem engineers within shallow wetland systems 

(Brix, 1997; Gopal, 2016; Vymazal, 2011b). For instance, a higher diversity of 

macroinvertebrate taxa was observed in vegetated areas compared with non-vegetated 

areas, due to a decreased risk of predation, a complex spatial structure and being a 

location for cladoceran diapausing eggs (Stiers et al., 2011; Timms and Moss, 1984). 

Moreover, also waterfowl benefit from the presence of emergent macrophytes for 

nesting and roosting, being at the same time close to an appropriate food source (Gopal, 

2016). 

Next to exerting a variety of influences on fish, macroinvertebrates, zooplankton and 

phytoplankton, macrophyte presence is prone to grazing (fish and macroinvertebrates) 

and competition for nutrients (phytoplankton) (Table 2.2). Grazing pressure remains 

limited due to the low total number of strictly herbivorous fish and macroinvertebrates. 

In contrast, competition with phytoplankton under eutrophic conditions can lead to 

complete disappearance of vegetation within a wetland by rapidly changing nutrient 

availability, light penetration and pH level (Lu et al., 2012; Scheffer et al., 1993a).  

Presence of macrophytes can also have a negative effect on both chemical and biological 

conditions. For instance, dense vegetation stands decrease light penetration and oxygen 

concentrations (degradation of dead organic matter), thereby limiting respiration of 

higher trophic animals (Balcombe et al., 2005a; Miranda and Hodges, 2000). However, 

Frodge et al. (1990) observed extremely high oxygen concentrations within the near-

surface canopy of submerged macrophytes (going up to 30 mg∙L-1), which dropped 

drastically when entering the sub-canopy zones (down to 1 mg∙L-1 within 0.5 m). Hence, 

the creation of open water sections allows for species to migrate when needed, for 

phytoplankton to produce oxygen and fish to escape anoxia (Balcombe et al., 2005a; 

Miranda and Hodges, 2000). 
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2.3.1.6 Fish 

Presence of fish within FWS CTWs is only limitedly reported and if so, abundances are 

low (Chen et al., 2011b; Hansson et al., 2005; Hsu et al., 2011; Kampf and Claassen, 2004). 

For instance, Kampf and Claassen (2004) pointed out that, although food was 

abundantly present in the FWS, no fish were observed, potentially due to high ammonia 

(NH3) concentrations caused by exceeding the nitrification capacity of the treatment 

plant. Additionally, anoxic conditions, low winter and high summer temperatures and 

limited refuge areas represent a harsh environment for fish (Batzer et al., 2000). 

However, when hydraulic retention time (HRT) became higher than two days, fish were 

observed as overloading was reduced (Kampf and Claassen, 2004). 

Fish primarily provide top-down control on phytoplankton, zooplankton and 

macroinvertebrates (see above and Table 2.2), but are only limitedly influenced by these 

(leaving food availability aside). For instance, dense stands of both phytoplankton and 

macrophytes can lead to diel fluctuations in oxygen concentration and pH, representing 

unfavourable conditions for fish (Hsu et al., 2011; Miranda and Hodges, 2000). 

Yet, negative effects of fish presence have also been observed towards amphibians, with 

salamanders and tadpoles being frequently consumed by fish, sometimes even causing 

rapid extinction of the amphibian community after colonisation (Alford and Richards, 

1999; Dodds and Whiles, 2010). Amphibians represent an important link between the 

aquatic and terrestrial environment, providing an alternative pathway for nutrient 

removal and a valuable link in complex food webs (Balcombe et al., 2005b; Davic and 

Welsh, 2004). However, elevated nutrient and ion concentrations occurring within 

treatment wetlands limit the potential of amphibian presence and suggest that increased 

connectivity of the wetland with surrounding freshwater bodies might be more 

appropriate to increase overall diversity and nutrient transport via fish migration 

(Becerra-Jurado et al., 2012; Wiegleb et al., 2017). 
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2.3.1.7 Overview of biotic interactions 

 

Table 2.2: Non-exhaustive overview of interactions among biological elements as reported in literature dealing with eutrophic, shallow 

water bodies. Interactions describe the effect of the biotic group on a specific row on a biotic group in a specific column. PhP: Phytoplankton, PeP: 

Periphyton, ZP: Zooplankton, MI: Macroinvertebrates, MP: Macrophytes. 

 Phytoplankton Periphyton Zooplankton Macroinvertebrates Macrophytes Fish 

PhP - Cyanobacteria can 

produce toxins11 

- Self-shading11, 21 

- Cyanobacteria can 

produce toxins11 

- Light interception 

due to blooms 

- Competition for 

nutrients 

- Serve as food 

source9, 12, 20 

- Cyanobacteria can 

produce toxins11 

- Serve as food source3, 

11 

- Anoxia due to algae 

blooms 

- Cyanobacteria can 

produce toxins11 

- Light interception 

due to blooms23, 25 

- Competition for 

nutrients27 

- Cyanobacteria can 

produce toxins11 

- Increased 

turbidity28 

- Diel fluctuations in 

oxygen and pHl 

- Anoxia influences 

growth, swimming 

speed and survival18 

 

PeP - Competition for 

nutrients19 

- Competition for 

nutrients 

- Serve as food 

source 

- Serve as food 

source16, 19 

- Light interception 

due to blooms23, 25 

- Competition for 

nutrients19, 27 

- Provision of 

nutrients13 

 

- Serve as food 

source 

 

ZP - Provide top-down 

control via grazing9, 

12 

- Provide top-down 

control via grazing 

- Competition for 

the same food 

source17 

- Serve as food source17 - Indirectly reducing 

the competition with 

phytoplankton 

 

- Serve as food 

source5, 17, 29 

 (Continues on next page) 



KEY ISSUES MULTIFUNCTIONAL WETLANDS 

41 

(Continued) 

 Phytoplankton Periphyton Zooplankton Macroinvertebrates Macrophytes Fish 

MI - Grazing3 

- Production of CO2 

and release of 

nutrients26 

 

- Grazing3, 8, 16, 19 

- Production of CO2 

and release of 

nutrients 

 

- Grazing3 - Competition for 

same food source2, 3, 4 

- Predation2, 3, 4 

- Shredders facilitate 

collectors by excreting 

fine organic matter11 

 

- Herbivory8, 11 - Serve as food 

source4, 14, 16 

MP - Intercept light, 

shading of water, 

impeding algae 

growth12, 24 

- Competition for 

nutrients25, 29 

- Allelochemicals 

with negative, 

neutral or positive 

effect on 

phytoplankton 

growth25, 27 

- Provide substrate 

to grow on6 

- Intercept light, 

shading of water, 

impeding algae 

growth12, 24 

- Competition for 

nutrients19, 25, 29 

- Indirectly affect 

grazing pressure by 

macroinvertebrates3 

- Attached biofilm as 

food source3 

- Refuge sites in case 

of low fish density9, 

17, 23, 24, 25 

- Dense mats can 

limit light and 

oxygen1 

- Exudates can have 

influence on 

migration7, 25 

- Support higher 

densities10 

- Habitat for 

cladoceran 

diapausing eggs9 

- Direct food source 

(dead & alive)2 

- Indirect food source: 

attached biofilm3, 22 

- Refuge sites (e.g., 

midges sheltering 

from fish)4, 14 

- Habitat creation4, 22, 

25 

- Influence on foraging 

efficiency22 

- Density influences 

community3 

- Oxygen source in 

anoxic environments1 

- Degradation can 

cause oxygen 

depletion1 

 

- Competition15 

- Excretion of 

allelochemicals15 

- Refuge area11, 12, 22 

- Habitat for egg 

deposition, larvae 

and juveniles22, 25 

- Light limitation 

can decrease 

foraging activity5 

- Direct food source4 

- Attracting prey22 

- Complexity 

influences visual 

contact with prey, 

foraging activity and 

growth22 

- Can cause diel 

patterns of pH and 

DO1, 14, 18 

 

 (Continues on next page) 
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(Continued) 

 Phytoplankton Periphyton Zooplankton Macroinvertebrates Macrophytes Fish 

Fish - Resuspension 

causes nutrient 

release from 

substrate20, 26 

- Excretion of 

nutrients26 

- Indirectly reducing 

predation pressure 

by zooplankton29 

- Resuspension 

causes nutrient 

release from 

substrate20 

- Excretion of 

nutrients26 

- Grazing 

- Indirectly by 

predating on other 

grazers16 

 

- Selective preying 

affects community 

composition (e.g. 

less crustaceans, 

more rotifers)5 

- Selective preying 

affects life history 

(e.g. higher male-to-

female ratio of 

cyclopoids)5, 25 

- Chemical cues 

steer morphology 

and reproduction7 

- Diel migration23 

 

- Feed on 

invertebrates, e.g. 

Chironomidae, 

Planorbidae, Physidae, 

Corixidae, 

Glossiphoniidae4, 14, 16 

- Indirect supporting 

macroinvertebrate 

presence via feeding 

on competitors or 

predators2, 4 

- Herbivory4 

- Resuspension can 

limit submerse 

vegetation14, 20, 29 

- Excretion of 

nutrients11 

 

- Competition for 

same food source (e.g. 

midges)4 

- Predation4 

1 Angélibert et al. (2004); 2 Balcombe et al. (2005a); 3 Batzer and Resh (1991); 4 Batzer et al. (2000); 5 Bramm et al. (2009); 6 Brix (1997); 7 Burks et al. 

(2000); 8 Carlsson and Brönmark (2006); 9 Calero et al. (2015); 10 Choi et al. (2014); 11 Dodds and Whiles (2010); 12 Fontanarrosa et al. (2010); 13 Gao et 

al. (2019); 14 Hsu et al. (2011); 15 Jarchow and Cook (2009); 16 Liboriussen et al. (2005); 17 Meerhoff et al. (2007); 18 Miranda and Hodges (2000); 19 

Sand-Jensen and Borum (1991); 20 Schrage and Downing (2004); 21 Spieles and Mitsch (2000); 22 Thomaz and Cunha (2010); 23 Timms and Moss 

(1984); 24 Travaini-Lima et al. (2016); 25 van Donk and van de Bund (2002); 26 Vanni (2002); 27 Zhong et al. (2016); 28 Zimmer et al. (2000); 29 Zimmer 

et al. (2003)  

 



KEY ISSUES MULTIFUNCTIONAL WETLANDS 

43 

2.3.2 Use of macrophytes to improve biodiversity 

Macrophytes showed to provide a steering role regarding wetland community structure 

and functioning, affecting the physical, chemical and biological level. At the physical 

level, the presence of macrophytes reduces flow velocity and positively affects nutrient 

cycling and water storage. Moreover, in combination with macrophyte rooting, these 

reduced flow velocities cause less erosion and sediment resuspension, which positively 

affects transparency (Brix, 1997). However, under improved settling and decreased 

erosion, wetlands tend to be exposed to siltation and accretion, which can be further 

exacerbated by high transpiration rates of dense emergent communities (Angélibert et 

al., 2004; Zedler and Kercher, 2004).  

The consequences of these physical changes on wetland community composition and 

functioning are case-dependent and situated along the positive-negative continuum. For 

instance, Rooth et al. (2003) showed that the invasion of wetlands occupied by Typha 

spp. and Panicum virgatum in the Chesapeake Bay by the invasive Phragmites australis 

caused higher sediment accretion rates within the areas invaded by P. australis. 

Simultaneously, a reduction in total wetland area had occurred due to rising sea levels, 

yet the accretion caused by P. australis supported the continued existence of the invaded 

wetland. Hence, the invasion by P. australis caused the local disappearance of the native 

vegetation but avoided the complete loss of the wetland’s functionality. 

Secondly, at the chemical level, nutrients are taken up directly from the water column, 

the sediment or a combination of both. This uptake supports biomass production, 

carbon sequestration and phytoremediation (see Box 2.2), with the latter being of main 

research interest for several decades (Brisson and Chazarenc, 2009; Rodríguez and 

Brisson, 2015; Tanner, 1996). Yet, this direct nutrient removal is estimated to represent 

maximally 10 % of the total provided load, though can be increased when frequent 

harvesting is applied and biomass-incorporated nutrients are completely removed from 

the aquatic system (Merlin et al., 2002; Park and Polprasert, 2008).  

Within wetlands, oxygen is crucial for aerobic degradation and nitrification to occur (see 

Section 2.2.1). Emergent plants are known for providing root zone aeration within the 

(mostly anoxic) substrate, while being countered by an upward movement of methane 

(Bergström et al., 2007; Keddy, 2010; Vymazal, 2011b). This oxygen provision oxidises 

the reduced nitrogen compounds and drives a continuous diffusion of both reduced and 

oxidised nitrogen by altering the equilibrium between substrate and water column 

concentrations (Keddy, 2010). However, extensive surface coverage and dead plant 

material entering the water column cause additional oxygen consumption and the 

release of immobilised nutrients. For instance, duckweed species (Lemna spp.) can form 

dense mats under eutrophic conditions, which causes relatively high mortality rates and 

associated oxygen depletion underneath the mats (Janse and Van Puijenbroek, 1998). 
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Box 2.2: Macrophytes providing phytoremediation to reduce pollutant levels 

Throughout the past decades, macrophytes have been frequently applied to counter 

the presence of pollutants in contaminated soil or water (i.e. phytoremediation) 

(Arthur et al., 2005; Dhir et al., 2009). Processes vary from degradation over 

immobilisation to extraction and are highly species- and environment-specific. For 

instance, Zhao et al. (2015a) studied the potential of several floating duckweed species 

to recover nutrients from wastewater and observed that Lemna japonica provided the 

highest nitrogen and phosphorus recovery and removal rates, while producing the 

most protein-rich biomass. In contrast, Amon et al. (2007) investigated the ability of 

various emergent macrophytes in supporting the dechlorination and mineralisation 

of perchloroethylene and observed significant improvements in pollutant removal. 

Additional examples of phytoremediation being facilitated by aquatic macrophytes 

can be found in Carvalho et al. (2014), Dhir et al. (2009) and Rai (2009). 

 

These effects of macrophyte presence on the physical and chemical conditions illustrate 

how species interact with their environment and create a framework for the 

development of biotic interactions (Vitousek et al., 1997). For instance, the development 

of a stable and biologically complex ecosystem is highly dependent on the presence of 

food, preferably provided by (a community of) primary producers, as autotrophic 

biomass production acts as a basis for the trophic cascade, feeding zooplankton, 

macroinvertebrates, amphibians, fish and birds (Balcombe et al., 2005b; Thomaz and 

Cunha, 2010; Worrall et al., 1997).  

Moreover, during this primary production, nutrients are continuously taken up from the 

surrounding environment and converted into organic compounds to support cell 

growth. This causes pollutant levels to decrease towards the downstream sections of 

vegetated treatment systems, which creates different abiotic habitats along the flow path 

(Caraco and Cole, 2002). Due to these decreasing pollutant levels, the biotic diversity 

has the potential to increase towards the discharge point as the prevailing pollutant 

levels are less restrictive (Becerra-Jurado et al., 2012; Boets et al., 2011).  

From this, it is clear that macrophyte occurrence represents an interesting starting point 

to support the conservation of wetlands, despite being determined by a range of species-

specific preferences, interactions and functional traits, including the abiotic 

environment, dispersal capacity, temporary tolerance, resource competition, population 

dynamics, community ecology and evolution (Guisan and Thuiller, 2005; Pulliam, 

2000; Sinclair et al., 2010). Appropriate wetland management requires that these 

aspects are considered into detail, with additional attention towards acceptable abiotic 

conditions for macrophyte presence.  
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2.3.2.1 Abiotic conditions for macrophyte presence 

Field observations, laboratory experiments and expert knowledge contribute to an 

increased understanding of the preferred abiotic conditions (Hofstra et al., 2020). Based 

on field observations, suitable abiotic habitats for macrophyte presence can be derived, 

reflecting the niche concept as postulated by Hutchinson (1957) and re-evaluated by 

Pulliam (2000). This niche is a n-dimensional hypervolume in which every point 

represents an environmental condition that supports indefinite species survival and is 

generally referred to as the realised niche. The fundamental niche extends the realised 

niche as it excludes the effects of biotic interactions like resource competition and 

predator-prey interactions, thereby merely reflecting the suitable abiotic conditions 

(Pulliam, 2000).  

Despite being unfit for inferring the fundamental niche, observations are often used 

within a data mining environment to derive suitable habitats, predict species 

distributions, define conservation value and restrict the spread of invasive alien species 

(Araújo and Guisan, 2006; Elith and Leathwick, 2009; McPherson et al., 2004). 

Information obtained through these modelling exercises provides a valuable 

contribution to the delineation of a species’ realised niche, which allows its subsequent 

application as an overall filter, combining both abiotic and biotic influences (Anderson 

and Raza, 2010; Guisan and Rahbek, 2011). In contrast, experiments under controlled 

conditions allow to infer realistic species traits and population parameters, thereby 

aiding the development of process-based models with a more profound grounding in 

ecological theory (Gallien et al., 2010). Due to this approach, process-based models are 

better positioned than data-driven models when aiming to delineate the fundamental 

(abiotic) niche (Kearney and Porter, 2009). 

Modelling techniques aiming to delineate species niches are intrinsically situated along 

a continuum between purely data-driven and completely knowledge-based (Dormann 

et al., 2012; Mount et al., 2016; Van Echelpoel et al., 2015), with observation-based 

habitat suitability models (HSMs) being highly data-dependent. Model performance and 

reliability rely on a plethora of variables, including the quality of the data and the applied 

model parameter settings, both of which require attention during model development 

(Everaert et al., 2016; Marvin and John, 2003; Zhang et al., 2003). Yet, despite their 

added value for ecosystem management, HSMs have been widely criticised in literature 

for a variety of reasons, including the limited consideration of species dispersal within 

the final model structure (Elith and Leathwick, 2009; Guisan and Thuiller, 2005; 

Jarnevich et al., 2015). It is highly recommended to acknowledge these criticisms when 

assessing the applicability of modelling techniques. 
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2.3.2.2 Biotic interactions 

The inclusion of biotic interactions builds further on the abovementioned abiotic 

preferences and can be considered as an additional filter that determines which species 

can occur, conditional to the prevailing community (Guisan and Rahbek, 2011). 

Theoretically, a variety of interactions can take place, including out-competition 

(disappearance of a species), restricting competition via exclusion (separate range), 

neutral interaction (shared range), facilitation (unidirectional range extension) and 

mutualism (bidirectional range extension), as illustrated in Figure 2.4. 

These interactions occur mostly between macrophyte species, though additionally tend 

to cross the taxonomic boundaries between biotic groups, e.g. pollination, herbivory and 

parasitism (Guisan and Thuiller, 2005; Hofstra et al., 2020). Moreover, due to these 

interactions, the fundamental niche approaches the realised niche and shows a decrease 

or enlargement of the tolerated and preferred abiotic conditions. More specifically, the 

underlying functional traits (e.g. biomass production, flowering, root:shoot ratio) are 

affected in a positive, neutral or negative way (see Box 2.3), with intensity and direction 

varying along the environmental gradients (Huntley et al., 2004).  

 

Figure 2.4: Illustration of the potential outcomes following biotic interactions between 

two species. Each species is characterised by an occurrence frequency distribution (y-axis) over 

an environmental gradient (x-axis), which overlap when considered separately (i.e. theoretical 

coexistence). When co-occurring, competition can cause narrowing of the preferred range (i.e. 

exclusion), while mutualism can support range broadening (i.e. facilitation). When no interactions 

occur (e.g. due to completely different preferences with respect to other variables), no range 

changes are observed. 
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Box 2.3: Terminology related to biotic interactions 

All species interact with each other along the positive-negative continuum, leading to 

the introduction of specific terminology for each type of interaction. Basically, each 

interaction between two species can be classified as having a (1) positive, (2) negative 

or (3) neutral effect on the survival and reproduction of each individual species 

(Bronstein, 1994; Dodds and Whiles, 2010), hence resulting in a total of nine possible 

combinations. These combinations can be reduced to six unique interactions due to 

the inherent symmetry.  

When both species are positively affected by the presence of the other species, the 

interaction is classified as mutualism. In contrast, when both species are negatively 

affected, the interaction is classified as competition. The combination where one 

species experiences a benefit and the other species experiences a detriment, the 

interaction is referred to as parasitism (or, alternatively, predation or 

exploitation). Some interactions do not provide any benefit or detriment for either 

species (i.e. neutral for both species) and are therefore classified as neutralism. When 

only one species benefits or suffers due to the interaction (without affecting the 

second species in any way), the interaction is classified as commensalism or 

amensalism, respectively. 

 

Given the importance of plant interactions within terrestrial systems and the limited 

research performed on aquatic macrophytes (Brooker et al., 2008; Callaway and Walker, 

1997), more information is expected to be reported in future studies. This is imperative, 

as more experiments on these interactions (including field observations, replacement 

tests, laboratory experiments and phylogenetic research) are required to develop a biotic 

interaction filter (Guisan and Rahbek, 2011; Keddy, 1999; Pulliam, 2000). Additionally, 

considering the temporal dynamics of population and species characteristics, attention 

should be given to the potential effect of time and time-related variables, including 

season, life stage, size and density (Callaway and Walker, 1997).  

It remains clear that, considering the relatively high number of potential interactions, 

natural observations provide more ‘true’ information than microcosm studies and tend 

to constitute a more accurate representation of the realised niche (Guisan and Thuiller, 

2005). Nevertheless, this representation remains highly time-dependent and merely 

entails a snapshot of all ecological processes and interactions taking place within the 

considered timeframe (Araújo and Guisan, 2006; Lehmann, 1998). Hence, when aiming 

to estimate the intensity and direction of future distributions and interactions, 

experiments do provide the only alternative to expand currently existing trait matrices 

and to confirm (or reject) the ecological theory (Keddy, 2010).   
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2.3.2.3 Alien species 

Besides the abovementioned challenges dealing with species-specific traits, natural 

dispersal and biotic interactions of the known native species pool, specific attention 

should be given to invasive alien species (IAS) (Hofstra et al., 2020). Their presence is a 

direct result of increased globalisation and the ability to colonise unoccupied niches due 

to the possession of functional traits that differ in their value from native species 

(Perrings et al., 2002; Thomaz and Cunha, 2010; Van Echelpoel et al., 2016). More 

specifically, a discrepant dispersion method, resource uptake efficiency, rate of biomass 

production and the excretion of metabolic by-products allow IAS to outcompete and 

expel native species, thereby expanding the occupied niche (Zedler, 2003).  

With current habitats changing at unprecedented rates, new niches are created 

continuously, allowing the establishment of and colonisation by IAS. Counteracting the 

impacts of IAS can be performed at pre-introduction (i.e. identification of invasive 

potential) or post-establishment (i.e. removal of IAS from colonised area) level (Early et 

al., 2016), yet the invasive potential of many alien species still remains unknown and 

impedes the development of a priority list. So far, border control is by far the most 

implemented proactive management strategy to avoid the introduction of alien species 

and relies on several nationally and internationally renowned invasive species (Early et 

al., 2016; IUCN, 2019). Yet, the inclusion of any alien species on these lists is often a 

mere reaction on reported detrimental effects elsewhere. 

Observation-based HSMs allow to predict suitable habitats for IAS, though their 

reliability is questioned as (i) observations within new environments are not yet in 

equilibrium and (ii) observations within their native environment inherently include 

biotic interactions potentially absent within the new environment (Gallien et al., 2012; 

Guisan and Thuiller, 2005). Hence, controlled experiments are required for determining 

the invasive potential, for instance via the functional response as applied by Dick et al. 

(2013), describing the increased resource-use efficiency of the invasive shrimp 

Hemimysis anomala compared to native mysid shrimps along a range of resource 

concentrations. In contrast, the assessment of competitive potential among 

macrophytes based on input-related comparisons remains limited, while output-based 

testing via the relative growth rate (RGR) is more common, e.g. Fagúndez and Lema 

(2019), Njambuya et al. (2011), Paolacci et al. (2018). Therefore, further research into the 

applicability of input-based approaches to determine the invasive potential of alien 

macrophytes is recommended, including comparisons among species that are 

phylogenetically close. 
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2.4 Contribution to the study objectives 

The aim of this chapter was to create an overview of how specific biotic groups interact 

in shallow eutrophic freshwater systems and, from that, derive which biotic group(s) can 

provide a biological basis for developing a complex community. Throughout the chapter, 

attention was given to (1) the pollutant removal capacity and (2) the intra- and 

interspecies interactions of different biotic groups, both within the context of integrated 

constructed wetlands. Consequently, several key issues were identified to merit 

additional study to improve the implementation of ICWs, tackling societal, chemical 

and biological aspects. However, the main objective of this work deals with the biotic 

aspect of ICWs (see Section 1.2.1), which excludes both the societal and chemical aspects 

from further scrutiny. 

The baseline for biotic development was provided in Section 2.3 and identified the 

contribution of macrophytes as a steering factor towards (1) increasing habitat 

complexity and (2) altering physicochemical conditions (see Section 2.3.2). By exerting 

these processes, macrophytes indirectly affect other biotic groups, including 

phytoplankton (e.g. shading, nutrient competition), periphyton (e.g. as substrate) 

zooplankton (e.g. as refuge area), macroinvertebrates (e.g. as food source) and fish (e.g. 

as refuge area). However, the presence of macrophytes is determined by matching 

environmental conditions and species-specific abiotic preferences. In order to derive 

these preferences and the habitats that comply to them, information from field data, 

laboratory experiments and expert knowledge is required. With this information, site 

identification and niche delineation can be automated by developing habitat suitability 

and species distribution models. 

The development of HSMs and SDMs is a challenging task, requiring information on 

autecological processes, dispersal rates and biotic interactions. Particularly, attention is 

requested for the inclusion of their temporal dynamics, as prevailing conditions are 

continuously changing. Climate change, anthropogenic activities and the increased 

introduction of invasive alien species alter the environment both at small and large scale, 

hence resulting in changing communities, shifting niches and the potential extinction 

of specialist species throughout consequent years (Guisan and Rahbek, 2011; Pulliam, 

2000; Vitousek et al., 1997; Vos et al., 2008).  

As a result, pressure on ecological research increases as appropriate decision 

management requires the support of HSMs and SDMs to reliably forecast community 

changes caused by such environmental disturbance. Therefore, the remaining chapters 

will focus on the preferred abiotic conditions of macrophytes within wetland-like 

environments. Attention is given to species-specific preferences as well as management 

options to deal with non-native species (if necessary).  
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2.5 Conclusion 

Construction of artificial treatment wetlands provides the opportunity to counter the 

ongoing loss of wetlands and related ecosystem services. Pollutant removal and 

presences of biotic components (phytoplankton, periphyton, zooplankton, 

macroinvertebrates, macrophytes and fish) have been reported within these systems, 

while an analysis of the biotic interactions highlighted the positive effect of macrophyte 

presence on ecosystem functioning. Yet, implementation is still impeded as specific 

integrated knowledge at the chemical and biological level is lacking. Therefore, a range 

of suggestions can be formulated to fill these knowledge gaps, being categorised in three 

domains: (i) societal, (ii) modelling and (iii) experiments. More specifically, within the 

societal domain more attention should be given to the inclusion of socio-economic 

expectations and needs when designing restoration projects. Secondly, developing 

abiotic habitat suitability models is called for to match environmental conditions with 

species-specific habitat preferences. Lastly, and most extensively, experiments are 

requested to improve understanding on (i) the functioning of constructed wetlands at 

the abiotic level (including the effects from external pressures and the impact on 

receiving water systems), (ii) species-specific temporal dynamics (including population 

processes and dispersal rates) and (iii) the applicability and effectiveness of pro- and 

reactive management when dealing with invasive alien macrophytes (including input-

based indices and management effects). 
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Data-driven modelling for 

environmental data science2 

  

                                                 
2 This chapter is redrafted from Van Echelpoel, W.; Boets, P.; Landuyt, D.; Gobeyn, S.; Everaert, G.; 

Bennetsen, E.; Mouton, A. and Goethals, P. L. M. Species distribution models for sustainable 
ecosystem management in Developments in Environmental Modelling Vol. 27 (eds Y.-S. Park, S. 
Lek, C. Baehr and S. E. Jørgensen) Ch. 6, 115-134 (Elsevier, 2015). 

Highlights 

- Ecosystem management benefits from data-driven modelling 

- No single-best method exists, but improvements are being made 

- Decision trees are an accessible technique with acceptable performance 

- Cross-validation helps to reduce overfitting and to increase data use efficiency 
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Abstract 

Ecosystems are characterised by complex interactions and a high degree of uncertainty 

due to their inherent dynamic behaviour. Model simulations help in decreasing these 

uncertainties and simultaneously create additional insight into existing ecological 

interactions. More specifically, species distribution models combine abiotic and species-

specific information to describe current and simulate future species occurrence. These 

models derive their construction from data, knowledge or a combination of both, with 

the former being increasingly applied in ecological research related to conservation 

management and the effects of climate change. Here, five data-driven modelling 

techniques are discussed and compared to provide an overview of their strengths and 

weaknesses: decision trees, generalised linear models, artificial neural networks, fuzzy 

logic and Bayesian belief networks. From this overview, it becomes clear that no 

modelling technique is without drawbacks, making model selection often user- and 

case-dependent. Following model selection, data collection and preparation is highly 

technique-specific, including response balancing for decision trees and variable scaling 

for artificial neural networks. Moreover, model evaluation depends on the 

characteristics of the provided model output, providing most information when based 

on non-transformed observed or predicted response values. A shared challenge among 

the selected techniques consists of model regularisation by overcoming overfitting, 

which is partially tackled by implementing cross-validation or alternative approaches to 

improve data use efficiency. Overall, decision trees are relatively simple non-parametric 

techniques that allow for the integration of variable interactions, with random forests 

reporting promising results. The area under the receiver operating characteristic curve 

(AUC) represents a single-value and threshold-independent metric to assess model 

performance, while sensitivity (Sn) and specificity (Sp) provide potential as additional 

assessment metrics.  
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3.1 Setting the scene 

In Chapter 2, the value of model development to estimate habitat suitability or species 

distribution has been highlighted in the context of ecological conservation. The majority 

of restoration projects counter the ongoing loss of biodiversity, yet suffer from high 

investment costs, short-term thinking, uncertain outcomes and insufficient inclusion of 

socio-economic needs and expectations (Catalano et al., 2019; Diekmann and 

Featherman, 1998; Friberg et al., 2017). Climate change adds to these uncertainties and 

challenges due to shifts in geographical range, seasonal activities, migration patterns 

and species interactions, while simultaneously increasing the risk of extinction for a 

large fraction of species (Braunisch et al., 2013; IPCC, 2014; Walther, 2010).  

Model simulations provide the opportunity to decrease some of these uncertainties and 

simultaneously create insight into existing ecological interactions. In this regard, the 

ability of models to extrapolate species distributions in space and time is a crucial 

contribution to maintaining and improving ecosystem structure and functioning. More 

specifically, these species distribution models (SDMs) allow to test biogeographic 

hypotheses (Leathwick, 1998), to fill in the gaps in current ecological knowledge 

(Ambelu et al., 2014), to identify conservation areas and to determine invasion 

vulnerability (Domisch et al., 2013; Hatten et al., 2014; Sauer et al., 2011). 

SDMs are positioned along an axis between data-driven (empirical) and knowledge-

based (conceptual) models (Dormann et al., 2012; Mount et al., 2016), though a single-

best approach has not been identified due to the inability to create a universal grading 

of all existing models (Kampichler et al., 2010; Lawson et al., 2014). So far, data-driven 

models have been applied frequently when forecasting habitat suitability and species 

distributions (Elith and Graham, 2009; Marmion et al., 2009; Stohlgren et al., 2010).  

Within this chapter, specific attention is given to a selection of five data-driven 

modelling techniques, being decision trees (DTs), generalised linear models (GLMs), 

artificial neural networks (ANNs), fuzzy logic (FL) and Bayesian belief networks (BBNs). 

Throughout the chapter, models are referred to as being species distribution models, as 

no strict assumptions on the available data are being made. However, the majority of 

data-driven models has been developed without the inclusion of dispersal dynamics or 

biotic interactions and is, therefore, defined as habitat suitability models (HSMs). 

Despite providing a valid alternative, knowledge-based models are built on known 

processes and are, therefore, considered to be out of the scope of this chapter. 

The aim is to create an overview of frequently-applied modelling techniques and, in 

addition, to describe how to asses model performance prior to making predictions. By 

tackling these two objectives, an answer is provided to RQ1.3, defined in Chapter 1. 

Ultimately, this chapter concludes with a promising modelling approach for sustainable 

ecosystem management.  
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3.2 Model development procedure 

In general, the model development procedure entails a sequence of successive steps to 

be performed. The number and focus of these steps differ among authors, which calls 

for a comprehensive standardisation, though allows the identification of several 

recurring steps. For instance, a list of ten successive steps is provided by Jakeman et al. 

(2006), while Guisan and Zimmerman (2000) only mention five important steps. Still, 

sequential steps are not always clearly separable and some can be combined in one 

overarching step (Austin, 2002; Jakeman et al., 2006). Here, prior to applying the model 

for inferring predictions, four main steps are identified based on Guisan and 

Zimmerman (2000) and mentioned in Table 3.1: (1) create a conceptual framework, (2) 

collect and explore the data, (3) apply the most appropriate modelling technique and 

(4) calibrate the selected model and validate the model with independent data.  

As prior knowledge is often limited and the initial goals of long-term studies and 

restoration projects often change (Catalano et al., 2019; Friberg et al., 2017), it is clear 

that careful design (i.e. “create conceptual model” in Table 3.1) and data collection (Step 

2 in Table 3.1) are major challenges, for which a balance between robustness, general 

relevance, and specific needs has to be sought. Therefore, a careful, well-balanced 

combination of data, expert knowledge, and user convenience is recommended 

(Goethals, 2005), especially when developing process-based models.  

Yet, both model design and data collection have become less significant during the past 

decades, as the unprecedented progress in data collection, storage and availability has 

supported a rise in the applicability and importance of data-driven models for decision-

making (Benito et al., 2013; Gibert et al., 2018a). Still, the creation of a conceptual 

framework remains a valid step, though relatively more attention is (and should be) 

spent on data exploration and proper pre-processing (Zhang et al., 2003). 

Following model conceptualisation and data characterisation, model selection can be 

based on a series of objective parameters (e.g. performance measures in Table 3.1, Step 

4), while additionally depending on the preference of the modeller (i.e. introduction of 

subjectivity) because no model can be considered as the best option in every situation 

(Gibert et al., 2018b; Mount et al., 2016; Mouton et al., 2010). Consequently, several 

authors tend to combine multiple modelling techniques (i.e. “ensemble modelling”) in 

order to predict future species distributions more reliably (Benito et al., 2013; Domisch 

et al., 2013; Gallardo and Aldridge, 2013; Thuiller, 2003).  
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Table 3.1: Summary of the four main steps in the ideal modelling procedure, including 

relevant literature. 

Step Goal Relevant literature 

1. Create 

conceptual model 

Becoming aware of the situation to be 

investigated, i.e. suggesting a 

hypothesis, identifying the required 

data and selecting the most 

appropriate model. 

 

Jakeman et al. (2006), Austin 

(2002), Guisan and 

Zimmerman (2000) 

2. Data collection 

and exploration 

Collecting the required data according 

to Step 1, followed by exploring the 

data and elimination of data that can 

inhibit proper model development. 

 

Zuur et al. (2010), Guisan 

and Zimmerman (2000) 

3. Model 

application 

Applying the selected modelling 

technique (see Step 1). 

 

Guisan and Zimmerman 

(2000), Leohle (1983) 

4. Model 

calibration and 

validation 

Estimating and fine-tuning of model 

parameter values to fit the provided 

data, including calculation of 

performance measures (i.e. model fit 

to independent data set). 

 

Allouche et al. (2006), 

Fawcett (2006), Manel et al. 

(2001), Guisan and 

Zimmerman (2000),  

Fielding and Bell (1997) 

 

3.2.1 Create conceptual framework: model selection 

When relying on models for making predictions, one should be aware that models are a 

mere conceptualisation of the ecosystem under study and that, consequently, the 

obtained results carry a certain degree of uncertainty (Wilson et al., 2011). Throughout 

this section, an assortment of empirical (data-driven) models is described in more detail. 

Selection of the models is based on reported applications in ecological literature and the 

work of Franklin (2010), who provides an elaborate description of decision trees (DTs) 

and generalised linear models (GLMs), as well as a concise introduction to artificial 

neural networks (ANNs) and generalised additive models (GAMs). Furthermore, 

Franklin (2010) describes fuzzy logic (FL) as an approach that holds a lot of promise to 

improve the usefulness of the habitat suitability index (HSI). Additionally, Bayesian 

Belief Networks (BBNs) are described as they are mentioned in the overview of Goethals 

(2005), listing decision trees, ANNs, fuzzy logic and BBNs as soft computing methods 

worth mentioning when dealing with modelling species distributions. Each of the 

following subsections describes one of these techniques (DTs, GLMs, ANNs, FL and 

BBNs) in more detail, refers to a more elaborate or mathematical description in 

literature and provides two examples in which the technique has been applied. 
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3.2.1.1 Decision trees (DTs) 

Decision trees are hierarchical structures represented by a sequence of knowledge rules 

(Everaert et al., 2011). Their construction is based on an iterative process of identifying 

the most informative predictor and the accompanying threshold value(s), thereby 

limiting the necessity to specify a relationship between explanatory and response 

variables on beforehand (De'ath and Fabricius, 2000; Fox et al., 2017; Svitok et al., 2016). 

The data set is split according to this threshold and the next iteration starts until a 

specific stopping criterion is satisfied. Ultimately, the final model is characterised by a 

specific number of nodes (i.e. knowledge rules) and leaves (i.e. branch ends), reflecting 

model complexity and allowing for a graphical representation. A distinction can be made 

between classification (categorical response) and regression (continuous response) 

trees. For instance, a hypothetical classification tree with two nodes and three leaves is 

depicted in Figure 3.1. 

 

Figure 3.1: Illustration of a classification tree. Species occurrence is determined by stream 

velocity and oxygen concentration and indicates the hierarchical importance of both predictors. 

The depicted model classifies a hypothetical species by using two nodes and three leaves. 

Decision trees have been frequently applied to model habitat suitability or species 

distribution, see for instance Boets et al. (2010), Boets et al. (2013b), Everaert et al. (2011), 

Hoang et al. (2010) and Van Echelpoel and Goethals (2018). Main advantages of decision 

trees are the comprehensibility of the model structure (e.g. Figure 3.1), since it closely 

resembles human reasoning (Kotsiantis, 2011), the ability to deal with relatively small 

datasets (Everaert et al., 2011) and the possibility to identify (non-linear) interactions 

between predictors (Franklin, 2010; Svitok et al., 2016). More information on decision 

trees can be found in Rokach (2008). 



DATA-DRIVEN MODELLING 

59 

Examples 

Decision trees have been successfully applied to determine the presence of alien 

macrocrustaceans in surface waters in Flanders (Boets et al., 2013b). Both classification 

and regression trees were developed in order to describe species distribution 

(present/absent) and both richness and abundance (continuous response variables), 

respectively. In short, they concluded that presence and species richness of 

macrocrustaceans are likely to increase with improving water quality, probably 

accompanied by a slight decrease in abundance of the most dominant alien taxa (Boets 

et al., 2013b). Useful applications of the inferred knowledge on these alien species 

include management planning and investment decisions, which are highlighted by the 

United States National Management Plan on invasive species (Kolar and Lodge, 2002). 

In vegetation ecology, regression trees have been applied to describe the potential 

migration of trees under changing climatic conditions (Iverson and Prasad, 1998). 

Among the selected species, Iverson and Prasad (1998) observed different responses to 

climate change with an additional remark that future redistributions will be dependent 

on migration rates through fragmented landscapes. This application fits in the idea that 

climate change will eventually lead to a large redistribution of tree species considering 

the increase in average surface temperature and the change in precipitation patterns 

(IPCC, 2014; Kundzewicz et al., 2014).  

Additional remarks 

Despite their comprehensibility, classification trees are not always the best option in 

terms of model performance. In comparison with other modelling techniques, decision 

trees have shown to perform better (Boets et al., 2013a) and worse (Hoang et al., 2010), 

illustrating the case-dependency of model performance. General drawbacks of decision 

trees are related to their instability (an error in the top split will propagate down to all 

splits below (Franklin, 2010; Hastie et al., 2009)), the limited incorporation of external 

ecological knowledge and the possibility of overfitting the model.  

These drawbacks tend to limit the applicability of basic decision trees on external or 

independent data sets, yet the development of more advanced tree-based models (e.g. 

boosted regression trees, random forests (see Box 3.1)) has countered most of this 

criticism by reporting the outperformance of other modelling techniques (Breiman, 

2001; Marmion et al., 2009; Stohlgren et al., 2010). Furthermore, when dealing with high 

amounts of data, large grown trees can be obtained, which are, due to their complexity, 

difficult to interpret. Pruning, which is the removal of one or more sub-trees to avoid 

overfitting, weights model complexity versus proximity to the data (model fit). By 

allowing (small) errors, trees will be less complex and the obtained rules are considered 

more generally applicable and improve the regularisation of the developed model 

(Mingers, 1989). 
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Box 3.1: Random forests as an ensemble of decision trees 

The high sensitivity of decision trees towards erroneous data and the possibility 

towards overfitting the data have resulted in a variety of alternative decision tree 

configurations. Among these, Breiman (2001) introduced the possibility to combine 

several individual trees into a single model (i.e. an ensemble model), which averages 

the overall model response and thereby limits the model’s sensitivity towards errors 

and overfitting.  

To avoid a strong correlation of the individual trees, instances are randomly selected 

from the provided training data for each tree. Subsequently, within each tree a random 

sub-selection of the available variables is made (i.e. the square root of the number of 

variables, by default) prior to defining the node-specific threshold value. Due to this 

approach, a fraction of the training data remains unused for each tree, which is applied 

to infer a tree-specific out-of-bag performance estimate. These estimates can be 

pooled to provide an overall evaluation of model performance. Alternatively, a 

completely independent data set can be used to perform external model validation. 

For each instance within this data set, the response of all individual trees is averaged 

and can be reported as a fractional distribution or a single response (if a specific 

threshold value is provided). The development of a random forest is visually 

represented in Figure 3.2. 

 

Figure 3.2: Development of a random forest. The final model consists of a predefined number 

of individual trees, which are all unique due to the variation in the provided training data. A: 

Development of a single tree with a fixed data set and varying variable selection for each node; 

B: Development of the model with the original data and the random instance selection per 

individual tree. 
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3.2.1.2 Generalised linear models (GLM) 

GLMs are a generalisation of ordinary linear regression models and are based on three 

elements: (1) a random component that assumes a probability distribution of the 

response variable Y (e.g. exponential, binomial), (2) a systematic component specifying 

the predictors in a linear form with their respective coefficient and (3) a link function 

describing the relationship between the former two elements (random component = link 

function(systematic component)) (Zuur et al., 2009). The predictors used for the 

systematic component can be independent predictors of higher order (e.g. velocity²) to 

model curvilinear effects or an interaction of predictors (e.g. depth∙oxygen) (Willems, 

2010; Zuur et al., 2009). The mathematical expression for GLMs is conceptualised in 

Equation 3.1 for a single response variable (Y). 

𝑔−1[𝐸(𝑌|𝑿)] = β0  + ∑ (βj𝑋𝑗) 
𝑘

𝑗=1
+ 𝜀   (Equation 3.1) 

With g-1 the inverse link function, Y the response variable, E(Y|X) the expected 

distribution of Y conditional to the set of predictors (𝑿 = [𝑋1, 𝑋2, … , 𝑋𝑘]
𝑇), Xj the jth 

predictor (out of k predictors, including higher order and interaction terms), β0 the 

intercept, βj the slope related to the predictor Xj and ε the remaining error. 

GLMs are regularly used in ecology to predict and describe the behaviour of a continuous 

response variable (e.g. abundance, probability of occurrence) in relation to 

environmental predictors, see for instance Ambelu et al. (2014), Everaert et al. (2014), 

Guisan et al. (2006) and Thuiller (2003). Important advantages that are related to GLMs 

include the ability to handle different types of distribution for the response variable, the 

possibility of constraining the predicted response variable in a certain range (e.g. 

between 0 and 100 % probability of occurrence) with statistical substantiation and the 

incorporation of potential solutions (by using extensions) to deal with overdispersion 

(i.e. variance of the data is larger than the intrinsic variance of the anticipated 

distribution (Davison, 2001)) (Guisan et al., 2002).  

GLMs are, as mentioned above, limited to the assumption that the response variable is 

linked to a linear combination of all predictors (see Equation 3.1) (Guisan et al., 2002; 

Zuur et al., 2009). An extension of GLMs assumes that when the predictors are 

smoothed by using a smoothing function, the linear combination of these functions is 

linked to the response variable. This extension is referred to as generalised additive 

models (GAMs) and is able to deal with non-linear, non-monotonic relationships 

between the predictors and response variables (Guisan et al., 2002). The mathematical 

expression of GAMs is conceptualised in Equation 3.2 for only one response variable (Y). 

More information on GLMs and related extensions (e.g. generalised additive models 

(GAMs), generalised linear mixed models (GLMMs), generalised additive mixed models 

(GAMMs)) can be found in Zuur et al. (2009). 
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𝑔−1[𝐸(𝑌|𝑿)] = β0 + ∑ 𝑓𝑗(𝑋𝑗) 
𝑘

𝑗=1
+ 𝜀  (Equation 3.2) 

With g-1 the inverse link function, Y the response variable, E(Y|X) the expected 

distribution of Y conditional to the set of predictors (𝑿 = [𝑋1, 𝑋2, … , 𝑋𝑘]
𝑇), Xj the jth 

predictor (out of k predictors), β0 the intercept, fj the smoothed function related to the 

predictor Xj and ε the remaining error. 

Examples 

The abiotic preferences of aquatic macroinvertebrates in tropical river basins was 

assessed by Everaert et al. (2014), who used logistic regression models (LRM), being a 

specific type of GLMs. In this study, LRMs were used to deduct relationships between 

abiotic variables and species presence in three tropical river basins (Ecuador, Ethiopia 

and Vietnam). Constraining the response variable between 0 and 1 (i.e. 0 and 100 % 

probability of occurrence) allows future application of the developed model outside the 

observed predictor range (e.g. future environmental conditions), while still resulting in 

a plausible response variable.  

In vegetation ecology, GAMs were developed in order to describe and predict the 

distribution of the Aleppo pine (Pinus halepensis) in Europe (Thuiller, 2003). 

Considering GAMs to apply a smoothing approach, no interaction terms have to be 

included, which provides an advantage over GLMs. The results showed a northward 

expansion of Pinus halepensis with minor contractions in southern Europe as a 

consequence of future climate change (Thuiller, 2003). As already mentioned, 

dispersion of trees due to changing climate conditions will also be affected by the 

possibility and rate of migration through fragmented landscapes (Iverson and Prasad, 

1998), which can limit their dispersal and eventually influence the overall carbon cycle. 

Additional remarks 

GLMs and classification trees were both applied to predict the presence of four 

vegetation alliances in the Mojave Desert (California). The application of GLMs to 

classify the considered vegetation alliances as present or absent resulted in a lower 

classification accuracy with the training data, but performed relatively better on an 

independent data set (Miller and Franklin, 2002). Similarly, GLMs and GAMs performed 

worse compared to random forests (a specific type of decision trees) when being applied 

to predict the effect of climate change on both native and invasive species (Gallardo and 

Aldridge, 2013). Drawbacks of GLMs are related to the assumption of the response 

variable being linked with a linear combination of the predictors, the possibility of 

overdispersion with binomial- and Poisson-like data (Venables and Dichmont, 2004) 

and the assumption that the response variable is characterised by a specific distribution. 

Several of these issues are tackled with GAMs and GLMMs, though these are 

simultaneously characterised by an increased mathematical complexity. 
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3.2.1.3 Artificial neural networks (ANN) 

Artificial Neural Networks (ANNs) are non-linear mapping structures that resemble the 

human brain (Lek and Guégan, 1999) or, more specifically, the neurons present in it 

(Basheer and Hajmeer, 2000). A combination of predictors is handled by a sequence of 

neurons and will ultimately lead to the response variable (see Figure 3.3). As a 

consequence, ANNs are considered to be a ‘black-box’ approach (Lek and Guégan, 1999) 

that use predictors to infer the state of the response variable without reporting 

intermediate predictor combinations and transformations. ANN application in ecology 

remains limited, though includes some success stories, see for instance Brosse et al. 

(1999), Dedecker et al. (2004), Goethals et al. (2007) and Thuiller (2003). Important 

advantages are related to the high tolerance for noise and measurement errors and the 

ability to recognise relations between predictors and response variables without 

ecological knowledge and regardless of the system’s non-linearity and the problem’s 

dimensionality (Basheer and Hajmeer, 2000). More information related to ANNs can be 

found in Zurada (1992), while practical applications in supporting river management are 

available in Goethals et al. (2007). 

 

Figure 3.3: Schematic illustration of a single neuron in a single hidden layer ANN. Input 

values are received from n predictors (x), associated with a specific weight (wj) and an overall bias 

term (zj). A new variable (aj) is calculated and transformed by a transfer function f, resulting in the 

j-th output (yj).  
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In ecology the most popular types of ANNs are Kohonen self-organizing maps (SOM) 

and backpropagation networks (BPN), among which the latter are frequently used 

(Goethals, 2005; Lek and Guégan, 1999). BPNs are multi-layer feed-forward neural 

networks (also called ‘multi-layer perceptron’, MLP) in which the information flows 

unidirectionally. The network connects the predictors with the response variables 

through a number of hidden layers, which are successively arranged and contain the 

neurons, being non-linear elements. The neurons present in the hidden layers create 

new ‘variables’ based on the predictors or variables from a previous layer, multiplied 

with a variable-specific weight factor and the addition of a bias term (see Figure 3.3 in 

case of a single hidden layer with a single neuron). In a BPN there are no lateral 

connections (i.e. between neurons of the same layer), nor feedback mechanisms. 

Examples 

Olden et al. (2006) acknowledged the presence of complex interactions in aquatic 

communities and applied ANNs to approach the existing hierarchic structure. By 

considering the presence of different spatial scales (i.e. valley-scale, watershed-scale and 

river-scale) and the related creation of nested ANNs, the ability to introduce a limited 

amount of knowledge is illustrated. Based on this approach, Olden et al. (2006) 

observed that among the selected environmental predictors, climate variables have the 

highest mean importance. Consequently, when considering climate change in the near 

future, a change in the composition of currently existing communities can be expected.  

Similarly, ANNs were applied by Dedecker et al. (2004) to describe and predict the 

habitat suitability of macroinvertebrate taxa in the Zwalm River (Belgium). They 

observed that different model structures result in different response variable curves 

describing the probability of presence in relation to dissolved oxygen. Furthermore, 

these macroinvertebrates are generally regarded as a proxy for overall water quality, and 

will, in light of climate change, be influenced by changing water quality due to altered 

hydrological systems (IPCC, 2014; Kundzewicz et al., 2014).  

Additional remarks 

Brosse et al. (1999) compared the capacity of ANNs to fit observed patterns with multiple 

linear regression (MLR) and concluded that ANNs were more suitable due to the 

shortcomings of MLR related to higher levels of ecological complexity. A similar 

conclusion was reported by Brey et al. (1996) when comparing ANN and MLR for 

predicting production-to-biomass ratios. However, in another case, Willems (2010) 

observed that, when parsimony is considered important, GLMs were superior to ANNs. 

Drawbacks of ANNs are its behaviour as a black box model, a lack of fixed guidelines for 

optimal ANN architecture and limited inclusion of ecological concepts and relations 

(Basheer and Hajmeer, 2000; Brosse et al., 1999; Thuiller, 2003). 



DATA-DRIVEN MODELLING 

65 

3.2.1.4 Fuzzy logic (FL) 

Fuzzy logic models are based on the assumption that a crisp classification of 

observations is not always straightforward and ecologically sound (Adriaenssens et al., 

2004a). When dealing with classification, one can use strict boundary conditions, e.g. 

when temperature is below 10 °C it is considered as ‘cold’, in between 10 and 20 °C as 

‘moderate’ and above 20 °C as ‘warm’. This results in a decrease of the number of 

response variables and a loss of information. Fuzzy logic allows the presence of an 

intermediate state in which the discretised variable (regardless of being a predictor or 

response variable) can belong to several classes with a certain membership (Mouton et 

al., 2011). This overlap is described by a weight (membership) factor (between 0 and 1) 

of which the sum always equals 1 (see Figure 3.4). The resulting trapezoidal shapes depict 

the membership functions, whose shape can differ based on the type of response 

variable. A more detailed mathematical description can be found in Mouton (2008). 

 

Figure 3.4: Concept of the fuzzy logic approach, illustrated with class membership in 

function of temperature. The different classes (Cold, Moderate and Warm) are not crisp sets 

but are characterised by overlap between consequent classes. Class membership describes the 

weight of each class at a certain temperature and always sums to 1. 

Fuzzy logic is based on the construction of IF-THEN rules, extended with one or more 

AND-rules. For instance, IF temperature is high AND oxygen is high AND … THEN 

respiration is high. Each of these fuzzy rules generates an output and an accompanying 

fulfilment degree that takes into account all membership degrees of the predictors (e.g. 

minimum, maximum, product). Afterwards, these individual outputs and fulfilment 

degrees are combined to determine the global fuzzy output. For instance, Mamdani-

Assilian models are linguistic fuzzy models that apply t-norms to determine the 

individual and global fulfilment degrees (Assilian, 1974; Mamdani, 1974), illustrated in 

Mouton (2008) and Van Broekhoven and De Baets (2008). A simplified version with 

two predictors and a minimum-based aggregation is depicted in Figure 3.5. 
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Figure 3.5: Membership determination in the response variable in fuzzy logic. The response 

class is determined by temperature and oxygen, which are both characterised as High with a 

specific membership (i.e. 0.4 and 0.8, respectively). Calculation of the membership to the High 

class in respiration is here determined as the minimum membership of the two predictors. The 

represented IF … THEN … rule depicts a hypothetical classification of the respiration. 

Finally, the resulting membership degrees can be handled in two different ways: (i) 

defuzzification and (ii) by a fuzzy classifier. Defuzzification of Mamdani-Assilian models 

considers the global fuzzy output in combination with the accompanying fulfilment 

degrees and the subsequent conversion into a single response value (e.g. mean of 

maximum, center of gravity (Van Broekhoven and De Baets, 2006)). The second 

approach entails normalisation and converts the different membership degrees into 

values of which the sum equals one (Van Broekhoven et al., 2006). The membership to 

each possible response variable class is described by this set of values. 

After being developed in 1965 (Zadeh, 1965), the fuzzy set theory has been adopted by 

ecology, though remains scarcely applied, see for instance Adriaenssens et al. (2004a), 

Fukuda et al. (2011), Mouton et al. (2008) and Salski (1992). Important additional 

advantages include the potential decrease of complexity by combining a range of 

response variables in a single class and the possibility to include expert knowledge. The 

latter influences the classification of predictors, the shape of the membership functions 

and the rules, ultimately resulting in a more ecologically sound model.  

However, expert knowledge is not an exclusive requirement for applying fuzzy logic, 

since both rules and fuzzy sets can be identified from data by means of fuzzy clustering, 

neural learning methods or genetic algorithms (Gobeyn et al., 2017; Guillaume, 2001). 

This is specifically applied for numerical models (referred to as Takagi-Sugeno models) 

that focus on accuracy (Mouton, 2008). When models are based on predictors and 

response variables partitioned in classes, one speaks of linguistic fuzzy models. More 

information on fuzzy logic can be found in Klir and Yuan (1995). 
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Examples 

Based on fuzzy logic a model was developed to predict the effects of different 

management options on a river and the accompanying influence on the spawning 

options of the European grayling (Thymallus thymallus) in the Swiss river Aare (Mouton 

et al., 2008). This case illustrates the advantage of being able to combine expert 

knowledge with data in order to compensate for situations in which insufficient data is 

collected. Hence, data-driven techniques can help to mitigate bottlenecks related to 

knowledge-based rule-setting, which is considered to be time consuming and complex 

(Mouton et al., 2008). Furthermore, this combination of data and expert knowledge 

allows to use predictor data with a specific uncertainty, as is the case when using 

simulated future environmental conditions as predictors. 

Similarly, fuzzy logic was applied to evaluate habitat suitability of topmouth gudgeon 

(Pseudorasbora parva), an invasive fish species in Japan (Fukuda et al., 2011). Several 

types of predictors (e.g. river width, canal network index, residential area, etc.) were 

implemented in the model structure, which illustrates the ability of fuzzy logic to deal 

with a variety of predictors. However, adding predictors also requires the definition of 

predictor-specific membership degrees and additional fuzzy rules. On the other hand, 

when future conditions result in predictor values outside the observed range (e.g. 

increased river width due to altered hydrological systems (IPCC, 2014)), predictions of 

distribution patterns can still be made due to the incorporation of expert knowledge in 

the original model. 

Additional remarks 

Fuzzy logic models have shown to perform similarly when compared with random 

forests (a specific type of decision tree), although when considering transparency, fuzzy 

logic models scored better because of their ability to combine ecological relevance with 

reasonable interpretability (Mouton et al., 2011). Drawbacks of fuzzy logic are the 

increase in complexity with increasing amount of predictors (Ahmadi-Nedushan et al., 

2006), the loss of information due to data discretisation and the possibility that the 

implementation of expert knowledge rules is both cost- and time-intensive (Kompare et 

al., 1994). 
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3.2.1.5 Bayesian belief networks (BBNs) 

Bayesian Belief Networks (BBNs) are multivariate, probabilistic models that consist of a 

directed acyclic graph wherein nodes represent discrete variables and arrows causal 

relations (Aguilera et al., 2011). Probability distributions quantify the probability of a 

variable being in one of its discrete states given the states of the preceding nodes in the 

graph (i.e. conditional probability). This way, uncertainties are explicitly accounted for 

and can be propagated from predictor to response variable using the rule of Bayes. 

Consequently, the output of a BBN is not a single value but a probability distribution 

over the states of the response variable.  

BBNs have been applied in ecology to model species distributions, see for instance 

Keshtkar et al. (2013), Marcot et al. (2001), Pollino et al. (2007) and Smith et al. (2007). 

Important advantages of this modelling approach include the ability to update 

conditional probabilities when new knowledge is available (Castelletti and Soncini-

Sessa, 2007), high model transparency, the potential to deal with missing data and the 

ability to complement empirical data with expert knowledge (Landuyt et al., 2013). By 

modelling the joint probability distribution over all considered variables (both predictor 

and response variables), BBNs differ from most other modelling techniques that only 

focus on accurately predicting the response variable. More information on BBNs can be 

found in Jensen and Nielsen (2007). 

BBNs can be developed purely data-driven by using data to infer both the network 

structure and the conditional probability tables (CPTs). However, generally, the 

structure of the network is based on expert knowledge, while the CPTs are based on data 

(Landuyt et al., 2013). Although such partially knowledge-based models may accurately 

represent the ecological functioning of the system based on current knowledge, they are 

often outperformed by purely data-driven models. For optimal classification 

performance (e.g. presence/absence models), several simple graph structures, such as, 

naive bayes (NB) classifiers and tree-augmented naive bayes (TAN) classifiers, have been 

proposed (Aguilera et al., 2010; Friedman et al., 1997). The causal links in NB classifiers 

are limited to direct links from the response variable to each predictor variable, while 

TAN classifiers also allow causal links among predictor variables mutually. Although 

these models usually do not grasp all dependencies and independencies of the system 

being modelled, they generally perform well in classification tasks (Friedman et al., 

1997). 
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Examples 

A BBN has been developed by Marcot et al. (2001) to determine the effect of different 

land management alternatives on the habitat and population viability of fish and wildlife 

that were at risk. They observed that BBNs can be easily applied for modelling the effect 

of planning alternatives on fish and wildlife and that they are an interesting decision 

support tool. In this case, the application of BBNs is considered as a complementary tool 

since sufficient empirical data is provided to determine the effect of different land 

management alternatives. In case sufficient empirical data is lacking (e.g. altered 

landscapes and future environmental conditions), BBNs allow to perform risk 

assessments based on the reported likelihoods.  

Besides being applied for determining land management issues, BBNs can also be used 

to model the effects of different catchment management alternatives on limiting the 

current degradation of water quality (Keshtkar et al., 2013). By including stakeholders 

and expert judgment, Keshtkar et al. (2013) optimised the preliminary model, 

constructed CPTs when qualitative data was lacking and validated the results. Their 

results showed that riparian restoration has an important influence on overall water 

quality even when considering the cost of implementation (Keshtkar et al., 2013).  

Additional remarks 

BBNs are comparable to ANNs as both techniques rely on a network approach. However, 

compared to ANNs, BBN models are more transparent, enable the integration of expert 

knowledge and require less data (Landuyt et al., 2013). Therefore, BBNs are more 

suitable for participatory model development and validation. Additionally, the model 

structure itself can be used as a decision support tool considering the visual 

representation of causal relationships in an environmental situation.  

Two studies compared the predictive performance of BBNs with other modelling 

techniques and concluded that the predictive performance of BBNs is relatively good 

compared to ANNs and fuzzy logic models (Adriaenssens et al., 2004b) and compared 

to logistic regression (Ordóñez Galán et al., 2009). Drawbacks of BBNs include the 

difficulty to implement temporal dynamics and information loss through discretisation 

of continuous variables. Although advanced model types exist to deal with temporal 

dynamics (e.g. time-sliced models, see Kjærulff (1995)) and continuous variables (e.g. 

hybrid Bayesian networks, see Aguilera et al. (2010)), other modelling techniques may 

be more suitable. 
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3.2.1.6 Summary of advantages and drawbacks 

A summary of the advantages and drawbacks of the selected modelling techniques is 

provided in Table 3.2. General drawbacks of each approach are mentioned despite the 

existence of several recently developed techniques that, at least partially, compensate 

for these weaknesses. However, most compensating techniques have a negative 

influence on the main advantages, which highlights the need of a well-balanced and 

carefully considered implementation. 

Table 3.2: Summary of model advantages and drawbacks. An overview is provided of the five 

modelling techniques (decision trees (DT), generalised linear models (GLM), artificial neural 

networks (ANN), fuzzy logic (FL) and Bayesian belief networks (BBN)) discussed in previous 

subsections. 

Technique Advantages Drawbacks 

DT - Transparent modelling technique; 

- Able to deal with small data sets; 

- Able to identify interactions between 

explanatory variables; 

- No need to define relationships or 

distribution in advance. 

- Limited incorporation of knowledge; 

- Potentially vulnerable to overfitting; 

- A single tree can provide unstable 

results; 

- Large datasets can lead to large, 

complex trees. 

