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Preface

Het zijn speciale tijden op het moment dat dit voorwoord geschreven wordt. Belgié zit
sinds 14 maart 2020 in een “zachte lockdown” en enkel essentiéle verplaatsingen en
fysieke vergaderingen zijn toegelaten. Waar iedereen enkele weken voordien nog luchtig
over deed, stond dit plots voor de deur met nagenoeg onverwachte gevolgen voor de
volledige samenleving. lets gelijkaardigs vindt plaats tijdens het werken aan en schrijven
van een doctoraat: het merendeel van de tijd denk je dat het zo'n vaart niet zal lopen,
tot je plots aan je laatste maanden begint. Uiteindelijk ben ik er geraakt, na zes jaar
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finale versie van dit werk. Een woordje van dank is dus zeker gepast.

Allereerst is er natuurlijk mijn promotor, professor Peter Goethals, die mij een mooi
assortiment aan kansen voor persoonlijke en professionele ontwikkeling heeft
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Ook de vele opties om deel te nemen aan buitenlandse campagnes (o.a. Ecuador,
Oeganda, Ethiopié en Vietnam) en persoonlijke ontwikkeling (o.a. organisatie,
verantwoordelijkheid, communicatie) hebben bijgedragen tot dit uitzonderlijke gevoel
van dankbaarheid. Peter, bedankt voor alle kansen die mij de afgelopen zes jaar

aangereikt werden!

Wetenschappelijk werk wordt zelden door een enkel individu uitgevoerd. Een
welgemeende dankbetuiging naar professor Wim Verbeke, die de voorzittersrol van de
doctoraatsjury, bestaande uit professor Diederik Rousseau, professor Piet Verdonschot,
professor Stijn Luca, doctor Peter van Puijenbroek en doctor Dries Landuyt, op zich
nam. De gedetailleerde feedback heeft een onmiskenbare meerwaarde geleverd aan de
structuur en de inhoud van dit doctoraat.

At the start, six years appear to be an eternity. However, when you have a great team by
your side, time becomes relative and is perceived to fly by, while memories seem to cover
a greater amount of time. A big thanks to our secretaries Sigrid and Marianne for taking
care of both large and small technicalities and logistic issues. Sigrid, thanks for all the
chats and shared moments of frustration (“let’s organise a conference”), which made me
wonder if you could be even more sarcastic (*eye roll*). A special thanks to my fellow
assistants Niels, Emmanuel and Ilias for the fluent interactions on student-related
matters. Niels, thanks for taking over during the final months of the writing process and
the last-minute organisation of the online courses.



An extended thanks to the laboratory personnel Nancy, Gisele, Emmy, Jolien and Marc
for solving and supporting any practical or experimental issues. Nancy, thanks for the
irreplaceable support before, during and after any sampling campaign. Of course, a huge
thanks to all members of the Aquatic Ecology research group (present and past): Stijn,
Long, Arne, Eurie, Daniel, Shewit, José, Lenin, Jawad, Tiptiwa, Tu Tri, Natalia, Sacha,
Jana, Rubén, Naomi, Ratha, Selamawit, Tien, Gert, Pieter, ... and the complete
GhEnToxLab research group for the frequent end-of-the-week drinks and end-of-the-
month activities.

Ook buiten de werkomgeving hebben meerdere mensen een (in)directe invloed gehad
op de afronding van dit doctoraat. Een speciale bedanking naar Michaél, Kevin en Jochen
voor de vele uren, dagen en verhalen die we delen en in de toekomst gaan beleven.
Natalia, thank you for the trips and dinners we shared and for the promise of showing
me Ecuador one day. Inge en Yannick, bedankt om meerdere malen te ageren als
reisgezelschap. Een uitgebreide dankbetuiging aan Robson, Justine, Tom, Julie, Steffen,
Tom, Lennart, Lies, Stien, Boris en vele anderen voor de fantastische filmavonden.
Tevens een welgemeende bedankt aan Annelies (en bij uitbreiding alle vrijwilligers
binnen Natuurpunt Gent) voor de gezellige babbels in het Natuurpuntcafé of in de
Bourgoyen zelf. Het is vanzelfsprekend dat er nog veel mensen overblijven die invloed
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al deze personen individueel te bedanken, maar aan alle personen die zich hierdoor

aangesproken voelen: een dikke merci.

Finaal wil ik nog uitgebreid applaudisseren voor mijn ouders, die me doorheen de
voorbije jaren steeds hebben ondersteund in al mijn beslissingen. Ik durf dan ook met
zekerheid te stellen dat dit doctoraat er zonder hun steun niet geweest zou zijn. Deze
bedanking geldt bij uitbreiding naar mijn volledige familie, die dit proces van iets
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Aan iedereen/To everyone:
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“Take almost any path you please, and ten to one it carries you
down in a dale and leaves you there by a pool in the stream.”

Herman Melville in Moby Dick (1851)






Table of Contents

LIST OF ACRONYMS ...ttt ettt et e e et e e s et e e e e et e e e e st e e e snsbeeaesantaeaesantaeaesaneees XV
LIST OF SYMBOLS ..ottt ittt sttt e sttt e e sttt e e sttt e e s bbbt e e s bbbt e e s anbeeeesansbeeesanneeeas XXl
SUMMARY ...ttt ettt e e e et e e e st e e e st et e e e astaeaeeastaeeeeasbaeeeeastaeae e et bt e e e antaeeeeataeaeearaeaeennnes XXV
SAMENVATTING ...t ettt e e et e e e st e e e e st bt e e e anbaeeeeabbeeeesnbbeeeesnbbeeeeans XXVII
CHAPTER 1 INTRODUCTION ......ooiiiiiiiiiiiiit ettt ettt e st e et e e s st e e e s snna e e e s ennraeeeannaeeeas 1
1.1 SETTING THE SCENE ...uttttteitttteeitttteestteeeesastteeesassseeesassteeesassteeeesnstseeasnstaeeesssaeaeaastaeaeanssaeeesansnes 3
1.1.1 Global pressures and threats ............ceieiiiiiiiiiiiii e 3
1.1.2 Responding to freshwater presSsures........ ... 5
1.1.3 Wetlands as a starting PoiNt ..........ooeeeiiiiiiiieeeeeeeeeeee et 9

1.2 DELINEATION OF THE STUDY AND RESEARCH OBJECTIVES .....uuuvviiiiieeessininreeeeeeaesseansnnneeeesseessannnes 10
1.21 Identification of the working field .............c..ooviiiiiiii e 10
1.2.2 RESEArch ODJECHVES ..o 11

1.3 THESIS ROADMAP ......ttitteeiititeeestteeeeestteteeessteeaessstaeeeeasbeeeeaasbeeeeeantaeeeeanbbeeeeanbbeeeeanbaeeeeanteeaeennenes 15
CHAPTER 2 KEY ISSUES FOR ARTIFICIAL MULTIFUNCTIONAL WETLANDS.............ccccceeneee. 21
2.1 SETTING THE SCENE ...utttieiiitiieeeitteteeesttteeeesstaeaessataeaesastaeaeasstaaaessntaeaesataeaeaastaeaeaantaeaeeanseeeeennnees 23
2.2 POLLUTANT REMOVAL WITHIN CONSTRUCTED TREATMENT WETLANDS ......ccivvreeiiiieresiereenessneneens 25
221 Wastewater pollutants and removal within CTWS ..o 27
222 Improving treatment to accommodate clean water and sanitation..................cccceeeennn. 30

2.3 BIODIVERSITY IMPROVEMENT BY CONSTRUCTED WETLANDS .....uuvtttieeeisiirrerieeeeeeseasnnnnenneseeessnnnnes 32
2.3.1 Occurrence of and interactions between key biotic groups.........ccccccceeiviiiiiiiiii s 32
232 Use of macrophytes to improve biodiversity............ccocciiiiiiii e, 43

2.4 CONTRIBUTION TO THE STUDY OBUJECTIVES ....eteiiuttiteiiuiieeesintteeesanteeessnssseesanssseessnssnesssssseessnnnes 49
2.5 (070 N ot U1 [0 N PSPPSRSO 50
CHAPTER 3 DATA-DRIVEN MODELS............ocoiiiiieiiie ettt e e e entae e 53
3.1 SETTING THE SCENE ...utttieiiutiieeeitteteeestteeeeestaeeesaataeaeasstaeeeasstaeaeesntaeaeasnsaeaeesstaeaeeantaeaeeanseeeeennsees 55
3.2 MODEL DEVELOPMENT PROCEDURE ......cciuttttteitttteestteeeesaseseeesasssesessssseessasssesssasssessssseeessnsseees 56
3.21 Create conceptual framework: model selection ...........cccoevveeiiiiiie e 57
3.2.2 Data collection and exploration ..........ccoooiioiiiiiiiie s 71
3.23 Model @PPIICALION.......ueeiiiiei e 73
3.24 Model calibration and validation ..................coiiiiiii 73

3.3 CRITICISM ON DATA-DRIVEN MODELS......cciiiutttttiteteeeiastnteeereeeessssesteeeeeeessssansssnneeaaeesssnnsnssneeeeeees 80
3.3.1 Including dispersal dynamics to predict species distributions ..o, 81

3.4 CONTRIBUTION TO THE STUDY OBUJECTIVES ...ttttteteeeiiiunteeereseessasssstnneneeeesssnssssnnssesesssanssnssnsneeeens 82
3.5 (07 N oI 1= [0 ] N PSPPSR 83
CHAPTER 4 DATA AND MODELLING TECHNIQUE .............oooiiiiii e 85
4.1 SETTING THE SCENE ...tetteittttteitttteestteteesastseeesassseeesassseeesassseeesssseeessnssseessnssseessnssneessnssseessnnsnes 87
4.2 HABITAT SUITABILITY IMODELS ....ceceittiteeitieeeeitteeeesetteeeesetteeaesaaseeaessstaeeessnaseeessnnsseessnsnneesannnaeens 88
421 Dataset charaCteriStiCs ........ouuiiiiiii e 88
422 ModelliNg tECNNIQUE.......ociiiiie e 94
4.2.3 Data preparation and modelling ........ooouiiiiiiiiiii e 95

4.3 EXPERIMENTS UNDER CONTROLLED CONDITIONS .....uuuttiteeeiiitnteeereeessssnnsnnereeeeesssssssnnnneeeesssnnnes 104

xi



TABLE OF CONTENTS

CHAPTER 5 IMPUTATION OF MISSING DATA ...ttt 107
5.1 SETTING THE SCENE-.....ttteiuteteitteeatte ettt e ateeesabeesateeaabeeesabe e e saseessbeeabseesabeeeabseesabeeanbbeesnbeaanneeas 109
5.2 MATERIALS AND METHODS ......eeetiuttteesiutieeeesntaeeessteeeessnteeeessntaeeessnbaeesssasseesssnsseeessnssseessnsseeessnns 112

5.2.1 Characterisation of the data and evaluation methods ...............cccocoiiiiii e, 112
522 Imputation teChniqQUES...........ccoo i 112
53 LU TSP 114
5.3.1 Baseline performance at fixed sample size and dimensionality .................ccccvvveeeeennn. 115
5.3.2 Sample Size Variability .........ocueeiiiii 116
5.3.3 Dimensionality variability .............oooeiiiiiiiiiiiiiieeee e 118
534 OPtMISALION ...t e e e e et e e e e e e e enrrree s 119
5.4 DISCUSSION .tieiititeetsiteeee sttt ee e e sttt e e e sttt e e e sabe e e e e sabe e e e s satb e e e e snbae e e e anbbeeeesnbbeeeeanbbeeeeabbeeeesnbreeeeanes 122
5.4.1 Performance evaluation ..o 122
542 Sample size and dimensioNality ..........ccueeviiei - 123
54.3 Fine-tuning via optimiSation ............ccoiiiiii i 124
5.4.4 Implications for field-based research............cccoceveiiii i 125
54.5 Contribution to the study ObJECHIVE ...........eiiiiiiiii 126
55 L67e] N[0 KU1 [0 N P TP PP R PP PPRRPRI 127

CHAPTER 6 SPEED-PERFORMANCE TRADE-OFF IN DATA PRE-PROCESSING .................... 129
6.1 SETTING THE SCENE......tttittieiutetestrtesiteessteeesateeassseessseesbeeessbeeabeeeasseesaneeessreesaneeanbneesbneesnneenas 131
6.2 MATERIALS AND METHOD. ....ceuttteiutetestteesueeeateeesmteeasseeesseeesnseeesssesssseeesssessnseeessseesnsesssssesssesanses 133

6.2.1 Characterisation of the data...........cccceiiiiiiiii 133
6.2.2 Preliminary @SSeSSMENT.........oii i 134
6.2.3 Data pre-processing teChNIQUES .........eviiiiiiiiiiiiieeeeeeeeeeeee e aeeeaeeeeereeeee 134
6.2.4 Computation time and threshold selection ...............ccciiiii 137
6.3 RESULTS .. tttee sttt ettt ettt e e sttt e e sttt e e e s ittt e e e s ab bt e e e sttt e e e aaba e e e anbbe e e e anbeeeeeabbeeeeabbeeeeareneeeane 138
6.3.1 Preliminary @SSeSSMENT.........uii i 138
6.3.2 INAiVIdUAI Pre-ProCESSING .. ccocii ittt e e e e e e eeeeaeeeas 139
6.3.3 OVErall Pre-PrOCESSING. .. .etieiiiiiieiiit ittt sttt e ettt e e e nb e e anbae e e e ennees 144
6.3.4 Final model evaluation ............coooi i 145
6.4 DT o 1] T ] TSP 146
6.4.1 Data pre-processing affecting performance and speed ..........ccoooiviiiiiiiiiiiiiiiiieneeen, 146
6.4.2 Implications for environmental reSearch ............c.cccoiiieiiiiiiiiiiii e 148
6.4.3 Contribution to the study ODJECHIVE ...........ooiiiiii 149
6.5 (670N (o1 UL [0 PP SPUPPPTP 150

CHAPTER 7 ABIOTIC HABITAT SUITABILITY MODELS..........ccocciiiiiiiee e 153
7.1 SETTING THE SCENE.....uttttteiuttieeeitteteestteeeestteeeessseeaeaasteeeessseeaesassseeesasseeeesasseeeesassseeesansseeens 155
7.2 MATERIALS AND METHODS ... .teteiuteeestteesueeeateeeanteeesseeeaseeesseeesneeeanseeeasseesseeessseesnseesssseesnsesanses 156

7.2.1 Characterisation of the data and modelling technique .............cccccoiiie, 156
7.2.2 MOdel @PPIICALION .....eeeiiiee e 156
7.3 RESULT S .. ttttte ettt e e ettt e ettt e e sttt e e e ss bt e e e sa bt e e e esta e e e e aatb e e e e sntaeaeeantaeeeesntbeeeeasbeeeeasbeeeeansbneeeann 160
7.3.1 Model performance and optimisation .............cccoiueiiiiiiiiie 160
7.3.2 Variable IMPOMtANCE ... 162
7.3.3 Application of optimised MOEIS ...........ccoiiiiiiiiiiii e 165
7.4 DISCUSSION .tieiititeeeeiteeee s ettt ee e e sttt eeeessteeeeesstaeeeesstaeeeesstaeaeesataeeeeantaeeeeantseeeesnsbeeeeasbeeeesnssneenane 168
7.4.1 Model performance and variable importance ...........cccceeve i 168
7.4.2 Temporal trends and future potential.............coooooiiiiiiii i, 170
743 Consequences for wetland and environmental management ...........cccocccceeviiieeenne. 172
744 Contribution to the study 0bJective ... 174

Xii



TABLE OF CONTENTS

7.5 L] T I U1 ) 175
CHAPTER 8 FUNCTIONAL RESPONSE AND RELATIVE GROWTHRATE ...........cccccooviiieennen. 177
8.1 SETTING THE SCENE ...uttttetiitiieeeiiteeeessittteeesbteeessstseeessntteeeeanbaeeeestbeeeesbbeeeeasbeeeeansbeeeesasneeessnes 179
8.2 MATERIALS AND METHODS.....cutvttteitttetesitseeessssseeesssssseessssseeesassssessasssssesssssssesssssssessssseesssnsees 181
8.2.1 EXperimental SEIUD ......ccoooeiie e ———— 181
8.2.2 (D= 1 e= Weo] | [=T o1 110 ] o I PP UPRUPT 182
823 Calculating characteristic ValUES ............cooviiiiiiiiiie e 183
8.24 Statistical @NalYSIS .......coooiiiiiii e 184

8.3 2] I PSPPSR 185
8.3.1 NULFHENT FEMOVAL ... e e e e e s st e e e e e e e e aaees 185
8.3.2 BIOMASS INCIEASE ......eeiiiiiee ettt e e e e e e e s s e e e e e e e e aannes 187
8.3.3 Nutrient decrease versus biomass iNCrease ..........ccuueeeeieeiiiiiiiiiieieee e 188

8.4 D[l 1 [0 N TSRS 190
8.4.1 N[0 04 =T =Y 0 0o 1Y | PRSP 190
8.4.2 BIOMASS INCIEASE ......eeiiiiiie ittt e e et e e e e e s e annb b e e e e e e e e aanes 191
8.4.3 Nutrient decrease versus biomass iNCrease ..........cccuueeviveeiiiiiiiiieeie e 192
844 Individual traits versus ecosystem-based techniques ...........ccccooiiiiiiiiiiiiiiiiiiiiicccec, 193
8.4.5 Contribution to the study ObJECHIVE ..........ccuiiiiii 194

8.5 (07 N oT I U1 [0 PSPPSR 195
CHAPTER 9 MANAGEMENT AND INVASION ..ottt 197
9.1 SETTING THE SCENE ..vetieiiutiteesiitieeeeitttteessuteeeesssteeeesastaeaesasteeaesanteeeesanteeeesantaeeesansaeesssnsseeesansees 199
9.2 MATERIALS AND METHODS ......utviiieiitiiit e ittt e setitee e s stte e e s saate e e s sate e e s snataeaesntaeaesentaeaeenntaeaesannees 201
9.2.1 EXperimental SEIUD ......ccoooiiiii e —————— 201
9.2.2 Data @nalYSiS .....ccoiiiiiieiiiiii e 204

9.3 2] I PSPPI 205
9.3.1 BIioMass ProAUCHION .......cciiiiiiiiiieiie et e e e e 205
9.3.2 L= ] oo = LI = 11 1= o F- PP PPPPPPt 208

9.4 DISCUSSION ...itteeee ittt e sttt e e ettt e e sttt e e st e e e s eae e e e s aaae e e e s eas b e e e e ensteeeaansbeeeeansbeeeesantaeaesansaeeesannees 212
9.41 Interactions under controlled coNditioNS ............ccuuviiiiiiiiiii e, 212
9.4.2 Interactions under field CoONAItiONS ...........ooiiiiiiiii e 213
943 Implications for management of invasive alien species ..........ccccccvvniiiiiiiiiiiiiiinen. 214
9.4.4 Contribution to the study ObJECHIVE ..........ocuiiiiii 215

9.5 (07 N oI 1= [ ] RSP 216
CHAPTER 10 GENERAL DISCUSSION AND CONCLUSION..........ccccoiiiiiiie et 219
10.1  SETTING THE SCENE ...tiiitttiteiteettestttetesastaeeesassseeesasssesessssteeesastaeesaasteeessasteeessassseessnssseessansees 221
10.2  CONTRIBUTION TO THE CONSERVATION OF WETLANDS ....ccuttiieiiutiieesaireeessnrreeessseneessnsnneesssnenes 223
10.2.1  Changing ENVIFONMENTS. ........ciiiiiiiiieiiiiii ettt e s sanneee s 226
10.2.2  Limitations of the StUAY ... 227

10.3  FUTURE PERSPECTIVES....utttteiittttteiitttetesittteeesastteeesassesessssesesassseasaassaeessassssesaassseeesassseeesansens 231
10.3.1 Model deVelOPMENT ... .. —————— 231
10.3.2  Managing invasive ali€n SPECIES .........cuiiiiiiiiiiiiiiiie e 235

10.4  CONCLUDING REMARKS......etteiutttteitttetesastaeeesssssesesasssesesassseessassseesansssesssnssssessassseessnsseeesansees 237
REFERENGES ...... ..ottt ettt e et e e e ettt e e e st e e e ettt e e antae e e e ntaeaeanntaeeeennnees 239
APPENDICES ...ttt et e ettt e e et et e e et e e e et — e e e e e b e e e e a—b et e e atra e e e aarrees 273
APPENDIX A DATA AND MODEL............ooiiiiiiiie ittt e e st e e s snnneee s 275
A1 ORIGIN OF THE DATA ..ttt etitttteeeiteteeesiteteeesstaeaesssteeeeaastseaesastaeaesanteeaesantaeeesansaeeesansaeeeeansaeeesansees 276

xiii



TABLE OF CONTENTS

A2 CHARACTERISATION OF THE PHYSICOCHEMICAL DATA ....cvvvvveterererereesreesseressssssssrsssssssrsssrsrsrersnes 277
A3 CHARACTERISATION OF THE MACROPHYTE DATA.....uttvtteiittrteeiittreeessssseeessssesssssssesssssssessssnsseees 283
A4 CHARACTERISATION OF THE COMBINED DATA ...vvtieititieeiiteeeesiteeeesansseeesssseesssssseessssnseeessnsseeens 286
APPENDIX B IMPUTATION METHODS FOR MISSING ENVIRONMENTAL DATA .........c.c.cn.... 289
B.1 CHARACTERISATION OF THE DATA .. utttteiuttttteitteeeestteeeeasseeeesssseaesassseeesassseessassseesssssseeessnseeeens 290
B.2 INFLUENCING IMPUTATION PERFORMANCE ......ceiiiiirieeeiiieeeestaeeesstsesssssseesssssessssnssssessnssneesnes 291
B.2.1 Inclusion of additional iNformation .............ccccoiiiiii i 291
B.2.2 Optimisation of imputation techniques via hyperparameter setting.........ccc.cccoeevvneeen. 292
B.2.3 Variability and stability among repetitions ..............ccccc 293

B.3 RESULTS IMPUTATION PERFORMANCE .....ceeiiutiiteeiiieeessiteeesstaeesesssssssssssssssssssssssssssesssssssnasnns 298
B.4 CASE STUDIES ..ciutteeeeiitteeeesitteee e sttt ee e sttt e e e sttt e e e satb e e e sntbe et e sttt e e e sabbb e e e s bbb e e e sasbteeesannbeeesnnneeeens 300
B.4.1 Case 1: Small data set with low degree of missing data............ccoccoeiiiiiiniie, 300
B.4.2 Case 2: Large data set with high degree of missing data ...............occcvvieeveeeiinicinnnnn. 307
B.4.3 Overall observations from the case studies..........cccccvveiiiiiic e, 317

B.5 LINEAR MIXED EFFECTS IMODELS ....eeiiittiieeitiieeesteeeesstteeeesntteeessntaeeessnbeeesssssseeessnssseessnssneesane 318
B.5.1 OVverall PEMOIMANCE ........eiiiiiiiii et e e 318
B.5.2 Baseling PEIfOMMANCE........uuuiiiii i e e e s e e e e e 320
B.5.3 Sample Size variability ........cocueiiiiii 320
B.5.4 Dimensionality variability .............ooeiiiiiiiiiiiiiiieeeeeeeeee e 321
APPENDIX C THRESHOLD SELECTION FOR DATA PRE-PROCESSING.............c..ccceccvieeenen. 325
C.1 DATA REDUCTION . ...t iuttttesiuttteessutteeessstteeessntaeeessstseeessntseeessnbaeeesasteeeessntseeessnsseeessnsseeessnssneessnes 326
C.2  EFFECTS OF THRESHOLD SELECTION.....tieiititeeiiteeeeesttreeesstaeeessstaeaessstasaessstneaesssssasssnsneessansnes 329
C.3  THRESHOLD SELECTION FOR ALL SPECIES .....eieiititeeeititeeesiteeeessteeessssteeessssteeessssseeesssnsseessnnsnes 332
C.4  ENVIRONMENTAL DOMAINS POST-PROCESSING ......ccciiitiiieiitireesiineeeestteeessineeesstneassssneessnnsnes 340
APPENDIX D DEVELOPING ABIOTIC HABITAT SUITABILITY MODELS .............ccooeeeviieee, 345
D.1 DATA CHARACTERISTICS. ... uttteeeiiteeeeesiteee e e sttt e e e stseeeesteeeeestaeeeestaesaesassaeeeassaaeeesasbeeaesassanaeann 346
D.2  VARIABLE IMPORTANCE ....utttteittittestteteesatttteesastteeesanssesesassseeessnsseeesaassseessnssseessnssseessnnsseessnnsees 349
D.3  SCENARIO ANALYSIS ..eiieiututteeiitteteeiestteeesasteeeesastseeesassseeesassseeesasseeesasstasesanstaeesanssesessassseessnnsees 350
D.4  SPECIES-SPECIFIC TEMPORAL TRENDS .......uutteiitttttesaittteesastteeesasseeesassesesansteeesssssseessnseeessnsnes 354
APPENDIX E FUNCTIONAL TRAITS FOR ASSESSING INVASIVE POTENTIAL ...........cc.c.c....... 357
E.1 TABLES SUPPORTING RESULTS ....tteiuttttieittteeesseeeeesanseeeesasstesessnssesesassenesanssssesssssseessnsseessnsees 358
APPENDIXF MANAGEMENT UNDER INVASION PRESSURE ............cccociiiiiiiee e 361
F.1 SIMULATED BIOMASS INCREASE .....utvviteiutieteeitteeeesteeeessasseeeesssseeesassseeesasssseesassseesssssseeessnsseees 362
F.2 EXPERIMENTAL RESULTS ...uttteeeiutieeeessteeeessataeeesstsesasstssaassnsassassssssassassssasssssssesssssssessassesesanns 363
F.3 GENERALISED LINEAR MIXED EFFECTS MODELS ...eeitviiteiiieieeseieeeesitseeessnsseeessnsneeessnsseesssnnneeens 366
F.3.1 RESUILS TOF LEMNG MUNOK ......coiiiiiiiiiieie et eaeee e e e as 367
F.3.2 ReSUILS fOr LemNa MINUEA.............ccuuuiiiiii it 370
CURRICULUM VITAE ... ...ttt e ettt e et e e e sttt e e et e e e s taa e e e s aabe e e e s sabeeeesansreeesansrneeas 375

X1V









ANN
ANOVA
AUC
BBN
BBNR
BOD
CART
CCI
COD
CRF
CTW
cv
DT
DW
EC

ES

FL

FN

FP
FWS
GAM
GAMM
GLM

GLMM

List of acronyms

Artificial Neural Network

Analysis of Variance

Area Under the receiver operating characteristic Curve
Bayesian Belief Network
Biomass-based Nutrient Removal
Biochemical Oxygen Demand
Classification and Regression Trees
Correctly Classified Instances
Chemical Oxygen Demand
Conditional Random Forest
Constructed Treatment Wetland
Cross-Validation

Decision Tree

Dry Weight

European Commission

Ecosystem Services

Fuzzy logic

False Negative

False Positive

Free Water Surface

Generalised Additive Model
Generalised Additive Mixed Model
Generalised Linear Model

Generalised Linear Mixed Model

Xvii



LIST OF ACRONYMS

HSI Habitat Suitability Index

HSM Habitat Suitability Model

IAS Invasive Alien Species

ICW Integrated Constructed Wetland
kNN k Nearest Neighbours

LMEM Linear Mixed Effects Model

Is Least Squares

MAR Missing At Random

MCAR Missing Completely At Random
MD Missing Data

mF missForest

MICE Multiple Imputation via Chained Equation
MIR Model improvement Ratio

MSE Mean Squared Error

NMAR Not Missing At Random

NRMSE Normalised Root Mean Squared Error
PA Presence-absence

PCA Principal Component Analysis
PDP Partial Dependence Plot

PO Presence-only

RF Random Forest

RGR Relative Growth Rate

RMSE Root Mean Squared Error

RNR Relative Nutrient Removal

ROC Receiver Operator Curve

RQ Research Question

SDG Sustainable Development Goal

Xviil



LIST OF ACRONYMS

SDM
SMART
SS

tN

TN

tP

TP

TSS

UN

VI

WSP

Species Distribution Model

Specific - Measurable - Attainable - Relevant - Time-bound
Suspended Solids

Total Nitrogen

True Negative

Total Phosphorus

True Positive

True Skill Statistic

United Nations

Variable Importance

Waste Stabilisation Ponds

X1X






mtry
n_rep
Ninst
Ninst,c
Ninst,opt
nleaf
nsplit
ntree
Nyar
Nvar,c
Nvar,opt
N,

(0]

P,

Qj1

List of symbols

Matrix containing absence-related dummy scores

Matrix containing Pearson correlation scores

Data set

Data set with the highest number of complete data points
Numerical value of standard error for variable X

Fraction of missing data

Number of folds during cross-validation

Number of neighbours as used in kNN

Mass

Number of variables to be considered in Random Forest nodes
Number of repetitions during modelling

Number of instances

Number of instances in complete case analysis

Number of instances in Dop¢

Minimum number of instances in a terminal node
Minimum number of instances in a node to allow for splitting
Number of trees to be developed in Random Forest
Number of variables

Number of variables in complete case analysis

Number of variables in Dop¢

Number of specified element z

Matrix containing outlier-related dummy scores

z-th Percentile

First quartile for variable j

XXi



LIST OF SYMBOLS

Qj3
S
S

Sn

X

=

g

Ta

Tc

Ti

Third quartile for variable j

Numerical value of standard deviation for variable X
Vector with standard deviations for all considered variables
Sensitivity, based on confusion matrix

Specificity, based on confusion matrix

Specific numerical value for variable X

Vector with values for variable X

Numerical average for variable X

Vector with average scores for all considered variables
Threshold for minimum number of exceedance
Threshold for acceptable number of outliers

Intercept in linear regression

Coefficient for term j in linear regression

Difference between metrics i and j

Error in linear regression

Kappa statistic, based on confusion matrix

Threshold for absence selection

Threshold for correlated variables

Threshold for variable importance

Threshold for outlier selection

xxii









Summary

Decreasing water availability and increasing global population cause tremendous
pressures on the currently prevailing freshwater sources. It has become clear that
synergies within freshwater management are required to simultaneously tackle the need
for (i) improved water quality, (ii) increased water storage, (iii) efficient land use and
(iv) preventing invasion impacts. Literature provides several options to tackle these
threats in a simultaneous manner, including technological advancements and nature-
based solutions. The latter entails the use of integrated constructed wetlands, which link
the terrestrial with the aquatic system and house a variety of beneficial services to
society. Yet, to avoid inefficient management, attention should be given to (i) identifying
the biotic group with the highest potential to steer biotic development, (ii) determining
locations suitable for species survival and (iii) defining the threat by invasive species.

Based on these issues, three themes were created to tackle these contemporary
challenges and provide perspectives for decision makers and conservation managers.
The first theme explores existing experiences in literature to create a conceptual
framework. Secondly, attention is directed towards data-driven model development,
with specific focus on the use and preparation of publicly available data followed by the
development of abiotic habitat suitability models to infer species-specific habitat
preferences. Lastly, the third theme applies autecological experiments to support both
proactive and reactive management to mitigate invasion impacts. Finally, this work

concludes with a comprehensive discussion and several promising perspectives.

Within the first theme, the literature review is divided into two main parts: (1) ecosystem
services provided by wetlands and (2) advantages and disadvantages of data-driven
habitat suitability models. First, Chapter 2 describes how wetlands support sustainable
development by providing pollutant reduction and by influencing biotic and abiotic
interactions, ultimately concluding that macrophytes have a steering role regarding
wetland community composition and functioning. Moreover, model selection, data
quality assurance and controlled experiments are identified as attention points and
addressed in subsequent chapters. For instance, Chapter 3 describes the different steps
within model development, including the conceptual framework, technique selection,
model calibration and model validation. Advantages and disadvantages of five data-
driven techniques (decision trees, generalised linear models, artificial neural networks,
fuzzy logic and Bayesian belief networks) are discussed in a comparative context, along
with various performance metrics to quantify model calibration and validation. The
chapter concludes by recommending decision trees as a purely data-driven technique
and thereby especially endorses the use of random forests.
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The second theme discusses the development of macrophyte-specific habitat suitability
models and starts by elaborating on data cleaning prior to model training. Within
Chapter 5, the accuracy of four imputation techniques is discussed, being variable-
specific mean, least square regression, k nearest neighbours and the missForest
algorithm. A total of 720 data sets with artificially missing data is imputed and supports
the overall conclusion that the missForest algorithm performs best. Subsequently,
outliers, false absences and redundant variables are identified in Chapter 6 by applying
a range of potential threshold values. The results illustrate that model performance is
clearly affected by data pre-processing and that a set of threshold values can be inferred
to identify outliers (z, = 3), false absences (zq = 5 %), correlated variables (z. = 0.7) and
irrelevant variables (z; = 10 %). The chapter concludes by indicating that serial data pre-
processing improves model performance, while the presence of false absences in the test
data deflates model validation scores. Lastly, building on these results, macrophyte-
specific abiotic habitat suitability models are developed in Chapter 7 thereby
supporting relatively good discriminative and classification power. In addition, a set of
major habitat descriptors is inferred along with their characteristic optimal conditions:
temperature (> 17 °C), nitrate-N (0.5 mg-L*up to 1.5 mg-L*), oxygen (4 mg-L™* up to 7
mg-L7), ammonium-N (0.3 mg-L" up to 0.5 mg-L!) and pH (7 up to 8.5). Yet, further
fine-tuning of these ranges can be obtained via species-specific analyses.

Within the third and last theme, the focus is aimed towards avoiding the impact of
invasive alien species by relying on proactive and reactive management. More
specifically, Chapter 8 introduces three indices to predict the invasive behaviour of the
alien Lemna minuta in comparison with the native L. minor, being the functional
response, the relative growth rate and the biomass-based nutrient removal. L. minor
shows to remove more nutrients and develop more biomass, causing the chapter to
conclude that the selected indices are insufficient to infer invasion potential. In contrast,
reactive management is discussed in Chapter 9 by exposing both Lemna spp. to nine
different scenarios combining removal frequency (‘none’, ‘low’ and ‘high’) and biomass
introduction frequency (‘none’, ‘low’ and ‘high’). The results indicate slightly higher
growth rates for L. minuta compared to L. minor and a negative feedback due to
overcrowding. Moreover, it shows that total biomass benefits from species introduction
and that dominance by the host species decreases in time. Both chapters highlight the
need for more testing, considering their limited extrapolation power.

To conclude this work, Chapter 10 summarises the findings of all chapters and
illustrates the added value towards wetland conservation, with specific attention
towards the pressures caused by climate change and invasive alien species. Moreover,
alternative techniques for data collection, cleaning and analysis are introduced, along
with the promising perspective of integrating field observations and experiments in
order to merge the strengths of correlative and mechanistic modelling.
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Samenvatting

De afnemende waterbeschikbaarheid en toenemende wereldbevolking zorgen voor een
enorme druk op de nog beschikbare zoetwaterbronnen. Dit onderstreept het belang van
synergién in het zoetwaterbeheer om op een simultane wijze tegemoet te komen aan de
vraag naar (i) verbeterde waterkwaliteit, (ii) toegenomen wateropslag, (iii) efficiénter
landgebruik en (iv) verlaagde invasie-impact. De wetenschappelijke literatuur omvat
verscheidene opties om deze uitdagingen aan te gaan, waaronder technologische
vooruitgang en natuur-gebaseerde oplossingen. Laatstgenoemde omvat het gebruik van
geintegreerde artificiéle wetlands, die gekenmerkt worden door het creéren van een link
tussen het terrestrische en het aquatische systeem en het voorzien van een variéteit van
gunstige diensten voor de maatschappij. Echter, om inefficiént beheer tegen te gaan,
dient er aandacht besteed te worden aan (i) de identificatie van de biotische groep met
het hoogste potentieel om biotische ontwikkeling te sturen, (ii) het bepalen van de
locaties die geschikt zijn voor het overleven van de beschouwde soorten en (iii) het
definiéren van de bedreiging gecreéerd door invasieve soorten.

Gebaseerd op deze uitdagingen en aandachtspunten, werden drie thema'’s afgelijnd en
behandeld om perspectieven te voorzien voor beleidsmakers en conservatoren. Het
eerste thema omvat het beschrijven van de bestaande ervaring die in de literatuur
vermeld worden teneinde een conceptueel kader te creéren. Vervolgens wordt er,
gebaseerd op het ontwikkelde conceptuele kader, extra aandacht gegeven aan het
ontwikkelen van datagedreven modellen. Deze ontwikkeling omvat een specifieke focus
op het gebruik en de voorbereiding van publiek toegankelijke data, gevolgd door het
ontwikkelen van abiotische habitatgeschiktheidsmodellen om geprefereerde
habitatomstandigheden af te leiden. Het derde thema behandelt het gebruik van
autecologische experimenten ter ondersteuning van proactief en reactief beheer met
betrekking tot het mitigeren van invasie-impacts. Uiteindelijk sluit het werk af met een
discussie en de identificatie van enkele veelbelovende toekomstperspectieven.

Binnen het eerste thema wordt het literatuuronderzoek opgesplitst in twee delen: (1) de
ecosysteemdiensten die door wetlands worden voortgebracht en (2) de voor- en nadelen
van datagedreven habitatgeschiktheidsmodellen. Allereerst wordt er in Hoofdstuk 2
beschreven hoe wetlands bijdragen tot duurzame ontwikkeling door het voorzien van
polluentverwijdering en door het beinvloeden van verscheidene biotische en abiotische
interacties. Er wordt besloten dat macrofyten een sturende rol hebben in de
ontwikkeling van het beschouwde aquatische systeem en dat modelselectie,
kwaliteitscontrole en gecontroleerde experimenten belangrijke aandachtspunten zijn.
Deze elementen worden bijgevolg stapsgewijs in de volgende hoofdstukken behandeld.
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Bijvoorbeeld, in Hoofdstuk 3 worden de verschillende stappen in het modelleerproces
beschreven, inclusief conceptueel kader, techniekselectie, modelkalibratie en
modelvalidatie. De voor- en nadelen van vijf verschillende modelleertechnieken
(beslissingsbomen, veralgemeende lineaire modellen, artificiéle neurale netwerken,
vage logica en Bayesiaanse netwerken) worden bediscussieerd in een vergelijkende
setting, tezamen met meerdere performantie-indices om modelkalibratie en -validatie
te beschrijven. Het hoofdstuk sluit af met het aanraden van beslissingsbomen als zuivere
datagedreven modelleertechniek, met een specifieke vermelding van de random forest
benadering.

Na de techniekselectie wordt data omtrent macrofytaanwezigheid verzameld,
gekarakteriseerd en voorbereid voor het extraheren van patronen. Het opkuisen van
data is relatief tijdsintensief en behandelt ontbrekende gegevens, extreme waarden,
valse afwezigheden en redundante variabelen. In Hoofdstuk 5 wordt dieper ingegegaan
op de aanwezigheid van ontbrekende gegevens door de nauwkeurigheid van vier
imputatietechnieken te beschreven, namelijk het variabele-specifieke gemiddelde, least
square regressie, k nearest neighbours en het ensemble-gebaseerde missForest algoritme.
De analyse omvat het artificieel verwijderen van data uit 720 datasets, gevolgd door
imputatie en bepaling van de behaalde nauwkeurigheid. Er wordt besloten dat het
missForest algoritme de hoogste nauwkeurigheid voorziet van de geselecteerde

technieken.

Vervolgens worden extreme waarden, valse afwezigheden en redundante variabelen
geidentificeerd en geélimineerd in Hoofdstuk 6, hetgeen resulteert in een analyse van
de potentiéle drempelwaarden. De resultaten illustreren dat modelperformantie
beinvloed wordt door het voorbehandelen van de beschikbare data en dat een set van
drempelwaarden kan afgeleid worden om extreme waarden (z, = 3), valse afwezigheden
(ta = 5 %), gecorreleerde variabelen (z. = 0.7) en irrelevante variabelen (z; = 10 %) te
verwijderen. Het hoofdstuk sluit af met de observatie dat het voorbehandelen van data
een positief effect heeft op modelperformantie, terwijl valse afwezigheden in de

validatiedata kunnen leiden tot een lagere performantiescore.

Ter afsluiting van dit thema worden, op basis van deze resultaten, macrofyt-specifieke
abiotische habitatgeschiktheidsmodellen ontwikkeld in Hoofdstuk 7, waarbij een
goede discriminatie en classificatie bekomen wordt. Meer nog, een set van belangrijke
habitatdescriptoren kan afgeleid worden, met karakteristieke optimale waarden voor
macrofyt-aanwezigheid: temperatuur (> 17 °C), nitraat-stikstof (tussen 0.5 mg-L*! en 1.5
mg-L7), zuurstof (tussen 4 mg-L"! en 7 mg-L!), ammonium-stikstof (tussen 0.3 mg-L'! en
0.5 mg-L1) en pH (tussen 7 en 8.5). Verdere detaillering van deze waardes kan bekomen
worden via soort-specifieke analyses.
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Binnen het derde en laatste thema wordt de focus gelegd op het vermijden en
verminderen van de impact veroorzaakt door invasieve uitheemse soorten met behulp
van proactief en reactief beheer. In Hoofdstuk 8 worden drie indices voor het
voorspellen van invasief gedrag voorgesteld en vervolgens toegepast om de uitheemse
macrofyt Lemna minuta te vergelijken met de inheemse L. minor, namelijk de
functionele respons, de relatieve groeisnelheid en een biomassa-gebaseerde
nutriéntverwijdering. Binnen de bestudeerde nutriéntrange toont de inheemse L. minor
een groter vermogen om nutriénten te verwijderen en biomassa te ontwikkelen, hetgeen
veldobservaties tegenspreekt. Het hoofdstuk concludeert dat de gekozen indices
onvoldoende zijn om het invasiepotentieel van invasieve uitheemse macrofyten te

bepalen.

Vervolgens wordt in Hoofdstuk 9 een reactief beheer toegepast en besproken, volgend
op het blootstellen van beide Lemna spp. aan negen verschillende scenario’s die
verwijderingsfrequentie (‘geen’, ‘laag’ en ‘hoog’) en introductiefrequentie (‘geen’, ‘laag’
en ‘hoog’) combineren. De resultaten tonen een hogere groeisnelheid voor de uitheemse
L. minuta vergeleken met de inheemse L. minor en een algemene afname in tijd door
een toename in densiteit. Tevens wordt aangetoond dat de totale biomassa toeneemt
door de introductie van biomassa en dat de biomassaverhouding tussen beide soorten
afneemt in de tijd. De variatie in respons toont aan dat verdere studies aangeraden zijn
om zowel proactief als reactief beheer te ondersteunen.

Om dit werk te eindigen, vat Hoofdstuk 10 alle resultaten samen, waarmee de
toegevoegde waarde naar het behoud en herstel van wetlands, met extra aandacht naar
de druk die klimaatsverandering en invasieve soorten uitoefenen, wordt geillustreerd.
Alternatieve en supplementaire technieken voor dataverzameling, -reiniging en
—analyse worden vermeld, tezamen met het potentieel van de verdere integratie van
veldobservaties en experimenten om de sterktes van correlatieve en mechanistische

modellen te combineren.
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CHAPTER I

Abstract

Water is essential to life on Earth, yet for centuries, running water has been considered
a low-cost and energy-efficient disposal system for human settlements. With rising
population levels, pressures on prevailing freshwater systems have increased rapidly,
being additionally exacerbated by rising food and personal hygiene demands. As a
response, the United Nations developed a calendar with 17 Sustainable Development
Goals, to be completed by 2030, all of which are interconnected and allow for a certain
degree of integration. It is clear that synergies within freshwater management are
required to simultaneously tackle the need for (i) improved water quality, (ii) increased
water storage, (iii) more efficient land use and (iv) inhibiting the effect of invasive alien
species. To this end, wetland systems provide a potential starting point as they act as an
important link between the terrestrial and aquatic system, while housing a variety of
beneficial services to society. More specifically, attention should be given to (i) identify
the biotic group with the highest potential to steer biotic development, (ii) determine
locations suitable for species survival and (iii) define the threat by invasive alien species.
These challenges are to be tackled by combining experience, experiments and models,
with the latter increasingly relying on the growing field of artificial intelligence and
publicly accessible data. By considering these issues, a series of research questions and
objectives is defined and used for outlining the structure of this work.
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1.1 Setting the scene

1.1.1 Global pressures and threats

Water is essential to life on Earth. It has been the basis for the first steps in the evolution
process and has driven the development of human settlements for centuries. The
uniqueness of such a resource being available throughout the world and originating
from a huge, interconnected reservoir has not only supported the development of and
revolutions within human history, but has also caused its abuse. For centuries, running
water has been considered a low-cost and energy-efficient disposal system for human
settlements, discharging liquid and solid wastes and relying on natural dilution and
attenuation.

With relatively low historical population densities and wastewater mostly consisting of
easily-degradable organic compounds, impacts on water quantity and quality due to
extraction and discharge remained highly localised. This all changed with the start of
the first Industrial Revolution during which water was viewed as a valuable energy
source (Tvedt, 2010), seeding machine development, production proliferation and
increased discharge of unwanted by-products. Continued reliance on the inherent
attenuation power of nature caused uninterrupted and unregulated discharges,
reflecting the “Tragedy of the Commons’: When something is freely accessible to all, it
will be abused and overexploited until it becomes monetised and available to only a few
(Hardin, 1968).

One of the main drivers underlying this tragedy is the uninterrupted growth of the global
population, which crossed the virtual threshold of 1 billion around 1800 and has
increased ever since. In 2020, the world population reached 7.8 billion people (Figure
L1), while projections estimate the existence of 10 billion people by 2057 (United
Nations, 2020). Rising food and personal hygiene demands pressurise the prevailing
freshwater systems at a qualitative and quantitative level. More importantly, these
pressures are being exacerbated by land use alterations and global climate change,
causing disruptions of hydrological cycles on local, regional and global scales (IPCC,
2014; Verdonschot et al., 2013). For instance, the first signs of these detrimental
interactions are hard to ignore and include reports on the shrinkage of reservoirs and
glaciers (Boomer et al., 2000; Roe et al., 2017), changes in frequency and intensity of
rain patterns (Berg et al., 2013) and increased faecal contamination of drinking water
(UNESCO, 2017). These effects are expected to escalate in the future, thereby becoming
either a cause for conflict or an opportunity for cooperation (Barnaby, 2009; Pearse-
Smith, 2012; Shultz, 2003).
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Figure 1.1: Evolution of the world’s population. In 1950, only 2.5 billion people lived on Earth,
which has increased to 7.8 billion in 2020 (black dotted line) and is estimated to reach 10 billion
by 2057 (grey dotted line). The inherent uncertainty of forecasts is depicted by a light grey ribbon
surrounding the mean estimation (dashed black line) and reflects the difference caused by the
considered fertility range. Data retrieved from United Nations (2020).

Aside from the direct effects of altered hydrological cycles on the provisioning of water
to society, also indirect effects are expected to increase due to modified water budgets
within ecosystems (IPCC, 2014; UNESCO and UN-Water, 2020). Similar to human-
oriented communities, natural systems depend on clean and abundant water for their
development and to sustain their intrinsic complex interactions. Meanwhile, these
systems provide a plethora of water-related ecosystem services (ES) that are intrinsically
linked with water quality (e.g. purification) and water quantity (e.g. storage). These
examples only represent a fraction of all the benefits that society can enjoy from natural
systems, though their sustainable exploitation is challenged by delayed socio-economic
acceptance and political impetus (Friberg et al., 2017; Jahnig et al., 2011). To improve
understanding and awareness, additional distinction is made between provisioning (e.g.
food, fibres), cultural (e.g. aesthetics, recreational) and supporting (e.g. nutrient cycling,
soil formation) services (Millenium Ecosystem Assessment, 2005), along with several
efforts to valuate ES (Costanza et al., 2014). Still, each of these services relies on natural
processes within a stable and functional ecosystem.

Unfortunately, pressures arising at the abiotic level threaten ecosystem structure and
functioning, thereby negatively affecting the intensity of the provided ES. Habitat
fragmentation, alterations in land use, chemical pollution and invasive alien species
represent only a few underlying causes of the current biodiversity crisis (Harrison et al.,
2018; He et al., 2019), with species extinction rates and reductions in wildlife populations
reaching unprecedented levels (Vitousek et al., 1997; WWF, 2018). These observations
call for immediate management measures, despite the inherent complexity of stressor

interactions.
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1.1.2 Responding to freshwater pressures

Clean and abundant water acts as a cornerstone for socio-economic development,
making it an undeniable human right. With the ongoing pressures in mind, the United
Nations created the Sustainable Development calendar for 2030 as a sequel to the
Millennium Development Goals, which ended in 2015. Within the new framework, 17
Sustainable Development Goals (SDGs) have been identified to support future
development with attention to social, economic and environmental aspects (United
Nations, 2015).

All SDGs are closely linked to each other, yet focus on different aspects of sustainable
development. Issues related to freshwater are the main topic in SDG 6 (Clean water and
sanitation) and SDG 15 (Life on land) and, despite being part of different SDGs, allow to
be partially tackled simultaneously. For instance, treatment of wastewater prior to its
discharge reduces the pollutant load into the environment, allowing for lower
purification costs (into clean water) and providing less pressure on the biotic
communities within the water. With 2.1 billion people lacking access to safe drinking
water and about 80 % of all wastewater entering the environment without treatment,
the urgency to accelerate efforts within water-related goals is unambiguously clear and
consolidates the declaration of the International Decade for Action on Water, running
from 2018 until 2028 (UNESCO, 2017; United Nations, 2020; WHO/UNICEF, 2017).

The abovementioned local anthropogenic activities negatively affect the provisioning of
sufficient and qualitative water, while increased travel and trade at a global scale
continuously transport organisms outside their native range, both intentionally and
accidentally (Perrings et al., 2002). The introduction of an alien organism (see Box 1.1
for related terminology) into a suitable environment can both improve and threaten
community composition, while additionally affecting economic activities and human
health (Born et al., 2005; Pejchar and Mooney, 2009; Strayer, 2010). For instance, the
megafauna in Australia are all introduced species, including species that are at risk or
extinct in their native range (Lundgren et al., 2018). In contrast, the invasion of the zebra
mussel (Dreissena polymorpha) has caused a widespread occurrence within the
Mississippi basin and has led to the clogging of multiple water intake pipes (Ludyanskiy
et al., 1993). Similarly, the floating water hyacinth (Eichhornia crassipes) has become a
common inhabitant of tropical lake systems around the world, yet blocks several aquatic
transport routes (Villamagna and Murphy, 2010). The resulting ecological and economic
impacts have been so severe that both species earned a spot in the [UCN List of the 100
worst invasive species (IUCN, 2019). Currently, border control represents the most-
developed proactive management measure to impede the introduction of alien species,
though the increasing number of reports on alien species indicates a need for alternative
and supplementary measures in order to avoid expensive (and often ineffective)
eradication programs (Early et al., 2016; Williams and Grosholz, 2008).
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Box 1.1: Terminology biological invasions

A variety of terminology and definitions is used within the field of biological invasions,
which impedes transparent communication and challenges decision-making
(Blackburn et al., 2011; Colautti and Maclsaac, 2004). For instance, Colautti and
Maclsaac (2004) consider a species to be invasive when depicting a significant spread
in the new geographical range, while Davis and Thompson (2000) state that a severe
impact is required prior to being considered invasive. While redefining the complete
field of biological invasions is beyond the scope of this work, it is clear that overall
transparency can be improved by defining the terminology to be used throughout the
following chapters.

Each species is characterised by a specific geographical range in which it naturally
occurs, survives and reproduces. Species occurring within their natural geographic
range are referred to as native species. In contrast, species can be transported outside
their native range by anthropogenic activities and be introduced in a new
environment. These species are referred to as alien species, exotic species, non-
native species or non-indigenous species. When species have the tendency to
completely colonise and outcompete the prevailing populations after their arrival in a
new site (be it within or outside the native range), they are considered to be invasive.
Hence, within a specific geographical area, both native and alien species can display

invasive behaviour.

For a species to be classified as an Invasive Alien Species (IAS), it has to go through
several stages and overcome multiple barriers, which has been summarised in various
conceptual frameworks. For instance, Blackburn et al. (2011) combine the individual-
based approach of Richardson et al. (2000) and the population-based approach of
Williamson and Fitter (1996) in a unified framework with the following four stages:
(1) Transport, (2) Introduction, (3) Establishment and (4) Spread/Colonise.

Each of these stages is characterised by one (or more) barrier(s). More specifically,
geographical restrictions limit the number of species that will be transported, while
cultivation/captivity impedes the introduction of a selected set of species into a new
environment. The latter represents an optional barrier, as many other species (e.g.
plants, fungi, invertebrates) have the capacity to be unintentionally transported and
directly introduced in the new environment. Following introduction, species need to
be able to survive and reproduce within their new environment in order to become an
established and self-sustaining population. Lastly, successful spread is reached when
overcoming the dispersal and subsequent environmental barrier. With each barrier, a
fraction of alien species is lost and considered unfit to significantly impact native
communities in the long term (Blackburn et al., 2011; Williamson and Fitter, 1996).
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The identification of these pressures and underlying driving forces helps in pinpointing
bottlenecks and developing responses to mitigate impacts, following the conceptual
DPSIR (Driving Force - Pressure - State — Impact — Response) approach (Vannevel, 2018;
Verdonschot et al., 2013). Increased awareness on the state and the intrinsic value of
natural ecosystems has kick-started research on the applicability and potential of
ecosystem management (see Box 1.2 for related terminology) to counter anthropogenic
pressures. So far, positive results have been obtained for projects aiming to improve
abiotic conditions by implementing re-meandering, breaking down weirs and installing
wastewater treatment plants (Jahnig et al., 2011; Lorenz et al., 2009).

In contrast, pilot studies on biological restoration following these abiotic improvements
have provided mixed results due to the high spatiotemporal and biological complexity
of natural ecosystems (Hilderbrand et al., 2005; Verdonschot et al., 2013). For instance,
dispersal limitations, biotic resistance and the absence of a proper ecosystem engineer
are only a few processes that can cause a significant temporal delay to reach the project-
specific goals. To counter these delays, manual introduction can help accelerating
natural succession, though relies on species-specific assessment of habitat suitability
and significant monetary investments (Lu et al., 2012; Zhang et al., 2017).

From this, it is clear that cooperation and integration of individual freshwater
management activities is required to simultaneously tackle the need for (i) improved
water quality, (ii) increased water storage, (iii) more efficient land use and (iv) limiting
the impact of invasive alien species. Such synergies occur naturally near the border of
existing ecosystems, ecotopes and habitats by locally integrating and fine-tuning
characteristics of all contributing components (Banks-Leite and Ewers, 2009). The
resulting complexity and extensiveness tend to vary greatly in function of the severity in
change, ranging from highly abrupt (e.g. rocky cliffs, glacial lakes) to smooth (e.g. local
topographic depressions, estuaries). Moreover, due to the recurring difficulty in defining
a clear border between neighbouring habitats, the transition zone can be relatively wide
and cover an additional habitat type (Banks-Leite and Ewers, 2009; Strayer et al., 2003).

For instance, wetlands are characterised by a smooth transition between the aquatic and
terrestrial system and tend to develop differently depending on the prevailing
environmental conditions. Consequently, a variety of subtypes exists, including fens,
bogs, peatlands, marshes, mangroves and swamps, which share only the presence of a
hydric soil as a common factor and leave proper delineation open for discussion (Dodds
and Whiles, 2010; Gopal, 2016; Keddy, 2010; Kivaisi, 2001). In fact, wetlands combine
aquatic and terrestrial characteristics and thereby provide a potential starting point to
look for synergies and convey ecological conservation (Junk et al., 2014; Kingsford et al.,
2016). Throughout the remainder of this work, wetlands will be considered as ‘systems
with a continuously waterlogged soil’.
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Box 1.2: Terminology ecosystem management

Managing ecosystems entails all anthropogenic actions that directly and indirectly
affect ecosystem composition and functioning, ultimately aiming to reach human-
defined goals. Due to this variety of available actions, it is considered useful to
introduce management-specific terminology and what it entails with respect to goal
definition and field activities.

A first distinction can be made between preservation and conservation.
Preservation aims at maintaining ecosystems in their pristine state, without society
experiencing economic benefits. Conservation is less strict and aims at improving
natural conditions (e.g. landscapes, biodiversity) while simultaneously considering
potential benefits (i.e. ecosystem services) to and cooperation with society (Sarkar,
1999). Hence, conservation can be considered as more complex than preservation as
it requires more fine-tuning with a human element.

Conservation plays at a large spatial scale and underlies several international
agreements, including the definition of RAMSAR sites, Aichi targets and sustainable
development goals (CBD, 2020; United Nations, 2015). To reach conservation at a
large scale, small-scale activities and implementations are of importance. These can
be broadly classified into (1) Protection, (2) Restoration and (3) Construction.
Protection aims at the maintenance of an ecosystem and preventing its decline by
eliminating pressures, without causing an increase in area of the considered system
(sometimes referred to as mitigation) (Jackson et al., 1995).

Restoration focuses on the improvement of the prevailing conditions in order to
support natural development towards natural or historical conditions (Jackson et al.,
1995; Jackson and Hobbs, 2009). Depending on the author, restoration efforts can be
considered in a broader sense and additionally include actions that (i) improve specific
ecosystem functions (enhancement) and (ii) re-create structure and/or functioning
without aiming towards historical conditions, distinguishing between a relatively high
(reclamation) and low (rehabilitation) similarity with the reference ecosystem
(Aronson et al., 1993; Harris et al., 2006; Jackson et al., 1995; Jackson and Hobbs,
2009).

Lastly, construction supports the premise that ecosystems can be built at locations
where they never occurred before in order to mitigate losses elsewhere or to locally
improve the production of ecosystem services. Often, these actions are also referred
to as representing creation, reallocation or establishment of the preferred artificial
system (Aronson et al., 1993; Jackson et al., 1995).
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1.1.3 Wetlands as a starting point

Natural wetlands have been around for as long as humans stroll around the world, but
their area has decreased ever since (Kingsford et al., 2016). Population growth, increased
urbanisation and industrial development are only a few of the driving forces that have
steered this downward trend and that have, along with other land transformations,
caused the loss of at least 50 % (and potentially up to 87 %) of all wetland area around
the world (Davidson, 2014; van Asselen et al., 2013; Vitousek et al., 1997). With wetlands
providing key environmental processes and being identified as one of the highest-valued
habitats per unit area (Costanza et al., 2014; Millenium Ecosystem Assessment, 2005),
they inherently affect local and regional ecosystems at the abiotic and biotic level
(Zedler, 2003). Hence, wetland protection and restoration are of key importance to
avoid future degradation and to regain lost functions on land (SDG 15 - Life on land)
(Kingsford et al., 2016; United Nations, 2015).

Artificial wetlands help to mitigate these losses by mimicking natural wetland
conditions (Kadlec and Wallace, 2008; Scholz et al., 2007), though are frequently built
as single-purpose systems, including food production (e.g. rice paddies), flood
protection (e.g. controlled flood areas) and pollution mitigation (e.g. reed beds).
Application of the latter to fight point and diffuse pollution sources has received
increased attention throughout the past fifty years, focusing on design, applicability,
resilience, type of substrate and vegetation (Auvinen et al., 2016; Karathanasis et al,
2003; Kivaisi, 2001; Park and Polprasert, 2008; Rousseau et al., 2004a; Vymazal, 2010).
Due to their low capital and maintenance costs, constructed treatment wetlands (CTWs)
represent a viable pollution mitigation measure in remote areas (Kivaisi, 2001; Vymazal,
201a; Zhi and Ji, 2012), providing sanitation and cleaner water (SDG 6 - Clean water
and sanitation) (United Nations, 2015).

Throughout the last two decades, multi-purpose designs that combine biodiversity
increase and pollutant removal have been simultaneously introduced as the ‘Water
Harmonica’ concept (Kampf and Claassen, 2004) and the ‘Integrated Constructed
Wetland’ (ICW) concept (Scholz et al., 2007). Within these concepts, CTWs are
designed to provide both pollutant removal and landscape integration, while
establishing a range of habitats to support increased biological diversity (Boets et al.,
2011; Harrington and McInnes, 2009; Scholz et al., 2007). Nevertheless, reports on the
combined pollutant reduction and biodiversity boost provided by ICW systems remain
limited as most studies focus on the water treatment function (Becerra-Jurado et al.,
2012; Benyamine et al., 2004; Hansson et al., 2005). Further studies are therefore crucial
to narrow the resulting gap between the conceptual framework and practical
implementation.
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1.2 Delineation of the study and research objectives

1.2.1 Identification of the working field

Integrated constructed wetlands (ICWs) rely on a complex interplay of physical,
chemical and biological processes that deserve attention during decision-making and
prior to implementing on-site measures. More specifically, the success of ICWs (either
after construction or restoration) ultimately depends heavily on (1) the integration in its
surrounding, (2) the degree of pollutant removal and (3) the resulting augmented
biodiversity. With the current freshwater biodiversity crisis in mind (Harrison et al.,
2018; He et al., 2019), the majority of this work is dedicated to the biodiversity potential
of ICWs, without completely ignoring the physical and chemical aspects.

The biological response to the prevailing abiotic conditions and dynamics can be
inferred from experiments, models or a combination of both. More importantly, both
data sources entail a continuum that ranges from a simplified to a highly complex
approach. For instance, experiments can be performed under controlled laboratory
conditions with a single treatment factor, though can be as complex as restoring
hydraulic conditions and assessing the difference in species richness over time.
Similarly, models to infer species-specific habitat suitability and distribution patterns
can be purely data-driven (empirical) or completely mechanistic (process-based), yet
the design and application of all models is greatly determined by their intended usage.

This variety in experiment and model complexity requires a further delineation of the
working field considered throughout this work. Given the increasing importance of
environmental data science in decision-making and the growing amount of publicly-
available occurrence data sets (Gibert et al., 2018a; Maldonado et al., 2015), it was
decided to work with data-driven modelling techniques. These models allow for
inferring species-specific habitat preferences, though tend to be challenged by a lack of
data or by limited integration of species dynamics. This is especially the case for rare and
alien species, which advocates the use of simplified experiments to infer and forecast
species-specific behaviour. In short, both models and experiments are considered and
applied to support the biotic restoration and construction of ICWs.

Aside from this conceptual delineation, several boundary conditions require
specification prior to identifying the knowledge gaps and associated study objectives.
Firstly, the physical design is assumed to promote relatively high hydraulic retention
times and to represent inclined banks that allow for a gradient in water depth (and
associated microhabitats). Secondly, the chemical conditions mainly represent a
wastewater polishing stage and are, therefore, assumed to reflect elevated nutrient
levels. Thirdly, the geographic location is focused on Belgium and the Netherlands and

assumes a similar climate (i.e. no important steering climatic variables).
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1.2.2 Research objectives

The conceptual delineation of the study area (see Section 1.2.1) creates a transparent
foundation for outlining the practical research objectives of this work. These objectives
help to link and streamline individual studies and can be easily divided into three major
themes: (1) literature review, (2) data-driven modelling and (3) autecological

experiments.

To start, literature provides an essential basis to narrow the practical working field
further. More specifically, ICWs have already been introduced in Section 1.1.3, though
deserve a more in-depth description of the various chemical processes and biotic
interactions that take place within. Similarly, a variety of data-driven modelling
techniques exists, which merits a detailed qualitative comparison prior to technique
selection. Specific research objectives related to the literature review on ICWs and
modelling techniques are provided in Section 1.2.2.1.

Secondly, data-driven modelling is not limited to technique selection, but also includes
data cleaning and pre-processing in order to improve the quality of the data. This is
especially the case when dealing with publicly available data, as these often contain
noise and impure information (Maldonado et al., 2015). The geographical delineation of
the study allows the use of the Limnodata Neerlandica (Knoben and van der Wal, 2015),
which is characterised by a relatively high spatiotemporal coverage. The structure of this
data set supports the development of models trained with presence-absence data, which
narrows the number of techniques to be considered in the first theme. Specific research
objectives related to data-driven modelling are introduced in Section 1.2.2.2.

Thirdly, experiments provide valuable information when insufficient data is available for
model development. The conceptual framework entails open water systems with
elevated nutrient levels and are, similar to other freshwater systems, exposed to the
introduction of alien species. Only a fraction of the introduced alien species survives
(see Box 1.1), though these survivors can drastically affect ecosystem structure and
functioning. Therefore, alien species with a negative effect on native species are best
known in advance to support proactive management. In contrast, when such a species
is already present, reactive management is needed to reduce its impact. Data-driven
models are generally incapable of providing appropriate answers to these questions,
which highlights the importance of experiments. Specific research objectives related to
these autecological experiments are summarised in Section 1.2.2.3.

Throughout this work, these three themes are dealt with in the presented order, and
subdivided in a series of research questions and related objective. For each theme, a
visual representation is provided, along with the identification of the chapter dealing
with the objective(s).

11
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1.2.2.1 Theme 1: Exploring experiences

When working with integrated constructed wetlands, identification of a biotic group
that represents habitat modifiers is recommended as they shape and transform the local
ecosystem. Hence, the first research question is summarised as: “Which biotic groups are
relatively strong habitat modifiers?” (Figure 1.2). An answer to this question is obtained
by creating an overview of how biotic groups interact in shallow eutrophic freshwater
systems (Objective 1.1) and determining which group has a relatively large impact on
both the abiotic conditions and biotic community (Objective 1.2).

Secondly, a detailed description of the system under study is essential to construct the
overall framework. Therefore, the second research question within this theme entails:
“What hampers implementing Integrated Constructed Wetlands (ICWs)?” (Figure 1.2).
An answer to this question is obtained by summarising wastewater treatment
performance of constructed wetlands (Objective 1.3) and elaborating on the desired
functions to identify current knowledge gaps (Objective 1.4).

Lastly, species occurrence is highly dependent on the prevailing abiotic conditions and
biotic interactions, which can be combined in a modelling framework. Yet, as the
number of available techniques increases rapidly, the following research question
remains: “What options exist for correlative habitat suitability modelling?” (Figure 1.2).
By comparing a selection of modelling techniques (Objective 1.5) and describing the
overall modelling framework (Objective 1.6), an answer to this question is provided.

[ THEME 1 — EXPLORING EXPERIENCES ]
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Figure 1.2: Content of the first theme, including research questions and underlying
objectives. Research question 1.1 and 1.2 are discussed in Chapter 2, while research question 1.3 is
discussed in Chapter 3 (see further).
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1.2.2.2 Theme 2: Model development

When developing ecological models, natural processes and interactions are simplified
to ease interpretation by complexity reduction (Wilson et al., 2011). Therefore, model
results should be interpreted with care, especially when publicly available data is used.
This real-world data is generally in need of cleaning to improve the overall information
density prior to being used, thereby positively affecting model fit and related results
(Maldonado et al., 2015; Zhang et al., 2003). Hence, the first research question of this
theme can be summarised as: “How to prepare the available data to improve model
performance?” (Figure 1.3). An answer to this question is obtained by identifying and
applying a technique to deal with missing data (Objective 2.1), along with exploring data
cleaning procedures and related threshold selection to increase the information content
(Objective 2.2). With data and time being valuable aspects during modelling, related
gains or losses will be juxtaposed with changes in accuracy.

Subsequently, the pre-processed data act as information source for the development of
predictive models in order to identify those locations that will benefit from artificial
introduction. Moreover, it also allows to identify locations that remain unsuitable for
native species, yet suitable for invasive alien species. Therefore, the second research
question of this theme entails: “How applicable is the selected modelling technique?”
(Figure 1.3). By developing species-specific models (Objective 2.3), derive species-
specific habitat descriptors (Objective 2.4) and applying these models within a
management framework (Objective 2.5), an answer to this research question is obtained.

[ THEME 2 — MODEL DEVELOPMENT }
4 N N
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How to prepare the available data to improve How applicableis the selected modelling
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Determine how to handle missing values Develop species-specific habitat suitability models )
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Apply models to support freshwater management
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Figure 1.3: Content of the second theme, including research questions and underlying
objectives. Research question 2.1 is discussed in Chapters 5 and 6, while research question 2.2 is
discussed in Chapter 7 (see further).
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1.2.2.3 Theme 3: Autecological experiments

Management of invasive alien species is significantly supported by the development of
correlative habitat suitability and species distribution models (Boets et al., 2010;
Gallardo et al., 2012). Yet, the data-driven nature of most modelling techniques relies on
the presence of these non-indigenous species within the non-native range, thereby
hampering their application to support proper proactive management. Hence, the first
research question within this theme is summarised as: “Can functional traits be used to
infer invasive behaviour of alien species?” (Figure 1.4). An answer to this question is
obtained by selecting traits according to the SMART guidelines (Specific - Measurable -
Attainable - Relevant - Time-bound) (Objective 3.1), followed by the comparison of field
observations with the achieved trait results (Objective 3.2).

Secondly, management of freshwater sites that have been invaded by an alien species
can be based on developed habitat suitability or species distribution models. Yet, only a
fraction of modelling techniques is able to substantially include temporal dynamics,
which illustrates a major drawback of model-based management. Moreover, it
represents the basis of the second research question within this experiment-based
theme: “How does partial biomass removal affect species productivity?” (Figure 1.4). By
experimentally determining biomass production and ratio under different pressures
(Objective 3.3) and comparing the response of a native and alien population (Objective
3.4), an answer to this research question is obtained.

[ THEME 3 — AUTECOLOGICAL EXPERIMENTS }
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Figure 1.4: Content of the third theme, including research questions and underlying
objectives. Research question 3.1 is discussed in Chapter 8, while research question 3.2 is
discussed in Chapter 9 (see further).
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1.3 Thesis roadmap

To answer the abovementioned research questions, several steps are taken, analysed and
discussed throughout this thesis, separated in 10 different chapters. The content of most
chapters and how they tackle a specific research question has already been shortly
presented in Figure 1.2, Figure 1.3 and Figure 1.4, though merits a more elaborate
description to reflect the overall structure and continuity of this work. Throughout the
following paragraphs, the content of each chapter is introduced along with its relevance
and contribution to the aforementioned research questions, which is ultimately

summarised in a comprehensive scheme (see Figure 1.5).