GLM - Easy to use; 

- Useful for specific problems, e.g. 

predicting probability of occurrence 

with statistical substantiation. 

- Limited incorporation of knowledge; 

- Assumes the presence of specific 

distribution of the response variable. 

ANN - High tolerance for noise and 

measurement errors; 

- The ability to recognise relations 

between predictors and response 

variables when knowledge on the 

system’s functioning is lacking. 

- Acts as black box model; 

- Lack of guidelines for optimal design; 

- Low ecological relevance; 

- Limited explanatory power. 

FL - Absence of strict boundary values; 

- Ability to complement empirical data 

with expert knowledge; 

- Ability to incorporate uncertainty 

scenarios (e.g. climate change) by 

possibility approach. 

- Increased complexity with increasing 

number of predictors; 

- Information loss due to data 

discretisation; 

- Construction of knowledge-based 

rules is time intensive. 

BBN - Accounts for uncertainties explicitly; 

- Ability to incorporate uncertainty 

scenarios (e.g. climate change) by 

probability approach; 

- Straightforward propagation of 

uncertainties related to model inputs;  

- Ability to complement empirical data 

with expert knowledge. 

- Inability to implement temporal 

dynamics; 

- Information loss due to data 

discretisation; 

- Construction of knowledge-based 

rules is time intensive. 
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3.2.2 Data collection and exploration 

Following modelling technique selection based on abovementioned advantages and 

drawbacks, data is to be collected for model training (Step 2, Table 3.1). Environmental 

observations collect information on a myriad of variables, often classified as explanatory 

and response variables. Typically, explanatory variables include all variables to be 

considered to explain the observed pattern within the response variable of interest and 

can be biotic and abiotic. However, the majority of HSMs focuses on defining suitable 

abiotic conditions and thereby restricts the extent of the explanatory variable space. 

Variables can be discrete or continuous, with the former representing a limited number 

of possibilities (e.g. 5 different classes of land use), while the latter is not characterised 

by fixed thresholds to distinguish classes (e.g. river width expressed in meters). Most 

HSMs aim to accurately predict habitat suitability of a single species, thereby relying on 

a presence/absence statement (discrete) or a measure of abundance (continuous) in the 

response variable. Typically, models developed with a continuous response variable tend 

to be more sensitive compared to presence-absence models, despite containing potential 

biases related to seasonality, long term fluctuations and different sampling techniques 

(Ysebaert et al. 2002). 

Still, the majority of HSMs is trained with a discrete response variable, ranging from the 

basic presence-only (PO) to completely presence-absence (PA). Presence-only data sets 

describe the locations where a specific species is observed, occasionally making use of 

records from museums or herbaria (Graham et al. 2004), though without providing any 

information on unsuitable conditions (Ward et al. 2009). In contrast, presence-absence 

data include information on species absences, yet these do not necessarily reflect 

effective absences. More specifically, reported absences combine true and false absences, 

the latter of which is composed of species being present without being observed (non-

detectability) and species being absent due to historical or dispersal limitations (future 

potential) (Anderson and Raza, 2010). These false absences negatively affect model 

accuracy by providing ambiguous information (Lobo et al., 2010).  

Obtained data sets are rarely perfect and often contain one (or more) variables with 

missing values, erroneous notations, redundant variables and an unbalanced response 

variable (Gibert et al., 2018a). Data exploration and pre-processing are therefore crucial 

tools to characterise and improve the quality of the obtained data and, thereby, increase 

the reliability of model outcomes (Zhang et al., 2003; Zuur et al., 2010). Data exploration 

allows to obtain a graphical representation of a variable’s distribution, with boxplots, 

dotplots and histograms being frequently applied to identify potential deviating 

instances (Zuur et al., 2010). Transformation or removal of these outliers are common 

approaches to improve data quality, yet the lack of uniform guidelines cause it to be 

relatively subjective and open to further study.  
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Similarly, predictor assessment by means of a correlation index or principal component 

analysis (PCA) helps in identifying explanatory variables that contain similar 

information. These are helpful in understanding ecological interactions and processes, 

yet potentially compromise model development due to limited information gain 

compared to the computational cost. Reduction of data dimensionality by correlated 

variable removal or the creation of a new set of independent variables based on the PCA 

axes generally supports the development of simpler and more transparent models (Guo 

et al., 2015; Wilson et al., 2011). The intensity of these effects depends on data 

characteristics and varies among modelling techniques. 

Aside from abovementioned pre-processing, additional changes are potentially required 

prior to model training. For instance, ANN requires predictors to be rescaled to a 

predefined interval, ranging between 0 (or -1) up to 1, in order to make reliable 

predictions. Without this rescaling, predictors with an extensive range can have a higher 

influence, which can be artificially altered by changing the unit. Similarly, balancing of 

the response variable within the training data is highly recommended for DTs in order 

to avoid model preference towards the class with the highest frequency. To this end, a 

balanced ratio can be obtained via (i) random subsampling of the class(es) with higher 

abundance (Araújo and Guisan, 2006), (ii) oversampling of the class(es) with lower 

abundance or (iii) a combination of both (see Figure 3.6). 

 

Figure 3.6: Balancing of data describing the occurrence of a non-specified organism. 

Occurrence was assessed at 170 locations and resulting in 120 absence statements and 50 presence 

statements. A balanced dataset is created by A: randomly omitting data related to the absence of 

the organism (subsampling); B: randomly duplicating data related to the presence of the organism 

(oversampling) or C: applying a combination of subsampling and oversampling. 
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3.2.3 Model application 

A variety of parameters is linked with model development, distinguishing between 

algorithm parameters (or ‘hyperparameters’) and model parameters (e.g. regression 

coefficients). Hyperparameters are often subjectively defined prior to model training 

and remain unaltered regardless of the provided data, while model parameters are an 

intrinsic element of the final model and highly dependent on the training data. 

Subjective selection of hyperparameter settings can affect model performance 

drastically, hence preliminary optimisation is highly recommended. Ideally, all potential 

hyperparameter settings are tested to identify the best-performing combination(s), 

though this number tends to increase exponentially with every additional 

hyperparameter to be considered. Alternatively, random selection of a subset (e.g. 60 

combinations) provides a first overview of potential performance and identifies a 

starting point for hyperparameter optimisation, while being generally faster than the 

traditional grid search (Bergstra and Bengio, 2012). This procedure reduces overall 

calculation time as it does not require for all combinations to be assessed, yet risks that 

the global optimal hyperparameter combination will not be found.  

3.2.4 Model calibration and validation 

The last step in the model development procedure entails the calibration and validation 

of the model (Table 3.1). During calibration, the training data is used to update model 

parameters in order to improve model fit, providing splitting values for DTs, coefficients 

of GLMs, weights in ANNs, inflection points in FL and CPTs in BBNs. Calibration is run 

until a specific stopping criterion is met (e.g. number of nodes in DTs, number of layers 

in ANNs, numerical error between observations and predictions). Defining this criterion 

is part of deciding hyperparameter values and tends to differ in function of the intended 

model use. For instance, descriptive models aim for a close model fit (thus a higher 

complexity), while predictive models are more general to allow transferability. 

Following calibration, the model is validated by assessing the discrepancy between 

model predictions and observations, relying on internal or external validation. Internal 

validation compares the observations with the predictions made for the training data, 

though is considered to be insufficient for model validation as it does not allow to assess 

model performance objectively (Araújo et al., 2005a). Therefore, an external data set is 

preferred to test the model’s generality and report its performance more objectively 

(Dormann et al., 2012). However, completely independent data (e.g. data that differs at 

spatial and/or temporal level) is rarely available and is often replaced by pseudo-

independent data by means of randomly subsampling the original data set into a training 

and validation set (i.e. the ‘holdout’ method, see Figure 3.7) (Araújo et al., 2005a). Based 

on this final comparison, model performance can be estimated. For the remainder of 

this section, attention is given to the different validation metrics and techniques. 
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Figure 3.7: Development of a data-based model. The first step (left) describes the observation 

of the ecosystem, resulting in a measurement step. The holdout method requires a part of the data 

set to be separated (the validation set), while the other part is used for model training (third step). 

After model training, validation is performed (right) by comparing the predicted and actual 

response values of the validation set. 

3.2.4.1 Validation metrics 

Performance of habitat suitability models and species distribution models can be 

assessed at several levels and depends on the type of response provided by the model. A 

distinction is made between models providing a discrete response (e.g. presence or 

absence) and models providing a continuous response (e.g. suitability score, density). 

Models trained with a discrete response variable and providing discrete predictions are 

easily summarised by means of a confusion matrix. Within this matrix, correct 

predictions are located on the main diagonal and contrasted with the incorrect 

predictions off-diagonal. For instance, with the binary presence/absence response 

variable, correct presence (true positive; TP) and absence (true negative; TN) predictions 

populate the main diagonal while incorrect presence (false presence; FP) and absence 

(false absence; FN) predictions are situated off-diagonal (Table 3.3). 

Table 3.3: Confusion matrix for calculation of performance measures. Elements represent 

true positive (TP) values, false positive (FP) values, false negative (FN) values and true negative 

(TN) values. 

  Observed 

  Presence Absence 

Predicted 
Presence TP FP 

Absence FN TN 
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Common metrics to assess model performance based on this confusion matrix include 

accuracy (correctly classified instances; CCI), Cohen’s kappa statistic (κ), sensitivity 

(Sn), specificity (Sp), true skill statistic (TSS), odds ratio and the Jaccard index (Fielding 

and Bell, 1997; Manel et al., 2001). Each of these indices is calculated differently (see 

Table 3.4) and therefore discusses complementary characteristics of model performance 

(Mouton et al., 2010). CCI provides the most straightforward calculation of model 

accuracy (i.e. all correct predictions divided by all predictions), despite being dependent 

on the class distribution of the response variable within the training data (Manel et al., 

2001). Cohen’s κ has been suggested as an alternative to CCI as it allows for chance 

correction, though has received similar criticism.  

Table 3.4: Performance metrics used to evaluate model performance based on the 

confusion matrix in Table 3.3. CCI represents the correctly classified instances and N is the total 

number of instances. After Mouton (2008), Goethals (2005) and Fielding and Bell (1997). 

Performance measure Calculation 

CCI 
𝑇𝑃 + 𝑇𝑁

𝑁
 

Misclassification rate 
𝐹𝑃 + 𝐹𝑁

𝑁
 

Sensitivity (Sn) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity (Sp) 
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

True skill statistic (TSS) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
− 1 

Positive predicting power 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative predicting power 
𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

Odds-ratio 
𝑇𝑃 ∙ 𝐹𝑃

𝐹𝑁 ∙ 𝑇𝑁
 

Jaccard 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Cohen’s Kappa 

(𝑇𝑃 + 𝑇𝑁) − (
((𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑃 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑁) ∙ (𝐹𝑁 + 𝑇𝑁))

𝑁
)

𝑁 − (
((𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑃 + 𝐹𝑃) + (𝐹𝑃 + 𝑇𝑃) ∙ (𝐹𝑁 + 𝑇𝑁))

𝑁
)
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The use of these metrics is not fundamentally restricted to categorical response 

variables, but can be extended to continuous response variables. However, their 

application requires the transformation of the latter into a set of subjectively defined 

classes, based on arbitrary thresholds and causing a certain loss of information. 

Alternatively, the comparison between observations and predictions can be performed 

in a more quantitative way, including the correlation (r) and determination (r²) 

coefficient and the (root) mean squared error ((R)MSE), as described in Table 3.5 

(Bennett et al., 2013).  

Table 3.5: Performance metrics for models generating continuous output based on 

predicted (P) and observed (O) values. N is the total number of instances. 

Performance measure Calculation 

Correlation coefficient (r) 
∑(𝑃 ∙ 𝑂) −

(∑𝑃 ∙ ∑𝑂)
𝑁

√(∑𝑃2 −
(∑𝑃)2

𝑁
) ∙ (∑𝑂2 −

(∑𝑂)2

𝑁
)

 

Determination coefficient (r²) 

(

 
∑(𝑃 ∙ 𝑂) −

(∑𝑃 ∙ ∑𝑂)
𝑁

√(∑𝑃2 −
(∑𝑃)2

𝑁
) ∙ (∑𝑂2 −

(∑𝑂)2

𝑁
)
)

 

2

 

Root mean squared error (RMSE) √
1

𝑁
∙∑(𝑃 − 𝑂)2 

Mean squared error (MSE) 
1

𝑁
∙∑(𝑃 − 𝑂)2 

 

Nevertheless, real-world data often provides a simple binary occurrence statement, 

while the increased application of ensemble modelling causes a rise in the prediction of 

probabilities. Discretisation of this score allows model performance assessment via the 

confusion matrix and classification metrics (Table 3.3 and Table 3.4, respectively), 

though threshold selection differs among studies and ranges from a fixed threshold at 

0.5 over the use of species prevalence to the optimisation of Cohen’s kappa (Freeman 

and Moisen, 2008b). Similarly, assigning numerical values (e.g. translating a 

presence/absence statement into a 1 or 0 score, respectively) to the original response 

variable helps the application of the regression metrics (Table 3.5). Alternatively, the 

receiver operator curve (ROC) represents a commonly applied graphical performance 

indicator that bridges this discrepancy between observation and prediction data. After 

applying all possible thresholds, the sensitivity (y-axis) is plotted in relation to the 

specificity (x-axis) and represents the ROC, which can be summarised in a single 

indicator by calculating the area under the curve (AUC).  
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The application of AUC to evaluate model performance is relatively common because of 

its simplicity, generality and discretisation threshold independency (Phillips et al., 2009; 

Swets, 1988). Values range between 0 and 1, with 1 indicating perfect discrimination and 

0.5 representing similar discrimination as random classification. Drawbacks of this 

indicator are related with (1) ignoring the model’s goodness-of-fit, (2) the AUC being 

not completely independent of species’ presence and (3) model performance in regions 

that are not practically used is incorporated in the AUC (Lobo et al., 2008). Despite 

these disadvantages, AUC can still be applied when evaluating predictor importance on 

final model performance (Barbet-Massin et al., 2014). 

3.2.4.2 Validation techniques 

Calculation of model performance based on the original training data is inherently 

biased as the fitted model is familiar with the provided data. Unbiased estimates of 

model performance are obtained when new and independent data is available, reflecting 

external model validation. The discrepancy between both validation scores arises and 

qualitatively reflects the degree of overfitting and the generality of the extracted 

patterns. When significant differences occur, no reliable predictions will be obtained 

from the model and the results should be interpreted with caution. Moreover, the 

development of a single model is highly dependent on the provided data and can 

therefore be unknowingly biased. 

These issues can be partially tackled by increasing the overall data-use efficiency and 

improved hyperparameter tuning, thereby supporting model regularisation (i.e. 

increasing model acceptance by reducing its specificity). Within the field of occurrence-

based correlative modelling, data is a valuable resource and requires careful 

consideration prior to removal. By training multiple models with a random subsample 

of the available data, predictions become an aggregate of a series of individual models 

and decrease the risk of overfitting. Proper development of multiple models being 

derived from the same data entails supervised sampling of the data to avoid overly 

correlated models and can be performed via k-fold cross-validation (CV). More 

specifically, the data is separated into k different folds, out of which k-1 folds are selected 

for model training and the remaining fold is used for external model validation (see 

Figure 3.8). Model training and subsequent validation is repeated k times to make sure 

that every fold has acted once as pseudo-independent validation data. Due to this 

repetitive model development and increased data-use efficiency, CV is considered to be 

more trust-worthy than simply splitting the data in a training and validation set (Akratos 

et al., 2008). A graphical representation of k-fold CV is depicted in Figure 3.8 for kcv = 

10, though other values for kcv can be used (e.g. kcv = 3 or kcv = 5) depending on the 

researcher’s preference and the overall data availability. Moreover, the value of k-fold 

CV during hyperparameter tuning is illustrated in Box 3.2. 
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An extreme version of k-fold CV is leave-one-out CV (LOOCV), where the number of 

folds is equal to the number of instances minus one (kcv = Ninst – 1), which is quite 

common when data is limited. Still, k-fold CV decreases the amount of instances (and 

thus, sample size) for model training due to the exclusion of a single fold, which can be 

considered an unwanted side-effect. Alternatively, bootstrapping allows to maintain the 

same number of instances by sampling the original data randomly and allowing certain 

instances to be present twice or even three times while others remain absent and 

available for model validation.  

Yet, increasing data use efficiency during model training also increases potential bias as 

there is no completely independent data set to be used for testing the final model. 

Therefore, it is highly recommended to, prior to repeated model development, extract a 

subset of the data that is never used for model training (see Figure 3.7). Alternatively, 

completely new data is collected, reflecting (i) similar environmental conditions, (ii) 

different environmental conditions or (iii) different geographical regions, depending on 

the purpose and known limitations of the model.  

 

 

Figure 3.8: Illustration of 10-fold cross-validation during model development. The initial 

data set is split in 10 equal-sized folds, out of which a different fold is used for validation during 

each cycle. 
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Box 3.2: Using k-fold cross-validation for hyperparameter tuning 

Several data-driven modelling techniques are characterised by including a series of 

hyperparameters (see Section 3.2.3), which require to be defined by the user prior to 

algorithm application. The selection can be fixed to the default conditions specified 

by the used software, though the majority of studies benefits from (some kind of) 

hyperparameter tuning. This can be obtained by repetitive model development and 

associated performance assessment. 

Aside from limiting overfitting and decreasing variance within the final model, k-fold 

cross-validation can also be used for hyperparameter tuning. For each combination of 

hyperparameter values, k different models are developed and assessed as depicted in 

Figure 3.8. The combination that provides the best performance (see Section 3.2.4.1 

for available metrics) is ultimately selected and reported as the implemented 

hyperparameter settings. Prior to performing such a repetitive assessment of all 

potential combinations, hyperparameter values need to be defined. This can follow (1) 

a structured approach with a priori definition of all combinations to be tested or (2) 

an iterative approach based on the results of the previous iteration. A visual 

representation of using k-fold cross-validation for hyperparameter tuning is provided 

in Figure 3.9. 

 

Figure 3.9: Position of k-fold cross-validation in hyperparameter tuning. The extent of 

the search space can be completely defined (Option 1) or dependent on the observed performance 

during previous iteration (Option 2). Subsequently, k models are developed with a specific 

combination of the selected hyperparameters and their performance is pooled and evaluated 

against the performances of all other combinations. Finally, the hyperparameter combination 

supporting the highest performance is identified and selected. 
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3.3 Criticism on data-driven models 

First of all, Guisan and Thuiller (2005) mention that, when using observations to predict 

a species’ presence, the obtained model describes the realised niche (as part of the 

fundamental niche). Moreover, by using observation data, species are assumed to be in 

equilibrium with their environment, thereby ignoring tolerance capacity and mobility 

behaviour (source-sink dynamics and dispersal limitation, respectively, sensu Pulliam 

(2000)), along with the characteristic disequilibrium displayed by recently introduced 

species (Gallien et al., 2012). Presence in an unsuitable habitat and absence from a 

suitable habitat negatively affect the performance of observation-based models (Guisan 

and Thuiller, 2005; Pulliam, 2000; Sinclair et al., 2010), causing the creation of overly 

complex models and incorrect distributions of predicted suitable habitats. When willing 

to describe the fundamental niche, one needs to fall back on autecological experiments 

and process-based models (Gallien et al., 2010).  

Secondly, the pool of existing modelling techniques has increased greatly throughout 

the last decades and impedes the creation of a useful, concise overview. Whereas in most 

cases higher diversity is cheered for, here it brings along two important consequences 

(Guisan and Thuiller, 2005): (i) an increased range of model-specific errors and 

uncertainties, and (ii) divergence of the modelled response variable. So far, comparative 

research on both aspects remains insufficient to perform a qualitative comparison of all 

techniques, illustrating one of the challenges when faced with appropriate model 

selection (De'ath and Fabricius, 2000). As a partial solution, Araújo and New (2007) 

suggested to apply ensemble forecasting to combine the predicted responses of several 

models, resulting in a consensus prediction and a probability range. Despite its 

promising applicability, ensemble forecasting only provides an end-of-pipe solution and 

leaves the real causes of the divergence untouched.  

Thirdly, scale and resolution vary depending on the type of data (e.g. small-scale 

nutrient state at high resolution versus large-scale climatic conditions at low resolution) 

and can lead to the decision of excluding specific variables (Elith and Leathwick, 2009). 

However, this decreases the transferability of a small-scale model to a larger scale (e.g. 

outside the originally considered climatic conditions), while up- and downscaling avoids 

variable exclusion, though introduces errors via data aggregation (reduction of detail) 

and the assumption of similar conditions (generalisation), respectively. Alternatively, a 

cascade of models can be developed, starting with global models providing coarse 

suitability maps, out of which specific areas of interest can be selected for investigation 

at a smaller, more detailed scale (Roura-Pascual et al., 2009). The development of 

regional high-resolution models provides a potential bridge between the low-resolution 

climate change scenarios and high-resolution field observations, though attention 

should be given to the boundary conformity with the large-scale models.  
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Finally, overarching these points of criticism, is the limited inclusion of temporal 

dynamics by HSMs, especially within the framework of forecasting the effects of climate 

change on habitat suitability. The inherent interactions included in observation-based 

HSMs are likely to change when climatic conditions differ. For instance, increased 

atmospheric carbon dioxide causes higher aquatic carbon dioxide concentrations, 

acidification and elevated temperatures (IPCC, 2014), all of which influence the 

metabolic processes of organisms in a different way and, by consequence, the prevailing 

interactions (Gallien et al., 2010). In short, correlative HSMs are a straightforward way 

of linking habitat conditions to species occurrence, but the underlying assumptions 

caution the consideration of their response as the one and only truth, additionally 

highlighting that models are only a mere simplification of reality (Wilson et al., 2011). 

3.3.1 Including dispersal dynamics to predict species distributions 

Suitable habitats provide potential for a macrophyte to be present, yet natural barriers 

and limited connectivity decrease dispersion efficiency and thereby impede 

introduction, establishment and colonisation. Dispersion efficiency greatly depends on 

the prevailing species pools in the immediate surroundings and the applied dispersion 

strategy (Galatowitsch, 2006; Sundermann et al., 2011). For instance, Sundermann et al. 

(2011) illustrated that river restoration success largely depends on the surrounding 

species pools, while indicating that species-specific dispersion rates are limitedly known 

due to distinct dispersion strategies (e.g. stolons, cloning and root growth).  

Dispersal dynamics play a major role in the observation of false absences (i.e. no 

observation in a suitable habitat) and false presences (i.e. observation in an unsuitable 

habitat). For instance, false absences are caused by a suboptimal introduction frequency 

into a suitable habitat. Current absence of the species can be linked with a recent 

stochastic disappearance or abiotic restoration and is exacerbated by decreased 

environmental connectivity or a relatively low tendency to disperse (Jiménez-Valverde 

et al., 2008). Similarly, false presences represent the process of continuous species 

introduction into a habitat that does not support the development of a viable population 

and acts as a sink environment (Pulliam, 2000). Both cases illustrate the criticism on 

the assumption of HSMs that species are in equilibrium with their environment and how 

this can interfere with consolidating conclusions (Guisan and Thuiller, 2005). 

Knowledge of species-specific dispersion rates provides the potential to predict future 

species distributions and the timeframe needed for a macrophyte to establish and 

subsequently colonise the identified suitable habitats. Inclusion of species dispersion 

rates transforms HSMs into species distribution models (SDMs) and can be performed 

prior to abiotic filtering (Guisan and Rahbek, 2011), although a lack of data impedes its 

inclusion. This highlights an important field of future study in case short-term 

restoration via natural succession is aimed for. 
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3.4 Contribution to the study objectives 

Each technique has specific advantages and drawbacks, the latter of which can often be 

resolved (partially) by technique-specific extensions. Yet, as the number of explanatory 

variables is expected to be high and only limited expert knowledge is available, it would 

be unwise to choose FL or BBN. Similarly, GLM development and interpretation is 

expected to be hampered due to the high number of explanatory variables and potential 

interactions that require explicit inclusion in the model structure. In addition, the black 

box behaviour of ANN is hardly resolved via technique-specific extensions, which 

impedes transparency towards the end user. Finally, DTs suffer from relatively high 

instability, though this can be reduced by alternative data use methodologies and 

algorithm application. A specific implementation of repetitive tree development is the 

random forest technique, which is recommended for further analyses. A tabular 

overview of technique-specific advantages and drawbacks with respect to the study 

objectives (see Section 1.2.1) is provided in Table 3.6. 

Table 3.6: Drawbacks and advantages of the selected techniques framed within the study 

objectives. 

Technique Advantages Drawbacks 

DT - Transparent; 

- Identifies variable interactions. 

 

- Instability of single tree; 

- Influenced by data set dimensions. 

GLM - Easy to use - Assumed distribution; 

- Explicit inclusion of variable 

interactions. 

 

ANN - Tolerates noise and errors; 

- Identifies variable interactions. 

- Black box model; 

- Lack of guidelines. 

 

FL - Fuzzy boundaries - Influenced by data dimensionality; 

- Data discretisation. 

 

BBN - Accounts for uncertainties explicitly; 

- Straightforward error propagation. 

- Data discretisation; 

- Time-intensive rule construction. 

 

 

Aside from supporting technique selection, this chapter additionally provides a basis for 

the efficient usage of data within the model development framework (i.e. combining 

holdout with k-fold cross-validation) and the assessment of model performance with the 

threshold-independent AUC, presence-oriented sensitivity (Sn) and absence-oriented 

specificity (Sp). 
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3.5 Conclusion 

Both habitat suitability and species distribution models provide a promising approach 

to support conservation and restoration management in a changing world. A variety of 

modelling approaches exists with specific advantages and drawbacks, making the 

selection of a single technique highly subjective. Overall, decision trees are relatively 

simple techniques allowing for the integration of variable interactions without the need 

to specify a distribution (GLMs) or a number of hidden layers (ANNs), while the relative 

recent random forest reports comparatively high performance. The possibility to include 

ecological knowledge within DTs is relatively limited and requires the use of a more 

advanced technique like FL or BBN, with the latter showing promising results when 

combining experimental experiences and expert knowledge. Data becomes, more than 

ever, a valuable resource and deserves to be treated with care and properly cleaned prior 

to being mined. To increase data use efficiency and limit model overfitting, cross-

validation is to be applied during model development, while performance assessment 

based on non-transformed observed or predicted response values is most informative. 

The area under the receiver operating characteristic curve (AUC) represents a single-

value and threshold-independent metric, while sensitivity (Sn) and specificity (Sp) 

provide valuable additional information on model characteristics.  
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Abstract 

When aiming to merge several ecosystem services through restoration or artificial 

creation of wetlands, a profound knowledge of the underlying processes and interactions 

is crucial. This knowledge can be gathered by relying on field observations to develop 

habitat suitability models on the one hand and performing autecological experiments to 

improve fundamental knowledge on behaviour dynamics on the other hand. Data is a 

major source of information for the development of correlative models, but requires 

proper identification, characterisation and cleaning prior to being used for pattern 

extraction. The publicly available Limnodata Neerlandica showed to be very extensive, 

but prone to high degrees of missing data and elevated levels of faulty or irrelevant 

information. These issues are tackled with a variety of existing techniques, though trade-

offs between information gain and time-related efficiency loss are needed for well-

balanced technique selection. Here, data preparation aims at improving the 

performance of conditional random forests, belonging to the family of decision trees and 

combining a pre-specified number of individual trees (ntree) into a single model to 

increase response stability. The use of a pseudo-independent test set and five-fold cross-

validation supports relatively unbiased performance assessment via the Area Under the 

Receiver Operating Characteristic Curve (AUC), sensitivity (Sn) and specificity (Sp). 

Simultaneously, experiments with two Lemna spp. under controlled conditions aim at 

confirming the invasive character and vulnerability to invasion by working at the pre-

introduction and post-establishment level. These technicalities create the practical 

framework and support repeatability of the performed analyses. 
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4.1 Setting the scene 

In previous chapters, literature was consulted to create a framework and to identify key 

issues for further research within the field of wetland restoration. From Chapter 2, it 

became clear that attention should be given to both modelling and experimental studies, 

simultaneously laying the path for all subsequent chapters. As a start, Chapter 3 

provided a structured insight into the advantages and drawbacks of five frequently 

applied modelling techniques, while stipulating that data pre-processing, cross-

validation and external validation are essential to obtain a qualitative model. Still, a 

variety of challenges remains to be tackled, for which a more methodological approach 

is necessary.  

When aiming to merge several ecosystem services through restoration or artificial 

creation of wetlands, a profound knowledge of the underlying processes and interactions 

is crucial. This knowledge can be gathered by relying on field observations on the one 

hand and performing autecological experiments on the other hand. Field observations 

inherently describe the realised niche of the studied species, though only deliver 

snapshot information on the perceived ecosystem due to the limited inclusion of 

spatiotemporal dynamics (Araújo and Guisan, 2006). Based on these occurrence data, 

correlative habitat suitability models (HSMs) are developed to describe or predict 

species distributions. Yet, with low-quality data undermining many modelling attempts, 

specific attention is required to tackle the presence of missing data, outliers and 

redundant variables (Donders et al., 2006; Zuur et al., 2010). 

In contrast, controlled conditions provide the opportunity to investigate species-specific 

traits and dynamics of invasive alien species (IAS), which allows the inference of the 

mechanisms underlying species dominance (Hofstra et al., 2020; Keddy, 2010). These 

experiments help developing proactive and reactive management plans by assessing the 

ability to forecast invasive behaviour and the response of biomass production under a 

combined management-introduction pressure, respectively. Yet, extrapolation of these 

results to relevant environmental conditions and spatiotemporal dynamics requires 

caution. 

Within this work, both the realised niche and functional traits are considered to define 

what constitutes a suitable habitat and how invasion vulnerability can be assessed. 

Therefore, this chapter is divided into two parts: (1) related to the development of 

correlative habitat suitability models and (2) related to laboratory experiments under 

controlled conditions. The first part is characterised by subparts (e.g. data quality, 

modelling technique), which are discussed in detail throughout this chapter. 

 



CHAPTER 4 

88 

4.2 Habitat Suitability Models 

The development of correlative habitat suitability models follows a set of crucial steps 

prior to interpreting and discussing the results (see Chapter 3, Table 3.1). Data is a major 

source of information in environmental data science, but the quality of publicly available 

data sets is often questionable (Gibert et al., 2018a; Maldonado et al., 2015). Therefore, 

it is advisable to identify, characterise and clean the data prior to using the observed 

occurrences for pattern extraction. Within the following sections, more information is 

provided on the exploited data, the considered cleaning techniques and the selected 

modelling procedure.  

All calculations, procedures and modelling activities have been developed and 

performed in RStudio (version 1.1.463 and older), as graphical user interface for R 

(version 3.6.1 and older) (R Core Team, 2016; RStudio Team, 2015), unless mentioned 

otherwise. A variety of packages has been used throughout this work and will be 

introduced when considered appropriate, along with the general packages reshape, 

ggplot2, ggpubr, doParallel and foreach to aid data structuring, plotting and parallel 

computations (Kassambra, 2019; Microsoft Corporation and Weston, 2019a; Microsoft 

Corporation and Weston, 2019b; Wickham, 2007; Wickham, 2016). In this light, it is 

worth mentioning that relevant and associated scripts can be found on GitHub 

(https://github.com/wvechelp/PHDReleases, licensed under MIT licence). 

The notation of units follows the guidelines of the National Institute of Standards and 

Technology (NIST), while averages are reported as mean ± 1 SD (with SD being the 

standard deviation) (Barde and Barde, 2012; Thompson and Taylor, 2008). 

Exceptionally, the standard error of the mean (e) is used instead of the standard 

deviation (s) in order to stress the accuracy of the observation rather than the variability, 

which is mentioned clearly when being used. 

4.2.1 Dataset characteristics 

The Limnodata Neerlandica (Knoben and van der Wal, 2015) contains information on 

the hydromorphological, physicochemical and biological conditions of Dutch surface 

water bodies, being collected between 1968 and 2012 throughout the Netherlands. The 

data set is a collection of observations made by 38 different institutions (see Table A.1) 

that is owned and made publicly available by the Dutch Foundation of Applied Water 

Research (STOWA).  

Instances are spatially and temporally referenced, with the majority of sampled water 

body types being lotic waters, lakes, canals and ditches (STOWA, 2001). Within this 

work, attention was given to the physicochemical and macrophyte data, both of which 

showing a variable – but overall increasing – number of observations throughout the 

data collection period.  

https://github.com/wvechelp/PHDReleases
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4.2.1.1 Physicochemical data 

In total, 665 variables are listed as being included in the data set, yet the majority of 

these variables results from highly specific research, causing many variables to not 

contain any information at all (i.e. 464 variables) or only provide information for a 

limited number of instances. Indeed, relatively few variables (Nvar = 14) contain a value 

for more than 50 % of all instances (Ninst = 34 483), with the lowest degree of variable-

wise information density being 0.003 % (Figure 4.1A). Consequently, the degree of 

missing information varies per instance, ranging between 0.5 % and 59.7 % (Figure 4.1B). 

Within the original physicochemical data, only few instances (Ninst = 792; 2.3 %) contain 

information on more than 20 % of all included variables (Nvar = 201). An overview of all 

variables with at least one recorded value (Nvar = 201) is provided in Appendix, Table 

A.2. Prior to further analyses, field and laboratory data on conductivity and pH were 

merged into a single variable (i.e. Nvar = 199). 

 

Figure 4.1: Information within the physicochemical dataset. A: In total, 201 variables 

contained some information, with the lowest degree being 0.003 % (indiscernible due to the scale 

of the y axis). Only 14 variables contained information for more than 50 % of all instances (i.e. 

black surface above the dashed grey line). B: In total, 34 483 instances contained some information, 

with the lowest degree being 0.5 %. Only 792 instances contained information for more than 20 % 

of all variables (i.e. black surface above the dashed grey line).  
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Unfortunately, detailed information on the applied methodologies, protocols and 

analytical equipment is lacking within the Limnodata Neerlandica. This impedes 

extensive quality control within this work and requires the assumption that the majority 

of the data is collected in a qualitative and standardised manner. Further quality control 

and data pre-processing are therefore imperative to assess and reduce the amount of 

noise within the physicochemical data (see Section 4.2.3). 

4.2.1.2 Biotic data 

Overall, 13 biotic groups are considered in the original data set: Amphibians, Birds, 

Butterflies, Diatoms, Fish, Macro-algae, Macrofauna, Mammals, Macrophytes, 

Nematodes, Phytoplankton, Reptiles and Zooplankton. Building on Chapter 2, in-depth 

attention will be given to the description of the macrophyte data.  

Macrophyte occurrence was collected with a variety of techniques, including the 

Tansley-scale, the Braun-Blanquet method and the basic indication of presence 

(STOWA, 2001) of which an overview is provided in Table A.3. After removal of 

misclassified algae, undefined species, hybrid species and ambiguous naming (e.g. only 

family name), a total of 1148 macrophytes remained. Within the latter, responses 

suggesting macrophyte presence (e.g. abundance and cover percentage) were replaced 

by a ‘presence’ statement, otherwise ‘absence’ was assumed as to supplement the 

presence-only data (Elith et al., 2006). Hence, a presence-absence data set was obtained, 

with the notion that an assigned ‘absence’ statement does not necessarily reflect a true 

absence (see Chapter 3) (Anderson and Raza, 2010). Despite the high number of 

macrophytes remaining in the data set, only a minority (Nbio = 23) occurred at more than 

10 % of all sites (Ninst = 77 200), with the lowest degree being 0.001 % (see Figure 4.2). 

 

Figure 4.2: Information within the macrophyte dataset. In total, 1148 macrophytes were 

observed to be present in at least one location between 1968 and 2012, with the lowest degree being 

0.001 %. Only 23 macrophytes were recorded as being present within more than 10 % of all 

instances (i.e. black surface above the dashed grey line) and thereby represent a clear minority. 
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4.2.1.3 Common data 

Each instance within the physicochemical and biological data set was characterised by 

a unique spatiotemporal identifier (STOWA, 2001). Both data sets were reduced to only 

contain instances with information on the physicochemical and biological situation for 

each common identifier to avoid a spatial or temporal mismatch between the prevailing 

abiotic conditions and the observed macrophyte community. Consequently, a 

significant reduction in data was obtained, with only 4344 instances remaining and 

simultaneously affecting both the chemical and biotic data sets by reducing the temporal 

range to the period between 1978 and 2011 (see Figure A.3).  

At the physicochemical level, a minor reduction occurred from 199 variables to 174 

variables, while at macrophyte level the original 1148 species were reduced to 576 

species. During this extensive data selection, the abiotic conditions were assumed to 

represent the general conditions occurring at that specific location, i.e. that no extreme 

event had occurred recently. 

The resulting combination of physicochemical and macrophyte data were characterised 

by a geographical distribution throughout the Netherlands (see Figure 4.3, excluding 80 

sites that lacked correct georeferencing), which indicates that spatial coverage is not 

completely uniform. Moreover, a variety of water bodies was sampled, although the 

majority (Ninst = 1729) was not characterised. Additional classes included streams (Ninst 

= 928), brooks (Ninst = 926) and canals (Ninst = 206). 

 

Figure 4.3: Geographical distribution of sampling sites with physicochemical and 

macrophyte information. Data is collected between 1978 and 2011 throughout the Netherlands 

and collected in the Limnodata Neerlandica. A total of 4344 instances were available in the data, 

but only 4264 were spatially referenced. 
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The common data was additionally characterised by a temporal distribution, showing 

differences between and within years. More specifically, sampling sites were visited and 

assessed between 1978 and 2011 and showed that during the first years (1978 – 1987), 

data was collected throughout the year, while this became more restricted in recent 

years. For instance, samples were initially also collected during the colder months 

(November – February), while this occurred only sparsely after 1996. This is clearly 

illustrated by Figure 4.4 and indicates that additional boundary conditions might be 

necessary for temporal analysis. For instance, to avoid bias when assessing the trends in 

physicochemical conditions, it can be recommended to only include data from the 

warmer months (e.g. April – September). Yet, when inferring the realised niche of a 

macrophyte species, it is assumed appropriate to include all instances, as winter months 

might represent unsuitable conditions and help in delineating the abiotic habitat that 

supports the survival and establishment of the considered species. 

 

Figure 4.4: Temporal distribution of instances within the combined physicochemical and 

macrophyte observations. Instances were collected between 1978 and 2011 throughout the 

Netherlands and throughout the year. In time, less instances were collected during the winter 

period (November to February). The dots indicate for which month instances were collected, while 

the darkness of the tile indicates the number of instances (see also Figure A.3). 

The combined data was characterised by a high degree of missing data points (i.e. 93.7 

%), which were all part of the physicochemical data and were distributed differentially 

over the recorded variables and included instances. For example, only a few variables 

(Nvar = 6) contained information for more than 50 % of all instances, with the lowest 

degree of variable-wise data availability being 0.02 % (Figure 4.5A). At instance-level, 

only a few locations (Ninst = 63) were described by more than 20 % of all recorded 

variables, with the lowest degree of completeness being 0.57 % (Figure 4.5B). 

Macrophyte information showed an increase in prevalence for a few species when 

compared with Figure 4.2, with prevalence ranging between 0.02 % and 40.0 % (Figure 

4.5C), though only a minority was recorded at more than 10 % of all locations (Nbio = 

20). 
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Figure 4.5: Characteristics of the available information within the combined data. A: 

Variable-wise information availability; B: Instance-wise information availability within the 

physicochemical data and C: Macrophyte prevalence depicted as availability. 

The number of missing data points can be reduced by removing incomplete variables 

and instances from the data set. However, despite providing a reduction in the 

percentage of missing data, such removal also reduces the number of variables in the 

data (Appendix A.4, Figure A.4). From this analysis, it is clear that a reduction in missing 

data can be obtained, though that their presence within the final data set is hard to 

avoid. For instance, to obtain a reduction from 93.7 % to 50 %, about 154 variables were 

removed, leaving only 20 variables within the remaining data set. It is therefore 

considered appropriate to perform data imputation in order to avoid an overly simplified 

assessed environmental domain. This necessity is caused by the fact that variables have 

been recorded relatively randomly, as illustrated by a more detailed visualisation of the 

missing data in Appendix A.4, Figure A.5. 
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4.2.2 Modelling technique 

Model development was conducted via Conditional Random Forests (CRFs) as the 

resampling strategy and splitting criterion of ordinary random forests (RFs) favour 

continuous and multinomial variables (Hothorn et al., 2018; Strobl et al., 2007; Strobl et 

al., 2009b). CRFs belong to the family of decision trees (see Chapter 3) and are an 

extension of the standard Classification and Regression Trees (CARTs). Throughout this 

study, CRFs were trained with presence/absence data, though most statements on CRF 

applicability towards a binary response variable can be extrapolated to multiclass 

response variables. 

4.2.2.1 Principle 

A random forest combines a pre-specified number of individual trees (ntree) into a single 

(ensemble) model to increase the stability of the response (Araújo and New, 2007; 

Breiman, 2001). Each individual tree is trained with a subset of the initial training 

dataset and, prior to each split, a subset of variables is randomly selected (default 

𝑚𝑡𝑟𝑦 = √𝑁𝑣𝑎𝑟, with Nvar the number of variables). The Gini node impurity (𝐼(𝑝) =

∑ 𝑝𝑘 ∙ (1 − 𝑝𝑘)𝑘 , with k the number of classes and pk the fraction of instances classified 

within class k) is calculated to determine the most informative split within the 

considered variable subspace (i.e. lowest Gini node impurity) (Archer and Kimes, 2008). 

For each split, a new combination of variables is considered, for which the optimal 

threshold is sought for within the random subspace. This process of single tree 

development is repeated multiple times to end up with a series of models consisting of 

a predefined number of trees (i.e. defined by ntree). Because of the random selection of 

variables for each split, the developed classifiers are only limitedly correlated, allowing 

to combine (i.e. bagging) the individual responses into an average response (Archer and 

Kimes, 2008; Strobl et al., 2007). Hence, the final response of the model is determined 

based on a probability distribution or on a majority vote of all individual trees, with ties 

assigned randomly (Breiman, 2001; Cutler et al., 2007). The obtained probabilities can 

subsequently be interpreted as a suitability score. 

Advantages of the random forest technique include limited overfitting, robustness 

towards noise, no need for an a priori assumed variable distribution and the possibility 

to determine variable importance (Breiman, 2001; Elith and Graham, 2009; Vezza et al., 

2015). Yet, also the latter is reported to be flawed within ordinary random forests when 

variables have different scales or number of categories (Strobl et al., 2007), supporting 

the decision to develop conditional random forests. Note that throughout this study, the 

word ‘suitability’ is used instead of ‘probability’, as the latter reflects a higher certainty 

of a species being present, which cannot be reliably obtained when pseudo-absences are 

included in the model structure (Elith et al., 2005).  
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4.2.2.2 Model validation and evaluation 

Predictions made with CRFs are provided as a probability distribution over the response 

classes and are situated within the [0 – 1] range, summing to 1 (Hothorn et al., 2018). 

Discretisation of these probability scores to a presence/absence statement is possible, 

but requires the selection of a cut-off value, above which a specific instance supports the 

presence of the considered species. This allows the construction of a confusion matrix, 

summarising the comparison of observations and predictions into (i) True Positives 

(TP), (ii) True Negatives (TN), (iii) False positives (FP) and (iv) False Negatives (FN). 

Based on this matrix, a series of performance metrics can be derived (Chapter 3, Table 

3.3 and Table 3.4, respectively).  

Despite the claimed robustness of RFs to overfitting, cross-validation is recommended 

to avoid overly positive performance scores and to increase data use efficiency. During 

cross-validation, the available data is split into kcv folds, out of which kcv-1 folds are used 

to train the model, while the remaining fold provides an estimation of model 

performance. This is repeated kcv times to make sure every fold has been excluded at 

least once from the model training step and provides an average performance estimation 

over all kcv runs (see also Section 3.2.4.2).  

Throughout this study, five-fold cross-validation was applied to limit model overfitting 

and provide information on internal validation. Moreover, model performance was 

assessed externally by extracting 10 % of each data set as a pseudo-independent test set, 

while the remaining 90 % represented the basis for creating training sets. The latter was 

subsampled to obtain a prevalence of 50 % within the final training data set, considering 

the sensitivity of random forests towards imbalances (Evans and Cushman, 2009; Fox et 

al., 2017). Ultimately, model performance was reported with AUC and supplemented 

with sensitivity (Sn) and specificity (Sp) (see Table 3.4) by discretising model output 

into a presence/absence statement. Threshold selection was determined by minimising 

the sensitivity-specificity difference (Jiménez-Valverde and Lobo, 2006). 

4.2.3 Data preparation and modelling 

The combined data (see Section 4.2.1.3) contains information on both the chemical 

conditions and observed macrophyte community for 3443 instances, yet is still 

characterised by containing uninformative variables and low-prevalence species. Even 

though reducing the number of low-informative explanatory variables increases the 

overall information availability, a high degree of missing values is obtained in the final 

data set. These missing values only occur within the physicochemical dataset, as absence 

of information within the biological dataset was considered to represent an absence of 

the species. While removal of all instances with at least one missing value would cause 

a high degree of information loss, imputation of the missing values remains a valid 

alternative as part of the data preparation.  
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In order to determine the better imputation technique, all physicochemical data was 

considered to test four different approaches, which is discussed in detail in Chapter 5 

(see Figure 4.6). Subsequently, further data pre-processing was applied to eliminate 

noise both at instance- and at variable level. As these approaches were often linked with 

the response variable, the combined data was used for these assessments. Identification 

of the effects of data pre-processing on model performance and computation time is 

discussed in Chapter 6, while Chapter 7 builds further on these results for species-

specific model development (see Figure 4.6). 

 

Figure 4.6: Illustration of data use for different chapters. Each data set is characterised by a 

certain degree of information, reported as N = instances x variables. For the combined chemical 

and macrophyte data a summation of chemical variables and macrophyte species is included, 

respectively.  

4.2.3.1 Imputation of missing data 

Despite being extensive, a high degree of missing data was obtained within the 

physicochemical data, requiring data reduction to increase the degree of information 

within the data set. In order to cope appropriately with missing values, Chapter 5 looks 

into a selection of imputation techniques when imputing artificial missing values.  

Characterisation of the data 

All physicochemical data (see Figure 4.6) was extracted and contained information on 

34 483 unique space-time instances (Ninst) and 199 variables (Nvar), yet being 

characterised by 90.6 % missing values. Stepwise deletion of variables according to their 

degree of missing data was followed by determining the total number of complete cases 

and the accompanying number of data points (i.e. unique instance-variable 

combinations, 𝑁𝑖𝑛𝑠𝑡,𝑐  ×  𝑁𝑣𝑎𝑟,𝑐).  
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The data set containing the highest number of data points without any missing value 

(Dopt) was considered as the starting point for the creation of additional data sets, which 

were fashioned to account for potential variability due to differences in sample size, 

dimensionality and degree of missing data. First, two additional data sets were created 

by increasing and decreasing the optimal number of variables (Nvar,opt) with 50 % (Table 

4.1). Secondly, 100 %, 75 %, 50 % or 25 % of the instances (Ninst) were randomly sampled 

without replacement, resulting in a total of 12 data sets. Lastly, each data set was 

subjected to random removal of data points (i.e. equal weights for each variable), 

representing 1 %, 5 %, 10 %, 25 %, 50 % or 75 % missing data, each being repeated 10 

times. Consequently, a total of 720 data sets was considered for imputation. The 

implementation of this procedure is provided as pseudo-code in Algorithm 4.1. 

Table 4.1: Composition of the data sets regarding number of variables and number of 

instances. The first complete-case data set contained the highest number of data points. Based 

on this set, dimensionality for two additional data sets is pre-set during variable removal to act as 

baseline data (codes 2 and 3). Secondly, three new data sets are derived from the baseline data, 

with different fractions of instances (codes 4 up to 12).  

Data set 

code 

Variable 

fraction (%) 

Selected 

instances 

(%) 

Resulting 

number of 

variables 

(Nvar) 

Resulting 

number of 

instances 

(Ninst) 

Resulting 

number of 

data points 

Baseline data 

1 100 100 10 17 264 172 640 

2 50 100 5 21 543 107 715 

3 150 100 15 3 970 59 550 

Derived data sets 

4 100 75 10 12 984 129 840 

5 100 50 10 8 632 86 320 

6 100 25 10 4 316 43 160 

7 50 75 5 16 157 80 785 

8 50 50 5 10 771 53 855 

9 50 25 5 5 385 26 925 

10 150 75 15 2 977 44 655 

11 150 50 15 1 985 29 775 

12 150 25 15 992 14 880 
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Algorithm 4.1: Construction of data sets with artificial missing data 

Define number of columns nopt,var in Dopt  

Define counter w equal to 1 

FOR each element i in [50; 100; 150] 

Identify data set Dbase with 0.01∙i∙nopt,var columns 

Define number of instances nbase,inst in Dbase 

FOR each element j in [25; 50; 75; 100] 

Randomly sample 0.01∙j∙nbase,inst instances from Dbase 

Store random subset as new data set Dtemp 

Determine number of variables ntemp,var in Dtemp 

Determine number of instances ntemp,inst in Dtemp 

FOR each element k in [1; 5; 10; 25; 50; 75] 

Define counter z equal to 1 

WHILE z ≤ 10  

Change seed for different randomisation 

Randomly remove 0.01∙k∙ntemp,var∙ntemp,inst points from Dtemp 

Store as new data set Dw in list Ldata 

Store information on Dw in list Linfo 

Increase counters w and z with 1 

END while 

END for 

END for 

END for 

 

Imputation methods 

A variety of imputation techniques exists, ranging from simple variable-specific 

imputation of the mean over regression-based methods to multivariate model-based 

approaches. Characteristics of these techniques and subsequent technique selection are 

discussed in more detail in Chapter 5. Each imputation technique was applied on all 720 

data sets identified above in order to assess the applicability of the selected techniques. 

This was done along a gradient of (i) missing data percentage (fMD), (ii) sample size (Ninst) 

and (iii) dimensionality (Nvar) to assess how imputation performance can be improved 

by reducing the degree of missing data, increasing the sample size or increasing 

dimensionality, respectively. 

  



DATA AND MODELLING TECHNIQUE 

99 

Evaluation of imputation accuracy 

Evaluation was performed by using the normalised root mean squared error (NRMSE), 

as defined by Equation 4.1, allowing a performance comparison between the different 

data sets from Table 4.1 and with literature (Stekhoven and Bühlmann, 2012; 

Troyanskaya et al., 2001). Performance comparison was conducted without considering 

specific data set configurations (i.e. an overall assessment) and supplemented with the 

following three cases: 

1. Influence of percentage missing data (fMD): specific attention was given to the Dopt 

set (data set 1, Table 4.1) as it was expected to contain the most information and 

hence to support clearer differences between the imputation techniques. 

2. Influence of sample size (Ninst): specific attention was given to the Dopt data set and 

derived data sets with lower sample size (data sets 1, 4, 5 and 6, Table 4.1), to provide 

a link with the previous case. 

3. Influence of dimensionality (Nvar): specific attention was given to the three baseline 

data sets (data sets 1, 2 and 3, Table 4.1). This case also considered Dopt and can be 

linked with the first case.  

𝑁𝑅𝑀𝑆𝐸 = √
1

𝑁𝑚𝑣
∑ (𝑦𝑖−𝑦𝑖̂)

2𝑁𝑚𝑣
𝑖

𝜎𝑦
2    (Equation 4.1) 

With Nmv the total number of missing values, 𝑦𝑖 the true value, 𝑦𝑖̂ the imputed value and 

𝜎𝑦
2 the variance of the true values. 

Linear mixed effect models (LMEM) were developed via a backward selection procedure 

for overall and case-specific performance assessment to infer imputation method 

significance. Imputation method, degree of missing data, fraction of instances and 

fraction of variables were considered as (interacting) fixed effects (depending on the 

considered case), while the imputed data set was included as random effect. Model 

simplification was performed by stepwise removal of the least significant (interaction) 

effect, followed by ANOVA testing and (interaction) effect removal if a reduction in 

complexity (measured via the Akaike Information Criterion, AIC) was obtained. 

Subsequently, pairwise differences between methods were assessed via post-hoc Tukey 

tests with Hochberg correction. The lmerTest and multcomp packages were used for this 

purpose (Hothorn et al., 2008; Kuznetsova et al., 2017). 

Aside from a performance-based evaluation, computation time for each imputation was 

recorded to qualitatively score each method. This is an often neglected aspect of data 

imputation and is only limitedly reported in literature as it is subordinate to accuracy 

(Schmitt et al., 2015). Imputations were run in parallel on two Intel® Xeon® E5620 

processors (2.39 GHz and 2.40 GHz), with 6 GB RAM. 
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4.2.3.2 Data pre-processing 

Characterisation of the data 

A mismatch between the physicochemical and macrophyte data exists within the 

Limnodata Neerlandica as data were often collected at different moments in time. 

Therefore, physicochemical and macrophyte data for space-time combinations that 

recurred in both data sets were extracted, reflecting the baseline data. Despite being 

extensive (4344 instances for 174 variables, Figure 4.6), a high degree of missing data 

was obtained within the physicochemical information (i.e. 93.7 %). Consequently, 

stepwise variable or instance removal was applied, aiming to reduce the overall degree 

of missing values. At each step, removal of the variable or instance with the highest 

positive impact on the overall rate of missing values was performed. Subsequent data set 

selection and imputation were performed by relying on the results from Chapter 5. 

Macrophyte selection was based on the overall number of absolute observations, with at 

least 100 observations required prior to being included to reduce the original number of 

macrophyte species (Nbio = 576, Figure 4.6). Macrophyte species with lower prevalence 

can still provide information, yet the limited number of observations creates a highly 

unbalanced data set, thereby consequently affecting model performance. Remaining 

macrophytes were subsequently subjected to an additional selection procedure that 

considered their main life stage habitat, eliminating macrophytes that were more 

characteristic for bank and terrestrial vegetation. The resulting combined data was used 

for model development in both Chapter 6 and Chapter 7. 

Pre-processing techniques 

Due to the specific construction of the random forest algorithm, it was expected that the 

inclusion of outliers and correlated variables has a limited effect on model performance. 

However, model regularisation aiming to reduce model complexity by means of 

reducing incorrect and irrelevant information relies on the trade-off between data and 

model complexity and, hence, encompasses appropriate instance and variable selection. 

A variety of pre-processing approaches exists, ranging from simple outlier removal over 

correlative variable assessment to combinatory algorithm-implemented approaches. 

The characteristics of these techniques are discussed in more detail in Chapter 6. 

Evaluation of pre-processing effects on model performance 

The effects of each pre-processing technique on model performance were assessed via 

the Area Under the Receiver Operating Characteristic Curve (AUC) (see Section 3.2.4.1). 

Final model evaluation was performed at two levels: (i) using the original external test 

set and (ii) using the original external test set after pre-processing. By doing so, a 

performance range can be defined between underperforming models (original test set) 

on the one hand and overperforming models (pre-processed test set) on the other hand, 

with the idea that actual model performance lies somewhere in between both results. 
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Simultaneously, computation time was recorded as it is affected by data pre-processing 

in two ways: (i) it increases the time needed to prepare the data and (ii) potentially 

decreases the time needed to develop the individual model. Therefore, computation 

time was registered for the overall procedure including data preparation and model 

development as well as for the application of the model training algorithm. The 

computational capacity was similar as described in Section 4.2.3.1. 

4.2.3.3 Model development and habitat suitability assessment 

Optimisation of hyperparameters 

Optimisation of the selected CRF hyperparameters ntree (number of individual models 

to be developed in the ensemble), mtry (number of variables to be considered for each 

split within the tree), nsplit (minimum fraction of instances in a node in order to be 

considered for splitting) and nleaf (minimum fraction of instances in a terminal node in 

order to be kept) (Hothorn et al., 2018) was conducted based on an iterative, 

performance-based procedure.  

First, an extensive search space was defined by delimiting the ranges of the four 

hyperparameters and defining the step size between potential values. Ranges differed 

among hyperparameters (see Table 4.2) and resulted in more than two million possible 

combinations, out of which sixty combinations were randomly selected to accelerate 

optimisation (Bergstra and Bengio, 2012). The combination providing the highest AUC 

score was set as starting point for further parameter tuning.  

Table 4.2: Range definition of four hyperparameters. For each hyperparameter, the baseline, 

lower and upper limit were defined, as well as the step size. Vector length indicates the resulting 

number of hyperparameter values. Both nsplit and nleaf are by default expressed as abolute values, 

but converted to relative values during optimisation, thereby restricting model complexity. 

Parameter Baseline Lower limit Upper limit Step size Vector length 

ntree 200 100 1000 10 91 

mtry √𝑁𝑉𝑎𝑟 2 20 1 19 

nsplit 20 0.01 0.5 0.01 50 

nleaf 7 0.01 0.25 0.01 25 

 

Secondly, an iterative hyperparameter optimisation procedure was applied by defining 

a local search space following the hyperparameter-specific range limits as defined in 

Table 4.3. Identification of the best-performing combination supported the narrowing 

of the search space by a factor two during the next iteration, yet only when identical 

hyperparameter values were selected. Iterative parameter optimisation was stopped 

when the same settings were selected three times or when five iterations were performed 

(see Algorithm 4.2). This approach does not guarantee finding the global optimum, but 

helps in identifying a local optimum capable of improving model performance. 
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Table 4.3: Range definition of four hyperparameters to be used during iterative 

parameter optimisation. Within these limits, x depicts the frequency of selecting the same 

settings as providing the highest performance and y represents the total number of iterations. 

Parameter Lower limit Central Upper limit Vector length 

ntree 𝑛𝑡𝑟𝑒𝑒𝑦−1 −
200

2𝑥
 𝑛𝑡𝑟𝑒𝑒𝑦−1 𝑛𝑡𝑟𝑒𝑒𝑦−1 +

200

2𝑥
 3 

mtry 𝑚𝑡𝑟𝑦𝑦−1 −
4

2𝑥
 𝑚𝑡𝑟𝑦𝑦−1 𝑚𝑡𝑟𝑦𝑦−1 +

4

2𝑥
 3 

nsplit 𝑛𝑠𝑝𝑙𝑖𝑡𝑦−1 −
0.2

2𝑥
 𝑛𝑠𝑝𝑙𝑖𝑡𝑦−1 𝑛𝑠𝑝𝑙𝑖𝑡𝑦−1 +

0.2

2𝑥
 3 

nleaf 𝑛𝑙𝑒𝑎𝑓𝑦−1 −
0.2

2𝑥
 𝑛𝑙𝑒𝑎𝑓𝑦−1 𝑛𝑙𝑒𝑎𝑓𝑦−1 +

0.2

2𝑥
 3 

 

Algorithm 4.2: Iterative hyperparameter optimisation 

Develop model m with ‘starting point settings’ 

Store ‘starting point settings’ and AUC in list L 

Define iterators x and y, starting at 0 value 

WHILE x < 3 and y < 5 

Define new search space in list S 

Eliminate settings already occurring within L from S 

FOR each combination in search space S 

Develop model m 

Append list L with specific settings and AUC from m 

END for 

Identify highest AUC in L and related settings 

IF new settings are the same as ‘starting point settings’ 

Increase x with 1 

ELSE 

Update ‘starting point settings’ to new settings 

END if 

Increase y with 1 

END while 

  



DATA AND MODELLING TECHNIQUE 

103 

Null models, variable importance and partial dependence 

Null models were developed for each macrophyte species by randomly permuting the 

presence/absence statement of the model training data (hence, test data was unaltered), 

followed by model development with initial hyperparameter settings and external 

validation with the test data. In total, 1000 null models were developed for each 

macrophyte and the resulting distribution of AUC values was used to determine the 

upper 95th percentile (P95). Metric values exceeding this threshold were considered as 

significantly different from random prediction.  

Settings that supported the highest AUC values based on internal cross-validation were 

subsequently used for final model construction and the determination of variable 

importance. Variable-specific model improvement ratios (MIRs) were derived for each 

model and were based on a repetitive permutation-performance assessment scheme 

(Strobl et al., 2009a). More specifically, the procedure entailed the following steps: (1) a 

model is trained with the original data, (2) a specific variable of the training data is 

permuted to break the association with the response variable, (3) a new model is trained 

with the altered data, (4) a fraction of the data that was not utilised for model training 

is used to test the new model, (5) the obtained accuracy is compared with the original 

accuracy and (6) after all individual scores are determined, they are divided by the 

importance score of the highest-scoring variable. Hence, the obtained MIR score lies 

between 0 and 1, allowing comparison of relative variable importance among models 

(Murphy et al., 2010). 

Lastly, based on overall importance, five variables were selected for partial dependence 

plot (PDP) assessment, reflecting the variable’s effect on habitat suitability. PDPs were 

developed by stepwise alteration of the selected predictor along its observed range 

(minimum-maximum) with the remainder of the training data unaltered, followed by 

suitability prediction. In total, the PDPs were developed over 21 equidistant values (i.e. 

20 breaks) for each of the considered variables. 
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4.3 Experiments under controlled conditions 

Aside from the modelling part, additional attention is given to forecasting the invasive 

character and the vulnerability to invasion by means of experimental studies. Here, the 

aim is to work both at pre-introduction and post-establishment level of an invasive alien 

species by focusing on (1) the applicability of existing trait-based indices to identify an 

invasive macrophyte and (2) the vulnerability of a system towards invasion, while 

experiencing an additional management pressure. Experimental conditions varied 

slightly for these two studies and are therefore introduced separately, within the 

associated chapter. 

Experiments were performed with macrophytes occurring in Belgium, with specific 

attention towards the selection of a native and an alien species that are preferably 

phylogenetically close. As floating macrophytes tend to occur in more eutrophic 

conditions (Bakker et al., 2013; Zhang et al., 2017), potential test species were narrowed 

down to this subcategory. Among these floating macrophytes, Lemna minuta is known 

for originating from North and South America and having reached a widespread status 

throughout Europe (Hussner, 2012). In Belgium, L. minuta has been observed since 1972 

(https://waarnemingen.be/) and is considered to be ‘widespread with a moderate 

impact’ (http://ias.biodiversity.be/), while in the Netherlands it has only been observed 

since 1989 (https://waarnemingen.nl/) and included in the Limnodata Neerlandica since 

1990. Four other Lemna spp. occur throughout Belgium, being L. minor, L. gibba, L. 

trisulca and L. turionifera (Lambinon et al., 1998; Van Landuyt, 2007). All Lemna spp. 

are characterised by a single root and mostly vegetative reproduction, although sexual 

reproduction via flowering has been reported too. In order to contrast the performance 

of the alien L. minuta with a native species, L. minor was selected as it is a reference 

species for ecotoxicological studies (OECD, 2006). Consequently, specific guidelines for 

testing under controlled conditions have been issued, which provides a standardised 

framework with respect to growth medium, light conditions and potential growth rate.  