Within this first chapter, the general background of the study is provided to introduce
the societal relevance and scientific necessity of this work. Attention is given to the
importance of water in society, as well as the value of aquatic ecosystems and the
provided services. Due to the connection between aquatic and terrestrial systems,
wetlands are considered to be a prominent starting point for combining water
treatment, storage and purification along with a positive note towards the improvement
of terrestrial biodiversity and river conservation. Based on this starting point, a series of
research questions with underlying objectives are identified to steer and frame all
subsequent chapters.

In Chapter 2, additional focus is given to the concept of Integrated Constructed
Wetlands (ICWs) and the identification of interactions among several biotic groups
within shallow eutrophic freshwater systems. Specific attention is given to pollutant
removal within constructed wetlands and the structuring role of macrophytes in many
aquatic systems. The chapter concludes with a summary of key issues that need further
investigation to support the implementation of ICWs as a multi-purpose technique
dealing with water pollution and biodiversity improvement. The majority of subsequent
chapters elaborates on one (or more) of the key issues identified here.

Next, Chapter 3 dives into the world of data-driven habitat suitability and species
distribution models by discussing the advantages and drawbacks of five modelling
techniques. Application of these techniques within ecosystem management is illustrated
by means of examples, while highlighting the different steps and approaches to be
considered during model development. The chapter includes an introduction to
decision trees, generalised linear models, artificial neural networks, fuzzy logic and
Bayesian belief networks as well as a description on model conceptualisation,
requirements, calibration and evaluation. Moreover, it provides an introduction to the
potential of and criticism on ecological modelling to support environmental
management. The chapter concludes with the endorsement of a promising data-driven
modelling technique.

15
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Subsequently, Chapter 4 provides a general description of the data and modelling
technique underlying the following chapters. An in-depth description of the data set is
provided (spatiotemporal coverage, number of instances, number of explanatory
variables, number of species, missing data, ...), as well as a more detailed discussion of
the selected model algorithm. Moreover, the methodology and experimental design
behind the applied data cleaning are touched upon. Finally, the focus species of the
autecological experiments are introduced.

In Chapter 5, the first step in cleaning the available data is performed. More specifically,
different approaches to deal with missing data are introduced to avoid the traditional
information loss caused by removing the incomplete instances from the data set. Four
techniques replacing the missing value by a data-derived value (i.e. ‘data imputation’)
are discussed in more detail, being mean value, least squares, k-nearest neighbours and
missForest. The application of each technique to a range of differently-sized data sets
provides a conclusion on the most accurate technique, while mentioning computation
time as a side aspect during method evaluation.

Following data selection and preparation, Chapter 6 discusses the potential of further
data pre-processing in concert with the selected algorithm, while identifying a lack of
clear guidelines. The removal of redundant variables and potentially faulty instances is
expected to reduce overall data complexity, to improve model performance and to
decrease computation time. Throughout the chapter, four techniques are dealt with in
more detail: (i) instance removal based on outliers, (ii) instance removal based on false
absences, (iii) variable removal based on correlation score and (iv) variable removal
based on variable importance. The chapter concludes with a statement on the effects of
data pre-processing on model performance and provides a suggestion for further
research.

Next, Chapter 7 builds further on the findings of Chapter 5 (imputation technique) and
Chapter 6 (data pre-processing) and combines them in the development of species-
specific abiotic habitat suitability models. For each species, model fit is improved by
optimising hyperparameter settings and comparing final model performance with
baseline and null model performance. Based on these models, species-specific variable
importance is derived, while additionally providing the opportunity to assess the effect
of different management scenarios. Finally, the chapter concludes with an overview of
the identified steering variables and how management effects depend on the starting
conditions within the system under consideration, while highlighting that controlled
experiments can improve understanding of the dynamic interactions occurring within
ecosystems.
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After the model-based approach, Chapter 8 considers the application of controlled
laboratory experiments to define invasive behaviour of an alien species. Two highly
similar species are exposed to a range of nutrient concentrations under optimal growing
conditions, while a selection of functional traits is being monitored. Based on ecological
theory, it is expected that an invasive species exhibits higher performance either at the
level of resource intake or biomass production. Finally, a conclusion on the applicability
of the selected traits for inferring invasive potential of alien species is provided.

In contrast, Chapter 9 elaborates on the post-establishment phase, where an invasive
alien species is continuously introduced in a new environment and threatens native
populations. Management of these native species by means of harvesting can disturb
natural conditions and benefit the alien species. Meanwhile, biomass removal of an
invasive alien species can help creating opportunities for the re-colonisation by (a)
native species. Within this chapter, a dynamic interaction of management and
introduction pressure is applied on the same species from Chapter 8 and is studied to
infer the potential detrimental effects of management without prior study. Based on
these observations, management suggestions are formulated to conclude this chapter.

Finally, Chapter 10 combines all the observations into a general discussion, followed by
a conclusion for future freshwater management. Within this chapter, the answers to the
research questions and objectives identified in the first chapter are summarised and re-
framed in a bigger story. More specifically, the chapter discusses the application of the
suggested modelling technique in combination with the appropriate data pre-processing
and hyperparameter optimisation and subsequently couples back with the need for
restoring and constructing wetlands. Moreover, attention is given to the threat posed by
invasive alien species and how performed experiments help in identifying solutions and
challenges for both proactive and reactive management. Ultimately, the chapter
concludes with an introduction to the future perspectives of ecosystem modelling and

invasive species management.

From this, it is clear that all chapters are linked and provide a linear story throughout
the whole thesis. Each chapter tackles a specific research question and the underlying
objectives (see Figure 1.2, Figure 1.3 and Figure 1.4), while often building on previous
chapters. A complete overview of this work and how the chapters are linked, is provided
in Figure 1.5.
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Figure 1.5: Roadmap of this thesis. Three main themes can be identified: (1) Summarising
available information by means of literature review (Setting the scene); (2) Optimise the available
data via imputation and pre-processing and develop habitat suitability models (Modelling) and (3)
Perform controlled experiments to complement the models (Experiments).
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CHAPTER 2

Abstract

Wetland management requires a spectrum of scientific and socioeconomic input,
especially within the framework of water purification and ecosystem development.
Combining both ecosystem services into a single system is challenging, as detailed
knowledge on and experience with this kind of integrated constructed wetlands is
lacking. Therefore, information on the treatment performance of and the biotic
interactions within wetlands is combined here to identify issues to be tackled prior to
the implementation of multifunctional wetlands. On the one hand, pollutant reduction
in natural treatment systems is highly variable and case-dependent, as illustrated by the
removal efficiencies for BOD (50 - 90 %), nitrogen (14 — 86 %) and phosphorus (35 - 91
%). Further understanding on how processes are affected by environmental conditions
and how discharges affect the receiving water body are crucial for wide-scale application.
On the other hand, a variety of biotic interactions occurs within shallow water systems
and illustrates the essential role of macrophytes towards habitat creation. Their steering
role regarding wetland community structure and functioning affects the physical,
chemical and biological level and suggests that macrophytes are a potential starting
point for wetland restoration and construction. Inference of the preferred abiotic
conditions by means of occurrence-based correlative habitat suitability models provides
potential, though highly depends on the quality of the available data, while biotic
interactions are even harder to predict. Hence, additional attention towards model
development, data quality assurance and controlled experiments offer the opportunity
to fill these knowledge gaps. Moreover, specific attention should be given to invasive
alien species as they often possess functional traits that differ from native species and,
when given an opportunity following land use alterations or climate change, can alter
the composition and functioning of native communities. Despite these challenges,
artificial treatment wetlands provide the opportunity to counteract the ongoing loss of
wetlands and related ecosystem services.
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KEY ISSUES MULTIFUNCTIONAL WETLANDS

2.1 Setting the scene

In previous chapter, the concept of Integrated Constructed Wetlands (ICW) indicated
the potential of artificial wetlands to mimic the intrinsic multifunctionality of natural
wetlands. It highlighted that such integrated artificial wetlands combine both pollutant
removal and biodiversity improvement, thereby directly affecting the surrounding local
environment. Moreover, the effects of wetland presence resonate through space (and
time), as wetlands increase landscape heterogeneity and provide potential for nutrient
retention and cycling at the regional scale (Comin et al., 2001; Gopal, 2016). At the
watershed scale, they act as water buffer zones and increase connectivity between green
zones, while regulating climate at the global scale (Gopal, 2016; Jenkins et al., 2010;
Mitsch and Gosselink, 2000) (see Figure 2.1). Typically, these effects take place faster at
a smaller scale, while being temporally lagged at the larger scale.

The benefits of wetland presence are not limited to supporting a variety of
environmental processes and cycles, but extends to providing the potential to combat
current ecological, economic and societal issues including the occurrence of algae
blooms in eutrophic freshwater systems, the presence of dead zones near river mouths
and coasts (Breitburg et al., 2018), the salinisation of coastal and freshwater wetlands
(Herbert et al., 2015), the ongoing acidification of rivers and lakes (Weiss et al., 2018),
the increasing rainfall intensity and flooding frequency (Kundzewicz et al., 2014), the
depletion of groundwater (Doll et al., 2014), global and personal human health issues
(Hartig et al., 2014) and the required development towards a more circular economy
(Singh and Ordoriez, 2016), as exemplified by Figure 2.1.

SUPPORTING INCREASING IMPROVING
NUTRIENT BIODIVERSITY HUMAN
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Figure 2.1: Examples of ecosystem processes and services provided by wetlands. Several
processes are beneficial towards both ecosystem functioning and society (e.g. purifying water,
mitigating floods), while others are more specifically beneficial towards the environment (e.g.
restoring groundwater levels) or society (e.g. improving human health).

23



CHAPTER 2

Optimising and safeguarding these ecosystem services requires a concert of scientific,
societal and economic input that ultimately results in the protection, restoration or
construction of wetlands (Jackson et al., 1995; Kingsford et al., 2016; Whigham, 1999).
Protection requires the least input as it merely applies to (mostly) pristine systems with
relatively high ecological and economical value. The prevailing conditions within these
systems support a stable and undisturbed situation and a diverse biological community.
Wetlands displaying a decrease in ecological quality (ongoing or historical) may benefit
from human intervention, hence restoration is often applied. Yet, despite the availability
of existing principles, restoration actions are carried out on a case-by-case basis with low
repeatability (Keddy, 1999). Finally, wetland construction is performed to mimic natural
systems and profit from the delivered ecosystem services. For instance, constructed
treatment wetlands (CTWs) are highly tuned systems for the mere optimisation of
pollutant removal. The majority of these systems consists of a herbaceous species
growing in a substrate with wastewater flowing either on top (free water surface; FWS)
or through (sub-surface flow; SSF) the substrate (Vymazal, 2010).

Within this chapter, specific attention is given to the construction of wetlands that allow
(i) direct interaction with the atmosphere, (ii) the presence of both shallow and deep
zones, (iii) the establishment of macrophytes and (iv) the creation of microhabitats via
compartmentalisation. To avoid confusion with natural wetlands, terminology from the
field of artificial treatment wetlands will be used further on, referring to the preferred
wetland as a Free Water Surface (FWS) wetland (Gopal, 2016; Kadlec, 2009; Vymazal,
2010). The construction and restoration of these FWS CTWSs provide a unique
opportunity to create a single answer to two separate problems: (i) direct discharge of
eutrophic wastewaters into the environment and (ii) loss of wetland-related biodiversity
and the according ecosystem services. Therefore, an assessment is made throughout the
following sections of both the chemical processes and biotic interactions occurring
within the FWS system, with specific attention towards phytoplankton, periphyton,
zooplankton, macroinvertebrates, macrophytes and fish. This contrasts with the main
biotic focus brought forward in Section 1.2.1, but was considered essential when
introducing ICWs.

The aim is to create an overview of how specific biotic groups interact in shallow
eutrophic freshwater systems and, from that, derive which biotic group(s) can provide a
biological basis for developing a complex community. By tackling these two objectives,
an answer is provided to RQL1 from Chapter 1. In addition, information on the biotic
interactions and chemical treatment performance is combined to identify key issues to
improve the implementation of multifunctional artificial wetlands, thereby answering
RQL.2. Therefore, this chapter concludes with a summary of the identified key issues.
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2.2 Pollutant removal within constructed treatment wetlands
Wetlands receive the majority of their resources from terrestrial systems and offer a
useful combination of conditions for supporting the biogeochemical cycles locally
(Keddy, 2010). For instance, due to their sink function, wetlands accumulate relatively
high amounts of carbon (Dodds and Whiles, 2010), which is used as a food source by
the prevailing microorganism community (see Box 2.1). Aside from creating new
biomass, gaseous carbon-based by-products are excreted by these microorganisms,
including CO: (under aerobic conditions) and CH4 (under anaerobic conditions). Yet,
due to the high amount of carbon within the wetland, oxygen is often depleted
throughout the majority of the water column, causing mostly anaerobic conditions to
occur. Consequently, wetlands tend to contribute to climate change by exhausting CH4
and N2O, which are created in anaerobic conditions and have a higher global warming
potential than CO; (i.e. around 28 and 265 times at the century scale (IPCC, 2014),
respectively). At the water surface, however, oxygen diffuses into the water column and
allows for the presence of an aerobic boundary layer. Due to this layer, a heterogeneous
environment exists, with complementary processes occurring in the top (aerobic) and
bottom (anoxic) layers.

These biochemical processes have been the basis for applying a wetland configuration
within the framework of water treatment, with wastewater originating from domestic,
agricultural, industrial and storm water sources (Kadlec and Wallace, 2008; Vymazal,
2010). Similar to conventional treatment systems, these natural counterparts rely on the
activity of microorganisms to mineralise or transform waste products into new resources
(i.e. nutrients, see further) without extensively applying chemicals, electricity or
artificial aeration, although research on how these factors impact treatment
performance is ongoing (Donoso et al., 2019; Gao et al., 2017).

The microbial conversion of organic material into new resources supports the survival
and reproduction of primary producers (phytoplankton, macrophytes). Moreover, due
to their sink function and associated biogeochemical processes, freshwater wetlands can
produce up to 10 times more biomass than lakes and streams (i.e. around 1100 g-m.y!
versus 110 g-m2-y!, respectively) (Dodds and Whiles, 2010). This biomass, in turn, acts
as a food source for heterotrophic organisms (zooplankton, macroinvertebrates, fish),
including herbivores and detritivores. Hence, the presence of these biogeochemical

processes provides the basis for complex food web development.

Within the remainder of this section, the attention is focused on (1) the most frequently
occurring and reported pollutants within CTWs and (2) additional key aspects that
require study to improve and evaluate the applicability of CTWs. The different biotic
groups that benefit from the provided resources will be discussed in the next section
(see Section 2.3).
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Box 2.1: Microorganisms in constructed treatment wetlands

The terminology ‘microorganism’ as used here overarches several biotic groups,
including Archaea, bacteria, fungi and microscopic algae. The identification and
classification of microorganisms is increasing, though researchers acknowledge the
idea that the majority remains undiscovered (Cavicchioli et al., 2019; Sacca et al.,
2017). The composition of such a microorganism community is highly case-dependent
and often hard to control due to the complex interplay and dependency among
species. For instance, He et al. (2017) indicated that the increased usage of saltwater
to replace freshwater during activated sludge treatment potentially affects the
performance of the system and illustrated that increased salinity decreased bacterial
activity and sludge floc size. Nevertheless, microorganism presence remains essential
in developing and maintaining the biogeochemical nutrient cycles that underlie the
high-valued attenuation capacity of natural systems (Cavicchioli et al., 2019; Sacca et
al., 2017).

Within the considered FWS CTWs, microorganisms can occur in the sediment, in the
sludge layer, suspended in the water column and attached to alternative substrates
(including stones, vegetation, liners and pipes). The latter often combines with non-
motile algae and the resulting micro-community is generally referred to as periphyton,
which is described in more detail in Section 2.3.1.2, along with its importance for
supporting the development of aquatic food webs. Transformation of pollutants
throughout CTWs is highly dependent on the activity of these microorganisms and
therefore benefits from the creation of additional surface area. Consequently, higher
removal efficiencies are theoretically obtained for treatment systems characterised by
a flow through a substrate (i.e. subsurface flow) rather than on top of a substrate (i.e.

free water surface), although this has been contradicted by field observations (Kadlec,
2009).

Presence of microorganisms within CTWs is crucial for developing aquatic food webs,
while a variety of factors (e.g. temperature, wastewater type, macrophyte presence)
dynamically influences the prevailing community composition. For instance, Wang et
al. (2016) observed that reduced temperatures negatively affected the performance of
the microorganisms and, consequently, the removal efficiency of the system.
Moreover, they found that plant presence has a positive effect on microbial
abundance, being further extended by Hernandez-Crespo et al. (2016) who stated that
combining multiple plant species supports a more diverse microbial community.
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2.21 Wastewater pollutants and removal within CTWs

Within this subsection, specific attention is given to total suspended solids (SS),
biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen
(tN) and total phosphorus (tP), as they are the main focus of both legislation and
research. Complementary topics dealt with in literature include metals, pharmaceuticals
and personal care products (PPCP), pesticides, faecal contamination and endocrine
disruptors (ED) (Vymazal, 2009).

SS represent all the particulate matter being suspended in the water column, covering a
fraction of the overall BOD, COD, tN and tP content. Due to the low flow conditions
within FWS CTWs, SS is mostly reduced via settling and complemented with
decantation and filtering (e.g. due to macrophyte presence) supporting removal
efficiencies up to 80 % (Kadlec and Wallace, 2008; Rousseau et al., 2004b; Verhoeven
and Meuleman, 1999). Consequential to the settling of SS, a sludge layer is formed at the
bottom, being a mix of non-degradable (e.g. sand, silt) and degradable solids, allowing
the latter to dissociate and, ultimately, dissolve within the water column or dissipate
into the atmosphere. The mineralisation underlying this dissociation is a complex
concert of pollutant-specific processes (see further), often resulting in reduced sludge

volumes.

Within both the settled solids and water column, organic pollutants (BOD and COD)
are subjected to biochemical processes conducted by microbial activity. Both aerobic
respiration (conversion of organic-C into COz) and anaerobic fermentation (conversion
of organic-C into CH4) support the (partial) removal of BOD and, hence, COD (Kadlec
and Wallace, 2008). The openness of FWS allows for the diffusion of oxygen into the
water column, yet this rate tends to be lower than the overall oxygen demand and causes
oxygen depletion near the bottom. The resulting gradient separates the aerobic layers
with COz-production at the surface from the anaerobic layers with CH4-production near
the bottom. Still, removal efficiencies up to 90 % for BOD and 80 % for COD have been
reported, though these can be as low as 50 % for BOD and 60 % for COD (Galanopoulos
et al., 2013; Healy et al., 2007; Kivaisi, 2001; Wang et al., 2017).

At nutrient level, both sedimentation and microbial activity play a role, though the
importance of each process depends on the type of nutrient under consideration. For
instance, the nitrogen cycle is highly diverse, including anions (NO; and NO3), cations
(NH) and gaseous forms (NH3, N,0 and N,). With N, being the main component of the
atmosphere, the transformation of organically bound nitrogen via ammonification
(production of NH; and NH; following a pH-based equilibrium), nitrification
(conversion of NH} into NO3 via NO; in aerobic conditions) and denitrification
(conversion of NO3 into N, in anaerobic conditions with a C-source) into nitrogen gas

(see Figure 2.2) does not pose any significant environmental impact.
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However, the gaseous nitrous oxide (N,0) produced during incomplete denitrification
potentially leaks into the atmosphere where it contributes to global warming (IPCC,
2014; Song et al., 2012). Moreover, with nitrification occurring in the aerobic top layer
and denitrification taking place in the anaerobic (sludge) layer (Figure 2.2) (Vymazal,
2010), the overall nitrogen removal efficiency is highly dependent on the diffusion
process, resulting in lower values compared to carbon removal efficiencies (up to 86 %,
but going as low as 14 % (Wang et al., 2017)). Nevertheless, when all conditions are
present to support ammonification, nitrification and denitrification, FWS CTW can

remove nitrogen indefinitely (Zedler, 2003).
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Figure 2.2: Illustration of the nitrogen cycle within wetlands. Dissolved ammonium (NH})
equilibrates with ammonia (NH;), which is oxidised to nitrite (NO; ) and nitrate (NO3 ) in the
aerobic zone. In the anaerobic zone, nitrite is reduced to nitrous oxide (N,0) and nitrogen gas
(N,). The latter two can escape into the atmosphere as a gas, as well as ammonia (NHs).

In contrast to carbon and nitrogen removal, limits occur with respect to phosphorus
removal due to the absence of a gaseous form. Phosphate-ions (PO3~) adsorb on the
substrate surface, which, over time, results in lower removal efficiencies due to
saturation effects (Bolton et al., 2019; Vohla et al., 2011). For instance, Wang et al. (2017)
reported a decrease in phosphorus removal efficiency from 91 % down to only 35 % due
to saturation effects within the substrate. Studies on characteristic substrate saturation
curves indicate that phosphorus breakthrough in operational CTWs can be delayed by
using different substrates (Bolton et al, 2019; Park and Polprasert, 2008).
Unfortunately, no stand-alone solutions to this substrate saturation are currently
available, which implies that CTWs cannot act as completely independent treatment

systems.

Each of these removal processes is steered by a plethora of abiotic variables, ranging
from manageable (e.g. retention time, substrate depth) to unmanageable (e.g.
temperature, precipitation) variables. Research related to these variables indicates an
improved performance within a warmer climate, broad open spaces and higher retention
times (Garfi et al., 2012; Kadlec, 2009; Kotti et al., 2010).
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For instance, Wang et al. (2017) observed that cold climates had an upper limit of 80 %
removal for BOD, while Kadlec and Wallace (2008) reported BOD removal efficiencies
over 80 % in warm climates, thereby illustrating the positive effect of increased
metabolic rates of the prevailing microorganism assemblage due to elevated
temperatures (Kadlec, 2009). In contrast, the removal of SS is negatively correlated with
temperature, as elevated microorganism productivity increases their suspension
potential, hence causing higher SS levels to occur within the wetland effluent compared
to the influent (Kadlec and Wallace, 2008).

Similarly, steering biotic variables range from manageable (e.g. presence of vegetation)
to limitedly or completely unmanageable (e.g. microorganism assemblage). The effect
of macrophyte presence on pollutant removal has been studied for decades and has been
reported as one of the factors controlling temperature and nitrogen removal in wetlands
(Garcia-Lledé et al, 2011; Vymazal, 2007; Vymazal, 2013; Wang et al., 2017).
Macrophytes influence pollutant removal at several levels. For instance, plant structures
within the water column provide a surface for microorganisms to grow and interact,
thereby supporting improved contact between the organic pollutants in the water phase
and the heterotrophic bacteria (Brix, 1997; Fan et al., 2016). Moreover, within the root
zone, oxygen is released and results in micro-aeration of the substrate, thereby locally
supporting the presence of aerobic bacteria active in the oxidation of both organic
matter and nitrogen compounds (Brix, 1997; Vymazal, 2013). Contrasting these indirect
effects, a direct effect on nutrients is exerted via uptake and assimilation into biomass
(Beutel et al., 2014; Dierberg et al., 2002). However, this type of nutrient removal has
been observed to account for maximally 10 % of the total incoming load and is
potentially returned to the water phase when biomass is not harvested (Herndndez-
Crespo et al., 2016; Merlin et al., 2002; Park and Polprasert, 2008).

The extensive range of variables identified to exert an influence on wetland performance
in combination with the reported case studies to be found throughout literature,
illustrates that many research gaps still exist, especially due to the limited comparability
of different systems (Thomaz and Cunha, 2010). Moreover, the effect of these variables
is not restricted to altering pollutant removal, but extends to the water body receiving
the effluent of the treatment system. Similar to the effect of conventional wastewater
treatment plants (Ort and Siegrist, 2009; Zhou et al., 2009), both quantity and quality
of the effluent have the potential to cause changes in the abiotic conditions downstream
of the CTW discharge point. However, the intensity of these changes remains highly
dependent on the actual flow of the discharge, which is often several magnitudes smaller
than conventional systems due to being applied at a smaller scale. Despite the
importance of discharge flow, attention in the following section is mostly directed at the
treatment performance of artificial wetlands.
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2.2.2 Improving treatment to accommodate clean water and sanitation
Constructed treatment wetlands provide the potential to reduce the amount of
incoming suspended solids and biodegradable organic compounds up to 85 % and 80
%, respectively, although this highly depends on the type of water being treated (Hijosa-
Valsero et al., 2010; Verhoeven and Meuleman, 1999). However, environmental
conditions greatly affect microbial processes, causing difficulty in reaching stable
effluent concentrations, while the absence of strong oxidative compounds within the
treatment system impedes the removal of highly recalcitrant organic compounds
(Donoso et al., 2018). This provides two main areas for further research: (i) improve the
understanding of how prevailing conditions affect the treatment efficiency and (ii)
determine the potential impact of recalcitrant compounds on freshwater conditions.

Improved understanding of the treatment performance implies the combination of
experiments, analyses and simulations. A multitude of experimental studies discussing
separate case-studies can be found in literature, applying a range of wastewater
compositions (Garfi et al., 2012; Wang et al., 2017), different kinds of vegetation (Maine
et al., 2007; Vymazal, 2013) and a variety of substrate types (Sakadevan and Bavor, 1998;
Vohla et al., 2011), yet provide a limited basis to support an overall, holistic comparison.
For instance, Donoso et al. (2017) assessed the operating conditions (i.e. temperature,
water flow) of FWS CTWs treating diffuse nutrient pollution and concluded that FWS
CTWs provide an alternative measure to fight the eutrophication of waterways. Despite
the fact that this result supports the applicability of FWS CTW as a mitigation measure,
only superficial information related to the influence of prevailing conditions on
treatment performance can be extracted from this type of studies. This highlights the
need of more in-depth research to obtain a better process-based understanding of CTW

performance and the inherent influence of environmental conditions.

Secondly, despite providing relatively high removal efficiencies for specific pollutants,
trace concentrations do occur within effluents that are discharged into the environment,
especially in the case of recalcitrant compounds. Effects caused by their discharge are
highly case-specific and depend on the prevailing freshwater conditions on the one hand
and on the pollutant load and discharge frequency on the other hand. For instance,
exceeding the official effluent standards causes an unequivocal drop in absolute water
quality, while the relative change can be higher for high-quality compared to low-quality
surface waters. To illustrate this, Donoso et al. (2018) studied the relevance of COD
discharge limits for CTWs treating animal manure by assessing the occurrence of
macroinvertebrates in the receiving river. They observed the presence of pollution-
sensitive taxa downstream of the discharge point, despite the standard-exceeding COD
concentrations in the effluent, suggesting that the existing COD-standards might be too

stringent.
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Aside from indicating the limited environmental effect, Donoso et al. (2018) did not
specify the COD compound composition, making this kind of conclusion inference
overly simplistic and inappropriate towards other types of wastewater. For instance,
high concentrations of insecticides can result in high COD concentrations in the
effluent, simultaneously causing drastic effects on the downstream macroinvertebrate
assemblage. Hence, a more in-depth characterisation of COD compounds and how they
behave within the CTW is required prior to adapting the standards.

Progress within these fields is crucial to optimise the treatment process and limit the
environmental impact. This requires the collective consideration of societal,
environmental and operational aspects (Becerra Jurado et al., 2009; Mereta et al., 2012;
Truu et al., 2009), as illustrated in Figure 2.3. However, most studies only focus on a
subset of these aspects, with limited research applying a holistic approach. For instance,
De Troyer et al. (2016), assessed the water quality of the rivers and wetlands around
Jimma (Ethiopia), considering both chemical and biological indicators. They
acknowledged the potential of wetlands as a promising technique for wastewater
treatment, though concluded that further societal awareness and stakeholder
participation were needed to implement CTWs in regions affected by water pollution,
limited sanitation and overall poverty. Similarly, other reports highlighted the capacity
of natural and CTWs for wastewater treatment, while concluding that implementation
is impeded due to stakeholders lacking insight into the integrated functioning of CTW
ecosystems (Donoso et al., 2017; Hefting et al., 2013; Vymazal, 2010). These observations
highlight the need for (i) including societal aspects into CTW research and (ii) assigning
a budget for educating and involving local communities, confirming that restoration
success is determined by merging science, society and politics (Catalano et al., 2019;
Jahnig et al., 2011).
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working field expertise

Figure 2.3: Illustration of the required input to improve implementation of constructed
treatment wetlands. By combining only two aspects, successful long term implementation is
impeded due to the lack of societal, environmental or operational input.
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2.3 Biodiversity improvement by constructed wetlands

2.3.1 Occurrence of and interactions between key biotic groups

Wetlands are highly diverse and complex systems and support the survival of a variety
of biotic groups. Here, only a selection of them is discussed as an in-depth discussion of
each group separately goes beyond the scope of this chapter. More specifically, the aim
of this section is to identify the biotic group that provides a relatively strong steering
effect on the development of a complex biotic community, by focusing on their
functioning within the trophic food chain and contribution to creating a concert of
microhabitats. Therefore, two primary producers are considered (phytoplankton and
macrophytes) along with grazers (zooplankton, macroinvertebrates and fish) and
aquatic predators (macroinvertebrates and fish), supplemented with a mixed group of
autotrophic and heterotrophic organisms (periphyton). Despite the interactions
displayed by amphibians, mammals, bats and birds as important energy linkages with
the terrestrial system (Chawaka et al., 2018; Gopal, 2016; Parker et al., 2019), they are
not discussed here. An overview of the selected biotic groups and additional information
can be found in Table 2.1 and subsequent sections.

Table 2.1: Glossary for the biotic groups discussed within this chapter. For each biotic group
(phytoplankton, periphyton, zooplankton, macroinvertebrates, macrophytes and fish) a short
description and main subgroups are provided. Their importance within shallow, eutrophic systems
is further specified throughout the group-specific subsections.

Biotic group Description

Phytoplankton Free-floating group of microscopic organisms containing
chlorophyll to capture sunlight, with most important subgroups
being the cyanobacteria, green algae, diatoms and dinoflagellates.
Within shallow freshwater systems, Bacillariophyceae,
Chlorophyceae, Cyanophyceae and Euglenophyceae are frequently
reported (Calero et al., 2015; Chen et al., 2011b; Travaini-Lima et al.,
2016; Vincent and Kirkwood, 2014), with varying community
composition depending on both climatic and operating conditions.
Their growth is supported by sunlight, carbon dioxide (COz) and
nutrients.

Periphyton Group of microscopic organisms consisting of green algae,
cyanobacteria and (heterotrophic) microorganisms. They mostly
occur in symbiosis attached to submerged surfaces, including
substrate, vegetation and non-natural constructions. Their growth
is supported by the interaction between the autotrophic (sunlight,
carbon dioxide and nutrients) and heterotrophic (organic
compounds and by-products) species.

(Continues on next page)
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(Continued)

Biotic group

Description

Zooplankton

Macroinvertebrates

Macrophytes

Fish

Actively moving organisms that lack chlorophyll to provide in their
energy requirements, hence their heterotrophic feeding behaviour.
The most important groups to be considered within shallow
freshwater systems are cladocerans, rotifers, copepods and
ostracods. Their growth is mainly supported by the presence of
phytoplankton, detritus and other zooplankton species. Several
species belong to the Crustacea and are key primary consumers in
lotic systems (Dodds and Whiles, 2010).

Macroinvertebrates are small organisms without a backbone, but
large enough to be seen with the naked eye. They mostly live in the
benthic layer, but species living near the water surface and within
the water column exist as well. They feed on detritus, plankton
(both suspended and settled), other invertebrates and plants.
Macroinvertebrate monitoring is a common technique to assess the
biological water quality as this group is rather diverse and ranges
from pollution-sensitive to pollution-tolerant taxa, making them
ideal surrogates for assessing wetland health (Balcombe et al.,
2005a).

Macrophytes represent all types of aquatic vegetation that can be
found within a shallow water body and in the littoral zones of
rivers, lakes and oceans. A distinction is made between
nonvascular (e.g. mosses, known as bryophytes) and vascular (e.g.
reed, duckweed) plants, of which the latter is often subdivided in
emergent, submerged and floating plants (Dodds and Whiles,
2010). Macrophytes require nutrients, carbon dioxide and sunlight
to create new biomass, hence a vast amount of research on their
applicability as pollutant removers (i.e. phytoremediation) has
been performed (Brisson and Chazarenc, 2009; Hernandez-Crespo
et al., 2016; Rodriguez and Brisson, 2015; Tanner, 1996).

Highly diverse group with more than 10 000 freshwater species,
feeding on a variety of food sources, ranging from phytoplankton
over macroinvertebrates and macrophytes to other fish (Batzer et
al., 2000; Dodds and Whiles, 2010). The most common freshwater
fish orders (> 2000 species) are Cypriniformes, Siluriformes and
Perciformes (Dodds and Whiles, 2010).
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2.3.1.1 Phytoplankton

Considering the low flow and prevailing eutrophic conditions, FWS CTW provide an
optimal environment for phytoplankton to grow and prosper, especially when the
hydraulic retention time is high and macrophyte cover is limited (Luyiga and Kiwanuka,
2003). Within these systems, phytoplankton communities often indicate a dependence
on system design, climatic conditions and nutrient concentrations. For instance,
Travaini-Lima et al. (2016) associated the observed increase in biomass of Kirchneriella
lunaris (class Chlorophycaceae) during the dry season with elevated nutrient levels
entering the system. Similarly, Chen et al. (2011b) linked the difference in phytoplankton
community between three different CTWs treating domestic wastewater with the
prevailing total phosphorus concentration.

The value of phytoplankton within shallow freshwater systems is ambiguous and highly
dependent on abundance (Zimmer et al., 2003). For instance, at low concentrations,
they mainly take up nutrients and carbon dioxide to create new biomass through
photosynthesis, thereby positively supporting the development of higher trophic levels.
In contrast, exudates originating as by-products from metabolic processes can decrease
flocculation and subsequent settling of suspended solids, thereby negatively affecting
transparency and, thus, wetland treatment performance (Sun et al., 2013).

At high concentrations, algae blooms can develop due to the uncontrolled proliferation
in eutrophic conditions, which can lead to fluctuating oxygen levels that reach complete
absence of oxygen. Limitation of oxygen supports the production and volatilisation of
ammonia and negatively influences organisms that rely on respiration for their energy
balance (e.g. macroinvertebrates, fish), which ultimately limits their survival (Luyiga
and Kiwanuka, 2003; Miranda and Hodges, 2000). Moreover, some species (especially
cyanobacteria) excrete toxic compounds threatening fish population and human health
(Dodds and Whiles, 2010; Vincent and Kirkwood, 2014), requiring a bottom-up
(nutrient control) or top-down (biological or chemical control) approach.

More specifically, macrophytes compete with phytoplankton for nutrients and limit the
amount of light entering the water, hence limiting the presence of algae (Travaini-Lima
et al., 2016; Zimmer et al., 2003). Simultaneously, the excretion of allelochemicals (e.g.
phenolic compounds) can inhibit algae growth, although this highly depends on the
specific macrophyte-algae interaction (Zhong et al., 2016). In contrast to this resource
limitation, zooplankton and fish exert a top-down control strategy as they feed on
phytoplankton (Fontanarrosa et al., 2010). For example, Calero et al. (2015) observed an
increase in zooplankton biomass up to 64 % in the Albufera Lake FWS CTW along a
decrease of phytoplankton biomass, suggesting the presence of a trophic interaction.
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2.3.1.2 Periphyton

Due to the artificial nature of CTWs, surface areas for colonisation by periphyton can be
optimised to improve the contact between pollutants and bacteria within the treatment
system (Gao et al, 2019). Simultaneously, the reduced flow conditions support the
settlement of suspended solids and, hence, the penetration of light through the water
column. Improved light conditions benefit the development of algae within the
periphyton layer where bacterial mineralisation provides additional resources to create
algal biomass (Ishida et al., 2008; Sand-Jensen and Borum, 1991; Toet et al., 2003).

Periphyton in natural systems consists of a complex microbial community and can be
characterised by a highly dynamic species turnover without major effects on the overall
periphyton functioning (Liu et al., 2016). Due to this complex composition and dynamics
of the periphyton layer, most studies report on treatment efficiency and ignore or only
partially describe the species composition (Rooney et al., 2020; Zamorano et al., 2018).
Yet, Cronk and Mitsch (1994) analysed the periphyton composition of four wetlands
under different hydrologic conditions and observed Bacillariophycaceae (4 genera),
Chlorophyta (6 genera) and Cyanophyta (1 genus), though acknowledged that the
system might have been too immature to support a developed periphyton community.

Presence of periphyton is controlled by both abiotic and biotic conditions. The
composition of the periphyton layer depends on (1) the presence of degradable organic
compounds (mineralisation by bacteria) and (2) the presence of absorbable nutrients
(photosynthesis by algae). The relative presence of these resources contributes to the
final periphyton composition (Wu et al., 2018). At the biotic level, both indirect and
direct interactions occur and reflect a certain degree of similarity with phytoplankton.
Competition of periphytic algae with phytoplankton and macrophytes for nutrients can
occur (Sand-Jensen and Borum, 1991), though is countered by the symbiosis with
mineralising bacteria in the vicinity (Liu et al., 2017).

In contrast, shading by phytoplankton and macrophytes has a clear negative effect on
light availability and, thus, on the development of algae within the periphyton layer
(Sand-Jensen and Borum, 1991; Toet et al., 2003). In addition, periphyton is exposed to
grazing by organisms from higher trophic levels. A variety of zooplankton,
macroinvertebrate and fish species rely on the presence of periphyton to provide in their
nutritional needs (Batzer and Resh, 1991; Rooney et al., 2020; Sand-Jensen and Borum,
1991).

Aside from providing a positive contribution to the overall pollutant reduction in the
treatment system, additional support for the development of macrophytes can be
provided. Macrophytes covered with periphyton can benefit from the locally produced
nutrients instead of relying on the diffusion of nutrients within the water column (Gao
et al., 2019).

35



CHAPTER 2

2.3.1.3 Zooplankton

Due to the low-flow conditions and potential high phytoplankton presence (see above),
FWS CTWs act as nurseries for zooplankton with biomass increasing throughout the
system, especially when macrophytes are present (Calero et al., 2015; Hernandez-Crespo
et al., 2017). The zooplankton community is frequently dominated by cladocerans or
rotifers and exceeds diversity in drains and rivers (Eivers et al., 2017), with sporadic
seasonal variation in community composition (Beaver et al., 1998; Calero et al., 2015;
Travaini-Lima et al., 2016). For instance, Travaini-Lima et al. (2016) observed that
rotifers dominated in both the rainy and dry season, with overall higher zooplankton
density during the rainy season. Similarly, Calero et al. (2015) found clear seasonal
fluctuations in zooplankton biomass, with rotifer dominance in summer, copepod

dominance in winter and cladocerans dominating in spring.

At the biotic level, zooplankton is mainly influenced by phytoplankton, fish and
macrophytes, either directly or indirectly (Table 2.2). The interactions with
phytoplankton and fish represent a straightforward trophic cascade interaction, with
zooplankton feeding on phytoplankton and fish consuming zooplankton (Calero et al.,
2015; Cao et al., 2007). More importantly, the selective preying by fish causes shifts in
zooplankton communities and has a tendency of altering the male-to-female ratio (thus
affecting the associated population dynamics) (Bramm et al., 2009).

Macrophytes act supportively as a refuge area for zooplankton to escape from fish
predation (diel horizontal migration, DHM) and provide a habitat for cladoceran
diapausing eggs (Calero et al., 2015; Castro-Castellon et al., 2016; Travaini-Lima et al,
2016). Yet, despite the creation of physical habitats, macrophytes negatively affect light
conditions (e.g. dense duckweed mats) and thereby reduce the quality and quantity of
the zooplankton community, resulting in a lower zooplankton diversity compared to
high light conditions (Bramm et al., 2009; Fontanarrosa et al., 2010). Moreover, when
planktivorous fish abundance is high, predation pressure increases and DHM becomes
limited (Meerhoff et al., 2007).

Still, high zooplankton densities are not necessarily linked with high phytoplankton
densities. For instance, Kampf and Claassen (2004) observed high zooplankton
densities while phytoplankton was almost absent and inferred that zooplankton also
survived by consuming bacteria. As such, they suggested to culture Daphnia magna with

treatment plant effluents prior to their use as food source for sticklebacks (Kampf and
Claassen, 2004).
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2.3.1.4 Macroinvertebrates

Despite the relatively high pollutant levels, specific macroinvertebrates are able to
survive within FWS CTWs due to the presence of adequate food sources (Becerra Jurado
et al., 2009; Boets et al., 2011; Céréghino et al., 2008; Chen et al., 2011b; Hsu et al., 2011).
Recurring observations in natural and artificial wetlands include Coleoptera and
Hemiptera as dominating orders and the influences of season and wetland conditions
on macroinvertebrate community composition (Becerra Jurado et al., 2009; Boets et al.,
2011; Céréghino et al., 2008; Fairchild et al., 2000).

For instance, Becerra Jurado et al. (2009) found 123 taxa in 15 constructed wetlands
treating wastewater, dominated by Coleoptera (45 %) and Hemiptera (17 %), though did
not provide a detailed study on the influence of season. In contrast, Boets et al. (2011)
investigated a single FWS CTW in summer and autumn and reported a higher taxa
diversity in summer dominated by Corixidae (Hemiptera) and Chironomidae (Diptera),
next to an overall increase in diversity along the treatment path (representing a decrease
in nutrient levels). Additionally, Robson and Clay (2005) observed that seasonal
wetlands had less taxa than perennial wetlands due to higher levels of temporal
variation, although both could still be considered as taxon-rich.

Macroinvertebrates experience direct and indirect influences, originating from
zooplankton, fish, macrophytes and even higher-order animals (Table 2.2), though
indicate to be highly taxon-specific. For instance, Corixidae and Veliidae (Hemiptera)
benefit from fish presence, while being part of the diet of dabbling ducks (Balcombe et
al., 2005a). Similarly, Planorbidae (Mollusca) benefit from the presence of macrophytes
because of their grazing activity, but can be suppressed by predatory fish, which results
in a simultaneous positive effect on epiphytic chironomid larvae (Batzer et al., 2000).
Still, macroinvertebrates provide several useful functions within wetlands, ranging from
litter decomposition over plant community regulation to nutrient cycling towards
higher trophic levels (including waterfowl and anurans), due to their place in the food
chain and the potential of several insects to switch from an aquatic to a terrestrial stage
in their life cycle (Balcombe et al., 2005a; Dodds and Whiles, 2010; Hsu et al., 2011;
Knight et al., 2001).

Wetlands are said to be easily colonised by macroinvertebrates, requiring about four to
five years to reach maximal species diversity (Hansson et al, 2005). This can be
facilitated by proximity of other ponds (i.e. high connectivity) (Céréghino et al., 2008;
Nelson et al., 2000), although Robson and Clay (2005) did not observe a specific species
assemblage of closely located sites. Most importantly, macroinvertebrates within these
FWS CTWs are highly system-specific due to the unique prevailing abiotic conditions
and thereby contribute to the overall catchment diversity (Becerra Jurado et al., 2009;
Céréghino et al., 2008).
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2.3.1.5 Macrophytes

Nutrient concentrations within FWS CTWs are sufficiently high for macrophytes to
grow, with presences reported in a variety of wetland types, ranging from small-scale
domestic wastewater treatment systems over floating wetlands to large-scale restoration
wetlands (Castro-Castellon et al, 2016). Vegetation is often emergent, including
common reed (Phragmites australis), cattail (Typha latifolia and T. angustifolia), sedge
(Carex acutiformis) and bulrush (Schoenoplectus spp.) (Brisson and Chazarenc, 2009;
Castro-Castellon et al., 2016; Rodriguez and Brisson, 2015), though also floating plants
have been reported, including water hyacinth (Eichhornia crassipes), water lettuce
(Pistia stratiotes) and duckweed (Lemna spp.) (Hsu et al., 2011; O’Farrell et al., 2009).

Observed effects, including microaeration of the root zone, provision of substrate for
periphyton development and limiting sediment resuspension, suggest that certain
macrophyte species are effective ecosystem engineers within shallow wetland systems
(Brix, 1997; Gopal, 2016; Vymazal, 201lb). For instance, a higher diversity of
macroinvertebrate taxa was observed in vegetated areas compared with non-vegetated
areas, due to a decreased risk of predation, a complex spatial structure and being a
location for cladoceran diapausing eggs (Stiers et al., 2011; Timms and Moss, 1984).
Moreover, also waterfowl benefit from the presence of emergent macrophytes for
nesting and roosting, being at the same time close to an appropriate food source (Gopal,
2016).

Next to exerting a variety of influences on fish, macroinvertebrates, zooplankton and
phytoplankton, macrophyte presence is prone to grazing (fish and macroinvertebrates)
and competition for nutrients (phytoplankton) (Table 2.2). Grazing pressure remains
limited due to the low total number of strictly herbivorous fish and macroinvertebrates.
In contrast, competition with phytoplankton under eutrophic conditions can lead to
complete disappearance of vegetation within a wetland by rapidly changing nutrient
availability, light penetration and pH level (Lu et al., 2012; Scheffer et al., 1993a).

Presence of macrophytes can also have a negative effect on both chemical and biological
conditions. For instance, dense vegetation stands decrease light penetration and oxygen
concentrations (degradation of dead organic matter), thereby limiting respiration of
higher trophic animals (Balcombe et al., 2005a; Miranda and Hodges, 2000). However,
Frodge et al. (1990) observed extremely high oxygen concentrations within the near-
surface canopy of submerged macrophytes (going up to 30 mg-L?), which dropped
drastically when entering the sub-canopy zones (down to 1 mg-L! within 0.5 m). Hence,
the creation of open water sections allows for species to migrate when needed, for
phytoplankton to produce oxygen and fish to escape anoxia (Balcombe et al., 2005a;
Miranda and Hodges, 2000).
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2.3.1.6 Fish

Presence of fish within FWS CTWs is only limitedly reported and if so, abundances are
low (Chen et al., 2011b; Hansson et al., 2005; Hsu et al., 2011; Kampf and Claassen, 2004).
For instance, Kampf and Claassen (2004) pointed out that, although food was
abundantly present in the FWS, no fish were observed, potentially due to high ammonia
(NH3) concentrations caused by exceeding the nitrification capacity of the treatment
plant. Additionally, anoxic conditions, low winter and high summer temperatures and
limited refuge areas represent a harsh environment for fish (Batzer et al, 2000).
However, when hydraulic retention time (HRT) became higher than two days, fish were
observed as overloading was reduced (Kampf and Claassen, 2004).

Fish primarily provide top-down control on phytoplankton, zooplankton and
macroinvertebrates (see above and Table 2.2), but are only limitedly influenced by these
(leaving food availability aside). For instance, dense stands of both phytoplankton and
macrophytes can lead to diel fluctuations in oxygen concentration and pH, representing
unfavourable conditions for fish (Hsu et al., 2011; Miranda and Hodges, 2000).

Yet, negative effects of fish presence have also been observed towards amphibians, with
salamanders and tadpoles being frequently consumed by fish, sometimes even causing
rapid extinction of the amphibian community after colonisation (Alford and Richards,
1999; Dodds and Whiles, 2010). Amphibians represent an important link between the
aquatic and terrestrial environment, providing an alternative pathway for nutrient
removal and a valuable link in complex food webs (Balcombe et al., 2005b; Davic and
Welsh, 2004). However, elevated nutrient and ion concentrations occurring within
treatment wetlands limit the potential of amphibian presence and suggest that increased
connectivity of the wetland with surrounding freshwater bodies might be more
appropriate to increase overall diversity and nutrient transport via fish migration
(Becerra-Jurado et al., 2012; Wiegleb et al., 2017).
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2.3.1.7 Overview of biotic interactions

Table 2.2: Non-exhaustive overview of interactions among biological elements as reported in literature dealing with eutrophic, shallow
water bodies. Interactions describe the effect of the biotic group on a specific row on a biotic group in a specific column. PhP: Phytoplankton, PeP:
Periphyton, ZP: Zooplankton, MI: Macroinvertebrates, MP: Macrophytes.

Phytoplankton

Periphyton

Zooplankton

Macroinvertebrates

Macrophytes

Fish

PhP

PeP

zp

- Cyanobacteria can
produce toxins"
- Self-shading™ *

- Competition for
nutrients®

- Provide top-down

control via grazing”
12

- Cyanobacteria can
produce toxins!

- Light interception
due to blooms

- Competition for
nutrients

- Competition for
nutrients

- Provide top-down
control via grazing

- Serve as food

source? 1220

- Serve as food
source

- Competition for
the same food
source!’

- Cyanobacteria can
produce toxins!

- Serve as food source*
1

- Anoxia due to algae
blooms

- Serve as food

source!® 1°

- Serve as food source!”

- Cyanobacteria can
produce toxins!

- Light interception
due to blooms* %
- Competition for

nutrients?’

- Light interception
due to blooms?® %
- Competition for
nutrients' %’

- Provision of

nutrients®

- Indirectly reducing
the competition with
phytoplankton

- Cyanobacteria can
produce toxins!

- Increased
turbidity®®

- Diel fluctuations in
oxygen and pH!

- Anoxia influences
growth, swimming
speed and survival'®

- Serve as food
source

- Serve as food

source> 729

(Continues on next page)
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(Continued)
Phytoplankton Periphyton Zooplankton Macroinvertebrates = Macrophytes Fish
MI - Grazing’ - Grazing®> %1619 - Grazing’ - Competition for - Herbivory® ! - Serve as food
- Production of CO> - Production of CO; same food source®>* source® 416
and release of and release of - Predation® >4
nutrients?® nutrients - Shredders facilitate
collectors by excreting
fine organic matter"
MP - Intercept light, - Provide substrate - Attached biofilm as - Direct food source - Competition® - Refuge area' >
shading of water, to grow on® food source’ (dead & alive)? - Excretion of - Habitat for egg
impeding algae - Intercept light, - Refuge sites in case - Indirect food source: allelochemicals® deposition, larvae

growth!> 24

- Competition for
nutrients® %

- Allelochemicals
with negative,
neutral or positive
effect on
phytoplankton

growth?> %’

shading of water,
impeding algae
growth'> 24

- Competition for
nutrients™ %> %

- Indirectly affect
grazing pressure by

macroinvertebrates®

of low fish density®
17, 23, 24, 25

- Dense mats can
limit light and
oxygen'

- Exudates can have
influence on
migration” %

- Support higher
densities'®

- Habitat for
cladoceran
diapausing eggs’

attached biofilm* 22
- Refuge sites (e.g.,
midges sheltering
from fish)* 4

- Habitat creation* #*
25

- Influence on foraging
efficiency?

- Density influences
community’

- Oxygen source in
anoxic environments!
- Degradation can
cause oxygen
depletion’

and juveniles?> %

- Light limitation
can decrease
foraging activity’

- Direct food source*
- Attracting prey?

- Complexity
influences visual
contact with prey,
foraging activity and
growth??

- Can cause diel
patterns of pH and
DOL 14,18

(Continues on next page)
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(Continued)
Phytoplankton Periphyton Zooplankton Macroinvertebrates = Macrophytes Fish
Fish - Resuspension - Resuspension - Selective preying - Feed on - Herbivory* - Competition for
causes nutrient causes nutrient affects community invertebrates, e.g. - Resuspension can ~ same food source (e.g.
release from release from composition (e.g. Chironomidae, limit submerse midges)*
substrate?® 26 substrate?® less crustaceans, Planorbidae, Physidae, vegetation'* 2%2° - Predation*
- Excretion of - Excretion of more rotifers)’ Corixidae, - Excretion of
nutrients®® nutrients?® - Selective preying Glossiphoniidae®!*'®  nutrients"
- Indirectly reducing - Grazing affects life history - Indirect supporting
predation pressure - Indirectly by (e.g. higher male-to- macroinvertebrate

by zooplankton?’

predating on other
grazers!'®

female ratio of
cyclopoids)* %

- Chemical cues
steer morphology
and reproduction’
- Diel migration®

presence via feeding
on competitors or
predators® 4

! Angélibert et al. (2004);? Balcombe et al. (2005a); ®> Batzer and Resh (1991); * Batzer et al. (2000); > Bramm et al. (2009); © Brix (1997); 7 Burks et al.
(2000); & Carlsson and Bronmark (2006); ° Calero et al. (2015); ° Choi et al. (2014); ! Dodds and Whiles (2010); 2 Fontanarrosa et al. (2010); ® Gao et
al. (2019); * Hsu et al. (2011); ® Jarchow and Cook (2009); ' Liboriussen et al. (2005); 7 Meerhoff et al. (2007); ®® Miranda and Hodges (2000); *°
Sand-Jensen and Borum (1991); 2° Schrage and Downing (2004); % Spieles and Mitsch (2000); > Thomaz and Cunha (2010); 2 Timms and Moss
(1984); ** Travaini-Lima et al. (2016); *° van Donk and van de Bund (2002); 2° Vanni (2002); % Zhong et al. (2016); % Zimmer et al. (2000); #° Zimmer
et al. (2003)
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2.3.2 Use of macrophytes to improve biodiversity

Macrophytes showed to provide a steering role regarding wetland community structure
and functioning, affecting the physical, chemical and biological level. At the physical
level, the presence of macrophytes reduces flow velocity and positively affects nutrient
cycling and water storage. Moreover, in combination with macrophyte rooting, these
reduced flow velocities cause less erosion and sediment resuspension, which positively
affects transparency (Brix, 1997). However, under improved settling and decreased
erosion, wetlands tend to be exposed to siltation and accretion, which can be further
exacerbated by high transpiration rates of dense emergent communities (Angélibert et
al., 2004; Zedler and Kercher, 2004).

The consequences of these physical changes on wetland community composition and
functioning are case-dependent and situated along the positive-negative continuum. For
instance, Rooth et al. (2003) showed that the invasion of wetlands occupied by Typha
spp. and Panicum virgatum in the Chesapeake Bay by the invasive Phragmites australis
caused higher sediment accretion rates within the areas invaded by P. australis.
Simultaneously, a reduction in total wetland area had occurred due to rising sea levels,
yet the accretion caused by P. australis supported the continued existence of the invaded
wetland. Hence, the invasion by P. australis caused the local disappearance of the native
vegetation but avoided the complete loss of the wetland’s functionality.

Secondly, at the chemical level, nutrients are taken up directly from the water column,
the sediment or a combination of both. This uptake supports biomass production,
carbon sequestration and phytoremediation (see Box 2.2), with the latter being of main
research interest for several decades (Brisson and Chazarenc, 2009; Rodriguez and
Brisson, 2015; Tanner, 1996). Yet, this direct nutrient removal is estimated to represent
maximally 10 % of the total provided load, though can be increased when frequent
harvesting is applied and biomass-incorporated nutrients are completely removed from
the aquatic system (Merlin et al., 2002; Park and Polprasert, 2008).

Within wetlands, oxygen is crucial for aerobic degradation and nitrification to occur (see
Section 2.2.1). Emergent plants are known for providing root zone aeration within the
(mostly anoxic) substrate, while being countered by an upward movement of methane
(Bergstrom et al., 2007; Keddy, 2010; Vymazal, 2011b). This oxygen provision oxidises
the reduced nitrogen compounds and drives a continuous diffusion of both reduced and
oxidised nitrogen by altering the equilibrium between substrate and water column
concentrations (Keddy, 2010). However, extensive surface coverage and dead plant
material entering the water column cause additional oxygen consumption and the
release of immobilised nutrients. For instance, duckweed species (Lemna spp.) can form
dense mats under eutrophic conditions, which causes relatively high mortality rates and
associated oxygen depletion underneath the mats (Janse and Van Puijenbroek, 1998).
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Box 2.2: Macrophytes providing phytoremediation to reduce pollutant levels

Throughout the past decades, macrophytes have been frequently applied to counter
the presence of pollutants in contaminated soil or water (i.e. phytoremediation)
(Arthur et al, 2005; Dhir et al.,, 2009). Processes vary from degradation over
immobilisation to extraction and are highly species- and environment-specific. For
instance, Zhao et al. (2015a) studied the potential of several floating duckweed species
to recover nutrients from wastewater and observed that Lemna japonica provided the
highest nitrogen and phosphorus recovery and removal rates, while producing the
most protein-rich biomass. In contrast, Amon et al. (2007) investigated the ability of
various emergent macrophytes in supporting the dechlorination and mineralisation
of perchloroethylene and observed significant improvements in pollutant removal.
Additional examples of phytoremediation being facilitated by aquatic macrophytes
can be found in Carvalho et al. (2014), Dhir et al. (2009) and Rai (2009).

These effects of macrophyte presence on the physical and chemical conditions illustrate
how species interact with their environment and create a framework for the
development of biotic interactions (Vitousek et al., 1997). For instance, the development
of a stable and biologically complex ecosystem is highly dependent on the presence of
food, preferably provided by (a community of) primary producers, as autotrophic
biomass production acts as a basis for the trophic cascade, feeding zooplankton,
macroinvertebrates, amphibians, fish and birds (Balcombe et al., 2005b; Thomaz and
Cunha, 2010; Worrall et al., 1997).

Moreover, during this primary production, nutrients are continuously taken up from the
surrounding environment and converted into organic compounds to support cell
growth. This causes pollutant levels to decrease towards the downstream sections of
vegetated treatment systems, which creates different abiotic habitats along the flow path
(Caraco and Cole, 2002). Due to these decreasing pollutant levels, the biotic diversity
has the potential to increase towards the discharge point as the prevailing pollutant
levels are less restrictive (Becerra-Jurado et al., 2012; Boets et al., 2011).

From this, it is clear that macrophyte occurrence represents an interesting starting point
to support the conservation of wetlands, despite being determined by a range of species-
specific preferences, interactions and functional traits, including the abiotic
environment, dispersal capacity, temporary tolerance, resource competition, population
dynamics, community ecology and evolution (Guisan and Thuiller, 2005; Pulliam,
2000; Sinclair et al., 2010). Appropriate wetland management requires that these
aspects are considered into detail, with additional attention towards acceptable abiotic

conditions for macrophyte presence.
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2.3.2.1 Abiotic conditions for macrophyte presence

Field observations, laboratory experiments and expert knowledge contribute to an
increased understanding of the preferred abiotic conditions (Hofstra et al., 2020). Based
on field observations, suitable abiotic habitats for macrophyte presence can be derived,
reflecting the niche concept as postulated by Hutchinson (1957) and re-evaluated by
Pulliam (2000). This niche is a n-dimensional hypervolume in which every point
represents an environmental condition that supports indefinite species survival and is
generally referred to as the realised niche. The fundamental niche extends the realised
niche as it excludes the effects of biotic interactions like resource competition and
predator-prey interactions, thereby merely reflecting the suitable abiotic conditions
(Pulliam, 2000).

Despite being unfit for inferring the fundamental niche, observations are often used
within a data mining environment to derive suitable habitats, predict species
distributions, define conservation value and restrict the spread of invasive alien species
(Aratjo and Guisan, 2006; Elith and Leathwick, 2009; McPherson et al., 2004).
Information obtained through these modelling exercises provides a valuable
contribution to the delineation of a species’ realised niche, which allows its subsequent
application as an overall filter, combining both abiotic and biotic influences (Anderson
and Raza, 2010; Guisan and Rahbek, 2011). In contrast, experiments under controlled
conditions allow to infer realistic species traits and population parameters, thereby
aiding the development of process-based models with a more profound grounding in
ecological theory (Gallien et al., 2010). Due to this approach, process-based models are
better positioned than data-driven models when aiming to delineate the fundamental
(abiotic) niche (Kearney and Porter, 2009).

Modelling techniques aiming to delineate species niches are intrinsically situated along
a continuum between purely data-driven and completely knowledge-based (Dormann
et al.,, 2012; Mount et al., 2016; Van Echelpoel et al., 2015), with observation-based
habitat suitability models (HSMs) being highly data-dependent. Model performance and
reliability rely on a plethora of variables, including the quality of the data and the applied
model parameter settings, both of which require attention during model development
(Everaert et al., 2016; Marvin and John, 2003; Zhang et al.,, 2003). Yet, despite their
added value for ecosystem management, HSMs have been widely criticised in literature
for a variety of reasons, including the limited consideration of species dispersal within
the final model structure (Elith and Leathwick, 2009; Guisan and Thuiller, 2005;
Jarnevich et al., 2015). It is highly recommended to acknowledge these criticisms when
assessing the applicability of modelling techniques.
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2.3.2.2 Biotic interactions

The inclusion of biotic interactions builds further on the abovementioned abiotic
preferences and can be considered as an additional filter that determines which species
can occur, conditional to the prevailing community (Guisan and Rahbek, 2011).
Theoretically, a variety of interactions can take place, including out-competition
(disappearance of a species), restricting competition via exclusion (separate range),
neutral interaction (shared range), facilitation (unidirectional range extension) and
mutualism (bidirectional range extension), as illustrated in Figure 2.4.

These interactions occur mostly between macrophyte species, though additionally tend
to cross the taxonomic boundaries between biotic groups, e.g. pollination, herbivory and
parasitism (Guisan and Thuiller, 2005; Hofstra et al., 2020). Moreover, due to these
interactions, the fundamental niche approaches the realised niche and shows a decrease
or enlargement of the tolerated and preferred abiotic conditions. More specifically, the
underlying functional traits (e.g. biomass production, flowering, root:shoot ratio) are
affected in a positive, neutral or negative way (see Box 2.3), with intensity and direction
varying along the environmental gradients (Huntley et al., 2004).
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Figure 2.4: Illustration of the potential outcomes following biotic interactions between
two species. Each species is characterised by an occurrence frequency distribution (y-axis) over
an environmental gradient (x-axis), which overlap when considered separately (i.e. theoretical
coexistence). When co-occurring, competition can cause narrowing of the preferred range (i.e.
exclusion), while mutualism can support range broadening (i.e. facilitation). When no interactions
occur (e.g. due to completely different preferences with respect to other variables), no range
changes are observed.
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Box 2.3: Terminology related to biotic interactions

All species interact with each other along the positive-negative continuum, leading to
the introduction of specific terminology for each type of interaction. Basically, each
interaction between two species can be classified as having a (1) positive, (2) negative
or (3) neutral effect on the survival and reproduction of each individual species
(Bronstein, 1994; Dodds and Whiles, 2010), hence resulting in a total of nine possible
combinations. These combinations can be reduced to six unique interactions due to

the inherent symmetry.

When both species are positively affected by the presence of the other species, the
interaction is classified as mutualism. In contrast, when both species are negatively
affected, the interaction is classified as competition. The combination where one
species experiences a benefit and the other species experiences a detriment, the
interaction is referred to as parasitism (or, alternatively, predation or
exploitation). Some interactions do not provide any benefit or detriment for either
species (i.e. neutral for both species) and are therefore classified as neutralism. When
only one species benefits or suffers due to the interaction (without affecting the
second species in any way), the interaction is classified as commensalism or
amensalism, respectively.

Given the importance of plant interactions within terrestrial systems and the limited
research performed on aquatic macrophytes (Brooker et al., 2008; Callaway and Walker,
1997), more information is expected to be reported in future studies. This is imperative,
as more experiments on these interactions (including field observations, replacement
tests, laboratory experiments and phylogenetic research) are required to develop a biotic
interaction filter (Guisan and Rahbek, 2011; Keddy, 1999; Pulliam, 2000). Additionally,
considering the temporal dynamics of population and species characteristics, attention
should be given to the potential effect of time and time-related variables, including
season, life stage, size and density (Callaway and Walker, 1997).

It remains clear that, considering the relatively high number of potential interactions,
natural observations provide more ‘true’ information than microcosm studies and tend
to constitute a more accurate representation of the realised niche (Guisan and Thuiller,
2005). Nevertheless, this representation remains highly time-dependent and merely
entails a snapshot of all ecological processes and interactions taking place within the
considered timeframe (Araujo and Guisan, 2006; Lehmann, 1998). Hence, when aiming
to estimate the intensity and direction of future distributions and interactions,
experiments do provide the only alternative to expand currently existing trait matrices
and to confirm (or reject) the ecological theory (Keddy, 2010).
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2.3.2.3 Alien species

Besides the abovementioned challenges dealing with species-specific traits, natural
dispersal and biotic interactions of the known native species pool, specific attention
should be given to invasive alien species (IAS) (Hofstra et al., 2020). Their presence is a
direct result of increased globalisation and the ability to colonise unoccupied niches due
to the possession of functional traits that differ in their value from native species
(Perrings et al., 2002; Thomaz and Cunha, 2010; Van Echelpoel et al., 2016). More
specifically, a discrepant dispersion method, resource uptake efficiency, rate of biomass
production and the excretion of metabolic by-products allow IAS to outcompete and
expel native species, thereby expanding the occupied niche (Zedler, 2003).

With current habitats changing at unprecedented rates, new niches are created
continuously, allowing the establishment of and colonisation by IAS. Counteracting the
impacts of IAS can be performed at pre-introduction (i.e. identification of invasive
potential) or post-establishment (i.e. removal of IAS from colonised area) level (Early et
al., 2016), yet the invasive potential of many alien species still remains unknown and
impedes the development of a priority list. So far, border control is by far the most
implemented proactive management strategy to avoid the introduction of alien species
and relies on several nationally and internationally renowned invasive species (Early et
al., 2016; ITUCN, 2019). Yet, the inclusion of any alien species on these lists is often a
mere reaction on reported detrimental effects elsewhere.

Observation-based HSMs allow to predict suitable habitats for IAS, though their
reliability is questioned as (i) observations within new environments are not yet in
equilibrium and (ii) observations within their native environment inherently include
biotic interactions potentially absent within the new environment (Gallien et al., 2012;
Guisan and Thuiller, 2005). Hence, controlled experiments are required for determining
the invasive potential, for instance via the functional response as applied by Dick et al.
(2013), describing the increased resource-use efficiency of the invasive shrimp
Hemimysis anomala compared to native mysid shrimps along a range of resource
concentrations. In contrast, the assessment of competitive potential among
macrophytes based on input-related comparisons remains limited, while output-based
testing via the relative growth rate (RGR) is more common, e.g. Fagiindez and Lema
(2019), Njambuya et al. (2011), Paolacci et al. (2018). Therefore, further research into the
applicability of input-based approaches to determine the invasive potential of alien
macrophytes is recommended, including comparisons among species that are
phylogenetically close.
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2.4 Contribution to the study objectives

The aim of this chapter was to create an overview of how specific biotic groups interact
in shallow eutrophic freshwater systems and, from that, derive which biotic group(s) can
provide a biological basis for developing a complex community. Throughout the chapter,
attention was given to (1) the pollutant removal capacity and (2) the intra- and
interspecies interactions of different biotic groups, both within the context of integrated
constructed wetlands. Consequently, several key issues were identified to merit
additional study to improve the implementation of ICWs, tackling societal, chemical
and biological aspects. However, the main objective of this work deals with the biotic
aspect of ICWs (see Section 1.2.1), which excludes both the societal and chemical aspects
from further scrutiny.

The baseline for biotic development was provided in Section 2.3 and identified the
contribution of macrophytes as a steering factor towards (1) increasing habitat
complexity and (2) altering physicochemical conditions (see Section 2.3.2). By exerting
these processes, macrophytes indirectly affect other biotic groups, including
phytoplankton (e.g. shading, nutrient competition), periphyton (e.g. as substrate)
zooplankton (e.g. as refuge area), macroinvertebrates (e.g. as food source) and fish (e.g.
as refuge area). However, the presence of macrophytes is determined by matching
environmental conditions and species-specific abiotic preferences. In order to derive
these preferences and the habitats that comply to them, information from field data,
laboratory experiments and expert knowledge is required. With this information, site
identification and niche delineation can be automated by developing habitat suitability
and species distribution models.

The development of HSMs and SDMs is a challenging task, requiring information on
autecological processes, dispersal rates and biotic interactions. Particularly, attention is
requested for the inclusion of their temporal dynamics, as prevailing conditions are
continuously changing. Climate change, anthropogenic activities and the increased
introduction of invasive alien species alter the environment both at small and large scale,
hence resulting in changing communities, shifting niches and the potential extinction
of specialist species throughout consequent years (Guisan and Rahbek, 2011; Pulliam,
2000; Vitousek et al., 1997; Vos et al., 2008).

As a result, pressure on ecological research increases as appropriate decision
management requires the support of HSMs and SDMs to reliably forecast community
changes caused by such environmental disturbance. Therefore, the remaining chapters
will focus on the preferred abiotic conditions of macrophytes within wetland-like
environments. Attention is given to species-specific preferences as well as management
options to deal with non-native species (if necessary).
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2.5 Conclusion

Construction of artificial treatment wetlands provides the opportunity to counter the
ongoing loss of wetlands and related ecosystem services. Pollutant removal and
presences of biotic components (phytoplankton, periphyton, zooplankton,
macroinvertebrates, macrophytes and fish) have been reported within these systems,
while an analysis of the biotic interactions highlighted the positive effect of macrophyte
presence on ecosystem functioning. Yet, implementation is still impeded as specific
integrated knowledge at the chemical and biological level is lacking. Therefore, a range
of suggestions can be formulated to fill these knowledge gaps, being categorised in three
domains: (i) societal, (ii) modelling and (iii) experiments. More specifically, within the
societal domain more attention should be given to the inclusion of socio-economic
expectations and needs when designing restoration projects. Secondly, developing
abiotic habitat suitability models is called for to match environmental conditions with
species-specific habitat preferences. Lastly, and most extensively, experiments are
requested to improve understanding on (i) the functioning of constructed wetlands at
the abiotic level (including the effects from external pressures and the impact on
receiving water systems), (ii) species-specific temporal dynamics (including population
processes and dispersal rates) and (iii) the applicability and effectiveness of pro- and
reactive management when dealing with invasive alien macrophytes (including input-
based indices and management effects).
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CHAPTER 3

Abstract

Ecosystems are characterised by complex interactions and a high degree of uncertainty
due to their inherent dynamic behaviour. Model simulations help in decreasing these
uncertainties and simultaneously create additional insight into existing ecological
interactions. More specifically, species distribution models combine abiotic and species-
specific information to describe current and simulate future species occurrence. These
models derive their construction from data, knowledge or a combination of both, with
the former being increasingly applied in ecological research related to conservation
management and the effects of climate change. Here, five data-driven modelling
techniques are discussed and compared to provide an overview of their strengths and
weaknesses: decision trees, generalised linear models, artificial neural networks, fuzzy
logic and Bayesian belief networks. From this overview, it becomes clear that no
modelling technique is without drawbacks, making model selection often user- and
case-dependent. Following model selection, data collection and preparation is highly
technique-specific, including response balancing for decision trees and variable scaling
for artificial neural networks. Moreover, model evaluation depends on the
characteristics of the provided model output, providing most information when based
on non-transformed observed or predicted response values. A shared challenge among
the selected techniques consists of model regularisation by overcoming overfitting,
which is partially tackled by implementing cross-validation or alternative approaches to
improve data use efficiency. Overall, decision trees are relatively simple non-parametric
techniques that allow for the integration of variable interactions, with random forests
reporting promising results. The area under the receiver operating characteristic curve
(AUC) represents a single-value and threshold-independent metric to assess model
performance, while sensitivity (Sn) and specificity (Sp) provide potential as additional

assessment metrics.
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3.1 Setting the scene

In Chapter 2, the value of model development to estimate habitat suitability or species
distribution has been highlighted in the context of ecological conservation. The majority
of restoration projects counter the ongoing loss of biodiversity, yet suffer from high
investment costs, short-term thinking, uncertain outcomes and insufficient inclusion of
socio-economic needs and expectations (Catalano et al., 2019; Diekmann and
Featherman, 1998; Friberg et al., 2017). Climate change adds to these uncertainties and
challenges due to shifts in geographical range, seasonal activities, migration patterns
and species interactions, while simultaneously increasing the risk of extinction for a
large fraction of species (Braunisch et al., 2013; IPCC, 2014; Walther, 2010).