Both Lemna spp. are frequently occurring and well-known for their high reproduction 

rate, protein content and manipulability (Gérard and Triest, 2014; Yu et al., 2014). 

Consequently, their potential in treating eutrophic (waste)waters in combination with 

biomass production has been explored for decades (e.g. Culley and Epps (1973), 

Hammouda et al. (1995), Oron et al. (1988) and Yu et al. (2014)). On the other hand, 

their presence in natural systems is frequently characterised by dense mats that decrease 

light penetration and oxygen concentration, thereby negatively affecting aquatic life 

underneath these mats (Janes et al., 1996; Janse and Van Puijenbroek, 1998). Hence, their 

relative similarity and controversial effects on ecosystem structure and functioning 

provide acceptable arguments to test the applicability of functional traits and the 

consequences of partial eradication. 
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Imputation methods for  

missing environmental data3 

  

                                                 
3 This chapter is redrafted from Van Echelpoel, W.; Bruneel, S. and Goethals, P. L. M. (submitted) 

Empirical evaluation of four data imputation methods for incomplete environmental data with 

varying levels of available information 

And additionally based on Van Echelpoel, W. and Goethals, P. L. M. (2018) Variable importance for 

sustaining macrophyte presence via random forests: data imputation and model settings. 

Scientific Reports 8, 14557, doi: 10.1038/s41598-018-32966-2. 

Highlights 

- Random forest-based method generally performs best 

- Least-squares is valid alternative when computation time is limited 

- Data dimensionality has a clearer effect on accuracy than sample size 
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Abstract 

A recurrent issue within environmental data sets that impedes appropriate data 

exploration, analysis and evaluation is the presence of missing data (MD). Existing 

techniques avoid unnecessary information loss by exploiting available information to 

impute MD, though individual accuracies differ. Four techniques were selected for 

comparison of accuracy and required computation time: mean, least square (ls) 

regression, k nearest neighbours (kNN) and the ensemble-based missForest algorithm. 

Data points were artificially removed from twelve complete data sets (combining three 

levels of data dimensionality and four levels of sample size) with six different rates of 

MD, being repeated ten times. Results showed that mean imputation provided stable 

imputation performance along the MD gradient with an average normalised root mean 

squared error (NRMSE) of 0.96 ± 0.04, while ls and missForest provided rather similar 

performance (0.5 ± 0.3 versus 0.5 ± 0.2, respectively). Higher rates of MD caused an 

undisputable decrease in performance, except when mean imputation was applied. 

Simultaneously, computation time increased for ls and kNN, decreased for missForest 

and remained relatively stable for mean. Sample size affected performance only 

limitedly, while clearly affecting computation time for ls, kNN and missForest. In 

contrast, increased data dimensionality positively affected performance, while 

confirming that computation time was mostly influenced by the total number of data 

points. Further optimisation of both kNN and missForest showed a similar increase in 

performance (ΔNRMSE = -0.05 ± 0.05), confirming that the latter indeed provides better 

imputation performance than more conventional techniques. In short, the ensemble-

based missForest algorithm outperformed mean, least squares and k nearest neighbour 

imputation, though the latter two remain valid alternatives at low rates of missing data. 
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5.1 Setting the scene 

Gathering information, improving knowledge and steering decisions all greatly rely on 

data collection and availability. Yet, many data sets are plagued with a certain degree of 

missing data as, in practice, data is potentially lost, erroneously recorded or absent due 

to electronic malfunctioning or non-response (García-Laencina et al., 2010; Giustarini et 

al., 2016). Missing data is common within the field of environmental monitoring and 

assessment affecting both descriptive and correlative analyses. For instance, Srebotnjak 

et al. (2012) pointed out that missing data hampered proper water quality index 

computation, while Chandramouli et al. (2007) acknowledged that missing 

microbiological data impeded accurate human health risk assessment. Moreover, when 

reviewing watershed-wide water quality evaluation, Olsen et al. (2012) observed that 10 

out of 49 studies (20 %) reported missing data, with only 1 study reporting the actual 

degree of missing values. This mismatch between data quality and subsequent data 

analyses partially underlies reduced efficiency due to the loss of valuable information 

and a lack of specific guidelines (Giustarini et al., 2016; Liew et al., 2011).  

For years, data sets were reduced to contain only complete cases, thereby impeding 

proper estimation of population parameters, limiting data analysis power and 

introducing bias (Little and Rubin, 2002; Penone et al., 2014). These complete-case 

analyses assume that the reduced data set represents a perfect subsample of the 

population, i.e. a missing completely at random (MCAR) mechanism (Little and Rubin, 

2002), although most data sets follow the missing at random (MAR) or the not missing 

at random (NMAR) mechanism. The latter occurs when data is missing because of its 

value (e.g. a concentration below detection limit, sensor malfunctioning during a 

heatwave), while no link can be found with any other variable. In between MCAR and 

NMAR, the MAR mechanism is characterised by the possibility of estimating missing 

values based on other variables’ values (Little and Rubin, 2002). The increased 

awareness on the complete-case analysis being acceptable up to only 5 % missing data 

(García-Laencina et al., 2010) in combination with abovementioned mechanisms, 

steered the development of imputation techniques. 

One of the simplest imputation approaches is based on variable-specific statistics (e.g. 

mean, median, mode) and represents a popular approach due to fair performance 

(Celton et al., 2010; Schmitt et al., 2015), despite ignoring the inherent associations 

among the included variables (Liew et al., 2011). In contrast, a variety of imputation 

methods do acknowledge these underlying associations, including regression-based 

methods, Bayesian principal component analysis (bPCA), singular value decomposition 

(SVD), k nearest neighbours (kNN), fuzzy k-means, artificial neural networks (ANN), 

random forests and model-based approaches (Bø et al., 2004; Brock et al., 2008; Celton 

et al., 2010; Chandramouli et al., 2007; Luengo et al., 2012; Zhang et al., 2008).  
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For instance, Bø et al. (2004) applied least-squares regression to impute microarray data 

and concluded that it was simpler and more accurate than kNN, despite increasing 

multicollinearity (García-Laencina et al., 2010). In kNN, a pre-specified number of 

neighbours (knn) acts as donor for the missing value, representing a tuneable similarity-

based imputation. Identifying neighbours is computationally slower compared to 

statistic- or regression-based imputation and neglects negative correlations, yet often 

supports higher performances, except when confronted with more advanced techniques 

(Penone et al., 2014; Schmitt et al., 2015; Waljee et al., 2013). For instance, Stekhoven 

and Bühlmann (2012) introduced the random forest-based missForest algorithm and 

acknowledged its value for missing data imputation, though optimisation and overall 

computation time provide a practical trade-off during method selection (Shah et al., 

2014; Waljee et al., 2013). A summary of advantages and disadvantages of the mentioned 

techniques is provided in Table 5.1. 

Table 5.1: Advantages and disadvantages of a selection of imputation methods. Methods 

include a generally known method (mean), a regression-based method (least squares; ls), a 

similarity-based method with limited flexibility (kNN) and a random forest-based method with 

high flexibility (missForest). 

Method Advantages Disadvantages 

Mean - Simple 

- Frequently used 

- Neglects covariance 

- Narrows variable distribution 

- Underestimates variance 

 

Least squares - Simple 

- Maintains covariance structure 

- Increases multi-collinearity 

- Does not include local variability 

- Requires predefined distribution  

 

kNN - Similarity-based 

- Can be optimised 

- Has to recalculate all distances for 

each missing value (computation time) 

- Fixed number of neighbours 

- Does not include negative correlations 

 

missForest - Correlation-based 

- Can be optimised 

- Flexible related to duplicates 

- Optimisation can be cumbersome  

- Random selection can affect result 

- Potentially high computation times 

 

 

  



IMPUTATION OF MISSING DATA 

111 

Abovementioned techniques share the advantage of single-value imputation, producing 

a data set that can be used directly for further analysis, yet ignoring the inherent 

uncertainty of the imputed value. Indeed, a confidence interval can be assigned to each 

imputed value reflecting the value’s potential distribution. Multiple-value imputation 

methods assume a distribution of the missing value, out of which m single values are 

randomly selected, resulting in m new data sets and m individual analyses, which are 

subsequently pooled to obtain an overall evaluation (Faris et al., 2002). Approaches to 

multiple-value imputation include multivariate normal imputation (MVNI), assuming a 

multivariate normal distribution, and fully conditional specification (FCS) (Lee and 

Carlin, 2010), which includes the multiple imputation via chained equations (MICE) 

method for which relatively high performances have been obtained (Schmitt et al., 

2015).  

Usage and comparison of imputation methods (both single- and multiple-value) is 

common within the field of bioinformatics (e.g. microarray data), medicine and 

marketing (Bø et al., 2004; Lee and Carlin, 2010; Nogueira et al., 2007; Shrive et al., 

2006; Troyanskaya et al., 2001), though remains limited within purely environmental 

data analysis. Moreover, comparisons lag behind as new techniques are constantly being 

developed while previous methods have not yet been sufficiently applied, described and 

tested. 

Within this chapter, four single-value imputation methods are selected to deal with 

missing environmental data: the mean (the ‘popular’ approach), iterative least squares 

(regression-based), k nearest neighbours (similarity-based) and random forests 

(iterative correlation-based). The aim is to elucidate the differences between the 

imputation techniques at performance level, supplemented with required computation 

time. To do so, the imputation error will be assessed along a gradient of (i) missing data 

percentage (fMD), (ii) sample size (Ninst) and (iii) dimensionality (Nvar). For each 

technique, it is expected that imputation accuracy is positively affected by (i) decreasing 

fMD, (ii) increasing Ninst and (iii) increasing Nvar. 

Based on abovementioned literature and technique-specific characteristics, it is 

hypothesised that performance-based ranking will provide the following result: random 

forests > k nearest neighbours > iterative least squares > mean imputation. By tackling 

this issue, a partial answer to RQ2.1 is formulated, with respect to objective 2.1 as 

identified in Chapter 1. Hence, this chapter concludes with a statement on the suggested 

imputation technique and how accuracy can be improved by changing the degree of 

missing data, sample size or data dimensionality.  

  



CHAPTER 5 

112 

5.2 Materials and methods 

5.2.1 Characterisation of the data and evaluation methods 

The analyses performed in this chapter made use of the physicochemical data within the 

Limnodata Neerlandica, as described in Chapter 4 (see Section 4.2.3.1). In general, the 

provided data was used as a basis to develop 720 different data sets, which vary at the 

level of sample size (Ninst), dimensionality (Nvar) and degree of missing data (fMD). 

Techniques were compared at performance level by means of the normalised root mean 

squared error (NRMSE) and supplemented with evaluation of the computation time. 

More detailed information can be found in Chapter 4 and in Appendix B.1. 

5.2.2 Imputation techniques 

Four single-value imputation techniques were selected for this study: (i) mean 

imputation (mean), (ii) iterative least squares (ls), (iii) k-nearest neighbours (kNN), and 

(iv) a random forest-based algorithm missForest (mF). All techniques were initially 

applied with their default settings and, if applicable, tested for potential optimisation 

via (i) inclusion of additional information and (ii) iterative hyperparameter setting.  

Imputation of the mean is the simplest approach and has been applied at instance- and 

variable level. Despite its application within microarray research (Troyanskaya et al., 

2001), instance-wise imputation of the mean is not considered appropriate with 

environmental data, hence a variable-wise imputation is applied. Imputation is 

performed via the Hmisc package (Harrel, 2018). 

The iterative least squares method assumes an underlying linear relationship among the 

variables within the data set, thereby supporting its successful application within the 

field of microarray analysis (Bø et al., 2004; Brock et al., 2008; Zhang et al., 2008) and 

its potential within the field of environmental data. Imputation is based on the 

description provided by Bø et al. (2004), starting with the imputation of the variable-

wise mean, after which the covariance matrices (S) are determined and used to solve 

Equation 5.1. Following the first imputation, means and covariance matrices are updated 

and a new imputation value is determined until convergence. Here, maximally 10 

iterations were run as additional iterations resulted in relatively minor changes within 

the covariance matrix. 

 𝑦𝑖̂ = 𝑦𝑖̅ + 𝑺𝑦𝑖𝒙𝑺𝒙𝒙
−𝟏(𝒙 − 𝒙̅)    (Equation 5.1) 

With 𝑦𝑖̂ the estimated value (to be imputed), 𝑦𝑖̅ the average value over 𝑦𝑖 , … , 𝑦𝑛 , 𝑺𝑦𝑖𝒙 the 

covariance matrix (vector) between the variable with missing value and the remaining 

variables, 𝑺𝒙𝒙 the covariance matrix among the remaining variables, 𝒙 =  [𝑥1, 𝑥2, … , 𝑥𝑘]
𝑇 

the variables’ values for the considered instance and 𝒙̅ =  [𝑥1̅̅̅, 𝑥2̅̅ ̅, … , 𝑥𝑘̅̅ ̅]
𝑇 the variables’ 

average values. 
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The kNN approach is a distance-based method and uses the information of the knn 

closest neighbours of the instance with a missing value. Subsequently, the mean (or 

median) of these knn neighbours is used to replace the missing value, optionally weighted 

for the neighbours’ distance from the instance. Within this study, imputation is based 

on the Gower distance and the distance-weighted average of knn neighbours. At first, the 

default value of knn = 5 is considered for imputation, followed by an assessment of how 

NRMSE-based optimisation of knn can improve imputation performance. This 

optimisation is conducted for each combination in Table 4.1 at six levels of missing data 

and two repetitions (i.e. N = 144, see Appendix B.2). Imputation via kNN is applied via 

the VIM package (Kowarik and Templ, 2016). 

Lastly, the missForest algorithm was introduced by Stekhoven and Bühlmann (2012) and 

relies on the random forest technique (see also Box 3.1). This technique belongs to the 

data-driven supervised machine learning classification and regression trees (CARTs) and 

has been reported to outperform more traditional methods as it creates an ensemble of 

independent trees rather than a single tree (Stekhoven and Bühlmann, 2012; Waljee et 

al., 2013). As such, it can be considered as a multiple-value imputation technique, 

although only a single imputed data set is obtained. 

Imputation via random forest works iteratively, comparing each imputed value with its 

previous value and combining this in an overall difference. Baseline imputation is 

performed via variable-wise mean imputation, while the stopping criterion is defined as 

the moment when the calculated difference starts to increase again, as defined by 

Equation 5.2 for continuous variables (see Stekhoven and Bühlmann (2012) for discrete 

variables). Alternatively, the number of iterations can be defined a priori to avoid non-

convergence errors. 

∆𝑿=
∑ (𝑫𝑛𝑒𝑤

𝑖𝑚𝑝
−𝑫𝑜𝑙𝑑

𝑖𝑚𝑝
)
2

𝑘
𝑗=1

∑ (𝑫𝑛𝑒𝑤
𝑖𝑚𝑝

)
2

𝑘
𝑗=1

   (Equation 5.2) 

With X the set of k continuous variables and D the data matrix. 

Within this chapter, random data sampling within missForest was performed without 

replacement and three hyperparameters were selected for optimisation: ntree, mtry and 

nodesize. At first, hyperparameters were set at their default values (i.e. 𝑛𝑡𝑟𝑒𝑒 =  100, 

𝑚𝑡𝑟𝑦 = √𝑁𝑣𝑎𝑟 and 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 = 1), with maximally 10 iterations. Subsequently, these 

hyperparameters were iteratively altered for each combination mentioned in Table 4.1 

at all six levels of missing data and two repetitions (i.e. N = 144, see Appendix, Section 

B.2.2), followed by an analysis of the difference in performance. The missForest 

algorithm was implemented as part of the missForest package (Stekhoven, 2013). 
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5.3 Results 

All imputation methods obtained in at least 94 % of the cases a NRMSE value lower than 

1. Ranges differed, with ls representing the narrowest range (0.03 up to 2.36) and kNN 

the widest range (0.05 up to 3.73). Both mean and mF scored in between, ranging from 

0.89 up to 4.10 and from 0.06 up to 3.63, respectively (Figure 5.1). Best overall 

performance was obtained by mF (0.45 ± 0.27) and ls (0.47 ± 0.26), followed by kNN 

(0.53 ± 0.31) and reflecting a clear difference from mean (0.97 ± 0.12).  

Indeed, higher NRMSE values were observed for mean, represented by scores of ls, kNN 

and mF being mostly situated underneath the agreement line (Figure 5.1). Moreover, the 

majority of kNN results are positioned above the mF-based agreement line and, vice 

versa, the majority of mF results are situated below the kNN-based agreement line 

(Figure 5.1). No clear difference is observed between the results for ls and mF, as 

indicated by NRMSE values at both sides of the ls- and mF-based agreement lines (Figure 

5.1). These observations are confirmed by the adjusted Tukey test, showing that mean 

performed significantly worse than ls, kNN and mF (p < 0.001 for all pairwise tests), 

while differences among the latter three methods were non-significant (p > 0.05).  

 

Figure 5.1: General overview of the NRMSE scores for each imputation approach, 

conditional to the other methods. To improve visualisation, the y-axis was chosen to be similar 

to the x-axis range. Values below the agreement line indicate better performance of the method on 

the y-axis, while values above the agreement line indicate better performance of the method on the 

x-axis. Methods: mean: mean imputation; ls: iterative least squares; kNN: k nearest neighbours 

and mF: the missForest algorithm. NRMSE: Normalised Root Mean Squared Error. 
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In the following sections, more specific results are presented, focusing on the methods’ 

variability in performance and required computation time for (i) a fixed number of both 

variables and instances (i.e. Dopt), (ii) a varying number of instances, given a fixed 

number of variables (Nvar,opt and flexible Ninst) and (iii) a variety in dimensionality 

(flexible Nvar). A detailed overview of performance scores can be found in Table B.3. 

Moreover, in order to support the obtained NRMSE scores with a variable- and 

technique-specific accuracy assessment, two case studies are provided in Appendix B.4: 

(i) a small data set (5 variables, 5385 instances) with 1 % missing data and (ii) the optimal 

data set (10 variables, 17 264 instances) with 50 % missing data. The latter is based on 

the description of the common data in Section 4.2.1.3. Based on these results, mF seemed 

to perform best for imputing both extensive and confined variables, while kNN and ls 

showed to be less applicable, respectively. 

5.3.1 Baseline performance at fixed sample size and dimensionality 

Highest imputation performance was hypothesised for the lowest amount of missing 

data, while an increasing degree of missing data (MD) was expected to inflate the 

imputation error. Separation of the results for imputing Dopt conditionally to the degree 

of missing data clearly supported this hypothesis, with performance of ls, kNN and mF 

decreasing along an increase in missing values (Figure 5.2). Only mean provided 

consistent imputation performance regardless of fMD. 

Based on the saturated mixed model, a lower effect of missing data on mF is inferred 

when compared to kNN (𝛽𝑚𝐹:𝑀𝐷 = 0.859 versus 𝛽𝑘𝑁𝑁:𝑀𝐷 = 1.080), while the discrepancy 

with ls is less clear (𝛽𝑙𝑠:𝑀𝐷 = 0.822), though significant (p = 0.02). Indeed, kNN 

performance was 0.19 ± 0.05 at 1 % MD, going up to 1.05 ± 0.06 at 75 % MD, while for 

mF this was only 0.16 ± 0.05 and 0.86 ± 0.02 (see Table B.3), respectively. In contrast, 

no significant difference was observed between ls and kNN. Moreover, mean was 

unaffected by the degree of missing data (Figure 5.2) and provided an overall stable, yet 

relatively low, imputation performance of 0.966 ± 0.003 (N = 60), thereby performing 

significantly worse than ls, kNN and mF (all p < 0.001). In addition, mF performed 

significantly better than kNN and significantly outperformed ls when missing data was 

at least 20 % (all p < 0.05). 

Contrasting its performance, mF required long computation times, being up to 40 times 

higher compared to ls (e.g. 2100 ± 400 s versus 80 ± 20 s, respectively, with 1 % missing 

data) and even more when compared with mean (0.005 ± 0.008 s, with 1 % missing 

data). As missing data increased, a decrease in computation time was observed for mF 

(Figure 5.2). Simultaneously, kNN showed an increase in computation time, arising to a 

maximum at 50 % missing values (807 ± 3 s), while mean provided short computation 

times regardless of the degree of missing values (overall 0.006 ± 0.008 s). 
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Figure 5.2: General performance of four imputation methods, as determined for the 

maximum number of data points. The top row (NRMSE) represents all performance values, 

while the second row represents the computation time needed for the imputation. Columns 

represent the different degrees of missing data used. Data of 10 repetitions (identical number of 

data points, different missing values) are reported. Boxes represent the 50 % central values around 

the median, while whiskers represent the first and third quartile extended to the last case within 

1.5 times the interquartile range. Dots represent the values outside the range of the whiskers. 

Methods: mean: mean imputation; ls: iterative least squares; kNN: k nearest neighbours and mF: 

the missForest algorithm. NRMSE: Normalised Root Mean Squared Error. 

5.3.2 Sample size variability 

Imputation performance was expected to decline with decreasing sample size, vice versa 

providing higher performance when more data is available. Indeed, imputation error 

decreased slightly when sample size increased (Figure 5.3), having a relatively higher 

effect on kNN than on mF based on the interaction coefficients (𝛽𝑘𝑁𝑁:𝑖𝑛𝑠𝑡 = -0.179 versus 

𝛽𝑚𝐹:𝑖𝑛𝑠𝑡 = -0.070, respectively), with ls experiencing a similar effect as kNN (𝛽𝑙𝑠:𝑖𝑛𝑠𝑡 = -

0.174). This discrepancy between mF and kNN created a significant difference in overall 

performance (p < 0.001) in favour of mF, while ls and kNN illustrated similar 

performance. Nevertheless, in contrast to the aforementioned significant differences 

between kNN and mF at maximum sample size (all p-values < 0.05), both methods 

performed similarly when imputing smaller-sized data sets with maximally 10 % missing 

values (most p > 0.05). Likewise, no significant differences between ls and mF could be 

observed when maximally 10 % of the data is missing, even at maximum sample size.  
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At elevated degrees of missing values (≥ 20 %), no clear uniform results were obtained, 

suggesting a potential dependency on which instances were either in- or excluded. 

Similarly, the effect of sample size at 1 % missing data remained ambiguous, while at 75 

% missing data kNN was clearly outperformed by ls and mF (p < 0.001), providing almost 

similar performance as mean.  

Only mean provided stable and low computation times regardless of the degree of 

missing data or the number of instances (overall 0.005 ± 0.007 s). On the other hand, 

mF and kNN required more time when more instances were provided (e.g. 2100 ± 400 s 

versus 160 ± 50 s and 25.1 ± 0.2 s versus 2.20 ± 0.09 s, respectively, for 100 % and 25 % 

of Ninst,opt, respectively, at 1 % missing data), along with a general increase in 

computation time for kNN when more data was missing and a decrease in computation 

time for mF when more than 20 % of the data was missing (Figure 5.3), reflecting the 

pattern as observed in Figure 5.2.  

 

Figure 5.3: Effect of number of instances for a fixed number of variables. More instances 

have a limited impact on performance, but do affect computation time. The top row (NRMSE) 

represents performance, while the second row represents the required computation time. Columns 

represent the different degrees of missing data used. Data of 10 repetitions (variable number of 

instances for 10 variables, different missing values) are reported. Symbols represent the average 

for each combination, while vertical lines represent the standard deviation. Methods: mean: mean 

imputation; mF: the missForest algorithm; kNN: k nearest neighbours and ls: iterative least 

squares. NRMSE: Normalised Root Mean Squared Error. 
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5.3.3 Dimensionality variability 

Inclusion of additional variables was expected to increase imputation performance, 

despite the underlying reduction in sample size and a potential to increase model 

overfitting. The latter is consequential to the consideration of a high number of variables 

to explain or describe the patterns within the data and is characterised by a reduced 

accuracy outside its training range. Hence, despite an increased explanatory power by 

including additional variables, a decrease in imputation accuracy can be obtained. Still, 

dimensionality clearly affected imputation performance, with a general decrease in error 

following an increase in dimensionality (Figure 5.4). Only kNN did not show a 

monotonous increase in performance when 50 % or more of the data was missing, but 

rather performed worst at intermediate dimensionality (0.97 ± 0.06 at Nvar = 5 versus 

1.05 ± 0.06 at Nvar = 10, with 75 % missing).  

The saturated model indicated that a significant overall interaction existed and that 

inclusion of a main effect and interaction with imputation method significantly 

improved model fit (p < 0.001). Interaction coefficients indicated a higher effect of 

dimensionality on mF (𝛽𝑚𝐹:𝑉𝑎𝑟 = -0.067) compared to ls and kNN (𝛽𝑙𝑠:𝑉𝑎𝑟 = -0.044 and 

𝛽𝑘𝑁𝑁:𝑉𝑎𝑟 = -0.025), causing the overall significant differences between ls, kNN and mF 

in the baseline performance (see earlier section) to disappear. Still, they provided 

significantly higher performance than mean, regardless of missing data and 

dimensionality (all p < 0.001), except for kNN at 75 % missing values and only 5 

variables. In contrast, with 50 % or less of the data missing and only 5 variables, kNN 

performed similarly as ls and mF, yet performance discrepancy increased when 10 (mF) 

or 15 (ls) variables were available (p < 0.05). Differences between ls and mF were mostly 

non-significant, except at increased dimensionality (≥ 10 variables) and elevated degrees 

of missing data (≥ 20 %).  

Both mF and kNN showed maximal required computation time at intermediate 

dimensionality (Nvar = 10, up to 2100 ± 400 s for mF) and minimal at increased 

dimensionality (Nvar = 15, 220 ± 60 s for mF at 1 % missing) (Figure 5.4). Surprisingly, 

the latter did not result in a clear change in computation time for kNN or mF along the 

range of missing data, while reduced dimensionality showed a similar pattern as 

observed in Figure 5.2. In contrast, both mean and ls were not clearly affected by 

dimensionality nor the degree of missing data (Figure 5.4). 
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Figure 5.4: Effect of dimensionality on performance and required time of four imputation 

methods. Not only the number of variables, but also sample size is different among data sets. The 

top row (NRMSE) represents performance, while the second row represents the required 

computation time. Columns represent the different degrees of missing data used. Data of 10 

repetitions (maximum number of instances for a specific number of variables, different missing 

values) are reported. Symbols represent the average for each combination, while vertical lines 

represent the standard deviation. Methods: mean: mean imputation; mF: the missForest 

algorithm; kNN: k nearest neighbours and ls: iterative least squares. NRMSE: Normalised Root 

Mean Squared Error. 

5.3.4 Optimisation 

Preliminary assessment showed that additional typological information did not result in 

improved imputation performance (see Appendix, Figure B.1), hence this was not 

considered for further elaboration. In contrast, altering hyperparameter settings often 

improved performance and was therefore included in subsequent analyses. Specific 

effects of each individual hyperparameter were considered being beyond the current 

scope and merit additional study. 

By default, kNN considers five neighbours, yet the optimised knn value ranged from 1 up 

to 47, with a median value of 9. Almost 33 % of the knn values were equal to or lower 

than 5, while another 33 % ranged from 15 up to 47. In general, data sets with low rates 

of missing data (fMD ≤ 10 %) supported improved imputation when low knn values were 

applied (knn ≤ 10) and vice versa for data sets with elevated rates of missing data (Figure 

5.5).  
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Figure 5.5: Selected number of neighbours to be considered after optimisation. Optimised 

knn values were determined for the six classes of missing data (0.01, 0.05, 0.1, 0.2, 0.5 and 0.75), 

represented by two repetitions of each possible combination of sample size (number of instances) 

and dimensionality (number of variables), hence a total of 144 data sets. Values range from 1 up to 

47, with low values being selected when imputing data sets with limited rates of missing values and 

vice versa for data sets with high rates of missing values. Boxes represent the 50 % central values 

around the median, while whiskers represent the first and third quartile extended to the last case 

within 1.5 times the interquartile range. 

Similar patterns could not be identified for mF due to the simultaneous alteration of 

three hyperparameters during the iteration process, yet observations suggested that the 

majority of the data sets was imputed with higher accuracy when less individual trees 

were constructed and more variables were randomly selected at each split (see Table 5.2 

and Appendix, Figure B.5 and Figure B.7). For instance, ntree ranged from 5 up to 225, 

with the majority of the data sets requiring less than the default number of trees (i.e. 

ntree = 100).  

Indeed, 75 % of the data sets required 84 trees or less to improve imputation accuracy, 

while median values for mtry were similar (Nvar = 5) or higher (Nvar > 5) than the default 

value (Table 5.2). Quantitative improvements in NRMSE values were, in general, smaller 

than 0.25 and relatively unaffected by the rate of missing data and the default 

performance for both methods (Figure 5.6). On average, the absolute decrease in 

NRMSE values between the default and optimised imputation settings was 0.05 ± 0.05 

(N = 144) for both methods.  
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Table 5.2: Summarising statistics for the optimised hyperparameter values of mF. 

Optimised values were determined for the six classes of missing data (0.01, 0.05, 0.1, 0.2, 0.5 and 

0.75), represented by two repetitions of each possible combination of sample size (number of 

instances) and dimensionality (number of variables), hence a total of 144 data sets. In general, the 

majority of the data sets benefit when imputation is performed with less individual trees (ntree) 

and more variables to be considered for each split (mtry). 

 Default Min Q1 Median Mean Q3 Max 

ntree 100 5 25 50 62 84 225 

mtry (Nvar = 5) 2 1 1 2 2 3 4 

mtry (Nvar = 10) 3 1 2 3 4 5 9 

mtry (Nvar = 15) 3 2 4 6 7 9 14 

nodesize 1 1 1 2 2 2 6 

 

 

Figure 5.6: Error reduction following optimisation of hyperparameter settings of the kNN 

and missForest algorithm. The difference is calculated as the NRMSE value after optimisation 

minus the NRMSE value in case of default settings (Baseline NRMSE). The horizontally grey dotted 

line represents the reference condition (i.e. no change in NRMSE), with symbols below it reflecting 

an improvement of performance and symbols on it reflecting a steady state. Selected 

hyperparameters included the number of neighbours (kNN) and the number of individual trees, 

number of variables to be considered for each split and final nodesize for missForest (mF). 
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5.4 Discussion 

5.4.1 Performance evaluation 

The high degree of stability obtained by imputing the mean value (mean) illustrates its 

reliability as it is hardly affected by the degree of missing data, the number of instances, 

nor the number of variables. Along with its simplicity and low computation times, mean 

represents a pragmatic imputation method, though performed worst in this comparative 

study despite outperforming other methods in literature (Shrive et al., 2006). When 

facing high degrees of missing values (fMD > 75 %), mean appears to become a valid 

approach, potentially due to the lack of sufficient information for ls, kNN and mF. Yet, 

imputing high rates of missing values greatly affects the estimation of population 

statistics and associations (García-Laencina et al., 2010; Little and Rubin, 2002; Penone 

et al., 2014), which increases the chance of imputing values that deviate strongly from 

the actual value, as illustrated by the increased error for ls, kNN and mF. Still, mean 

imputation narrows the variable’s distribution and results in an underestimation of the 

standard deviation and the population’s variance, thereby additionally affecting 

subsequent analyses like PCA and habitat suitability model development (Brock et al., 

2008; Liew et al., 2011).  

Narrowing causes more distant values to become underrepresented and, hence, 

potentially ignored during model development, inhibiting both the interpretation of 

descriptive models and the extrapolation of predictive models. Therefore, some authors 

support the idea of considering data imputation and model performance at once, as 

higher imputation accuracy does not necessarily warrant improved model performance 

(Brock et al., 2008; García-Laencina et al., 2010; Luengo et al., 2012). However, this 

should be done with care as it might favour conservative imputation approaches, 

thereby artificially inflating performance metrics. 

Along with mean, ls is not subject to hyperparameter-tuning and is only limitedly 

affected by the number of iterations to be performed. Despite the iterative approach, ls 

provides visually similarly performance as mF and kNN at low degrees of missing data 

(fMD ≤ 20 %), while outperforming kNN at higher degrees of missing data (fMD ≥ 50 %). 

However, in spite of the global approach of ls (Bø et al., 2004), computation time 

remains tends to increase greatly along the degree of missing values. Hence, a 

multivariate regression approach provides a promising perspective for imputing 

multidimensional environmental data, especially when extension beyond linear 

associations is possible (e.g. GLM-based).  
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Being outperformed by ls and mF at high levels of missing values classifies kNN as an 

intermediately performing method, thereby complying with literature (Celton et al., 

2010; Schmitt et al., 2015). Moreover, at low degrees of missing data, mF tends to provide 

significantly better performance than kNN, indicating that, under default 

hyperparameter settings, mF provides overall better performance.  

The power of mF resides in the combination of several individual trees (i.e. a bagged 

imputation technique) and an iterative approach that allows to update the imputed 

values (Waljee et al., 2013), hence explaining the high computation times required for 

mF. Clearly, mF requires more time than mean, ls and kNN, except at high levels of 

missing data (fMD > 50 %), due to combining global and local associations. The observed 

reduction in computation time as more data became missing is a potential consequence 

of reduced dimensional space, providing a basis for a trade-off analysis between required 

data dimensionality and computational time. Contrasting this decrease, kNN shows an 

increase in computation time, which is a potential consequence of requiring a more 

intensive search for imputing all missing data points and finding the appropriate 

neighbours.  

In short, mF, kNN and ls provide relatively low overall imputation errors at low levels of 

missing data (even without optimisation of mF and kNN), demonstrating that a single-

best approach does not exist (Brock et al., 2008; Celton et al., 2010; Liew et al., 2011). 

For instance, mF provides overall relatively high accuracies, yet when computation time 

is restricted, ls represents a valid alternative at low rates of missing values.  

5.4.2 Sample size and dimensionality 

Alterations in sample size and dimensionality provided the expected pattern of reduced 

performance following a decrease in either sample size or dimensionality. Indeed, 

negative coefficients of the main effects were obtained (see Appendix, Table B.6 and 

Table B.7), reflecting a general decrease in error when sample size and/or dimensionality 

is increased. Effects differed among the imputation methods, but were generally 

stronger for kNN. Consequently, these observations suggest that removal of instances or 

variables prior to data imputation is only to be considered when additionally providing 

a reduction in the fraction of missing data. Similarly, inclusion of additional instances 

and/or variables is only beneficial when the degree of missing values does not increase, 

as this counteracts the positive effect of augmented sample size and dimensionality. 

Moreover, depending on the type of data included, error reduction might be relatively 

limited. For instance, introduction of typological data had a minor effect on imputation 

performance and even caused higher errors to occur (see Appendix, Figure B.1). Yet, 

when high errors are expected (e.g. at high levels of missing data), additional data can 

support slightly better performance. 
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5.4.3 Fine-tuning via optimisation 

In contrast to mean and ls, both mF and kNN make use of hyperparameters to support 

data imputation. Performance of mF is affected by various hyperparameters, including 

number of trees (ntree), number of variables for each split (mtry) and the nodesize to be 

considered, while kNN is only affected by knn, reflecting the number of neighbours for 

calculating the weighted average. Results showed that optimisation is highly case-

specific (see also Appendix B.3) as hyperparameter settings and related performance rely 

on the intrinsic correlations within the data (Brock et al., 2008). Consequently, no 

specific set of hyperparameter settings can be specified, yet some general guidelines for 

alternative settings can be inferred: 

1. The rate of missing data affects the optimal number of neighbours of kNN. Low 

rates (up to 10 %) will perform well with the default value of knn = 5 and a search 

range of ± 5. Intermediate rates (20 %) can be centred around knn = 10 with a 

range of ± 10. Lastly, high rates (50 % and up) cover a wide range of potential 

optimal values, yet a starting point could be knn = 15 with a range of ± 10. 

2. The number of individual trees can be slightly reduced, with a positive impact on 

computation time. For instance, ntree = 80 can be considered as starting point, 

decreasing computation time by 20 %, due to its linear relationship with ntree 

(Stekhoven and Bühlmann, 2012).  

3. The number of variables to be considered for each split can be increased. For 

instance, the square root of the original number of variables can be replaced by 

division by 2.  

4. Nodesize is relatively irrelevant when aiming to obtain improved accuracy. It 

might, however, reduce complexity and increase transparency of individual trees 

and should only be altered if interpretability is an additional goal. 

Nevertheless, performance can be improved for both mF and kNN (∆𝑁𝑅𝑀𝑆𝐸 = -0.05 ± 

0.05), represented by a maximum absolute difference in NRMSE up to 0.35 and 0.34, 

respectively. These improvements are similar regardless the degree of missing data nor 

the applied method, suggesting that the original difference in performance remains 

present with overall best imputation accuracy provided by mF. Still, despite the 

increased performance, methods without an optimisation-option or already including 

optimisation might be favoured over mF and kNN, solely because of the additional 

increase in computation time of the latter (Brock et al., 2008).  
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5.4.4 Implications for field-based research 

A potentially interesting consequence of these observations represents the possibility to 

allow incomplete data to be present within the assessment data set, supporting the 

collection of more instances and/or variables. Likewise, data collection campaigns can 

be designed to randomly select data points that can be excluded during sampling as a 

way to save both time and money. For instance, assuming that the collection of each 

data point is equally expensive and time consuming, increasing the number of instances 

from 8 000 with 5 % missing data to 12 000 with 10 % missing values, allows that within 

the collected 4 000 instances 20 % of the values are missing, representing about 800 

data points. Collection of information on all data points (hence no missing data) within 

the same time and budget, would limit the amount of instances to be collected to 3 200. 

Hence, a proper design allows for more information to be collected by allowing a certain 

degree of missing values, preferably assigned randomly in advance. Including variable-

specific information related to costs and timing allows for testing multiple random 

missingness schemes in order to optimise the time-budget-information nexus. Yet, one 

should always be aware that data imputation does not legitimately equals proper data 

collection and that each imputation causes a distortion of the hidden patterns (Nogueira 

et al., 2007). Hence, results obtained through data imputation should be interpreted 

with care, as these distortions can range from being relatively small (e.g. minor changes 

in variable correlations with an overall low NRMSE) up to being disruptive (e.g. 

decreasing variable range with 50 %). Yet, the performed case studies suggested that 

only imputation of the mean created distinct changes in variable distributions, although 

the extent of most variables might have masked smaller distortions (see Appendix B.4). 

Nevertheless, the complete absence of missing values in publicly available data is hard 

(if not impossible) to obtain as the amount of data continues to increase along with the 

pressure to make data publicly available (Gibert et al., 2018a). Yet combining data from 

different research questions unavoidably leads to missing values as a consequence of 

not-recording. Moreover, even though continuous monitoring is becoming less budget-

intensive, it is often affected by (i) low temporal resolution and (ii) defects, which create 

gaps within time series that limit the capture of variable dynamics and frequency 

distributions (Giustarini et al., 2016). In contrast, funds for specific environmental 

monitoring campaigns are decreasing globally and highlight a need for (i) cheaper 

monitoring technology and (ii) well-structured data sets with appropriate commentary 

(Sprague et al., 2017). This illustrates the need within the water management sector for 

imputation techniques to avoid both information and investment loss.  
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5.4.5 Contribution to the study objective 

The aim of this chapter was to elucidate the differences between a selection of available 

imputation techniques in order to tackle the relatively high degree of missing data in 

the physicochemical data enclosed in the Limnodata Neerlandica. Throughout the 

chapter, a collection of complete data sets were derived from the original database and 

exposed to artificial random data point removal in order to infer technique-specific 

imputation errors. Moreover, by considering a variety of potential data set dimensions, 

a more pronounced basis was created to bring forward a specific imputation technique 

for further data cleaning within the overall study objective (see Section 1.2.1). It should 

remain clear that this chapter contributes mostly to the overall study objective, while 

providing suggestions for application outside the considered framework. More 

specifically, it is recommended to perform similar analyses with different combinations 

of environmental variables to support empirical technique selection. 

The chapter provides a solution for the high degree of missing data (93.7 %, see Section 

4.2.1.3) that occurs within the combined physicochemical and macrophyte occurrence 

data. As this was mostly caused by variables with hardly any information (i.e. only 6 

variables contained information for more than 50 % of all instances), a reduction in the 

number of variables positively affected the overall degree of missing data. Yet, variable 

reduction aiming to obtain only complete cases caused an unwanted reduction in the 

dimensionality of the observed environmental domain. Hence, the imputation of 

missing data based on available data provided an alternative solution. 

The selection of imputation techniques was limited to the methodologies that provided 

single-value imputation, i.e. providing a single complete data set after replacing the 

missing data points. More advanced multiple-value approaches exist, though these often 

require the individual analysis of each new data set (Faris et al., 2002; Lee and Carlin, 

2010; Schmitt et al., 2015). As the main study aim entailed the development of several 

species-specific models, such multiple imputation would increase the computation and 

analysis time tremendously. Therefore, a selection of single-value techniques was made 

based on literature and technique-specific characteristics.  

In general, technique application supported the expectations at the level of (i) data set 

characteristics and (ii) technique-specific characteristics. For instance, increased data 

dimensionality and sample size positively affected imputation accuracy, while lowest 

imputation errors were mostly obtained by random forests. Moreover, the latter 

provided better performance than mean imputation for fMD values up to 50 %. Therefore, 

the missForest technique is considered for subsequent imputations, while aiming to 

reduce the degree of missing data to 50 % (being below the 90 % reported by Madley-

Dowd et al. (2019)). 
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5.5 Conclusion 

Four imputation methods with different degrees of application complexity were 

selected, providing a mix of transparent and so-called black-box methods while 

simultaneously representing well-known and more recent methods to impute 

environmental data. This selection is far from exhaustive, but provides a sound addition 

to the data pre-processing options when dealing with environmental data. The results 

showed that the random-forest based missForest algorithm outperforms other methods, 

while the regression-based least squares and similarity-based k nearest neighbours 

approaches provide valid alternatives when computation time is restricted and less than 

20 % of the data is missing. Moreover, imputation accuracy improves when (1) more 

variables are included rather than adding instances and (2) an iterative procedure of 

hyperparameter optimisation is conducted. It has to be noted, however, that the 

comparative nature of this study is limited by the fact that both temporal and logical 

data were not included, aside from the assumption that the missing data mechanism 

reflects a missing completely at random (MCAR) design, yet similar results are to be 

expected for missing at random (MAR). Despite these limitations, valuable observations 

across different conditions (sample size and dimensionality) were obtained, supporting 

future data pre-processing within the field of environmental data analysis and habitat 

suitability model development. 
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Speed-performance trade-off  

in threshold selection during  

data pre-processing4 

  

                                                 
4 This chapter is based on Van Echelpoel, W.; Bruneel, S. and Goethals, P. L. M. (in preparation) Speed-

performance trade-off in threshold selection during data pre-processing 

Highlights 

- Eliminating outliers and redundant variables decreased model performance 

- Avoiding false absences improved model performance 

- Data removal supported faster model development 

- Combinatory data pre-processing increased performance and computation time 
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Abstract 

Real-world data requires cleaning prior to performing in-depth analyses and concluding 

on qualitative results. During data cleaning, associations among variables are analysed, 

the reliability of recorded values is registered and irrelevant or erroneous data are 

removed. This positively affects the quality of the training data, despite requesting 

tremendous temporal and budgetary investments, by improving the discoverability of 

patterns within it, thereby supporting the development of accurate and simple models. 

Progress in the field of data mining increases rapidly, yet mainly focuses on specific and 

novel data mining techniques rather than optimising data preparation, causing an 

artificial mismatch between the supplied low-quality data and the demanded high-

quality data. Here, four different data pre-processing options are introduced and 

discussed. Outliers, false absences and variables that are correlated or irrelevant are 

identified and excluded from the training data to infer the effect of data pre-processing 

on conditional random forest performance and required computation time. Each 

method is characterised by a user-defined threshold, causing results and conclusions to 

be highly case-dependent. A visual trade-off analysis of model performance, required 

computation time and data set characteristics supported the identification of thresholds 

for the elimination of outliers (τo = 3), false absences (τa = 5 %), correlated variables (τc 

= 0.7) and irrelevant variables (τi = 10 %). Serial combinatory data pre-processing 

improved model performance with net AUC increases up to 0.1, though simultaneously 

caused a drastic increase in computation time. Nevertheless, final model performance 

ranged up to AUC values equal to 0.85 and increased even more when the external test 

data was devoid of false absences. These results indicate that overall data pre-processing 

positively affects model performance at the expense of computation time and that niche-

based exclusion of false absences is crucial to comply to the equilibrium assumption 

within correlative habitat suitability modelling. Moreover, they illustrate that the 

abovementioned thresholds can be used in future studies, while highlighting that 

inclusion of the implemented threshold within scientific reports is essential to improve 

replicability. 
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6.1 Setting the scene 

Chapter 5 already illustrated how missing values within environmental data sets could 

be tackled. Yet, additional actions are needed to perform proper data cleaning prior to 

deriving qualitative results (Gueta and Carmel, 2016; Zhang et al., 2003). Data cleaning 

positively affects the quality of the training data by improving the discoverability of 

patterns within it, thereby supporting the development of accurate and simple models 

(Kotsiantis et al., 2006; Maldonado et al., 2015). Progress in the field of environmental 

data mining has been increasing rapidly, with a main focus on the development of 

specific and novel techniques (Zhang et al., 2003). The resulting delayed interest in the 

value of qualitative data has steered the improved awareness on data importance and 

has increased the application and development of data pre-processing methods. 

Unfortunately, comparative studies and detailed analyses of the effect of data pre-

processing thresholds on data availability and model performance remain rare. 

On the one hand, noise introduced by outliers distorts the factual representation of 

environmental ranges caused by artificial range extension. The nature of these outliers 

ranges from natural variability to erroneous notation and can lead to reduced model 

accuracy. More specifically, outliers related to reported species presence create a basis 

to overestimate (1) the species’ realised niche and (2) the potential geographical 

distribution (Lobo et al., 2010; VanDerWal et al., 2009). Implementation of outlier 

identification varies among studies due to a lack of guidelines and comparative research. 

For instance, Gobeyn et al. (2017) applied visual inspection of box plots, histograms and 

dot plots to identify outliers in a subjective manner, while VanDerWal et al. (2009) 

considered a range of environmental extents to determine the best-performing one.  

Opposite of eliminating outliers stands the identification of ambiguous information 

among highly similar instances. For example, false absences caused by non-detection of 

a rare species or non-occupation of a suitable habitat due to dispersal limitation 

insinuate an unsuitable habitat (Anderson and Raza, 2010). Similarly, false presences 

due to misidentification or a lagged response to altered conditions have the potential to 

untruly extend the species’ realised niche (Lobo et al., 2010). Generally, efforts to avoid 

the inclusion of false absences and presences is biased towards the former as most 

studies rely on the assumption that the error among recorded presences is negligible (up 

to non-existing). False absence rates are expected to be higher than false presence rates 

due to a complex interplay of biotic interactions, historic events, dispersal limitations 

and dynamic physiological processes, making it hard to confirm true absences (Lobo et 

al., 2010). Consequently, most occurrence-based species distribution studies make use 

of pseudo-absences rather than true absences to contrast confirmed presences (Chefaoui 

and Lobo, 2008; Phillips et al., 2009). These pseudo-absences entail all locations where 

species have not been observed, thereby combining both true and false absences. 



CHAPTER 6 

132 

On the other hand, irrelevant and correlated variables have limited value in correlative 

model development as they increase data dimensionality, required computation time 

and model complexity (Kotsiantis et al., 2006). Identification of relevant variables relies 

on expert knowledge or on preliminary correlative model(s) and subsequent assessment 

of variable importance. Reduction of data dimensionality and model complexity by 

eliminating irrelevant variables is claimed not to significantly affect model accuracy. For 

instance, Fox et al. (2017) studied the effect of score-based variable selection on model 

performance and observed that in the case of random forests, no significant change in 

performance was noted. This illustrates that variable selection mostly aims at complexity 

reduction (i.e. model regularisation) rather than improving accuracy.  

Analogously, correlated variables represent similar information and indicate that model 

complexity can be reduced by selecting either one. Often, this selection is based on 

ecological knowledge, relation with the response variable or even variable importance. 

For instance, Forio et al. (2018) considered the degree of missing data as basis for 

correlated variable removal, while Sauer et al. (2011) relied on expert knowledge to 

determine which variable to retain. Within occurrence-based species distribution 

studies, frequently applied correlation threshold values for input variable selection vary 

between 0.7 (e.g. Gobeyn et al. (2017), Van Echelpoel and Goethals (2018)) and 0.8 (e.g. 

Forio et al. (2018), Sauer et al. (2011)), though often no strict threshold is reported. 

A common characteristic among these pre-processing techniques, is the inclusion of one 

(or more) technique-specific threshold(s). These thresholds need to be defined by the 

user prior to technique implementation, while affecting the final result. Still, despite the 

widespread application of data pre-processing in ecological research, effects of data 

cleaning, threshold value selection and combinatory data pre-processing on both model 

performance and computation time remain relatively understudied (Gueta and Carmel, 

2016). Moreover, threshold values are only limitedly reported and often case-specific, 

underlining the need for a solid conceptual framework to support decision-making 

(Kotsiantis et al., 2006; Zhang et al., 2003). 

Within this chapter, attention is given to four data pre-processing techniques to select 

instances or variables. The aim is to assess the effects of technique-specific threshold 

selection on model performance and the required computation time and to suggest a 

single threshold for future combinatory data pre-processing. More specifically, this 

chapter complies to objective 2.2 as defined in Chapter 1 and completes the answer to 

RQ2.1. Hence, this chapter concludes with a statement on the suggested technique-

specific threshold values to be used for data quality improvement and future model 

development. These values are not claimed to be the holy grail for all future 

environmental data science projects. Rather, this study provides an illustration of how 

threshold selection can be performed.  
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6.2 Materials and method 

6.2.1 Characterisation of the data 

Data within the Limnodata Neerlandica was subsampled to contain spatiotemporally 

referenced observations of macrophytes and the prevailing physicochemical conditions 

(see Section 4.2.3.2), providing information on 4344 instances, 174 variables and 576 

macrophytes (Figure 4.3). Physicochemical data was characterised by a high number of 

variables that contained limited information, causing a high degree of missing values 

(93.7 %) and therefore requiring further reduction. The degree of missing data was 

reduced to 49.7 % (with 50 % being considered manageable for imputation, see Chapter 

5) by stepwise removal of the variable or instance that contributed most to the overall 

reduction, providing information on 4158 instances and 20 variables (see Appendix, 

Figure C.1 and Table C.1). Subsequently, missing data was imputed by using the 

missForest algorithm with default settings (see Chapter 5).  

For each instance, a presence/absence statement reflecting macrophyte occurrence was 

available, yet overall prevalence was often below 2.4 % (i.e. 100 instances in total). These 

low-prevalence macrophytes were left out, while remaining macrophytes were double-

checked for representing plants with a main aquatic life-stage. This resulted in a final 

data set of only 58 different macrophyte species, along a prevalence range between 2.4 

and 41 %. Analyses were performed for all macrophytes, yet for brevity reasons a subset 

of five macrophytes was selected, covering (1) the observed prevalence range (2.4-41 %), 

(2) different growth forms (emergent, submerged and floating) and (3) origin (native, 

alien), being presented in Table 6.1 (and Appendix, Table C.2). Data preparation and all 

subsequent calculations and modelling activities were performed in RStudio (R Core 

Team, 2016; RStudio Team, 2015), while making use of the packages missForest, party 

and PresenceAbsence (Freeman and Moisen, 2008a; Stekhoven, 2013; Strobl et al., 

2009a). 

Table 6.1: Characterisation of the macrophyte subset. Five macrophytes were selected to 

cover the observed prevalence range, different growth form and origin. Note that origin here is 

considered for western Europe in general and that classification into native or alien is highly 

dependent on the considered timeframe. 

Macrophyte Prevalence (%) Growth form Origin 

Phragmites australis 41 Emergent Native 

Lemna minor 27 Floating Native 

Ceratophyllum demersum 18 Submerged Native 

Mentha aquatica 11 Emergent Native 

Lemna minuta 3 Floating Alien 
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6.2.2 Preliminary assessment 

Based on the abovementioned data set, a preliminary study was implemented to 

determine the minimum number of trees (ntree) to be developed within the conditional 

random forest (CRF) as well as the number of repetitions to be carried out (n_rep). First, 

ntree was defined to range between 50 and 1000 (step size equal to 50) to infer the 

stabilisation point of the developed forest. Secondly, the influence of repetitions on 

variance reduction was examined up to 30 repetitions, aiming to define the number of 

required repetitions for the AUC stabilisation. For each parameter, visual assessment 

was performed to infer the stabilisation point and, hence, which values to use for 

subsequent analyses. Due to the this specific construction, a total of 𝑘𝑐𝑣 ∙ 𝑛_𝑟𝑒𝑝 

individual AUC scores was obtained (with kcv = 5 representing the cross-validation) and 

combined into an overall AUC score. 

6.2.3 Data pre-processing techniques 

With the settings inferred from the preliminary assessment, CRFs were developed, 

which involved the testing of the effect of further data pre-processing on model 

performance. Due to the specific construction of the random forest algorithm, it is 

expected that the inclusion of both outliers and correlated variables has a limited effect 

(Breiman, 2001; Fox et al., 2017; Vezza et al., 2015). However, the reduction of incorrect 

and irrelevant information improves model regularisation by reducing model 

complexity and therefore relies on the trade-off between data and model complexity. 

Consequently, model regularisation encompasses appropriate instance and variable 

selection (i.e. identifying and eliminating outliers, false absences, correlated and 

irrelevant variables). 

6.2.3.1 Selection of instances 

Detection of outliers 

Practical implementation of outlier identification and removal starts with considering 

the original 𝑁𝑖𝑛𝑠𝑡 × 𝑁𝑣𝑎𝑟 dataset (D) and creating a new, equally-dimensioned matrix O. 

For each variable Xj (j ≤ Nvar) the first and third quartile are defined (Qj,1 and Qj,3, 

respectively) as well as a user-specified range threshold (τo,j). Subsequently, Equation 6.1 

is applied to di,j (∈ D) and an outlier dummy score (1 if considered outlier, 0 if not) is 

assigned to oi,j (∈ O). Finally, outlier dummy scores are summed for each instance, 

causing instances that exceed the pre-specified threshold αo (i.e. ∑ 𝑜𝑖,𝑗 ≥ 𝛼𝑜
𝑁𝑣𝑎𝑟
𝑗=1 ) to be 

removed from the data set.  

To assess the effect of range selection, τo,j was set to range from 0 (high degree of 

removal) up to 15 (low degree of removal) with a step size equal to 1, without being 

variable-specific (i.e. τo,j = τo). Meanwhile, αo was fixed to 1, reflecting the idea that an 

instance with an outlier score in 1 variable becomes less reliable and should, therefore, 

be removed from the data. 
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𝑜𝑖,𝑗 = {

1,      𝑑𝑖,𝑗 < 𝑄𝑗,1 − 𝜏𝑜,𝑗 ∙ (𝑄𝑗,3 − 𝑄𝑗,1)                                                        

0,       𝑄𝑗,1 − 𝜏𝑜,𝑗 ∙ (𝑄𝑗,3 − 𝑄𝑗,1)  ≤  𝑑𝑖,𝑗 ≤ 𝑄𝑗,3 + 𝜏𝑜,𝑗 ∙ (𝑄𝑗,3 − 𝑄𝑗,1) 

1,      𝑑𝑖,𝑗 > 𝑄𝑗,3 + 𝜏𝑜,𝑗 ∙ (𝑄𝑗,3 − 𝑄𝑗,1)                                                        

   (Equation 6.1) 

With di,j the value of the j-th variable of the i-th instance, oi,j the outlier dummy score of 

di,j, Qj,1 the first quartile of the j-th variable, Qj,3 the third quartile of the j-th variable and 

𝜏𝑜,𝑗 the user-specified threshold for the j-th variable. 

Detection of pseudo-absences 

Instance selection based on false absence identification started with the separation of 

presences and absences. Based on the absence data set Dabs (𝑁𝑎𝑏𝑠 × 𝑁𝑣𝑎𝑟) a new, equally-

dimensioned matrix A is created. For each variable Xj (j ≤ Nvar) distribution percentiles 

(𝑃𝜏𝑎,𝑗
2

 and 𝑃
(1−

𝜏𝑎,𝑗
2
)
) of the occupied environmental domain (i.e. presence data set, Dpres) 

are defined, including a user-specified range threshold (𝜏𝑎,𝑗). Subsequently, Equation 

6.2 is applied to di,j (∈ Dabs) and an absence dummy score (1 if considered potential true 

absence, 0 if not) is assigned to ai,j (∈ A). Finally, absence dummy scores are summed 

for each instance, causing instances that exceed the pre-specified threshold αa (i.e. 

∑ 𝑎𝑖,𝑗 ≥ 𝛼𝑎
𝑁𝑣𝑎𝑟
𝑗=1 ) to be maintained in the absence data set. This approach is visualised in 

Figure 6.1 for two variables, but can be easily extended to higher dimensions. Lastly, the 

presence and updated absence data are merged into a single data set for model training. 

 

Figure 6.1: Illustration of the false absence concept. Each absence can be classified as a true 

absence, a potentially true absence or a false absence when related to occupied environmental 

niche. A: Situation of observed absences along two environmental gradients (X1 and X2) with 

respect to the observed environmental domain (light grey) and occupied environmental domain 

(dark grey). B: Classification of the observed absences from (A) based on being true or false in the 

individual environmental gradients. The value of 𝜏𝑎 determines the extent of the occupied range in 

(A), while the value of αa influences which potential true absences from (B) are ultimately included 

in the model training data. 
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To assess the effect of range selection, 𝜏𝑎,𝑗 was set to range from 0 (high degree of 

removal) up to 0.15 (low degree of removal) with a step size equal to 0.01, without being 

variable-specific (i.e. 𝜏𝑎,𝑗 = 𝜏𝑎). Meanwhile, αa was fixed to 1, reflecting the idea that an 

instance with an absence score in 1 variable is situated outside the realised 

environmental niche and should be kept in the data set. Hence, potential true absences 

are included in the resulting absence data set (see Figure 6.1) and subsequently used as 

training data. 

𝑎𝑖,𝑗 =

{
 
 

 
 1,      𝑑𝑖,𝑗 < 𝑃𝜏𝑎,𝑗

2

                          

0,      𝑃𝜏𝑎,𝑗
2

 ≤  𝑑𝑖,𝑗 ≤ 𝑃
(1−

𝜏𝑎,𝑗
2
)
  

1,      𝑑𝑖,𝑗 > 𝑃
(1−

𝜏𝑎,𝑗
2
)
                  

      (Equation 6.2) 

With di,j the value of the j-th variable of the i-th instance, ai,j the absence dummy score 

of di,j, 𝑃𝜏𝑎,𝑗
2

 the lower percentile of the j-th variable, 𝑃
(1−

𝜏𝑎,𝑗
2
)
 the upper percentile of the j-

the variable and τa,j the user-specified threshold for the j-th variable.  

6.2.3.2 Selection of variables 

Identification of correlated variables 

Correlation-based dimensionality reduction starts by considering the original 𝑁𝑖𝑛𝑠𝑡 ×

𝑁𝑣𝑎𝑟 dataset (D) and the construction of a 𝑁𝑣𝑎𝑟 ×𝑁𝑣𝑎𝑟 correlation matrix C. For each 

variable Xj (j ≤ Nvar), the Pearson correlation coefficient with variable Xi (i ≤ Nvar) is stored 

in ci,j (with special cases cj,j = 1 and ci,j = cj,i). Subsequently, variable pairs with a 

correlation score exceeding the threshold value (τc) are identified and individually 

correlated with the response.  

Here, the variable with the highest correlation with the response was maintained in the 

data set. In short, the procedure as shown by Algorithm 6.1 was applied. To assess the 

effect of correlation threshold selection, τc was set to range from 0.25 (high degree of 

removal) up to 0.95 (low degree of removal) with a step size equal to 0.05. 

Algorithm 6.1: Correlation-based variable removal 

Calculate correlation matrix C from dataframe D 

FOR each element c in C 

IF element c is greater than or equal to correlation threshold τc 

Store unique variable-variable combination in an overall list L 

END if 

END for 

Sort list L according to decreasing correlation score 

FOR each instance in list L 

Determine correlation of each variable with response 

Remove variable with lowest correlation from L and D 

END for 
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Identification of irrelevant variables 

The identification of irrelevant variables contrasts the straightforward correlation-based 

variable selection as it requires the development of a basic model to derive the 

importance scores of the incorporated variables. More specifically, variable importance 

was derived by developing CRFs and assessing the decrease in accuracy following 

permutation of the variable values, with higher scores being assigned to more important 

variables. As patterns and type of information differed among species, model-specific 

importance scores are divided by the highest obtained importance score and 

subsequently checked against a user-specified threshold (τi). All variables with a relative 

importance score below the threshold are consequently removed from the dataset (see 

Algorithm 6.2). To assess the effect of threshold selection, τi was set to range from 0 (low 

degree of removal) up to 0.5 (high degree of removal) with a step size equal to 0.05.  

Algorithm 6.2: Importance-based variable removal 

Develop basic model m 

FOR each variable in D 

Derive variable importance scores from m 

Calculate relative variable importance 

IF relative importance is lower than threshold τi 

Remove variable from D 

END if 

END for 

 

6.2.4 Computation time and threshold selection 

Improvement of data quality by eliminating instances and variables affects computation 

time in two ways: (1) it increases the time needed to prepare the data and (2) it 

potentially decreases the time needed to develop the individual model. To assess the 

consequences of abovementioned techniques, computation time was registered for the 

overall procedure including data preparation and model development as well as for the 

application of the model-developing algorithm. Hence, computation time for algorithm 

application reflects the average of all repetitions of 5-fold cross-validated models. In 

contrast, total time reflects the time needed to prepare the data and create repetitions 

of 5-fold cross-validated models, hence providing a single value per macrophyte. 

For each technique, the effect of threshold selection on performance and time were 

visually assessed for the previously selected macrophytes (see Table 6.1), resulting in the 

suggestion of a single, technique-specific threshold value to be used. Subsequently, 

models were developed for all 58 macrophyte species, applying data preparation by 

combining the abovementioned techniques in the following order: (1) outlier removal, 

(2) false absence identification, (3) correlated variable removal and (4) irrelevant 

variable removal.  
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6.3 Results 

6.3.1 Preliminary assessment 

Range analysis for the hyperparameter ntree showed that model performance is only 

limitedly affected by the number of trees, with relatively stable performance along the 

studied range (Figure 6.2). Variability in performance increased with decreasing number 

of training instances (i.e. macrophyte prevalence), though hardly changed with 

increasing values of ntree. Therefore, a relatively low value (with respect to the default 

value ntree = 1000) can be selected to reduce the required calculation time. For instance, 

at ntree = 200 model performance is relatively stable (Figure 6.2), while reducing the 

model development time by 80 % due to the linear dependency between computation 

time and ntree (Stekhoven and Bühlmann, 2012). This value was considered for all 

further analyses and supported by the work of Oshiro et al. (2012), illustrating a limited 

increase of AUC above ntree = 200. 

 

Figure 6.2: Model performance in function of the number of individual trees developed 

within the random forest. Stability of performance (black line) can already be observed from 

200 trees onward (dashed grey line), except for L. minuta. Variability in performance between 

folds (indicated as standard deviation in grey) is considered to be limited, though tends to increase 

as the number of training instances decreases, as illustrated by higher variability for L. minuta 

compared to P. australis. 

Similarly, including more repetitions to reduce overall variability in model performance 

already shows to be effective at low numbers of repetitions (Figure 6.3). For instance, 

after 7 repetitions the average performance related to P. australis and L. minor remains 

stable, while for M. aquatica and L. minuta some variability can still be observed. 

Variability in model performance among repetitions is higher for macrophytes with a 

lower number of training instances, and tends to remain relatively stable with increasing 

number of repetitions (Figure 6.3). Based on these observations, an overall guideline for 

number of repetitions within this study can be set on 10. 
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Figure 6.3: Model performance in function of the number of model repetitions. Stability of 

performance (black line) can already be observed from 10 repetitions onward (dashed grey line). 

Overall, variability in average performance (indicated as standard deviation in grey) is limited, but 

tends to increase as the number of training instances decreases. 

6.3.2 Individual pre-processing 

6.3.2.1 Instance-based removal 

Excessively deviating instances were removed from the dataset for τo values ranging 

between 0 and 15. Generally, a decrease in model performance is obtained by outlier 

removal, yet shows to be relatively stable as soon as the most excessive outliers are 

removed (i.e. 15 < τo < 10). Further threshold reduction (τo → 5) considers more instances 

to be outliers, though causes only limited reduction of model performance for P. 

australis, L. minor and C. demersum, while models for M. aquatica and L. minuta already 

indicate a performance decrease when τo drops below 7. Overall, the effect of outlier 

removal on model performance is relatively limited, with a maximum decrease in AUC 

of 0.05 (C. demersum, see Figure 6.4).  

In contrast, required computation time continuously decreases over the applied range 

for τo, showing a larger initial effect for P. australis compared to the other macrophytes. 

Moreover, time reduction shows a dependency on data availability with a gradual 

reduction for P. australis and a more abrupt reduction for L. minuta for τo-values smaller 

than 5. Similar patterns are observed for overall computation time, including the 

dependency on data availability (see Appendix, Figure C.6). For instance, an overall 

beneficial effect of outlier removal is observed for P. australis, while model development 

for L. minuta indicates to be negatively affected. In order to avoid an excessive 

performance decrease for low data-availability species, while already providing a 10-30 

% reduction in computation time for high data-availability species, a threshold value of 

τo = 3 can be derived, resulting in a removal of about 760 instances (see Appendix, Figure 

C.2). 
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Figure 6.4: Effect of outlier-based instance removal on model performance and 

computation time. Removal of outliers has, at first, a limited effect on performance and 

computation time (except for P. australis). A slight decrease in performance is observed when more 

deviating values are considered as outliers (τo → 0), while causing the required computation time 

to decrease. A visual trade-off between performance and computation time supports a threshold of 

τo = 3 (dashed grey line). Performance analyses for all 58 species can be found in Appendix, Figure 

C.7 and Figure C.8. 

The removal of false absences provides a positive effect on model performance, with 

AUC values increasing as τa decreases, without reaching a plateau (Figure 6.5). As the 

threshold becomes more strict (i.e. τa → 0 %), performance keeps increasing up to net 

AUC improvements of 0.2 (L. minor). In general, patterns among macrophytes are 

relatively similar and show performance improvements for conservative threshold 

values (i.e. τa = 15 %), causing AUC scores to increase with about 0.05 (Figure 6.5). 

Similar analyses can be performed for the remaining macrophytes. 

In contrast, computation time assessment indicates the existence of a species-specific 

tipping point for τa, below which computation time decreases drastically. These tipping 

points are related to overall data availability after false absence removal. For instance, 

data for P. australis originally represents about 1700 presences and around 2600 

absences. As the threshold becomes stricter, more absences are removed, rising to 1000 

at τa = 7 % and 2000 at τa = 0 % (see Appendix, Figure C.3), which results in only 1600 

and 600 absences remaining, respectively. These absences are lower than the number 

of presences, which requires subsampling of the latter to create a balanced training set 

for model development. The resulting decrease in data size reduces the required 

computation time as less instances need to be classified.  



DATA PRE-PROCESSING 

141 

A similar pattern is present in overall computation time, additionally showing an 

increase when data availability is too low to support faster model development (e.g. L. 

minuta) (see Appendix, Figure C.6). Consequently, any threshold value will affect model 

performance positively, yet selecting low values for τa (e.g. τa < 5 %) not only improves 

performance, but also causes high numbers of instances to be eliminated (up to 1200 

instances, see Appendix, Figure C.3). A trade-off threshold value of τa = 5 % is suggested 

to avoid excessive removal. 

 

Figure 6.5: Effect of false-absence-based instance removal on model performance and 

computation time. A continuous increase in performance is observed for each macrophyte as the 

threshold becomes more strict. In contrast, computation time remains relatively stable at first, 

while a sharp decrease is observed for some macrophytes as τa decreases. A trade-off between model 

performance, computation time and the consequences of removing too much ambiguous instances 

provides a compromise at τa = 5 % (dashed grey line). Performance analyses for all 58 species can 

be found in Appendix, Figure C.9 and Figure C.10. 

6.3.2.2 Variable-based removal 

Correlated variables provide similar information, yet removal of these variables goes 

along with removal of information, illustrated by a decrease in model performance for 

decreasing correlation thresholds (Figure 6.6). At high threshold values (i.e. τc > 0.85), 

the reduction in performance remains relatively limited while at extremely low 

threshold values (i.e. τc < 0.40) a clear decrease in AUC values is observed due to the 

limited amount of shared information between limitedly-correlated variables.  
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Simultaneously, however, a gain in computation time is observed, following an overall 

dimensionality reduction within the search space caused by a decreased number of 

variables. The different plateaus observed within the time-specific graphs illustrate the 

inherent characteristics of the algorithm, selecting only a subset of all variables for each 

split within the tree. This number is based on the number of available variables and 

defined as 𝑚𝑡𝑟𝑦 =  √𝑁𝑣𝑎𝑟, being rounded to the lower integer. Hence, as soon as Nvar 

decreases sufficiently, mtry will drop with 1 unit, causing less variables to be selected 

and, consequently, less potential splitting points to be considered. Therefore, plateaus 

exist between each drop, as mtry does not change with every variable being removed.  

Similar patterns are observed for overall computation time, showing generally faster 

data pre-processing and model development, though patterns become less clear as data 

availability decreases (see Appendix, Figure C.6). Threshold selection based on these 

results is not straightforward, yet was chosen at τc = 0.70 to avoid removal of more than 

10 variables (see Appendix, Figure C.4). 

 

Figure 6.6: Effect of correlation-based variable removal on model performance and 

computation time. Removal of correlated variables has no straightforward effect on 

performance, though a limited effect on performance and computation time is observed at first (τc 

> 0.9). Required computation time decreases with variable removal and illustrates the 

characteristic plateaus related with algorithm settings. Selection of an intermediate threshold 

value (i.e. τc = 0.7) considers variables with a relatively high correlation. Performance analyses for 

all 58 species can be found in Appendix, Figure C.11 and Figure C.12. 

 



DATA PRE-PROCESSING 

143 

A reduction in performance is also observed following the removal of irrelevant 

variables. As the required contribution of each variable increases (i.e. τi → 50 %) AUC 

values decrease to reach a macrophyte-specific plateau (Figure 6.7) caused by many 

variables being removed (see Appendix, Figure C.5). Nevertheless, at low threshold 

values (i.e. τi < 10 %) model performance is hardly affected due to the removal of mostly 

irrelevant variables, while providing a minor decrease in computation time (1 to 6 %).  

Similar to correlation-based variable removal, computation time decreases when more 

variables are eliminated, reaching a species-specific plateau. However, overall 

computation time tends to increase as the calculation of variable importance requires 

an additional model to be developed, being the main contributor to the overall required 

time (see Appendix, Figure C.6). Threshold setting at τi = 10 % was supported by visual 

assessment of performance, computation time and number of variables being removed. 

 

Figure 6.7: Effects of importance-based variable removal on model performance and 

computation time. Removal of irrelevant variables has, at first, limited effect on performance 

and computation time. A clear decrease in performance can be observed as soon as relative 

importance scores exceed 20 %. In contrast, effects on computation time are already visible when 

removing the most irrelevant variables (τi < 15 %). Threshold selection at τi (10 %, dashed grey line) 

illustrates the technique-specific trade-off between performance and speed. Performance analyses 

for all 58 species can be found in Appendix, Figure C.13 and Figure C.14. 

  



CHAPTER 6 

144 

6.3.3 Overall pre-processing 

Based on the results obtained for a selection of macrophytes, a set of thresholds was 

identified for overall data pre-processing regardless of the considered macrophytes 

(Table 6.2). Hence, these were used as general guidelines during further data pre-

processing, while highlighting that future species-specific research can benefit from 

individual threshold analysis and setting. Here, however, the aim was to identify 

generally applicable threshold values rather than species-specific.  

Table 6.2: Summary of technique-specific threshold values for data pre-processing. 

Depicted threshold values were used during combinatory data pre-processing. 

Step Threshold Value 

Outlier removal (-) τo 3 

False absence removal (%) τa 5 

Correlated variable removal (-) τc 0.7 

Irrelevant variable removal (%) τi 10 

 

Application of these thresholds supported a clear increase in model performance for the 

five selected macrophytes, showing an increase in AUC ranging between 0.799 ± 0.001 

up to 0.848 ± 0.001 (P. australis) and 0.752 ± 0.003 up to 0.831 ± 0.004 (M. aquatica) 

(Figure 6.8). Similarly, data pre-processing showed to positively affect model 

performance for the majority of the 58 macrophytes, with AUC values after pre-

processing being higher than the reference AUC values (Figure 6.9A). However, 

increased data pre-processing also affected the required computation time (Figure 

6.9B), causing relative differences in computation time to be higher than the relative 

differences in AUC (Figure 6.9C). 

 

Figure 6.8: Effect of data pre-processing on model performance for a selection of five 

macrophytes, expressed as AUC. An increase in performance is observed when data is pre-

processed, contrasting baseline performance (light grey) versus performance following 

combinatory data pre-processing (dark grey). Error bars indicate the standard deviation over 10 

repetitions of five-fold cross-validated models. 
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Figure 6.9: Effect of data pre-processing on performance and computation time for all 

considered macrophytes (N = 58). Most models benefit from data pre-processing, yet require 

more computation time to improve data quality. A: Performance, expressed as AUC; B: 

Computation time, expressed in seconds; C: Relative change in performance versus relative change 

in computation time as part of a trade-off analysis. The diagonal black line indicates the agreement 

line with points above the line indicating an increase due to data cleaning (A, B) or higher relative 

change in performance compared to computation time (C). 

6.3.4 Final model evaluation 

The resulting models were used to process a pseudo-independent dataset as a manner 

of testing the models’ performance on external data. In general, external model 

performance was lower than internal model performance (Figure 6.10A), yet still 

provided acceptable models (AUC > 0.6). Additional processing of the test data (i.e. 

removal of potential false absences) increased external performance (Figure 6.10B) and 

showed to be slightly closer to internal model performance (Figure 6.10C). 

 

Figure 6.10: Model testing with external test set for all considered macrophytes (N = 58). 

Testing was performed with two external datasets: (i) the original test set, (ii) the original test set 

devoid of false absences. Test performance was lower than internal performance, while processing 

the test set increased model performance. A: Difference between the original test performance and 

internal performance; B: Difference in performance between the processed and original test set and 

C: Difference in performance between the processed test set and the internal validation.  
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6.4 Discussion 

6.4.1 Data pre-processing affecting performance and speed 

Generally, data cleaning clearly affected model performance, with AUC values declining 

along more stringent threshold values for three of the four pre-processing techniques, 

yet overall outperforming random classification (i.e. AUC > 0.5). Removal of outliers and 

variables (both correlated and irrelevant) showed to negatively affect model 

performance, depicting downward trends of AUC due to reduced data availability. 

Effects remained relatively limited, as illustrated by the removal of irrelevant variables 

causing the largest drop in AUC (i.e. from 0.78 to 0.64 for C. demersum), supporting the 

claim that random forests are relatively robust towards the inclusion of outliers and 

redundant variables (both correlated and irrelevant) (Breiman, 2001; Fox et al., 2017; 

Vezza et al., 2015). In contrast, improved model performance was observed following 

the identification and removal of potential false absences. More specifically, model 

performance showed a continuous increase in AUC along rising threshold levels (i.e. τa 

→ 0), with highest performance scores being obtained when each instance within the 

assumed realised niche was removed from the background data.  

The patterns obtained in this study comply with literature related to niche identification 

and predictor selection. For instance, Acevedo et al. (2012) showed that extending the 

environmental range made it easier to discriminate suitable from unsuitable habitats, 

thereby causing artificially increased AUC values. Hence, by decreasing the 

environmental range via outlier elimination, a drop in AUC scores is expected, which 

explains the obtained patterns in Figure 6.4. Similarly, Anderson and Raza (2010) 

applied a niche-corrected absence selection approach by excluding suitable conditions 

from the background data and observed an increase in model performance. By excluding 

these false absences, the distinction between suitable and unsuitable habitats was 

improved along with the support to obtain elevated AUC scores. Hence, by improving 

the discrimination within the observed environmental domain, a rise in AUC is 

expected, which supports the obtained performance increase in Figure 6.5.  

In contrast, appropriate predictor selection supports an overall simplification of the 

observed environmental domain and, thus, model complexity. This niche simplification 

increases the model’s transferability and application, as managers tend to request simple 

and understandable models (Bennetsen et al., 2016). However, dimensionality reduction 

of the environmental domain rarely provides improved model performance, as 

predictors are either irrelevant or of limited importance within the observed domain. 

The exclusion of these predictors positively reduces model complexity, but negatively 

affects the combined explanatory power towards the observed variance in the response 

variable. Consequently, variable selection is expected to cause a decrease (or at least a 

stand-still) in performance, which clarifies the patterns in Figure 6.6 and Figure 6.7. 
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However, despite being applied and discussed in literature, it should remain clear that 

data pre-processing is not without consequences. Both instance and variable removal 

inherently affect data availability, species response curves and delineation of the 

occupied environmental domain. Preferably, only a fraction of the assessed 

environmental range is occupied by the species under consideration in order to 

distinguish between suitable and unsuitable habitats. However, as the extent of the 

considered biogeographical range is user-dependent and affects model performance 

conditions (Acevedo et al., 2012; Anderson and Raza, 2010; Phillips et al., 2009), care 

should be taken to delineate a reasonable domain. Moreover, the assumption underlying 

niche-based absence selection states that no unsuitable conditions exist within the 

observed realised niche, though extends to the idea that all relevant variables are 

observed and reported (Anderson and Raza, 2010). More specifically, it does not allow 

the presence of an unrecorded environmental variable or any biotic interaction to cause 

a species’ absence, which supports model simplification and regularisation, but violates 

ecological theory. 

Ultimately, model performance was improved through combinatory data pre-

processing, following technique-specific threshold selection based on visual assessment 

of trends in performance, computation time and data characteristics. A general increase 

in model performance was observed, with net AUC improvements up to 0.2 and internal 

validation scores ranging between 0.7 and 0.9, supporting the claim that the 

improvement of data quality has potential beneficial effects on model performance. 

Slightly lower AUC scores were obtained when models were tested with an external data 

set (ranging between 0.54 and 0.83; average: 0.68 ± 0.07), due to the inclusion of false 

absences. Indeed, elimination of these absences significantly (Wilcoxon rank sum test; 

W = 774.5, p < 0.001) increased performance scores (ranging between 0.56 and 0.90; 

average: 0.76 ± 0.08) and suggested that remaining false absences might artificially 

deflate performance. This is especially the case when the external data is not a perfect 

subsample of the original distribution (e.g. rare species). 

Lastly, data cleaning supported a decrease in the required computation time for model 

development for each pre-processing technique, while an overall increase in total 

computation time for combinatory pre-processing is obtained. Compared to the relative 

changes in performance, computation time changed drastically by implementing data 

cleaning, mostly showing an increase in pre-processing time and a decrease in model 

development time.   
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6.4.2 Implications for environmental research 

Raw environmental data harbours an invaluable treasure of information, hidden in 

complex patterns and a significant amount of noise. Elimination of the latter simplifies 

pattern discovery and the development of species distribution hypotheses. The 

qualitative trade-off analyses performed here provided threshold values for the 

identification and elimination of outliers (τo = 3), false absences (τa = 5 %), correlated 

variables (τc = 0.7) and irrelevant variables (τi = 10 %). Despite frequent application 

within correlative ecological modelling, threshold values are only limitedly reported and 

often case-specific, underlining the need for a solid conceptual framework to govern 

sound and comparable results and conclusions to support decision-making (Kotsiantis 

et al., 2006; Zhang et al., 2003).  

Unfortunately, data collection and cleaning remain expensive steps within species 

distribution studies (Zhang et al., 2003). To start, data collection by means of field 

campaigns is time-, energy- and budget-intensive, causing researchers to refrain from 

data removal and data sharing, which increases the need for thorough data cleaning 

(Catalano et al., 2019). Recent movements towards open data and uniform data bases 

(e.g. Global Biodiversity Information Facility, GBIF) have eased the process of gathering 

occurrence information, thereby causing an exponential growth in occurrence-based 

modelling of habitat suitability and species distributions (Peterson et al., 2015). Yet, the 

available data is to be used with care as the provided quality is subject to the preferences 

of the original owner of the data (Maldonado et al., 2015), causing data reliability to 

become an additional aspect to be considered within correlative habitat suitability and 

species distribution modelling. For instance, herbaria and museums are increasingly 

improving data availability by digitising their collections, though these observations 

often bias results as they lack detailed georeferencing (Maldonado et al., 2015; Peterson 

et al., 2015). In addition, due to the high variety in data quality, data cleaning can take 

up to 80 % of all time spent on a research project (Zhang et al., 2003). Even when 

automated, further tuning remains necessary to find the appropriate threshold values.  

Here, the selected techniques have been tuned manually to act as a filter for the data to 

be used, while they provide the opportunity to be included in the model development 

algorithm and act as wrapper functions with tuneable hyperparameters (e.g. Boets et al. 

(2013a), Gobeyn et al. (2017)). Moreover, alternative approaches do exist, including 

visual outlier identification (Gobeyn et al., 2017), distance-based pseudo-absence 

selection, input variable selection by means of Genetic Algorithms (D'Heygere et al., 

2003; Gobeyn et al., 2017), variable transformation (Kotsiantis et al., 2006) and variable 

construction (Kotsiantis et al., 2006). Each of these techniques includes some kind of 

user-dependent threshold selection and influences model performance and output 

(including decision-making) differently. This underlines the need for a well-developed 

framework to support sound model development. 
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6.4.3 Contribution to the study objective 

The aim of this chapter was to assess the effects of technique-specific threshold selection 

on model performance and the required computation time in order to provide guidelines 

for further pre-processing of the adopted Limnodata Neerlandica. Throughout the 

chapter, threshold values were altered to infer their effect on model performance and to 

allow a trade-off between model performance, computation time and data loss. By 

considering these ranges, a more pronounced basis was created to bring forward a set of 

threshold values for supporting after-imputation data cleaning within the overall study 

objective (see Section 1.2.1). Similar to Chapter 5, it should remain clear that this chapter 

contributes mostly to the overall study objective, while providing suggestions for 

application outside the considered framework. More specifically, it is recommended to 

perform similar analyses with different combinations of environmental variables and 

species occurrences to support empirical threshold selection. 

The chapter complies to the recommendation of performing data pre-processing prior 

to data-driven model development in order to eliminate noise within publicly available 

data (Maldonado et al., 2015). It was expected that noise was present in the Limnodata 

Neerlandica, as data was collected by various companies and institutions over a period 

of thirty years (see Section 4.2.1). More specifically, this noise was expected to be present 

in the instances (i.e. extremely deviation values, recording of false absences) and among 

the variables (i.e. correlations and non-influential variables), with a potential to 

negatively affect model performance (Murphy et al., 2010). In literature, noise 

elimination through data pre-processing is often done in a partial and subjective manner 

(e.g. Forio et al. (2018), Fox et al. (2017), Gobeyn et al. (2017)), though deserves more 

scrutiny due to its negative effect on data availability. 

In general, the removal of noise (outliers, false absences, correlated and irrelevant 

variables) supported the expected changes in model performance, although three out of 

four methods caused a decrease in the performance metric score (see Section 6.3.2). 

Only the removal of false absences affected model performance positively, mainly due 

to a clearer delineation of the realised niche. Due to the performed range assessment, 

threshold values for the pre-processing of the imputed Limnodata Neerlandica could be 

defined via a visual trade-off between model performance, computation time and data 

availability, resulting in thresholds for the elimination of outliers (τo = 3), false absences 

(τa = 5 %), correlated variables (τc = 0.7) and irrelevant variables (τi = 10 %). By 

performing such a visual trade-off, a certain degree of subjectivity is introduced, yet this 

is considered to be lower than simply adopting thresholds from similar studies. More 

importantly, the implementation of these pre-processing thresholds creates species-

specific data sets, which support the construction of qualitative models to describe the 

abiotic suitability of wetland habitats for specific aquatic macrophytes.  
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6.5 Conclusion 

Occurrence data contain valuable information on species distribution patterns and 

dynamics, but require data cleaning prior to pattern inference. During cleaning, data is 

unavoidably lost as environmental domains become more strictly delineated. 

Identification and elimination of outliers and variables that are correlated or irrelevant 

inherently increase potential overlap of presence and background domains, while 

discarding potential false absences supports the identification of more distinct (yet less 

detailed) environmental niches. Accordingly, a decrease or increase in model 

performance is observed whenever the environmental domains of presences and 

absences are characterised by respectively more or less relative overlap due to data 

quality improvement. In contrast, a decrease in computation time required for model 

development is observed for each type of data cleaning, with inclusion of the data pre-

processing step causing overall computation time to be both lower and higher than 

without data pre-processing, depending on the applied technique. A visual trade-off 

analysis of performance and computation time, supplemented with the effects of 

threshold selection on the sample size or dimensionality of the data, identifies 

thresholds for the elimination of outliers (τo = 3), false absences (τa = 5 %), correlated 

variables (τc = 0.7) and irrelevant variables (τi = 10 %), while supporting improved model 

performance following combinatory data pre-processing. The increased data quality and 

resulting decreased model complexity underline the added value of data pre-processing 

within the framework of species distribution modelling and model transferability.  
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Abiotic habitat suitability models to 

assess restoration potential  

and invasion vulnerability5 

  

                                                 
5 This chapter is based on Van Echelpoel, W.; Forio, M. A. E. and Goethals, P. L. M. (in preparation) Abiotic 

habitat suitability models as first-level assessment for restoration potential and invasion 

vulnerability 

Highlights 

- Only a fraction of the suitable abiotic habitats is occupied by macrophytes 

- Key variables are temperature, pH, nitrate, ammonium and oxygen 

- Managing key variables impacts habitat suitability more than business-as-usual 

- Models are able to identify locations with high invasion potential 
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Abstract 

Macrophytes have a steering role in ecosystem functioning, yet their presence is affected 

by a myriad of physical, chemical and biological variables. Improving and safeguarding 

macrophyte-influenced ecosystem services requires identification and management of 

suitable habitats. First-level habitat suitability scores were defined by linking abiotic 

conditions with presence/absence data for 58 macrophyte species by means of 

conditional random forests. Developed models showed good discriminative and 

classification power, with final AUC (Area Under the receiver operating characteristic 

Curve) values between 0.846 ± 0.008 and 0.888 ± 0.002, while sensitivity and 

specificity ranged between 0.736 ± 0.008 and 0.796 ± 0.003 and between 0.738 ± 0.007 

and 0.791 ± 0.002, respectively. Temperature, nitrate, oxygen, ammonium and pH were 

major abiotic habitat descriptors and affected habitat suitability in a similar, yet species-

specific way. In general, suitability scores increased along rising temperature and pH 

values, followed by a drop at high pH levels (> 8.5). In contrast, a negative effect of rising 

nitrate and ammonium levels on habitat suitability occurred, confirming the anticipated 

positive impact of pollution reduction on macrophyte presence. Management aiming at 

optimising nitrate-nitrogen (0.5 mg∙L-1 up to 1.5 mg∙L-1), oxygen (4 mg∙L-1 up to 7 mg∙L-

1), ammonium-nitrogen (0.3 mg∙L-1 up to 0.5 mg∙L-1) and pH (7 up to 8.5) will positively 

impact the chances for macrophyte survival. Historically, species prevalence has been 

increasing and is generally characterised by a lag between predicted and observed 

presence, though this trend is expected to continue. Yet, improved abiotic conditions 

can indirectly threaten native macrophyte species when also habitat suitability for 

invasive alien species increases. Similar patterns were observed for the native Lemna 

minor and alien Lemna minuta, requiring further quantification of physiological 

processes via laboratory experiments to elucidate actual field effects.  
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7.1 Setting the scene 

In Chapter 2 it became clear that the conservation of ecosystem structure and 

functioning within wetlands should focus on macrophytes to benefit from their capacity 

to compartmentalise the prevailing habitat. Identifying optimal conditions and 

strategies underlies management success and is highly supported by the development 

of habitat suitability models (HSMs), which often rely on publicly available data. 

Chapter 5 and Chapter 6 highlighted some opportunities to improve data quality and 

thereby provided the data-related foundation of this chapter. Here, the application of 

HSMs for inferring optimal habitats for macrophyte presence is introduced and 

discussed within a conservation framework. 

Macrophyte management represents a challenging endeavour as their presence is 

affected by a combination of geomorphological, hydrological, chemical and biological 

conditions (Bakker et al., 2013; Bornette and Puijalon, 2011). For instance, historic 

eutrophication caused drastic decreases in macrophyte stocks due to the proliferation 

of phytoplankton, thereby increasing turbidity, toxic compounds and oxygen 

fluctuations (Scheffer et al., 2001; Scheffer et al., 1993b). Even with improved abiotic 

conditions and reduced phytoplankton competition, no straightforward restoration 

path to the initial biotic conditions exists. This multitude of potential pathways is caused 

by a myriad of biotic processes, including (propagule) dispersal, seed bank composition 

and presence of opportunistic species (Bakker et al., 2013; Scheffer et al., 1993b).  

In addition, increasing globalisation amplifies the pressure of invasive alien species 

towards aquatic systems, leading to physical, chemical and biological habitat changes 

caused by intentional and unintentional introductions (Richter et al., 2003; Sala et al., 

2000). Hence, conservation and improvement of native macrophyte habitats require the 

identification of (i) habitats suitable for supporting macrophyte presence, (ii) habitats 

vulnerable to invasion, distinguishing between sites with and without native species 

being present and (iii) habitats that require optimisation of their abiotic conditions and, 

if possible, which variable(s) to focus on. HSMs can provide such information, but with 

the important side note that due to their correlative nature, no undisputable conclusions 

on causality can be inferred.  

Within this chapter, conditional random forests (CRFs) are developed and optimised to 

derive habitat suitability for a selection of macrophyte species. The aim is to combine 

ecological restoration and invasive alien species management by defining the effect of 

species-specific key variables on habitat suitability and elaborating on management 

options to optimise abiotic conditions. By tackling these issues, an answer is provided 

to RQ2.2, as defined in Chapter 1. Hence, this chapter concludes with a statement on 

which variables generally affect habitat suitability and how management can help with 

reaching optimal conditions.  
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7.2 Materials and methods 

7.2.1 Characterisation of the data and modelling technique 

Data within the Limnodata Neerlandica was subsampled to contain spatiotemporally 

referenced observations of macrophytes and the prevailing physicochemical conditions 

(see Chapter 4), providing information on 4344 instances, 176 variables and 576 

macrophytes. Data pre-processing was performed as outlined in Chapter 6, following (i) 

missing data imputation, (ii) macrophyte selection, (iii) outlier removal, (iv) false 

absence removal, (v) correlated variable removal and (vi) irrelevant variable removal. 

Consequently, for each macrophyte, a specific data set was created due to the pre-

processing being partially macrophyte-specific. 

Ultimately, data for 58 macrophytes were available (see Appendix, Table D.1 and Figure 

D.1), yet only a subset of five macrophytes with varying prevalence level, growth form 

and origin will be highlighted in more detail (see also Chapter 6, Table 6.1): Phragmites 

australis (55 %), Lemna minor (44 %), Ceratophyllum demersum (29 %), Mentha 

aquatica (18 %) and Lemna minuta (5 %). Species prevalence within these data sets is 

higher than reported in Table 6.1 and intrinsically linked to the removal of false absences 

during data pre-processing. Additional R-packages for this chapter were party and 

PresenceAbsence (Freeman and Moisen, 2008a; Stekhoven, 2013). 

Conditional random forests were developed to link macrophyte occurrence with the 

prevailing abiotic conditions, starting at default hyperparameter values, except for ntree, 

which was set at 200 (see Section 6.3.1). Subsequently, hyperparameter settings were 

optimised by means of randomly sampling the initial global search space, followed by 

an iterative optimisation within a local search space. Evaluation of model performance 

was done with AUC, Sn and Sp (see Section 3.4.2.1) and contrasted with species-specific 

null models. Finally, species-specific variable importance scores were determined via the 

developed models (Model Improvement Ratios; MIRs) and used for partial dependence 

analysis. A detailed description of the methodology can be found in Chapter 4. 

7.2.2 Model application 

A positive temporal trend in both habitat suitability and macrophyte occurrence was 

expected due to improved management and dispersal. Optimised models were applied 

to the original (imputed) data set to infer macrophyte-specific habitat suitability scores 

for all sampled sites. Discretisation of the Habitat Suitability Index (HSI) scores followed 

threshold identification via minimising the absolute sensitivity-specificity difference 

and subsequent temporal grouping to derive annual prevalence (predicted number of 

suitable sites divided by the total number of sites). Observed and predicted annual 

prevalence were compared to infer (i) the temporal trend of macrophyte prevalence and 

(ii) the potential macrophyte presence. 
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To mimic the potential effects of changing abiotic conditions on habitat suitability and 

illustrate the value of the constructed species-specific models towards management, six 

scenarios were developed. These scenarios represent three starting conditions (average, 

extreme and nutrient enrichment) and two management options (business-as-usual and 

focus on key variables), as mentioned in Table 7.1 and summarised in Table 7.2. The 

starting conditions were based on the observed environmental conditions in 2010 due 

to a lack of sufficient data from subsequent years. Moreover, observations were limited 

to the months April until September to limit seasonal bias within the temporal trends. 

For each variable, the mean (𝒙̅) and standard deviation (s) were estimated (see 

Appendix, Table D.2) and used as a statistical basis for determining the three different 

starting conditions. First, the variable means were adopted when the starting conditions 

were defined to represent the average situation (𝒙̅; ‘AVG’ scenarios). Secondly, nutrient-

related variable means were increased with two times the standard deviation to reflect 

eutrophic sites, representing the nutrient-enriched situation (𝒙̅ for non-nutrient 

variables and 𝒙̅ + 2 ∙ 𝒔 for nutrient variables; ‘NUT’ scenarios). Thirdly, variable means 

were increased with two times the standard deviation to reflect highly polluted sites, 

representing the extreme situation (𝒙̅ + 2 ∙ 𝒔; ‘EXT’ scenarios). Several exceptions were 

considered in the latter, as pollution is reflected differently within the included 

environmental variables. More specifically, temperature and pH were not changed (i.e. 

𝒙̅) and oxygen (saturation) was decreased instead of increased (i.e. 𝒙̅ − 2 ∙ 𝒔). Actual 

values can be found in Appendix, Table D.3. 

For each variable, specific end points were defined depending on the performed 

management activities. First, variable-specific temporal trends were used for deriving 

the average change rates for each individual variable, reflecting the business-as-usual 

situation (‘BAU’ scenarios). Secondly, partial dependence plots were used for identifying 

the key habitat descriptors and their associated optimal conditions, reflecting 

management with a focus on the main habitat descriptors (‘KEY’ scenarios). For these 

key variables, an exponential temporal pattern was assumed, while all remaining 

variables were assumed to follow the temporal pattern as defined in the BAU scenario. 

The actual values can be found in Appendix, Table D.3.  

Table 7.1: Assignment of scenario-specific codes. Business-as-usual management relies on the 

continuation of variable-specific historical trends, while management focusing on key variables 

considers the optimal values of partial dependence plot as management endpoints. Starting point 

conditions are derived from observation data gathered in 2010. A more detailed description of each 

scenario can be found in Table 7.2. 

 Average conditions Extreme conditions Nutrient enrichment 

Business-as-usual AVG-BAU EXT-BAU NUT-BAU 

Key variables AVG-KEY EXT-KEY NUT-KEY 

 



CHAPTER 7 

158 

Table 7.2: Characterisation of management scenarios under different starting 

conditions. Information extends the codes mentioned in Table 7.1. 

Code Description 

AVG-BAU Baseline starting point with business-as-usual management. 

  Starting point of each variable represents the average value observed in 

2010. Management entails no alterations towards the previous period, 

hence the same temporal trend is assumed. Trends were derived by fitting 

variable-specific linear models to the temporal data (see Figure D.3). 

 

AVG-KEY Baseline starting point with management focusing on key variables. 

  Starting point of each variable represents the average value observed in 

2010. Management entails variable-specific procedures being solely applied 

to the five key variables, with endpoints derived from the partial 

dependence plots (see further). 

 

EXT-BAU Extreme starting point with business-as-usual management. 

  Starting point of each variable represents the mean observed in 2010, 

supplemented with two times the standard deviation (𝒙̅ + 2 ∙ 𝒔). Variable-

specific exceptions were considered, depending on the included variables. 

Management entails no alterations towards the previous period, hence the 

same temporal trend is assumed. Trends were derived by fitting variable-

specific linear models to the temporal data (see Figure D.3). 

 

EXT-KEY Extreme starting point with management focusing on key variables. 

  Starting point of each variable represents the mean observed in 2010, 

supplemented with two times the standard deviation (𝒙̅ + 2 ∙ 𝒔). 

Management entails variable-specific procedures being applied to the five 

key variables, with endpoints derived from the partial dependence plots (see 

further). 

 

NUT-BAU Nutrient enrichment with business-as-usual management 

  Starting point of each nutrient variable represents the mean observed in 

2010, supplemented with two times the standard deviation (𝒙̅ + 2 ∙ 𝒔). 

Variable-specific exceptions were considered, depending on the included 

variables. Management entails no alterations towards the previous period, 

hence the same temporal trend is assumed. Trends were derived by fitting 

variable-specific linear models to the temporal data (see Figure D.3). 

 

NUT-KEY Nutrient enrichment with management focusing on key variables. 

  Starting point of each nutrient variable represents the mean observed in 

2010, supplemented with two times the standard deviation (𝒙̅ + 2 ∙ 𝒔). For 

all other variables, the starting point was represented by the average value 

observed in 2010. Management entails variable-specific procedures being 

solely applied to the five key variables, with endpoints being defined by the 

partial dependence plots (see further). 
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The effects of the different scenarios on habitat suitability were subsequently assessed 

by applying the optimised macrophyte-specific models and deriving the suitability 

index. It should be noted that these scenarios were not developed to closely represent 

actual natural conditions and trends, but rather to illustrate the potential usage of the 

constructed models to assess scenario outcomes in function of the considered starting 

conditions. The obtained outcomes are meant to illustrate how management decisions 

can be steered by prevailing abiotic conditions. 

Finally, the developed models were considered to contrast habitat preferences between 

two congeneric species. More specifically, occurrence observations of the native Lemna 

minor and the alien L. minuta (see Box 7.1) were confronted with predictions to 

determine (i) the ability of conditional random forest to identify suitable habitats for 

both Lemna spp. and (ii) whether the majority of the sites were more likely to support 

L. minor than L. minuta. It should be noted that the results have to be interpreted with 

care, as (i) data covered almost 30 years of sampling, (ii) pseudo-absences were used and 

(iii) L. minuta was relatively recently introduced (thus expected to violate the 

equilibrium assumption (Gallien et al., 2012)). 

 

Box 7.1: Selection of Lemna minor and Lemna minuta 

The freshwater system that is considered as baseline throughout this work is 

characterised by slow-flowing water and elevated nutrient conditions (see Section 

1.2.1). These conditions strongly support the presence of floating macrophytes, 

including the free-floating duckweed species (Bakker et al., 2013; Zhang et al., 2017). 

Among these duckweeds, Lemna minor frequently occurs in European surface waters, 

while Lemna minuta originates from North and South America and has reached a 

widespread status throughout Europe (Hussner, 2012). L. minor and L. minuta are 

morphologically similar and are often reported in the same locations, though their 

habitat preferences are not necessarily identical.  

The development of species-specific models allows for distinguishing habitat 

preferences between these congeneric species and identifying the consequences of 

management on species-specific habitat suitability. Moreover, it can be used as an 

early-warning tool to locate sites with significantly higher HSI scores for the alien 

species compared to the native species. However, such applications merely illustrate 

preferences and suitability scores, while actual management decisions on avoiding 

species presence are to be made by the user. 
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7.3 Results 

7.3.1 Model performance and optimisation 

Hyperparameter optimisation provided a selection of species-specific settings, depicting 

an overall increase in ntree and decrease in mtry, when compared to the baseline settings 

(i.e. 200 and √𝑁𝑉𝑎𝑟, respectively), see Table 7.3. These settings were used to perform all 

subsequent analyses. Differences between internal and external validation were 

observed to be minimal (see Table 7.4), indicating that overfitting within the developed 

models hardly occurred. Surprisingly, differences in performance between the baseline 

and optimised models were often small (Table 7.4), suggesting a limited influence of 

hyperparameter tuning within this framework. Moreover, due to specifying nsplit and 

nleaf relative to the number of training instances (instead of absolute, see Section 

4.2.3.3), model performance tended to be slightly lower when applying the optimal 

hyperparameter set. More specifically, it restricted the size of each individual tree within 

the random forest, thereby reducing complexity at the expense of performance. 

External validation of species-specific models with pseudo-independent data indicated 

good model performance, with AUC values ranging between 0.85 ± 0.02 (Lemna 

minuta) and 0.888 ± 0.005 (Ceratophyllum demersum). Sensitivity and specificity were 

generally lower than AUC scores, but followed a similar pattern by ranging between 0.74 

± 0.03 (L. minuta) and 0.796 ± 0.008 (C. demersum) and between 0.74 ± 0.02 (L. 

minuta) and 0.791 ± 0.007 (C. demersum), respectively (Table 7.4). All models greatly 

outperformed null models, with 95-percentile scores between 0.596 (Phragmites 

australis) and 0.653 (L. minuta) for AUC, between 0.561 (P. australis) and 0.604 (L. 

minuta) for sensitivity and between 0.560 (L. minor) and 0.605 (L. minuta) for 

specificity (Table 7.4). 

Table 7.3: Selected hyperparameter settings for conditional random forest development 

linking species occurrence to abiotic conditions. Four hyperparameters were varied during 

the optimisation process, being ntree (number of individual models to be developed in the 

ensemble), mtry (number of variables to be considered for each split within the tree), nsplit 

(minimum fraction of instances in a node in order to be considered for splitting) and nleaf 

(minimum fraction of instances in a terminal node in order to be kept). 

Macrophyte ntree mtry nsplit nleaf 

Phragmites australis 1540 2 0.04 0.01 

Lemna minor 1890 2 0.09 0.01 

Ceratophyllum demersum 1690 2 0.09 0.01 

Mentha aquatica 1290 2 0.04 0.01 

Lemna minuta 1040 2 0.09 0.01 
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Table 7.4: Overview of performance scores for a selection of macrophytes. Null models were 

developed with permuted data and 95-percentiles were derived from 1000 models. The baseline 

model applies default hyperparameter values, while the optimised model makes use of adapted 

hyperparameter settings (see Table 7.3). Both model types were evaluated internally (cross-

validation) and reported as Baseline and Optimised. The optimised model was also evaluated 

externally with a pseudo-independent test set (10 % of original data), being reported as Evaluation. 

Performance is described by Area under the Receiver Operating Characteristic Curve (AUC), 

sensitivity (Sn) and specificity (Sp), and rounded to three digits. 

Macrophyte AUC Sn Sp 

Phragmites australis 

 Null model (P95) 0.596 0.561 0.562 

 Baseline 0.874 ± 0.003 0.783 ± 0.007 0.782 ± 0.007 

 Optimised 0.863 ± 0.003 0.772 ± 0.007 0.772 ± 0.006 

 Evaluation 0.850 ± 0.002 0.756 ± 0.003 0.754 ± 0.004 

Lemna minor 

 Null model (P95) 0.596 0.561 0.560 

 Baseline 0.839 ± 0.005 0.751 ± 0.007 0.748 ± 0.008 

 Optimised 0.823 ± 0.004 0.743 ± 0.006 0.744 ± 0.006 

 Evaluation 0.851 ± 0.003 0.753 ± 0.005 0.755 ± 0.005 

Ceratophyllum demersum 

 Null model (P95) 0.621 0.577 0.577 

 Baseline 0.861 ± 0.006 0.770 ± 0.009 0.770 ± 0.010 

 Optimised 0.854 ± 0.006 0.768 ± 0.009 0.765 ± 0.008 

 Evaluation 0.888 ± 0.005 0.796 ± 0.008 0.791 ± 0.007 

Mentha aquatica 

 Null model (P95) 0.609 0.569 0.568 

 Baseline 0.857 ± 0.008 0.769 ± 0.007 0.768 ± 0.009 

 Optimised 0.862 ± 0.008 0.778 ± 0.009 0.776 ± 0.010 

 Evaluation 0.856 ± 0.007 0.757 ± 0.011 0.756 ± 0.010 

Lemna minuta 

 Null model (P95) 0.653 0.604 0.605 

 Baseline 0.842 ± 0.026 0.764 ± 0.027 0.753 ± 0.019 

 Optimised 0.854 ± 0.025 0.774 ± 0.020 0.766 ± 0.018 

 Evaluation 0.846 ± 0.024 0.736 ± 0.025 0.738 ± 0.023 
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7.3.2 Variable importance 

The importance of environmental variables to describe the occupied habitats varied 

among species and showed to be relatively high for temperature and nitrate (see 

Appendix, Figure D.2). Within the selected subset of macrophyte species, both variables 

were among the five most informative variables, with MIRs ranging between 1.00 (s < 

0.01) (P. australis) and 0.9 ± 0.2 (L. minuta) for temperature and between 1.00 (s < 0.01) 

(L. minor) and 0.4 ± 0.1 (L. minuta) for nitrate (Figure 7.1). Inclusion of chlorophyll a 

during model development tended to be beneficial for L. minor, C. demersum and L. 

minuta, while models for P. australis and M. aquatica were more affected by ammonium 

and pH. Oxygen supported habitat description for both Lemna spp., while sulphate 

provided additional explanation for L. minuta and C. demersum (Figure 7.1).  

Additional informative variables for these macrophytes included chloride (P. australis), 

potassium (L. minor), Kjeldahl-nitrogen (C. demersum) and total phosphorus (M. 

aquatica) as depicted in Figure 7.1. An overview of variable importance for all considered 

macrophytes (58 species) is provided in Appendix (Figure D.2), illustrating the 

dominance of both temperature and nitrate over other variables. On average (i.e. over 

all 58 species), temperature was characterised by the highest MIR (0.7 ± 0.3), followed 

by nitrate (0.5 ± 0.3), oxygen (0.3 ± 0.3), ammonium (0.3 ± 0.2) and pH (0.3 ± 0.2). 

 

Figure 7.1: Variable importance of the five most informative variables for a selection of 

macrophytes. Variable importance is expressed as Model Improvement Ratio (MIR), describing 

the relative importance of a variable with respect to the most informative variable. Temperature 

and nitrate recur for each macrophyte with either one as the most influential variable, while highly 

equal scores between both variables are obtained for C. demersum and M. aquatica. Vertical black 

lines indicate the standard deviation on the calculated MIRs. 
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Changes in temperature, nitrate, oxygen, ammonium and pH showed a clear impact on 

the habitat suitability index (HSI) of the selected macrophyte species, although the 

magnitude of the effect declined along decreasing average variable importance (Figure 

7.2). Higher temperatures tended to have a positive effect on habitat suitability for each 

macrophyte, with the highest increase in average HSI for P. australis (from 0.240 ± 

0.008 up to 0.593 ± 0.004). Steep improvements in habitat suitability mainly occurred 

between 12 and 17 °C, while reaching an optimum around 20 °C (Figure 7.2).  

Analogous patterns were observed for the remaining four variables, showing an overall 

negative effect on HSI when aquatic conditions were becoming too extreme. For 

instance, an optimal pH range was observed between 7 and 8.5 with lower HSI scores 

towards both extremes, while also oxygen indicated higher habitat suitability when 

concentrations ranged between 2 mg∙L-1 and 7 mg∙L-1 (Figure 7.2). Similarly, nitrate and 

ammonium showed a clear hormesis effect on habitat suitability as HSI scores were 

highest at concentrations above complete absence (i.e. 0 mg∙L-1) and below the observed 

extremes. More specifically, optimal conditions were slightly above zero (around 0.5 

mg∙L-1 for nitrate-N and 0.2 mg∙L-1 for ammonium-N) and indicated generally 

suboptimal conditions at higher levels, which illustrates the potential negative effects of 

fertiliser run-off and wastewater discharge on macrophyte presence.  

 

Figure 7.2: Partial dependence plots (PDPs) of the five most-informative variables for a 

selection of five macrophytes. Plots were derived from macrophyte-specific optimised 

conditional random forests and show the inferred effect of an environmental variable on the 

habitat suitability for a specific species. An optimal range can be observed for each variable, with 

a general positive effect of temperature and negative effect of nitrogen. Some models did not 

contain all selected variables, resulting in an absence of a variable-specific influence plot. 
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P. australis showed to be the most generalist species among the considered macrophyte 

species, often reflecting the highest average suitability score, except at low temperature 

and pH values (Figure 7.2). In contrast, M. aquatica frequently exhibited the lowest HSI 

scores, indicating a more specialist behaviour. C. demersum seemed to be the least 

affected, being partially consequential to the exclusion of chlorophyll a, sulphate and 

Kjeldahl-nitrogen (see Figure 7.1) throughout this analysis. Differences in habitat 

suitability scores between L. minor and L. minuta were generally higher at undisturbed 

conditions (i.e. low temperature, low nitrate and high oxygen concentrations) and 

tended to decrease towards higher disturbance (Figure 7.2), indicating a reduced 

discrepancy in habitat suitability due to nutrient pollution or overall climate change. 

Similar partial dependence analyses were performed for all 58 macrophytes within the 

provided data set, though required the exclusion of one species as none of the selected 

variables were included in the developed model. The remaining 57 species showed 

similar patterns as observed for the selected subset, though averaging all species-specific 

responses caused relatively high deviation around the overall mean (Figure 7.3). This 

illustrates that preferences among macrophytes are similar regarding the main drivers 

and benefit from general guidelines, while additional fine-tuning is required when 

aiming for improving habitat suitability for a specific species. 

 

Figure 7.3: Partial dependence plots (PDPs) of the five most-influential variables for all 

macrophytes (N = 57). The average influence of a specific environmental variable on habitat 

suitability (black line) follows a similar pattern as observed in Figure 7.2. Moreover, similar 

optimal ranges can be observed for each variable, with a general positive effect of temperature and 

negative effect of nitrogen. The grey ribbon depicts the standard deviation of the mean.  
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7.3.3 Application of optimised models 

Application of the optimised species-specific models on the complete data set suggested 

a suboptimal use of suitable habitats (Figure 7.4). Over time, an overall increase in 

suitable and occupied habitats was observed for each macrophyte, although the limited 

repeated temporal sampling clouds the presence of clear patterns (i.e. only a few sites 

were sampled more than once). Discrepancies between observations and predictions 

tended to increase with decreasing observed prevalence, showing a high degree of 

overlap for P. australis (period: 1990-2010) and a clear difference between the locations 

occupied by and available for L. minuta (Figure 7.4). No observations of L. minuta before 

1999 were included in the common data, though the upward trend indicated a rising 

reporting frequency (Figure 7.4), which is likely to increase further as more locations 

will provide a suitable habitat and dispersal pressure rises. Temporal trends of all 58 

macrophyte species show relatively similar patterns and can be found in Appendix, 

Figure D.5 and Figure D.6. 

 

Figure 7.4: Temporal trend of observed and predicted prevalence of a selection of 

macrophytes. Prevalence is determined by the fraction of sites where macrophyte presence is 

observed (solid line) or where conditions are suitable to support macrophyte presence (dashed 

line). The fraction of both suitable and occupied sites increases in time and indicates a suboptimal 

use of the available suitable habitats. Similar analyses of all 58 macrophyte species can be found 

in Appendix, Figure D.5 and Figure D.6. 

On average, abiotic conditions at the end of the sampling period (i.e. 2010) already 

supported relatively high habitat suitability scores (see Figure 7.4, Figure 7.5 and 

Appendix, Table D.2). The analyses suggested that, without any action being taken, 

suitability might commence dropping after 10 years (AVG-BAU), potentially due to 

inadequate nutrient concentrations. Indeed, when relying on a continuation of the 

temporal trend, nitrate concentrations dropped to 0 mg∙L-1 (see Appendix, Figure D.4) 

and negatively influenced HSI (see Figure 7.2). In contrast, when management aimed at 

obtaining PDP-derived optimal conditions (see Figure 7.2), habitat suitability tended to 

remain relatively stable (AVG-KEY; Figure 7.5).  
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Polluted sites generally benefitted from any type of management, though indicated 

better absolute improvement in suitability with variable-specific action, especially with 

respect to P. australis and M. aquatica (EXT-KEY; Figure 7.5). Similarly, temporal 

analysis of the eutrophic systems suggested that a focus on managing key variables 

(NUT-KEY) provided higher habitat suitability scores compared to the business-as-usual 

(NUT-BAU) scenario (Figure 7.5).  

Throughout these scenarios, highest suitability scores were generally observed for P. 

australis, while M. aquatica showed to be greatly affected by the prevailing nutrient 

conditions (Figure 7.5), thereby corroborating their relatively generalist and specialist 

behaviour, respectively. C. demersum was only limitedly affected by any type of 

management, except for the business-as-usual scenario towards average starting 

conditions (AVG-BAU; Figure 7.5), which is potentially linked with a different degree of 

dependence on the considered variables. L. minor and L. minuta showed relatively 

similar patterns regardless of the scenario, with generally higher suitability scores for L. 

minor, although comparable scores were observed when management focused on key 

variables under non-extreme starting conditions (AVG-KEY and NUT-KEY; Figure 7.5). 

Hence, a preference of both Lemna spp. towards the same abiotic conditions is to be 

expected. 

 

Figure 7.5: Effects of management and starting conditions on habitat suitability. 

Management is generally beneficial, except for business-as-usual with average variable values. 

AVG: Average starting conditions; EXT: Extreme starting conditions; NUT: Nutrient-enriched 

starting conditions; BAU: Business-as-usual; KEY: Management focused on key variables (see 

Figure 7.2). To improve visualisation, standard errors (N = 10) are depicted as grey ribbons instead 

of standard deviation. 
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Similar to the partial dependence plots (Figure 7.2) and the management scenarios 

(Figure 7.5), higher suitability scores for L. minor occurred for the majority of locations 

(79.0 %) within the original data compared to L. minuta. However, not all sites with 

reported L. minor presence sustained lower HSI scores for L. minuta compared to L. 

minor and vice versa. About a quarter (28.3 %) of the locations with L. minor presence 

provided higher suitability scores for L. minuta, while even a higher fraction (39.0 %) of 

the sites occupied by L. minuta supported higher HSI scores for L. minor (Figure 7.6). 

The majority of sites (71.4 %) remained, however, unoccupied by either species, though 

showed generally higher HSI scores for L. minor. Moreover, the HSI frequency 

distribution of all unoccupied sites suggested that several sites provided suitable 

conditions for Lemna spp. presence, which additionally illustrates the suboptimal use of 

suitable habitats. 

 

Figure 7.6: Habitat suitability of Lemna minor and Lemna minuta conditional to their 

occurrence. Sites with absence of both Lemna spp. (top-left) cover a range of suitability scores 

and are mostly situated below the agreement line indicating that the majority of unoccupied sites 

provides slightly more suitable conditions for L. minor. Sites with observed L. minor presence and 

L. minuta absence (top-right) show a similar pattern, indicating slightly better conditions for L. 

minor and corroborate the observations. Sites with observed presence of L. minuta (bottom row) 

are situated on both sides of the agreement line and reflect similar suitability scores for both 

Lemna spp. 
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7.4 Discussion 

7.4.1 Model performance and variable importance 

Overall, obtained models provided good discriminatory power and classification 

accuracy (Swets, 1988), while hyperparameter tuning hardly affected the selected 

performance indicators, suggesting that conditional random forests represent a valuable 

approach within ecological data-based modelling, even under default settings (see also 

Fox et al. (2017) and Freeman et al. (2015)). Higher performance scores for random 

forests have been reported in literature, though these tend to vary among applications 

(see Table 7.5). 

Table 7.5: Comparison of the obtained AUC scores with reported literature. Most studies 

rely on accuracy, Cohen’s kappa or the True Skills Statistic (TSS) to complement AUC. a: mean 

value; b: median value. 

Topic AUC Reference 

Spatial bird distributions in the 

USA 0.917a ± 0.076 Barbet-Massin et al. (2014) 

Temporal bird distributions in 

the USA 
0.896a ± 0.090 Barbet-Massin et al. (2014) 

Fish distribution in lake 

ecosystems 
0.891b Guo et al. (2015) 

Biotic interactions in fish 

distribution models 
0.85 – 0.95 Vezza et al. (2015) 

Distribution of European 

grayling 
0.943a ± 0.005 Fukuda et al. (2013) 

   

 

Still, model performance is potentially deflated due to the inclusion of false absences 

within both the training and test data. Such non-occupation of suitable habitats 

originates from a variety of ecological processes, including limited macrophyte dispersal 

and increased stochasticity of extinction due to spatial isolation (Demars and Edwards, 

2009). The majority of these false absences were excluded during data pre-processing 

in order to reduce ambiguity and to avoid reduced model performance scores (Gallien 

et al., 2012; Guisan and Theurillat, 2000). Yet, the lack of a clearly defined niche in 

combination with the trade-off between model performance and data loss impedes the 

elimination of all false absences. Hence, several suitable unoccupied sites remain in the 

training and test data, resulting in model misclassifications and reduced model 

performance. This deflation, on the other hand, is counteracted by the spatiotemporal 

autocorrelation of the test data (Araújo et al., 2005a; Araújo et al., 2005b; Elith and 

Leathwick, 2009), although the relative contribution of both biases remains unknown. 
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Importance-based variable ranking identified temperature as a major descriptor of 

habitat suitability, showing a positive effect on habitat suitability scores when 

increasing. This complies with literature reporting (i) temperature as best-predicting 

factor for macrophyte diversity (Demars and Edwards, 2009), (ii) growth limitation at 

low temperatures in clear lakes (Dale, 1986), (iii) an optimal range for photosynthetic 

activity between 20 °C and 35 °C (van der Heide et al., 2006), (iv) higher invasion 

vulnerability at higher temperatures (Hussner, 2009) and (v) dense floating mats 

causing temperature increases (Netten et al., 2010). Hence, an increase in temperature 

due to, for instance, climate change, can have a beneficial effect on macrophyte 

presence, although also negative effects due to soil anoxia and related stress have been 

observed (Genkai-Kato and Carpenter, 2005).  

In contrast, suitability scores were negatively related with increasing nitrate (NO3
−) and 

ammonium (NH4
+) levels, reflecting the expected harmful effect of water pollution on 

macrophyte occurrence and diversity (Bakker et al., 2013; Barker et al., 2008; Scheffer et 

al., 1993b). More specifically, under elevated nutrient levels, phytoplankton has the 

potential to grow rapidly and outcompete macrophytes by changing nutrient conditions 

and light penetration (Lu et al., 2012; Scheffer et al., 1993b). 

Surprisingly, oxygen was selected among the five most informative variables to delineate 

the occupied abiotic habitat. Macrophytes are relatively independent of oxygen within 

the water column due to their inherent production capacity, though tend to reduce 

oxygen during nocturnal respiratory activity (Caraco and Cole, 2002; Carr et al., 1997). 

Moreover, higher suitability scores were generally linked with reduced oxygen 

concentrations (i.e. around 4.5 mg∙L-1), which often reflects reduced chemical water 

quality (Srebotnjak et al., 2012). This observation is potentially caused by biotic 

feedback, which takes place when species occur in a specific environment and modify 

the prevailing abiotic conditions due to their presence (Vitousek et al., 1997). For 

instance, the elevated HSI scores for the floating L. minuta at low-oxygen conditions 

might depict an effect of its presence on abiotic conditions (i.e. causing a drop in oxygen 

by limiting light penetration) rather than its presence being affected by low oxygen 

levels. Similarly, the presence of the floating alien Eichhornia crassipes negatively 

affected oxygen concentrations within the invaded tidal environment of the San 

Francisco Estuary (Tobias et al., 2019), while the presence of the submerged alien Elodea 

nuttallii positively affected oxygen saturation within invaded lakes in Northern Ireland 

(Kelly et al., 2015). Hence, the identified variable importance ranking merely reflects the 

capacity of the variable to delineate and describe the occupied habitats rather than 

providing information on steering behaviour. More specifically, no distinction can be 

made between variables that (1) affect macrophyte presence, (2) are affected by 

macrophyte presence and (3) combine both processes. 
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7.4.2 Temporal trends and future potential 

Despite the annual fluctuations, positive temporal trends were observed for macrophyte 

prevalence within the study area. Both observed and predicted prevalence scores 

increased in time, while concentrations of the main pollutants (ammonium, nitrate, 

phosphorus) decreased (see Appendix, Figure D.3). This suggests that management 

efforts to reduce surface water pollution have provided positive results at the biotic level. 

However, these results should be interpreted with care as they are only valid under the 

assumption that sites were selected randomly (i.e. without any preference towards 

vegetated or non-vegetated sites). As this assumption might be too strict for specific 

years, it is considered likely that the depicted prevalence scores do not reflect the actual 

conditions, causing temporal patterns to fluctuate. More importantly, it is crucial to 

maintain management measures as (1) individual variables are often characterised by a 

wide range (see Appendix, Figure D.3) and (2) many surface waters in the Netherlands 

are still highly eutrophic (van Puijenbroek et al., 2014). 

Indeed, management measures positively influenced HSI scores for most macrophytes, 

especially when paying specific attention to altering the most descriptive variables (i.e. 

KEY management). A clear distinction with BAU management was observed in favour 

of KEY management, except when dealing with extremely polluted sites (EXT). This 

illustrated that the identification of key habitat descriptors can help in delineating 

management actions, but that case- and species-specific management actions are 

required for locations situated outside the realised niche. More importantly, it 

confirmed that macrophyte presence is influenced by a plethora of interacting variables 

(Bakker et al., 2013; Demars and Edwards, 2009).  

It should remain clear that the management scenarios in this study were composed by 

combining theoretical starting conditions and temporal patterns based on observed 

environmental conditions and patterns, respectively (see Section 7.2.2 and Appendix 

D.2). Hence, the resulting simulations merely illustrate the value of abiotic HSM 

towards scenario analysis and can be used to confirm and develop macrophyte-specific 

hypotheses. For instance, the high HSI scores for P. australis suggested a relatively high 

generalist behaviour, which has been illustrated by its highly invasive character 

(Bellavance and Brisson, 2010; Zedler and Kercher, 2004). Similarly, HSI scores for M. 

aquatica were strongly influenced by nutrient concentrations and suggested a more 

specialist behaviour, thereby contrasting reports on its presence in constructed 

treatment wetlands (Dhir et al., 2009; Vymazal, 2013). Such characterisation is 

inherently nested in the study design, which resulted in the selection of generally 

occurring species (and, thus, the exclusion of actual specialist species from the study). 
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Throughout the simulated timeframe, HSI scores for the native Lemna minor and the 

alien L. minuta depicted relatively similar patterns and a decreased discrepancy when 

management focused on optimising the key descriptors, except for extremely polluted 

sites. This confirms field observations of both Lemna spp. coexisting and favouring 

similar environmental conditions (Ceschin et al., 2016; Paolacci et al., 2016), including a 

preference towards eutrophic conditions. However, due to the alien nature of L. minuta, 

it remains possible that the occupied environmental domain and associated model 

predictions underestimate the potential domain and habitat suitability scores (Gallien 

et al., 2012). The upward temporal prevalence trends illustrate its endeavour to reach 

equilibrium and depict the so-called ‘invasion debt’ (Strayer, 2010). Moreover, 

simulations showed that pollution reduction supports increased habitat suitability for 

both Lemna species, implying a further increase in the future due to continuously 

decreasing nutrient concentrations (Blaas and Kroeze, 2016). 

Both models and observations supported the coexistence of L. minor and L. minuta due 

to shared abiotic preferences. Yet, extrapolations to long-term natural conditions are to 

be performed with care as observations can be temporally biased and merely reflect a 

temporary situation. For instance, coexistence may also be caused by a disturbance-

induced survival of L. minuta in a system dominated by L. minor or vice versa, thereby 

supporting temporary co-occurrence despite differences in species-specific habitat 

suitability. Such disturbances undermine the governing biotic resistance and increase 

the opportunity for natural succession, more diverse communities, higher productivity 

and nutrient retention, though simultaneously allow invasive (alien) species to establish 

(Demars and Edwards, 2009; Engelhardt and Ritchie, 2001; Strayer, 2010; Zedler and 

Kercher, 2005). Whether the observed co-occurrence of both Lemna spp. results in 

coexistence or outcompetition cannot be derived from the developed models and greatly 

depends on their autecological behaviour, functional traits and overall competitive 

strength (see also Figure 2.3) (Demars and Edwards, 2009; Kelly et al., 2015; van Kleunen 

et al., 2010).  