Model simulations provide the opportunity to decrease some of these uncertainties and
simultaneously create insight into existing ecological interactions. In this regard, the
ability of models to extrapolate species distributions in space and time is a crucial
contribution to maintaining and improving ecosystem structure and functioning. More
specifically, these species distribution models (SDMs) allow to test biogeographic
hypotheses (Leathwick, 1998), to fill in the gaps in current ecological knowledge
(Ambelu et al.,, 2014), to identify conservation areas and to determine invasion
vulnerability (Domisch et al., 2013; Hatten et al., 2014; Sauer et al., 2011).

SDMs are positioned along an axis between data-driven (empirical) and knowledge-
based (conceptual) models (Dormann et al., 2012; Mount et al., 2016), though a single-
best approach has not been identified due to the inability to create a universal grading
of all existing models (Kampichler et al., 2010; Lawson et al., 2014). So far, data-driven
models have been applied frequently when forecasting habitat suitability and species
distributions (Elith and Graham, 2009; Marmion et al., 2009; Stohlgren et al., 2010).

Within this chapter, specific attention is given to a selection of five data-driven
modelling techniques, being decision trees (DTs), generalised linear models (GLMs),
artificial neural networks (ANNSs), fuzzy logic (FL) and Bayesian belief networks (BBNs).
Throughout the chapter, models are referred to as being species distribution models, as
no strict assumptions on the available data are being made. However, the majority of
data-driven models has been developed without the inclusion of dispersal dynamics or
biotic interactions and is, therefore, defined as habitat suitability models (HSMs).
Despite providing a valid alternative, knowledge-based models are built on known
processes and are, therefore, considered to be out of the scope of this chapter.

The aim is to create an overview of frequently-applied modelling techniques and, in
addition, to describe how to asses model performance prior to making predictions. By
tackling these two objectives, an answer is provided to RQL.3, defined in Chapter 1.
Ultimately, this chapter concludes with a promising modelling approach for sustainable
ecosystem management.
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3.2 Model development procedure

In general, the model development procedure entails a sequence of successive steps to
be performed. The number and focus of these steps differ among authors, which calls
for a comprehensive standardisation, though allows the identification of several
recurring steps. For instance, a list of ten successive steps is provided by Jakeman et al.
(2006), while Guisan and Zimmerman (2000) only mention five important steps. Still,
sequential steps are not always clearly separable and some can be combined in one
overarching step (Austin, 2002; Jakeman et al., 2006). Here, prior to applying the model
for inferring predictions, four main steps are identified based on Guisan and
Zimmerman (2000) and mentioned in Table 3.1: (1) create a conceptual framework, (2)
collect and explore the data, (3) apply the most appropriate modelling technique and
(4) calibrate the selected model and validate the model with independent data.

As prior knowledge is often limited and the initial goals of long-term studies and
restoration projects often change (Catalano et al., 2019; Friberg et al., 2017), it is clear
that careful design (i.e. “create conceptual model” in Table 3.1) and data collection (Step
2 in Table 3.1) are major challenges, for which a balance between robustness, general
relevance, and specific needs has to be sought. Therefore, a careful, well-balanced
combination of data, expert knowledge, and user convenience is recommended
(Goethals, 2005), especially when developing process-based models.

Yet, both model design and data collection have become less significant during the past
decades, as the unprecedented progress in data collection, storage and availability has
supported a rise in the applicability and importance of data-driven models for decision-
making (Benito et al., 2013; Gibert et al.,, 2018a). Still, the creation of a conceptual
framework remains a valid step, though relatively more attention is (and should be)
spent on data exploration and proper pre-processing (Zhang et al., 2003).

Following model conceptualisation and data characterisation, model selection can be
based on a series of objective parameters (e.g. performance measures in Table 3.1, Step
4), while additionally depending on the preference of the modeller (i.e. introduction of
subjectivity) because no model can be considered as the best option in every situation
(Gibert et al., 2018b; Mount et al., 2016; Mouton et al., 2010). Consequently, several
authors tend to combine multiple modelling techniques (i.e. “ensemble modelling”) in
order to predict future species distributions more reliably (Benito et al., 2013; Domisch
et al., 2013; Gallardo and Aldridge, 2013; Thuiller, 2003).

56



DATA-DRIVEN MODELLING

Table 3.1: Summary of the four main steps in the ideal modelling procedure, including
relevant literature.

Step Goal Relevant literature
1. Create Becoming aware of the situation to be  Jakeman et al. (2006), Austin
conceptual model investigated, i.e. suggesting a (2002), Guisan and

hypothesis, identifying the required Zimmerman (2000)
data and selecting the most
appropriate model.

2. Data collection Collecting the required data according Zuur et al. (2010), Guisan
and exploration to Step 1, followed by exploring the and Zimmerman (2000)
data and elimination of data that can
inhibit proper model development.

3. Model Applying the selected modelling Guisan and Zimmerman
application technique (see Step 1). (2000), Leohle (1983)
4. Model Estimating and fine-tuning of model Allouche et al. (2006),
calibration and parameter values to fit the provided Fawcett (2006), Manel et al.
validation data, including calculation of (2001), Guisan and
performance measures (i.e. model fit Zimmerman (2000),
to independent data set). Fielding and Bell (1997)

3.2.1 Create conceptual framework: model selection
When relying on models for making predictions, one should be aware that models are a

mere conceptualisation of the ecosystem under study and that, consequently, the
obtained results carry a certain degree of uncertainty (Wilson et al., 2011). Throughout
this section, an assortment of empirical (data-driven) models is described in more detail.
Selection of the models is based on reported applications in ecological literature and the
work of Franklin (2010), who provides an elaborate description of decision trees (DTs)
and generalised linear models (GLMs), as well as a concise introduction to artificial
neural networks (ANNs) and generalised additive models (GAMs). Furthermore,
Franklin (2010) describes fuzzy logic (FL) as an approach that holds a lot of promise to
improve the usefulness of the habitat suitability index (HSI). Additionally, Bayesian
Belief Networks (BBNs) are described as they are mentioned in the overview of Goethals
(2005), listing decision trees, ANNSs, fuzzy logic and BBNs as soft computing methods
worth mentioning when dealing with modelling species distributions. Each of the
following subsections describes one of these techniques (DTs, GLMs, ANNs, FL and
BBNs) in more detail, refers to a more elaborate or mathematical description in
literature and provides two examples in which the technique has been applied.
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3.2.1.1 Decision trees (DTs)
Decision trees are hierarchical structures represented by a sequence of knowledge rules

(Everaert et al., 2011). Their construction is based on an iterative process of identifying
the most informative predictor and the accompanying threshold value(s), thereby
limiting the necessity to specify a relationship between explanatory and response
variables on beforehand (De'ath and Fabricius, 2000; Fox et al., 2017; Svitok et al., 2016).
The data set is split according to this threshold and the next iteration starts until a
specific stopping criterion is satisfied. Ultimately, the final model is characterised by a
specific number of nodes (i.e. knowledge rules) and leaves (i.e. branch ends), reflecting
model complexity and allowing for a graphical representation. A distinction can be made
between classification (categorical response) and regression (continuous response)
trees. For instance, a hypothetical classification tree with two nodes and three leaves is
depicted in Figure 3.1.

STREAM
VELOCITY

SPECIES
PRESENT

OXYGEN
CONCENTRATION

SPECIES SPECIES
ABSENT PRESENT

Figure 3.1: Illustration of a classification tree. Species occurrence is determined by stream
velocity and oxygen concentration and indicates the hierarchical importance of both predictors.
The depicted model classifies a hypothetical species by using two nodes and three leaves.

Decision trees have been frequently applied to model habitat suitability or species
distribution, see for instance Boets et al. (2010), Boets et al. (2013b), Everaert et al. (2011),
Hoang et al. (2010) and Van Echelpoel and Goethals (2018). Main advantages of decision
trees are the comprehensibility of the model structure (e.g. Figure 3.1), since it closely
resembles human reasoning (Kotsiantis, 2011), the ability to deal with relatively small
datasets (Everaert et al., 2011) and the possibility to identify (non-linear) interactions
between predictors (Franklin, 2010; Svitok et al., 2016). More information on decision
trees can be found in Rokach (2008).
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Examples

Decision trees have been successfully applied to determine the presence of alien
macrocrustaceans in surface waters in Flanders (Boets et al., 2013b). Both classification
and regression trees were developed in order to describe species distribution
(present/absent) and both richness and abundance (continuous response variables),
respectively. In short, they concluded that presence and species richness of
macrocrustaceans are likely to increase with improving water quality, probably
accompanied by a slight decrease in abundance of the most dominant alien taxa (Boets
et al., 2013b). Useful applications of the inferred knowledge on these alien species
include management planning and investment decisions, which are highlighted by the
United States National Management Plan on invasive species (Kolar and Lodge, 2002).

In vegetation ecology, regression trees have been applied to describe the potential
migration of trees under changing climatic conditions (Iverson and Prasad, 1998).
Among the selected species, Iverson and Prasad (1998) observed different responses to
climate change with an additional remark that future redistributions will be dependent
on migration rates through fragmented landscapes. This application fits in the idea that
climate change will eventually lead to a large redistribution of tree species considering
the increase in average surface temperature and the change in precipitation patterns
(IPCC, 2014; Kundzewicz et al., 2014).

Additional remarks

Despite their comprehensibility, classification trees are not always the best option in
terms of model performance. In comparison with other modelling techniques, decision
trees have shown to perform better (Boets et al., 2013a) and worse (Hoang et al., 2010),
illustrating the case-dependency of model performance. General drawbacks of decision
trees are related to their instability (an error in the top split will propagate down to all
splits below (Franklin, 2010; Hastie et al., 2009)), the limited incorporation of external
ecological knowledge and the possibility of overfitting the model.

These drawbacks tend to limit the applicability of basic decision trees on external or
independent data sets, yet the development of more advanced tree-based models (e.g.
boosted regression trees, random forests (see Box 3.1)) has countered most of this
criticism by reporting the outperformance of other modelling techniques (Breiman,
2001; Marmion et al., 2009; Stohlgren et al., 2010). Furthermore, when dealing with high
amounts of data, large grown trees can be obtained, which are, due to their complexity,
difficult to interpret. Pruning, which is the removal of one or more sub-trees to avoid
overfitting, weights model complexity versus proximity to the data (model fit). By
allowing (small) errors, trees will be less complex and the obtained rules are considered
more generally applicable and improve the regularisation of the developed model
(Mingers, 1989).
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Box 3.1: Random forests as an ensemble of decision trees

The high sensitivity of decision trees towards erroneous data and the possibility
towards overfitting the data have resulted in a variety of alternative decision tree
configurations. Among these, Breiman (2001) introduced the possibility to combine
several individual trees into a single model (i.e. an ensemble model), which averages
the overall model response and thereby limits the model’s sensitivity towards errors
and overfitting.

To avoid a strong correlation of the individual trees, instances are randomly selected
from the provided training data for each tree. Subsequently, within each tree a random
sub-selection of the available variables is made (i.e. the square root of the number of
variables, by default) prior to defining the node-specific threshold value. Due to this
approach, a fraction of the training data remains unused for each tree, which is applied
to infer a tree-specific out-of-bag performance estimate. These estimates can be
pooled to provide an overall evaluation of model performance. Alternatively, a
completely independent data set can be used to perform external model validation.
For each instance within this data set, the response of all individual trees is averaged
and can be reported as a fractional distribution or a single response (if a specific
threshold value is provided). The development of a random forest is visually
represented in Figure 3.2.
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Figure 3.2: Development of a random forest. The final model consists of a predefined number
of individual trees, which are all unique due to the variation in the provided training data. A:
Development of a single tree with a fixed data set and varying variable selection for each node;
B: Development of the model with the original data and the random instance selection per
individual tree.
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3.2.1.2 Generalised linear models (GLM)
GLMs are a generalisation of ordinary linear regression models and are based on three

elements: (1) a random component that assumes a probability distribution of the
response variable Y (e.g. exponential, binomial), (2) a systematic component specifying
the predictors in a linear form with their respective coefficient and (3) a link function
describing the relationship between the former two elements (random component = link
function(systematic component)) (Zuur et al., 2009). The predictors used for the
systematic component can be independent predictors of higher order (e.g. velocity?) to
model curvilinear effects or an interaction of predictors (e.g. depth-oxygen) (Willems,
2010; Zuur et al., 2009). The mathematical expression for GLMs is conceptualised in
Equation 3.1 for a single response variable (Y).

—1 _ o .
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With g7 the inverse link function, Y the response variable, E(Y|X) the expected
distribution of Y conditional to the set of predictors (X = [X;, X5, ..., X;]7), X; the jt
predictor (out of k predictors, including higher order and interaction terms), Bo the
intercept, S the slope related to the predictor Xj and € the remaining error.

GLMs are regularly used in ecology to predict and describe the behaviour of a continuous
response variable (e.g. abundance, probability of occurrence) in relation to
environmental predictors, see for instance Ambelu et al. (2014), Everaert et al. (2014),
Guisan et al. (2006) and Thuiller (2003). Important advantages that are related to GLMs
include the ability to handle different types of distribution for the response variable, the
possibility of constraining the predicted response variable in a certain range (e.g.
between O and 100 % probability of occurrence) with statistical substantiation and the
incorporation of potential solutions (by using extensions) to deal with overdispersion
(i.e. variance of the data is larger than the intrinsic variance of the anticipated
distribution (Davison, 2001)) (Guisan et al., 2002).

GLMs are, as mentioned above, limited to the assumption that the response variable is
linked to a linear combination of all predictors (see Equation 3.1) (Guisan et al., 2002;
Zuur et al., 2009). An extension of GLMs assumes that when the predictors are
smoothed by using a smoothing function, the linear combination of these functions is
linked to the response variable. This extension is referred to as generalised additive
models (GAMs) and is able to deal with non-linear, non-monotonic relationships
between the predictors and response variables (Guisan et al., 2002). The mathematical
expression of GAMs is conceptualised in Equation 3.2 for only one response variable (Y).
More information on GLMs and related extensions (e.g. generalised additive models
(GAMs), generalised linear mixed models (GLMMs), generalised additive mixed models
(GAMMs)) can be found in Zuur et al. (2009).
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gHUEXIX)] =B + Ek fi(X) +¢ (Equation 3.2)
j=1

With g7 the inverse link function, Y the response variable, E(Y|X) the expected
distribution of Y conditional to the set of predictors (X = [X{, X5, ..., X;]7), X the jt
predictor (out of k predictors), Bo the intercept, f; the smoothed function related to the
predictor Xj and ¢ the remaining error.

Examples

The abiotic preferences of aquatic macroinvertebrates in tropical river basins was
assessed by Everaert et al. (2014), who used logistic regression models (LRM), being a
specific type of GLMs. In this study, LRMs were used to deduct relationships between
abiotic variables and species presence in three tropical river basins (Ecuador, Ethiopia
and Vietnam). Constraining the response variable between 0 and 1 (i.e. O and 100 %
probability of occurrence) allows future application of the developed model outside the
observed predictor range (e.g. future environmental conditions), while still resulting in
a plausible response variable.

In vegetation ecology, GAMs were developed in order to describe and predict the
distribution of the Aleppo pine (Pinus halepensis) in Europe (Thuiller, 2003).
Considering GAMs to apply a smoothing approach, no interaction terms have to be
included, which provides an advantage over GLMs. The results showed a northward
expansion of Pinus halepensis with minor contractions in southern Europe as a
consequence of future climate change (Thuiller, 2003). As already mentioned,
dispersion of trees due to changing climate conditions will also be affected by the
possibility and rate of migration through fragmented landscapes (Iverson and Prasad,
1998), which can limit their dispersal and eventually influence the overall carbon cycle.

Additional remarks

GLMs and classification trees were both applied to predict the presence of four
vegetation alliances in the Mojave Desert (California). The application of GLMs to
classify the considered vegetation alliances as present or absent resulted in a lower
classification accuracy with the training data, but performed relatively better on an
independent data set (Miller and Franklin, 2002). Similarly, GLMs and GAMs performed
worse compared to random forests (a specific type of decision trees) when being applied
to predict the effect of climate change on both native and invasive species (Gallardo and
Aldridge, 2013). Drawbacks of GLMs are related to the assumption of the response
variable being linked with a linear combination of the predictors, the possibility of
overdispersion with binomial- and Poisson-like data (Venables and Dichmont, 2004)
and the assumption that the response variable is characterised by a specific distribution.
Several of these issues are tackled with GAMs and GLMMs, though these are
simultaneously characterised by an increased mathematical complexity.
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3.2.1.3 Artificial neural networks (ANN)
Artificial Neural Networks (ANNSs) are non-linear mapping structures that resemble the

human brain (Lek and Guégan, 1999) or, more specifically, the neurons present in it
(Basheer and Hajmeer, 2000). A combination of predictors is handled by a sequence of
neurons and will ultimately lead to the response variable (see Figure 3.3). As a
consequence, ANNSs are considered to be a ‘black-box’ approach (Lek and Guégan, 1999)
that use predictors to infer the state of the response variable without reporting
intermediate predictor combinations and transformations. ANN application in ecology
remains limited, though includes some success stories, see for instance Brosse et al.
(1999), Dedecker et al. (2004), Goethals et al. (2007) and Thuiller (2003). Important
advantages are related to the high tolerance for noise and measurement errors and the
ability to recognise relations between predictors and response variables without
ecological knowledge and regardless of the system’s non-linearity and the problem’s
dimensionality (Basheer and Hajmeer, 2000). More information related to ANNs can be
found in Zurada (1992), while practical applications in supporting river management are
available in Goethals et al. (2007).
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Figure 3.3: Schematic illustration of a single neuron in a single hidden layer ANN. Input
values are received from n predictors (x), associated with a specific weight (w;) and an overall bias
term (z;). A new variable (3) is calculated and transformed by a transfer function f, resulting in the

j-th output (y;).
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In ecology the most popular types of ANNs are Kohonen self-organizing maps (SOM)
and backpropagation networks (BPN), among which the latter are frequently used
(Goethals, 2005; Lek and Guégan, 1999). BPNs are multi-layer feed-forward neural
networks (also called ‘multi-layer perceptron’, MLP) in which the information flows
unidirectionally. The network connects the predictors with the response variables
through a number of hidden layers, which are successively arranged and contain the
neurons, being non-linear elements. The neurons present in the hidden layers create
new ‘variables’ based on the predictors or variables from a previous layer, multiplied
with a variable-specific weight factor and the addition of a bias term (see Figure 3.3 in
case of a single hidden layer with a single neuron). In a BPN there are no lateral
connections (i.e. between neurons of the same layer), nor feedback mechanisms.

Examples

Olden et al. (2006) acknowledged the presence of complex interactions in aquatic
communities and applied ANNs to approach the existing hierarchic structure. By
considering the presence of different spatial scales (i.e. valley-scale, watershed-scale and
river-scale) and the related creation of nested ANNS, the ability to introduce a limited
amount of knowledge is illustrated. Based on this approach, Olden et al. (2006)
observed that among the selected environmental predictors, climate variables have the
highest mean importance. Consequently, when considering climate change in the near
future, a change in the composition of currently existing communities can be expected.

Similarly, ANNs were applied by Dedecker et al. (2004) to describe and predict the
habitat suitability of macroinvertebrate taxa in the Zwalm River (Belgium). They
observed that different model structures result in different response variable curves
describing the probability of presence in relation to dissolved oxygen. Furthermore,
these macroinvertebrates are generally regarded as a proxy for overall water quality, and
will, in light of climate change, be influenced by changing water quality due to altered
hydrological systems (IPCC, 2014; Kundzewicz et al., 2014).

Additional remarks

Brosse et al. (1999) compared the capacity of ANNS to fit observed patterns with multiple
linear regression (MLR) and concluded that ANNs were more suitable due to the
shortcomings of MLR related to higher levels of ecological complexity. A similar
conclusion was reported by Brey et al. (1996) when comparing ANN and MLR for
predicting production-to-biomass ratios. However, in another case, Willems (2010)
observed that, when parsimony is considered important, GLMs were superior to ANNs.
Drawbacks of ANNs are its behaviour as a black box model, a lack of fixed guidelines for
optimal ANN architecture and limited inclusion of ecological concepts and relations
(Basheer and Hajmeer, 2000; Brosse et al., 1999; Thuiller, 2003).
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3.2.1.4 Fuzzy logic (FL)
Fuzzy logic models are based on the assumption that a crisp classification of

observations is not always straightforward and ecologically sound (Adriaenssens et al.,
2004a). When dealing with classification, one can use strict boundary conditions, e.g.
when temperature is below 10 °C it is considered as ‘cold’, in between 10 and 20 °C as
‘moderate’ and above 20 °C as ‘warm’. This results in a decrease of the number of
response variables and a loss of information. Fuzzy logic allows the presence of an
intermediate state in which the discretised variable (regardless of being a predictor or
response variable) can belong to several classes with a certain membership (Mouton et
al., 2011). This overlap is described by a weight (membership) factor (between O and 1)
of which the sum always equals 1 (see Figure 3.4). The resulting trapezoidal shapes depict
the membership functions, whose shape can differ based on the type of response
variable. A more detailed mathematical description can be found in Mouton (2008).
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Figure 3.4: Concept of the fuzzy logic approach, illustrated with class membership in
function of temperature. The different classes (Cold, Moderate and Warm) are not crisp sets
but are characterised by overlap between consequent classes. Class membership describes the
weight of each class at a certain temperature and always sums to I.

Fuzzy logic is based on the construction of IF-THEN rules, extended with one or more
AND-rules. For instance, IF temperature is high AND oxygen is high AND ... THEN
respiration is high. Each of these fuzzy rules generates an output and an accompanying
fulfilment degree that takes into account all membership degrees of the predictors (e.g.
minimum, maximum, product). Afterwards, these individual outputs and fulfilment
degrees are combined to determine the global fuzzy output. For instance, Mamdani-
Assilian models are linguistic fuzzy models that apply t-norms to determine the
individual and global fulfilment degrees (Assilian, 1974; Mamdani, 1974), illustrated in
Mouton (2008) and Van Broekhoven and De Baets (2008). A simplified version with
two predictors and a minimum-based aggregation is depicted in Figure 3.5.
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Figure 3.5: Membership determination in the response variable in fuzzy logic. The response
class is determined by temperature and oxygen, which are both characterised as High with a
specific membership (i.e. 0.4 and 0.8, respectively). Calculation of the membership to the High
class in respiration is here determined as the minimum membership of the two predictors. The
represented IF ... THEN ... rule depicts a hypothetical classification of the respiration.

Finally, the resulting membership degrees can be handled in two different ways: (i)
defuzzification and (ii) by a fuzzy classifier. Defuzzification of Mamdani-Assilian models
considers the global fuzzy output in combination with the accompanying fulfilment
degrees and the subsequent conversion into a single response value (e.g. mean of
maximum, center of gravity (Van Broekhoven and De Baets, 2006)). The second
approach entails normalisation and converts the different membership degrees into
values of which the sum equals one (Van Broekhoven et al., 2006). The membership to
each possible response variable class is described by this set of values.

After being developed in 1965 (Zadeh, 1965), the fuzzy set theory has been adopted by
ecology, though remains scarcely applied, see for instance Adriaenssens et al. (2004a),
Fukuda et al. (2011), Mouton et al. (2008) and Salski (1992). Important additional
advantages include the potential decrease of complexity by combining a range of
response variables in a single class and the possibility to include expert knowledge. The
latter influences the classification of predictors, the shape of the membership functions
and the rules, ultimately resulting in a more ecologically sound model.

However, expert knowledge is not an exclusive requirement for applying fuzzy logic,
since both rules and fuzzy sets can be identified from data by means of fuzzy clustering,
neural learning methods or genetic algorithms (Gobeyn et al., 2017; Guillaume, 2001).
This is specifically applied for numerical models (referred to as Takagi-Sugeno models)
that focus on accuracy (Mouton, 2008). When models are based on predictors and
response variables partitioned in classes, one speaks of linguistic fuzzy models. More
information on fuzzy logic can be found in Klir and Yuan (1995).
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Examples

Based on fuzzy logic a model was developed to predict the effects of different
management options on a river and the accompanying influence on the spawning
options of the European grayling (Thymallus thymallus) in the Swiss river Aare (Mouton
et al., 2008). This case illustrates the advantage of being able to combine expert
knowledge with data in order to compensate for situations in which insufficient data is
collected. Hence, data-driven techniques can help to mitigate bottlenecks related to
knowledge-based rule-setting, which is considered to be time consuming and complex
(Mouton et al., 2008). Furthermore, this combination of data and expert knowledge
allows to use predictor data with a specific uncertainty, as is the case when using

simulated future environmental conditions as predictors.

Similarly, fuzzy logic was applied to evaluate habitat suitability of topmouth gudgeon
(Pseudorasbora parva), an invasive fish species in Japan (Fukuda et al., 2011). Several
types of predictors (e.g. river width, canal network index, residential area, etc.) were
implemented in the model structure, which illustrates the ability of fuzzy logic to deal
with a variety of predictors. However, adding predictors also requires the definition of
predictor-specific membership degrees and additional fuzzy rules. On the other hand,
when future conditions result in predictor values outside the observed range (e.g.
increased river width due to altered hydrological systems (IPCC, 2014)), predictions of
distribution patterns can still be made due to the incorporation of expert knowledge in
the original model.

Additional remarks

Fuzzy logic models have shown to perform similarly when compared with random
forests (a specific type of decision tree), although when considering transparency, fuzzy
logic models scored better because of their ability to combine ecological relevance with
reasonable interpretability (Mouton et al., 2011). Drawbacks of fuzzy logic are the
increase in complexity with increasing amount of predictors (Ahmadi-Nedushan et al.,
2006), the loss of information due to data discretisation and the possibility that the
implementation of expert knowledge rules is both cost- and time-intensive (Kompare et
al., 1994).
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3.2.1.5 Bayesian belief networks (BBNs)

Bayesian Belief Networks (BBNs) are multivariate, probabilistic models that consist of a
directed acyclic graph wherein nodes represent discrete variables and arrows causal
relations (Aguilera et al., 2011). Probability distributions quantify the probability of a
variable being in one of its discrete states given the states of the preceding nodes in the
graph (i.e. conditional probability). This way, uncertainties are explicitly accounted for
and can be propagated from predictor to response variable using the rule of Bayes.
Consequently, the output of a BBN is not a single value but a probability distribution
over the states of the response variable.

BBNs have been applied in ecology to model species distributions, see for instance
Keshtkar et al. (2013), Marcot et al. (2001), Pollino et al. (2007) and Smith et al. (2007).
Important advantages of this modelling approach include the ability to update
conditional probabilities when new knowledge is available (Castelletti and Soncini-
Sessa, 2007), high model transparency, the potential to deal with missing data and the
ability to complement empirical data with expert knowledge (Landuyt et al., 2013). By
modelling the joint probability distribution over all considered variables (both predictor
and response variables), BBNs differ from most other modelling techniques that only
focus on accurately predicting the response variable. More information on BBNs can be
found in Jensen and Nielsen (2007).

BBNs can be developed purely data-driven by using data to infer both the network
structure and the conditional probability tables (CPTs). However, generally, the
structure of the network is based on expert knowledge, while the CPTs are based on data
(Landuyt et al., 2013). Although such partially knowledge-based models may accurately
represent the ecological functioning of the system based on current knowledge, they are
often outperformed by purely data-driven models. For optimal -classification
performance (e.g. presence/absence models), several simple graph structures, such as,
naive bayes (NB) classifiers and tree-augmented naive bayes (TAN) classifiers, have been
proposed (Aguilera et al., 2010; Friedman et al., 1997). The causal links in NB classifiers
are limited to direct links from the response variable to each predictor variable, while
TAN classifiers also allow causal links among predictor variables mutually. Although
these models usually do not grasp all dependencies and independencies of the system
being modelled, they generally perform well in classification tasks (Friedman et al.,
1997).
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Examples
A BBN has been developed by Marcot et al. (2001) to determine the effect of different

land management alternatives on the habitat and population viability of fish and wildlife
that were at risk. They observed that BBNs can be easily applied for modelling the effect
of planning alternatives on fish and wildlife and that they are an interesting decision
support tool. In this case, the application of BBNs is considered as a complementary tool
since sufficient empirical data is provided to determine the effect of different land
management alternatives. In case sufficient empirical data is lacking (e.g. altered
landscapes and future environmental conditions), BBNs allow to perform risk
assessments based on the reported likelihoods.

Besides being applied for determining land management issues, BBNs can also be used
to model the effects of different catchment management alternatives on limiting the
current degradation of water quality (Keshtkar et al., 2013). By including stakeholders
and expert judgment, Keshtkar et al. (2013) optimised the preliminary model,
constructed CPTs when qualitative data was lacking and validated the results. Their
results showed that riparian restoration has an important influence on overall water
quality even when considering the cost of implementation (Keshtkar et al., 2013).

Additional remarks
BBNs are comparable to ANNs as both techniques rely on a network approach. However,

compared to ANNs, BBN models are more transparent, enable the integration of expert
knowledge and require less data (Landuyt et al., 2013). Therefore, BBNs are more
suitable for participatory model development and validation. Additionally, the model
structure itself can be used as a decision support tool considering the visual

representation of causal relationships in an environmental situation.

Two studies compared the predictive performance of BBNs with other modelling
techniques and concluded that the predictive performance of BBNs is relatively good
compared to ANNs and fuzzy logic models (Adriaenssens et al., 2004b) and compared
to logistic regression (Ordoifiez Galan et al, 2009). Drawbacks of BBNs include the
difficulty to implement temporal dynamics and information loss through discretisation
of continuous variables. Although advanced model types exist to deal with temporal
dynamics (e.g. time-sliced models, see Kjeerulff (1995)) and continuous variables (e.g.
hybrid Bayesian networks, see Aguilera et al. (2010)), other modelling techniques may

be more suitable.
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3.2.1.6 Summary of advantages and drawbacks
A summary of the advantages and drawbacks of the selected modelling techniques is

provided in Table 3.2. General drawbacks of each approach are mentioned despite the

existence of several recently developed techniques that, at least partially, compensate

for these weaknesses. However, most compensating techniques have a negative

influence on the main advantages, which highlights the need of a well-balanced and

carefully considered implementation.

Table 3.2: Summary of model advantages and drawbacks. An overview is provided of the five
modelling techniques (decision trees (DT), generalised linear models (GLM), artificial neural
networks (ANN), fuzzy logic (FL) and Bayesian belief networks (BBN)) discussed in previous

subsections.

Technique Advantages Drawbacks
DT - Transparent modelling technique; - Limited incorporation of knowledge;
- Able to deal with small data sets; - Potentially vulnerable to overfitting;
- Able to identify interactions between - A single tree can provide unstable
explanatory variables; results;
- No need to define relationships or - Large datasets can lead to large,
distribution in advance. complex trees.
GLM - Easy to use; - Limited incorporation of knowledge;
- Useful for specific problems, e.g. - Assumes the presence of specific
predicting probability of occurrence  distribution of the response variable.
with statistical substantiation.
ANN - High tolerance for noise and - Actsas black box model;
measurement errors; - Lack of guidelines for optimal design;
- The ability to recognise relations - Low ecological relevance;
between predictors and response - Limited explanatory power.
variables when knowledge on the
system’s functioning is lacking.
FL - Absence of strict boundary values; - Increased complexity with increasing
- Ability to complement empirical data ~ number of predictors;
with expert knowledge; - Information loss due to data
- Ability to incorporate uncertainty  discretisation;
scenarios (e.g. climate change) by - Construction of knowledge-based
possibility approach. rules is time intensive.
BBN - Accounts for uncertainties explicitly; - Inability to implement temporal

Ability to incorporate uncertainty
scenarios (e.g. climate change) by
probability approach;

Straightforward = propagation  of
uncertainties related to model inputs;
Ability to complement empirical data

with expert knowledge.

dynamics;

- Information loss due to data
discretisation;
- Construction of knowledge-based

rules is time intensive.
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3.2.2 Data collection and exploration
Following modelling technique selection based on abovementioned advantages and

drawbacks, data is to be collected for model training (Step 2, Table 3.1). Environmental
observations collect information on a myriad of variables, often classified as explanatory
and response variables. Typically, explanatory variables include all variables to be
considered to explain the observed pattern within the response variable of interest and
can be biotic and abiotic. However, the majority of HSMs focuses on defining suitable
abiotic conditions and thereby restricts the extent of the explanatory variable space.

Variables can be discrete or continuous, with the former representing a limited number
of possibilities (e.g. 5 different classes of land use), while the latter is not characterised
by fixed thresholds to distinguish classes (e.g. river width expressed in meters). Most
HSMs aim to accurately predict habitat suitability of a single species, thereby relying on
a presence/absence statement (discrete) or a measure of abundance (continuous) in the
response variable. Typically, models developed with a continuous response variable tend
to be more sensitive compared to presence-absence models, despite containing potential

biases related to seasonality, long term fluctuations and different sampling techniques
(Ysebaert et al. 2002).

Still, the majority of HSMs is trained with a discrete response variable, ranging from the
basic presence-only (PO) to completely presence-absence (PA). Presence-only data sets
describe the locations where a specific species is observed, occasionally making use of
records from museums or herbaria (Graham et al. 2004), though without providing any
information on unsuitable conditions (Ward et al. 2009). In contrast, presence-absence
data include information on species absences, yet these do not necessarily reflect
effective absences. More specifically, reported absences combine true and false absences,
the latter of which is composed of species being present without being observed (non-
detectability) and species being absent due to historical or dispersal limitations (future
potential) (Anderson and Raza, 2010). These false absences negatively affect model
accuracy by providing ambiguous information (Lobo et al., 2010).