Hence, more information from both controlled-conditions experiments and in-field 

observations is required to identify autecological behaviour and species interactions. For 

instance, functional traits like nutrient uptake rate and relative growth rate (RGR) can 

provide information on the invasive behaviour of a species (Njambuya et al., 2011; van 

Kleunen et al., 2010). Experiments performed on the invasive shrimp Dikerogammarus 

villosus and the native shrimp Gammarus pulex showed that the functional response (i.e. 

resource use) was higher for the invasive shrimp, thereby illustrating its observed 

invasive behaviour (Dodd et al., 2014). The use of a similar index to infer invasive 

behaviour of alien macrophytes might prove useful within a proactive management 

framework. 
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7.4.3 Consequences for wetland and environmental management 

Quantitative assessment of disturbances and macrophyte interactions and how these 

processes will change in the future remains a challenge when developing habitat 

suitability and species distribution models (Elith and Leathwick, 2009). Invasive alien 

species and climate change represent important threats to aquatic ecosystems, including 

freshwater wetland systems (Peterson et al., 2008; Rahel and Olden, 2008; Walther et 

al., 2009). For instance, dominance by invasive alien macrophytes has already caused 

the disappearance of native species due to light limitation, with additional negative 

effects on the macroinvertebrate community (Stiers et al., 2011). Moreover, alterations 

in environmental conditions induced by climate change (e.g. increased temperatures, 

modified hydrological regimes) are expected to be advantageous towards invasive alien 

species and indicate an important interaction between two influential pressures (Rahel 

and Olden, 2008; Williams and Grosholz, 2008). In order to mitigate future impacts, it 

is imperative to develop contemporary wetland management plans that inhibit the 

establishment and spread of invasive species. 

These management plans should encompass several focus points, including (1) the 

identification of locations with suitable abiotic conditions for non-invasive native 

species, (2) the identification of locations with suitable abiotic conditions for invasive 

species (both native and alien) and (3) the identification of species pools in the 

surrounding environment or within the sediment. The developed models in this study 

were able to identify key habitat descriptors and to infer overall habitat suitability 

conditional to the prevailing abiotic conditions for a selection of macrophyte species. 

For instance, abiotic habitat suitability for Mentha aquatica showed to be highly 

correlated with nutrient concentrations (nitrate, ammonium and phosphorus), while its 

prevalence increased in time due to a reduction in nutrient levels (see Figure 7.1, Figure 

7.4 and Figure D.3). Hence, additional nutrient reduction within eutrophic treatment 

wetland benefits habitat suitability for M. aquatica. 

Similarly, habitat suitability scores for the submerged Ceratophyllum demersum showed 

to be less affected by the main habitat descriptors, when compared to the other selected 

macrophytes. This reduced relation is potentially caused by the exclusion of chlorophyll 

a, sulphate and Kjeldahl-nitrogen from the dependency analysis and suggests that C. 

demersum is less sensitive towards generic alterations of the abiotic conditions (i.e. 

focusing on the key habitat descriptors as depicted in Figure 7.5). Hence, a more species-

specific analysis and management is needed to significantly affect habitat suitability for 

C. demersum and the associated chance of establishment (conditional to its 

introduction).  
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In addition to a local assessment of the available and required abiotic conditions, 

awareness on the presence of a local species pool is essential to decide between natural 

succession or manual introduction in order to obtain augmented species richness. 

Limited dispersal and connectivity have affected various restoration projects that relied 

on seed banks within the sediment or the proximity of local species pools to commence 

colonisation after abiotic restoration (Bakker et al., 2013; Hilt et al., 2006). Both 

processes support natural biotic restoration, though are often beneficial for highly-

competitive generalist species, causing communities with low diversity and high 

biomass (Engelhardt and Ritchie, 2001). In absence of a viable seed bank, introduction 

greatly depends on the available direct (e.g. connected water bodies) or indirect (e.g. 

wind- or animal-induced) dispersal pathways (Murphy et al., 2019).  

However, only a fraction of the introduced propagules survives the prevailing abiotic 

conditions, being subsequently exposed to biotic interactions, including herbivory and 

(if present) the already established macrophyte community (Bakker et al., 2013; Levine 

et al., 2004), being conceptually visualised in Figure 7.7. Manual introduction can be 

considered when both abiotic and biotic conditions support the species’ presence, 

though requires prior investigation on the reasons of their current absence (Bakker et 

al., 2013; Bornette and Puijalon, 2011). For instance, high herbivory pressure in lakes or 

wetlands causes macrophytes to be absent and renders many re-stocking actions into 

failure when the pressure remains unaccounted for (Körner and Dugdale, 2003). 

Similarly, highly turbid water conditions caused by sediment-disturbing fish and 

crustaceans provide a poor basis for artificial introduction (Hilt et al., 2006; Strayer, 

2010). Hence, despite providing suitable abiotic conditions, the probability of successful 

natural succession can be low due to dispersal limitation and biotic interactions (see 

Figure 7.7). 

 

Figure 7.7: Conceptual visualisation of the contributing factors underlying macrophyte 

presence. Both abiotic and biotic conditions need to be suitable for a species to occur, but they 

also need to be reachable to allow natural introduction. Manual introduction avoids the restriction 

implied by dispersal and thereby creates more options. 
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7.4.4 Contribution to the study objective 

The aim of this chapter was to combine ecological restoration and invasive alien species 

management by defining the effect of species-specific key variables on habitat suitability 

and elaborating on management options to optimise abiotic conditions. By means of 

correlative models, macrophyte occurrence data within the Limnodata Neerlandica were 

linked with the prevailing abiotic conditions in order to infer species-specific 

descriptions of the preferred habitats. These results help identifying species that possess 

the potential to thrive in the physicochemical conditions that are present within the 

considered wetland (see Section 1.2.1). Moreover, they illustrate how abiotic conditions 

can be changed to improve the habitat suitability for a specific macrophyte species, 

which additionally allowed the assessment of temporal trends and management 

scenarios on the habitat suitability of both native and alien species. 

Variable-specific effects on habitat suitability often remained below HSI scores of 0.55 

(see Figure 7.2), indicating that a single variable can create relatively unsuitable 

conditions and confirming that a concert of variables is needed to provide a suitable 

habitat (Bornette and Puijalon, 2011; Demars and Edwards, 2009). Hence, a holistic 

approach that targets a range of variables (e.g. wastewater treatment to reduce organic 

pollution, buffer strips in agricultural area to reduce nutrient input) to reduce pollutant 

concentrations positively affects habitat suitability for macrophytes. Increased 

macrophyte occupancy over time supports these inferences and highlights the positive 

impact of improved water management on macrophyte presence. Yet, the discrepancies 

between the observed and predicted prevalence suggest a temporal lag between abiotic 

restoration and biotic colonisation, which has also been observed in several other 

restoration projects (Bakker et al., 2013; Jähnig et al., 2011; Verdonschot et al., 2013). 

The models that were developed in this chapter allowed to infer (1) the most influential 

descriptors to delineate the occupied habitats, (2) the values of these key descriptors to 

provide optimal habitat suitability and (3) the effect of different management scenarios 

on species-specific habitat suitability scores. Based on these results, the value of data-

driven modelling towards supporting freshwater management is illustrated. Moreover, 

within the defined study objective (see Section 1.2.1), nutrient conditions are assumed 

to be elevated and thereby resemble the starting conditions of the NUT scenarios. As 

temporal improvements in these scenarios support increased habitat suitability, a 

similar effect can be expected along the flow path through a constructed treatment 

wetland. This is especially interesting towards the implementation of zonation within 

the wetland, though remains threatened by competitive generalist species that have a 

tendency to create dense monocultures (e.g. Phragmites australis). By combining these 

models and field assessments of local species pools, a list of potential harmful or 

unwanted species (both native and alien) can be composed.   
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7.5 Conclusion 

Conditional random forests (CRFs) showed to be a valuable approach for determining 

first-level habitat suitability scores, providing good performance and significantly 

outperforming null models while performance improvement via hyperparameter 

optimisation remained limited. Importance-based variable ranking differed between 

macrophytes, with temperature and nitrate as recurring key variables among the 

selected species. Nevertheless, a holistic approach tackling multiple variables at once is 

requested to obtain a significant increase in habitat suitability as the effect of a single 

variable remains relatively small. Further improvements of the developed abiotic habitat 

suitability models require laboratory tests and extensions with biotic information 

including nutrient use, biomass production, dispersal dynamics and potential 

allelopathic behaviour. This need was illustrated by the observation that some sites were 

characterised by higher suitability scores for L. minuta while L. minor was observed and 

vice versa. 
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Functional response and  

relative growth rate to  

assess invasiveness6 

  

                                                 
6 This chapter is based on Van Echelpoel, W.; Boets, P. and Goethals, P. L. M. (2016) Functional response 

(FR) and relative growth rate (RGR) do not show the known invasiveness of Lemna minuta 

(Kunth). PLoS ONE 11, e0166132, doi: 10.1371/journal.pone.0166132. 

Highlights 

- Functional response is insufficient to forecast invasive behaviour 

- Relative growth rate was similar among both Lemna species 

- Low nutrient requirement and high fresh weight indicate invasiveness 
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Abstract 

Growing travel and trade threatens biodiversity as it increases the rate of biological 

invasions globally, either by accidental or intentional introduction. Therefore, avoiding 

these impacts by forecasting invasions and impeding further spread is of utmost 

importance. In this study, three forecasting approaches were tested and combined to 

predict the invasive behaviour of the alien macrophyte Lemna minuta in comparison 

with the native Lemna minor: the functional response (FR) and relative growth rate 

(RGR), supplemented with a combined biomass-based nutrient removal (BBNR). Based 

on the idea that widespread invasive alien species are more successful competitors than 

native species, a higher FR and RGR were expected for the alien compared to the native 

species. Five different nutrient concentrations were tested along a nitrogen (4 mg∙L-1 up 

to 70 mg∙L-1) and phosphorus (1 mg∙L-1 up to 21 mg∙L-1) gradient. After four days, a 

significant amount of nutrients was removed by both Lemna spp., though significant 

differences among L. minor and L. minuta were only observed at lower nutrient 

concentrations (i.e. lower than 17 mg∙L-1 for nitrogen and 6 mg∙L-1 for phosphorus) with 

higher nutrient removal exerted by L. minor. The derived FR did not show a clear 

dominance of the invasive L. minuta, contradicting field observations. Similarly, the RGR 

ranged from 0.4 d-1 to 0.6 d-1, but did not show a biomass-based dominance of L. minuta 

(i.e. 0.5 ± 0.3 d-1 versus 0.6 ± 0.2 d-1 for L. minor). BBNR showed similar results as the 

FR. Contrary to the expectations, all three approaches resulted in higher values for L. 

minor. Consequently, based on our results FR is sensitive to differences, though 

contradicted the expectations, while RGR and BBNR do not provide sufficient power to 

differentiate between a native and an invasive alien macrophyte and should be 

supplemented with additional ecosystem-based experiments to determine the invasion 

impact. 
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8.1 Setting the scene 

In Chapter 7, the potential threat of Lemna minuta towards ecosystem conservation has 

been suggested by the decreased discrepancy in habitat suitability index when 

disturbance increases (i.e. higher temperatures and nitrate concentrations). However, 

these inferences are highly dependent on occurrence data within the invaded range, 

which often violate the equilibrium assumption and underestimate the species’ realised 

niche (Gallien et al., 2012; Guisan and Zimmerman, 2000). Alternative approaches 

consider the implementation of pre-introduction procedures and the study of species-

specific traits, which require a completely different setup, but are crucial to counter 

current introduction rates.  

Identifying potential introductions, avoiding establishment and impeding further 

spread of invasive alien species (IAS) by detection and subsequent large-scale 

eradication requires commitment, financial input and highly destructive measures 

(Myers et al., 2000). As not all traits of the invader are known, new functions can be 

introduced without changing the community composition drastically (e.g. niche 

differentiation resulting in an increase in total ecosystem biomass) (Vilà and Weiner, 

2004). However, this introduction of completely new traits is limited (Funk and 

Vitousek, 2007), underlining that knowledge and early detection is required from a 

conservation point of view.  

Forecasting invasion impact is a challenge in invasion biology (Dick et al., 2013; Levine 

et al., 2003; Pyšek and Richardson, 2007), as each organism interacts differently with its 

surrounding (Vitousek et al., 1997), making it hard to determine a general effect of 

biological invasions. With enhanced competition being theorised as a major mechanism 

supporting successful invasion (Levine et al., 2003), several authors have been 

investigating the competitive interaction between native and alien species as a first sign 

of alien or native dominance (e.g. Vilà and Weiner (2004), Njambuya et al. (2011), Gioria 

and Osborne (2014)).  

Such a competitive advantage depends on a difference in functional identity, which is 

hypothesised to be involved in determining the final impact of invasion (Gooden and 

French, 2015; Levine et al., 2003). Successful invasions generally occur when the non-

native species displays higher values for competitively advantageous traits, while the 

intensity of the advantage is defined by the difference between the trait values. 

Therefore, approaches describing a difference in one (or more) functional trait(s) are 

applied to predict a species’ invasive behaviour, for instance the functional response 

(FR), relative growth rate (RGR), nutrient content and specific leaf area (SLA) (Dick et 

al., 2013; Gioria and Osborne, 2014; Grotkopp et al., 2002; Pyšek and Richardson, 2007).  
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These differences in functional traits are also expected to be expressed at the sub-

individual level (e.g. cellular, molecular, histological), for which (sub-)cellular 

biomarkers can be used to identify the factors that influence invasive behaviour (Colin 

et al., 2016). Such biomarkers allow to measure and evaluate changes at the cellular, 

biochemical or molecular level in response to specific external signals (e.g. 

environmental conditions) (Mayeux, 2004). Despite being able to identify changes at 

the sub-individual level, the appropriate extrapolation of these biomarker-based results 

to the population and community level remains unclear (Friberg et al., 2011). Moreover, 

considering a high physiological linkage, a similar response among different species is 

to be expected and can challenge the observation of significant differences (Colin et al., 

2016). An additional drawback of this technique is the poor knowledge of appropriate 

biomarkers for investigating macrophyte species (Brain and Cedergreen, 2008). 

Therefore, subsequent selection of the FR and RGR is based on their applicability, their 

ease of application, their link with population and community dynamics, and their focus 

on either input (resource use, FR) or output (biomass production, RGR). 

The functional response is a known concept in general ecology, but it is only recently 

introduced in invasion ecology for comparing the per-capita resource uptake rate of 

native and alien species in function of the resource density (e.g. Alexander et al. (2014), 

Dick et al. (2013), Haddaway et al. (2012) and Médoc et al. (2015)). It states that an 

invasive alien species has a higher functional response compared to the native, because 

of its higher resource use efficiency (Dick et al., 2013). In contrast to the functional 

response, which focuses on resource use (input-based), the relative growth rate focuses 

on the increase in biomass (output-based) to determine the invasion potential of an 

alien species and is considered as a proxy for the species’ fitness (Gioria and Osborne, 

2014). Therefore, several authors have been investigating the difference in RGR between 

native and alien species to predict the invasion potential of an alien species (e.g. Gérard 

and Triest (2014), Njambuya et al. (2011), Riley and Dybdahl (2015)). Application of the 

RGR to determine the invasive potential of macrophytes is rather limited to rooted 

macrophytes (e.g. Barrat-Segretain (2005), Eller et al. (2015), Hussner (2009)), with less 

attention towards floating macrophytes (e.g. Netten et al. (2010), Njambuya et al. 

(2011)). In contrast, the implementation of the FR concept is rare with respect to 

macrophyte assessment, though has proven to be successful for fish and 

macroinvertebrates (e.g. Alexander et al. (2014), Dodd et al. (2014)).  

Within this chapter, attention is given to resource- and output-based macrophyte traits 

to infer their applicability for forecasting the invasive behaviour of an alien species. The 

aim is to determine species-specific results for the functional response and relative 

growth rate and to establish result similarity. By tackling these issues, an answer is 

provided to RQ3.1, as defined in Chapter 1. Hence, this chapter concludes with a 

statement on the applicability of the selected traits.  
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8.2 Materials and methods 

8.2.1 Experimental setup 

A pure culture of L. minor was ordered from Blades Biological (United Kingdom, 

http://www.blades-bio.co.uk). L. minuta was collected from the Bourgoyen nature 

reserve (51.062253, 3.673827), situated near Ghent (Belgium). About 20 fronds of each 

species were placed separately in a nutrient medium based on OECD and ISO guidelines 

for chemical testing with L. minor and is referred to as the full strength modified 

Steinberg medium (OECD, 2006). Fluorescence lamps provided 16 hours of light, 

followed by 8 hours of darkness, with an intensity of 45 µmol∙m-2∙s-1 up to  

58 µmol∙m-2∙s-1. Temperatures of the growth medium varied between 21.6 °C and 24.0 

°C. Every two to three days, new medium was provided and aquaria were rinsed 

thoroughly with tap water. Fronds showing the start of algae growth were removed or 

rinsed carefully. Selected Lemna spp. plants were grown in these conditions for at least 

two weeks to acclimate.  

The tests were performed with similar light and temperature conditions as the 

aforementioned growth conditions. All recipients were covered at the sides with 

aluminium foil to constrain algae growth. The original modified Steinberg medium (C0) 

was diluted with deionised water to obtain the following series of concentrations: C0, 

0.5∙C0, 0.25∙C0, 0.125∙C0, and 0.0625∙C0, hereafter referred to as: C1, C2, C3, C4, and C5, 

respectively. The composition of the growth medium within these concentration classes 

is described in Table 8.1. 

Table 8.1: Composition and gradient of the growth medium used for performing the 

experiment. The composition of C1 is based on the Steinberg medium used for chemical testing 

with Lemna minor (OECD, 2006). 

 C1 C2 C3 C4 C5 

Macronutrients (mg∙L-1) 

 KNO3 350 175 87.5 43.75 21.875 

 KH2PO4 30 15 7.5 3.75 1.875 

 K2HPO4 4.2 2.1 1.05 0.525 0.2625 

 MgSO4 49 24.5 12.25 6.125 3.0625 

 Ca(NO3)2 205 102.5 51.25 25.625 12.8125 

Micronutrients (µg∙L-1) 

 H3BO3 120 60 30 15 7.5 

 ZnSO4 100 50 25 12.5 6.25 

 Na2MoO4 40 20 10 5 2.5 

 MnCl2 130 65 32.5 16.25 8.125 

 FeCl3 456 228 114 57 28.5 

 Na-EDTA 1500 750 375 187.5 93.75 
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Of each concentration, 0.25 L was poured into a glass recipient and about 500 mg fresh 

weight of L. minor or L. minuta was added, along with a control series without 

vegetation. Determination of the fresh weight was performed by collecting biomass on 

a sieve and blotting the fronds with tissue paper to extract attached water as much as 

possible. Each test lasted for four days (96 h), based on a preliminary assessment, and 

was performed in triplicate, resulting in a total of 45 recipients per test. In total, two 

tests were run, resulting in six replicates for each treatment and a total of 270 

measurements. A schematic overview of the experimental set-up for a single series is 

depicted in Figure 8.1. 

 

Figure 8.1: Schematic overview of the experimental set-up. Relative initial nutrient 

concentrations are shown on top and were sampled at the start. The darkness within the 

aquariums represents the dilution state of the growth medium (black equals original modified 

Steinberg medium). Each recipient was filled with 0.25 L of its respective nutrient concentration 

and was performed in triplicate. 

8.2.2 Data collection 

Growth medium samples were collected at the beginning and at the end of the test and 

stored at 4 ˚C in the dark prior to analysis. Within 36 hours after sampling, nutrient 

analysis was performed spectrophotometrically using Merck field kits for total nitrogen 

(test kits 1.14963.0001 and 1.14773.0001, operational range from 0.5 to 20 mg∙L-1) and 

total phosphorus (test kit 1.14541.0001, operational range from 0.05 to 5 mg∙L-1). For 

each batch, a blank and standard were used to determine the background signal and 

overall test efficiency, respectively. Medium samples of C1, C2, and C3 were diluted ten 

times with deionised water to comply with the operational range of the test kits. For 

each sample, the average of three measurements was used for further calculations.  
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Initial dry weight content was determined by drying representative subsamples of both 

L. minor and L. minuta for at least 48 hours at 60 ˚C (OECD, 2006). After two days, 

plant total fresh weight was determined and adapted to about 500 mg in each sample, 

as to keep biomass as constant as possible (FR is considered as the per-capita resource 

uptake). Leftover biomass was weighed and dried (48 hours at 60 ˚C) to determine the 

dry weight content and the estimated overall dry weight after two days of exposure. After 

four days, Lemna plants were harvested to determine both fresh weight and dry weight 

(48 hours at 60 ˚C). 

8.2.3 Calculating characteristic values 

Based on the obtained nutrient concentrations, nitrogen and phosphorus mass 

(expressed as mg) were derived by taking into account the volume of growth medium 

(0.25 L). Absolute nutrient removal was determined as the difference in initial and final 

nutrient mass. For this, the initial nutrient mass was determined as the average of all six 

replicates per concentration, as each replicate originated from the same batch of 

(diluted) growth medium. Finally, the functional response (nutrient mass removed in 

function of initial nutrient concentration) was determined. Next to the absolute nutrient 

removal, relative nutrient removal (RNR) was calculated (Equation 8.1) for each 

individual sample. 

𝑅𝑁𝑅 =
(𝑚0,𝑎𝑣𝑔−𝑚4)

𝑚0,𝑎𝑣𝑔
∙ 100%  (Equation 8.1) 

With RNR the relative nutrient removal (%), m0,avg the average nutrient mass at day 0 

(mg) and m4 the nutrient mass at day 4 (mg). 

The (estimated) dry biomass after exposure was determined after two and four days and 

compared with the initial (at day 0) and adapted (at day 2) dry weights, respectively. 

Similar to the observed nutrient removal, biomass increase was expressed both in 

absolute (dry weight increase) and relative (relative growth rate) terms of which the 

latter was calculated based on Equation 8.2, representing the relative growth rate (RGR) 

between day 2 and day 4. 

𝑅𝐺𝑅 =
ln𝐷𝑊4−ln𝐷𝑊2

𝑡
  (Equation 8.2) 

With RGR the relative growth rate (d-1), DW4 the dry weight after four days (mg), DW2 

the adapted dry weight after two days (mg) and t the time interval (d). 

Subsequently, nutrient removal and biomass increase were combined in a single variable 

to determine a more species-specific nutrient removal. Nutrient removal was expressed 

per gram biomass, with the latter being rather dynamic, resulting in three different 

values: initial dry weight, final dry weight and net dry weight increase.  
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The net dry weight increase was used under the assumption that duckweed allocates 

nutrients directly for new biomass instead of enriching already existing biomass (Körner 

and Vermaat, 1998). This suggests that an increase in nutrient uptake is directly related 

to an increase in biomass production. Follow-up of this nutrient uptake per gram newly 

created biomass allows to determine whether new biomass has a continuous nutrient 

content or whether additional nutrients are stored. A species with a higher storage 

capacity has an advantage towards future disturbances. To determine this biomass-

based nutrient removal (BBNR), Equation 8.3 was applied. 

𝐵𝐵𝑁𝑅 =
𝑚0,𝑎𝑣𝑔−𝑚4

(𝐷𝑊4−𝐷𝑊2,𝑎𝑑)+(𝐷𝑊2−𝐷𝑊0)
  (Equation 8.3) 

With BBNR the biomass-based nutrient removal expressing nutrient mass removed per 

unit biomass (mg∙g-1), m0,avg the average initial nutrient mass (mg), m4 the final nutrient 

mass (mg), DW4 the biomass dry weight after four days (g), DW2,ad the estimated 

biomass dry weight at the beginning of the second period of two days (g), DW2 the 

estimated biomass dry weight at the end of the first two days (g) and DW0 the estimated 

initial biomass dry weight (g). 

8.2.4 Statistical analysis 

Obtained data of both tests were merged into a single data set and subsequently 

analysed using MS® Excel® and RStudio (R Core Team, 2016; RStudio Team, 2015). 

Outliers were identified by Cleveland dotplots and boxplot construction (Zuur et al., 

2010), though were initially not removed from the data set prior to subsequent statistical 

analysis. Not removing any value from the data set was based on the fact that all analyses 

were performed by the author and that spatial randomisation was applied when 

possible, thereby limiting the amount of valid arguments for outlier removal. During a 

second run, extreme values were removed to investigate their influence on the reported 

results. 

Secondly, normality was tested using the Shapiro-Wilk test. When no significant 

difference from the normal distribution was observed (p > 0.05), paired t-tests were 

performed, in all other cases (p < 0.05) the paired Wilcoxon signed-rank test was 

applied. All p-values were considered as part of a multiple comparison set-up, for which 

a correction of the significant threshold value (α) is required. This correction is necessary 

as multiple comparisons increase the odds of observing a significant difference, though 

it increases the possibility of a type II error (accepting the null hypothesis while the 

alternative hypothesis is correct) (Armstrong, 2014). In short, a Bonferroni correction 

was applied for determining a new threshold value for each batch of five comparisons 

(i.e. α = 0.01).  
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8.3 Results 

8.3.1 Nutrient removal 

Nutrient analyses performed at day 0 and day 4 resulted in the average nutrient 

concentrations provided in Appendix (Table E.1 and Table E.2) for total nitrogen (tN) 

and total phosphorus (tP), respectively. Recovery of a standard solution ranged from 93 

to 99 % for nitrogen and from 95 to 98 % for phosphorus. As the initial nitrogen 

concentration of C5 (i.e. 4.2 ± 0.1 mg∙L-1) was already quite low, measurements of the 

final nitrogen concentrations happened to be below the detection limit of 0.5 mg∙L-1. 

These results were set to zero prior to determining average nitrogen concentration. 

Subsequently, nitrogen and phosphorus mass (expressed in mg) were inferred from the 

measured nutrient concentrations (volume of 0.25 L), resulting in a similar nutrient 

content for L. minor and L. minuta (see Figure 8.2 and Figure 8.3). Both total nitrogen 

and total phosphorus differed significantly (p-values < 0.01) from the initial mass when 

L. minor or L. minuta was present at high (concentration C1) or low (concentration C5) 

nutrient concentrations (see Table 8.2). At intermediate concentrations, both 

significant and non-significant differences were observed (see Table 8.2).  

The reference series (i.e. no plants) did not show a significant difference (all p-values > 

0.01) for nitrogen mass, though some series (C1 and C2) showed a significant difference 

(p-values < 0.01) for phosphorus mass. Correcting for the analysis efficiency (based on 

the recovery of a standard solution), however, resulted in p-values not exceeding the 

threshold level of 0.01. Consequently, it can be stated that, in general, the presence of 

both Lemna minor and Lemna minuta significantly affected the nutrient content of the 

provided growth medium.  

Table 8.2: Obtained p-values after comparing initial and final nutrient masses. Significant 

differences (p < 0.01) can be found at high (C1) and low (C5) nutrient concentrations and at several 

intermediate nutrient concentrations. 

 Nitrogen Phosphorus 

L. minor L. minuta L. minor L. minuta 

C1 < 0.001 < 0.001 0.002 < 0.001 

C2 0.031 0.031 0.001 0.031 

C3 0.31 0.007 < 0.001 < 0.001 

C4 < 0.001 < 0.001 0.031 < 0.001 

C5 < 0.001 < 0.001 < 0.001 < 0.001 
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No significant differences in nutrient removal were found between L. minor and L. 

minuta, except for nitrogen at concentration C4 (t = -5.3557, df = 5, p = 0.003) and 

phosphorus at concentration C3 (t = -6.1281, df = 5, p = 0.002) (see Figure 8.2, Figure 8.3 

and Table 8.3). Relative nutrient removal, as calculated with Equation 8.1, showed that 

at low concentrations, relatively more nutrients were removed (Figure 8.4). Still, a 

slightly higher relative removal was observed for L. minor in comparison with L. minuta, 

with similar significant differences for nitrogen at concentrations C4 and for phosphorus 

at concentration C3. In short, the FR is able to identify a difference in nutrient removal, 

though it is limited to only one out of five concentration levels for each nutrient. 

 

Figure 8.2: Absolute nitrogen removal by L. minor (dark grey) and L. minuta (light grey). 

A: Nitrogen mass present at beginning (black bars) and after four days (grey bars). B: Amount of 

nitrogen removed in function of the initial amount of nitrogen, representing the functional 

response. 

 

 

Figure 8.3: Absolute phosphorus removal by L. minor (dark grey) and L. minuta (light 

grey). A: phosphorus mass present at beginning (black bars) and after four days (grey bars). B: 

amount of phosphorus removed in function of the initial amount of phosphorus, representing the 

functional response. 
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Figure 8.4: Relative removal of nutrients by L. minor (dark grey circles) and L. minuta 

(light grey circles). A: nitrogen removal. B: phosphorus removal. At low nutrient concentrations 

relatively high nutrient removal efficiencies are observed. 

8.3.2 Biomass increase 

At three different moments in time (day 0, day 2 and day 4) both fresh and dry weight 

of Lemna biomass were determined, with biomass dry weight at day 0 and day 2 being 

estimations based on the observed dry matter content of collected subsamples. Six 

samples (three for each species) were removed from the dataset as not enough biomass 

was present to determine the dry weight content. The resulting average dry weights 

(estimations, except for day 4) are provided in Appendix (Table E.3 and Table E.4). 

The increase in biomass dry weight of L. minor between day 2 and day 4 was relatively 

similar among different concentrations (all p-values > 0.01) as it ranged from 30 ± 10 mg 

at concentration C4 to 35 ± 4 mg at concentration C1. In contrast, there was more 

fluctuation in the biomass increase of L. minuta, showing the highest increase in dry 

weight (32 ± 7 mg) at concentration C2 and the lowest increase (18 ± 8 mg) at 

concentration C4 (see Figure 8.5), though no significant difference was observed. 

These fluctuations became less severe when considering the relative growth rate of L. 

minuta, ranging from 0.4 ± 0.2 d-1 at concentration C4 to 0.5 ± 0.3 d-1 at concentration 

C5 without any significant difference (all p-values > 0.01). In contrast, the relative 

growth rate of L. minor fluctuated more when compared with its related absolute 

biomass increase, as it ranged from 0.5 ± 0.1 d-1 at concentration C3 to 0.6 ± 0.2 d-1 at 

concentrations C1 and C5 (see Figure 8.5). Nevertheless, these growth rates were 

considered to be similar as no significant difference was observed (all p-values > 0.01). 

Net biomass increase between day 2 and day 4 differed significantly between L. minor 

and L. minuta at concentration C4 (t = 5.3484, df = 4, p = 0.006) (Figure 8.5). In contrast, 

at concentration C2, L. minor and L. minuta were characterised by an almost identical 

biomass increase (t = -0.0772, df = 4, p = 0.942).  
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In relative numbers however, the relative growth rate of L. minor did not differ 

significantly compared with L. minuta (all p-values > 0.01), even at concentration C4 (t 

= 2.7358, df = 4, p = 0.052). In short, the RGR did not result in a significant difference at 

a single concentration level and is, therefore, not able to differentiate between L. minor 

and L. minuta. 

 

Figure 8.5: Change in biomass for L. minor (dark grey bars) and L. minuta (light grey 

bars). A: absolute increase in biomass dry weight (mg) starting from day 2 (estimation) until day 

4. B: Relative Growth Rate (RGR, d-1) in a period of two days. Concentrations range from high (C1) 

to low (C5). 

8.3.3 Nutrient decrease versus biomass increase 

Throughout the four day experiment, L. minor removed a maximum total amount of 2.1 

mg nitrogen, while L. minuta removed 1.7 mg nitrogen (see also Figure 8.2), resulting in 

an approximated maximal average nitrogen removal rate of 0.525 mg∙d-1 and  

0.425 mg∙d-1, respectively. Therefore, biomass-based nitrogen uptake rates were situated 

in between 2.1 mmol∙g-1∙d-1 (lowest observed dry weight of 17.6 mg) and 0.8 mmol∙g-1∙d-1 

(highest observed dry weight of 49.1 mg) for L. minor and in between 1.5 mmol∙g-1∙d-1 

(lowest observed dry weight of 20.2 mg) and 0.6 mmol∙g-1∙d-1 (highest observed dry 

weight of 47.7 mg) for L. minuta. Similarly, phosphorus was removed at a maximal 

average removal rate of 0.19 mg∙d-1 and 0.25 mg∙d-1 for L. minor and L. minuta, 

respectively. Resulting biomass-based phosphorus removal rates were situated between 

0.4 mmol∙g-1∙d-1 and 0.1 mmol∙g-1∙d-1 for both Lemna species. 

Nutrient removal in function of biomass increase (i.e. BBNR) varied between 20 mg∙g-1 

and 65 mg∙g-1 for nitrogen and between 6 mg∙g-1 and 30 mg∙g-1 for phosphorus and 

combined the fluctuations in nutrient removal and biomass increase. In seemingly all 

cases a higher nutrient removal per gram newly formed biomass was observed for L. 

minor, though no significant differences were observed (all p-values > 0.01) (see Figure 

8.6 and Table 8.3).  
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Figure 8.6: Nitrogen (A) and phosphorus (B) removal per gram newly formed biomass (dry 

weight) after four days for L. minor (dark grey circles) and L. minuta (light grey circles). 

Similar patterns as in Figure 8.2 and Figure 8.3 can be observed, though differences between both 

Lemna spp. are influenced by the increase in biomass (see Figure 8.5). 

In short, BBNR observed similar differences in nutrient removal between L. minor and 

L. minuta as the FR, though it was not as powerful considering that all p-values were 

higher than the statistical threshold value (α = 0.01). A summary of the nutrient 

concentrations and obtained p-values for each of the considered functional traits is 

provided in Table 8.3. 

Table 8.3: Nutrient concentrations and obtained p-values for three functional traits. 

Results show minor similarities among the three functional traits measured for L. minor and L. 

minuta. Significant differences in functional traits (p < 0.01) are underlined and were only observed 

at the nutrient level (i.e. FR). FR: Functional response; RGR: Relative growth rate and BBNR: 

Biomass-based nutrient removal. 

  C1 C2 C3 C4 C5 

Concentration 

Nitrogen (mg∙L-1) 69 ± 2 33 ± 2 16 ± 2 8.8 ± 0.5 4.2 ± 0.1 

Phosphorus (mg∙L-1) 20.99 ± 0.09 10.7 ± 0.1 5.43 ± 0.07 2.58 ± 0.03 1.33 ± 0.01 

Functional traits (p-values) 

FR Nitrogen 0.520 0.156 1.000 0.003 0.034 

 Phosphorus 0.563 0.520 0.002 0.438 0.056 

RGR  0.110 0.790 0.220 0.052 0.620 

BBNR Nitrogen 0.088 0.062 1.000 0.046 0.260 

 Phosphorus 0.190 0.280 0.016 0.026 0.540 
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8.4 Discussion 

8.4.1 Nutrient removal 

Overall net nutrient removal by Lemna minor was higher than the nutrient removal 

exerted by Lemna minuta and contradicted the expectations of the latter having a higher 

functional response than the native L. minor. Even after removal of potential extreme 

values (three in total), no additional significant differences were observed. Furthermore, 

the difference in nutrient removal was also noticed when considering relative nutrient 

removal, showing that at low nutrient concentrations both species were efficient in 

using the provided nutrients. This efficiency decreased with increasing concentrations, 

though in general, L. minor illustrated a higher resource use efficiency. These results 

were not in line with field observations of L. minuta dominating L. minor in Belgian 

water bodies.  

A similar contrast between field observations and experimental results was obtained 

when comparing two subspecies of the macrophyte Phragmites australis. Mozdzer et al. 

(2010) clearly observed the expected pattern of higher nutrient removal by the alien 

subspecies, but, when applied in practice, Rodríguez and Brisson (2015) observed a 

slightly higher nutrient removal by the native subspecies, especially towards phosphorus 

removal efficiency. According to Rodríguez and Brisson (2015), this discrepancy was 

related to the higher root biomass of the native P. australis, allowing it to take up more 

nutrients. This confirms both the obtained observations and reported findings of L. 

minor having longer roots (Njambuya et al., 2011), and supports the vital role of roots in 

nitrogen uptake by L. minor as highlighted by Cedergreen and Madsen (2002). 

Additionally, these contrasting findings underline the idea that a clear difference 

between phylogenetically related species is hard to find and that further development 

and knowledge of appropriate testing methods is recommended. For instance, Colin et 

al. (2016) already mentioned the potential in applying biomarkers for identifying 

differences between native and invasive alien species at the sub-individual level, but also 

recognised the currently existing knowledge gap inhibiting its widespread application. 

These results suggest that, despite its shown applicability at higher trophic levels (i.e. 

predator-prey interactions, see Dick et al. (2013)), the functional response approach does 

not show a higher nutrient removal by the known alien invader and therefore, does not 

allow to predict the invasive potential of L. minuta, solely based on nutrient removal. In 

combination with the contrasting results when comparing Phragmites australis 

(Mozdzer et al., 2010; Rodríguez and Brisson, 2015), the functional response approach 

does not seem to be an appropriate method in predicting the invasiveness of alien 

macrophytes.  
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8.4.2 Biomass increase 

In general, no significant differences were found in both absolute and relative biomass 

production between native and invasive Lemna plants. Similar to the functional 

response, extreme value removal (eight in total) did not result in additional significant 

differences with respect to the RGR. Still, L. minor performed better than L. minuta, 

except for condition C2, where an almost similar biomass increase was observed. This is 

in line with the higher observed nutrient removal by L. minor described in previous 

section, suggesting an overall higher efficiency in nutrient uptake by L. minor.  

Relative growth rates (RGR) during the experimental period ranged from 0.5 d-1 to  

0.6 d-1 for L. minor and from 0.4 d-1 to 0.5 d-1 for L. minuta. These values are higher than 

reported RGRs of duckweed, which are situated around 0.1 d-1 (Körner and Vermaat, 

1998; Njambuya et al., 2011) up to 0.3 d-1 (Cedergreen and Madsen, 2002; Gérard and 

Triest, 2014). This might be related to their applied test duration of 14 to 20 days, 

potentially leading to overcrowding and related decrease in growth rate (Driever et al., 

2005). In contrast, Körner and Vermaat (1998) only applied a duration of 3 days and 

observed a similarly low RGR of 0.1 d-1. Yet, they used domestic wastewater as a growth 

medium, which differs from an ideal growth medium as defined by the OECD guidelines.  

The observed RGRs suggest that L. minor is more effective in creating new (dry) biomass. 

However, when focusing on fresh weight (see Appendix, Table E.5 and Table E.6), the 

overall fresh biomass increase is larger for L. minuta than for L. minor (639 mg versus 

406 mg of fresh weight, respectively), but a lower dry weight content reduces this 

difference (34 mg versus 31 mg of dry weight, respectively). Despite the lack of clear 

significant differences in RGR on a dry weight basis, L. minor might still be suppressed 

by L. minuta producing more new, fresh biomass with a lower dry weight content. This 

difference indicates an important drawback of using RGR for dominance prediction 

because some field-related information is not taken into consideration. For instance, 

Henry-Silva et al. (2008) investigated three different aquatic weeds and observed that 

RGR on a dry weight basis did not suffice to accurately predict infestation potential, 

suggesting to complement the RGR data with biomass density. 

In general, no competitive superiority could be derived from the performed 

experiments. Moreover, the obtained results underline the fact that comparing RGRs of 

monocultures only depicts the potential direct competition and neglects more 

important indirect competition and interactions on the long run (Trinder et al., 2013). 

Consequently, the relative growth rate provides information on biomass-based 

competition and dominance (Henry-Silva et al., 2008), though is insufficient to describe 

or predict the invasive potential of macrophytes as no significant differences in RGR 

were observed. 



CHAPTER 8 

192 

8.4.3 Nutrient decrease versus biomass increase 

Biomass-based nitrogen removal rates of both Lemna spp. fluctuated between  

0.6 mmol∙g-1∙d-1 and 2.3 mmol∙g-1∙d-1 and, thereby, included the range observed by 

Cedergreen and Madsen (2002) for L. minor (0.6 mmol∙g-1∙d-1 up to 0.9 mmol∙g-1∙d-1). 

Higher maximal nitrogen removal rates were obtained by L. minor when compared to L. 

minuta, which might be related to the observation of L. minor plants having longer roots, 

potentially increasing their nutrient uptake (Cedergreen and Madsen, 2002). 

Additionally, this difference in nutrient uptake was amplified by a higher net increase in 

biomass of L. minuta when compared with L. minor (see Appendix, Table E.3 and Table 

E.4), resulting in a difference in biomass-based nutrient removal rate in favour of L. 

minor. 

Even so, under the assumption that Lemna spp. reallocate nutrients for biomass increase 

rather than biomass enrichment (Körner and Vermaat, 1998), nitrogen contents of both 

L. minor and L. minuta (ranging from 20 to 63 mg∙g-1) were comparable to the values 

obtained by Körner and Vermaat (1998), being 18.5 mg∙g-1 up to 56.5 mg∙g-1, but were 

higher than reported by Cedergreen and Madsen (2002), being 5.6 mg∙g-1 up to 27.3 mg 

mg∙g-1. In contrast, phosphorus content of both Lemna spp. (ranging from 6 mg∙g-1 up to 

30 mg∙g-1) was observed to be higher than reported by Körner and Vermaat (1998), being 

3.6 mg∙g-1 up to 7.2 mg∙g-1, which might be related to a difference in phosphorus content 

of the growth medium (1 mg∙L-1 up to 21 mg∙L-1 versus 1 mg∙L-1 up to 14 mg∙L-1, 

respectively). Duckweed is known to be a P-hyperaccumulator and to store phosphorus 

as a precaution to future depletion (Gérard and Triest, 2014), which explains the increase 

in phosphorus removal at higher initial concentrations (see Figure 8.6). Nevertheless, 

biomass-based nutrient removal remains higher for L. minor, suggesting that L. minor 

requires more nutrients to produce new fronds (i.e. higher nitrogen and phosphorus 

content), while L. minuta biomass consists of more water. This is also supported by the 

observation of higher dry weight content of L. minor when compared to L. minuta. 

In short, BBNR provides information about the efficiency of nutrient uptake per unit 

biomass, but lacks the ability to discriminate native from invasive alien species. 

Observed differences between both species were only marginally significant at the 

individual concentration level and were non-significant when accounting for multiple 

testing. Therefore, similar to FR and RGR, BBNR is not recommended to be used as the 

only technique to determine invasive potential, despite combining nutrient uptake and 

biomass increase. 
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8.4.4 Individual traits versus ecosystem-based techniques 

Combining nutrient removal (input) and biomass increase (output) did not allow to 

clearly differentiate between the native L. minor and alien L. minuta. Overall, when 

looking at all three approaches, only two conditions were considered to be significantly 

different (see Table 8.3). Only the functional response showed a significant difference in 

phosphorus at concentration C3 and nitrogen at concentration C4. Firstly, this suggests 

that the FR is more sensitive towards differences between species, while the RGR is the 

least sensitive. In other words, differences are easier to be observed at the input-level 

than at the output-level.  

Secondly, the differences between L. minor and L. minuta are clearer at lower nutrient 

concentrations, and require further research, while the absence of significant differences 

at high concentrations (C1 and C2) suggests that L. minor and L. minuta have a similar 

nutrient removal and biomass increase. Based on these individual specific traits, the 

invasive character of L. minuta could not be confirmed as L. minor displayed a higher 

nutrient removal and a higher relative growth rate. Consequently, taking into account 

L. minuta’s alien origin, the increasing in-field observations and its classification as 

‘widespread with moderate impact’, the applied methods were considered to be 

insufficient for predicting a macrophyte’s invasive potential. Nevertheless, the combined 

information provided by the individual traits (nutrient use and wet biomass increase) 

insinuated the presence of dominant behaviour of L. minuta, though this was not 

confirmed by the BBNR approach due to a highly fluctuating biomass increase.  

Invasiveness is rarely determined by a single functional trait, but rather by a 

combination of traits and factors (Thuiller et al., 2006; van Kleunen et al., 2010). These 

factors include, among others, meteorological conditions, climate, resource availability 

of current environment, community complexity, frequency of disturbances, phenotypic 

plasticity, evolutionary adaptation and predator size (see for instance, Alpert et al. 

(2000), Baldy et al. (2015)), Gioria and Osborne (2014), Levine et al. (2003) and Riis et 

al. (2012). Therefore, experiments applying the FR, RGR or BBNR to determine a 

macrophyte species’ invasive behaviour, should be supplemented with more complete 

and more complex ecosystem-scale research (e.g. Kovalenko et al. (2010)). Additional 

attention can be given to look for appropriate biomarkers not only to study the 

differences between closely related species at sub-individual level, but also to increase 

knowledge about the existing pathways and reactions to stress. As such, both policy 

makers and managers can be supported by data reflecting natural conditions more 

accurately instead of relying on the FR, RGR or BBNR to investigate the performance of 

different macrophyte species with respect to nutrient removal and biomass increase. 
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8.4.5 Contribution to the study objective 

The aim of this chapter was to determine species-specific results for the functional 

response and relative growth rate and to evaluate their applicability towards predicting 

the invasive behaviour of an alien species. Forecasting the invasive behaviour of an alien 

species is crucial to develop proactive management plans by scoring or classifying alien 

species conditional to the discrepancy in functional traits. Moreover, the approach can 

be extended to the classification of native species and allows for an overall ranking of all 

species that are expected to occur. By avoiding the introduction of invasive species (both 

native and alien), higher species richness can be obtained in the managed system. 

Therefore, the applicability of this approach within the study objective (see Section 1.2.1) 

was tested with two Lemna spp., as these prefer eutrophic conditions and are known to 

occur as floating mats in ditches, ponds and wetlands (Janse and Van Puijenbroek, 1998). 

Nutrient uptake and relative growth rate did not show to differ between Lemna minor 

and Lemna minuta (see Figure 8.2 and Figure 8.3) and suggested that both species 

display a similar invasive behaviour. More specifically, it can be hypothesised that both 

Lemna spp. provide a similar functionality after being introduced and affect the 

prevailing processes in a comparable way. However, further testing of additional traits 

and at ecologically relevant nutrient concentrations is required to confirm these 

observations. Nevertheless, the experimental results indicated that the suggested traits 

are insufficient to infer invasive behaviour, as the alien L. minuta has been observed to 

suppress the native L. minor under field conditions (Ceschin et al., 2016). The selected 

traits might still detect significant discrepancies under different conditions, although 

they are not considered to be universally applicable. 

The inability of the selected traits to confirm field observations (i.e. the alien L. minuta 

suppressing the presence of the native L. minor) reduced their overall value towards the 

development of proactive management plans. Yet, they still provide useful information 

on species-specific characteristics and are relatively easy to implement and follow up. 

Still, additional alternative traits can be considered to complement the selected 

resource-use efficiency and relative growth rate (e.g. growth form, specific leaf area, root 

length (Pérez-Harguindeguy et al., 2013)), while including specific attention towards 

trait plasticity. The latter represents the ability to respond to stressors, which is often 

considered to be high in invasive species (Davidson et al., 2011; Fagúndez and Lema, 

2019). Moreover, it is often a driving factor in determining species richness within 

communities, as illustrated by Berg and Ellers (2010) and Barbour et al. (2019). By 

extending species-specific trait matrices with absolute trait values and trait-specific 

plasticity scores, a multivariate basis for species classification is created. Based on this 

classification, strategies can be developed to avoid the introduction of the most-invasive 

species in order to support a biodiverse ecosystem. 
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8.5 Conclusion 

One input-based and one output-based approach were applied and supplemented with 

a third combined approach to test their applicability for predicting the invasive 

behaviour of the alien Lemna minuta when compared to the native Lemna minor. The 

FR approach did not meet the expectations of a higher resource removal by the invasive 

alien species, as it was observed that L. minor removes more nutrients than L. minuta, 

with significant differences at low nutrient concentrations. The net dry biomass increase 

was higher for L. minor at low nutrient concentrations, though no significant differences 

were observed when comparing the RGR of both species. In contrast, the increase in 

fresh weight was higher for L. minuta, which supported field observations of L. minuta 

dominating L. minor. As such, despite not meeting the expectations of a higher FR and 

RGR, the low nutrient requirement and high fresh weight increase supported the idea of 

L. minuta being more invasive than L. minor. In the observed range, no dominance of 

the invasive alien macrophyte could be clearly inferred by applying a single approach, 

suggesting that other functional traits (e.g. temperature resistance, germination period, 

…) or environmental conditions (e.g. seasonality, solar radiation) might provide a 

competitive advantage (Riis et al., 2012). Therefore, it is recommended to supplement 

currently existing functional traits with more in-depth and ecosystem-based research as 

the former, when applied individually, lacks the ability to identify and predict an 

invasive alien species with a moderate impact. 
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Effects of partial harvesting  

and species invasion on  

biomass production7 

  

                                                 
7 This chapter is based on Van Echelpoel, W.; De Troyer, N. and Goethals, P. L. M. (in preparation) Effects 

of species invasion and repetitive partial removal on the interaction between Lemna spp 

Highlights 

- Biomass production of host species is not affected by invasion 

- Growth rate is positively affected by biomass removal 

- Overcrowding negatively affects growth rate 

- Invasive L. minuta shows to dominate over native L. minor 
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Abstract 

Increasing globalisation and ongoing climate change threaten biodiversity with rising 

rates of biological invasions globally, being introduced either accidentally or 

intentionally. Invasion prevention and impact containment are therefore imperative 

when developing freshwater management schemes. In this study, monocultures of two 

duckweed species (the native Lemna minor and the alien Lemna minuta) were exposed 

to nine different scenarios combining removal frequency (‘none’, ‘low’ and ‘high’) and 

biomass introduction frequency (‘none’, ‘low’ and ‘high’). Biomass removal was 

considered to be non-specific, while only biomass of the opposing species was 

introduced to not directly affect the original host species. Experiments were run for 34 

days, consisting of four days acclimation, twenty-four days of management and six days 

of undisturbed growth. The results illustrate that the overall growth rate was slightly 

higher for L. minuta compared to L. minor (0.116 d-1 versus 0.111 d-1) and time-dependent, 

showing to decrease in time due to overcrowding. During the treatment period, biomass 

of the host species increased and showed a diverging behaviour among scenarios. 

Afterwards, discrepancies in biomass dry weight decreased, while the production of 

primary species showed to be unaffected by the introduction of a second species. 

Consequently, with total biomass benefitting from species introduction, dominance by 

the host species decreased in time and plateaued towards the end of the treatment 

period. Nevertheless, higher growth rates for L. minuta supported higher biomass ratios 

with L. minuta as host species compared to biomass ratios with L. minor as host species. 

This indicates that assessment of the introduction frequency prior to biomass removal 

is crucial to avoid the detrimental effects of invasive species, making the decision on 

management actions and frequency highly case-dependent. Hence, additional studies 

are essential to extend the presented findings towards a comprehensive characterisation 

of the interaction between management and natural processes. 
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9.1 Setting the scene 

In Chapter 8, the applicability of trait-based assessment was studied to forecast the 

invasive behaviour of an alien species prior to its introduction. Despite having value 

towards protecting the local native biodiversity and understanding the species’ dispersal 

dynamics, this suite of pre-introduction studies provides limited additional value when 

an alien species is already established. To avoid further dispersal, colonisation and 

biodiversity loss, it is imperative that invasive alien species (IAS) and their interactions 

with land conversion, hydrological alterations and climate change are identified and 

contained (Alexander et al., 2014; Richter et al., 2003).  

Conceptually, a series of steps occurs during biological invasion, the identification of 

which helps illustrating the invasion process, improving the interpretation of results and 

inventing the appropriate management plans (Colautti and MacIsaac, 2004). In short, 

introduction of non-indigenous species (NIS) requires the transport of propagules by an 

abiotic (e.g. wind, runoff) or a biotic (e.g. pollination, international shipping) vector 

(Murphy et al., 2019), which represents a first barrier in the invasion process. 

Subsequently, in the presence of suitable abiotic conditions and relatively low biotic 

resistance (i.e. a second and third barrier), the NIS has the potential to establish 

successfully. Lastly, both disturbance frequency and intensity determine the survival of 

the introduced species and whether the invaded area will act as a sink area or a new 

hotspot for high-density colonisation and local dispersal. Despite the existence of these 

barriers, no ‘one-method-fits-all’ exists to efficiently tackle biological invasions. For 

instance, border control increases the first barrier, though is logistically challenged due 

to the high degree of globalisation. Similarly, biodiverse communities have the capacity 

to slow down invasion and mitigate negative impacts, but the effectiveness of this biotic 

resistance depends highly on the exerted propagule pressure, prevailing resource 

dynamics and degree of niche occupancy (Davis et al., 2000; Levine et al., 2004). 

Therefore, increased attention towards successful eradication measures for established 

invasive alien species is vital and further supported by the continuously growing list of 

acknowledged harmful IAS (IUCN, 2019). 

Unfortunately, complete eradication of IAS is hard, costly and often harmful towards 

non-target species (Myers et al., 2000). Literature on success stories is sparse but 

increasing, though represents a bias towards insular systems and terrestrial animals 

(Simberloff et al., 2018; Zavaleta et al., 2001). Moreover, the majority of eradication 

programs remains unpublished or hidden in grey literature due to observed failures 

caused by incomplete elimination, continued introduction by a nearby species pool and 

range shifts due to climate change (Rahel and Olden, 2008). Hence, in order to embrace 

and counter these eradication challenges, an integrated spatiotemporal dynamic 

approach and follow-up is required.  
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Moreover, aside from being challenged by a variety of abiotic and biotic factors, a 

disturbance is generated when eradicating an IAS, creating an opportunity for 

competitive species to establish or colonise. This is considered beneficial when 

extracting an invasive alien species from an area under native propagule pressure, 

though has a potential detrimental effect when a native species is affected. Both 

pressures (extraction frequency and incoming propagules) are expected to interact and 

affect biomass production, creating new and unfamiliar ecosystems that require 

dynamic and feedback-oriented management plans. For instance, adopting repetitive 

management with partial harvesting reduces the required funding per intervention, 

decreases the dispersal potential of IAS and allows to continuously update management 

based on intermediate results (Myers et al., 2000). Moreover, it creates less disturbance 

and provides an opportunity for native species to establish and compete with the IAS 

(Catford et al., 2009), following natural or artificial introduction. Unfortunately, the 

current lack of appropriate guidelines on the frequency and intensity of these partial 

interventions impedes their (successful) implementation. 

These challenges illustrate the need for alternative eradication activities, especially 

because the impacts of alien species on ecosystem structure and functioning remain 

highly species-specific. For instance, the alien Lemna minuta is invasive in Belgium, 

causing a moderate impact on the abiotic and biotic conditions within surface waters. 

More specifically, similar impacts are observed for L. minuta and the native L. minor, as 

their presence in aquatic systems is often characterised by dense mats that negatively 

affect aquatic life underneath by decreasing light penetration and oxygen concentration 

(Janes et al., 1996; Janse and Van Puijenbroek, 1998). Consequently, removal of these 

mats is beneficial to (1) improve light penetration and (2) reduce local stock of the 

invasive L. minuta (Ceschin et al., 2016). However, as most Lemna spp. reproduce in a 

vegetative way (Hillman, 1961), complete eradication programs without follow-up tend 

to be ineffective as a single frond is sufficient to restart colonisation. 

Within this chapter, attention is given to the temporal trend of primary production 

under a combination of two external pressures: partial biomass removal and biomass 

introduction. The aim is to determine if biomass production is affected and whether a 

native population responds differently compared to an alien population. To do so, both 

L. minor and L. minuta are exposed to (i) three levels of biomass removal: none, low 

frequency and high frequency and (ii) three levels of propagule pressure by the opposite 

species: none, low frequency and high frequency. By tackling these issues, an answer is 

provided to RQ3.2, as defined in Chapter 1. Hence, this chapter concludes with a 

statement on how monocultures are affected by artificial removal in combination with 

natural introduction of a competitor. 
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9.2 Materials and Methods 

9.2.1 Experimental setup 

Duckweed (Lemna minor and Lemna minuta) were collected in a ditch in Ghent 

(51.055111, 3.685639) and separated in the lab to grow monocultures of L. minor and L. 

minuta. Stock cultures were grown in plastic aquaria containing 3 L of nutrient medium 

based on OECD and ISO guidelines for chemical testing with L. minor, which is referred 

to as the full strength modified Steinberg medium (OECD, 2006) described in Table 9.1. 

Fluorescence lamps were used to provide 16 hours of light, followed by 8 hours of 

darkness, with an intensity at water surface of 36 μmol∙m-2∙s-1 up to 55 μmol∙m-2∙s-1 

(average: 44 ± 5 µmol∙m-2∙s-1). Water temperature was registered continuously and 

varied between 16.9 ˚C and 20.5 ˚C (average: 18.6 ± 0.5 °C). Every six days new medium 

was provided and aquaria were rinsed thoroughly with tap water.  

The experiment entailed a full-factorial design including three levels of introduction 

(none, low, high) and three levels of removal (none, low, high), resulting in a total of 

nine scenarios (Figure 9.1). Each scenario was repeated three times and applied to each 

Lemna species, providing a total of 54 containers. Tests started with a single species, 

henceforth referred to as ‘primary species’, and were complemented (if applicable) with 

the competing species, referred to as ‘secondary species’.  

 

Figure 9.1: Experimental set-up for the assessment of invasion vulnerability. The different 

scenarios account for three levels of biomass increase (e.g. due to dispersal of competitor) and 

biomass decrease (e.g. due to management, herbivory or dispersal). Arrows indicate the intensity 

of introduction (towards aquaria) and removal (from aquaria), while cylinders indicate the aquaria 

filled with 3 L (black colour) of medium. Each scenario is repeated three times and applied to two 

different species. 
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Each container held 3 L of diluted OECD medium with increased phosphorus content 

as described in Table 9.1. Floating separators were introduced to all containers for 

pragmatic reasons. More specifically, they allow nutrient concentrations to be the same 

for both species and to avoid the mixing of the two species, which eases temporal follow-

up of the produced biomass. However, the created separation does not allow for physical 

interaction between the individuals of different species, which causes a loss of relevance 

towards natural conditions. Light and temperature conditions remained unaltered. 

Throughout the experiment, containers were randomised every 2 days and water loss 

due to evapotranspiration was compensated by adding deionised water to maintain a 

volume of 3 L. To avoid excessive algae growth and nutrient depletion, the nutrient 

medium was replaced every six days. 

Table 9.1: Composition of test medium used for growing monoculture (Full strength) and 

performing the test (Reduced). Composition is based on the Steinberg medium used for 

chemical testing with Lemna minor (OECD, 2006). 

 Full strength Reduced 

Macronutrients (mg∙L-1) (mg∙L-1) 

 KNO3 350 70.0 

 KH2PO4 30 9.0 

 K2HPO4 4.2 1.26 

 MgSO4 49 9.8 

 Ca(NO3)2 205 41.0 

Micronutrients (µg∙L-1) (µg∙L-1) 

 H3BO3 120 24 

 ZnSO4 100 20 

 Na2MoO4 40 7.7 

 MnCl2 130 26 

 FeCl3 456 91 

 Na-EDTA 1500 300 

 

At the start of the experiment, 500 mg fresh weight of the primary species was 

introduced in the containers, followed by four days of undisturbed growth. 

Determination of the fresh weight was performed by collecting biomass on a sieve and 

blotting the fronds with tissue paper to extract attached water as much as possible. 

Introduction and removal actions were defined to occur every 4 (8) days in case of high 

(low) frequency, scheduled intermittently (Figure 9.2). A full cycle consisted of 8 days 

during which 2 (1) introduction and 2 (1) removal events occurred for the high (low) 

frequency containers. In total, three cycles were run, followed by six days of undisturbed 

growth. Introduction rates of the secondary species were fixed at 50 mg fresh weight 

(i.e. 10 % of initial biomass), while removal rates were set at 20 % of the total biomass.  
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Although both rates are relatively arbitrary, similar removal rates have been used in 

literature, see for instance Tang et al. (2017). Removal was designed to be non-specific, 

e.g. with 1.0 g of total biomass consisting of 80 % L. minor and 20 % L. minuta, a total 

of 0.2 g would be removed, combining 0.16 g of L. minor and 0.04 g of L. minuta. Due 

to the scheduling of these events, information on biomass wet weights was collected at 

a 2-day frequency. Moreover, every 4 days the dry weight of the removed biomass was 

determined after being dried at 60 °C for at least 48 h (OECD, 2006).  

 

Figure 9.2: Schedule for implementation of different management and introduction 

scenarios in time. Different scenarios have been defined (see Figure 9.1) and will experience 

different pressures. HF: high frequency; LF: low frequency. 

Simulations of Lemna spp. biomass over time were performed to assess the discrepancy 

between theory and practice. Components affecting biomass were (i) growth, (ii) 

introduction and (iii) removal. For each time point, the new biomass was calculated 

based on previous time point and the applicable management, with the calculation 

following Equation 9.1. Simulations for a range of relative growth rates are graphically 

depicted in Figure F.1. 
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𝑀𝑖 = 𝑒𝑟∙𝑡 ∙ 𝑀𝑖−1 +𝑚𝑖 ∙ 0.05 − 𝑘𝑖 ∙ 0.2 ∙ 𝑒
𝑟∙𝑡 ∙ 𝑀𝑖−1  (Equation 9.1) 

With Mi representing the biomass at point i, r the relative growth rate of the considered 

species (d-1), t the time between two sampling events (d), mi reflecting whether or not 

biomass should be added (dichotomous) (-) and ki reflecting whether or not biomass 

should be removed (dichotomous) (-). 

9.2.2 Data analysis 

Records of fresh weight collected throughout the test were converted into dry weight 

values by applying a species-specific dry weight ratio based on the final biomass. It was 

assumed that temporal changes in the dry weight ratio are negligible, following the 

similarity in resource provision. For each Lemna species, a single dry weight ratio was 

calculated. Subsequently, the resulting dry weight scores were used to determine the 

temporal trends in biomass, relative growth rate and relative dominance. 

Statistical analysis of the final biomass relied on the assumption that the obtained values 

originated from a normal distribution. Normality was tested for by applying the Shapiro-

Wilk test with Benjamini-Hochberg correction for multiple testing. Subsequently, 

homoscedasticity was checked for by performing a Bartlett-test. Although no significant 

differences from normality or homoscedasticity were observed (all p > 0.05; results not 

shown), results should merely be considered as support for visual observations instead 

of absolute values due to the low number of replicates (i.e. n = 3). Analysis of Variance 

(ANOVA) was used to indicate whether a significant difference in final biomass among 

scenarios was present and, if significant (i.e. p < 0.05), followed by two-sample Student’s 

t-tests with Benjamini-Hochberg correction for multiple testing.  

Temporal trends in biomass were assessed by means of generalised linear mixed effect 

models (GLMMs), considering introduction, removal and time as fixed effects and the 

aquarium as random effect. Saturated models included all interactions among the fixed 

effects and included a random intercept and an autoregressive variance-covariance 

structure. Model simplification focused on optimising the random effect structure, 

followed by stepwise exclusion of (interacting) fixed effects (Zuur et al., 2009). 

Elimination of (interacting) variables decreased the variance during parameter 

estimation, yet increased bias. The Akaike Information Criterion (AIC) was used to 

decide on the in- or exclusion of an (interaction) effect and represents model fit, while 

penalising for complexity. More information on the development of these linear mixed 

effects models can be found in Appendix, Section F.2.  
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9.3 Results 

Determination of final fresh and dry weight of each primary and secondary species 

provided an average dry-to-wet weight ratio of 0.053 ± 0.003 g∙g-1 for L. minor and 0.051 

± 0.005 g∙g-1 for L. minuta (N = 27), being confirmed by the observed range in literature 

(i.e. between 0.05 g∙g-1 and 0.15 g∙g-1) (Appenroth et al., 2017; Cedergreen and Madsen, 

2002). Slight differences in dry weight ratios occurred throughout the test period (see 

Appendix, Figure F.3), yet ratios determined on the overall final biomass were 

considered to be more relevant to convert the intermediate fresh weights. The resulting 

dry weight values were subsequently used for analysis of the final biomass production 

and temporal trends in biomass production and growth rates, and will be used from here 

on unless mentioned otherwise. 

9.3.1 Biomass production 

Final biomass of the primary species clearly differed among the nine scenarios for both 

L. minor (F = 36.27, p < 0.001; Table 9.2) and L. minuta (F = 53.81, p < 0.001; Table 9.2), 

showing to be highest when no removal was performed (Figure 9.3). Lower L. minor 

biomass was obtained when biomass was actively removed (Figure 9.3), though 

significant differences were only observed for a few cases (see Appendix, Table F.1). More 

specifically, in comparison to the control treatment, significantly lower final biomass 

scores were obtained under (i) no introduction (1.38 ± 0.10 g versus 0.71 ± 0.03 g; p = 

0.024) and (ii) high-frequency introduction (1.28 ± 0.04 g versus 0.64 ± 0.04 g; p = 

0.001) of L. minuta. Similar scenario-specific differences were observed for L. minuta 

(see Appendix, Table F.3), illustrating the significant effects of high-frequency removal 

on biomass production. Here, in comparison to the control treatment, significantly 

lower final biomass scores were obtained under (i) no introduction (1.30 ± 0.07 g versus 

0.59 ± 0.08 g; p = 0.007) and (ii) high-frequency introduction (1.32 ± 0.10 g versus 0.66 

± 0.03 g; p = 0.017) of L. minor. Similar treatment effects were observed for the total 

biomass (see Appendix, Figure F.2). 

Table 9.2: ANOVA results of final dry weight, grouped per scenario. Nine scenarios were 

considered when the focus species is the primary species, while only six scenarios were considered 

in case the focus species was the secondary species. Differences tend to be more significant among 

groups when more scenarios are considered. 

Primary species Focus species # Scenarios F-Statistic p-value 

L. minor L. minor 9 36.27 1.48∙10-9 

 L. minuta 6 22.29 1.09∙10-5 

L. minuta L. minor 6 18.13 3.2∙10-5 

 L. minuta 9 53.81 5.32∙10-11 
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Introduction of a secondary species had a limited effect on the biomass of the primary 

species, with patterns being highly similar between the control and high-frequency 

introduction scenarios (see Figure 9.3). At low-frequency introduction, however, L. 

minor seems negatively affected by the introduction of L. minuta when no biomass is 

removed, providing lower biomass (0.90 ± 0.16 g) compared to (i) the control (1.38 ± 

0.10 g; p = 0.042) and (ii) the high-frequency introduction scenarios (1.28 ± 0.04 g; p = 

0.080). In contrast, L. minuta appears to be positively influenced by the introduction of 

L. minor when biomass is removed at a low frequency, producing more biomass (1.18 ± 

0.06 g) than (i) the control (1.07 ± 0.08 g; p = 0.184) or (ii) high-frequency introduction 

scenario (0.86 ± 0.05 g; p = 0.012).  

 

Figure 9.3: Final biomass of Lemna minor and Lemna minuta. Biomass dry weight of L. 

minor (dark grey) and L. minuta (light grey) was determined after 34 days exposure to 9 treatment 

scenarios. An effect of biomass removal is visible for each species, though is less clear for primary 

species in case of low introduction-frequency of a secondary species. Secondary species benefit 

from higher introduction rates, especially in combination with low-frequency removal. 

Secondary species experienced similar effects as primary species, with significant 

differences in biomass production among all considered scenarios (p < 0.05; Table 9.2). 

High-frequency removal caused final biomass of L. minor to be lower compared to the 

control treatment (i.e. no removal) under both low-frequency (0.18 ± 0.01 g versus 0.28 

± 0.03 g; p = 0.059) and high-frequency (0.27 ± 0.04 g versus 0.34 ± 0.04 g; p = 0.119) 

introduction.  

  



MANAGEMENT AND INVASION 

207 

Analogously, final biomass of L. minuta was lower under high-frequency removal 

compared to removal-free for both low-frequency (0.22 ± 0.02 g versus 0.43 ± 0.03 g; p 

= 0.006) and high-frequency (0.29 ± 0.01 g versus 0.31 ± 0.01 g; p = 0.136) introduction 

(Figure 9.3). Overall, no significant differences were obtained between low-frequency 

and high-frequency introduction (all p > 0.05), suggesting that within-species 

competition might have counteracted the elevated introduction rates. Remarkably, 

combining low-frequency removal and high-frequency introduction (i.e. scenario 8) 

caused the highest biomass production of both L. minor (0.47 ± 0.07 g) and L. minuta 

(0.41 ± 0.03 g), but only showed to be significantly higher for L. minuta compared to the 

control treatment (0.31 ± 0.01 g; p = 0.037) and high-frequency removal (0.29 ± 0.01 g; 

p = 0.037) scenario (Figure 9.3). 

Relative growth rates based on the initial and final biomass were slightly higher for L. 

minuta (0.116 d-1 (s < 0.001 d-1)) compared to L. minor (0.111 ± 0.007 d-1) in undisturbed 

environments, though did not show to be significantly different (t = -1.213, df = 2.008, p 

= 0.349) (see Table 9.3). Obtained rates were used for updating the applied growth rates 

within the simulations performed in Section 9.2.2 (i.e. Equation 9.1 and Figure F.1), 

though divergence between observations and simulations was expected, as obtained 

rates were relatively low compared to literature and reported in previous chapter (i.e. 

0.1 d-1 up to 0.5 d-1 (Gérard and Triest, 2014; Njambuya et al., 2011)), which insinuates 

the presence of time-specific growth rate fluctuations.  

Table 9.3: Relative growth rates (RGRs) for Lemna minor and Lemna minuta based on 

the overall biomass increase during the test period (34 days). Only scenarios supporting 

undisturbed growth (i.e. no biomass removal) of the primary species were considered for RGR 

calculation. Each scenario contained three replicates, which were used to determine an average, 

scenario-specific RGR and sd (standard deviation). An overall RGR was based on the average of the 

scenario-specific RGRs. 

Species Scenario RGR (d-1) sd (d-1) 

L. minor 1 0.116 0.002 

 4 0.103 0.006 

 7 0.114 0.001 

 Mean 0.111 0.007 

L. minuta 1 0.116 0.001 

 4 0.116 0.002 

 7 0.116 0.002 

 Mean 0.116 < 0.001 
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9.3.2 Temporal patterns 

9.3.2.1 Biomass 

Biomass of the primary species increased in time and illustrated the effect of removal-

based management on biomass production. Low-frequency (days 6, 14 and 22) and high-

frequency removal (days 6, 10, 14, 18, 22 and 26) occasions occurred as minor drops in 

biomass (Figure 9.4), causing temporal biomass patterns to diverge. Towards the end of 

the experiment, biomass values tended to reach a plateau, with a seemingly higher effect 

for scenarios without biomass removal. For instance, without being exposed to biomass 

removal, L. minor biomass increases sharply at first (± 4 days), followed by a more gentle 

increase for a longer time period (i.e. 15 to 20 days), after which the increase in biomass 

remains low. Simultaneously, L. minor populations exposed to biomass removal follow 

a similar pattern, yet tend to keep growing during the third stage and thereby decrease 

the difference with the control treatment (Figure 9.4). A similar pattern can be observed 

for L. minuta as primary species, though shows a steeper increase during the first period 

while plateauing faster than L. minor (Figure 9.4). 

The introduction of a secondary species did not seem to affect the observed patterns for 

L. minor and L. minuta. This solidifies the suggestion that invasion of a secondary species 

hardly affects the population dynamics of the primary species, as inferred from Figure 

9.3. Moreover, Figure 9.4 illustrates the convergence of biomass patterns among 

different scenarios and indicates that more significant discrepancies occurred 

throughout the treatment period compared to Figure 9.3, while a higher similarity in 

overall biomass can be expected after a certain amount of time (i.e. hypothetical 

elongation of the applied time window). 

The developed GLMMs confirmed that undisturbed growth occurred during the first 

time period, as no interactions with the performed treatment were included in the 

model. In contrast, during the treatment period, biomass production of the primary 

species was significantly affected by the applied treatment, including both individual 

and interactive effects (see Appendix, Table F.5 and Table F.6). More specifically, the 

inclusion of removal frequency showed to significantly improve model fit for both L. 

minor and L. minuta (p < 0.001) during the treatment period, while time-specific effects 

of introduction frequency were relatively non-significant (p > 0.05) (see Appendix, Table 

F.5 and Table F.6). Lastly, within the third period (i.e. undisturbed growth) a significant 

effect of treatment was observed for L. minor, while for L. minuta only the inclusion of 

removal frequency significantly improved model fit. GLMMs for L. minor showed to fit 

the observations relatively well, with a limited residual pattern in the temporal 

dimension (see Appendix, Figure F.6, Figure F.7 and Figure F.8). Similarly, GLMMs for 

L. minuta provided an acceptable fit, though showed a larger residual pattern within the 

temporal dimension (see Appendix, Figure F.9, Figure F.10 and Figure F.11). 
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Simulations (see Equation 9.1 and Figure F.1) greatly underestimated the obtained 

biomass throughout the test period (see Figure 9.4). Only final biomass predictions for 

undisturbed biomass growth (i.e. no removal) showed to be relatively accurate 

(especially for L. minuta, see Figure 9.4), mostly because the growth rate was based on 

these data points (see Table 9.3). In contrast, biomass predictions for low-frequency and 

high-frequency removal scenarios indicated an underestimation of the final biomass 

(Figure 9.4), due to applying a time-independent growth rate. Indeed, the discrepancy 

between observations and simulations gradually increased until around day 24 (L. 

minuta) or day 30 (L. minor), after which the difference became smaller (see Appendix, 

Figure F.4). Final biomass tended to be most accurately predicted when no biomass was 

removed, which contrasted with the highest errors observed during the previous time 

points (see Appendix, Figure F.4). This indicates that the applied biomass density 

throughout this test is already sufficient to influence the relative growth rate and that 

the time-independent RGR is an incorrect simplification to represent the growth 

dynamics of Lemna spp. 

 

Figure 9.4: Temporal increase of biomass for the two primary species (columns) at three 

levels of introduction pressure (rows). An increase in biomass is expected and observed in time, 

though a clear discrepancy exists between the simulations (lines) and observations (black 

symbols). Simulations rely on species-specific growth rates (L. minor: 0.111 d-1; L. minuta:  

0.116 d-1) and are unaffected by introduction of a secondary species, while no clear effect can be 

observed in practice. Grey symbols represent introduction (circles) and removal (squares) events, 

with filled symbols indicating the low frequency pressure. 
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9.3.2.2 Relative growth rate and biomass ratio 

Temporal assessment of the relative growth rate corroborated previous statements and 

indicated the dynamic character of the growth rate throughout the test period. In 

general, growth rates were highest directly after the start of the test and decreased in 

function of time (Figure 9.5). Initial growth rates for L. minuta were higher than for L. 

minor, though dropped faster to a similar rate from day 6 onwards. The highest drop in 

growth rate was observed for L. minuta at high-frequency introduction and low-

frequency removal from 0.566 ± 0.045 d-1 (day 2) to 0.024 ± 0.010 d-1 (day 34), while 

smaller drops were obtained for L. minor (Figure 9.5). Subsequent growth rates showed 

to depend on removal frequency, with a slightly higher degree of stability when no 

biomass was removed, as illustrated by the drop in growth rate on day 8 due to biomass 

removal on day 6. Contrasting the effects of biomass removal, no effects of introduction 

pressure were observed (Figure 9.5). 

 

Figure 9.5: Temporal evolution of relative growth rate (RGR) for Lemna minor and Lemna 

minuta for different management scenarios. A decrease in RGR is obtained for each primary 

species, indicating the temporal dynamics of the RGR and the incorrect assumption of using a 

stable RGR (dashed grey line) for simulations. Initial exceedance of the fixed growth rate causes 

higher reproduction at the beginning of the experiment, which propagates through time and results 

in underestimated biomass values (Figure 9.4). Grey symbols represent introduction (circles) and 

removal (squares) events, with filled symbols indicating the low frequency pressure. 
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The relative dominance of the primary species over the secondary species exceeded the 

equilibrium condition (i.e. ratio = 1) throughout the whole test. Observations followed 

the expected decrease and indicated relatively high dominance during the first 

introduction event (day 4), followed by a decrease due to the exerted introduction and 

reproduction pressure. Ratios for the primary L. minuta were generally higher compared 

to L. minor, illustrating the effects of higher (overall and initial) growth rates (see Table 

9.3 and Figure 9.5). Removal frequency limitedly affected the ratio, except for L. minuta 

under low-frequency introduction during the first weeks of the experiment (Figure 9.6).  

Increased introduction frequency exerted a slightly negative effect on biomass ratios, 

illustrated by a faster drop for the primary L. minor at high-frequency introduction 

compared to low-frequency introduction (Figure 9.6). Similarly, relative dominance of 

L. minuta seemed to be slightly lower under high introduction pressure compared to 

being under low introduction pressure. Moreover, a minor effect of introduction 

frequency on final biomass ratio was observed for L. minuta, while the final ratio for L. 

minor remained relatively similar. This indicates that the introduction effect of the 

secondary L. minuta is less frequency-dependent than the introduction effect of L. 

minor, suggesting that the former is more assertive towards biomass production and 

confirming the (overall and initial) higher growth rates for L. minuta. 

 

Figure 9.6: Temporal evolution of relative dominance of the primary species. A decrease in 

relative dominance is observed due to the continuous increase of the secondary species. Patterns 

show a lower frequency-dependence when L. minuta is introduced, illustrating its higher growth 

rate. Grey symbols represent introduction (circles) and removal (squares) events, with filled 

symbols indicating the low frequency pressure.  
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9.4 Discussion 

9.4.1 Interactions under controlled conditions 

Under natural conditions, populations and communities continuously experience 

external pressures and disturbances, the combined effects of which are hard to predict. 

To improve understanding, controlled experiments provide relief as they allow to isolate 

specific pressures and their potential interactions. Here, the individual and interactive 

effects of two external pressures on the growth and interaction of two duckweed species, 

L. minor and L. minuta, were considered, with records of final biomass illustrating the 

existence of pressure-specific influences. For instance, final biomass of the primary 

Lemna spp. was negatively affected by repetitive partial harvesting, though was hardly 

affected by the introduction of a secondary species, causing interactive effects to be 

absent, though dominated by biomass removal if present. In contrast, biomass of the 

secondary species was positively affected by a higher introduction frequency, especially 

when combining high-frequency introduction with low-frequency removal. Moreover, 

secondary species showed to be able to establish a viable population next to the primary 

species, indicating the absence of a severe negative interaction between L. minor and L. 

minuta and confirming reported coexistence (Ceschin et al., 2016; Njambuya et al., 2011). 

Growth rates of both Lemna spp. varied in time, causing simulations to greatly 

underestimate the biomass of the primary species by relying on a time-independent 

growth rate. Temporal patterns of biomass exceeded the simulations due to relatively 

high initial growth rates, though tended to converge towards the end of the experiment. 

Moreover, growth rates increased temporarily after each removal occasion, causing 

differences between scenarios to remain limited. These observations suggest the 

existence of a scenario-independent endpoint, as the growth rate is negatively affected 

by biomass density. Under the assumption of such a density-based saturation, external 

pressures merely affect the time required to reach it. Additionally, it illustrates the 

negative feedback effect of overcrowding on the growth rate of both Lemna spp. at 

relatively low population size and highlights that density-corrections are crucial when 

modelling biomass at a temporal level (Driever et al., 2005; Frédéric et al., 2006).  

The observed coexistence of both species and existence of a scenario-independent 

outcome for the primary species are supported by the temporal change in biomass ratio. 

Over time, the relative dominance of the primary species decreased prior to plateauing 

above the equilibrium condition. Hence, under mentioned conditions it remains 

unlikely that the secondary species will assert dominance, affecting subsequent 

management actions. For instance, biomass removal from a system dominated by L. 

minuta complemented with introduction of L. minor will provide a more balanced 

biomass ratio, but is unlikely to shift towards dominance by L. minor. 
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9.4.2 Interactions under field conditions 

Although the performed experiment allows to illustrate certain effects of management 

on biomass production, caution should be applied during result extrapolation towards 

field conditions due to a variety of unaddressed factors. For instance, the applied 

nutrient replenishment can occur within highly dynamic lotic water systems, though 

represents an unrealistic condition when describing an isolated lentic system. Within 

both systems, nutrients from the water column are immobilised by growing Lemna spp., 

which is cheered for when treating wastewater in a natural way and under controlled 

conditions (Muradov et al., 2014; Verma and Suthar, 2014). Yet, when uncontrolled 

immobilisation causes severe nutrient depletion, opposing Lemna spp. might experience 

a differentiated degree of stress and produce abscisic acid to support the creation of 

turions (Zhao et al., 2015b). These turions disperse to nearby systems or sink into the 

sediment, where they remain inactive until better conditions occur. At a larger scale, 

nutrient immobilisation alters the prevailing biogeochemical cycles, which illustrates 

the modifying role plants can play within ecosystems (Matsuzaki et al., 2008; Strayer, 

2010). This is of special concern when considering alien species, whose invasive success 

is often linked with their efficiency towards resource use (Paolacci et al., 2016).  

Aside from the improved resource use efficiency, a plethora of complementary 

functional and life-history traits exists to magnify competitive superiority among 

interacting macrophytes (van Kleunen et al., 2010). For instance, the excretion of 

allelochemicals degrades habitat suitability by inducing stress and initiating DNA 

methylation followed by altered gene expression (Zhao et al., 2015b). At a physical level, 

floating macrophytes have the tendency to create thick mats that impede light 

penetration within the water column, causing submerged aquatic vegetation to 

disappear (Driever et al., 2005; Janes et al., 1996). Moreover, it was shown that 

overcrowding can cause lower growth rates, giving an advantage to faster-growing or 

more density-tolerant species within these floating mats. 

On the other hand, both mutualism and commensalism have been reported between 

macrophyte species, although being less common for phylogenetically similar species. 

Both L. minor and L. minuta showed to be unaffected by the introduction and presence 

of the opposing species (see Figure 9.3) and thereby confirmed their potential to coexist 

(Ceschin et al., 2016; Njambuya et al., 2011). However, these inferences are limited to the 

applied conditions and require additional testing prior to generalisation. This is 

especially important when aiming to extrapolate the results obtained in this experiment, 

as the presence of floating separators might have excluded physical interaction 

processes. For instance, it can be hypothesised that, without barriers, difference in 

biomass density (g∙m-2) will affect the observed biomass ratio, with lower density values 

benefitting the physical overcrowding of the competitor. 
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9.4.3 Implications for management of invasive alien species 

Invasion prevention is agreed upon to be the preferred approach from an economic and 

ecological perspective (Strayer, 2010; Williams and Grosholz, 2008), though 

implementation of straightforward guidelines is hampered by ambiguous terminology, 

international politics and the idiosyncratic behaviour of alien species (Colautti and 

MacIsaac, 2004; Montgomery et al., 2012). Management of established alien species is 

traditionally directed towards local eradication and control, while global range shifts 

induced by climate change are expected to cause more species to disperse and migrate 

into new territories and to challenge the current definition of being ‘alien’ (Chen et al., 

2011a; Rahel and Olden, 2008). Despite the relatively low success rate, examples of 

effective eradication within freshwater systems exist and provide a foundation towards 

future management and tool development for decision-support (Strayer, 2010). 

Nevertheless, complete eradication remains costly and often highly destructive towards 

non-target species, which advocates the use of partial, less-destructive eradication 

programs (Myers et al., 2000). For instance, it was shown that repetitive partial removal 

of duckweed mats might support the establishment and growth of other macrophyte 

species by taking advantage of the available physical space.  

The obtained results showed that propagule pressure undermines the presence of strong 

monocultures when partial biomass removal is applied, as indicated by a faster reduction 

in biomass ratio at high-frequency introduction compared to low-frequency 

introduction. Hence, the more balanced presence of both Lemna spp. due to removal 

corroborates the effectiveness of partial biomass removal, although the discrepancy 

between both observations (see Figure 9.6) suggests that L. minuta is a slightly stronger 

competitor (as confirmed by a higher relative growth rate). Invasion by the alien L. 

minuta caused a faster decrease in biomass ratio for the primary L. minor, compared to 

the decrease of L. minuta biomass due to introduction of L. minor. Consequently, it can 

be expected that both systems will ultimately reflect a similar state, dominated by L. 

minuta. It remains to be studied how these systems will respond to an additional 

disturbance event. 

Finally, also external factors play a role in steering macrophyte community composition. 

Within this chapter, the applied removal scenarios assumed the presence of an overall 

pressure, i.e. the disturbance is not species-specific. Yet, application of species-specific 

removal (e.g. selective herbivory) can alter final outcomes dramatically (Levine et al., 

2004). For instance, selective herbivory of L. minor within a system experiencing 

propagule pressure from L. minuta might cause a divergence of the observed temporal 

trend and ultimately cross the biomass ratio equilibrium faster. Therefore, it is 

imperative for management to assess the prevailing propagule pressure prior to (partial) 

biomass harvesting. 
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9.4.4 Contribution to the study objective 

The aim of this chapter was to determine if biomass production is affected by the 

introduction of a secondary species and whether a different response occurs between 

native and alien species. Knowledge on the response of a prevailing population facing 

the introduction of a new species is crucial to develop reactive management plans, 

allowing case-specific strategies. Moreover, this approach can be extended towards 

invasive alien species impact reduction by considering the introduced species to be 

alien. Subsequent establishment depends greatly on the prevailing conditions (both 

abiotic and biotic), though is often improved via a disturbance (e.g. drought, accidental 

discharge, harvesting) (Strayer, 2010; Zedler and Kercher, 2005). This disturbance-

influenced establishment can be beneficial when a native species is introduced in an 

alien population, though can be harmful when an alien species is introduced in a native 

population. Therefore, the response of the prevailing population towards management 

within the study objective (see Section 1.2.1) was tested with two Lemna spp., as these 

prefer eutrophic conditions and are known to occur as floating mats in ditches, ponds 

and wetlands (Janse and Van Puijenbroek, 1998). Both species were exposed to (i) 

biomass removal and (ii) introduction of the opposite species. 

Primary production showed to be affected by the performed biomass removal, though 

was generally unaffected by introduction of a secondary species (see Figure 9.3). More 

importantly, it showed to be negatively affected by its own growth, as relative growth 

rates decreased in time (while overall biomass increased). Responses showed a high 

degree of similarity for Lemna minor and Lemna minuta, which suggested that no one-

way interaction was present and that both species can coexist. These results confirmed 

reported coexistence in the field (Ceschin et al., 2016; Paolacci et al., 2016) and suggested 

that biomass removal does not affect the relative abundance of either species. Yet, they 

additionally insinuated that the native L. minor might become less dominant in time 

due to the introduction of the alien L. minuta, compared to L. minuta experiencing 

introduction of L. minor (see Figure 9.6). This seemingly minor difference can ultimately 

result in the suppression of L. minor by L. minuta, though longer testing conditions are 

needed to confirm this hypothesis. 

The indication that performing partial biomass harvesting within a system exposed to 

the introduction of a non-established species did not affect the evolution of the relative 

dominance in time confirmed that both Lemna spp. grow relatively independently 

(Njambuya et al., 2011). This might not be the case for other interactions among 

macrophyte species, though similar studies are lacking. Nevertheless, it remains 

recommended to map introduction pressure by neighbouring populations prior to any 

type of management that causes a temporal disturbance.  
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9.5 Conclusion 

Management of aquatic macrophytes by means of biomass removal provides relief for 

steering biomass production and community composition. Here, repetitive partial 

biomass removal delayed the colonisation process and supported higher growth rates 

for both Lemna minor and Lemna minuta by reducing the negative feedback due to 

overcrowding. Similarly, species-specific growth rates decreased in time and showed to 

be slightly higher (initially and overall) for the alien L. minuta compared to the native L. 

minor, corroborating the former’s invasive behaviour without being significant. 

Introduced species were able to establish and coexist with the primary species and 

benefitted from elevated introduction rates, yet affected the original monoculture 

differently. More specifically, introduction of L. minuta caused a lower relative 

dominance than the introduction of L. minor, potentially due to higher growth rates of 

the former. Hence, assessment of propagule pressure prior to biomass removal is crucial 

to avoid the detrimental effects of invasive alien species, making the decision on 

management intensity and frequency case-dependent. Based on our results, removal of 

the native L. minor to improve light penetration can be performed when pressure by L. 

minuta is absent or low. In contrast, populations of the alien L. minuta act as a local 

species pool and are best removed when L. minor is introduced, be it naturally or 

artificially. As aquatic macrophyte management is a challenging task and will only 

increase as invasion rates and climate change become more severe, it is imperative to 

improve understanding of their interacting effects on community composition and 

ecosystem functioning.  
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- Models and experiments support ecosystem conservation 

- Natural dynamics challenge predictions of data-driven models 

- Adopting pragmatic approach created caveats and opportunities 
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Abstract 

Models and experiments allow to simplify complex natural systems and help 

understanding patterns and predicting management outcomes. Yet, the majority of 

ecological research is chopped up in several smaller studies and requires to be 

comprehensively summarised in order to move from being detailed and confined results 

to broad and transparent applications. With publicly available data, the influence of data 

cleaning on model performance was illustrated and concluded on the use of missForest 

to impute missing data and the serial removal of outliers, false absences and redundant 

variables (both correlated and irrelevant). Threshold values for each pre-processing 

technique were derived (τo = 3, τa = 5 %, τc = 0.7 and τi = 10 %, respectively) and applied 

prior to inferring macrophyte-specific variable importance scores, which illustrated the 

importance of and optimal conditions for temperature (> 17 °C), nitrate-N (0.5 mg∙L-1 up 

to 1.5 mg∙L-1), dissolved oxygen (4 mg∙L-1 up to 7 mg∙L-1), ammonium-N (0.3 mg∙L-1 up to 

0.5 mg∙L-1) and pH (7 up to 8.5) to support macrophyte presence. Moreover, model 

results indicated the potential threat of invasive alien species under prevailing and 

altered abiotic conditions, although the functional response and relative growth rate did 

not indicate such a potential under controlled conditions. Integration of the obtained 

results within wetland management plans provides promising perspectives towards 

conservation, though identified several areas for future research and improvement. 

Alternative techniques for data collection, cleaning and analysis are manifold and 

request testing with respect to applicability and accuracy. Moreover, increased inclusion 

of functional traits into data-driven models merges the strengths of correlative and 

process-based modelling, thereby illustrating the inescapable integration of extensive 

observational data and ecological theory that is essential to tackle the combined threat 

of climate change and invasive alien species. 
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10.1 Setting the scene 

Throughout previous chapters, the research questions identified in Chapter 1 were 

systematically tackled, while contributing to the overall study objective (see Section 

1.2.1). Challenges were addressed by literature review, correlative modelling and 

laboratory experiments and contributed to the identification of important abiotic 

habitat descriptor variables and the value of autecological studies. So far, the results are 

scattered among the different chapters and require a comprehensive wrap-up, 

complemented with recommendations for future research. 

To start, literature allowed to create an overview of (i) the biotic interactions within 

shallow freshwater systems, (ii) the obstacles that slow down the implementation of 

integrated constructed wetlands (ICWs) and (iii) the options for correlative habitat 

suitability modelling. More specifically, Chapter 2 summarised the biotic interactions 

within shallow eutrophic freshwater ecosystems in Table 2.2, while illustrating the 

capacity of macrophytes to modify the physical and chemical environment into a concert 

of microhabitats (see Section 2.3.2). In addition, Chapter 3 compared a selection of 

correlative modelling techniques for their ease of interpretation, transparency, 

ecological relevance and predictive performance in order to support technique selection 

(see Table 3.2). Based on these two chapters, it was decided to focus on (i) macrophytes 

and (ii) random forests to support wetland management from a biotic perspective. 

Secondly, data cleaning and model training allowed the construction of correlative 

species-specific models. More specifically, data cleaning aimed at improving 

information density within the provided data and was applied in Chapter 5 and 

Chapter 6, discussing which imputation technique and which data-specific thresholds 

to use, respectively. Results showed that missForest generally provided the lowest error 

during imputation (see Section 5.5), while thresholds were selected for combinatory 

outlier (τo = 3), false absence (τa = 5 %), correlation (τc = 0.7) and irrelevant variable (τi 

= 10 %) identification and elimination (see Table 6.2). Secondly, Chapter 7 created 

correlative habitat suitability models (HSMs) that were trained with the pre-processed 

data and reported that temperature and nitrate highly affected the description of the 

occupied habitats, being closely followed by ammonium, oxygen and pH (see Figure 

7.2). Variable-specific influences allowed to infer general optimal conditions for 

temperature (> 17 °C), nitrate-N (0.5 mg∙L-1 up to 1.5 mg∙L-1), oxygen (4 mg∙L-1 up to 7 

mg∙L-1), ammonium-N (0.3 mg∙L-1 up to 0.5 mg∙L-1) and pH (7 up to 8.5). Based on these 

conditions, theoretical management scenarios showed to affect habitat suitability in a 

positive, yet differential, way (see Figure 7.5) and illustrated the need for holistic 

freshwater management.  
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Lastly, experiments under controlled conditions are imperative to evaluate the 

effectiveness of management measures and complement model-based results. Here, 

experiments were run with the native Lemna minor and the alien Lemna minuta to (i) 

identify the applicability of traits to forecast invasive behaviour and (ii) determine the 

effects of harvesting on biomass ratio. First, Chapter 8 considered the functional 

response (resource-based), the relative growth rate (output-based) and a hybrid 

biomass-based nutrient removal (resource-use efficiency). The observations 

contradicted the expectations of an invasive alien species being faster in nutrient uptake 

and biomass production compared to a native species. Secondly, Chapter 9 considered 

the potential effects of partial biomass harvesting on overall biomass production. 

Native-dominated systems showed to be slightly more affected by simultaneous biomass 

removal and invasion, while alien-dominated systems were characterised by relatively 

more biomass of the alien species.  

Within this chapter, the aim is to frame the individual studies within the overall study 

objective identified in Chapter 1 (see Section 1.2.1, Section 1.2.2 and Table 10.1). The 

potential consequences of this work towards wetland conservation are tackled, while 

specific attention is given to the impending threat of changing environmental conditions 

and the methodological limitations of the study. Moreover, with the ongoing global 

changes in mind, future perspectives are identified, prior to concluding this chapter (and 

the overall work). 

Table 10.1: Overview of the individual study objectives as defined in Chapter 1. For each 

objective, an internal reference is provided. 

Objective Topic Tackled in 

1.1 Interacting biotic groups in eutrophic, shallow water bodies Table 2.2 

1.2 Use of habitat modifiers to improve life below water Section 2.2.2 

1.3 Treatment performance to provide clean water and sanitation Section 2.2.1 

1.4 Conclusion on key issues for multifunctional wetlands Section 2.5 

1.5 Overview of advantages and drawbacks of selected techniques Table 3.2 

1.6 Four main steps in ideal modelling procedure Table 3.1 

2.1 Conclusion on comparison of selected imputation techniques Section 5.5 

2.2 Conclusion on threshold values for data pre-processing  Section 6.5 

2.3 Performance of species-specific models Table 7.4 

2.4 Variable importance and habitat suitability Figure 7.1 & 7.2 

2.5 Identification of potential prevalence and management effects Figure 7.4 & 7.5 

3.1 Defining calculation of trait indices Section 8.2.3 

3.2 Individual traits versus ecosystem-based techniques Section 8.4.4 

3.3 Temporal evolution of biomass and biomass ratio Figure 9.4 & 9.6 

3.4 Biomass of two Lemna spp. under different treatments Figure 9.3 



GENERAL DISCUSSION AND CONCLUSION 

223 

10.2 Contribution to the conservation of wetlands 

Wetland conservation entails three main groups of management activities: protection, 

restoration and construction (see Box 1.2). Each of these groups benefits from the 

development of habitat suitability models as illustrated by their application to delineate 

reserve areas (Elith et al., 2006; Real et al., 2006), guide restoration efforts (Keshtkar et 

al., 2013; Van der Lee et al., 2006), predict distributions of native and alien species (Boets 

et al., 2013; Chefaoui and Lobo, 2008) and explore the potential effects of climate change 

(Barbet-Massin et al., 2014; Domisch et al., 2013). To extend these observations towards 

macrophyte-based freshwater management, correlative habitat suitability models were 

developed in Chapter 7. More specifically, conditional random forests were trained for 

58 different macrophyte species due to their de-correlated ensemble-based approach 

and reported outperformance of more conventional modelling techniques (Benito et al., 

2013; Breiman, 2001; Guo et al., 2015; Strobl et al., 2007). 

The main contribution of the HSMs developed in Chapter 7 towards wetland 

conservation (and, by extension, general freshwater management) is the identification 

of macrophyte-specific response curves. Based on these curves, two main types of 

management approaches can be distinguished: (i) the prevailing conditions are 

considered to be fixed boundary conditions or (ii) the prevailing conditions are flexible 

and can be adapted to optimally support a specific (set of) macrophyte(s). Both 

approaches entail some degree of biotic control (e.g. harvesting, eradication, manual 

introduction), though only the latter considers additional abiotic control (e.g. intensive 

pre-treatment, chemical precipitation). More importantly, the resulting management 

plans can be extended by including the response curves of alien species during decision-

making. This is illustrated in Box 10.1, which represents the potential implementation of 

the models developed in Chapter 7. 

Yet, HSMs are limited in the answers they can provide to support the development of 

management plans, especially when dealing with questions related to (i) rare (e.g. 

endangered, alien) species, (ii) biotic interactions, (iii) dispersal dynamics or (iv) 

occurrence probability (Araújo et al., 2005; Bruneel et al., 2018; Gallien et al., 2010). 

Responses to these issues associated with single-species abiotic HSMs include the use of 

multilayer models (Dubuis et al., 2011; Guisan and Rahbek, 2011), the inclusion of biotic 

predictors (Giannini et al., 2013), the integration of remote sensing (Cord et al., 2014) 

and the implementation of model calibration (Jarnevich et al., 2015). Alternatively, 

experiments under controlled conditions are performed to provide a clearer causal link 

between an explanatory and response variable in comparison to the correlations 

extracted by HSMs. However, such experiments often produce results that are only valid 

in particular environmental settings, which limits their extrapolation potential and 

overall ecological relevance (Fagúndez and Lema, 2019; Forbes et al., 2008). 
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Box 10.1: Example of model contribution to freshwater management 

The models developed in Chapter 7 provided information on (i) variable importance 

towards delineating the occupied range, (ii) species-specific and overall response 

curves, (iii) temporal potential prevalence patterns and (iv) the value of case-specific 

management. For instance, under the assumed nutrient enrichment in the considered 

wetland configuration (see Section 1.2.1), Phragmites australis and Lemna minor 

depict a similar habitat suitability index (HSI) score (see Figure 7.5; NUT scenario in 

2010), being higher than the remaining three species. However, if the presence of 

Ceratophyllum demersum is preferred over P. australis and L. minor, management can 

aim at avoiding the establishment of the latter two species (e.g. by eradicating 

prevailing populations), while no specific additional actions towards abiotic 

conditions is performed, providing C. demersum with the highest HSI score (i.e. the 

NUT-BAU scenario). Establishment of the latter can occur naturally (e.g. originating 

from neighbouring species pools) or artificially (e.g. manual introduction), though 

remains conditional to the abiotic habitat environment. 

Simultaneously, similar information can be retrieved for guiding alien species 

management, including (i) the preferred abiotic conditions, (ii) the potential 

geographical distribution and (iii) the impact of management on HSI scores. For 

instance, given similar nutrient enrichment (see previous paragraph), HSI scores for 

the alien Lemna minuta are lower compared to P. australis, L. minor and C. demersum, 

though increase in time. Actual survival of these species remains conditional to the 

abiotic environment, though can result in an increasing level of competition between 

L. minuta and C. demersum in time, especially when the establishment of P. australis 

and L. minor is artificially avoided (see above). However, due to contrasting growth 

forms of the floating L. minuta and the submerged C. demersum, it is expected that 

the former will outcompete the latter. 

 

The main contribution of the experiments performed in Chapter 8 and Chapter 9 

towards wetland conservation (and, by extension, general freshwater management) is 

the framework used to assess the invasion potential of an alien species. Based on this 

framework, information is gathered to support the delineation of (i) proactive and (ii) 

reactive management plans of alien species. By means of comparative trait-based 

assessment (e.g. nutrient use, growth rate, stress tolerance), an alien species can be 

classified as less, equally or more invasive or impactful than a (co-generic) species, which 

helps in prioritising alien species management (Early et al., 2016). This is illustrated in 

Box 10.2, which represents the added value of the experiments performed in Chapter 8 

and Chapter 9. 
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Box 10.2: Example of experiment contribution to freshwater management 

The models developed in Chapter 7 allowed the comparison of preferred abiotic 

conditions for the native Lemna minor and alien L. minuta. The resulting species 

response curves indicated a relatively similar correlation of temperature, nitrate and 

oxygen with habitat suitability, showing overall higher habitat suitability index (HSI) 

scores for the native L. minor compared to the alien L. minuta (Figure 7.2). These 

observations were corroborated by most locations favouring the presence of the native 

L. minor during scenario analysis (Figure 7.5) and within the Limnodata Neerlandica 

(Figure 7.6). Still, some sites tended to be more suitable for L. minuta, while 

discrepancies in HSI scores for both species are expected to decrease further due to 

increasing temperatures. The resulting effect on the survival and establishment of the 

alien L. minuta after introduction in a site with reported presence of L. minor cannot 

be inferred from these models and requires (i) a more process-based approach or (ii) 

experiments under controlled conditions to derive (i) the invasive behaviour of a 

species and (ii) the potential impact on existing population(s).  

The experiments performed in Chapter 8 showed that differences occurred in nutrient 

uptake (Figure 8.1 and Figure 8.2) and biomass production (Figure 8.4) between L. 

minor and L. minuta. More specifically, L. minor took up more nutrients and created 

more dry biomass than L. minuta, which suggests that the latter is less invasive than 

(and potentially relatively similar to) the native L. minor. Yet, it also suggests that the 

prevailing nutrient dynamics and the associated ecosystem functioning are likely to 

change if a transition from a native-based to an alien-based system (e.g. due to 

extreme propagule pressure and higher suitability scores) occurs. Overall, the 

experiments did not confirm the invasive behaviour of the alien L. minuta and thereby 

advise against the universal use of the applied traits to forecast the invasive behaviour 

of new alien species.  

In addition, the experiments performed in Chapter 9 illustrated that the introduction 

and survival of the alien L. minuta did not affect the biomass production of the native 

L. minor and vice versa. Moreover, even under increasing partial harvesting stress, 

biomass production of L. minor remained largely unaffected by the introduction of L. 

minuta and vice versa (Figure 9.1). Yet, it showed that relatively higher biomass ratios 

were obtained for the invasive L. minuta due to slightly higher growth rates compared 

to the native L. minor (Figure 9.4). Hence, management can aim at reducing the 

introduction of the alien L. minuta to maintain higher dominance by the native L. 

minor, though considering the limited impact and the assumed functional similarity, 

priority can be assigned to more harmful alien species. 
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10.2.1 Changing environments 

Models and experiments allow to simplify complex natural systems, help understanding 

patterns and predict management outcomes. Yet, conditions continuously change due 

to endogenic and exogenic processes and pressures, which challenge model 

transferability and experiment relevance. These processes occur on local (e.g. plant-

based nutrient uptake, settling of suspended solids), regional (e.g. habitat creation, 

micro-climates) and global (e.g. climate change) scales, thereby changing community 

composition and functioning. Each of these changes at the abiotic level has the potential 

to disrupt vulnerable communities and cause local disappearance of one (or more) 

species, thereby reflecting the inherently idiosyncratic behaviour of natural systems.  

Changes and disturbances at the abiotic level are expected to extend beyond the 

individual level and alter complete ecological networks by affecting resource availability 

and interaction intensity (Davis et al., 2000; Walther, 2010). The inherent interaction 

displayed by each organism with its environment, alters both the abiotic habitat 

conditions and the resulting community composition in both space and time (Vitousek, 

1990). For instance, the use of macrophytes to mitigate elevated pollutant levels by 

means of phytoremediation (see Box 2.2), supports better conditions for other species 

to grow and underlies many restoration projects relying on natural succession. Similarly, 

regional changes in land use have caused better land drainage (e.g. urbanisation) and 

increased fertiliser use (e.g. agriculture), thereby negatively affecting downstream 

processes in river basins with peak flows and eutrophication, respectively (Kingsford et 

al., 2016). At a larger scale, climate change is expected to affect hydrological patterns 

and temperatures, causing higher disturbance frequencies and magnitudes to occur and 

weaken established communities (IPCC, 2014). Therefore, predictions of future species 

distributions under altered abiotic conditions need to be considered with care as species 

respond differently to changes and violate the assumption of niche conservation 

(Dormann et al., 2012). Adaptability to rapidly changing conditions by altering 

phenology, physiology or morphology is therefore highlighted as a main trait for 

providing species with a competitive advantage. Generally, high levels of plasticity and 

adaptability are characteristic for many invasive species (Davidson et al., 2011), though 

predictions of their distribution are frequently underestimations due to violating the 

equilibrium assumption (Gallien et al., 2012).  

The results obtained throughout this work remain valuable under changing 

environmental conditions as they indicate species-specific preferred environmental 

conditions (Chapter 7) and illustrate trait-specific differences among physiologically 

and phylogenetically similar species (Chapter 8 and Chapter 9). By taking these results 

into account, management should be able to (i) focus on key habitat descriptors, (ii) 

focus on key species, (iii) infer invasion potential differently and (iv) define harvesting 

strategies.  
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10.2.2 Limitations of the study 

Aside from the contributions outlined in previous sections, a variety of limitations and 

caveats were identified throughout this study. The delineation of the working field 

performed in Section 1.2.1 aided in narrowing down the scope of the individual chapters 

towards data cleaning, model development and experimental design. Simultaneously, it 

created several areas of caution, including (i) the data being used, (ii) the techniques 

being selected and (iii) the experimental design being applied. 

10.2.2.1 Data used 

The characteristics and content of the Limnodata Neerlandica were outlined in Chapter 

4 and clearly indicate various potential points of criticism. First of all, the data combines 

information from a variety of institutes that have been performing field assessments for 

multiple years, without applying a single standardised methodology. Consequently, data 

collection was highly institute- and campaign-specific and resulted in high levels of 

missing data (see Figure 4.1). Moreover, the database does not include an overview of 

the methodologies, protocols and equipment used by the institutes to collect 

physicochemical data, which requires the assumption that all values for a single variable 

were recorded in a similar manner (regardless of institute and sampling campaign). The 

inclusion of metadata remains a common challenge in data-driven analyses. 

Secondly, macrophyte occurrence was recorded with a variety of techniques (see 

Appendix, Table A.2) and contained several undefined and hybrid species. These 

techniques tend to vary in the spatial extent covered during assessment, ranging from 

small quadrants to (relatively) large stretches. Due to this variety, the discretisation into 

a presence/absence-statement can be considered as too simplistic. Moreover, 

misidentifications might occur, causing both false presences and false absences to be 

included in the data. Hence, the use of this macrophyte data to evaluate and assess water 

quality within the Netherlands is not recommended (Verdonschot and van Oosten-

Siedlecka, 2010). Similarly, correlative analyses are expected to be negatively affected by 

these issues, though it was assumed that these effects remained relatively limited. 

Thirdly, the majority of the macrophyte species were characterised by low levels of 

prevalence (see Figure 4.4C), including rare, endangered and recently-introduced alien 

species. An arbitrary cut-off value of 100 presences (i.e. 200 observations in a balanced 

data set) was assumed to provide sufficient information and to limit the overall number 

of macrophyte species. Lower numbers have been reported in literature (e.g. 135 (Guo et 

al., 2015), 120 (Forio et al., 2015), 110 (Vezza et al., 2015)), with 30 observations being 

considered the minimum (Jarnevich et al., 2015). Additional backing of the cut-off value 

was provided after performing data reduction and maintaining only 20 variables, which 

allows providing roughly 10 instances per variable. Due to this approach, the selected 

macrophytes are relatively generalist species, while excluding most specialist species.  
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Lastly, imputation of missing data was performed on the physicochemical data within 

the common data set (see Section 4.2.3.2), after a reduction in the degree of missing 

data (i.e. from 93.7 % to 49.7 %; Section 6.2.1). More specifically, imputation was based 

on the associations between the explanatory variables in the common data, which is 

merely a subset of the available physicochemical data (i.e. not all physicochemical data 

were linked with a biotic response variable). This indicates inefficient use of the available 

information, though reflects a higher similarity with most occurrence-based correlative 

modelling studies. Nevertheless, variable associations derived from the complete 

physicochemical data set might be able to provide more accurate estimates of the 

missing data points and definitely merits further study. 

10.2.2.2 Technique selection 

The development of data-driven habitat suitability models relies on two main 

components: (1) the quality of the collected data and (2) technique selection (Segurado 

and Araújo, 2004). Data cleaning has a positive effect on the quality of the data and the 

associated model results (Kotsiantis et al., 2006; Maldonado et al., 2015), although the 

actual impact differs among the various techniques that are available. Similarly, a 

plethora of modelling techniques exists to correlate species occurrence with 

environmental conditions, without a single-best approach being identified (Jarnevich et 

al., 2015; Lawson et al., 2014). Most studies apply subjective technique selection based 

on previous experience or recommendations from literature, while a more case-specific 

comparative approach provides a higher potential to improve model accuracy. Still, 

these comparisons are biased by the selection of techniques being included, as 

performed in Chapter 3 (modelling techniques), Chapter 5 (imputation techniques) and 

Chapter 6 (pre-processing techniques). 

The selection of modelling techniques was narrowed down to commonly used data-

driven techniques that were able to deal with presence-absence data (PA; see Section 

3.1). As such, several presence-only (PO) modelling techniques were excluded from the 

comparison, including environmental envelopes (e.g. BIOCLIM, HABITAT) (Tsoar et al., 

2007), ecological niche factor analysis (ENFA) (Hirzel et al., 2002), maximum entropy 

(MAXENT) (VanDerWal et al., 2009) and point-process models (Renner et al., 2015). 

Especially the use of point-process models is noteworthy due to their possibility to fit 

spatial and temporal patterns, while interpretation and implementation are relatively 

straightforward (Renner et al., 2015). The technique is highly linked with MAXENT 

(Aarts et al., 2012; Renner and Warton, 2013), though has only been limitedly applied in 

ecology due to its relatively recent introduction. Nevertheless, the availability of PA data 

within this study supported the applied delineation of the chapter, along with reports 

on PA-based models outperforming PO models (Brotons et al., 2004; Elith et al., 2006; 

Phillips et al., 2009). 
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Similarly, the selection of imputation techniques was narrowed down to obtain a 

selection that (i) provided a single data set as output and (2) was able to deal with the 

missing at random (MAR) mechanism. These criteria excluded various imputation 

techniques, including multiple-value (e.g. multivariate normal imputation (Lee and 

Carlin, 2010) and multiple imputation via chained equation (Schmitt et al., 2015)) and 

techniques able to deal with the not missing at random (NMAR) mechanism. The latter 

requires a more advanced statistical approach than the techniques dealing with the MAR 

mechanisms, which limits their availability in commonly available software packages for 

data analysis. For instance, Liu et al. (2018) designed an information decomposition 

imputation (IDIM) algorithm using fuzzy memberships to deal with missing data, 

illustrating its case-specificity. Aside from these criteria-based exclusions, a plethora of 

single-value imputation techniques were arbitrarily omitted, including Bayesian 

principal component analysis (Oba et al., 2003), singular value decomposition (Alter et 

al., 2000), fuzzy k-means (Li et al., 2004) and artificial neural networks (Chandramouli 

et al., 2007). 

Lastly, technique selection occurred to narrow the options for data pre-processing 

towards mostly statistical techniques and the associated threshold(s). Alternative 

approaches range along the objective-subjective continuum for outliers (e.g. percentile-

based exclusion, expert-based assessment, visual inspection (Gobeyn et al., 2017)), 

correlated (e.g. expert-based (Sauer et al., 2011)) and irrelevant (e.g. iterative model 

development (Gregorutti et al., 2017), expert-based (Brandt et al., 2017)) variable 

removal. Identification and elimination of false absences is rarely reported despite the 

awareness on their negative impact on model performance (Gu and Swihart, 2004; Lobo 

et al., 2010). Yet, the potential of including false absences in the training data often 

restricts the selection of background or pseudo-absence data (Chefaoui and Lobo, 2008; 

Phillips et al., 2009). 

10.2.2.3 Experimental design 

Experiments under controlled conditions provide crucial information on causal 

processes, biotic interactions and treatment effects. The design of the experiments in 

this work entailed a series of choices that can be considered arbitrary and open to 

discussion, including (i) the selection of Lemna spp. as test species, (ii) the applied test 

conditions and (iii) the selection of traits. To start, the alien Lemna minuta and the 

native Lemna minor were selected based on (1) the assumed eutrophic conditions (see 

Section 1.2.1), (2) their widespread occurrence within Europe (Hussner, 2012) and (3) 

the existence of guidelines for testing conditions (see also Section 4.3). Moreover, their 

high reproduction rate and manipulability added a pragmatic basis for selecting Lemna 

spp. (Ceschin et al., 2016; Njambuya et al., 2011; Paolacci et al., 2016; Paolacci et al., 

2018). Similar tests can be performed with the alien Acorus calamus and Elodea nuttallii 

to complement the developed models (Table C.2). 
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Secondly, test conditions were selected based on the guidelines for performing 

ecotoxicological test with L. minor (OECD, 2006). Light intensity, temperature and 

composition of the growth medium were defined according to these guidelines, which 

limits the ecological relevance of the experiments and the associated extrapolation 

capacity of the results (Fagúndez and Lema, 2019; Forbes et al., 2008). For instance, the 

lowest concentration in the trait-based experiment for total phosphorus was 1.33 ± 0.01 

mg∙L-1, while Flemish waters contained on average about 0.48 mg∙L-1 in 2018 (VMM, 

2019). In contrast, the lowest total nitrogen concentration was 4.2 ± 0.1 mg∙L-1 and was 

highly similar to the concentration in Flemish surface waters (i.e. about 4.5 mg∙L-1) 

(VMM, 2019). It remains possible that different results will be obtained when applying 

more ecologically relevant testing conditions.  

Thirdly, resource use and biomass growth were considered as traits, because of their 

simplicity and relevance towards invasion and outcompetition. Yet, a variety of 

alternative traits exists, including specific leaf area (SLA), leaf thickness, leaf nutrient 

concentration, light-saturated photosynthetic rate and dark respiration (Pérez-

Harguindeguy et al., 2013). Each of these traits can contribute partially to an overall 

competitive advantage, although their relative contribution can be altered by limiting 

the phylogenetic differences (Strauss et al., 2006; van Kleunen et al., 2010). More 

importantly, only single values for each trait were inferred, while many species are 

characterised by a certain degree of trait plasticity. Species containing higher trait 

plasticity are considered (i) to be more tolerant towards stressors (ii) to have a 

competitive advantage over other species and (iii) to have a steering effect on 

community dynamics (Barbour et al., 2019; Bellavance and Brisson, 2010; Berg and 

Ellers, 2010). Hence, increased trait plasticity is often hypothesised to positively affect 

the invasive success of alien species (Berg and Ellers, 2010; Davidson et al., 2011). 

10.2.2.4 Performance interpretation versus real data 

A recurrent issue in environmental data science is the evaluation of the applied 

techniques. Observations and results are often treated in an objective (or statistical) 

manner and represented by a single (set of) metric(s), e.g. outlier removal based on the 

threshold τo = 3, imputation accuracy assessment with the normalised root mean 

squared error (NRMSE) and model performance evaluation using the area under the 

receiver operating characteristic curve (AUC). Aside from simplifying understanding, 

comparability and repeatability, no information on the ecological validity is included in 

these thresholds or metrics. More specifically, various valid questions remain, including 

(i) Is imputation really accurate and what are the differences with actual data? (ii) Are 

outliers, false absences, correlations and irrelevant variables correctly (i.e. ecologically-

founded) removed? and (iii) Do predicted presences correspond with observed presences 

and are there patterns in the misidentifications? Such legitimate questions remain 

difficult to answer when dealing with relatively large amounts of data.  
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10.3 Future perspectives 

The research outlined throughout this work responds to increased needs of efficient land 

use, nature development, mitigation of climate change, improved circular economy and, 

above all, fighting the ongoing biodiversity loss within freshwater systems (Harrison et 

al., 2018; He et al., 2019). The steps taken throughout this work are small in comparison 

to the spatial and temporal dimensions of these problems, but contribute to governing 

a framework that can provide answers to the challenges faced by society. It would be 

presumptuous to state that this work was the final hurdle to be taken, as various 

improvements and extensions are waiting to be implemented and investigated. Within 

the following sections, specific attention is given to potential and promising advances 

related to model development and invasive alien species management, framed around 

the consequences of environmental change as the proverbial elephant in the room. 

10.3.1 Model development 

The application of data-driven modelling techniques experienced a rapid increase due 

to unprecedented growths of publicly available data and technological progress in 

computational capacity. However, these reasons may well be the main drawbacks of 

data-driven modelling and warrants careful application. More specifically, data 

extracted from publicly available databases have a tendency to be incomplete, dirty and 

of generally low quality, especially when the data originates from various contributors 

(Hernández and Stolfo, 1998; Maldonado et al., 2015). Within this work, detailed data 

cleaning identified unique space-time combinations of abiotic conditions and 

macrophyte observations and included a comparison of several imputation and pre-

processing techniques. Yet, despite aiming for a practical procedure that allows 

application in other studies, several alternative approaches, methodologies and 

recommendations have been excluded from this work due to pragmatic reasons. The 

subsequent sections shortly introduce these alternatives and additionally identify topics 

for future research and exploration. 

10.3.1.1 Data availability and collection 

An element of major importance with respect to the data used for observation-based 

modelling is the inclusion of both metadata and relevant explanatory variables (Austin 

and Van Niel, 2011; Barbet-Massin et al., 2014; Braunisch et al., 2013). Technological 

improvements steer data collection forward by supporting non-destructive sampling 

campaigns and high-resolution data (both temporal and spatial). For instance, spectral 

reflectance of leaves can be used to determine the degree of stress experienced by plants 

without having to analyse leaf content biochemically (Fagúndez and Lema, 2019). At a 

larger scale, remote sensing has shown to improve model quality by including more local 

variables within a correlative model, thereby supplementing standard field data 

collection with valuable explanatory variables (Bruneel et al., 2018; Cord et al., 2014).  
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Aside from improving predictor selection, promising results have already been obtained 

with the sampling and analysis of environmental DNA (eDNA) to characterise the 

prevailing community (Bohmann et al., 2014). By relying on eDNA, there is no need to 

visually confirm species presence, while the chance of false absences and false presences 

decreases. Hence, the detection rate of rare, endangered and invasive species is 

positively affected. 

10.3.1.2 Data cleaning 

From Chapter 5, it was derived that the ensemble-based missForest algorithm performs 

better than the other selected techniques within the provided context. Combining 

missForest with k-nearest neighbours and iterative least square regression to construct 

an ensemble of imputation techniques (thus a multiple-value imputation) was 

considered to be outside the scope of the comparison, yet merits further scrutiny. 

Moreover, imputation uncertainty within the final data sets (i.e. in Chapter 7) was 

assumed to be low due to the size of the data, yet no formal analysis was performed. 

Hence, future studies should focus on (i) the potential of ensemble imputation, (ii) the 

discrepancy between single-value and multiple-value imputation and (iii) the 

corroboration of the results from this work with alternative data sets. 

Secondly, the identified thresholds from Chapter 6 related to subsequent data pre-

processing with respect to outliers, false absences and redundant variables can be used 

as a guideline for future data-driven model development. However, the identification of 

outliers and false absences required the selection of a method-specific threshold α, 

which was arbitrarily fixed and expected to additionally affect the final number of 

instances. Therefore, future research on data pre-processing can entail (i) how the 

choice of α during outlier or false absence elimination affects data availability and model 

performance, (ii) how alternative pre-processing techniques affect data set 

characteristics and model performance, (iii) how the order of pre-processing techniques 

changes model performance and (iv) how the type of data influences threshold selection 

and values.  

10.3.1.3 Habitat Suitability Models 

The lack of a single-best modelling technique renders selection into a subjective 

procedure. More specifically, selection is influenced by literature reporting unequivocal 

results when comparing techniques, which underlines the advantages of ensemble-

based modelling (Araújo and New, 2007; Araújo et al., 2005b; Austin, 2007; Svetnik et 

al., 2003). Within this work, the choice for random forests within Chapter 7 to link 

species occurrence with abiotic conditions was invoked by the fact that the ensemble 

approach increases model stability and decreases overfitting (Breiman, 2001; Strobl et 

al., 2007). Yet, these advantages come at the expense of transparency and computation 

time.  



GENERAL DISCUSSION AND CONCLUSION 

233 

Ensembles of and errors in correlative models 

The obtained response from these random forests merely reflected species-specific 

habitat suitability, without providing a statement on the predicted probability of species 

occurrence. Thus, additional care is needed to infer species distributions or, at a higher 

level, species richness and community composition (Dubuis et al., 2011). For instance, 

the inclusion of dispersal dynamics allows further fine-tuning of the results, while the 

use of a logistic curve or a fixed threshold provides a statistical approach to obtain a 

continuous or binary statement on species-specific occurrence probability, respectively. 

Based on these probabilities, species richness and community composition can be 

derived by stacking multiple species-specific models (S-SDMs), though results are prone 

to be overly positive due to the exclusion of ecological assembly rules (Dubuis et al., 

2011; Guisan and Rahbek, 2011). Dubuis et al. (2011) suggested to counter this 

overprediction by curtailing the community by means of a single macro-ecological 

model (MEM), developed to predict species richness. By combining both approaches, an 

accurate estimation of species richness is obtained (MEM) and supplemented with the 

expected species to be present (S-SDM).  

An important point of attention with respect to correlative modelling is the inherent 

error propagation and the resulting uncertainty (Guisan and Zimmerman, 2000). 

Although having been partly reduced by the progress in statistical modelling, errors are 

introduced due to statistical limitations and confined understanding of the biological 

systems (Elith et al., 2006; Fielding and Bell, 1997). Reduction of the uncertainty related 

to biotic interactions can be achieved by a variety of actions, including (i) continuity of 

basic biological and ecological research to account for biotic interactions, (ii) the 

systematic collection of species occurrence, (iii) the monitoring over time to validate 

existing models and (iv) the creation of awareness of overall uncertainty (Braunisch et 

al., 2013; Elith and Leathwick, 2009; Sinclair et al., 2010). Furthermore, algorithm 

improvement and climate scenarios have been the main focus in literature dealing with 

error introduction, thereby unfairly neglecting the importance of predictor selection 

(Barbet-Massin et al., 2014). Consequently, important ecological drivers might be 

missed, causing linkages between ecological theory and model configuration to be weak 

or even non-existing (Austin, 2002; Elith and Leathwick, 2009).  

Data-driven versus process-based models 

One of the hailed and most criticised characteristics of data-driven habitat suitability 

and species distribution models (SDMs) is their potential to predict future species 

distributions (Austin and Van Niel, 2011; Braunisch et al., 2013; Guisan et al., 2006). 

Purely data-driven models (e.g. decision trees, GLMs, ANNs) are developed based on 

observational data without substantial integration of existing ecological knowledge. 

Therefore, they only describe the current situation (i.e. the realised niche) and are more 

or less limited to the range of the observed predictor values (Dormann et al., 2012).  
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Considering that future environmental conditions can lead to predictor values situated 

outside this range, indicates that purely data-driven models might not be the best option 

for predicting future species distributions (Braunisch et al., 2013; Dormann et al., 2012). 

Furthermore, species prevalence is not only determined by abiotic characteristics and 

currently existing situations, but also by the ability of dispersion, the carrying capacity 

of the environment and the possibility of competitive exclusion due to co-occurrences 

(Austin and Van Niel, 2011; Guisan and Rahbek, 2011). These aspects are not easily 

included in a purely data-driven model structure. As a result, not all SDMs are optimally 

suited for predicting future species distributions in light of climate change. 

On the other hand, models that combine data and knowledge (e.g. fuzzy logic, BBNs) 

provide the ability to extend the range of predictor values beyond the observed range 

and to include ecological interactions (e.g. dispersion rate, carrying capacity, 

competition). By combining data and a certain degree of knowledge, models can shift 

from being data-driven to become more process-based, thereby supporting the 

prediction of future species distributions with a more ecologically sound basis 

(Dormann et al., 2012). In short, future model development will have to focus more on 

combining observational data, ecological theories and expert knowledge rather than 

being purely data-driven, in order to increase the reliability of model-based species 

distribution predictions. 

Nevertheless, the added value of data-driven habitat suitability models towards 

management should not be underestimated, as climate change, habitat destruction and 

invasive species are continuously shaping new environments. Species experiencing these 

altered abiotic conditions are forced to adapt or migrate, causing shifts in distribution 

patterns and unprecedented extinction rates (Chen et al., 2011a; Rahel and Olden, 2008; 

Walther, 2010). Moreover, due to these high rates of global change, abiotic conditions 

might change faster than the dispersal rate of macrophytes and cause local extinctions 

of native populations (Bornette and Puijalon, 2011). Hence, attempting restoration via 

manually introducing native species might turn out to be futile when the prevailing 

conditions do not support species presence, which illustrates and highlights the 

potential of habitat suitability models. Simultaneously, geographic range shifts of nearby 

populations provide an opportunity to maintain ecological functioning and structure, 

though challenges the definition of what constitutes an alien species and, consequently, 

conservation management in general (Rahel and Olden, 2008). 
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10.3.2 Managing invasive alien species 

Performing autecological experiments under controlled conditions provides valuable 

information on species-specific functional traits, population dynamics, biotic 

interactions and disturbance resilience (Hofstra et al., 2020). Functional traits have 

been applied frequently to infer competitive dominance between co-existing species, 

though showed in Chapter 8 that under the considered conditions no statement could 

be inferred on the invasive behaviour of the alien Lemna minuta. In contrast, reactive 

management showed to be an interesting approach to reduce Lemna spp. dominance in 

Chapter 9, though requires a preliminary assessment of propagule pressure prior to 

deployment.  