Obtained data sets are rarely perfect and often contain one (or more) variables with
missing values, erroneous notations, redundant variables and an unbalanced response
variable (Gibert et al., 2018a). Data exploration and pre-processing are therefore crucial
tools to characterise and improve the quality of the obtained data and, thereby, increase
the reliability of model outcomes (Zhang et al., 2003; Zuur et al., 2010). Data exploration
allows to obtain a graphical representation of a variable’s distribution, with boxplots,
dotplots and histograms being frequently applied to identify potential deviating
instances (Zuur et al., 2010). Transformation or removal of these outliers are common
approaches to improve data quality, yet the lack of uniform guidelines cause it to be
relatively subjective and open to further study.
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Similarly, predictor assessment by means of a correlation index or principal component
analysis (PCA) helps in identifying explanatory variables that contain similar
information. These are helpful in understanding ecological interactions and processes,
yet potentially compromise model development due to limited information gain
compared to the computational cost. Reduction of data dimensionality by correlated
variable removal or the creation of a new set of independent variables based on the PCA
axes generally supports the development of simpler and more transparent models (Guo
et al., 2015; Wilson et al, 2011). The intensity of these effects depends on data
characteristics and varies among modelling techniques.

Aside from abovementioned pre-processing, additional changes are potentially required
prior to model training. For instance, ANN requires predictors to be rescaled to a
predefined interval, ranging between O (or -1) up to 1, in order to make reliable
predictions. Without this rescaling, predictors with an extensive range can have a higher
influence, which can be artificially altered by changing the unit. Similarly, balancing of
the response variable within the training data is highly recommended for DTs in order
to avoid model preference towards the class with the highest frequency. To this end, a
balanced ratio can be obtained via (i) random subsampling of the class(es) with higher
abundance (Aragjo and Guisan, 2006), (ii) oversampling of the class(es) with lower
abundance or (iii) a combination of both (see Figure 3.6).
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Figure 3.6: Balancing of data describing the occurrence of a non-specified organism.
Occurrence was assessed at 170 locations and resulting in 120 absence statements and 50 presence
statements. A balanced dataset is created by A: randomly omitting data related to the absence of
the organism (subsampling); B: randomly duplicating data related to the presence of the organism
(oversampling) or C: applying a combination of subsampling and oversampling.
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3.2.3 Model application

A variety of parameters is linked with model development, distinguishing between
algorithm parameters (or ‘hyperparameters’) and model parameters (e.g. regression
coefficients). Hyperparameters are often subjectively defined prior to model training
and remain unaltered regardless of the provided data, while model parameters are an
intrinsic element of the final model and highly dependent on the training data.
Subjective selection of hyperparameter settings can affect model performance
drastically, hence preliminary optimisation is highly recommended. Ideally, all potential
hyperparameter settings are tested to identify the best-performing combination(s),
though this number tends to increase exponentially with every additional
hyperparameter to be considered. Alternatively, random selection of a subset (e.g. 60
combinations) provides a first overview of potential performance and identifies a
starting point for hyperparameter optimisation, while being generally faster than the
traditional grid search (Bergstra and Bengio, 2012). This procedure reduces overall
calculation time as it does not require for all combinations to be assessed, yet risks that
the global optimal hyperparameter combination will not be found.

3.2.4 Model calibration and validation
The last step in the model development procedure entails the calibration and validation

of the model (Table 3.1). During calibration, the training data is used to update model
parameters in order to improve model fit, providing splitting values for DTs, coefficients
of GLMs, weights in ANNSs, inflection points in FL and CPTs in BBNs. Calibration is run
until a specific stopping criterion is met (e.g. number of nodes in DTs, number of layers
in ANNSs, numerical error between observations and predictions). Defining this criterion
is part of deciding hyperparameter values and tends to differ in function of the intended
model use. For instance, descriptive models aim for a close model fit (thus a higher
complexity), while predictive models are more general to allow transferability.

Following calibration, the model is validated by assessing the discrepancy between
model predictions and observations, relying on internal or external validation. Internal
validation compares the observations with the predictions made for the training data,
though is considered to be insufficient for model validation as it does not allow to assess
model performance objectively (Aratjo et al., 2005a). Therefore, an external data set is
preferred to test the model’s generality and report its performance more objectively
(Dormann et al., 2012). However, completely independent data (e.g. data that differs at
spatial and/or temporal level) is rarely available and is often replaced by pseudo-
independent data by means of randomly subsampling the original data set into a training
and validation set (i.e. the ‘holdout’ method, see Figure 3.7) (Aragjo et al., 2005a). Based
on this final comparison, model performance can be estimated. For the remainder of
this section, attention is given to the different validation metrics and techniques.
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Figure 3.7: Development of a data-based model. The first step (left) describes the observation
of the ecosystem, resulting in a measurement step. The holdout method requires a part of the data
set to be separated (the validation set), while the other part is used for model training (third step).
After model training, validation is performed (right) by comparing the predicted and actual
response values of the validation set.

3.2.4.1 Validation metrics

Performance of habitat suitability models and species distribution models can be
assessed at several levels and depends on the type of response provided by the model. A
distinction is made between models providing a discrete response (e.g. presence or
absence) and models providing a continuous response (e.g. suitability score, density).
Models trained with a discrete response variable and providing discrete predictions are
easily summarised by means of a confusion matrix. Within this matrix, correct
predictions are located on the main diagonal and contrasted with the incorrect
predictions off-diagonal. For instance, with the binary presence/absence response
variable, correct presence (true positive; TP) and absence (true negative; TN) predictions
populate the main diagonal while incorrect presence (false presence; FP) and absence
(false absence; FN) predictions are situated off-diagonal (Table 3.3).

Table 3.3: Confusion matrix for calculation of performance measures. Elements represent
true positive (TP) values, false positive (FP) values, false negative (FN) values and true negative
(TN) values.

Observed
Presence Absence
Presence TP FP
Predicted
Absence FN TN
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Common metrics to assess model performance based on this confusion matrix include
accuracy (correctly classified instances; CCI), Cohen’s kappa statistic (k), sensitivity
(Sn), specificity (Sp), true skill statistic (TSS), odds ratio and the Jaccard index (Fielding
and Bell, 1997; Manel et al., 2001). Each of these indices is calculated differently (see
Table 3.4) and therefore discusses complementary characteristics of model performance
(Mouton et al., 2010). CCI provides the most straightforward calculation of model
accuracy (i.e. all correct predictions divided by all predictions), despite being dependent
on the class distribution of the response variable within the training data (Manel et al.,
2001). Cohen’s k has been suggested as an alternative to CCI as it allows for chance

correction, though has received similar criticism.

Table 3.4: Performance metrics used to evaluate model performance based on the
confusion matrix in Table 3.3. CCI represents the correctly classified instances and N is the total
number of instances. After Mouton (2008), Goethals (2005) and Fielding and Bell (1997).

Performance measure Calculation
TP +TN
CCI
N
. . . FP +FN
Misclassification rate N
. TP
Sensitivity (Sn) S
TP + FN
TN
Specificity (S
P Y ( P) FP+TN
. .. TP TN
True skill statistic (TSS) + -1
TP+ FN FP+TN
TP
Positive predicting power S —
P &P TP + FP
TN
Negative predicting power
8 P &P FN +TN
: TP - FP
Odds-ratio
FN-TN
TP
Jaccard -_—
TP+ FP+ FN
(TP +TN) <((TP + FN) - (TP + FP) + (FP + TN) - (FN + TN)))
- N
Cohen’s Kappa
N <((TP + FN) - (TP + FP) + (FP + TP) - (FN + TN))>
- N
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The use of these metrics is not fundamentally restricted to categorical response
variables, but can be extended to continuous response variables. However, their
application requires the transformation of the latter into a set of subjectively defined
classes, based on arbitrary thresholds and causing a certain loss of information.
Alternatively, the comparison between observations and predictions can be performed
in a more quantitative way, including the correlation (r) and determination (r?)
coefficient and the (root) mean squared error ((R)MSE), as described in Table 3.5
(Bennett et al., 2013).

Table 3.5: Performance metrics for models generating continuous output based on
predicted (P) and observed (O) values. N is the total number of instances.

Performance measure Calculation

J(er -G (zoe-57H)
/ Z(P'O) _ (ZPI;IZ 0) \2

\Jer -7 (- 57

Root mean squared error (RMSE) ’% : Z(p —0)2

Mean squared error (MSE) % : Z(P - 0)?

Correlation coefficient (r)

Determination coefficient (r2)

Nevertheless, real-world data often provides a simple binary occurrence statement,
while the increased application of ensemble modelling causes a rise in the prediction of
probabilities. Discretisation of this score allows model performance assessment via the
confusion matrix and classification metrics (Table 3.3 and Table 3.4, respectively),
though threshold selection differs among studies and ranges from a fixed threshold at
0.5 over the use of species prevalence to the optimisation of Cohen’s kappa (Freeman
and Moisen, 2008b). Similarly, assigning numerical values (e.g. translating a
presence/absence statement into a 1 or O score, respectively) to the original response
variable helps the application of the regression metrics (Table 3.5). Alternatively, the
receiver operator curve (ROC) represents a commonly applied graphical performance
indicator that bridges this discrepancy between observation and prediction data. After
applying all possible thresholds, the sensitivity (y-axis) is plotted in relation to the
specificity (x-axis) and represents the ROC, which can be summarised in a single
indicator by calculating the area under the curve (AUC).
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The application of AUC to evaluate model performance is relatively common because of
its simplicity, generality and discretisation threshold independency (Phillips et al., 2009;
Swets, 1988). Values range between O and 1, with 1 indicating perfect discrimination and
0.5 representing similar discrimination as random classification. Drawbacks of this
indicator are related with (1) ignoring the model’s goodness-of-fit, (2) the AUC being
not completely independent of species’ presence and (3) model performance in regions
that are not practically used is incorporated in the AUC (Lobo et al., 2008). Despite
these disadvantages, AUC can still be applied when evaluating predictor importance on
final model performance (Barbet-Massin et al., 2014).

3.2.4.2 Validation techniques
Calculation of model performance based on the original training data is inherently

biased as the fitted model is familiar with the provided data. Unbiased estimates of
model performance are obtained when new and independent data is available, reflecting
external model validation. The discrepancy between both validation scores arises and
qualitatively reflects the degree of overfitting and the generality of the extracted
patterns. When significant differences occur, no reliable predictions will be obtained
from the model and the results should be interpreted with caution. Moreover, the
development of a single model is highly dependent on the provided data and can
therefore be unknowingly biased.

These issues can be partially tackled by increasing the overall data-use efficiency and
improved hyperparameter tuning, thereby supporting model regularisation (i.e.
increasing model acceptance by reducing its specificity). Within the field of occurrence-
based correlative modelling, data is a valuable resource and requires careful
consideration prior to removal. By training multiple models with a random subsample
of the available data, predictions become an aggregate of a series of individual models
and decrease the risk of overfitting. Proper development of multiple models being
derived from the same data entails supervised sampling of the data to avoid overly
correlated models and can be performed via k-fold cross-validation (CV). More
specifically, the data is separated into k different folds, out of which k-1 folds are selected
for model training and the remaining fold is used for external model validation (see
Figure 3.8). Model training and subsequent validation is repeated k times to make sure
that every fold has acted once as pseudo-independent validation data. Due to this
repetitive model development and increased data-use efficiency, CV is considered to be
more trust-worthy than simply splitting the data in a training and validation set (Akratos
et al., 2008). A graphical representation of k-fold CV is depicted in Figure 3.8 for ke, =
10, though other values for ke, can be used (e.g. kov = 3 or ko = 5) depending on the
researcher’s preference and the overall data availability. Moreover, the value of k-fold
CV during hyperparameter tuning is illustrated in Box 3.2.
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An extreme version of k-fold CV is leave-one-out CV (LOOCV), where the number of
folds is equal to the number of instances minus one (ke = Ninse — 1), which is quite
common when data is limited. Still, k-fold CV decreases the amount of instances (and
thus, sample size) for model training due to the exclusion of a single fold, which can be
considered an unwanted side-effect. Alternatively, bootstrapping allows to maintain the
same number of instances by sampling the original data randomly and allowing certain
instances to be present twice or even three times while others remain absent and
available for model validation.

Yet, increasing data use efficiency during model training also increases potential bias as
there is no completely independent data set to be used for testing the final model.
Therefore, it is highly recommended to, prior to repeated model development, extract a
subset of the data that is never used for model training (see Figure 3.7). Alternatively,
completely new data is collected, reflecting (i) similar environmental conditions, (ii)
different environmental conditions or (iii) different geographical regions, depending on
the purpose and known limitations of the model.
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Figure 3.8: Illustration of 10-fold cross-validation during model development. The initial
data set is split in 10 equal-sized folds, out of which a different fold is used for validation during
each cycle.
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Box 3.2: Using k-fold cross-validation for hyperparameter tuning

Several data-driven modelling techniques are characterised by including a series of
hyperparameters (see Section 3.2.3), which require to be defined by the user prior to
algorithm application. The selection can be fixed to the default conditions specified
by the used software, though the majority of studies benefits from (some kind of)
hyperparameter tuning. This can be obtained by repetitive model development and
associated performance assessment.

Aside from limiting overfitting and decreasing variance within the final model, k-fold
cross-validation can also be used for hyperparameter tuning. For each combination of
hyperparameter values, k different models are developed and assessed as depicted in
Figure 3.8. The combination that provides the best performance (see Section 3.2.4.1
for available metrics) is ultimately selected and reported as the implemented
hyperparameter settings. Prior to performing such a repetitive assessment of all
potential combinations, hyperparameter values need to be defined. This can follow (1)
a structured approach with a priori definition of all combinations to be tested or (2)
an iterative approach based on the results of the previous iteration. A visual
representation of using k-fold cross-validation for hyperparameter tuning is provided
in Figure 3.9.
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Figure 3.9: Position of k-fold cross-validation in hyperparameter tuning. The extent of
the search space can be completely defined (Option 1) or dependent on the observed performance
during previous iteration (Option 2). Subsequently, k models are developed with a specific
combination of the selected hyperparameters and their performance is pooled and evaluated
against the performances of all other combinations. Finally, the hyperparameter combination
supporting the highest performance is identified and selected.
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3.3 Criticism on data-driven models

First of all, Guisan and Thuiller (2005) mention that, when using observations to predict
a species’ presence, the obtained model describes the realised niche (as part of the
fundamental niche). Moreover, by using observation data, species are assumed to be in
equilibrium with their environment, thereby ignoring tolerance capacity and mobility
behaviour (source-sink dynamics and dispersal limitation, respectively, sensu Pulliam
(2000)), along with the characteristic disequilibrium displayed by recently introduced
species (Gallien et al., 2012). Presence in an unsuitable habitat and absence from a
suitable habitat negatively affect the performance of observation-based models (Guisan
and Thuiller, 2005; Pulliam, 2000; Sinclair et al., 2010), causing the creation of overly
complex models and incorrect distributions of predicted suitable habitats. When willing
to describe the fundamental niche, one needs to fall back on autecological experiments
and process-based models (Gallien et al., 2010).

Secondly, the pool of existing modelling techniques has increased greatly throughout
the last decades and impedes the creation of a useful, concise overview. Whereas in most
cases higher diversity is cheered for, here it brings along two important consequences
(Guisan and Thuiller, 2005): (i) an increased range of model-specific errors and
uncertainties, and (ii) divergence of the modelled response variable. So far, comparative
research on both aspects remains insufficient to perform a qualitative comparison of all
techniques, illustrating one of the challenges when faced with appropriate model
selection (De'ath and Fabricius, 2000). As a partial solution, Aratjo and New (2007)
suggested to apply ensemble forecasting to combine the predicted responses of several
models, resulting in a consensus prediction and a probability range. Despite its
promising applicability, ensemble forecasting only provides an end-of-pipe solution and
leaves the real causes of the divergence untouched.

Thirdly, scale and resolution vary depending on the type of data (e.g. small-scale
nutrient state at high resolution versus large-scale climatic conditions at low resolution)
and can lead to the decision of excluding specific variables (Elith and Leathwick, 2009).
However, this decreases the transferability of a small-scale model to a larger scale (e.g.
outside the originally considered climatic conditions), while up- and downscaling avoids
variable exclusion, though introduces errors via data aggregation (reduction of detail)
and the assumption of similar conditions (generalisation), respectively. Alternatively, a
cascade of models can be developed, starting with global models providing coarse
suitability maps, out of which specific areas of interest can be selected for investigation
at a smaller, more detailed scale (Roura-Pascual et al., 2009). The development of
regional high-resolution models provides a potential bridge between the low-resolution
climate change scenarios and high-resolution field observations, though attention
should be given to the boundary conformity with the large-scale models.
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Finally, overarching these points of criticism, is the limited inclusion of temporal
dynamics by HSMs, especially within the framework of forecasting the effects of climate
change on habitat suitability. The inherent interactions included in observation-based
HSMs are likely to change when climatic conditions differ. For instance, increased
atmospheric carbon dioxide causes higher aquatic carbon dioxide concentrations,
acidification and elevated temperatures (IPCC, 2014), all of which influence the
metabolic processes of organisms in a different way and, by consequence, the prevailing
interactions (Gallien et al., 2010). In short, correlative HSMs are a straightforward way
of linking habitat conditions to species occurrence, but the underlying assumptions
caution the consideration of their response as the one and only truth, additionally
highlighting that models are only a mere simplification of reality (Wilson et al., 2011).

3.3.1 Including dispersal dynamics to predict species distributions

Suitable habitats provide potential for a macrophyte to be present, yet natural barriers
and limited connectivity decrease dispersion efficiency and thereby impede
introduction, establishment and colonisation. Dispersion efficiency greatly depends on
the prevailing species pools in the immediate surroundings and the applied dispersion
strategy (Galatowitsch, 2006; Sundermann et al., 2011). For instance, Sundermann et al.
(2011) illustrated that river restoration success largely depends on the surrounding
species pools, while indicating that species-specific dispersion rates are limitedly known
due to distinct dispersion strategies (e.g. stolons, cloning and root growth).

Dispersal dynamics play a major role in the observation of false absences (i.e. no
observation in a suitable habitat) and false presences (i.e. observation in an unsuitable
habitat). For instance, false absences are caused by a suboptimal introduction frequency
into a suitable habitat. Current absence of the species can be linked with a recent
stochastic disappearance or abiotic restoration and is exacerbated by decreased
environmental connectivity or a relatively low tendency to disperse (Jiménez-Valverde
et al., 2008). Similarly, false presences represent the process of continuous species
introduction into a habitat that does not support the development of a viable population
and acts as a sink environment (Pulliam, 2000). Both cases illustrate the criticism on
the assumption of HSMs that species are in equilibrium with their environment and how
this can interfere with consolidating conclusions (Guisan and Thuiller, 2005).

Knowledge of species-specific dispersion rates provides the potential to predict future
species distributions and the timeframe needed for a macrophyte to establish and
subsequently colonise the identified suitable habitats. Inclusion of species dispersion
rates transforms HSMs into species distribution models (SDMs) and can be performed
prior to abiotic filtering (Guisan and Rahbek, 2011), although a lack of data impedes its
inclusion. This highlights an important field of future study in case short-term

restoration via natural succession is aimed for.
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3.4 Contribution to the study objectives

Each technique has specific advantages and drawbacks, the latter of which can often be
resolved (partially) by technique-specific extensions. Yet, as the number of explanatory
variables is expected to be high and only limited expert knowledge is available, it would
be unwise to choose FL or BBN. Similarly, GLM development and interpretation is
expected to be hampered due to the high number of explanatory variables and potential
interactions that require explicit inclusion in the model structure. In addition, the black
box behaviour of ANN is hardly resolved via technique-specific extensions, which
impedes transparency towards the end user. Finally, DTs suffer from relatively high
instability, though this can be reduced by alternative data use methodologies and
algorithm application. A specific implementation of repetitive tree development is the
random forest technique, which is recommended for further analyses. A tabular
overview of technique-specific advantages and drawbacks with respect to the study
objectives (see Section 1.2.1) is provided in Table 3.6.

Table 3.6: Drawbacks and advantages of the selected techniques framed within the study
objectives.

Technique Advantages Drawbacks
DT - Transparent; - Instability of single tree;
- Identifies variable interactions. - Influenced by data set dimensions.
GLM - Easy to use - Assumed distribution;
- Explicit inclusion of variable
interactions.
ANN - Tolerates noise and errors; - Black box model;
- Identifies variable interactions. - Lack of guidelines.
FL - Fuzzy boundaries - Influenced by data dimensionality;
- Data discretisation.
BBN - Accounts for uncertainties explicitly; - Data discretisation;
- Straightforward error propagation. - Time-intensive rule construction.

Aside from supporting technique selection, this chapter additionally provides a basis for
the efficient usage of data within the model development framework (i.e. combining
holdout with k-fold cross-validation) and the assessment of model performance with the
threshold-independent AUC, presence-oriented sensitivity (Sn) and absence-oriented
specificity (Sp).
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3.5 Conclusion

Both habitat suitability and species distribution models provide a promising approach
to support conservation and restoration management in a changing world. A variety of
modelling approaches exists with specific advantages and drawbacks, making the
selection of a single technique highly subjective. Overall, decision trees are relatively
simple techniques allowing for the integration of variable interactions without the need
to specify a distribution (GLMs) or a number of hidden layers (ANNs), while the relative
recent random forest reports comparatively high performance. The possibility to include
ecological knowledge within DTs is relatively limited and requires the use of a more
advanced technique like FL or BBN, with the latter showing promising results when
combining experimental experiences and expert knowledge. Data becomes, more than
ever, a valuable resource and deserves to be treated with care and properly cleaned prior
to being mined. To increase data use efficiency and limit model overfitting, cross-
validation is to be applied during model development, while performance assessment
based on non-transformed observed or predicted response values is most informative.
The area under the receiver operating characteristic curve (AUC) represents a single-
value and threshold-independent metric, while sensitivity (Sn) and specificity (Sp)
provide valuable additional information on model characteristics.
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CHAPTER 4

Abstract

When aiming to merge several ecosystem services through restoration or artificial
creation of wetlands, a profound knowledge of the underlying processes and interactions
is crucial. This knowledge can be gathered by relying on field observations to develop
habitat suitability models on the one hand and performing autecological experiments to
improve fundamental knowledge on behaviour dynamics on the other hand. Data is a
major source of information for the development of correlative models, but requires
proper identification, characterisation and cleaning prior to being used for pattern
extraction. The publicly available Limnodata Neerlandica showed to be very extensive,
but prone to high degrees of missing data and elevated levels of faulty or irrelevant
information. These issues are tackled with a variety of existing techniques, though trade-
offs between information gain and time-related efficiency loss are needed for well-
balanced technique selection. Here, data preparation aims at improving the
performance of conditional random forests, belonging to the family of decision trees and
combining a pre-specified number of individual trees (ntree) into a single model to
increase response stability. The use of a pseudo-independent test set and five-fold cross-
validation supports relatively unbiased performance assessment via the Area Under the
Receiver Operating Characteristic Curve (AUC), sensitivity (Sn) and specificity (Sp).
Simultaneously, experiments with two Lemna spp. under controlled conditions aim at
confirming the invasive character and vulnerability to invasion by working at the pre-
introduction and post-establishment level. These technicalities create the practical
framework and support repeatability of the performed analyses.
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4.1 Setting the scene

In previous chapters, literature was consulted to create a framework and to identify key
issues for further research within the field of wetland restoration. From Chapter 2, it
became clear that attention should be given to both modelling and experimental studies,
simultaneously laying the path for all subsequent chapters. As a start, Chapter 3
provided a structured insight into the advantages and drawbacks of five frequently
applied modelling techniques, while stipulating that data pre-processing, cross-
validation and external validation are essential to obtain a qualitative model. Still, a
variety of challenges remains to be tackled, for which a more methodological approach

is necessary.

When aiming to merge several ecosystem services through restoration or artificial
creation of wetlands, a profound knowledge of the underlying processes and interactions
is crucial. This knowledge can be gathered by relying on field observations on the one
hand and performing autecological experiments on the other hand. Field observations
inherently describe the realised niche of the studied species, though only deliver
snapshot information on the perceived ecosystem due to the limited inclusion of
spatiotemporal dynamics (Araujo and Guisan, 2006). Based on these occurrence data,
correlative habitat suitability models (HSMs) are developed to describe or predict
species distributions. Yet, with low-quality data undermining many modelling attempts,
specific attention is required to tackle the presence of missing data, outliers and
redundant variables (Donders et al., 2006; Zuur et al., 2010).

In contrast, controlled conditions provide the opportunity to investigate species-specific
traits and dynamics of invasive alien species (IAS), which allows the inference of the
mechanisms underlying species dominance (Hofstra et al., 2020; Keddy, 2010). These
experiments help developing proactive and reactive management plans by assessing the
ability to forecast invasive behaviour and the response of biomass production under a
combined management-introduction pressure, respectively. Yet, extrapolation of these
results to relevant environmental conditions and spatiotemporal dynamics requires

caution.

Within this work, both the realised niche and functional traits are considered to define
what constitutes a suitable habitat and how invasion vulnerability can be assessed.
Therefore, this chapter is divided into two parts: (1) related to the development of
correlative habitat suitability models and (2) related to laboratory experiments under
controlled conditions. The first part is characterised by subparts (e.g. data quality,
modelling technique), which are discussed in detail throughout this chapter.
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4.2 Habitat Suitability Models

The development of correlative habitat suitability models follows a set of crucial steps
prior to interpreting and discussing the results (see Chapter 3, Table 3.1). Data is a major
source of information in environmental data science, but the quality of publicly available
data sets is often questionable (Gibert et al., 2018a; Maldonado et al., 2015). Therefore,
it is advisable to identify, characterise and clean the data prior to using the observed
occurrences for pattern extraction. Within the following sections, more information is
provided on the exploited data, the considered cleaning techniques and the selected
modelling procedure.

All calculations, procedures and modelling activities have been developed and
performed in RStudio (version 1.1.463 and older), as graphical user interface for R
(version 3.6.1 and older) (R Core Team, 2016; RStudio Team, 2015), unless mentioned
otherwise. A variety of packages has been used throughout this work and will be
introduced when considered appropriate, along with the general packages reshape,
ggplot2, ggpubr, doParallel and foreach to aid data structuring, plotting and parallel
computations (Kassambra, 2019; Microsoft Corporation and Weston, 2019a; Microsoft
Corporation and Weston, 2019b; Wickham, 2007; Wickham, 2016). In this light, it is
worth mentioning that relevant and associated scripts can be found on GitHub
(https://github.com/wvechelp/PHDReleases, licensed under MIT licence).

The notation of units follows the guidelines of the National Institute of Standards and
Technology (NIST), while averages are reported as mean + I SD (with SD being the
standard deviation) (Barde and Barde, 2012; Thompson and Taylor, 2008).
Exceptionally, the standard error of the mean (e) is used instead of the standard
deviation (s) in order to stress the accuracy of the observation rather than the variability,
which is mentioned clearly when being used.

4.2.1 Dataset characteristics

The Limnodata Neerlandica (Knoben and van der Wal, 2015) contains information on
the hydromorphological, physicochemical and biological conditions of Dutch surface
water bodies, being collected between 1968 and 2012 throughout the Netherlands. The
data set is a collection of observations made by 38 different institutions (see Table A.1)
that is owned and made publicly available by the Dutch Foundation of Applied Water
Research (STOWA).

Instances are spatially and temporally referenced, with the majority of sampled water
body types being lotic waters, lakes, canals and ditches (STOWA, 2001). Within this
work, attention was given to the physicochemical and macrophyte data, both of which
showing a variable - but overall increasing — number of observations throughout the
data collection period.
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4.2.1.1 Physicochemical data

In total, 665 variables are listed as being included in the data set, yet the majority of
these variables results from highly specific research, causing many variables to not
contain any information at all (i.e. 464 variables) or only provide information for a
limited number of instances. Indeed, relatively few variables (Nyar = 14) contain a value
for more than 50 % of all instances (Ninst = 34 483), with the lowest degree of variable-
wise information density being 0.003 % (Figure 4.1A). Consequently, the degree of
missing information varies per instance, ranging between 0.5 % and 59.7 % (Figure 4.1B).
Within the original physicochemical data, only few instances (Ninst = 792; 2.3 %) contain
information on more than 20 % of all included variables (Nyqr = 201). An overview of all
variables with at least one recorded value (Nyor = 201) is provided in Appendix, Table
A.2. Prior to further analyses, field and laboratory data on conductivity and pH were
merged into a single variable (i.e. Nyar = 199).
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Figure 4.1: Information within the physicochemical dataset. A: In total, 201 variables
contained some information, with the lowest degree being 0.003 % (indiscernible due to the scale
of the y axis). Only 14 variables contained information for more than 50 % of all instances (i.e.
black surface above the dashed grey line). B: In total, 34 483 instances contained some information,
with the lowest degree being 0.5 %. Only 792 instances contained information for more than 20 %
of all variables (i.e. black surface above the dashed grey line).
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Unfortunately, detailed information on the applied methodologies, protocols and
analytical equipment is lacking within the Limnodata Neerlandica. This impedes
extensive quality control within this work and requires the assumption that the majority
of the data is collected in a qualitative and standardised manner. Further quality control
and data pre-processing are therefore imperative to assess and reduce the amount of
noise within the physicochemical data (see Section 4.2.3).

4.2.1.2 Biotic data

Overall, 13 biotic groups are considered in the original data set: Amphibians, Birds,
Butterflies, Diatoms, Fish, Macro-algae, Macrofauna, Mammals, Macrophytes,
Nematodes, Phytoplankton, Reptiles and Zooplankton. Building on Chapter 2, in-depth
attention will be given to the description of the macrophyte data.

Macrophyte occurrence was collected with a variety of techniques, including the
Tansley-scale, the Braun-Blanquet method and the basic indication of presence
(STOWA, 2001) of which an overview is provided in Table A.3. After removal of
misclassified algae, undefined species, hybrid species and ambiguous naming (e.g. only
family name), a total of 1148 macrophytes remained. Within the latter, responses
suggesting macrophyte presence (e.g. abundance and cover percentage) were replaced
by a ‘presence’ statement, otherwise ‘absence’ was assumed as to supplement the
presence-only data (Elith et al., 2006). Hence, a presence-absence data set was obtained,
with the notion that an assigned ‘absence’ statement does not necessarily reflect a true
absence (see Chapter 3) (Anderson and Raza, 2010). Despite the high number of
macrophytes remaining in the data set, only a minority (Npio = 23) occurred at more than
10 % of all sites (Ninst = 77 200), with the lowest degree being 0.001 % (see Figure 4.2).
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Figure 4.2: Information within the macrophyte dataset. In total, 1148 macrophytes were
observed to be present in at least one location between 1968 and 2012, with the lowest degree being
0.001 %. Only 23 macrophytes were recorded as being present within more than 10 % of all
instances (i.e. black surface above the dashed grey line) and thereby represent a clear minority.
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4.2.1.3 Common data

Each instance within the physicochemical and biological data set was characterised by
a unique spatiotemporal identifier (STOWA, 2001). Both data sets were reduced to only
contain instances with information on the physicochemical and biological situation for
each common identifier to avoid a spatial or temporal mismatch between the prevailing
abiotic conditions and the observed macrophyte community. Consequently, a
significant reduction in data was obtained, with only 4344 instances remaining and
simultaneously affecting both the chemical and biotic data sets by reducing the temporal
range to the period between 1978 and 2011 (see Figure A.3).

At the physicochemical level, a minor reduction occurred from 199 variables to 174
variables, while at macrophyte level the original 1148 species were reduced to 576
species. During this extensive data selection, the abiotic conditions were assumed to
represent the general conditions occurring at that specific location, i.e. that no extreme
event had occurred recently.

The resulting combination of physicochemical and macrophyte data were characterised
by a geographical distribution throughout the Netherlands (see Figure 4.3, excluding 80
sites that lacked correct georeferencing), which indicates that spatial coverage is not
completely uniform. Moreover, a variety of water bodies was sampled, although the
majority (Ninst = 1729) was not characterised. Additional classes included streams (Ninst
= 928), brooks (Ninst = 926) and canals (Ninst = 206).
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Figure 4.3: Geographical distribution of sampling sites with physicochemical and
macrophyte information. Data is collected between 1978 and 2011 throughout the Netherlands
and collected in the Limnodata Neerlandica. A total of 4344 instances were available in the data,
but only 4264 were spatially referenced.

91



CHAPTER 4

The common data was additionally characterised by a temporal distribution, showing
differences between and within years. More specifically, sampling sites were visited and
assessed between 1978 and 2011 and showed that during the first years (1978 - 1987),
data was collected throughout the year, while this became more restricted in recent
years. For instance, samples were initially also collected during the colder months
(November - February), while this occurred only sparsely after 1996. This is clearly
illustrated by Figure 4.4 and indicates that additional boundary conditions might be
necessary for temporal analysis. For instance, to avoid bias when assessing the trends in
physicochemical conditions, it can be recommended to only include data from the
warmer months (e.g. April - September). Yet, when inferring the realised niche of a
macrophyte species, it is assumed appropriate to include all instances, as winter months
might represent unsuitable conditions and help in delineating the abiotic habitat that
supports the survival and establishment of the considered species.
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Figure 4.4: Temporal distribution of instances within the combined physicochemical and
macrophyte observations. Instances were collected between 1978 and 2011 throughout the
Netherlands and throughout the year. In time, less instances were collected during the winter
period (November to February). The dots indicate for which month instances were collected, while
the darkness of the tile indicates the number of instances (see also Figure A.3).

The combined data was characterised by a high degree of missing data points (i.e. 93.7
%), which were all part of the physicochemical data and were distributed differentially
over the recorded variables and included instances. For example, only a few variables
(Nyar = 6) contained information for more than 50 % of all instances, with the lowest
degree of variable-wise data availability being 0.02 % (Figure 4.5A). At instance-level,
only a few locations (Ninst = 63) were described by more than 20 % of all recorded
variables, with the lowest degree of completeness being 0.57 % (Figure 4.5B).
Macrophyte information showed an increase in prevalence for a few species when
compared with Figure 4.2, with prevalence ranging between 0.02 % and 40.0 % (Figure

4.5C), though only a minority was recorded at more than 10 % of all locations (Npio =
20).
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Figure 4.5: Characteristics of the available information within the combined data. A:
Variable-wise information availability; B: Instance-wise information availability within the
physicochemical data and C: Macrophyte prevalence depicted as availability.

The number of missing data points can be reduced by removing incomplete variables
and instances from the data set. However, despite providing a reduction in the
percentage of missing data, such removal also reduces the number of variables in the
data (Appendix A.4, Figure A.4). From this analysis, it is clear that a reduction in missing
data can be obtained, though that their presence within the final data set is hard to
avoid. For instance, to obtain a reduction from 93.7 % to 50 %, about 154 variables were
removed, leaving only 20 variables within the remaining data set. It is therefore
considered appropriate to perform data imputation in order to avoid an overly simplified
assessed environmental domain. This necessity is caused by the fact that variables have
been recorded relatively randomly, as illustrated by a more detailed visualisation of the
missing data in Appendix A.4, Figure A.5.
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4.2.2 Modelling technique

Model development was conducted via Conditional Random Forests (CRFs) as the
resampling strategy and splitting criterion of ordinary random forests (RFs) favour
continuous and multinomial variables (Hothorn et al., 2018; Strobl et al., 2007; Strobl et
al., 2009b). CRFs belong to the family of decision trees (see Chapter 3) and are an
extension of the standard Classification and Regression Trees (CARTSs). Throughout this
study, CRFs were trained with presence/absence data, though most statements on CRF
applicability towards a binary response variable can be extrapolated to multiclass
response variables.

4.2.2.1 Principle

A random forest combines a pre-specified number of individual trees (ntree) into a single
(ensemble) model to increase the stability of the response (Araujo and New, 2007;
Breiman, 2001). Each individual tree is trained with a subset of the initial training
dataset and, prior to each split, a subset of variables is randomly selected (default

mtry = m, with Nye- the number of variables). The Gini node impurity (I(p) =
Yk Pr - (1 —pi), with k the number of classes and p« the fraction of instances classified
within class k) is calculated to determine the most informative split within the
considered variable subspace (i.e. lowest Gini node impurity) (Archer and Kimes, 2008).
For each split, a new combination of variables is considered, for which the optimal
threshold is sought for within the random subspace. This process of single tree
development is repeated multiple times to end up with a series of models consisting of
a predefined number of trees (i.e. defined by ntree). Because of the random selection of
variables for each split, the developed classifiers are only limitedly correlated, allowing
to combine (i.e. bagging) the individual responses into an average response (Archer and
Kimes, 2008; Strobl et al., 2007). Hence, the final response of the model is determined
based on a probability distribution or on a majority vote of all individual trees, with ties
assigned randomly (Breiman, 2001; Cutler et al., 2007). The obtained probabilities can
subsequently be interpreted as a suitability score.

Advantages of the random forest technique include limited overfitting, robustness
towards noise, no need for an a priori assumed variable distribution and the possibility
to determine variable importance (Breiman, 2001; Elith and Graham, 2009; Vezza et al.,
2015). Yet, also the latter is reported to be flawed within ordinary random forests when
variables have different scales or number of categories (Strobl et al., 2007), supporting
the decision to develop conditional random forests. Note that throughout this study, the
word ‘suitability’ is used instead of ‘probability’, as the latter reflects a higher certainty
of a species being present, which cannot be reliably obtained when pseudo-absences are
included in the model structure (Elith et al., 2005).
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4.2.2.2 Model validation and evaluation

Predictions made with CRFs are provided as a probability distribution over the response
classes and are situated within the [O - 1] range, summing to 1 (Hothorn et al., 2018).
Discretisation of these probability scores to a presence/absence statement is possible,
but requires the selection of a cut-off value, above which a specific instance supports the
presence of the considered species. This allows the construction of a confusion matrix,
summarising the comparison of observations and predictions into (i) True Positives
(TP), (ii) True Negatives (TN), (iii) False positives (FP) and (iv) False Negatives (FN).
Based on this matrix, a series of performance metrics can be derived (Chapter 3, Table
3.3 and Table 3.4, respectively).

Despite the claimed robustness of RFs to overfitting, cross-validation is recommended
to avoid overly positive performance scores and to increase data use efficiency. During
cross-validation, the available data is split into ke, folds, out of which kI folds are used
to train the model, while the remaining fold provides an estimation of model
performance. This is repeated k. times to make sure every fold has been excluded at
least once from the model training step and provides an average performance estimation
over all k., runs (see also Section 3.2.4.2).

Throughout this study, five-fold cross-validation was applied to limit model overfitting
and provide information on internal validation. Moreover, model performance was
assessed externally by extracting 10 % of each data set as a pseudo-independent test set,
while the remaining 90 % represented the basis for creating training sets. The latter was
subsampled to obtain a prevalence of 50 % within the final training data set, considering
the sensitivity of random forests towards imbalances (Evans and Cushman, 2009; Fox et
al., 2017). Ultimately, model performance was reported with AUC and supplemented
with sensitivity (Sn) and specificity (Sp) (see Table 3.4) by discretising model output
into a presence/absence statement. Threshold selection was determined by minimising
the sensitivity-specificity difference (Jiménez-Valverde and Lobo, 2006).

4.2.3 Data preparation and modelling

The combined data (see Section 4.2.1.3) contains information on both the chemical
conditions and observed macrophyte community for 3443 instances, yet is still
characterised by containing uninformative variables and low-prevalence species. Even
though reducing the number of low-informative explanatory variables increases the
overall information availability, a high degree of missing values is obtained in the final
data set. These missing values only occur within the physicochemical dataset, as absence
of information within the biological dataset was considered to represent an absence of
the species. While removal of all instances with at least one missing value would cause
a high degree of information loss, imputation of the missing values remains a valid
alternative as part of the data preparation.
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In order to determine the better imputation technique, all physicochemical data was
considered to test four different approaches, which is discussed in detail in Chapter 5
(see Figure 4.6). Subsequently, further data pre-processing was applied to eliminate
noise both at instance- and at variable level. As these approaches were often linked with
the response variable, the combined data was used for these assessments. Identification
of the effects of data pre-processing on model performance and computation time is
discussed in Chapter 6, while Chapter 7 builds further on these results for species-
specific model development (see Figure 4.6).
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Figure 4.6: Illustration of data use for different chapters. Each data set is characterised by a
certain degree of information, reported as N = instances x variables. For the combined chemical
and macrophyte data a summation of chemical variables and macrophyte species is included,
respectively.

4.2.3.1 Imputation of missing data

Despite being extensive, a high degree of missing data was obtained within the
physicochemical data, requiring data reduction to increase the degree of information
within the data set. In order to cope appropriately with missing values, Chapter 5 looks
into a selection of imputation techniques when imputing artificial missing values.

Characterisation of the data
All physicochemical data (see Figure 4.6) was extracted and contained information on

34 483 unique space-time instances (Nins) and 199 variables (Nvar), yet being
characterised by 90.6 % missing values. Stepwise deletion of variables according to their
degree of missing data was followed by determining the total number of complete cases
and the accompanying number of data points (i.e. unique instance-variable
combinations, Nis¢c X Nygrc).
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The data set containing the highest number of data points without any missing value
(Dope) was considered as the starting point for the creation of additional data sets, which
were fashioned to account for potential variability due to differences in sample size,
dimensionality and degree of missing data. First, two additional data sets were created
by increasing and decreasing the optimal number of variables (Nvar,op¢) with 50 % (Table
4.1). Secondly, 100 %, 75 %, 50 % or 25 % of the instances (Nins:) were randomly sampled
without replacement, resulting in a total of 12 data sets. Lastly, each data set was
subjected to random removal of data points (i.e. equal weights for each variable),
representing 1 %, 5 %, 10 %, 25 %, 50 % or 75 % missing data, each being repeated 10
times. Consequently, a total of 720 data sets was considered for imputation. The
implementation of this procedure is provided as pseudo-code in Algorithm 4.1.

Table 4.1: Composition of the data sets regarding number of variables and number of
instances. The first complete-case data set contained the highest number of data points. Based
on this set, dimensionality for two additional data sets is pre-set during variable removal to act as
baseline data (codes 2 and 3). Secondly, three new data sets are derived from the baseline data,
with different fractions of instances (codes 4 up to 12).

Data set Variable Selected Resulting Resulting Resulting

code fraction (%) instances number of number of number of
(%) variables instances data points

(Nvar) (Ninst)

Baseline data

1 100 100 10 17 264 172 640

2 50 100 5 21543 107 715

3 150 100 15 3970 59 550

Derived data sets

4 100 75 10 12 984 129 840

5 100 50 10 8 632 86320

6 100 25 10 4316 43160

7 50 75 5 16 157 80 785

8 50 50 5 10 771 53 855

9 50 25 5 5385 26 925

10 150 75 15 2977 44 655

1 150 50 15 1985 29775

12 150 25 15 992 14 880
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Algorithm 4.1: Construction of data sets with artificial missing data

Define number of columns nope,var in Dope
Define counter w equal to 1
FOR each element i in [50; 100; 150]
Identify data set Dpase with 0.01i-Ngp,var cOlumns
Define number of instances Npase,inst in Dbase
FOR each element j in [25; 50; 75; 100]
Randomly sample 0.01+j-npqse,inst instances from Dpase
Store random subset as new data set Diemp
Determine number of variables niemp,var in Deemp
Determine number of instances neemp,inst in D¢emp
FOR each element k in [1; 5; 10; 25; 50; 75]
Define counter z equal to 1
WHILE z < 10
Change seed for different randomisation
Randomly remove 0.01-k-n¢emp,var-Neemp,inse points from Diemp
Store as new data set Dy, in list Ldata
Store information on Dy, in list Linfo
Increase counters w and z with 1
END while
END for
END for
END for

Imputation methods
A variety of imputation techniques exists, ranging from simple variable-specific

imputation of the mean over regression-based methods to multivariate model-based
approaches. Characteristics of these techniques and subsequent technique selection are
discussed in more detail in Chapter 5. Each imputation technique was applied on all 720
data sets identified above in order to assess the applicability of the selected techniques.
This was done along a gradient of (i) missing data percentage (fup), (ii) sample size (Ninst)
and (iii) dimensionality (Nvar) to assess how imputation performance can be improved
by reducing the degree of missing data, increasing the sample size or increasing

dimensionality, respectively.
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Evaluation of imputation accuracy
Evaluation was performed by using the normalised root mean squared error (NRMSE),

as defined by Equation 4.1, allowing a performance comparison between the different
data sets from Table 4.1 and with literature (Stekhoven and Bihlmann, 2012;
Troyanskaya et al., 2001). Performance comparison was conducted without considering
specific data set configurations (i.e. an overall assessment) and supplemented with the
following three cases:

1. Influence of percentage missing data (fup): specific attention was given to the Dgp¢
set (data set 1, Table 4.1) as it was expected to contain the most information and
hence to support clearer differences between the imputation techniques.

2. Influence of sample size (Ninst): specific attention was given to the Dop data set and
derived data sets with lower sample size (data sets 1, 4, 5 and 6, Table 4.1), to provide
a link with the previous case.

3. Influence of dimensionality (N.ar): specific attention was given to the three baseline
data sets (data sets 1, 2 and 3, Table 4.1). This case also considered Dop: and can be
linked with the first case.

1 <Nmw -

=X Wi v)? )

NRMSE = |- p (Equation 4.1)
y

With N, the total number of missing values, y; the true value, y, the imputed value and

033 the variance of the true values.

Linear mixed effect models (LMEM) were developed via a backward selection procedure
for overall and case-specific performance assessment to infer imputation method
significance. Imputation method, degree of missing data, fraction of instances and
fraction of variables were considered as (interacting) fixed effects (depending on the
considered case), while the imputed data set was included as random effect. Model
simplification was performed by stepwise removal of the least significant (interaction)
effect, followed by ANOVA testing and (interaction) effect removal if a reduction in
complexity (measured via the Akaike Information Criterion, AIC) was obtained.
Subsequently, pairwise differences between methods were assessed via post-hoc Tukey
tests with Hochberg correction. The ImerTest and multcomp packages were used for this
purpose (Hothorn et al., 2008; Kuznetsova et al., 2017).

Aside from a performance-based evaluation, computation time for each imputation was
recorded to qualitatively score each method. This is an often neglected aspect of data
imputation and is only limitedly reported in literature as it is subordinate to accuracy
(Schmitt et al., 2015). Imputations were run in parallel on two Intel® Xeon® E5620
processors (2.39 GHz and 2.40 GHz), with 6 GB RAM.
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4.2.3.2 Data pre-processing

Characterisation of the data
A mismatch between the physicochemical and macrophyte data exists within the

Limnodata Neerlandica as data were often collected at different moments in time.
Therefore, physicochemical and macrophyte data for space-time combinations that
recurred in both data sets were extracted, reflecting the baseline data. Despite being
extensive (4344 instances for 174 variables, Figure 4.6), a high degree of missing data
was obtained within the physicochemical information (i.e. 93.7 %). Consequently,
stepwise variable or instance removal was applied, aiming to reduce the overall degree
of missing values. At each step, removal of the variable or instance with the highest
positive impact on the overall rate of missing values was performed. Subsequent data set
selection and imputation were performed by relying on the results from Chapter 5.

Macrophyte selection was based on the overall number of absolute observations, with at
least 100 observations required prior to being included to reduce the original number of
macrophyte species (Npio = 576, Figure 4.6). Macrophyte species with lower prevalence
can still provide information, yet the limited number of observations creates a highly
unbalanced data set, thereby consequently affecting model performance. Remaining
macrophytes were subsequently subjected to an additional selection procedure that
considered their main life stage habitat, eliminating macrophytes that were more
characteristic for bank and terrestrial vegetation. The resulting combined data was used
for model development in both Chapter 6 and Chapter 7.

Pre-processing techniques
Due to the specific construction of the random forest algorithm, it was expected that the

inclusion of outliers and correlated variables has a limited effect on model performance.
However, model regularisation aiming to reduce model complexity by means of
reducing incorrect and irrelevant information relies on the trade-off between data and
model complexity and, hence, encompasses appropriate instance and variable selection.
A variety of pre-processing approaches exists, ranging from simple outlier removal over
correlative variable assessment to combinatory algorithm-implemented approaches.
The characteristics of these techniques are discussed in more detail in Chapter 6.

Evaluation of pre-processing effects on model performance
The effects of each pre-processing technique on model performance were assessed via

the Area Under the Receiver Operating Characteristic Curve (AUC) (see Section 3.2.4.1).
Final model evaluation was performed at two levels: (i) using the original external test
set and (ii) using the original external test set after pre-processing. By doing so, a
performance range can be defined between underperforming models (original test set)
on the one hand and overperforming models (pre-processed test set) on the other hand,
with the idea that actual model performance lies somewhere in between both results.
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Simultaneously, computation time was recorded as it is affected by data pre-processing
in two ways: (i) it increases the time needed to prepare the data and (ii) potentially
decreases the time needed to develop the individual model. Therefore, computation
time was registered for the overall procedure including data preparation and model
development as well as for the application of the model training algorithm. The
computational capacity was similar as described in Section 4.2.3.1.

4.2.3.3 Model development and habitat suitability assessment

Optimisation of hyperparameters
Optimisation of the selected CRF hyperparameters ntree (number of individual models

to be developed in the ensemble), mtry (number of variables to be considered for each
split within the tree), nsplit (minimum fraction of instances in a node in order to be
considered for splitting) and nleaf (minimum fraction of instances in a terminal node in
order to be kept) (Hothorn et al, 2018) was conducted based on an iterative,
performance-based procedure.

First, an extensive search space was defined by delimiting the ranges of the four
hyperparameters and defining the step size between potential values. Ranges differed
among hyperparameters (see Table 4.2) and resulted in more than two million possible
combinations, out of which sixty combinations were randomly selected to accelerate
optimisation (Bergstra and Bengio, 2012). The combination providing the highest AUC
score was set as starting point for further parameter tuning.

Table 4.2: Range definition of four hyperparameters. For each hyperparameter, the baseline,
lower and upper limit were defined, as well as the step size. Vector length indicates the resulting
number of hyperparameter values. Both nsplit and nleaf are by default expressed as abolute values,
but converted to relative values during optimisation, thereby restricting model complexity.

Parameter Baseline  Lowerlimit  Upperlimit Stepsize Vector length
ntree 200 100 1000 10 91
mtry VNvar 2 20 1 19
nsplit 20 0.01 0.5 0.01 50
nleaf 7 0.01 0.25 0.01 25

Secondly, an iterative hyperparameter optimisation procedure was applied by defining
a local search space following the hyperparameter-specific range limits as defined in
Table 4.3. Identification of the best-performing combination supported the narrowing
of the search space by a factor two during the next iteration, yet only when identical
hyperparameter values were selected. Iterative parameter optimisation was stopped
when the same settings were selected three times or when five iterations were performed
(see Algorithm 4.2). This approach does not guarantee finding the global optimum, but
helps in identifying a local optimum capable of improving model performance.
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Table 4.3: Range definition of four hyperparameters to be used during iterative
parameter optimisation. Within these limits, x depicts the frequency of selecting the same
settings as providing the highest performance and y represents the total number of iterations.

Parameter Lower limit Central Upper limit  Vector length
200 200
ntree ntree,_; — > ntreey_, ntree,_; + - 3
4 4
mtry mtry,_; — ox mtryy 1 mtry,_; + 7% 3
. _ . y _ 0.2
nsplit nsplit,_; — o nsplity_q nsplity,_; + ox 3
0.2 0.2
nleaf nleafy,_; — o nleaf, 4 nleaf,_; + > 3

Algorithm 4.2: Iterative hyperparameter optimisation

Develop model m with ‘starting point settings’
Store ‘starting point settings’ and AUC in list L
Define iterators x and y, starting at O value
WHILE x<3andy <5
Define new search space in list S
Eliminate settings already occurring within L from S
FOR each combination in search space S
Develop model m
Append list L with specific settings and AUC from m
END for
Identify highest AUC in L and related settings
IF new settings are the same as ‘starting point settings’
Increase x with 1
ELSE
Update ‘starting point settings’ to new settings
END if
Increase y with 1
END while
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Null models, variable importance and partial dependence
Null models were developed for each macrophyte species by randomly permuting the

presence/absence statement of the model training data (hence, test data was unaltered),
followed by model development with initial hyperparameter settings and external
validation with the test data. In total, 1000 null models were developed for each
macrophyte and the resulting distribution of AUC values was used to determine the
upper 95" percentile (Pos). Metric values exceeding this threshold were considered as
significantly different from random prediction.

Settings that supported the highest AUC values based on internal cross-validation were
subsequently used for final model construction and the determination of variable
importance. Variable-specific model improvement ratios (MIRs) were derived for each
model and were based on a repetitive permutation-performance assessment scheme
(Strobl et al., 2009a). More specifically, the procedure entailed the following steps: (1) a
model is trained with the original data, (2) a specific variable of the training data is
permuted to break the association with the response variable, (3) a new model is trained
with the altered data, (4) a fraction of the data that was not utilised for model training
is used to test the new model, (5) the obtained accuracy is compared with the original
accuracy and (6) after all individual scores are determined, they are divided by the
importance score of the highest-scoring variable. Hence, the obtained MIR score lies
between O and 1, allowing comparison of relative variable importance among models
(Murphy et al., 2010).

Lastly, based on overall importance, five variables were selected for partial dependence
plot (PDP) assessment, reflecting the variable’s effect on habitat suitability. PDPs were
developed by stepwise alteration of the selected predictor along its observed range
(minimum-maximum) with the remainder of the training data unaltered, followed by
suitability prediction. In total, the PDPs were developed over 21 equidistant values (i.e.
20 breaks) for each of the considered variables.
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4.3 Experiments under controlled conditions

Aside from the modelling part, additional attention is given to forecasting the invasive
character and the vulnerability to invasion by means of experimental studies. Here, the
aim is to work both at pre-introduction and post-establishment level of an invasive alien
species by focusing on (1) the applicability of existing trait-based indices to identify an
invasive macrophyte and (2) the vulnerability of a system towards invasion, while
experiencing an additional management pressure. Experimental conditions varied
slightly for these two studies and are therefore introduced separately, within the
associated chapter.

Experiments were performed with macrophytes occurring in Belgium, with specific
attention towards the selection of a native and an alien species that are preferably
phylogenetically close. As floating macrophytes tend to occur in more eutrophic
conditions (Bakker et al., 2013; Zhang et al., 2017), potential test species were narrowed
down to this subcategory. Among these floating macrophytes, Lemna minuta is known
for originating from North and South America and having reached a widespread status
throughout Europe (Hussner, 2012). In Belgium, L. minuta has been observed since 1972
(https://waarnemingen.be/) and is considered to be ‘widespread with a moderate
impact’ (http://ias.biodiversity.be/), while in the Netherlands it has only been observed
since 1989 (https://waarnemingen.nl/) and included in the Limnodata Neerlandica since
1990. Four other Lemna spp. occur throughout Belgium, being L. minor, L. gibba, L.
trisulca and L. turionifera (Lambinon et al., 1998; Van Landuyt, 2007). All Lemna spp.
are characterised by a single root and mostly vegetative reproduction, although sexual
reproduction via flowering has been reported too. In order to contrast the performance
of the alien L. minuta with a native species, L. minor was selected as it is a reference
species for ecotoxicological studies (OECD, 2006). Consequently, specific guidelines for
testing under controlled conditions have been issued, which provides a standardised
framework with respect to growth medium, light conditions and potential growth rate.

Both Lemna spp. are frequently occurring and well-known for their high reproduction
rate, protein content and manipulability (Gérard and Triest, 2014; Yu et al., 2014).
Consequently, their potential in treating eutrophic (waste)waters in combination with
biomass production has been explored for decades (e.g. Culley and Epps (1973),
Hammouda et al. (1995), Oron et al. (1988) and Yu et al. (2014)). On the other hand,
their presence in natural systems is frequently characterised by dense mats that decrease
light penetration and oxygen concentration, thereby negatively affecting aquatic life
underneath these mats (Janes et al., 1996; Janse and Van Puijenbroek, 1998). Hence, their
relative similarity and controversial effects on ecosystem structure and functioning
provide acceptable arguments to test the applicability of functional traits and the
consequences of partial eradication.
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missing environmental data®

Highlights

- Random forest-based method generally performs best
- Least-squares is valid alternative when computation time is limited
- Data dimensionality has a clearer effect on accuracy than sample size

3 This chapter is redrafted from Van Echelpoel, W.; Bruneel, S. and Goethals, P. L. M. (submitted)
Empirical evaluation of four data imputation methods for incomplete environmental data with
varying levels of available information

And additionally based on Van Echelpoel, W. and Goethals, P. L. M. (2018) Variable importance for
sustaining macrophyte presence via random forests: data imputation and model settings.
Scientific Reports 8, 14557, doi: 10.1038/s41598-018-32966-2.
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Abstract

A recurrent issue within environmental data sets that impedes appropriate data
exploration, analysis and evaluation is the presence of missing data (MD). Existing
techniques avoid unnecessary information loss by exploiting available information to
impute MD, though individual accuracies differ. Four techniques were selected for
comparison of accuracy and required computation time: mean, least square (Is)
regression, k nearest neighbours (kNN) and the ensemble-based missForest algorithm.
Data points were artificially removed from twelve complete data sets (combining three
levels of data dimensionality and four levels of sample size) with six different rates of
MD, being repeated ten times. Results showed that mean imputation provided stable
imputation performance along the MD gradient with an average normalised root mean
squared error (NRMSE) of 0.96 + 0.04, while Is and missForest provided rather similar
performance (0.5 + 0.3 versus 0.5 = 0.2, respectively). Higher rates of MD caused an
undisputable decrease in performance, except when mean imputation was applied.
Simultaneously, computation time increased for Is and kNN, decreased for missForest
and remained relatively stable for mean. Sample size affected performance only
limitedly, while clearly affecting computation time for Is, kNN and missForest. In
contrast, increased data dimensionality positively affected performance, while
confirming that computation time was mostly influenced by the total number of data
points. Further optimisation of both kNN and missForest showed a similar increase in
performance (Anrmse = -0.05 + 0.05), confirming that the latter indeed provides better
imputation performance than more conventional techniques. In short, the ensemble-
based missForest algorithm outperformed mean, least squares and k nearest neighbour
imputation, though the latter two remain valid alternatives at low rates of missing data.
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5.1 Setting the scene

Gathering information, improving knowledge and steering decisions all greatly rely on
data collection and availability. Yet, many data sets are plagued with a certain degree of
missing data as, in practice, data is potentially lost, erroneously recorded or absent due
to electronic malfunctioning or non-response (Garcia-Laencina et al., 2010; Giustarini et
al., 2016). Missing data is common within the field of environmental monitoring and
assessment affecting both descriptive and correlative analyses. For instance, Srebotnjak
et al. (2012) pointed out that missing data hampered proper water quality index
computation, while Chandramouli et al. (2007) acknowledged that missing
microbiological data impeded accurate human health risk assessment. Moreover, when
reviewing watershed-wide water quality evaluation, Olsen et al. (2012) observed that 10
out of 49 studies (20 %) reported missing data, with only 1 study reporting the actual
degree of missing values. This mismatch between data quality and subsequent data
analyses partially underlies reduced efficiency due to the loss of valuable information
and a lack of specific guidelines (Giustarini et al., 2016; Liew et al., 2011).

For years, data sets were reduced to contain only complete cases, thereby impeding
proper estimation of population parameters, limiting data analysis power and
introducing bias (Little and Rubin, 2002; Penone et al., 2014). These complete-case
analyses assume that the reduced data set represents a perfect subsample of the
population, i.e. a missing completely at random (MCAR) mechanism (Little and Rubin,
2002), although most data sets follow the missing at random (MAR) or the not missing
at random (NMAR) mechanism. The latter occurs when data is missing because of its
value (e.g. a concentration below detection limit, sensor malfunctioning during a
heatwave), while no link can be found with any other variable. In between MCAR and
NMAR, the MAR mechanism is characterised by the possibility of estimating missing
values based on other variables’ values (Little and Rubin, 2002). The increased
awareness on the complete-case analysis being acceptable up to only 5 % missing data
(Garcia-Laencina et al., 2010) in combination with abovementioned mechanisms,
steered the development of imputation techniques.

One of the simplest imputation approaches is based on variable-specific statistics (e.g.
mean, median, mode) and represents a popular approach due to fair performance
(Celton et al., 2010; Schmitt et al., 2015), despite ignoring the inherent associations
among the included variables (Liew et al., 2011). In contrast, a variety of imputation
methods do acknowledge these underlying associations, including regression-based
methods, Bayesian principal component analysis (bPCA), singular value decomposition
(SVD), k nearest neighbours (kNN), fuzzy k-means, artificial neural networks (ANN),
random forests and model-based approaches (Bg et al., 2004; Brock et al., 2008; Celton
et al., 2010; Chandramouli et al., 2007; Luengo et al., 2012; Zhang et al., 2008).
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For instance, Ba et al. (2004) applied least-squares regression to impute microarray data
and concluded that it was simpler and more accurate than kNN, despite increasing
multicollinearity (Garcia-Laencina et al,, 2010). In kNN, a pre-specified number of
neighbours (knn) acts as donor for the missing value, representing a tuneable similarity-
based imputation. Identifying neighbours is computationally slower compared to
statistic- or regression-based imputation and neglects negative correlations, yet often
supports higher performances, except when confronted with more advanced techniques
(Penone et al., 2014; Schmitt et al., 2015; Waljee et al., 2013). For instance, Stekhoven
and Bithlmann (2012) introduced the random forest-based missForest algorithm and
acknowledged its value for missing data imputation, though optimisation and overall
computation time provide a practical trade-off during method selection (Shah et al,
2014; Waljee et al., 2013). A summary of advantages and disadvantages of the mentioned
techniques is provided in Table 5.1.

Table 5.1: Advantages and disadvantages of a selection of imputation methods. Methods
include a generally known method (mean), a regression-based method (least squares; ls), a
similarity-based method with limited flexibility (kKNN) and a random forest-based method with
high flexibility (missForest).

Method Advantages Disadvantages
Mean - Simple - Neglects covariance
- Frequently used - Narrows variable distribution
- Underestimates variance
Least squares - Simple - Increases multi-collinearity

- Maintains covariance structure - Does not include local variability

- Requires predefined distribution

kNN - Similarity-based - Has to recalculate all distances for
- Can be optimised each missing value (computation time)
- Fixed number of neighbours
- Does not include negative correlations
missForest - Correlation-based - Optimisation can be cumbersome

- Can be optimised
- Flexible related to duplicates

- Random selection can affect result
- Potentially high computation times
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Abovementioned techniques share the advantage of single-value imputation, producing
a data set that can be used directly for further analysis, yet ignoring the inherent
uncertainty of the imputed value. Indeed, a confidence interval can be assigned to each
imputed value reflecting the value’s potential distribution. Multiple-value imputation
methods assume a distribution of the missing value, out of which m single values are
randomly selected, resulting in m new data sets and m individual analyses, which are
subsequently pooled to obtain an overall evaluation (Faris et al., 2002). Approaches to
multiple-value imputation include multivariate normal imputation (MVNI), assuming a
multivariate normal distribution, and fully conditional specification (FCS) (Lee and
Carlin, 2010), which includes the multiple imputation via chained equations (MICE)
method for which relatively high performances have been obtained (Schmitt et al,
2015).

Usage and comparison of imputation methods (both single- and multiple-value) is
common within the field of bioinformatics (e.g. microarray data), medicine and
marketing (Bo et al., 2004; Lee and Carlin, 2010; Nogueira et al., 2007; Shrive et al.,
2006; Troyanskaya et al., 2001), though remains limited within purely environmental
data analysis. Moreover, comparisons lag behind as new techniques are constantly being
developed while previous methods have not yet been sufficiently applied, described and
tested.

Within this chapter, four single-value imputation methods are selected to deal with
missing environmental data: the mean (the ‘popular’ approach), iterative least squares
(regression-based), k nearest neighbours (similarity-based) and random forests
(iterative correlation-based). The aim is to elucidate the differences between the
imputation techniques at performance level, supplemented with required computation
time. To do so, the imputation error will be assessed along a gradient of (i) missing data
percentage (fup), (ii) sample size (Nins) and (iii) dimensionality (Ny.). For each
technique, it is expected that imputation accuracy is positively affected by (i) decreasing

fup, (ii) increasing Nins: and (iii) increasing Nyar.

Based on abovementioned literature and technique-specific characteristics, it is
hypothesised that performance-based ranking will provide the following result: random
forests > k nearest neighbours > iterative least squares > mean imputation. By tackling
this issue, a partial answer to RQ2.1 is formulated, with respect to objective 2.1 as
identified in Chapter 1. Hence, this chapter concludes with a statement on the suggested
imputation technique and how accuracy can be improved by changing the degree of
missing data, sample size or data dimensionality.
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5.2 Materials and methods

5.2.1 Characterisation of the data and evaluation methods

The analyses performed in this chapter made use of the physicochemical data within the
Limnodata Neerlandica, as described in Chapter 4 (see Section 4.2.3.1). In general, the
provided data was used as a basis to develop 720 different data sets, which vary at the
level of sample size (Nins:), dimensionality (Nvar) and degree of missing data (fup).
Techniques were compared at performance level by means of the normalised root mean
squared error (NRMSE) and supplemented with evaluation of the computation time.
More detailed information can be found in Chapter 4 and in Appendix B.1.

5.2.2 Imputation techniques

Four single-value imputation techniques were selected for this study: (i) mean
imputation (mean), (ii) iterative least squares (Is), (iii) k-nearest neighbours (kNN), and
(iv) a random forest-based algorithm missForest (mF). All techniques were initially
applied with their default settings and, if applicable, tested for potential optimisation
via (i) inclusion of additional information and (ii) iterative hyperparameter setting.

Imputation of the mean is the simplest approach and has been applied at instance- and
variable level. Despite its application within microarray research (Troyanskaya et al.,
2001), instance-wise imputation of the mean is not considered appropriate with
environmental data, hence a variable-wise imputation is applied. Imputation is
performed via the Hmisc package (Harrel, 2018).

The iterative least squares method assumes an underlying linear relationship among the
variables within the data set, thereby supporting its successful application within the
field of microarray analysis (Bg et al., 2004; Brock et al., 2008; Zhang et al., 2008) and
its potential within the field of environmental data. Imputation is based on the
description provided by Bg et al. (2004), starting with the imputation of the variable-
wise mean, after which the covariance matrices (S) are determined and used to solve
Equation 5.1. Following the first imputation, means and covariance matrices are updated
and a new imputation value is determined until convergence. Here, maximally 10
iterations were run as additional iterations resulted in relatively minor changes within

the covariance matrix.
V=V +SySax—1%) (Equation 5.1)

With 3, the estimated value (to be imputed), ¥, the average value over y;, ..., y, , Sy x the
covariance matrix (vector) between the variable with missing value and the remaining
variables, S,, the covariance matrix among the remaining variables, x = [x, x5, ..., x;]”
the variables’ values for the considered instance and X = [X7,X5, ...,X]” the variables’

average values.
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The kNN approach is a distance-based method and uses the information of the ku,
closest neighbours of the instance with a missing value. Subsequently, the mean (or
median) of these kn, neighbours is used to replace the missing value, optionally weighted
for the neighbours’ distance from the instance. Within this study, imputation is based
on the Gower distance and the distance-weighted average of kn,» neighbours. At first, the
default value of kn, = 5 is considered for imputation, followed by an assessment of how
NRMSE-based optimisation of kn,» can improve imputation performance. This
optimisation is conducted for each combination in Table 4.1 at six levels of missing data
and two repetitions (i.e. N = 144, see Appendix B.2). Imputation via kNN is applied via
the VIM package (Kowarik and Templ, 2016).

Lastly, the missForest algorithm was introduced by Stekhoven and Bithlmann (2012) and
relies on the random forest technique (see also Box 3.1). This technique belongs to the
data-driven supervised machine learning classification and regression trees (CARTs) and
has been reported to outperform more traditional methods as it creates an ensemble of
independent trees rather than a single tree (Stekhoven and Biihlmann, 2012; Waljee et
al., 2013). As such, it can be considered as a multiple-value imputation technique,
although only a single imputed data set is obtained.

Imputation via random forest works iteratively, comparing each imputed value with its
previous value and combining this in an overall difference. Baseline imputation is
performed via variable-wise mean imputation, while the stopping criterion is defined as
the moment when the calculated difference starts to increase again, as defined by
Equation 5.2 for continuous variables (see Stekhoven and Bithlmann (2012) for discrete
variables). Alternatively, the number of iterations can be defined a priori to avoid non-

convergence errors.

. . 2
k imp pimp
_ 2fa(Pnew=Doid )

_, (pimp)’

Ay (Equation 5.2)

With X the set of k continuous variables and D the data matrix.

Within this chapter, random data sampling within missForest was performed without
replacement and three hyperparameters were selected for optimisation: ntree, mtry and
nodesize. At first, hyperparameters were set at their default values (i.e. ntree = 100,

mtry = \/m and nodesize = 1), with maximally 10 iterations. Subsequently, these
hyperparameters were iteratively altered for each combination mentioned in Table 4.1
at all six levels of missing data and two repetitions (i.e. N = 144, see Appendix, Section
B.2.2), followed by an analysis of the difference in performance. The missForest
algorithm was implemented as part of the missForest package (Stekhoven, 2013).
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5.3 Results

All imputation methods obtained in at least 94 % of the cases a NRMSE value lower than
1. Ranges differed, with Is representing the narrowest range (0.03 up to 2.36) and kNN
the widest range (0.05 up to 3.73). Both mean and mF scored in between, ranging from
0.89 up to 4.10 and from 0.06 up to 3.63, respectively (Figure 5.1). Best overall
performance was obtained by mF (0.45 + 0.27) and Is (0.47 + 0.26), followed by kNN
(0.53 + 0.31) and reflecting a clear difference from mean (0.97 + 0.12).