Both experiments add to the existing knowledge on invasive alien species management, 

yet indicate that additional testing is needed to derive species-wide, condition-

independent trait values and field-relevant management scenarios. Extension towards 

other light regimes, temperature patterns, nutritional conditions, stressor combinations 

and biotic communities is therefore highly recommended, especially when predictions 

beyond the observed environmental conditions are requested to infer the consequences 

of ecosystem disturbance (see also Box 10.3) (Fagúndez and Lema, 2019). 

Early-succession traits (e.g. minimal temperature for seed emergence, ratio of 

photosynthetic tissues) are crucial in steering species survival and determining 

competitive outcomes, although require simultaneous assessment of dispersal traits to 

quantify actual propagule pressures. Hence, it is expected that no single trait provides a 

clear, unequivocal statement on invasive behaviour and that multi-trait evaluation is 

needed to categorise alien species (van Kleunen et al., 2010; Zedler and Kercher, 2004). 

This highlights that any contribution to the species-specific trait database is to be 

supported, even when no spectacular results are obtained.  

Aside from the alterations in abiotic conditions causing range shifts and reduced 

resistance to invasion, also ecological interactions are affected by climate change, with 

invasive alien species potentially profiting from it (e.g. change in parasitism, diseases, 

competitors and predators) (Walther et al., 2009). The relatively limited attention 

towards freshwater systems along with the complex interaction between climate change 

and invasion impact governs the development of new and unfamiliar ecosystems, 

requiring adaptive management in uncharted fields (Rahel and Olden, 2008; Strayer, 

2010). For instance, Kelly et al. (2015) showed that replacement of the native Elodea 

canadensis by the alien E. nuttallii in Irish lakes hardly affected physicochemical 

conditions or biomass production, yet the significant differences in oxygen levels and 

plant community composition illustrated the structural and functional change caused 

by invasion.  
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Box 10.3: Temporal characteristics of disturbances 

Establishment of alien species within ecosystems largely depends on the occurrence 

of disturbances, the effects of which are conditional to both frequency and intensity 

(Bornette and Puijalon, 2011; Catford et al., 2009; Strayer, 2010). For instance, 

combined sewer overflows during peak precipitation introduce additional nutrients 

into the receiving water body, but temporal effects remain limited due to natural 

dilution processes. In contrast, construction of hydropower infrastructure affects 

hydrologic conditions up- and downstream for an indefinite amount of time. The 

reduced biotic resistance resulting from these events provides an optimal opportunity 

for new colonisers to take advantage and establish viable populations, with various 

alien species among them (Davis et al., 2000; Zedler and Kercher, 2004).  

 

Long-term consequences of these changes are unknown and hard to predict due to their 

dynamic nature, but include the facilitated introduction of non-indigenous species by 

established alien species, causing an invasional meltdown (Montgomery et al., 2012; 

Simberloff and Von Holle, 1999; Williams and Grosholz, 2008). Empirical evidence of 

this hypothesis is limited and underlines the necessity for further fundamental and 

applied research to counter the indecisiveness in management, the proliferation of 

hypotheses and the study bias towards terrestrial and marine invasions (Montgomery et 

al., 2012; Rahel and Olden, 2008; Simberloff, 2006). By studying the invasion process, 

unique information is gathered on biotic interactions and overall ecosystem functioning, 

allowing the identification of attention points during management projects (Myers et 

al., 2000; Strayer, 2010; Williams and Grosholz, 2008). 

By predicting future distributions of alien species, species distribution models (SDMs) 

provide potential to be used in risk assessment by forecasting the effect of future alien 

species distributions on native species (e.g. Gallardo et al. (2012), Kolar and Lodge 

(2002), Reichard and Hamilton (1997)). For instance, Gallardo and Aldridge (2013) 

investigated the combined threat of climate change and invasive alien species on native 

species and reported that, based on SDM predictions, native species will experience 

considerable losses. Furthermore, they observed that climate change does not 

necessarily influence invasive alien species distribution in a positive way. However, due 

to uncertainties related to adaptation potential, SDMs might even underestimate the 

future spread of invasive alien species (Gallardo and Aldridge, 2013), thereby 

underlining the necessity for additional biological and ecological research. More 

specifically, experimental studies that extend knowledge on functional traits allow to 

parameterise process-based models in an ecologically relevant way and thereby provide 

a sound basis for extrapolating predictions outside the currently occurring 

environmental domain (Dormann et al., 2012). 
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10.4 Concluding remarks 

The application of habitat suitability and species distribution models within ecosystem 

management is rapidly increasing due to the relentless rise of data dimensionality and 

augmented awareness on the innumerable services provided by ecosystems (Dormann 

et al., 2012). However, progress has occurred mostly at the level of algorithm 

development and thereby largely ignored other sources of uncertainty, including 

ecological theory, data cleaning, predictor selection and model transferability (Barbet-

Massin et al., 2014). Within data-driven models, ecological relevance is crucial to 

distinguish between finding effective ecological relationships and pure pattern 

extraction, thereby supporting the acceptance and applicability of otherwise black-box 

models (Austin and Van Niel, 2011; Brewer et al., 2016).  

Considering the current rates of changes occurring at all spatial scales, it is expected that 

data-driven modelling will increase as ecosystem managers and decision-makers are 

more often looking towards science for answers. It is believed that this work positively 

contributes to future studies by discussing data cleaning techniques, model applications 

and controlled experiments. More specifically, it was found that missForest can 

accurately impute missing data, while the identification of outliers, false absences, 

correlated and important variables helps developing ecologically relevant models by 

applying specific thresholds (τo = 3, τa = 5 %, τc = 0.7 and τi = 10 %, respectively). Also, 

baseline hyperparameter settings for random forests (ntree = 200 and 10 repetitions) 

were identified along with optimal environmental conditions for the five most important 

habitat descriptors (temperature > 17 °C, nitrate-N = 0.5 mg∙L-1 up to 1.5 mg∙L-1, oxygen 

= 4 mg∙L-1 up to 7 mg∙L-1, ammonium-N = 0.3 mg∙L-1 up to 0.5 mg∙L-1 and pH = 7 up to 

8.5). Lastly, controlled experiments provided information on key traits and interactions 

and created a basis for future research on alternative conditions and interactions.  

Still, numerous challenges are identified related to the rise of data-driven modelling and 

the consequent translation of results into policies. Global biodiversity informatics 

progresses but continues to face several hurdles, including non-digitised collections, 

limited knowledge sharing and overall isolation. More cooperation in a world that 

contains more biogeographers outside the historical developed regions and a focus on 

the more biodiverse tropical regions remains a main goal to fight the ongoing 

biodiversity crisis (Peterson et al., 2015) and to comply with the Aichi targets within the 

Strategic Plan for Biodiversity 2011-2020 (CBD, 2020). Moreover, the translation of 

scientific results and recommendations into policies often works as a retardant towards 

conservation, being additionally exacerbated by the sheer extent of the affected areas. 

Within this context, it should remain clear that models can help decision-making, while 

remaining a mere simplification of reality. Or, as stated by Box and Draper (1987): “All 

models are wrong, but some are useful”. 
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A.1 Origin of the data 

Table A.1: Providers of observations collected within the Limnodata Neerlandica 

database. 

Code Name 

AGV Waterschap Amstel Gooi en Vecht 

BWN Bekenwerkgroep Nederland 

HHD Hoogheemraadschap van Delfland 

HHN Hoogheemraadschap Hollands Noorderkwartier 

HHR Hoogheemraadschap van Rijnland 

HHS HH van Schieland en Krimpenerwaard 

HSR Hoogheemraadschap De Stichtse Rijnlanden 

KUN Kath. Universiteit Nijmegen 

PGR Provincie Groningen 

PNH Provincie Noord-Holland 

POV Provincie Overijssel 

PRF Provinsje Fryslan 

PRU Provincie Utrecht 

PSC Piscaria 

RWS Rijkswaterstaat 

STO STORA/STOWA 

WA Waterleidingbedrijf Amsterdam 

WAM Waterschap Aa en Maas 

WBD Waterschap Brabantse Delta 

WD Waterschap de Dommel 

WF Wetterskip Fryslan 

WGS Waterschap Groot-Salland 

WHA Waterschap Hunze en Aas 

WHD Waterschap Hollandse Delta 

WN Waterschap Noorderzijlvest 

WPM Waterschap Peel en Maasvallei 

WRD Waterschap Regge en Dinkel 

WRIJ Waterschap Rijn en IJssel 

WRL Waterschap Rivierenland 

WRO Waterschap Roer en Overmaas 

WRW Waterschap Reest en Wieden 

WSS Waterschap Scheldestromen 

WV Waterschap Veluwe 

WVE Waterschap Vallei en Eem 

WVV Waterschap Velt en Vecht 

WZE Waterschap Zeeuwse Eilanden 

WZV Waterschap Zeeuws-Vlaanderen 

WZZ Waterschap Zuiderzeeland 
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A.2 Characterisation of the physicochemical data 

 

 

Figure A.1: Annual number of physicochemical observations. The provided data covers a 

period from 1978 up to 2012, although only one observation was included for the latter. A gentle 

increase in observation frequency can be observed, with a maximum number of recorded 

observations in 2010. 

 

Table A.2: Overview of all 201 variables within the physicochemical data set. Information 

is provided on the range, mean, median and percentage of missing data points (Ninst = 34 483). 

Variables are sorted according to increasing amount of missing data. 

Variable Min Max Mean Median Missing (%) 

Temperature 0.00 100.00 15.46 16.00 11.40 

Transparency 0.00 80.00 0.57 0.40 19.67 

Chloride 1.00 23000.00 412.42 96.00 21.48 

Oxygen 0.00 160.00 8.82 8.90 23.30 

Ammonium-nitrogen 0.00 46.00 0.38 0.20 23.72 

Total phosphorus 0.00 20.00 0.40 0.19 24.95 

Phosphate-phosphorus 0.00 18.00 0.22 0.05 27.78 

Chlorophyll a 0.00 6220.00 63.79 31.00 29.81 

pH (field) 2.90 78.00 7.92 8.00 34.02 

Nitrite-nitrogen 0.00 60.00 0.04 0.02 38.24 

Kjeldahl-nitrogen 0.01 130.00 2.40 1.90 38.69 

Conductivity (field) 0.50 9060.00 162.25 63.30 42.37 

Oxygen saturation 0.00 391.00 87.56 89.00 44.97 

Nitrate-nitrogen 0.00 45.20 0.90 0.10 45.61 

BOD5 0.00 530.00 5.54 4.00 50.03 

Nitrogen oxides 0.01 45.20 1.26 0.23 57.07 

Phaeophytin 0.00 1850.00 20.93 12.00 59.41 

Total nitrogen 0.00 107.00 3.16 2.30 59.59 

Sulphate 0.08 6200.00 99.15 60.70 59.62 

Calcium 0.01 4762.67 77.33 67.00 66.81 

Suspended solids 0.00 1950.00 22.69 13.70 69.14 

(Continues on next page) 
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(Continued) 

Variable Min Max Mean Median Missing (%) 

Conductivity 0.00 4100.00 131.82 77.00 76.90 

Potassium 0.00 639.74 11.68 7.60 76.90 

Magnesium 0.01 7800.00 34.76 11.00 77.10 

Sodium 0.01 12000.00 163.00 44.00 77.89 

pH 0.00 12.20 7.90 8.00 77.98 

Ammonia-nitrogen 0.00 1.54 0.02 0.01 78.64 

Depth 0.00 80.00 1.32 0.60 79.62 

Bicarbonate 0.00 9280.43 191.95 160.00 79.82 

Cupper 0.01 335.00 3.08 2.10 81.03 

Zink 0.05 10000.00 20.41 10.00 81.58 

Nickel 0.05 300.00 4.51 3.10 86.38 

Cadmium 0.00 8.20 0.16 0.10 87.64 

Iron 0.00 1600000 386.00 0.43 87.88 

Lead 0.01 210.00 3.80 2.20 87.89 

Chromium 0.01 79.00 2.23 1.30 88.46 

Mercury 0.00 9.90 0.06 0.03 89.69 

Velocity 0.00 150.00 27.99 20.00 91.05 

Arsenic 0.05 143.00 4.23 2.10 93.93 

Salinity 0.02 33.80 0.57 0.27 94.62 

Thermo-tolerant 

coliforms (44 °C) 
0.00 220000 2242.16 0.76 94.90 

COD 2.00 466.00 59.23 60.00 95.02 

Total coliforms (37 °C) 0.00 2460.00 14.30 1.00 95.52 

Fluoranthene 0.00 6000.00 10.52 0.02 95.89 

Benzo(a)pyrene 0.00 5000.00 7.26 0.01 95.97 

Naphtalene 0.00 10000.00 14.97 0.02 96.09 

Benzo(a)anthracene 0.00 5000.00 8.21 0.01 96.44 

Indeno(1,2,3-c,d)pyrene 0.00 5000.00 8.26 0.01 96.46 

Chrysene 0.00 5000.00 8.38 0.01 96.52 

Benzo(b)fluoranthene 0.00 5000.00 8.40 0.01 96.52 

Benzo(ghi)perylene 0.00 2500.00 4.39 0.01 96.66 

Anthracene 0.00 5000.00 9.13 0.01 96.75 

Phenanthrene 0.00 5000.00 11.72 0.02 96.84 

Benzo(k)fluoranthene 0.00 900.00 1.72 0.01 96.88 

Pyrene 0.00 5000.00 9.94 0.02 97.04 

Dibenzo(a,h)antracene 0.00 5000.00 10.39 0.01 97.20 

Fluorene 0.00 10000.00 21.28 0.01 97.26 

Escherichia coli 0.10 53.52 2.05 1.00 97.59 

Silica 0.04 230.00 2.29 1.10 97.71 

Acenaphthylene 0.00 4.10 0.11 0.05 97.80 

Acenaphthene 0.00 10.00 0.09 0.04 97.83 

Alkalinity 0.04 19.80 2.76 2.70 98.05 

(Continues on next page) 
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(Continued) 

Variable Min Max Mean Median Missing (%) 

Aluminium 0.03 16400.00 350.43 107.70 98.16 

alfa-Endosulphan 0.01 37.00 3.12 2.00 98.43 

gamma-

Hexachlorocyclohexane 
0.00 260.00 5.68 4.00 98.44 

Aldrin 0.01 14.00 2.86 2.00 98.44 

Dieldrin 0.05 52.00 2.77 2.00 98.44 

Endrin 0.10 25.00 2.61 2.00 98.44 

Hexachlorobenzene 0.01 220.00 2.60 2.00 98.51 

Total phosphorus (after 

filtration) 
0.02 4.10 0.21 0.11 98.57 

Zn-filtrate 0.22 300.00 9.43 5.00 98.59 

beta-Endosulfan 0.00 10000.00 213.66 0.00 98.65 

alpha-

Hexachlorocyclohexane 
0.10 13.00 3.15 1.00 98.68 

beta-

Hexachlorocyclohexane 
0.10 43.00 4.43 5.00 98.68 

Heptachlor 0.05 14.00 2.65 2.00 98.69 

Heptachlor epoxide 0.02 13.00 2.33 2.00 98.69 

Nickel-filtrate 0.67 30.00 3.32 2.60 98.76 

Cobalt 0.20 5.00 1.18 1.00 98.90 

Diazinon 4.00 600.00 31.86 20.00 98.92 

Malathion 3.00 500.00 29.54 20.00 98.92 

2,4-

dichlorodiphenyldichlor

oethane 

0.00 0.01 0.00 0.00 98.92 

Methylparathion 3.00 800.00 31.42 10.00 98.94 

Telodrin 0.00 28.00 3.09 1.00 99.00 

Endosulfan sulphate 1.00 500.00 12.41 5.00 99.01 

Methylazinfos 10.00 500.00 47.82 20.00 99.01 

Cupper filtrate 0.50 9.00 2.52 2.00 99.02 

delta-

Hexachlorocyclohexane 
1.00 760.00 12.66 2.00 99.03 

Calcium filtrate 0.06 500000 79546.57 62000 99.03 

Tin 0.20 15.00 0.79 0.20 99.07 

Width 0.30 50.00 5.59 3.00 99.10 

Pentachlorophenol 0.01 10.00 0.29 0.05 99.15 

Lithium 0.01 17.80 0.07 0.01 99.16 

Ethylazinfos 9.00 500.00 28.59 10.00 99.21 

Pyrazofos 10.00 500.00 31.34 10.00 99.21 

Disulfoton 3.00 500.00 25.03 10.00 99.23 

Triazofos 6.00 900.00 40.54 10.00 99.26 

Methyl tolclofos 0.01 7400.00 63.45 17.50 99.28 

(Continues on next page) 
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(Continued) 

Variable Min Max Mean Median Missing (%) 

Cadmium filtrate 0.00 0.70 0.17 0.20 99.28 

Fenthion 2.00 160.00 10.09 10.00 99.29 

Volatile organic 

halogenic compound 
1.00 26.00 1.73 1.00 99.29 

Heptenophos 3.00 610.00 21.13 9.50 99.29 

Demeton 10.00 150.00 25.05 20.00 99.31 

Chromium (six) 1.00 11.00 1.40 1.00 99.37 

Lead-filtrate 0.10 22.00 2.11 1.00 99.44 

Phenolphthalein 

alkalinity 
0.04 0.51 0.06 0.04 99.45 

Magnesium filtrate 0.01 330000 41321.44 19000 99.46 

Sodium filtrate 0.03 3100000 330455.19 110000 99.47 

Flow 0.00 40.00 1.14 0.05 99.55 

Chromium filtrate 0.27 4.00 0.94 1.00 99.58 

Mercury filtrate 0.00 0.38 0.04 0.01 99.59 

Acidity 0.10 4.21 0.35 0.24 99.62 

Turbidity 1.00 320.00 23.19 12.00 99.63 

2,4-dichlorodifenyl 

dichloroethene 
0.00 0.01 0.00 0.00 99.63 

Iron filtrate 0.01 9.50 0.36 0.10 99.64 

Atrazine 0.02 0.97 0.13 0.10 99.64 

Simazine 0.10 910.00 101.33 100.00 99.65 

Dimethoate 0.01 0.12 0.09 0.10 99.65 

Isodrin 0.00 10.00 1.80 0.10 99.69 

Ion ratio 1.78 76.00 36.46 32.94 99.70 

Sum 24DDD and 44DDD 0.00 0.02 0.00 0.00 99.74 

Sum 24DDE and 44DDE 0.00 0.03 0.00 0.00 99.74 

Sum 24DDT and 44DDT 0.00 0.05 0.00 0.00 99.74 

2,2,3,4,4,5-

hexachlorobifenyl 
1.00 10000.00 1094.87 2.00 99.76 

2,2,4,4,5,5-

hexachlorobifenyl 
1.00 10000.00 1095.13 2.00 99.76 

2,2,4,5,5-

pentachlorobifenyl 
1.00 10000.00 1094.87 2.00 99.76 

2,2,5,5-tetrachlorobifenyl 0.02 200.00 13.92 2.00 99.76 

2,3,4,4,5-

pentachlorobifenyl 
1.00 10000.00 1094.87 2.00 99.76 

2,4,4-trichlorobifenyl 1.00 10000.00 1095.51 2.00 99.76 

2,2,3,4,4,5,5-

heptachlorobifenyl 
1.00 10000.00 1115.28 2.00 99.76 

Potassium filtrate 920.00 25000 9845.31 11000 99.77 

Chloridazon 0.02 0.20 0.19 0.20 99.77 

(Continues on next page) 
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(Continued) 

Variable Min Max Mean Median Missing (%) 

Inorganic nitrogen 0.01 46.40 4.36 1.40 99.78 

Captan 100.00 100.00 100.00 100.00 99.79 

Arsenic filtrate 0.40 20.00 1.70 1.00 99.83 

Benzo(b)fluorine 0.01 0.03 0.01 0.01 99.83 

2,3,4,5-tetrachlorephenol 0.01 70.00 7.79 10.00 99.85 

2,3,4,6-tetrachlorophenol 0.01 10.00 6.66 10.00 99.85 

2,3-dichlorophenol 0.01 0.05 0.01 0.01 99.85 

2,5-dichlorophenol 0.01 0.01 0.01 0.01 99.89 

Diuron 20.00 1000.00 241.79 155.00 99.92 

Pirimicarb 10.00 600.00 87.50 100.00 99.92 

Propazin 0.01 0.50 0.15 0.10 99.92 

Chlortoluron 0.02 0.21 0.06 0.05 99.93 

Isoproturon 10.00 200.00 50.40 50.00 99.93 

Methabenzthiazuron 20.00 60.00 32.80 30.00 99.93 

Methobromuron 0.01 0.12 0.03 0.03 99.93 

Metoxuron 0.02 0.30 0.04 0.03 99.93 

Pentachlorobenzene 10.00 10000.00 4559.20 500.00 99.93 

Aluminium filtrate 20.00 52.00 42.17 50.00 99.93 

Ethoprophos 0.01 30.00 7.51 0.01 99.93 

Fenitrothion 10.00 500.00 172.61 200.00 99.93 

Linuron 4.00 260.00 37.62 30.00 99.94 

Monolinuron 0.02 0.05 0.03 0.03 99.94 

Chlorpyrifos 10.00 500.00 114.00 50.00 99.94 

Terbutryn 10.00 500.00 166.50 100.00 99.94 

cis-1,3-dichloropropene 0.01 1.00 0.16 0.01 99.95 

Tetrachloromethane 50.00 1000.00 173.53 50.00 99.95 

Trichloromethane 50.00 1000.00 197.06 50.00 99.95 

1,2,3-trichloropropane 0.05 0.50 0.14 0.05 99.95 

1,2-dichloropropane 0.01 0.50 0.06 0.05 99.95 

1,3-dichlorobenzene 0.05 0.50 0.14 0.05 99.95 

Monuron 0.01 0.07 0.03 0.03 99.95 

Manganese filtrate 7.15 1200.00 156.48 70.00 99.96 

Chlorbromuron 0.02 0.05 0.03 0.02 99.96 

Cyanazin 0.02 1.00 0.46 0.50 99.96 

Propachlor 20.00 500.00 137.14 100.00 99.96 

Cobalt filtrate 0.20 1.00 0.75 1.00 99.96 

Tin filtrate 0.20 0.20 0.20 0.20 99.96 

Silver filtrate 1.00 5.00 2.23 1.00 99.96 

Coumaphos 10.00 2000.00 773.08 1000.00 99.96 

Aldicarb 50.00 1000.00 250.00 300.00 99.97 

Chloroxuron 0.03 0.05 0.04 0.03 99.97 

2,4-dinitrophenol 0.10 0.10 0.10 0.10 99.97 

(Continues on next page) 
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Variable Min Max Mean Median Missing (%) 

2,5-dinitrophenol 0.10 0.10 0.10 0.10 99.97 

2,6-dinitrophenol 0.10 0.10 0.10 0.10 99.97 

Captafol 500.00 2000.00 1125.00 1000.00 99.98 

Prometryn 200.00 500.00 300.00 250.00 99.98 

1,2,3,4-

tetrachlorobenzene 
0.10 0.50 0.23 0.15 99.98 

2,3-dichloraniline 0.20 0.50 0.33 0.30 99.98 

2,4,5-trichloroaniline 0.20 0.50 0.30 0.25 99.98 

2,4-dichloroaniline 0.20 0.50 0.30 0.25 99.98 

2,6-dichloroaniline 0.20 1.00 0.43 0.25 99.98 

Aldicarb sulfon 50.00 1000.00 208.33 50.00 99.98 

Carbofuran 50.00 50.00 50.00 50.00 99.98 

Hexachloroethane 0.50 0.50 0.50 0.50 99.98 

Metribuzin 20.00 30.00 28.33 30.00 99.98 

Oxamyl 0.05 1.30 0.36 0.20 99.98 

Permethrin 20.00 20.00 20.00 20.00 99.98 

Propoxur 50.00 70.00 53.33 50.00 99.98 

Sum tetrachlorophenols 0.01 0.03 0.02 0.01 99.98 

Sum trichlorophenols 0.01 0.06 0.03 0.02 99.98 

Aldicarb sulphoxide 50.00 160.00 72.00 50.00 99.99 

Carbaryl 50.00 50.00 50.00 50.00 99.99 

Methomyl 50.00 140.00 74.00 50.00 99.99 

Metolachlor 100.00 400.00 180.00 100.00 99.99 

Bentazon 0.05 0.10 0.06 0.05 99.99 

Streptococci 80.00 80.00 80.00 80.00 100.00 

Desmetryn 0.01 0.01 0.01 0.01 100.00 

trans-1,3-dichloropropene 1.00 1.00 1.00 1.00 100.00 

2,4-dichlorophenoxy 

propionic acid 
0.05 0.05 0.05 0.05 100.00 

2,6-dichlorobenzamide 0.02 0.02 0.02 0.02 100.00 
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A.3 Characterisation of the macrophyte data 

 

 

Figure A.2: Annual number of macrophyte observations. The provided data covers a period 

from 1968 up to 2012, with limited observations during the first ten years. An overall increase in 

collection frequency can be observed, though shows a drop after reaching the maximum in 2010. 

 

Table A.3: Different methodologies used for macrophyte collection and identification, 

collected in the Limnodata Neerlandica. 

Code Method Explanation 

VEG00 Presence/Absence No information on methodology given, simple 

presence/absence statements 

VEG01 Tansley; water and bank T-class 

VEG02 Tansley; water T-class, sometimes with ‘0’ to represent presence 

within area (but not in sampled site) 

VEG03 Tansley; bank T-class, sometimes with ‘0’ to represent presence 

within area (but not in sampled site) 

VEG04 Tansley; unspecified T-class, sometimes with ‘0’ to represent presence 

within area (but not in sampled site) 

VEG05 Braun-Blanquet; water BB-class 

VEG06 Braun-Blanquet; bank BB-class 

VEG07 MWTL classes Class, 1: < 1 %; 2: 1 - 5 %; 3: 5 - 15 %; 4: 15 - 25 %; 5: 

25 - 50 %; 6: 50 - 75 %; 7: > 75 % 

VEG10 Coverage Percentage, given as areal coverage per species 

VEG11 Braun-Blanquet; water, 

modified 

Class, 0: absence; 1: 3 individuals; 2: 3 

individuals/m2; 3: 4-10 individuals/m2; 4: >10 

individuals/m2; 5-100: percentage cover per 

species 

VEG12 Braun-Blanquet; bank, 

modified 

Class, 0: absence; 1: 3 individuals; 2: 3 

individuals/m2; 3: 4-10 individuals/m2; 4: >10 

individuals/m2; 5-100: percentage cover per 

species 

(Continues on next page) 
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(Continued) 

Code Method Explanation 

VEG13 Attention species 1994 Class, 90/++: presence; 91/A: 1-10 individuals; 

92/B: 11-25 individuals 93/C: 26-100 individuals; 

94/D: 101-1000 individuals; 95/E: > 1000 

individuals; 96/K: 1-10 clustered individuals; 97/L: 

11-25 clustered individuals; 98/M: 26-100 clustered 

individuals; 99/N: 101-1000 clustered individuals; 

100/P: >1000 clustered individuals; 101/V: 1-10 

spread individuals; 102/W: 11-25 spread 

individuals; 103/X: 26-100 spread individuals; 

104/Y: 101-1000 spread individuals; 105/Z: >1000 

spread individuals 

VEG14 Attention species 1997 Class, 90/++: presence; 91/A: 1-10 individuals; 

92/B: 11-25 individuals 93/C: 26-100 individuals; 

94/D: 101-1000 individuals; 95/E: > 1000 

individuals; 96/K: 1-10 clustered individuals; 97/L: 

11-25 clustered individuals; 98/M: 26-100 clustered 

individuals; 99/N: 101-1000 clustered individuals; 

100/P: >1000 clustered individuals; 101/V: 1-10 

spread individuals; 102/W: 11-25 spread 

individuals; 103/X: 26-100 spread individuals; 

104/Y: 101-1000 spread individuals; 105/Z: >1000 

spread individuals 

VEG15 Braun-Blanquet; water 

and bank, unspecified 

Class, 1/R: <5 % and <5 individuals; 2/+: <5 % and 

<3 individuals/m2; 3/1: <5 % and 3-10 

individuals/m2; 4/2m: <5 % and >10 

individuals/m2; 5/2a: 5-12 %; 6/2b: 13-25 %; 7/3: 

26-50 %; 8/4: 51-76 %; 9/5: 76-100 % 

VEG16 University Nijmegen Percentage, coverage in area of 5*5 m² 

VEG17 University Nijmegen Percentage, coverage in area of 0.5*0.5 m² 

VEG18 Londo Percentage 

VEG19 Tansley; water, 

decimated 

Class, 1/s: very rare; 2/r: rare or very spread; 3/o: 

occasionally; 4/lf: locally frequent; 5/f: frequent; 

6/la: locally abundant; 7/a: high; 8/cd: co-

dominant; 9/d: dominant. Mostly rooting 

vegetation 

VEG20 Maes’ range - 

VEG21 Ordinal Class, 1: 1 %; 2: 2 %; 3: 3 %; 4: 4 %; 5: 8 %; 6: 18 %; 

7: 38 %; 8: 68 %; 9: 88 % 

VEG22 Water Framework 

Directive 

T-class 

VEG23 Field observations - 

VEG24 Presence Simple presence statement 

VEG25 NVO Percentage 

(Continues on next page) 
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(Continued) 

Code Method Explanation 

VEG26 Water Framework 

Directive, bank 

Percentage, coverage on bank and emergent zone 

up to 1 m depth 

VEG27 Water Framework 

Directive, open water 

Percentage, coverage in open water 

VEG28 Nat scale Class, based on assessment in four wind directions. 

1: 1 direction with limited material; 2: 1 direction 

with limited material; 3: 1 direction with limited 

material; 4: 2 directions with limited material; 5: 4 

directions with limited material; 6: 1 direction with 

abundant material; 7: 2 directions with abundant 

material; 8: 3 directions with abundant material; 9: 

4 directions with abundant material 
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A.4 Characterisation of the combined data 

 

 

Figure A.3: Annual number of combined physicochemical and macrophyte observations. 

Data contribution is spread relatively uniform among all years, except for 2009 and 2010. The 

temporal range is mainly determined by the availability of chemical data (see Figure A.1). Despite 

records for physicochemical and macrophyte observations being highest in 2010 (Figure A.1 and 

Figure A.2), combined information was more prevalent for 2009. 

 

 

Figure A.4: Excluding variables and instances can reduce the overall degree of missing 

data. Information removal was performed in a stepwise manner, removing either the variable or 

instance that supported the best decrease in percentage missing data. 
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Figure A.5: Heat map of the available information within the combined data. All instances 

(rows; Ninst = 4344) and variables (columns; Nvar = 174) are included in this map, which indicates 

the presence (black) or absence (white) of a data point. It is clear that only a few variables are 

recorded regularly, while the majority of variables is only limitedly recorded, thereby corroborating 

the observations from Figure 4.5A.  
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B.1 Characterisation of the data 

A detailed description of the creation of the 720 data sets is provided in Chapter 4. 

Construction of these data sets relies on 3 baseline data sets (see Table 4.1), which are 

additionally exposed to (i) random instance selection and (ii) repetitive removal of data 

points to obtain six different levels of missing data and ten repetitions. The variables 

included in these baseline data sets are mentioned in Table B.2 for data sets derived 

from the three baseline data sets (i.e. 5, 10 and 15 variables, Table 4.1). 

Table B.1: Composition of the baseline data sets regarding number of variables and 

number of instances. The first complete-case data set contained the highest number of data 

points. Based on this set, dimensionality for two additional data sets is pre-set during variable 

removal to act as baseline data (codes 2 and 3). Information is copied from Table 4.1. 

Data set 

code 

Variable 

fraction (%) 

Selected 

instances 

(%) 

Resulting 

number of 

variables 

(Nvar) 

Resulting 

number of 

instances 

(Ninst) 

Resulting 

number of 

data points 

Baseline data 

1 100 100 10 17 264 172 640 

2 50 100 5 21 543 107 715 

3 150 100 15 3 970 59 550 

 

Table B.2: Overview of the variables included in the baseline data sets mentioned in Table 

4.1. A distinction is made between baseline data with 5, 10 and 15 variables, representing 50 %, 100 

% and 150 % of the variables within the optimal (i.e. containing most data points) data set. 

5 variables 10 variables 15 variables 

Temperature Temperature Temperature 

pH pH pH 

Conductivity Conductivity Conductivity 

Transparency Transparency Transparency 

Chloride Chloride Chloride 

 Oxygen Oxygen 

 Total phosphorus Total phosphorus 

 Phosphate-phosphorus Phosphate-phosphorus 

 Ammonium-nitrogen Ammonium-nitrogen 

 Chlorophyll a Chlorophyll a 

  Oxygen saturation 

  BOD5 

  Kjeldahl-nitrogen 

  Nitrite-nitrogen 

  Nitrate-nitrogen 
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B.2 Influencing imputation performance 

B.2.1 Inclusion of additional information 

Including additional information has been reported to improve imputation accuracy 

when applying similarity-based imputation methods. As the data under consideration 

covers a wide range of surface water bodies (among which lakes, canals and rivers), 

differences in water conditions can be present, with the variance in the physicochemical 

data potentially being partly explained by their typology. Consequently, the inclusion of 

typological information was considered, but only for a subset of the data sets as part of 

a preliminary study.  

For this specific study, each combination of data dimensionality (Nvar) and sample size 

(Ninst) was considered for each degree of missing data (fMD), resulting in a total of 3 ×

4 × 6 = 72 combinations (see also Table 4.1). For each combination, only the first 

repetition (out of 10, see Section 4.2.3.1 in Chapter 4) was considered for preliminary 

typology-included data imputation. The analyses were performed for missForest (mF) 

and k nearest neighbours (kNN), representing the similarity-based imputation methods 

of this study. Obtained imputation accuracies were compared with imputation 

accuracies of mF and kNN with default settings and without inclusion of typological 

information.  

The results show that inclusion of typology provides similar imputation performance for 

kNN, while mF tends to provide lower accuracy without typological information being 

included in the data (see Figure B.1). Based on these observations, it was decided not to 

include typological information in the imputations of the other repetitions. 

 

Figure B.1: Effect of including typological information during the imputation process. 

Both kNN and mF show some effect of including typology on imputation accuracy. Generally, mF 

performs better when typological information is included (observations situated above the 

diagonal agreement line), while the effect on kNN accuracy is less clear. 
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B.2.2 Optimisation of imputation techniques via hyperparameter setting 

Of the four selected techniques, only two are characterised by a dependence on 

hyperparameters. More specifically, within kNN, the number of neighbours (knn) can be 

changed, while mF can be tuned via the number of trees (ntree), the number of variables 

selected for each split (mtry) and the nodesize required prior to further splitting 

(nodesize). It is expected that optimal case-specific hyperparameter settings exist and 

that these can be found with an iterative search, ultimately supporting improved 

imputation accuracy. In practice, hyperparameter optimisation started from the default 

setting to reduce computation time by limiting the overall search space. Hence, it 

remained possible that the optimised combination represented a local optimum rather 

than a global optimum. Implementation differed between kNN and mF, though 

considered every first and fifth repetition (i.e. 3 × 4 × 6 × 2 = 144 data sets) and is 

described in the following sections. 

B.2.2.1 Nearest neighbours 

The default value for knn is set to 5 within the VIM package. Optimisation started from 

this setting via a first run and calculation of performance (NRMSE). Subsequently, 

imputations were performed considering a range of neighbours, i.e. 𝑘𝑛𝑛 ∈ [𝑘𝑛𝑛,0 −

3, 𝑘𝑛𝑛,0 − 2, 𝑘𝑛𝑛,0 − 1, 𝑘𝑛𝑛,0 + 1, 𝑘𝑛𝑛,0 + 2, 𝑘𝑛𝑛,0 + 3], with knn,0 representing the knn-value 

from previous iteration, followed by re-evaluation via NRMSE. If one of the latter 

resulted in a lower NRMSE value, the knn value was updated and used as a new starting 

point. In the other case (i.e. similar performance as the previous run), new knn values 

were defined by extending the original range with three extra neighbours. Six extra 

neighbours were used if again no change in settings was observed. If the same setting 

was selected three times or if a total of 10 iterations was performed, the final selected 

settings were considered as optimal hyperparameter values.  

B.2.2.2 missForest 

The default settings for imputation via missForest are ntree = 100, mtry = 𝑓𝑙𝑜𝑜𝑟(√𝑁𝑣𝑎𝑟) 

and nodesize = 1. Optimisation started with the creation of three alternative starting 

points with ntree = [25, 50, 100], without changing mtry and nodesize. The settings that 

resulted in the lowest NRMSE value were considered for the iterative procedure. Within 

each iteration, the range for each settings’ values was determined as follows: 

[(1 − 1 (2 ∙ 𝑖)⁄ ) ∙ 𝑠𝑜 , 𝑠𝑜 , (1 + 1 (2 ∙ 𝑖)⁄ ) ∙ 𝑠𝑜], with i reflecting the number of iterations that 

resulted in the selection of the same settings and so reflecting the settings’ value that 

was selected during the previous iteration. As such, the three-dimensional space of the 

settings’ values narrows down to identify a local optimal combination. Whenever a new 

combination is selected, the search space is not narrowed down and simply replaces its 

‘central starting point’. In total, maximally ten iterations were allowed, as this showed 

to be sufficient to provide optimal settings’ value. 
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B.2.3 Variability and stability among repetitions 

B.2.3.1 Imputation stability (i.e. repeatability) 

Imputation is reportedly case-specific and might cause different imputation results 

among repetitive imputation events. To test the stability of imputation, three data set 

combinations (cfr. Table 4.1) were selected and repetitively subjected to imputation of 

the missing values. More specifically, each data set was imputed three times by each 

method, followed by accuracy assessment via the NRMSE. The results show that the 

performed imputation is repeatable, with observations overlapping completely (Figure 

B.2).  

 

Figure B.2: Imputation stability of four imputation methods, applied thrice on three 

different data sets. Complete overlap of the repetitive imputation indicates complete 

repeatability. The three data sets were selected randomly with ID123: 15 variables, 50 % of the 

instances and 1 % missing values; ID357: 10 variables, 75 % of the instances and 75 % missing 

values; ID485: 5 variables, 100 % of the instances and 1 % missing values. Methods: mean: mean 

imputation; mF: the missForest algorithm; kNN: k nearest neighbours and ls: iterative least 

squares. NRMSE: Normalised Root Mean Squared Error. 

 

B.2.3.2 Variability in optimised hyperparameters for similar combinations 

Hyperparameter optimisation is case-specific, though it can be expected that similar 

data set characteristics support similar optimised settings. Therefore, the variability 

among repetitions (identical Nvar, Ninst and fMD, but different values being removed) is 

investigated. Determining the variability among ten repetitions was performed at each 

level of data dimensionality (5, 10 and 15 variables), both for the minimum (25 %) and 

maximum (100 %) sample size (cfr. Table 4.1). For each of these six combinations, the 

degree of missing data was set to 0.05, 0.20 or 0.75 and repeated ten times, representing 

an overall total of 3 × 2 × 3 × 10 = 180 data sets to be used for optimisation. 
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The results indicate that hyperparameter optimisation is indeed case-specific for both 

mF and kNN. For mF, the highest variability was observed for nodesize, though no clear 

pattern could be linked with the studied data set characteristics. In contrast, mtry was 

clearly negatively affected by increasing values of missing data, although this effect 

decreased with declining data dimensionality. In contrast, ntree remained relatively 

stable among the tested data set characteristics (Figure B.4). For kNN, increased 

dimensionality, reduced sample size and intermediate levels of missing data caused 

lower variability in the optimal number of neighbours (Figure B.3). 

 

Figure B.3: Optimisation of hyperparameters of kNN, showing its case-specific character. 

Optimisation was performed for ten repetitions of sample size and dimensionality, only differing 

in which data points were (artificially) missing. Eighteen different combinations of sample size 

(Ninst), dimensionality (Nvar) and rate of missing data (fMD) were considered. Optimised values for 

knn are shown along with the resulting accuracy score (NRMSE). Within the identified data set 

characteristics, results are separated according to rate of missing data (i.e. 5 %, 20 % and 75 %). 

The relative variability impedes proper value selection and highlights the case-specific properties 

of optimising hyperparameters. Boxes represent the 50 % central values around the median, while 

whiskers represent the first and third quartile extended to the last case within 1.5 times the 

interquartile range. Dots represent the values outside the whiskers’ range. 
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Figure B.4: Optimisation of hyperparameters of mF, showing its case-specific character. 

Optimisation was performed for ten repetitions of sample size and dimensionality, only differing 

in which data points were (artificially) missing. Eighteen different combinations of sample size, 

dimensionality and rate of missing data were considered. Optimised values for ntree, mtry and 

nodesize are shown along with the resulting accuracy score (NRMSE). Within the identified data 

set characteristics, results are separated according to rate of missing data (i.e. 5 %, 20 % and 75 

%). The relative variability impedes proper value selection and highlights the case-specific 

properties of optimising hyperparameters. Boxes represent the 50 % central values around the 

median, while whiskers represent the first and third quartile extended to the last case within 1.5 

times the interquartile range. Dots represent the values outside the whiskers’ range. 
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Figure B.5: Optimisation of individual trees (ntree) of mF, final values depicted according 

to rate of missing values. Values range from 5 up to 225 (default: 100, represented by dashed 

black line) without a clear indication of a specific monotonous influence of the rate of missing 

values on the final ntree value. 

 

 

Figure B.6: Optimisation of nodesize of mF, final values depicted according to rate of 

missing values. Values range from 1 up to 6 (default: 1, represented by dashed black line), with 

majority of data sets not requiring a clear change in nodesize to optimise accuracy.  
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Figure B.7: Optimisation of hyperparameters of mF, final values depicted according to 

rate of missing values when 5 (top), 10 (middle) or 15 (bottom) variables were available. 

With only 5 variables (top), values range from 1 up to 4 (default: 2, dashed black line), with majority 

of data requiring only 1 variable. With 10 variables (middle), values range from 1 up to 9 (default: 

3, dashed black line), with majority of data requiring 3 or less variables. With 15 variables (bottom), 

values range from 2 up to 14 (default: 3, dashed black line), with majority of data requiring 5 or less 

variables. Boxes represent the 50 % central values around the median, while whiskers represent 

the first and third quartile extended to the last case within 1.5 times the interquartile range. Dots 

represent the values outside the whiskers’ range. 
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B.3 Results imputation performance 
Table B.3: Average imputation performance for each imputation method and each 

combination in Table 4.1, rounded to 3 digits. Averages are calculated based on 10 repetitions. 

MD: fraction missing data; Var: Relative fraction of variables considered; Obs: Fraction of 

instances included; ls: least squares; kNN: k nearest neighbour and mF: missForest. *Standard 

deviation below 0.0005, hence rounded to 0.000. 

MD Var Obs Mean ls kNN mF 

0.01 1.5 1 0.928 ± 0.026 0.120 ± 0.053 0.133 ± 0.042 0.150 ± 0.074 

0.01 1.5 0.75 0.964 ± 0.082 0.165 ± 0.128 0.238 ± 0.113 0.182 ± 0.079 

0.01 1.5 0.5 1.005 ± 0.206 0.141 ± 0.104 0.275 ± 0.135 0.206 ± 0.068 

0.01 1.5 0.25 1.362 ± 1.006 0.285 ± 0.532 0.325 ± 0.288 0.586 ± 1.076 

0.01 1 1 0.967 ± 0.007 0.167 ± 0.048 0.195 ± 0.050 0.160 ± 0.048 

0.01 1 0.75 0.969 ± 0.009 0.209 ± 0.162 0.289 ± 0.139 0.229 ± 0.166 

0.01 1 0.5 0.965 ± 0.009 0.222 ± 0.189 0.284 ± 0.146 0.233 ± 0.170 

0.01 1 0.25 1.024 ± 0.105 0.404 ± 0.693 0.334 ± 0.224 0.235 ± 0.177 

0.01 0.5 1 0.978 ± 0.011 0.218 ± 0.137 0.244 ± 0.131 0.226 ± 0.146 

0.01 0.5 0.75 0.973 ± 0.007 0.201 ± 0.146 0.227 ± 0.135 0.201 ± 0.150 

0.01 0.5 0.5 0.974 ± 0.010 0.219 ± 0.197 0.204 ± 0.178 0.206 ± 0.184 

0.01 0.5 0.25 0.979 ± 0.029 0.223 ± 0.081 0.238 ± 0.129 0.213 ± 0.092 

0.05 1.5 1 0.927 ± 0.008 0.236 ± 0.073 0.254 ± 0.045 0.222 ± 0.042 

0.05 1.5 0.75 0.934 ± 0.013 0.260 ± 0.059 0.307 ± 0.066 0.243 ± 0.037 

0.05 1.5 0.5 0.927 ± 0.010 0.222 ± 0.119 0.282 ± 0.094 0.223 ± 0.063 

0.05 1.5 0.25 0.937 ± 0.018 0.203 ± 0.163 0.285 ± 0.144 0.252 ± 0.088 

0.05 1 1 0.966 ± 0.003 0.311 ± 0.068 0.327 ± 0.056 0.309 ± 0.063 

0.05 1 0.75 0.967 ± 0.003 0.309 ± 0.200 0.324 ± 0.110 0.267 ± 0.105 

0.05 1 0.5 0.965 ± 0.005 0.238 ± 0.076 0.308 ± 0.063 0.245 ± 0.074 

0.05 1 0.25 0.966 ± 0.005 0.389 ± 0.351 0.438 ± 0.172 0.290 ± 0.139 

0.05 0.5 1 0.976 ± 0.002 0.343 ± 0.145 0.341 ± 0.104 0.325 ± 0.096 

0.05 0.5 0.75 0.974 ± 0.002 0.289 ± 0.105 0.280 ± 0.072 0.277 ± 0.068 

0.05 0.5 0.5 0.975 ± 0.005 0.327 ± 0.193 0.326 ± 0.186 0.328 ± 0.148 

0.05 0.5 0.25 0.974 ± 0.003 0.263 ± 0.123 0.308 ± 0.101 0.280 ± 0.123 

0.1 1.5 1 0.925 ± 0.004 0.302 ± 0.065 0.338 ± 0.035 0.248 ± 0.036 

0.1 1.5 0.75 0.930 ± 0.005 0.311 ± 0.054 0.369 ± 0.034 0.260 ± 0.050 

0.1 1.5 0.5 0.926 ± 0.007 0.250 ± 0.072 0.314 ± 0.054 0.234 ± 0.027 

0.1 1.5 0.25 0.936 ± 0.018 0.315 ± 0.171 0.388 ± 0.138 0.279 ± 0.101 

0.1 1 1 0.966 ± 0.002 0.386 ± 0.096 0.394 ± 0.076 0.335 ± 0.069 

0.1 1 0.75 0.967 ± 0.002 0.376 ± 0.149 0.395 ± 0.071 0.336 ± 0.062 

0.1 1 0.5 0.967 ± 0.002 0.353 ± 0.126 0.378 ± 0.083 0.316 ± 0.078 

0.1 1 0.25 0.967 ± 0.003 0.443 ± 0.273 0.469 ± 0.099 0.340 ± 0.094 

0.1 0.5 1 0.975 ± 0.002 0.375 ± 0.092 0.380 ± 0.070 0.374 ± 0.067 

0.1 0.5 0.75 0.975 ± 0.002 0.348 ± 0.083 0.360 ± 0.066 0.358 ± 0.059 

0.1 0.5 0.5 0.975 ± 0.003 0.367 ± 0.104 0.381 ± 0.086 0.369 ± 0.084 

0.1 0.5 0.25 0.974 ± 0.003 0.338 ± 0.068 0.354 ± 0.062 0.357 ± 0.056 

(Continues on next page) 
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(Continued) 

MD Var Obs Mean ls kNN mF 

0.2 1.5 1 0.925 ± 0.002 0.400 ± 0.022 0.452 ± 0.027 0.310 ± 0.025 

0.2 1.5 0.75 0.927 ± 0.003 0.423 ± 0.050 0.457 ± 0.049 0.329 ± 0.052 

0.2 1.5 0.5 0.928 ± 0.006 0.372 ± 0.069 0.428 ± 0.036 0.302 ± 0.039 

0.2 1.5 0.25 0.936 ± 0.010 0.441 ± 0.114 0.510 ± 0.116 0.347 ± 0.114 

0.2 1 1 0.966 ± 0.002 0.469 ± 0.062 0.488 ± 0.058 0.424 ± 0.046 

0.2 1 0.75 0.967 ± 0.002 0.461 ± 0.107 0.493 ± 0.060 0.400 ± 0.058 

0.2 1 0.5 0.967 ± 0.001 0.460 ± 0.048 0.501 ± 0.026 0.420 ± 0.030 

0.2 1 0.25 0.966 ± 0.002 0.422 ± 0.101 0.518 ± 0.063 0.396 ± 0.047 

0.2 0.5 1 0.975 ± 0.001 0.497 ± 0.048 0.507 ± 0.047 0.497 ± 0.041 

0.2 0.5 0.75 0.974 ± 0.001 0.519 ± 0.070 0.528 ± 0.056 0.507 ± 0.057 

0.2 0.5 0.5 0.975 ± 0.002 0.454 ± 0.074 0.480 ± 0.057 0.475 ± 0.054 

0.2 0.5 0.25 0.974 ± 0.002 0.475 ± 0.078 0.508 ± 0.069 0.487 ± 0.054 

0.5 1.5 1 0.925 ± 0.001 0.605 ± 0.021 0.652 ± 0.024 0.511 ± 0.024 

0.5 1.5 0.75 0.929 ± 0.002 0.609 ± 0.017 0.669 ± 0.016 0.514 ± 0.018 

0.5 1.5 0.5 0.928 ± 0.001 0.597 ± 0.021 0.659 ± 0.019 0.518 ± 0.036 

0.5 1.5 0.25 0.937 ± 0.006 0.620 ± 0.049 0.688 ± 0.041 0.573 ± 0.042 

0.5 1 1 0.966 ± 0.001 0.692 ± 0.023 0.786 ± 0.030 0.657 ± 0.027 

0.5 1 0.75 0.967 ± 0.000* 0.683 ± 0.042 0.766 ± 0.027 0.654 ± 0.035 

0.5 1 0.5 0.967 ± 0.001 0.707 ± 0.036 0.767 ± 0.025 0.664 ± 0.019 

0.5 1 0.25 0.967 ± 0.001 0.698 ± 0.038 0.773 ± 0.046 0.678 ± 0.044 

0.5 0.5 1 0.975 ± 0.000* 0.721 ± 0.034 0.769 ± 0.036 0.739 ± 0.030 

0.5 0.5 0.75 0.974 ± 0.000* 0.721 ± 0.025 0.769 ± 0.024 0.743 ± 0.034 

0.5 0.5 0.5 0.974 ± 0.001 0.723 ± 0.029 0.775 ± 0.031 0.749 ± 0.034 

0.5 0.5 0.25 0.974 ± 0.001 0.699 ± 0.056 0.779 ± 0.072 0.729 ± 0.044 

0.75 1.5 1 0.926 ± 0.001 0.769 ± 0.017 0.878 ± 0.031 0.756 ± 0.024 

0.75 1.5 0.75 0.929 ± 0.001 0.774 ± 0.015 0.847 ± 0.022 0.758 ± 0.024 

0.75 1.5 0.5 0.929 ± 0.001 0.762 ± 0.020 0.863 ± 0.028 0.776 ± 0.036 

0.75 1.5 0.25 0.937 ± 0.007 0.811 ± 0.031 0.903 ± 0.041 0.813 ± 0.047 

0.75 1 1 0.966 ± 0.000* 0.838 ± 0.015 1.052 ± 0.055 0.860 ± 0.017 

0.75 1 0.75 0.967 ± 0.000* 0.835 ± 0.024 1.080 ± 0.136 0.857 ± 0.019 

0.75 1 0.5 0.967 ± 0.001 0.848 ± 0.014 0.997 ± 0.055 0.871 ± 0.032 

0.75 1 0.25 0.967 ± 0.000* 0.870 ± 0.021 1.107 ± 0.259 0.895 ± 0.054 

0.75 0.5 1 0.975 ± 0.000* 0.869 ± 0.017 0.977 ± 0.059 0.885 ± 0.026 

0.75 0.5 0.75 0.974 ± 0.000* 0.856 ± 0.017 0.967 ± 0.055 0.960 ± 0.236 

0.75 0.5 0.5 0.975 ± 0.000* 0.856 ± 0.033 1.073 ± 0.230 0.878 ± 0.022 

0.75 0.5 0.25 0.974 ± 0.001 0.854 ± 0.026 1.400 ± 0.835 0.884 ± 0.018 
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B.4 Case studies 

The analyses performed throughout Chapter 5 focused on a single metric to describe the 

imputation performance of each technique applied on a range of data sets. Naturally, 

such an aggregation causes a loss of information and limits technique-related accuracy 

transparency. More specifically, high errors for a single variable can inflate the 

normalised root mean squared error (NRMSE), which can be avoided by predictor 

selection or transformation. To illustrate this variable-specific imputation accuracy, two 

data set were selected for a more in-depth analysis. 

B.4.1 Case 1: Small data set with low degree of missing data 

Both brevity and visualisation were considered during the selection of the first data set 

and steered the decision towards a data set containing 5 variables and 5385 instances 

(i.e. combination 9, Table 4.1), with 1 % missing data. Hence, in total 269 data points 

were artificially removed prior to imputation assessment. The variables within the data 

were chloride (mg∙L-1), conductivity (mS∙m-1), pH (-), temperature (°C) and transparency 

(m). 

B.4.1.1 Imputed values 

 

Figure B.8: Imputation of chloride by four imputation techniques. Replacement of missing 

values was performed for 269 data points in a data set with 5 variables and 5385 instances (hence, 

1 % missing values). Units are mg∙L-1. 
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Figure B.9: Imputation of conductivity by four imputation techniques. Replacement of 

missing values was performed for 269 data points in a data set with 5 variables and 5385 instances 

(hence, 1 % missing values). Units are mS∙m-1. 

 

Figure B.10: Imputation of pH by four imputation techniques. Replacement of missing 

values was performed for 269 data points in a data set with 5 variables and 5385 instances (hence, 

1 % missing values).  
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Figure B.11: Imputation of temperature by four imputation techniques. Replacement of 

missing values was performed for 269 data points in a data set with 5 variables and 5385 instances 

(hence, 1 % missing values). Units are °C. 

 

Figure B.12: Imputation of transparency by four imputation techniques. Replacement of 

missing values was performed for 269 data points in a data set with 5 variables and 5385 instances 

(hence, 1 % missing values). Units are m. 
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B.4.1.2 Variable distributions 

 

Figure B.13: Variable distributions before and after imputation by the mean. Replacement 

of missing values was performed for 269 data points in a data set with 5 variables and 5385 

instances (hence, 1 % missing values). 
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Figure B.14: Variable distributions before and after imputation by least squares 

regression (ls). Replacement of missing values was performed for 269 data points in a data set 

with 5 variables and 5385 instances (hence, 1 % missing values). 

 



APPENDIX B 

305 

 

Figure B.15: Variable distributions before and after imputation by k nearest neighbours 

(kNN). Replacement of missing values was performed for 269 data points in a data set with 5 

variables and 5385 instances (hence, 1 % missing values). 
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Figure B.16: Variable distributions before and after imputation by missForest (mF). 

Replacement of missing values was performed for 269 data points in a data set with 5 variables 

and 5385 instances (hence, 1 % missing values). 
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B.4.2 Case 2: Large data set with high degree of missing data 

In Chapter 4, it was indicated that variable removal supported the decrease in missing 

data within the common data (see Figure A.4). However, it also showed a rapid decrease 

in both sample size and data dimensionality when less than 50 % missing data was 

aimed for. Therefore, this case considers the optimal data set, i.e. containing 10 variables 

and 17 264 instances (i.e. combination 1, Table 4.1), with 50 % missing data. Hence, in 

total 86 320 data points were artificially removed prior to imputation assessment. The 

variables within the data were chlorophyll a (µg∙L-1), chloride (mg∙L-1), conductivity 

(mS∙m-1), NH4
+-N (mg∙L-1), oxygen (mg∙L-1), pH (-), PO4

3−-P (mg∙L-1), temperature (°C), 

total phosphorus (mg∙L-1) and transparency (m). 

B.4.2.1 Imputed values 

 

Figure B.17: Imputation of chlorophyll a by four imputation techniques. Replacement of 

missing values was performed for 86 320 data points in a data set with 10 variables and 17 264 

instances (hence, 50 % missing values). Units are µg∙L-1. 
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Figure B.18: Imputation of chloride by four imputation techniques. Replacement of missing 

values was performed for 86 320 data points in a data set with 10 variables and 17 264 instances 

(hence, 50 % missing values). Units are mg∙L-1. 

 

Figure B.19: Imputation of conductivity by four imputation techniques. Replacement of 

missing values was performed for 86 320 data points in a data set with 10 variables and 17 264 

instances (hence, 50 % missing values). Units are mS∙m-1. 
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Figure B.20: Imputation of ammonium-nitrogen (𝑵𝑯𝟒
+-N) by four imputation techniques. 

Replacement of missing values was performed for 86 320 data points in a data set with 10 variables 

and 17 264 instances (hence, 50 % missing values). Units are mg∙L-1. 

 

Figure B.21: Imputation of oxygen by four imputation techniques. Replacement of missing 

values was performed for 86 320 data points in a data set with 10 variables and 17 264 instances 

(hence, 50 % missing values). Units are mg∙L-1. 
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Figure B.22: Imputation of pH by four imputation techniques. Replacement of missing 

values was performed for 86 320 data points in a data set with 10 variables and 17 264 instances 

(hence, 50 % missing values). 

 

Figure B.23: Imputation of phosphate-phosphorus (𝑷𝑶𝟒
𝟑−-P) by four imputation 

techniques. Replacement of missing values was performed for 86 320 data points in a data set 

with 10 variables and 17 264 instances (hence, 50 % missing values). Units are mg∙L-1. 
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Figure B.24: Imputation of temperature by four imputation techniques. Replacement of 

missing values was performed for 86 320 data points in a data set with 10 variables and 17 264 

instances (hence, 50 % missing values). Units are °C. 

 

Figure B.25: Imputation of total phosphorus by four imputation techniques. Replacement 

of missing values was performed for 86 320 data points in a data set with 10 variables and 17 264 

instances (hence, 50 % missing values). Units are mg∙L-1. 
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Figure B.26: Imputation of transparency by four imputation techniques. Replacement of 

missing values was performed for 86 320 data points in a data set with 10 variables and 17 264 

instances (hence, 50 % missing values). Units are m. 
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B.4.2.2 Variable distributions 

 

Figure B.27: Variable distributions before and after imputation by the mean. Replacement 

of missing values was performed for 86 320 data points in a data set with 10 variables and 17 264 

instances (hence, 50 % missing values). 
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Figure B.28: Variable distributions before and after imputation by least squares 

regression (ls). Replacement of missing values was performed for 86 320 data points in a data 

set with 10 variables and 17 264 instances (hence, 50 % missing values). 
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Figure B.29: Variable distributions before and after imputation by k nearest neighbours 

(kNN). Replacement of missing values was performed for 86 320 data points in a data set with 10 

variables and 17 264 instances (hence, 50 % missing values). 
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Figure B.30: Variable distributions before and after imputation by missForest (mF). 

Replacement of missing values was performed for 86 320 data points in a data set with 10 variables 

and 17 264 instances (hence, 50 % missing values). 

  



APPENDIX B 

317 

B.4.3 Overall observations from the case studies 

Imputation accuracy of the data by the four different techniques showed to differ 

between the percentage missing data (MD), the techniques and variables (see Figure B.8 

up to Figure B.30). More specifically, imputed values obtained via mean imputation 

provided distinctly different patterns compared to ls, kNN and mF. However, this 

discrepancy seemed to be range-dependent as imputation patterns for variables with an 

extensive range clearly differed from the patterns obtained for variables with a confined 

range. For instance, chloride ranges from 0 up to 20 000 mg∙L-1 and showed to be 

accurately imputed by ls, kNN and mF at 1 % MD (Figure B.8), while a lower accuracy 

could be inferred at 50 % MD (Figure B.18). Yet, clear differences were still present with 

mean, while kNN showed to be more prone to overestimate missing values compared to 

ls and mF. Similar observations can be done for conductivity at 1 % (Figure B.9) and 50 

% (Figure B.19) MD. In contrast, imputations for pH at 1 % (Figure B.10) were generally 

better for kNN and mF compared to ls, which might be linked with the limited range 

(i.e. 6 up to 10). Due to an extreme value for pH, no clear statement could be made for 

50 % MD (Figure B.22). These observations suggest that for variables with a limited 

range, ls provides relatively similar imputations compared to the mean (e.g. Figure B.11, 

Figure B.12 and Figure B.26), while kNN and mF provide relatively similar scores (e.g. 

Figure B.12, Figure B.24 and Figure B.25). However, no pairwise comparisons between 

the techniques has been performed. 

The differences in imputed values explains the observed discrepancy at NRMSE level 

between mean and the remaining three techniques (see Figure 5.1 and Figure 5.4), with 

high underestimations by mean causing elevated NRMSE scores. More importantly, the 

imputation of the mean can be clearly observed in Figure B.27, which illustrates a clear 

narrowing effect on temperature values within the data. This narrowing is also observed 

for ls (Figure B.28), kNN (Figure B.29) and mF (Figure B.30), though in a less distinct 

manner. In contrast, narrowing could not be observed with only 1 % MD (see Figure B.13, 

Figure B.14, Figure B.15 and Figure B.16). Due to the extent of most variables, no clear 

effects originating from data imputation could be distinguished. 

The relatively similar patterns obtained for ls, kNN and mF (see Figure B.8 up to Figure 

B.30) confirmed the high overlap in NRMSE observed in Figure 5.4. Still, minor 

differences could be observed due to the applied approach for imputing a missing value. 

For instance, ls is based on a global approach (i.e. considers all available data (Bø et al., 

2004)), causing relatively high bias and low variance. In contrast, kNN and mF are local 

approaches and rely on fractions of the original data to impute the missing value, 

thereby causing less bias and higher variance. Unfortunately, these observations do not 

allow to create additional performance distinction between the considered techniques, 

although improvement is expected to be limited for most data sets due to the relative 

overlap among the obtained NRMSE scores.  
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B.5 Linear Mixed Effects Models 

B.5.1 Overall performance 

Overall performance assessment considered the link between obtained imputation error 

and a full interaction model as specified in Equation B.1. For each factor, a coefficient 

was determined along with its deviation, confidence interval and contribution 

significance, as summarised in Table B.4. 

𝑁𝑅𝑀𝑆𝐸 = 𝛽0 + 𝛽𝑙𝑠 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠 + 𝛽𝑘𝑁𝑁 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁 + 𝛽𝑚𝐹 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹 + 𝛽𝑀𝐷 ∙ 𝑀𝐷 + 

𝛽𝐼𝑛𝑠𝑡 ∙ 𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑉𝑎𝑟 ∙ 𝑁𝑣𝑎𝑟 + 

𝛽𝑙𝑠:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠:𝑀𝐷 + 𝛽𝑘𝑁𝑁:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁:𝑀𝐷 + 𝛽𝑚𝐹:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹:𝑀𝐷 + 

𝛽𝑙𝑠:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠: 𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑘𝑁𝑁:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁: 𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑚𝐹:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹: 𝑁𝑖𝑛𝑠𝑡 + 

𝛽𝑙𝑠:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠: 𝑁𝑣𝑎𝑟 + 𝛽𝑘𝑁𝑁:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁: 𝑁𝑣𝑎𝑟 + 𝛽𝑚𝐹:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹: 𝑁𝑣𝑎𝑟 + 

𝛽𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝐷:𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑀𝐷:𝑉𝑎𝑟 ∙ 𝑀𝐷:𝑁𝑣𝑎𝑟 + 𝛽𝐼𝑛𝑠𝑡:𝑉𝑎𝑟 ∙ 𝑁𝑖𝑛𝑠𝑡: 𝑁𝑣𝑎𝑟 + 

𝛽𝑙𝑠:𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠:𝑀𝐷:𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑘𝑁𝑁:𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁:𝑀𝐷:𝑁𝑖𝑛𝑠𝑡 + 

𝛽𝑚𝐹:𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹:𝑀𝐷:𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑙𝑠:𝑀𝐷:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠:𝑀𝐷:𝑁𝑣𝑎𝑟 + 

𝛽𝑘𝑁𝑁:𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁:𝑀𝐷:𝑁𝑣𝑎𝑟 + 𝛽𝑚𝐹:𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹:𝑀𝐷:𝑁𝑣𝑎𝑟 + 

𝛽𝑙𝑠:𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠: 𝑀𝐷:𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑙𝑠:𝐼𝑛𝑠𝑡:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠: 𝑁𝑖𝑛𝑠𝑡: 𝑁𝑣𝑎𝑟 + 

𝛽𝑘𝑁𝑁:𝐼𝑛𝑠𝑡:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁: 𝑁𝑖𝑛𝑠𝑡: 𝑁𝑣𝑎𝑟 + 𝛽𝑚𝐹:𝐼𝑛𝑠𝑡:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹: 𝑁𝑖𝑛𝑠𝑡: 𝑁𝑣𝑎𝑟 + 

𝛽𝑀𝐷:𝐼𝑛𝑠𝑡:𝑉𝑎𝑟 ∙ 𝑀𝐷:𝑁𝑖𝑛𝑠𝑡: 𝑁𝑣𝑎𝑟 + 𝛽𝑙𝑠:𝑀𝐷:𝐼𝑛𝑠𝑡:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠:𝑀𝐷:𝑁𝑖𝑛𝑠𝑡: 𝑁𝑣𝑎𝑟 + 

𝛽𝑘𝑁𝑁:𝑀𝐷:𝐼𝑛𝑠𝑡:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁:𝑀𝐷:𝑁𝑖𝑛𝑠𝑡: 𝑁𝑣𝑎𝑟 + 

𝛽𝑚𝐹:𝑀𝐷:𝐼𝑛𝑠𝑡:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹:𝑀𝐷:𝑁𝑖𝑛𝑠𝑡: 𝑁𝑣𝑎𝑟   (Equation B.1) 
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Table B.4: Summary of coefficients within the overall mixed effect model, linking 

performance (NRMSE) with imputation method, fraction missing data, fraction of 

instances and number of variables (NRMSE~Method*MD*Inst*Var + (1|n)). Each coefficient 

is supplemented with its standard deviation (SD), 95 % confidence interval (CI2.5% - CI97.5%) and 

contribution significance. Codes: ls: least squares; kNN: k nearest neighbours, mF: missForest 

algorithm; MD: fraction missing data; Inst: fraction of instances; Var: fraction of variables. 

Effect Coefficient SD CI2.5% CI97.5% p 

Intercept 0.903 0.049 0.808 0.997 <0.001 

ls -0.620 0.049 -0.716 -0.524 <0.001 

kNN -0.746 0.049 -0.842 -0.650 <0.001 

mF -0.712 0.049 -0.808 -0.616 <0.001 

MD 0.169 0.130 -0.080 0.419 0.186 

Inst 0.115 0.071 -0.023 0.254 0.104 

Var 0.113 0.045 0.026 0.201 0.012 

ls:MD 0.682 0.129 0.430 0.934 <0.001 

kNN:MD 1.672 0.129 1.419 1.924 <0.001 

mF:MD 0.941 0.129 0.689 1.193 <0.001 

ls:Inst -0.072 0.072 -0.212 0.068 0.317 

kNN:Inst 0.042 0.072 -0.098 0.181 0.563 

mF:Inst 0.033 0.072 -0.106 0.174 0.637 

MD:Inst -0.193 0.187 -0.557 0.172 0.302 

ls:Var -0.122 0.045 -0.211 -0.033 0.007 

kNN:Var 0.022 0.045 -0.067 0.110 0.633 

mF:Var -0.034 0.045 -0.122 0.055 0.460 

MD:Var -0.272 0.119 -0.503 -0.041 0.022 

Inst:Var -0.183 0.066 -0.312 -0.055 0.005 

ls:MD:Inst 0.198 0.189 -0.170 0.567 0.294 

kNN:MD:Inst -0.701 0.189 -1.069 -0.332 <0.001 

mF:MD:Inst 0.042 0.189 -0.327 0.410 0.825 

ls:MD:Var 0.191 0.120 -0.043 0.424 0.112 

kNN:MD:Var -0.506 0.120 -0.739 -0.272 <0.001 

mF:MD:Var -0.056 0.120 -0.289 0.178 0.642 

ls:Inst:Var 0.101 0.066 -0.029 0.230 0.129 

kNN:Inst:Var -0.017 0.066 -0.147 0.112 0.794 

mF:Inst:Var -0.025 0.066 -0.155 0.104 0.705 

MD:Inst:Var 0.309 0.173 -0.029 0.646 0.075 

ls:MD:Inst:Var -0.258 0.175 -0.599 0.083 0.141 

kNN:MD:Inst:Var 0.466 0.175 0.125 0.807 0.008 

mF:MD:Inst:Var -0.092 0.175 -0.433 0.249 0.597 
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B.5.2 Baseline performance 

Baseline performance assessment considered the link between obtained imputation 

error related to Dopt and a full interaction model as specified in Equation B.2. For each 

factor, a coefficient was determined along with its deviation, confidence interval and 

contribution significance, as summarised in Table B.5. 

𝑁𝑅𝑀𝑆𝐸 = 𝛽0 + 𝛽𝑙𝑠 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠 + 𝛽𝑘𝑁𝑁 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁 + 𝛽𝑚𝐹 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹 + 𝛽𝑀𝐷 ∙ 𝑀𝐷 + 

𝛽𝑙𝑠:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠:𝑀𝐷 + 𝛽𝑘𝑁𝑁:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁:𝑀𝐷 + 

𝛽𝑚𝐹:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹:𝑀𝐷   (Equation B.2) 

 

Table B.5: Summary of coefficients within the baseline mixed effect model, linking 

performance (NRMSE) with imputation method and fraction missing data 

(NRMSE~Method*MD + (1|n)). Each coefficient is supplemented with its standard deviation 

(SD), 95 % confidence interval (CI2.5% - CI97.5%) and contribution significance. Codes: ls: least 

squares; kNN: k nearest neighbours, mF: missForest algorithm; MD: fraction missing data. 

Effect Coefficient SD CI2.5% CI97.5% p 

Intercept 0.966 0.011 0.946 0.987 <0.001 

ls -0.710 0.010 -0.730 -0.689 <0.001 

kNN -0.716 0.010 -0.736 -0.696 <0.001 

mF -0.739 0.010 -0.759 -0.719 <0.001 

MD -0.0005 0.028 -0.055 0.054 0.986 

ls:MD 0.822 0.027 0.769 0.874 <0.001 

kNN:MD 1.080 0.027 1.027 1.132 <0.001 

mF:MD 0.859 0.027 0.807 0.912 <0.001 

 

B.5.3 Sample size variability 

Sample size variability performance assessment considered the link between obtained 

imputation error related to Dopt and a full interaction model as specified in Equation 

B.3. For each factor, a coefficient was determined along with its deviation, confidence 

interval and contribution significance, as summarised in Table B.6. 

𝑁𝑅𝑀𝑆𝐸 = 𝛽0 + 𝛽𝑙𝑠 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠 + 𝛽𝑘𝑁𝑁 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁 + 𝛽𝑚𝐹 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹 + 

𝛽𝑀𝐷 ∙ 𝑀𝐷 + 𝛽𝐼𝑛𝑠𝑡 ∙ 𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑙𝑠:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠:𝑀𝐷 + 𝛽𝑘𝑁𝑁:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁:𝑀𝐷 + 

𝛽𝑚𝐹:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹:𝑀𝐷 + 𝛽𝑙𝑠:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠: 𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑘𝑁𝑁:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁: 𝑁𝑖𝑛𝑠𝑡 + 

𝛽𝑚𝐹:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹: 𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝐷:𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑙𝑠:𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠:𝑀𝐷:𝑁𝑖𝑛𝑠𝑡 + 

𝛽𝑘𝑁𝑁:𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁:𝑀𝐷:𝑁𝑖𝑛𝑠𝑡 + 

𝛽𝑚𝐹:𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹:𝑀𝐷:𝑁𝑖𝑛𝑠𝑡    (Equation B.3) 
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Table B.6: Summary of coefficients within the mixed effect model for sample size 

variability, linking performance (NRMSE) with imputation method, fraction missing 

data and fraction of instances (NRMSE~Method*MD*Inst + (1|n)). Each coefficient is 

supplemented with its standard deviation (SD), 95 % confidence interval (CI2.5% - CI97.5%) and 

contribution significance. Codes: ls: least squares; kNN: k nearest neighbours, mF: missForest 

algorithm; MD: fraction missing data; Inst: fraction of instances. 

Effect Coefficient SD CI2.5% CI97.5% p 

Intercept 0.985 0.026 0.934 1.036 <0.001 

ls -0.634 0.029 -0.690 -0.577 <0.001 

kNN -0.622 0.029 -0.678 -0.565 <0.001 

mF -0.749 0.029 -0.806 -0.693 <0.001 

MD -0.032 0.069 -0.166 0.102 0.637 

Inst -0.022 0.038 -0.096 0.053 0.569 

ls:MD 0.716 0.076 0.567 0.865 <0.001 

kNN:MD 0.937 0.076 0.789 1.086 <0.001 

mF:MD 0.915 0.076 0.767 1.064 <0.001 

ls:Inst -0.091 0.042 -0.174 -0.009 0.032 

kNN:Inst -0.096 0.042 -0.179 -0.014 0.023 

mF:Inst 0.013 0.042 -0.070 0.095 0.760 

MD:Inst 0.038 0.101 -0.158 0.234 0.704 

ls:MD:Inst 0.124 0.112 -0.094 0.341 0.269 

kNN:MD:Inst 0.134 0.112 -0.083 0.351 0.230 

mF:MD:Inst -0.073 0.112 -0.290 0.144 0.513 

 

B.5.4 Dimensionality variability 

Sample size variability performance assessment considered the link between obtained 

imputation error related to Dopt and a full interaction model as specified in Equation 

B.4. For each factor, a coefficient was determined along with its deviation and 

confidence interval, as summarised in Table B.7. 

𝑁𝑅𝑀𝑆𝐸 = 𝛽0 + 𝛽𝑙𝑠 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠 + 𝛽𝑘𝑁𝑁 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁 + 𝛽𝑚𝐹 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹 + 

𝛽𝑀𝐷 ∙ 𝑀𝐷 + 𝛽𝑉𝑎𝑟 ∙ 𝑁𝑣𝑎𝑟 + 𝛽𝑙𝑠:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠:𝑀𝐷 + 𝛽𝑘𝑁𝑁:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁:𝑀𝐷 + 

𝛽𝑚𝐹:𝑀𝐷 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹:𝑀𝐷 + 𝛽𝑙𝑠:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠: 𝑁𝑣𝑎𝑟 + 𝛽𝑘𝑁𝑁:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁: 𝑁𝑣𝑎𝑟 + 

𝛽𝑚𝐹:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹: 𝑁𝑣𝑎𝑟 + 𝛽𝑀𝐷:𝐼𝑛𝑠𝑡 ∙ 𝑀𝐷:𝑁𝑖𝑛𝑠𝑡 + 𝛽𝑙𝑠:𝑀𝐷:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑙𝑠:𝑀𝐷:𝑁𝑣𝑎𝑟 + 

𝛽𝑘𝑁𝑁:𝑀𝐷:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑘𝑁𝑁:𝑀𝐷:𝑁𝑣𝑎𝑟 + 

𝛽𝑚𝐹:𝑀𝐷:𝑉𝑎𝑟 ∙ 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝐹:𝑀𝐷:𝑁𝑣𝑎𝑟     (Equation B.4) 
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Table B.7: Summary of coefficients within the overall mixed effect model, linking 

performance (NRMSE) with imputation method, fraction missing data and number of 

variables (NRMSE~Method*MD+Var+Method:Var + (1|n)). Each coefficient is supplemented 

with its standard deviation (SD), 95 % confidence interval (CI2.5% - CI97.5%) and contribution 

significance. Codes: ls: least squares; kNN: k nearest neighbours, mF: missForest algorithm; MD: 

fraction missing data; Var: fraction of variables. 

Effect Coefficient SD CI2.5% CI97.5% p 

Intercept 1.001 0.018 0.971 1.041 <0.001 

ls -0.670 0.018 -0.704 -0.636 <0.001 

kNN -0.686 0.018 -0.720 -0.652 <0.001 

mF -0.668 0.018 -0.702 -0.634 <0.001 

MD -0.003 0.047 -0.096 0.089 0.942 

Var -0.050 0.017 -0.082 -0.018 0.003 

ls:MD 0.838 0.046 0.748 0.928 <0.001 

kNN:MD 1.023 0.046 0.933 1.113 <0.001 

mF:MD 0.922 0.046 0.832 1.011 <0.001 

ls:Var -0.044 0.016 -0.076 -0.013 0.007 

kNN:Var -0.025 0.016 -0.057 0.006 0.123 

mF:Var -0.067 0.016 -0.098 -0.035 <0.001 

MD:Var 0.0017 0.044 -0.083 0.087 0.968 

ls:MD:Var -0.018 0.043 -0.101 0.065 0.670 

kNN:MD:Var -0.039 0.043 -0.122 0.044 0.361 

mF:MD:Var -0.092 0.043 -0.175 -0.009 0.031 
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C.1 Data reduction 

 

Figure C.1: Reduction of missing data by stepwise removal of variables or instances. 

Variable removal often caused the highest drop in fraction missing data and is therefore more 

frequently applied than instance removal. Data reduction was performed until about 50 % of the 

data was available to estimate the remaining 50 % of the data. 

 

Table C.1: Overview of the variables remaining after data reduction and imputation. Data 

reduction resulted in a total of 20 variables remaining (see also Figure C.1). These variables were 

subsequently considered for further data pre-processing, especially during selection of relevant 

explanatory variables. 

Variable Unit  Variable Unit 

Temperature °C  Phosphate-P mg∙L-1 

pH -  Kjeldahl nitrogen mg∙L-1 

Conductivity mS∙m-1  Nitrite-N mg∙L-1 

Oxygen saturation %  Calcium mg∙L-1 

Chloride mg∙L-1  Sulphate mg∙L-1 

Oxygen mg∙L-1  BOD5 mg∙L-1 

Transparency m  Magnesium mg∙L-1 

Ammonium-N mg∙L-1  Potassium mg∙L-1 

Total phosphorus mg∙L-1  Sodium mg∙L-1 

Nitrate-N mg∙L-1  Chlorophyll a µg∙L-1 
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Table C.2: Overview of the macrophytes considered in this study. For each macrophyte, its 

prevalence, main growth form and native/alien background are provided. Not all macrophytes tend 

to occur in completely waterlogged systems, but were included to represent the wetland systems. 

Native or alien origin is considered with respect to western Europe. 

Macrophyte Prevalence (%) Growth form Origin 

Acorus calamus 3.94 Emergent Alien 

Alopecurus geniculatus 2.43 Emergent Native 

Berula erecta 5.19 Emergent Native 

Bidens tripartita 2.45 Emergent Native 

Butomus umbellatus 6.18 Emergent Native 

Callitriche platycarpa 5.32 Submerged Native 

Carex acuta 2.41 Emergent Native 

Carex pseudocyperus 2.62 Emergent Native 

Carex riparia 4.11 Emergent Native 

Ceratophyllum demersum 18.47 Submerged Native 

Eleocharis palustris 4.67 Emergent Native 

Elodea nuttallii 21.14 Submerged Alien 

Equisetum palustre 2.69 Emergent Native 

Eupatorium cannabinum 4.86 Emergent Native 

Filipendula ulmaria 3.13 Emergent Native 

Galium aparine 2.55 Emergent Native 

Glyceria fluitans 7.77 Emergent Alien 

Glyceria maxima 28.55 Emergent Native 

Iris pseudacorus 18.11 Emergent Native 

Juncus articulatus 4.26 Emergent Native 

Juncus effusus 12.29 Emergent Native 

Juncus inflexus 2.67 Emergent Native 

Lemna gibba 11.28 Floating Native 

Lemna minor 26.72 Floating Native 

Lemna minuta 3.39 Floating Alien 

Lemna trisulca 9.98 Submerged Native 

Lycopus europaeus 13.16 Emergent Native 

Lythrum salicaria 6.49 Emergent Native 

Mentha aquatica 10.51 Emergent Native 

Myosotis laxa 2.65 Emergent Native 

Myosotis scorpioides 8.71 Emergent Native 

Myriophyllum spicatum 4.23 Submerged Native 

Nasturtium microphyllum 3.10 Emergent Native 

(Continues on next page) 
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(Continued) 

Macrophyte Prevalence (%) Growth form Origin 

Nuphar lutea 10.46 Floating Native 

Nymphaea alba 6.25 Floating Native 

Nymphoides peltata 2.96 Floating Native 

Persicaria amphibia 11.90 Floating Native 

Phalaris arundinacea 11.47 Emergent Native 

Phragmites australis 41.34 Emergent Native 

Potamogeton crispus 2.45 Submerged Native 

Potamogeton natans 3.32 Floating Native 

Potamogeton pectinatus 8.87 Submerged Native 

Potamogeton pusillus 5.22 Submerged Native 

Ranunculus circinatus 2.48 Submerged Native 

Ranunculus repens 5.22 Emergent Native 

Ranunculus sceleratus 5.80 Emergent Native 

Rorippa amphibia 6.57 Emergent Native 

Rumex hydrolapathum 11.28 Emergent Native 

Sagittaria sagittifolia 6.08 Emergent Native 

Sparganium emersum 3.44 Emergent Native 

Sparganium erectum 13.66 Emergent Native 

Sphagnum majus 29.00 Emergent Native 

Sphagnum pulchrum 12.48 Emergent Native 

Spirodela polyrhiza 18.69 Floating Native 

Stachys palustris 6.71 Emergent Native 

Symphytum officinale 4.79 Emergent Native 

Typha angustifolia 6.52 Emergent Native 

Typha latifolia 11.59 Emergent Native 
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C.2 Effects of threshold selection 

 

Figure C.2: Relation between the used threshold and number of instances removed. With 

decreasing threshold values, more instances are considered as outlier and consequently removed 

from the data set. At first, the increase is relatively small, though becomes exponential when 

dropping below τo = 5. Threshold selection of τo = 3 (dashed grey line) causes the removal of 760 

instances. 

 

 

Figure C.3: Relation between the false absence threshold and number of instances 

removed. With decreasing threshold values, exponentially more instances are considered as 

potential false absences. Implementation of a conservative threshold (τa = 15 %) causes a relatively 

high number of instances to be removed, while selection of τa = 5 % (dashed grey line) impedes the 

removal of too many instances. 
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Figure C.4: Relation between the correlation threshold and the number of variables 

removed. With decreasing threshold values, more variables are considered as being correlated. 

Even with conservative threshold scores (e.g. τc = 0.9), 5 or more variables are already being 

removed. Threshold selection at τc = 0.7 (dashed grey line) limits variable removal to only 10 

variables being removed. 

 

 

Figure C.5: Relation between the variable importance threshold and the number of 

variables removed. With increasing threshold values, more variables are being considered as 

irrelevant. Even with conservative threshold scores (e.g. τi = 20 %), high numbers of variables are 

removed. Threshold selection at τi = 10 % (dashed grey line) limits overly excessive variable 

removal. 
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Figure C.6: Overview of four different pre-processing approaches and their effect on time required for sequential data pre-processing and 

model development. In general, a positive effect of data pre-processing on overall computation time can be observed, though the effect depends on 

data availability. Only importance-based variable selection causes a clear increase in required computation time, mainly due to the fact of having to 

develop an additional model to derive variable importance scores. 
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C.3 Threshold selection for all species 

 

Figure C.7: Effect of outlier threshold selection on final model performance. Analyses were 

performed for 58 different macrophyte species (see also Figure C.8) and illustrate the effect of 

outlier threshold selection (τo, x-axis) on the discrimination performance of species-specific 

random forests (AUC, y-axis). Several patterns are obtained and indicate the potential of species-

specific thresholds. The selected threshold in this work is τo = 3 (dashed grey line).  
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Figure C.8: Effect of outlier threshold selection on final model performance (continued). 

Analyses were performed for 58 different macrophyte species (see also Figure C.7) and illustrate 

the effect of outlier threshold selection (τo, x-axis) on the discrimination performance of species-

specific random forests (AUC, y-axis). Several patterns are obtained and indicate the potential of 

species-specific thresholds. The selected threshold in this work is τo = 3 (dashed grey line).  
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Figure C.9: Effect of false absences threshold selection on final model performance. 

Analyses were performed for 58 different macrophyte species (see also Figure C.10) and illustrate 

the effect of outlier threshold selection (τa, x-axis) on the discrimination performance of species-

specific random forests (AUC, y-axis). Several patterns are obtained and indicate the potential of 

species-specific thresholds. The selected threshold in this work is τa = 5 % (dashed grey line).  
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Figure C.10: Effect of false absences threshold selection on final model performance 

(continued). Analyses were performed for 58 different macrophyte species (see also Figure C.9) 

and illustrate the effect of outlier threshold selection (τa, x-axis) on the discrimination performance 

of species-specific random forests (AUC, y-axis). Several patterns are obtained and indicate the 

potential of species-specific thresholds. The selected threshold in this work is τa = 5 % (dashed grey 

line).  
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Figure C.11: Effect of correlation threshold selection on final model performance. Analyses 

were performed for 58 different macrophyte species (see also Figure C.12) and illustrate the effect 

of outlier threshold selection (τc, x-axis) on the discrimination performance of species-specific 

random forests (AUC, y-axis). Several patterns are obtained and indicate the potential of species-

specific thresholds. The selected threshold in this work is τc = 0.7 (dashed grey line).  
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Figure C.12: Effect of correlation threshold selection on final model performance 

(continued). Analyses were performed for 58 different macrophyte species (see also Figure C.11) 

and illustrate the effect of outlier threshold selection (τc, x-axis) on the discrimination performance 

of species-specific random forests (AUC, y-axis). Several patterns are obtained and indicate the 

potential of species-specific thresholds. The selected threshold in this work is τc = 0.7 (dashed grey 

line). 



APPENDIX C 

338 

 

Figure C.13: Effect of importance threshold selection on final model performance. 

Analyses were performed for 58 different macrophyte species (see also Figure C.14) and illustrate 

the effect of importance threshold selection (τi, x-axis) on the discrimination performance of 

species-specific random forests (AUC, y-axis). Several patterns are obtained and indicate the 

potential of species-specific thresholds. The selected threshold in this work is τi = 10 % (dashed grey 

line). 
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Figure C.14: Effect of importance threshold selection on final model performance 

(continued). Analyses were performed for 58 different macrophyte species (see also Figure C.13) 

and illustrate the effect of importance threshold selection (τi, x-axis) on the discrimination 

performance of species-specific random forests (AUC, y-axis). Several patterns are obtained and 

indicate the potential of species-specific thresholds. The selected threshold in this work is τi = 10 % 

(dashed grey line).  
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C.4 Environmental domains post-processing 

Preferably, observational data that is used for the development of correlative habitat 

suitability models reflects the complete environmental domain, with presences 

occupying only a fraction of that domain. This allows for a distinction between suitable 

and unsuitable conditions within the final model, though is often challenged by data 

availability and sampling bias. The overlap between the occupied and observed 

environmental domain can be described at variable level or with a single metric, yet both 

techniques do not allow for a clear interpretation of actual domain overlap. On the one 

hand, variable-specific descriptions can find species presences at the lowest and highest 

observed variable values, which indicates that the considered variable does not cause a 

physiological limitation on the species’ occurrence within its observed range. Absences 

observed at intermediate levels, however, can be caused by other variables exceeding the 

species’ tolerance level, which indicates that the observed environmental domain 

exceeds the occupied environmental domain. On the other hand, distance metrics can 

help to summarise how far presences and absences are located from the centroid of the 

observed environmental domain. Presences can be expected to be located closer to the 

centroid and show less discrepancy or spread in the obtained distances, while absences 

extend the environmental domain defined by presences and are expected to show higher 

distance scores. However, it remains possible that an assumed absence is closely located 

to the centroid for all variables except one, with the exceptional variable causing the 

species to be absent. The resulting distance score can therefore be smaller than for a 

confirmed presence with overall deviating variable scores. Both analyses can help to 

create an impression of the domain overlap, though none provides a clear and 

unambiguous answer. This is illustrated with analyses performed for a selection of five 

macrophytes in Table C.3 and Figure C.15. 
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Table C.3: Overview of variable-specific ranges for a selection of macrophytes. Ranges are reported as representing the observed environmental 

domain (environmental range; ER) and the occupied domain (species range; SR). The selected macrophytes align with the species reported within the 

main text of Chapter 6. 

Variable (unit) Range P. australis L. minor C. demersum M. aquatica L. minuta 

Temperature (°C) ER 3.5 – 29.6 3.5 – 29.6 3.5 – 29.6 3.5 – 29.6 3.5 – 29.6 

 SR 5.5 – 28.6 4.5 – 29.0 7.1 – 29.0 8.6 – 27.4 13.0 – 27.6 

pH (-) ER 5.3 – 10.7 5.3 – 10.1 5.3 – 10.1 5.3 – 10.1  

 SR 5.3 – 10.0 5.3 – 10.0 6.3 – 9.9 6.0 – 9.6  

Chloride (mg∙L-1) ER 5.0 – 565   5.0 – 565  

 SR 7.0 – 560   10.0 – 510  

Oxygen (mg∙L-1) ER 0.0 – 21.2 0.0 – 21.2 0.0 – 21.2  0.0 – 21.2 

 SR 0.0 – 20.8 0.0 – 21.2 0.0 – 20.6  1.1 – 17.0 

Oxygen saturation (%) ER    0.0 – 230  

 SR    0.0 – 200  

Transparency (m) ER 0.0 – 1.7 0.0 – 1.7 0.0 – 1.7   

 SR 0.0 – 1.6 0.0 – 1.6 0.1 – 1.6   

Ammonium-N (mg∙L-1) ER 0.001 – 1.50 0.001 – 1.50 0.001 – 1.50 0.001 – 1.50  

 SR 0.01 – 1.50 0.01 – 1.50 0.01 – 1.50 0.01 – 1.42  

Nitrate-N (mg∙L-1) ER 0.01 – 7.30 0.01 – 7.30 0.01 – 7.30 0.01 – 7.30 0.01 – 7.30 

 SR 0.01 – 7.00 0.01 – 7.20 0.01 – 7.15 0.01 – 7.00 0.04 – 3.30 

Calcium (mg∙L-1) ER 0.04 – 200.0   0.04 – 200.0  

 SR 9.5 – 200.0   15.0 – 150.0  

Kjeldahl-N (mg∙L-1) ER  0.11 – 5.70 0.11 – 5.70  0.11 – 5.70 

 SR  0.11 – 5.70 0.14 – 5.60  0.31 – 2.96 

(Continues on next page) 
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(Continued) 

Variable (unit) Range P. australis L. minor C. demersum M. aquatica L. minuta 

Potassium (mg∙L-1) ER  0.11 – 45.0    

 SR  0.12 – 23.5    

Chlorophyll a (µg∙L-1) ER  0.0 – 158.3 0.0 – 158.3  0.0 – 158.3 

 SR  1.0 – 158.3 1.0 – 145.3  5.0 – 72.9 

Total Phosphorus (mg∙L-1) ER   0.01 – 1.6 0.01 – 1.6  

 SR   0.01 – 1.3 0.01 – 1.1  

Sulphate (mg∙L-1) ER   1.0 – 310  1.0 – 310 

 SR   6.0 – 310  10.6 – 138.0 

BOD5 (mg∙L-1) ER    0.0 – 13.0  

 SR    1.0 – 13.0  
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Figure C.15: Distribution of distance metrics for locations with and without species 

occurrence for a selection of five macrophytes. Distances are calculated as the Euclidean 

distance between the environmental conditions at a specific location and the centroid of the 

observed environmental domain. The selected macrophytes align with the species reported within 

the main text of Chapter 6. Boxes represent the 50 % central values around the median, while 

whiskers represent the first and third quartile extended to the last case within 1.5 times the 

interquartile range. Dots represent the values outside the range of the whiskers. 
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D.1 Data characteristics 

Table D.1: Characteristics of the species-specific data sets after data pre-processing. For 

each species, the original data (see Figure 4.5) was subjected to outlier, false absence, correlated 

and irrelevant variable removal. All methods, except outlier removal, are species-specific and result 

in different data set characteristics. An overview of the specific variables being included for each 

species can be found in Figure D.1. 

Macrophyte Instances Variables Prevalence (%) 

Acorus calamus 1958 5 7 

Alopecurus geniculatus 1882 6 4.14 

Berula erecta 2016 11 9.03 

Bidens tripartita 2055 5 4.38 

Butomus umbellatus 2101 10 10.47 

Callitriche platycarpa 1804 9 10.25 

Carex acuta 2368 3 3.63 

Carex pseudocyperus 2411 6 4.19 

Carex riparia 1998 9 7.61 

Ceratophyllum demersum 2314 10 28.95 

Eleocharis palustris 1725 7 9.1 

Elodea nuttallii 2046 10 37.29 

Equisetum palustre 2136 3 4.12 

Eupatorium cannabinum 2142 10 8.4 

Filipendula ulmaria 2141 5 5.04 

Galium aparine 1991 6 4.17 

Glyceria fluitans 1446 11 18.19 

Glyceria maxima 2147 10 46.86 

Iris pseudacorus 2075 9 31.86 

Juncus articulatus 1846 9 7.91 

Juncus effusus 1815 8 24.02 

Juncus inflexus 2637 7 3.49 

Lemna gibba 2083 9 17.52 

Lemna minor 2193 9 43.64 

Lemna minuta 2398 6 5.46 

Lemna trisulca 2032 7 17.57 

Lycopus europaeus 2064 7 23.21 

Lythrum salicaria 1914 6 12.33 

Mentha aquatica 2083 9 18.05 

Myosotis laxa 2078 7 4.86 

Myosotis scorpioides 1898 10 16.23 

(Continues on next page) 
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(Continued) 

Macrophyte Instances Variables Prevalence (%) 

Myriophyllum spicatum 2007 8 7.67 

Nasturtium microphyllum 1879 10 5.32 

Nuphar lutea 2089 9 18.81 

Nymphaea alba 2193 7 10.9 

Nymphoides peltata 2089 8 5.46 

Persicaria amphibia 1897 10 22.14 

Phalaris arundinacea 1593 8 25.3 

Phragmites australis 2407 8 55.38 

Potamogeton crispus 1559 10 5.2 

Potamogeton natans 2079 11 6.06 

Potamogeton pectinatus 1929 11 14.15 

Potamogeton pusillus 1798 8 9.84 

Ranunculus circinatus 2300 7 3.78 

Ranunculus repens 1570 10 10.76 

Ranunculus sceleratus 1716 10 10.9 

Rorippa amphibia 1979 8 11.27 

Rumex hydrolapathum 1904 10 21.27 

Sagittaria sagittifolia 2122 5 10.98 

Sparganium emersum 2075 8 5.98 

Sparganium erectum 2093 9 23.94 

Sphagnum majus 2399 9 42.1 

Sphagnum pulchrum 1688 8 22.81 

Spirodela polyrhiza 2112 10 30.87 

Stachys palustris 2150 9 11.86 

Symphytum officinale 1941 8 8.5 

Typha angustifolia 2062 7 11.3 

Typha latifolia 2122 7 19.79 
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Figure D.1: Variable inclusion in species-specific training data. For each of the selected 58 

macrophyte species, individual data pre-processing was implemented, leading to different variables 

being included in the final training data. The number of included variables ranged from 3 up to 11 

(see also Table D.1), as indicated by the grey cells. White cells depict variables that were not 

included in the species-specific training data. 

  



APPENDIX D 

349 

D.2 Variable importance 

 

 

Figure D.2: Heatmap of considered and important variable for each macrophyte. Scores 

range between 0 (light grey) and 1 (black) and reflect the model improvement ratio (MIR) over 10 

repetitions of 5-fold cross-validation, with higher scores representing a higher relative importance 

of the variable. Temperature is considered an important variable for most macrophytes as is 

nitrate. Ammonium, oxygen and pH are present in most models with intermediate MIR scores. 
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D.3 Scenario analysis 

 

Figure D.3: Temporal patterns in abiotic data used for model development. Dots indicate 

the annual averages (April to September) with light grey ribbons covering the standard deviation. 

Black solid lines represent the temporal trends, complemented with a dark grey confidence interval. 

The latter is relatively small compared to the uncertainty on the annual averages. Quantitative 

expression of variable-specific intercepts and slopes can be found in Table D.2. 
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Table D.2: Variable-specific summary of average conditions in 2010 and linear models fitted to the temporal data. For each variable, the 

mean and standard deviation (sd) are calculated for the months April until September and rounded to two digits, along with an intercept and coefficient 

(for time) and supplemented with their 95 % confidence intervals (CI95). Model fitting was based on training data from 58 macrophyte species. Graphical 

representation of linear models is shown in Figure D.3. *: reported value in the range [-0.001; 0.001]. 

Variable Unit Mean Sd 
Intercept  Coefficient  

Value CI95 Value CI95 

Temperature °C 18.7 2.8 -260.2 [-283.1; -237.3] 0.139 [0.127; 0.150] 

pH - 7.9 0.6 -0.91 [-4.93; 3.11] 0.004 [0.002; 0.006] 

Conductivity mS∙m-1 75.25 43.41 1150.6 [754.8; 1546.5] -0.533 [-0.731; -0.335] 

Oxygen saturation % 78.75 42.21 -322.8 [-592.3; -53.2] 0.201 [0.066; 0.336] 

Chloride mg∙L-1 112.76 99.05 108.2 [-780.2; 997.3] 0.008 [-0.437; 0.452] 

Oxygen mg∙L-1 7.41 3.34 31.34 [7.60; 55.07] -0.012 [-0.024; 0.000*] 

Transparency m 0.50 0.26 6.55 [4.65; 8.44] -0.003 [-0.004; -0.002] 

Ammonium-N mg∙L-1 0.27 0.19 9.68 [7.71; 11.64] -0.005 [-0.006; -0.004] 

Phosphorus total mg∙L-1 0.28 0.19 7.06 [5.32; 8.79] -0.003 [-0.004; -0.003] 

Nitrate-N mg∙L-1 0.67 0.72 77.54 [68.77; 86.31] -0.038 [-0.043; -0.034] 

Phosphate-P mg∙L-1 0.14 0.14 4.50 [3.28; 5.73] -0.002 [-0.003; -0.002] 

Kjeldahl nitrogen-N mg∙L-1 1.79 0.57 13.27 [7.97; 18.57] -0.006 [-0.008; -0.003] 

Nitrite-N mg∙L-1 0.05 0.03 1.77 [1.45; 2.09] -0.001 [-0.001; -0.001] 

Calcium mg∙L-1 68.78 17.95 748.7 [563.1; 934.4] -0.338 [-0.431; -0.245] 

Sulphate mg∙L-1 61.37 30.92 1322.0 [1044.4; 1600.0] -0.627 [-0.766; -0.488] 

BOD5 mg∙L-1 3.89 1.50 -37.71 [-51.69; -23.73] 0.021 [0.014; 0.028] 

Magnesium mg∙L-1 14.11 10.09 91.84 [-6.67; 190.34] -0.038 [-0.088; 0.011] 

Potassium mg∙L-1 8.68 4.51 215.2 [175.3; 255.0] -0.103 [-0.123; -0.083] 

Sodium mg∙L-1 85.37 82.30 -64.09 [-916.0; 787.8] 0.074 [-0.352; 0.501] 

Chlorophyll a µg∙L-1 29.49 23.57 -42.66 [-246.44; 161.13] 0.036 [-0.065; 0.138] 
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Table D.3: Start and end points for the developed scenarios. Scenarios are defined in Table 7.2, with end points defined via linear regression (see 

Table D.2). A selection of endpoints in the KEY scenarios were reached via exponential patterns instead of linear patterns (indicated with #). 

Variable Unit 
AVG   EXT   NUT   

Start BAU KEY Start BAU KEY Start BAU KEY 

Temperature °C 18.66 22.02 22.02 18.66 22.02 22.02 18.66 22.02 22.02 

pH - 7.892 8.027 8.027 7.892 8.027 8.027 7.892 8.027 8.027 

Conductivity mS∙m-1 75.247 66.993 66.993 162.076 153.822 153.822 75.247 66.993 66.993 

Oxygen saturation % 78.747 85.465 85.465 36.534 43.251 43.251 78.747 85.465 85.465 

Chloride mg∙L-1 112.759 117.958 117.958 310.851 316.050 316.050 112.759 117.958 117.958 

Oxygen mg∙L-1 7.405 7.346 5.000 4.065 4.007 5.000 7.405 7.346 5.000 

Transparency m 0.502 0.436 0.436 0.502 0.436 0.436 0.502 0.436 0.436 

Ammonium-N mg∙L-1 0.271 0.112 0.200# 0.641 0.483 0.200# 0.641 0.483 0.200# 

Phosphorus total mg∙L-1 0.275 0.186 0.186 0.657 0.568 0.568 0.657 0.568 0.568 

Nitrate-N mg∙L-1 0.695 0.001 0.500# 2.126 1.165 0.500# 2.126 1.165 0.500# 

Phosphate-P mg∙L-1 0.143 0.084 0.084 0.423 0.367 0.367 0.426 0.367 0.367 

Kjeldahl nitrogen-N mg∙L-1 1.788 1.652 1.652 2.920 2.784 2.784 2.920 2.784 2.784 

Nitrite-N mg∙L-1 0.049 0.024 0.024 0.117 0.092 0.092 0.117 0.092 0.092 

Calcium mg∙L-1 68.780 61.050 61.050 104.684 96.953 96.953 68.780 61.050 61.050 

Sulphate mg∙L-1 61.373 47.668 47.668 123.218 109.513 109.513 61.373 47.668 47.668 

BOD5 mg∙L-1 3.885 4.451 4.450 6.877 7.442 7.442 3.885 4.450 4.450 

Magnesium mg∙L-1 14.106 13.752 13.752 34.278 33.924 33.924 14.106 13.752 13.752 

Potassium mg∙L-1 8.684 6.192 6.192 17.703 15.210 15.210 8.684 6.192 6.192 

Sodium mg∙L-1 85.371 90.123 90.123 249.971 254.724 254.724 85.371 90.123 90.123 

Chlorophyll a µg∙L-1 29.485 32.315 32.315 76.621 79.451 79.451 29.485 32.315 32.315 
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Figure D.4: Depiction of the different scenarios for the five most steering variables for a 

period of 20 years. Starting points (AVG, EXT and NUT) were based on the average conditions 

in 2010 (see Table D.2) with specific differences among AVG (general mean), EXT (𝒙̅ + 𝟐 ∙ 𝒔) and 

NUT (𝒙̅ + 𝟐 ∙ 𝒔 for nutrients). Management consisted of business-as-usual (BAU) and relied on the 

inferred temporal linear models (see Table D.2 and Figure D.3), while separate focus on key 

variables (KEY) was based on reaching the optimal conditions inferred from the partial dependence 

plots (see Figure 7.2). 
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D.4 Species-specific temporal trends 

 

Figure D.5: Temporal trend of observed and predicted prevalence of all 58 macrophytes. 

Prevalence is determined by the fraction of sites where macrophyte presence is observed (solid line) 

or where conditions are suitable to support macrophyte presence (dashed line). The fraction of 

both suitable and occupied sites increases in time and indicates a suboptimal use of the available 

suitable habitats. 
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Figure D.6: Temporal trend of observed and predicted prevalence of all 58 macrophytes 

(continued). Prevalence is determined by the fraction of sites where macrophyte presence is 

observed (solid line) or where conditions are suitable to support macrophyte presence (dashed 

line). The fraction of both suitable and occupied sites increases in time and indicates a suboptimal 

use of the available suitable habitats.
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E.1 Tables supporting results 

 

Table E.1: Average total nitrogen (tN) concentration at day 0 and day 4 in mg∙L-1. The 

average and standard deviation for each concentration is based on six separate samples. 

 Day 0  Day 4 

   Reference  L. minor  L. minuta 

C1 70 (± 2)  70 (± 3)  62 (± 2) 62 (± 2) 

C2 33 (± 2)  33 (± 1)  24 (± 7)  28 (± 2) 

C3 16 (± 2)  15 (± 1)  14 (± 6)  12.7 (± 0.7) 

C4 8.8 (± 0.5)  9.1 (± 0.4)  2.6 (± 0.6)  3.6 (± 0.8) 

C5 4.2 (± 0.1)  4.6 (± 0.4)  0.4a (± 0.6)  1.0a (± 0.6) 

a Contains samples with nitrogen concentration below detection limit. 

 

Table E.2: Average total phosphorus (tP) concentration at day 0 and day 4 in mg∙L-1. The 

average and standard deviation for each concentration is based on six separate samples. 

 Day 0  Day 4 

   Reference  L. minor  L. minuta 

C1 20.99 (± 0.09)  20.2 (± 0.5)  18 (± 1) 17 (± 1) 

C2 10.7 (± 0.1)  10.2 (± 0.3)  8 (± 1)  9 (± 1) 

C3 5.43 (± 0.07)  5.3 (± 0.6)  3.4 (± 0.3)  4.0 (± 0.5) 

C4 2.58 (± 0.03)  2.5 (± 0.1)  1.4 (± 0.6)  1.5 (± 0.2) 

C5 1.33 (± 0.01)  1.23 (± 0.08)  0.4 (± 0.1)  0.5 (± 0.1) 

 

Table E.3: Evolution of the dry weight (in mg) during the first two days of the experiment 

for L. minor and L. minuta. The average and standard deviation for each concentration is based 

on six separate samples. 

 L. minor  L. minuta 

 Day 0  Day 2  Day 0  Day 2 

C1 23 (± 2)  18a (± 6)  20.7 (± 0.8)  27a (± 5) 

C2 23 (± 2)  23a (± 7)  22 (± 3)  27 (± 8) 

C3 23 (± 1)  25 (± 7)  20 (± 1)  33a (± 3) 

C4 23 (± 1)  21 (± 10)  20.5 (± 0.9)  31a (± 11) 

C5 22 (± 1)  20a (± 8)  22 (± 1)  22 (± 11) 

a Dry weight content of one sample cannot be determined and is removed. 
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Table E.4: Evolution of the dry weight (in mg) during the last two days of the experiment 

for L. minor and L. minuta. The average and standard deviation for each concentration is based 

on six separate samples. 

 L. minor  L. minuta 

 Day 2  Day 4  Day 2  Day 4 

C1 15a (± 5)  48 (± 5)  20a (± 4)  48 (± 5) 

C2 18a (± 4)  49 (± 4)  19 (± 5)  52 (± 5) 

C3 19 (± 4)  51 (± 5)  18a (± 1)  41 (± 7) 

C4 16 (± 5)  46 (± 6)  17a (± 2)  36 (± 6) 

C5 14a (± 6)  45 (± 6)  17 (± 6)  43 (± 6) 

a Dry weight content of one sample cannot be determined and is removed. 

 

Table E.5: Evolution of the fresh weight (in mg) during the first two days of the 

experiment for L. minor and L. minuta. The average and standard deviation for each 

concentration is based on six separate samples. 

 L. minor  L. minuta 

 Day 0  Day 2  Day 0  Day 2 

C1 500 (± 2)  580 (± 70)  500 (± 3)  600 (± 100) 

C2 499 (± 2)  640 (± 70)  499 (± 2)  710 (± 60) 

C3 501 (± 3)  670 (± 40)  499 (± 3)  800 (± 200) 

C4 500 (± 2)  700 (± 100)  500 (± 2)  800 (± 200) 

C5 500 (± 3)  700 (± 100)  500 (± 3)  800 (± 100) 

 

 

Table E.6: Evolution of the fresh weight (in mg) during the last two days of the experiment 

for L. minor and L. minuta. The average and standard deviation for each concentration is based 

on six separate samples. 

 L. minor  L. minuta 

 Day 2  Day 4  Day 2  Day 4 

C1 490 (± 20)  710 (± 60)  490 (± 20)  1100 (± 100) 

C2 500 (± 1)  750 (± 40)  501 (± 2)  1000 (± 100) 

C3 501 (± 2)  790 (± 70)  500 (± 2)  790 (± 50) 

C4 499 (± 2)  760 (± 70)  501 (± 1)  700 (± 100) 

C5 501 (± 3)  800 (± 200)  500 (± 2)  800 (± 200) 
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F.1 Simulated biomass increase 

 

Figure F.1: Simulations of temporal biomass increase under harvesting pressure. The 

effect of four relative growth rates on biomass production is depicted and shows a clear difference 

in produced biomass. The considered removal scenarios include (i) no removal (left), (ii) low-

frequency removal (middle) and (iii) high-frequency removal (right). Biomass production of the 

primary species is assumed to be unaffected by introduction of a secondary species (see Equation 

9.1). The actual growth rate is expected to be situated within the range tested here. 
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F.2 Experimental results 

 

Figure F.2: Total biomass produced in each scenario. Vertical bars indicate the combined 

biomass of Lemna minor and L. minuta, measured over three replicates. Error bars indicate the 

standard deviation. 

 

Table F.1: Overview of p-values obtained via the two-sample t-test for comparing biomass 

of Lemna minor under different management scenarios, with L. minor as primary 

species. 

 1 2 3 4 5 6 7 8 9 

1 - 0.0469 0.0238 0.0421 NA NA 0.2835 NA NA 

2 0.0469 - 0.0347 NA 0.0410 NA NA 0.0537 NA 

3 0.0238 0.0347 - NA NA 0.4255 NA NA 0.0964 

4 0.0421 NA NA - 0.5230 0.2047 0.0798 NA NA 

5 NA 0.0410 NA 0.5230 - 0.0421 NA 0.3974 NA 

6 NA NA 0.4255 0.2047 0.0421 - NA NA 0.2434 

7 0.2835 NA NA 0.0798 NA NA - 0.0034 0.0007 

8 NA 0.0537 NA NA 0.3974 NA 0.0034 - 0.0143 

9 NA NA 0.0964 NA NA 0.2434 0.0007 0.0143 - 
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Table F.2: Overview of p-values obtained via the two-sample t-test for comparing biomass 

of Lemna minuta under different management scenarios, with L. minor as primary 

species. 

 4 5 6 7 8 9 

4 - 0.0592 0.0059 0.0308 NA NA 

5 0.0592 - 0.0718 NA 0.0718 NA 

6 0.0059 0.0718 - NA NA 0.0375 

7 0.0308 NA NA - 0.0375 0.1357 

8 NA 0.0718 NA 0.0375 - 0.0375 

9 NA NA 0.0375 0.1357 0.0375 - 

 

Table F.3: Overview of p-values obtained via the two-sample t-test for comparing biomass 

of Lemna minuta under different management scenarios, with L. minuta as primary 

species. 

 1 2 3 4 5 6 7 8 9 

1 - 0.0440 0.0075 0.9926 NA NA 0.8286 NA NA 

2 0.0440 - 0.0124 NA 0.1836 NA NA 0.0467 NA 

3 0.0075 0.0124 - NA NA 0.1757 NA NA 0.3216 

4 0.9926 NA NA - 0.2121 0.0185 0.8286 NA NA 

5 NA 0.1836 NA 0.2121 - 0.0132 NA 0.0124 NA 

6 NA NA 0.1757 0.0185 0.0132 - NA NA 0.0968 

7 0.8286 NA NA 0.8286 NA NA - 0.0168 0.0168 

8 NA 0.0467 NA NA 0.0124 NA 0.0168 - 0.0243 

9 NA NA 0.3216 NA NA 0.0968 0.0168 0.0243 - 

 

Table F.4: Overview of p-values obtained via the two-sample t-test for comparing biomass 

of Lemna minor under different management scenarios, with L. minuta as primary 

species. 

 4 5 6 7 8 9 

4 - 0.2216 0.0594 0.1360 NA NA 

5 0.2216 - 0.0886 NA 0.0594 NA 

6 0.0594 0.0886 - NA NA 0.0886 

7 0.1360 NA NA - 0.0888 0.1187 

8 NA 0.0594 NA 0.0888 - 0.0594 

9 NA NA 0.0886 0.1187 0.0594 - 
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Figure F.3: Temporal variation in dry weight ratio for Lemna minor and Lemna minuta. 

The solid horizontal line represents the average dry weight ratio at day 34, with longdashed, dashed 

and dotted lines representing the range including 1, 2 or 3 times the standard deviation, 

respectively. Dry weight ratios tend to be higher for L. minor than for L. minuta.  

 

Figure F.4: Error in dry weight between predictions and observations. All predictions 

underestimated the obtained biomass, except for the last observations of L. minor devoid of 

biomass removal and under low introduction pressure. The temporal evolution indicates an 

underestimation of the growth rate, causing errors to keep increasing until the actual growth rate 

becomes lower than the time-independent fixed rate. Grey symbols represent introduction (circles) 

and removal (squares) events, with filled symbols indicating the low frequency pressure.  
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F.3 Generalised linear mixed effects models 

The influence of each fixed effect (i.e. time, removal frequency and introduction 

pressure) on the obtained biomass was inferred from linear mixed effects models. 

Biomass was cube root transformed to represent a more symmetrical distribution (see 

Figure F.5) and all interactions among the fixed effects were considered within the 

saturated model. As biomass was registered for periods without any treatment (i.e. 

undisturbed growth from day 0 to day 4 and from day 26 to day 34), the fixed effect 

‘Time’ was divided into three dummy scores, splitting at day 4 (start of the treatment) 

and day 26 (end of the treatment). Lastly, individual aquarium codes were considered 

as random effects within the repeated measurement scenario. Model development 

followed the procedure as explained by Zuur et al. (2009). In short, the procedure 

defined (1) the added value of using mixed effects over ordinary linear models, (2) the 

random structure (with restricted maximum likelihood (REML) fitting), (3) the fixed 

structure (with maximum likelihood (ML) fitting and manual backward term selection) 

and (4) final model fit (with REML) along with assessment of model residuals. Results 

for both Lemna minor and L. minuta are presented in the following sections. 

 

Figure F.5: Distribution of biomass values. Biomass scores for both Lemna spp. showed to be 

skewed (A: L. minor; B: L. minuta), while more symmetrical distributions were obtained after 

cube root transformation (C: L. minor; D: L. minuta). 
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F.3.1 Results for Lemna minor 

Model selection showed a significantly better fit of the saturated linear mixed effects 

model over the ordinary linear model (L = 153.8, df = 2, p < 0.001). Assessment of the 

variance structure illustrated no significant improvements in the Akaike Information 

Criterion (AIC) by considering a random slope structure for time rather than a random 

intercept structure, hence no random slopes were included. Lastly, interactions of 

treatment with the first time period were excluded and showed to improve AIC scores 

by reducing model complexity (i.e. -2033 versus -2019). No further reductions in model 

complexity could be performed without causing an increase in AIC scores. The resulting 

coefficient estimates of the fixed effects are summarised in Table F.5. 

Table F.5: Estimates of the fixed effects coefficients within the linear mixed effects model 

for Lemna minor. Aside from the estimate, the standard error, degrees of freedom (DF), t-value, 

p-value and the range (Lower and Upper) are provided (not reflecting standard confidence 

intervals). 

Parameter Estimate Error DF t-value p-value Lower Upper 

β0 0.2976 0.0128 386 23.28 0.000 0.2724 0.3227 

βT1 0.0307 0.0011 386 26.94 0.000 0.0284 0.0329 

βT2 0.0133 0.0005 386 27.90 0.000 0.0124 0.0143 

βT3 0.0198 0.0017 386 11.69 0.000 0.0165 0.0231 

βOutLow -0.0051 0.0175 18 -0.29 0.773 -0.0419 0.0316 

βOutNone -0.0031 0.0175 18 -0.18 0.862 -0.0398 0.0337 

βInLow 0.0037 0.0175 18 0.21 0.834 -0.0330 0.0405 

βInNone 0.0003 0.0175 18 0.02 0.987 -0.0365 0.0370 

βT2:OutLow 0.0057 0.0007 386 8.58 0.000 0.0044 0.0070 

βT2:OutNone 0.0109 0.0007 386 16.34 0.000 0.0096 0.0122 

βT3:OutLow -0.0047 0.0024 386 -1.98 0.049 -0.0094 0.0000 

βT3:OutNone -0.0018 0.0024 386 -0.74 0.457 -0.0065 0.0029 

βT2:InLow 0.0006 0.0007 386 0.94 0.350 -0.0007 0.0019 

βT2:InNone -0.0002 0.0007 386 -0.30 0.763 -0.0015 0.0011 

βT3:InLow 0.0002 0.0024 386 0.09 0.926 -0.0045 0.0049 

βT3:InNone 0.0044 0.0024 386 1.84 0.066 -0.0003 0.0091 

βOutLow:InLow 0.0040 0.0247 18 0.16 0.873 -0.0480 0.0560 

βOutNone:InLow 0.0030 0.0247 18 0.12 0.905 -0.0490 0.0550 

βOutLow:InNone 0.0121 0.0247 18 0.49 0.631 -0.0399 0.0641 

βOutNone:InNone 0.0057 0.0247 18 0.23 0.821 -0.0463 0.0577 

βT2:OutLow:InLow -0.0022 0.0009 386 -2.33 0.020 -0.0040 -0.0003 

βT2:OutNone:InLow -0.0014 0.0009 386 -1.52 0.130 -0.0033 0.0004 

βT2:OutLow:InNone -0.0002 0.0009 386 -0.20 0.841 -0.0020 0.0017 

βT2:OutNone:InNone 0.0009 0.0009 386 0.95 0.344 -0.0010 0.0027 

βT3:OutLow:InLow 0.0011 0.0034 386 0.33 0.738 -0.0055 0.0078 

βT3:OutNone:InLow -0.0139 0.0034 386 -4.09 0.000 -0.0205 -0.0072 

βT3:OutLow:InNone 0.0065 0.0034 386 1.91 0.056 -0.0002 0.0131 

βT3:OutNone:InNone -0.0040 0.0034 386 -1.19 0.233 -0.0107 0.0026 
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The obtained model showed to encapsulate most of the variance included within the 

fixed effects (Figure F.6A) and produced an acceptable quantile-quantile plot (Figure 

F.6B). Moreover, only limited patterns related to the main effects remained unexplained 

by the model and were mostly linked with the Time effect (see Figure F.7C), while 

residuals were nicely distributed around zero for both removal frequency (Figure F.7B) 

and introduction pressure (Figure F.7A). 

 

Figure F.6: Residuals of the final linear mixed effects model. A: Residuals are clearly 

scattered around zero; B: Quantile-quantile plot supporting acceptable model fit. 

 

 

Figure F.7: Effect-specific distribution of model residuals. A: Distribution of the residuals 

conditional to the applied introduction frequency; B: Distribution of the residuals conditional to 

the applied biomass removal frequency; C: Distribution of the residuals conditional to the 

measurement day. A minor pattern in residual distribution can be observed for the main effect of 

time, oscillating around zero. 
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Finally, the developed model was applied to the original data to visually assess model fit 

when contrasting observations with predictions. In general, a high model fit is observed 

for the final model, with predictions clearly following the observed temporal pattern, 

conditional to the applied treatment (Figure F.8). 

 

Figure F.8: Model predictions versus observations. Predictions from the developed linear 

mixed effects model (black lines) clearly followed the observed temporal patterns (dark grey 

circles). Observations combined three replicates (vertical error bars indicating the standard 

deviation), which resulted in three separate predictions, causing a ribbon (light grey zone 

indicating the standard deviation) to be depicted around the line connecting the mean of all 

predictions. Rows indicate the introduction pressure, while columns entail the different biomass 

removal frequencies. 
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F.3.2 Results for Lemna minuta 

Model selection showed a significantly better fit of the saturated linear mixed effects 

model over the ordinary linear model (L = 177.2, df = 2, p < 0.001). Assessment of the 

variance structure illustrated no significant improvements in the Akaike Information 

Criterion (AIC) by considering a random slope structure for time rather than a random 

intercept structure, hence no random slopes were included. Lastly, interactions of 

treatment with the first time period were excluded and showed to improve AIC scores 

by reducing model complexity (i.e. -1922 versus -1910). Further reductions in model 

complexity and AIC scores were obtained by excluding interactions between the third 

time interval and introduction pressure. The resulting coefficient estimates of the fixed 

effects are summarised in Table F.6. 

Table F.6: Estimates of the fixed effects coefficients within the linear mixed effects model 

for Lemna minuta. Aside from the estimate, the standard error, degrees of freedom (DF), t-value, 

p-value and the range (Lower and Upper) are provided (not reflecting standard confidence 

intervals). 

Parameter Estimate Error DF t-value p-value Lower Upper 

β0 0.2948 0.0146 392 20.25 0.0000 0.2662 0.3235 

βT1 0.0487 0.0016 392 30.00 0.0000 0.0455 0.0519 

βT2 0.0129 0.0010 392 12.90 0.0000 0.0109 0.0148 

βOutLow 0.0253 0.0198 18 1.28 0.2184 -0.0164 0.0670 

βOutNone 0.0101 0.0198 18 0.51 0.6155 -0.0316 0.0518 

βInLow 0.0185 0.0198 18 0.93 0.3634 -0.0232 0.0601 

βInNone 0.0123 0.0198 18 0.62 0.5441 -0.0294 0.0539 

βT3 0.0141 0.0014 392 10.01 0.0000 0.0113 0.0168 

βT2:OutLow 0.0048 0.0014 392 3.40 0.0007 0.0020 0.0075 

βT2:OutNone 0.0133 0.0014 392 9.49 0.0000 0.0105 0.0160 

βT2:InLow 0.0005 0.0014 392 0.40 0.6912 -0.0021 0.0032 

βT2:InNone -0.0024 0.0014 392 -1.75 0.0803 -0.0050 0.0003 

βOutLow:InLow -0.0508 0.0280 18 -1.81 0.0864 -0.1097 0.0080 

βOutNone:InLow -0.0240 0.0280 18 -0.86 0.4026 -0.0829 0.0349 

βOutLow:InNone -0.0394 0.0280 18 -1.41 0.1769 -0.0983 0.0195 

βOutNone:InNone -0.0307 0.0280 18 -1.09 0.2885 -0.0895 0.0282 

βT3:OutLow -0.0037 0.0020 392 -1.87 0.0628 -0.0076 0.0002 

βT3:OutNone -0.0087 0.0020 392 -4.36 0.0000 -0.0126 -0.0047 

βT2:OutLow:InLow 0.0042 0.0019 392 2.19 0.0288 0.0004 0.0080 

βT2:OutNone:InLow -0.0010 0.0019 392 -0.50 0.6167 -0.0047 0.0028 

βT2:OutLow:InNone 0.0047 0.0019 392 2.48 0.0137 0.0010 0.0085 

βT2:OutNone:InNone 0.0022 0.0019 392 1.15 0.2492 -0.0016 0.0060 
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The obtained model showed to encapsulate most of the variance included within the 

fixed effects (Figure F.9A) and produced an acceptable quantile-quantile plot (Figure 

F.9B). Moreover, only limited patterns related to the main effects remained unexplained 

by the model and were mostly linked with the Time effect (see Figure F.10C), while 

residuals were nicely distributed around zero for both removal frequency (Figure F.10B) 

and introduction pressure (Figure F.10A). 

 

 

Figure F.9: Residuals of the final linear mixed effects model. A: Residuals are clearly 

scattered around zero; B: Quantile-quantile plot supporting acceptable model fit. 

 

 

Figure F.10: Effect-specific distribution of model residuals. A: Distribution of the residuals 

conditional to the applied introduction frequency; B: Distribution of the residuals conditional to 

the applied biomass removal frequency; C: Distribution of the residuals conditional to the 

measurement day. A relatively clear pattern in residual distribution can still be observed for the 

main effect of time, oscillating around zero and suggesting that other transformations or link-

functions require consideration. 
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Finally, the developed model was applied to the original data to visually assess model fit 

when contrasting observations with predictions. In general, a good model fit is observed 

for the final model, with predictions clearly following the observed temporal pattern, 

conditional to the applied treatment (Figure F.11). Nevertheless, a higher discrepancy 

can be observed for Lemna minuta compared to L. minor (see Figure F.8). 

 

Figure F.11: Model predictions versus observations. Predictions from the developed linear 

mixed effects model (black lines) clearly followed the observed temporal patterns (dark grey 

circles). Observations combined three replicates (vertical error bars indicating the standard 

deviation), which resulted in three separate predictions, causing a ribbon (light grey zone 

indicating the standard deviation) to be depicted around the line connecting the mean of all 

predictions. Rows indicate the introduction pressure, while columns entail the different biomass 

removal frequencies. 
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