Indeed, higher NRMSE values were observed for mean, represented by scores of Is, kNN
and mF being mostly situated underneath the agreement line (Figure 5.1). Moreover, the
majority of kNN results are positioned above the mF-based agreement line and, vice
versa, the majority of mF results are situated below the kNN-based agreement line
(Figure 5.1). No clear difference is observed between the results for Is and mF, as
indicated by NRMSE values at both sides of the Is- and mF-based agreement lines (Figure
5.1). These observations are confirmed by the adjusted Tukey test, showing that mean
performed significantly worse than Is, kNN and mF (p < 0.001 for all pairwise tests),
while differences among the latter three methods were non-significant (p > 0.05).
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Figure 5.1: General overview of the NRMSE scores for each imputation approach,
conditional to the other methods. To improve visualisation, the y-axis was chosen to be similar
to the x-axis range. Values below the agreement line indicate better performance of the method on
the y-axis, while values above the agreement line indicate better performance of the method on the
x-axis. Methods: mean: mean imputation; Is: iterative least squares; kNN: k nearest neighbours
and mF: the missForest algorithm. NRMSE: Normalised Root Mean Squared Error.
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In the following sections, more specific results are presented, focusing on the methods’
variability in performance and required computation time for (i) a fixed number of both
variables and instances (i.e. Dopt), (ii) a varying number of instances, given a fixed
number of variables (Nyarop¢ and flexible Ninst) and (iii) a variety in dimensionality
(flexible Nyqr). A detailed overview of performance scores can be found in Table B.3.
Moreover, in order to support the obtained NRMSE scores with a variable- and
technique-specific accuracy assessment, two case studies are provided in Appendix B.4:
(i) a small data set (5 variables, 5385 instances) with 1% missing data and (ii) the optimal
data set (10 variables, 17 264 instances) with 50 % missing data. The latter is based on
the description of the common data in Section 4.2.1.3. Based on these results, mF seemed
to perform best for imputing both extensive and confined variables, while kNN and Is
showed to be less applicable, respectively.

5.3.1 Baseline performance at fixed sample size and dimensionality

Highest imputation performance was hypothesised for the lowest amount of missing
data, while an increasing degree of missing data (MD) was expected to inflate the
imputation error. Separation of the results for imputing Dop: conditionally to the degree
of missing data clearly supported this hypothesis, with performance of Is, kNN and mF
decreasing along an increase in missing values (Figure 5.2). Only mean provided
consistent imputation performance regardless of fup.

Based on the saturated mixed model, a lower effect of missing data on mF is inferred
when compared to kNN (B,,r.mp = 0.859 versus Byxyn.up = 1.080), while the discrepancy
with Is is less clear (Bis.yp = 0.822), though significant (p = 0.02). Indeed, kNN
performance was 0.19 + 0.05 at 1 % MD, going up to 1.05 + 0.06 at 75 % MD, while for
mF this was only 0.16 + 0.05 and 0.86 + 0.02 (see Table B.3), respectively. In contrast,
no significant difference was observed between Is and kNN. Moreover, mean was
unaffected by the degree of missing data (Figure 5.2) and provided an overall stable, yet
relatively low, imputation performance of 0.966 + 0.003 (N = 60), thereby performing
significantly worse than Is, kNN and mF (all p < 0.001). In addition, mF performed
significantly better than kNN and significantly outperformed Is when missing data was
at least 20 % (all p < 0.05).

Contrasting its performance, mF required long computation times, being up to 40 times
higher compared to Is (e.g. 2100 + 400 s versus 80 + 20 s, respectively, with 1 % missing
data) and even more when compared with mean (0.005 + 0.008 s, with 1 % missing
data). As missing data increased, a decrease in computation time was observed for mF
(Figure 5.2). Simultaneously, kNN showed an increase in computation time, arising to a
maximum at 50 % missing values (807 + 3 s), while mean provided short computation
times regardless of the degree of missing values (overall 0.006 + 0.008 s).
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Figure 5.2: General performance of four imputation methods, as determined for the
maximum number of data points. The top row (NRMSE) represents all performance values,
while the second row represents the computation time needed for the imputation. Columns
represent the different degrees of missing data used. Data of 10 repetitions (identical number of
data points, different missing values) are reported. Boxes represent the 50 % central values around
the median, while whiskers represent the first and third quartile extended to the last case within
1.5 times the interquartile range. Dots represent the values outside the range of the whiskers.
Methods: mean: mean imputation; ls: iterative least squares; KNN: k nearest neighbours and mF:
the missForest algorithm. NRMSE: Normalised Root Mean Squared Error.

5.3.2 Sample size variability

Imputation performance was expected to decline with decreasing sample size, vice versa
providing higher performance when more data is available. Indeed, imputation error
decreased slightly when sample size increased (Figure 5.3), having a relatively higher
effect on kNN than on mF based on the interaction coefficients (Byyn:inst = -0.179 versus
Bmr-inse = -0.070, respectively), with Is experiencing a similar effect as kNN (B5.inst = -
0.174). This discrepancy between mF and kNN created a significant difference in overall
performance (p < 0.001) in favour of mF, while Is and kNN illustrated similar
performance. Nevertheless, in contrast to the aforementioned significant differences
between kNN and mF at maximum sample size (all p-values < 0.05), both methods
performed similarly when imputing smaller-sized data sets with maximally 10 % missing
values (most p > 0.05). Likewise, no significant differences between Is and mF could be
observed when maximally 10 % of the data is missing, even at maximum sample size.
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At elevated degrees of missing values (= 20 %), no clear uniform results were obtained,
suggesting a potential dependency on which instances were either in- or excluded.
Similarly, the effect of sample size at 1 % missing data remained ambiguous, while at 75
% missing data kNN was clearly outperformed by Is and mF (p < 0.001), providing almost

similar performance as mean.

Only mean provided stable and low computation times regardless of the degree of
missing data or the number of instances (overall 0.005 + 0.007 s). On the other hand,
mF and kNN required more time when more instances were provided (e.g. 2100 + 400 s
versus 160 + 50 s and 25.1 + 0.2 s versus 2.20 + 0.09 s, respectively, for 100 % and 25 %
of Ninsyopt, Tespectively, at 1 % missing data), along with a general increase in
computation time for kNN when more data was missing and a decrease in computation
time for mF when more than 20 % of the data was missing (Figure 5.3), reflecting the
pattern as observed in Figure 5.2.
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Figure 5.3: Effect of number of instances for a fixed number of variables. More instances
have a limited impact on performance, but do affect computation time. The top row (NRMSE)
represents performance, while the second row represents the required computation time. Columns
represent the different degrees of missing data used. Data of 10 repetitions (variable number of
instances for 10 variables, different missing values) are reported. Symbols represent the average
for each combination, while vertical lines represent the standard deviation. Methods: mean: mean
imputation; mF: the missForest algorithm; kKNN: k nearest neighbours and ls: iterative least
squares. NRMSE: Normalised Root Mean Squared Error.
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5.3.3 Dimensionality variability

Inclusion of additional variables was expected to increase imputation performance,
despite the underlying reduction in sample size and a potential to increase model
overfitting. The latter is consequential to the consideration of a high number of variables
to explain or describe the patterns within the data and is characterised by a reduced
accuracy outside its training range. Hence, despite an increased explanatory power by
including additional variables, a decrease in imputation accuracy can be obtained. Still,
dimensionality clearly affected imputation performance, with a general decrease in error
following an increase in dimensionality (Figure 5.4). Only kNN did not show a
monotonous increase in performance when 50 % or more of the data was missing, but
rather performed worst at intermediate dimensionality (0.97 + 0.06 at Nyar = 5 versus
1.05 £ 0.06 at Nyer = 10, with 75 % missing).

The saturated model indicated that a significant overall interaction existed and that
inclusion of a main effect and interaction with imputation method significantly
improved model fit (p < 0.001). Interaction coefficients indicated a higher effect of
dimensionality on mF (Bpr.yar = -0.067) compared to Is and kNN (Bs.yqr = -0.044 and
Binn:var = -0.025), causing the overall significant differences between Is, kNN and mF
in the baseline performance (see earlier section) to disappear. Still, they provided
significantly higher performance than mean, regardless of missing data and
dimensionality (all p < 0.001), except for kNN at 75 % missing values and only 5
variables. In contrast, with 50 % or less of the data missing and only 5 variables, kNN
performed similarly as Is and mF, yet performance discrepancy increased when 10 (mF)
or 15 (Is) variables were available (p < 0.05). Differences between Is and mF were mostly
non-significant, except at increased dimensionality (= 10 variables) and elevated degrees
of missing data (= 20 %).

Both mF and kNN showed maximal required computation time at intermediate
dimensionality (Nver = 10, up to 2100 = 400 s for mF) and minimal at increased
dimensionality (Nyer = 15, 220 + 60 s for mF at 1 % missing) (Figure 5.4). Surprisingly,
the latter did not result in a clear change in computation time for kNN or mF along the
range of missing data, while reduced dimensionality showed a similar pattern as
observed in Figure 5.2. In contrast, both mean and Is were not clearly affected by
dimensionality nor the degree of missing data (Figure 5.4).
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Figure 5.4: Effect of dimensionality on performance and required time of four imputation
methods. Not only the number of variables, but also sample size is different among data sets. The
top row (NRMSE) represents performance, while the second row represents the required
computation time. Columns represent the different degrees of missing data used. Data of 10
repetitions (maximum number of instances for a specific number of variables, different missing
values) are reported. Symbols represent the average for each combination, while vertical lines
represent the standard deviation. Methods: mean: mean imputation; mF: the missForest
algorithm; KNN: k nearest neighbours and ls: iterative least squares. NRMSE: Normalised Root
Mean Squared Error.

5.3.4 Optimisation

Preliminary assessment showed that additional typological information did not result in
improved imputation performance (see Appendix, Figure B.l), hence this was not
considered for further elaboration. In contrast, altering hyperparameter settings often
improved performance and was therefore included in subsequent analyses. Specific
effects of each individual hyperparameter were considered being beyond the current
scope and merit additional study.

By default, kNN considers five neighbours, yet the optimised kn, value ranged from 1 up
to 47, with a median value of 9. Almost 33 % of the kn, values were equal to or lower
than 5, while another 33 % ranged from 15 up to 47. In general, data sets with low rates
of missing data (fup < 10 %) supported improved imputation when low kn, values were
applied (kan < 10) and vice versa for data sets with elevated rates of missing data (Figure

5.5).
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Figure 5.5: Selected number of neighbours to be considered after optimisation. Optimised
knn values were determined for the six classes of missing data (0.01, 0.05, 0.1, 0.2, 0.5 and 0.75),
represented by two repetitions of each possible combination of sample size (number of instances)
and dimensionality (number of variables), hence a total of 144 data sets. Values range from 1 up to
47, with low values being selected when imputing data sets with limited rates of missing values and
vice versa for data sets with high rates of missing values. Boxes represent the 50 % central values
around the median, while whiskers represent the first and third quartile extended to the last case
within 1.5 times the interquartile range.

Similar patterns could not be identified for mF due to the simultaneous alteration of
three hyperparameters during the iteration process, yet observations suggested that the
majority of the data sets was imputed with higher accuracy when less individual trees
were constructed and more variables were randomly selected at each split (see Table 5.2
and Appendix, Figure B.5 and Figure B.7). For instance, ntree ranged from 5 up to 225,
with the majority of the data sets requiring less than the default number of trees (i.e.
ntree = 100).

Indeed, 75 % of the data sets required 84 trees or less to improve imputation accuracy,
while median values for mtry were similar (Nyar = 5) or higher (Nvar > 5) than the default
value (Table 5.2). Quantitative improvements in NRMSE values were, in general, smaller
than 0.25 and relatively unaffected by the rate of missing data and the default
performance for both methods (Figure 5.6). On average, the absolute decrease in
NRMSE values between the default and optimised imputation settings was 0.05 + 0.05
(N =144) for both methods.
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Table 5.2: Summarising statistics for the optimised hyperparameter values of mF.
Optimised values were determined for the six classes of missing data (0.01, 0.05, 0.1, 0.2, 0.5 and
0.75), represented by two repetitions of each possible combination of sample size (number of
instances) and dimensionality (number of variables), hence a total of 144 data sets. In general, the
majority of the data sets benefit when imputation is performed with less individual trees (ntree)
and more variables to be considered for each split (mtry).

Default Min Q1 Median Mean Q3 Max
ntree 100 5 25 50 62 84 225
mtry (Nvar = 5) 2 1 1 2 2 3 4
mtry (Nvar = 10) 3 1 2 3 4 5 9
mtry (Nyar = 15) 3 2 4 6 7 9 14
nodesize 1 1 1 2 2 2 6
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Figure 5.6: Error reduction following optimisation of hyperparameter settings of the kNN
and missForest algorithm. The difference is calculated as the NRMSE value after optimisation
minus the NRMSE value in case of default settings (Baseline NRMSE). The horizontally grey dotted
line represents the reference condition (i.e. no change in NRMSE), with symbols below it reflecting
an improvement of performance and symbols on it reflecting a steady state. Selected
hyperparameters included the number of neighbours (kNN) and the number of individual trees,
number of variables to be considered for each split and final nodesize for missForest (mF).
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5.4 Discussion

5.4.1 Performance evaluation

The high degree of stability obtained by imputing the mean value (mean) illustrates its
reliability as it is hardly affected by the degree of missing data, the number of instances,
nor the number of variables. Along with its simplicity and low computation times, mean
represents a pragmatic imputation method, though performed worst in this comparative
study despite outperforming other methods in literature (Shrive et al., 2006). When
facing high degrees of missing values (fup > 75 %), mean appears to become a valid
approach, potentially due to the lack of sufficient information for Is, KNN and mF. Yet,
imputing high rates of missing values greatly affects the estimation of population
statistics and associations (Garcia-Laencina et al., 2010; Little and Rubin, 2002; Penone
et al., 2014), which increases the chance of imputing values that deviate strongly from
the actual value, as illustrated by the increased error for Is, kNN and mF. Still, mean
imputation narrows the variable’s distribution and results in an underestimation of the
standard deviation and the population’s variance, thereby additionally affecting
subsequent analyses like PCA and habitat suitability model development (Brock et al.,
2008; Liew et al., 2011).

Narrowing causes more distant values to become underrepresented and, hence,
potentially ignored during model development, inhibiting both the interpretation of
descriptive models and the extrapolation of predictive models. Therefore, some authors
support the idea of considering data imputation and model performance at once, as
higher imputation accuracy does not necessarily warrant improved model performance
(Brock et al.,, 2008; Garcia-Laencina et al., 2010; Luengo et al., 2012). However, this
should be done with care as it might favour conservative imputation approaches,
thereby artificially inflating performance metrics.

Along with mean, Is is not subject to hyperparameter-tuning and is only limitedly
affected by the number of iterations to be performed. Despite the iterative approach, Is
provides visually similarly performance as mF and kNN at low degrees of missing data
(fup < 20 %), while outperforming kNN at higher degrees of missing data (fup = 50 %).
However, in spite of the global approach of Is (Be et al., 2004), computation time
remains tends to increase greatly along the degree of missing values. Hence, a
multivariate regression approach provides a promising perspective for imputing
multidimensional environmental data, especially when extension beyond linear

associations is possible (e.g. GLM-based).
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Being outperformed by Is and mF at high levels of missing values classifies kNN as an
intermediately performing method, thereby complying with literature (Celton et al,
2010; Schmitt et al., 2015). Moreover, at low degrees of missing data, mF tends to provide
significantly better performance than kNN, indicating that, under default
hyperparameter settings, mF provides overall better performance.

The power of mF resides in the combination of several individual trees (i.e. a bagged
imputation technique) and an iterative approach that allows to update the imputed
values (Waljee et al., 2013), hence explaining the high computation times required for
mF. Clearly, mF requires more time than mean, Is and kNN, except at high levels of
missing data (fup > 50 %), due to combining global and local associations. The observed
reduction in computation time as more data became missing is a potential consequence
of reduced dimensional space, providing a basis for a trade-off analysis between required
data dimensionality and computational time. Contrasting this decrease, kNN shows an
increase in computation time, which is a potential consequence of requiring a more
intensive search for imputing all missing data points and finding the appropriate
neighbours.

In short, mF, kNN and Is provide relatively low overall imputation errors at low levels of
missing data (even without optimisation of mF and kNN), demonstrating that a single-
best approach does not exist (Brock et al., 2008; Celton et al., 2010; Liew et al., 2011).
For instance, mF provides overall relatively high accuracies, yet when computation time

is restricted, Is represents a valid alternative at low rates of missing values.

5.4.2 Sample size and dimensionality

Alterations in sample size and dimensionality provided the expected pattern of reduced
performance following a decrease in either sample size or dimensionality. Indeed,
negative coefficients of the main effects were obtained (see Appendix, Table B.6 and
Table B.7), reflecting a general decrease in error when sample size and/or dimensionality
is increased. Effects differed among the imputation methods, but were generally
stronger for kNN. Consequently, these observations suggest that removal of instances or
variables prior to data imputation is only to be considered when additionally providing
a reduction in the fraction of missing data. Similarly, inclusion of additional instances
and/or variables is only beneficial when the degree of missing values does not increase,
as this counteracts the positive effect of augmented sample size and dimensionality.
Moreover, depending on the type of data included, error reduction might be relatively
limited. For instance, introduction of typological data had a minor effect on imputation
performance and even caused higher errors to occur (see Appendix, Figure B.1). Yet,
when high errors are expected (e.g. at high levels of missing data), additional data can
support slightly better performance.
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5.4.3 Fine-tuning via optimisation

In contrast to mean and Is, both mF and kNN make use of hyperparameters to support
data imputation. Performance of mF is affected by various hyperparameters, including
number of trees (ntree), number of variables for each split (mtry) and the nodesize to be
considered, while kNN is only affected by knn, reflecting the number of neighbours for
calculating the weighted average. Results showed that optimisation is highly case-
specific (see also Appendix B.3) as hyperparameter settings and related performance rely
on the intrinsic correlations within the data (Brock et al., 2008). Consequently, no
specific set of hyperparameter settings can be specified, yet some general guidelines for
alternative settings can be inferred:

1. The rate of missing data affects the optimal number of neighbours of kNN. Low
rates (up to 10 %) will perform well with the default value of kn, = 5 and a search
range of + 5. Intermediate rates (20 %) can be centred around ks, = 10 with a
range of + 10. Lastly, high rates (50 % and up) cover a wide range of potential
optimal values, yet a starting point could be kn» = 15 with a range of + 10.

2. The number of individual trees can be slightly reduced, with a positive impact on
computation time. For instance, ntree = 80 can be considered as starting point,
decreasing computation time by 20 %, due to its linear relationship with ntree
(Stekhoven and Bithlmann, 2012).

3. The number of variables to be considered for each split can be increased. For
instance, the square root of the original number of variables can be replaced by
division by 2.

4. Nodesize is relatively irrelevant when aiming to obtain improved accuracy. It
might, however, reduce complexity and increase transparency of individual trees
and should only be altered if interpretability is an additional goal.

Nevertheless, performance can be improved for both mF and kNN (Aygyse = -0.05 +
0.05), represented by a maximum absolute difference in NRMSE up to 0.35 and 0.34,
respectively. These improvements are similar regardless the degree of missing data nor
the applied method, suggesting that the original difference in performance remains
present with overall best imputation accuracy provided by mF. Still, despite the
increased performance, methods without an optimisation-option or already including
optimisation might be favoured over mF and kNN, solely because of the additional
increase in computation time of the latter (Brock et al., 2008).
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5.4.4 Implications for field-based research

A potentially interesting consequence of these observations represents the possibility to
allow incomplete data to be present within the assessment data set, supporting the
collection of more instances and/or variables. Likewise, data collection campaigns can
be designed to randomly select data points that can be excluded during sampling as a
way to save both time and money. For instance, assuming that the collection of each
data point is equally expensive and time consuming, increasing the number of instances
from 8 000 with 5 % missing data to 12 000 with 10 % missing values, allows that within
the collected 4 000 instances 20 % of the values are missing, representing about 800
data points. Collection of information on all data points (hence no missing data) within
the same time and budget, would limit the amount of instances to be collected to 3 200.
Hence, a proper design allows for more information to be collected by allowing a certain
degree of missing values, preferably assigned randomly in advance. Including variable-
specific information related to costs and timing allows for testing multiple random
missingness schemes in order to optimise the time-budget-information nexus. Yet, one
should always be aware that data imputation does not legitimately equals proper data
collection and that each imputation causes a distortion of the hidden patterns (Nogueira
et al., 2007). Hence, results obtained through data imputation should be interpreted
with care, as these distortions can range from being relatively small (e.g. minor changes
in variable correlations with an overall low NRMSE) up to being disruptive (e.g.
decreasing variable range with 50 %). Yet, the performed case studies suggested that
only imputation of the mean created distinct changes in variable distributions, although
the extent of most variables might have masked smaller distortions (see Appendix B.4).

Nevertheless, the complete absence of missing values in publicly available data is hard
(if not impossible) to obtain as the amount of data continues to increase along with the
pressure to make data publicly available (Gibert et al., 2018a). Yet combining data from
different research questions unavoidably leads to missing values as a consequence of
not-recording. Moreover, even though continuous monitoring is becoming less budget-
intensive, it is often affected by (i) low temporal resolution and (ii) defects, which create
gaps within time series that limit the capture of variable dynamics and frequency
distributions (Giustarini et al., 2016). In contrast, funds for specific environmental
monitoring campaigns are decreasing globally and highlight a need for (i) cheaper
monitoring technology and (ii) well-structured data sets with appropriate commentary
(Sprague et al., 2017). This illustrates the need within the water management sector for
imputation techniques to avoid both information and investment loss.
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5.4.5 Contribution to the study objective

The aim of this chapter was to elucidate the differences between a selection of available
imputation techniques in order to tackle the relatively high degree of missing data in
the physicochemical data enclosed in the Limnodata Neerlandica. Throughout the
chapter, a collection of complete data sets were derived from the original database and
exposed to artificial random data point removal in order to infer technique-specific
imputation errors. Moreover, by considering a variety of potential data set dimensions,
a more pronounced basis was created to bring forward a specific imputation technique
for further data cleaning within the overall study objective (see Section 1.2.1). It should
remain clear that this chapter contributes mostly to the overall study objective, while
providing suggestions for application outside the considered framework. More
specifically, it is recommended to perform similar analyses with different combinations
of environmental variables to support empirical technique selection.

The chapter provides a solution for the high degree of missing data (93.7 %, see Section
4.2.1.3) that occurs within the combined physicochemical and macrophyte occurrence
data. As this was mostly caused by variables with hardly any information (i.e. only 6
variables contained information for more than 50 % of all instances), a reduction in the
number of variables positively affected the overall degree of missing data. Yet, variable
reduction aiming to obtain only complete cases caused an unwanted reduction in the
dimensionality of the observed environmental domain. Hence, the imputation of
missing data based on available data provided an alternative solution.

The selection of imputation techniques was limited to the methodologies that provided
single-value imputation, i.e. providing a single complete data set after replacing the
missing data points. More advanced multiple-value approaches exist, though these often
require the individual analysis of each new data set (Faris et al., 2002; Lee and Carlin,
2010; Schmitt et al., 2015). As the main study aim entailed the development of several
species-specific models, such multiple imputation would increase the computation and
analysis time tremendously. Therefore, a selection of single-value techniques was made
based on literature and technique-specific characteristics.

In general, technique application supported the expectations at the level of (i) data set
characteristics and (ii) technique-specific characteristics. For instance, increased data
dimensionality and sample size positively affected imputation accuracy, while lowest
imputation errors were mostly obtained by random forests. Moreover, the latter
provided better performance than mean imputation for fup values up to 50 %. Therefore,
the missForest technique is considered for subsequent imputations, while aiming to
reduce the degree of missing data to 50 % (being below the 90 % reported by Madley-
Dowd et al. (2019)).
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5.5 Conclusion

Four imputation methods with different degrees of application complexity were
selected, providing a mix of transparent and so-called black-box methods while
simultaneously representing well-known and more recent methods to impute
environmental data. This selection is far from exhaustive, but provides a sound addition
to the data pre-processing options when dealing with environmental data. The results
showed that the random-forest based missForest algorithm outperforms other methods,
while the regression-based least squares and similarity-based k nearest neighbours
approaches provide valid alternatives when computation time is restricted and less than
20 % of the data is missing. Moreover, imputation accuracy improves when (1) more
variables are included rather than adding instances and (2) an iterative procedure of
hyperparameter optimisation is conducted. It has to be noted, however, that the
comparative nature of this study is limited by the fact that both temporal and logical
data were not included, aside from the assumption that the missing data mechanism
reflects a missing completely at random (MCAR) design, yet similar results are to be
expected for missing at random (MAR). Despite these limitations, valuable observations
across different conditions (sample size and dimensionality) were obtained, supporting
future data pre-processing within the field of environmental data analysis and habitat
suitability model development.
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Speed-performance trade-off
In threshold selection during

data pre-processing*

Highlights

- Eliminating outliers and redundant variables decreased model performance

- Avoiding false absences improved model performance

- Data removal supported faster model development

- Combinatory data pre-processing increased performance and computation time

4 This chapter is based on Van Echelpoel, W.; Bruneel, S. and Goethals, P. L. M. (in preparation) Speed-
performance trade-off in threshold selection during data pre-processing



CHAPTER 6

Abstract

Real-world data requires cleaning prior to performing in-depth analyses and concluding
on qualitative results. During data cleaning, associations among variables are analysed,
the reliability of recorded values is registered and irrelevant or erroneous data are
removed. This positively affects the quality of the training data, despite requesting
tremendous temporal and budgetary investments, by improving the discoverability of
patterns within it, thereby supporting the development of accurate and simple models.
Progress in the field of data mining increases rapidly, yet mainly focuses on specific and
novel data mining techniques rather than optimising data preparation, causing an
artificial mismatch between the supplied low-quality data and the demanded high-
quality data. Here, four different data pre-processing options are introduced and
discussed. Outliers, false absences and variables that are correlated or irrelevant are
identified and excluded from the training data to infer the effect of data pre-processing
on conditional random forest performance and required computation time. Each
method is characterised by a user-defined threshold, causing results and conclusions to
be highly case-dependent. A visual trade-off analysis of model performance, required
computation time and data set characteristics supported the identification of thresholds
for the elimination of outliers (7, = 3), false absences (ta = 5 %), correlated variables (z.
= 0.7) and irrelevant variables (z; = 10 %). Serial combinatory data pre-processing
improved model performance with net AUC increases up to 0.1, though simultaneously
caused a drastic increase in computation time. Nevertheless, final model performance
ranged up to AUC values equal to 0.85 and increased even more when the external test
data was devoid of false absences. These results indicate that overall data pre-processing
positively affects model performance at the expense of computation time and that niche-
based exclusion of false absences is crucial to comply to the equilibrium assumption
within correlative habitat suitability modelling. Moreover, they illustrate that the
abovementioned thresholds can be used in future studies, while highlighting that
inclusion of the implemented threshold within scientific reports is essential to improve
replicability.
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6.1 Setting the scene

Chapter 5 already illustrated how missing values within environmental data sets could
be tackled. Yet, additional actions are needed to perform proper data cleaning prior to
deriving qualitative results (Gueta and Carmel, 2016; Zhang et al., 2003). Data cleaning
positively affects the quality of the training data by improving the discoverability of
patterns within it, thereby supporting the development of accurate and simple models
(Kotsiantis et al., 2006; Maldonado et al., 2015). Progress in the field of environmental
data mining has been increasing rapidly, with a main focus on the development of
specific and novel techniques (Zhang et al., 2003). The resulting delayed interest in the
value of qualitative data has steered the improved awareness on data importance and
has increased the application and development of data pre-processing methods.
Unfortunately, comparative studies and detailed analyses of the effect of data pre-
processing thresholds on data availability and model performance remain rare.

On the one hand, noise introduced by outliers distorts the factual representation of
environmental ranges caused by artificial range extension. The nature of these outliers
ranges from natural variability to erroneous notation and can lead to reduced model
accuracy. More specifically, outliers related to reported species presence create a basis
to overestimate (1) the species’ realised niche and (2) the potential geographical
distribution (Lobo et al., 2010; VanDerWal et al,, 2009). Implementation of outlier
identification varies among studies due to a lack of guidelines and comparative research.
For instance, Gobeyn et al. (2017) applied visual inspection of box plots, histograms and
dot plots to identify outliers in a subjective manner, while VanDerWal et al. (2009)

considered a range of environmental extents to determine the best-performing one.

Opposite of eliminating outliers stands the identification of ambiguous information
among highly similar instances. For example, false absences caused by non-detection of
a rare species or non-occupation of a suitable habitat due to dispersal limitation
insinuate an unsuitable habitat (Anderson and Raza, 2010). Similarly, false presences
due to misidentification or a lagged response to altered conditions have the potential to
untruly extend the species’ realised niche (Lobo et al., 2010). Generally, efforts to avoid
the inclusion of false absences and presences is biased towards the former as most
studies rely on the assumption that the error among recorded presences is negligible (up
to non-existing). False absence rates are expected to be higher than false presence rates
due to a complex interplay of biotic interactions, historic events, dispersal limitations
and dynamic physiological processes, making it hard to confirm true absences (Lobo et
al., 2010). Consequently, most occurrence-based species distribution studies make use
of pseudo-absences rather than true absences to contrast confirmed presences (Chefaoui
and Lobo, 2008; Phillips et al., 2009). These pseudo-absences entail all locations where
species have not been observed, thereby combining both true and false absences.
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On the other hand, irrelevant and correlated variables have limited value in correlative
model development as they increase data dimensionality, required computation time
and model complexity (Kotsiantis et al., 2006). Identification of relevant variables relies
on expert knowledge or on preliminary correlative model(s) and subsequent assessment
of variable importance. Reduction of data dimensionality and model complexity by
eliminating irrelevant variables is claimed not to significantly affect model accuracy. For
instance, Fox et al. (2017) studied the effect of score-based variable selection on model
performance and observed that in the case of random forests, no significant change in
performance was noted. This illustrates that variable selection mostly aims at complexity
reduction (i.e. model regularisation) rather than improving accuracy.

Analogously, correlated variables represent similar information and indicate that model
complexity can be reduced by selecting either one. Often, this selection is based on
ecological knowledge, relation with the response variable or even variable importance.
For instance, Forio et al. (2018) considered the degree of missing data as basis for
correlated variable removal, while Sauer et al. (2011) relied on expert knowledge to
determine which variable to retain. Within occurrence-based species distribution
studies, frequently applied correlation threshold values for input variable selection vary
between 0.7 (e.g. Gobeyn et al. (2017), Van Echelpoel and Goethals (2018)) and 0.8 (e.g.
Forio et al. (2018), Sauer et al. (2011)), though often no strict threshold is reported.

A common characteristic among these pre-processing techniques, is the inclusion of one
(or more) technique-specific threshold(s). These thresholds need to be defined by the
user prior to technique implementation, while affecting the final result. Still, despite the
widespread application of data pre-processing in ecological research, effects of data
cleaning, threshold value selection and combinatory data pre-processing on both model
performance and computation time remain relatively understudied (Gueta and Carmel,
2016). Moreover, threshold values are only limitedly reported and often case-specific,
underlining the need for a solid conceptual framework to support decision-making
(Kotsiantis et al., 2006; Zhang et al., 2003).

Within this chapter, attention is given to four data pre-processing techniques to select
instances or variables. The aim is to assess the effects of technique-specific threshold
selection on model performance and the required computation time and to suggest a
single threshold for future combinatory data pre-processing. More specifically, this
chapter complies to objective 2.2 as defined in Chapter 1 and completes the answer to
RQ2.1. Hence, this chapter concludes with a statement on the suggested technique-
specific threshold values to be used for data quality improvement and future model
development. These values are not claimed to be the holy grail for all future
environmental data science projects. Rather, this study provides an illustration of how
threshold selection can be performed.
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6.2 Materials and method

6.2.1 Characterisation of the data

Data within the Limnodata Neerlandica was subsampled to contain spatiotemporally
referenced observations of macrophytes and the prevailing physicochemical conditions
(see Section 4.2.3.2), providing information on 4344 instances, 174 variables and 576
macrophytes (Figure 4.3). Physicochemical data was characterised by a high number of
variables that contained limited information, causing a high degree of missing values
(93.7 %) and therefore requiring further reduction. The degree of missing data was
reduced to 49.7 % (with 50 % being considered manageable for imputation, see Chapter
5) by stepwise removal of the variable or instance that contributed most to the overall
reduction, providing information on 4158 instances and 20 variables (see Appendix,
Figure C.1 and Table C.I). Subsequently, missing data was imputed by using the
missForest algorithm with default settings (see Chapter 5).

For each instance, a presence/absence statement reflecting macrophyte occurrence was
available, yet overall prevalence was often below 2.4 % (i.e. 100 instances in total). These
low-prevalence macrophytes were left out, while remaining macrophytes were double-
checked for representing plants with a main aquatic life-stage. This resulted in a final
data set of only 58 different macrophyte species, along a prevalence range between 2.4
and 41 %. Analyses were performed for all macrophytes, yet for brevity reasons a subset
of five macrophytes was selected, covering (1) the observed prevalence range (2.4-41 %),
(2) different growth forms (emergent, submerged and floating) and (3) origin (native,
alien), being presented in Table 6.1 (and Appendix, Table C.2). Data preparation and all
subsequent calculations and modelling activities were performed in RStudio (R Core
Team, 2016; RStudio Team, 2015), while making use of the packages missForest, party
and PresenceAbsence (Freeman and Moisen, 2008a; Stekhoven, 2013; Strobl et al.,
2009a).

Table 6.1: Characterisation of the macrophyte subset. Five macrophytes were selected to
cover the observed prevalence range, different growth form and origin. Note that origin here is
considered for western Europe in general and that classification into native or alien is highly
dependent on the considered timeframe.

Macrophyte Prevalence (%) Growth form Origin
Phragmites australis 41 Emergent Native
Lemna minor 27 Floating Native
Ceratophyllum demersum 18 Submerged Native
Mentha aquatica 1 Emergent Native
Lemna minuta 3 Floating Alien
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6.2.2 Preliminary assessment

Based on the abovementioned data set, a preliminary study was implemented to
determine the minimum number of trees (ntree) to be developed within the conditional
random forest (CRF) as well as the number of repetitions to be carried out (n_rep). First,
ntree was defined to range between 50 and 1000 (step size equal to 50) to infer the
stabilisation point of the developed forest. Secondly, the influence of repetitions on
variance reduction was examined up to 30 repetitions, aiming to define the number of
required repetitions for the AUC stabilisation. For each parameter, visual assessment
was performed to infer the stabilisation point and, hence, which values to use for
subsequent analyses. Due to the this specific construction, a total of k., n_rep
individual AUC scores was obtained (with ke, = 5 representing the cross-validation) and
combined into an overall AUC score.

6.2.3 Data pre-processing techniques

With the settings inferred from the preliminary assessment, CRFs were developed,
which involved the testing of the effect of further data pre-processing on model
performance. Due to the specific construction of the random forest algorithm, it is
expected that the inclusion of both outliers and correlated variables has a limited effect
(Breiman, 2001; Fox et al., 2017; Vezza et al., 2015). However, the reduction of incorrect
and irrelevant information improves model regularisation by reducing model
complexity and therefore relies on the trade-off between data and model complexity.
Consequently, model regularisation encompasses appropriate instance and variable
selection (i.e. identifying and eliminating outliers, false absences, correlated and

irrelevant variables).

6.2.3.1 Selection of instances

Detection of outliers

Practical implementation of outlier identification and removal starts with considering
the original Nj,s; X Ny, dataset (D) and creating a new, equally-dimensioned matrix O.
For each variable Xj (j < Nyar) the first and third quartile are defined (Q;:; and Q;3,
respectively) as well as a user-specified range threshold (z,). Subsequently, Equation 6.1
is applied to d;; (€ D) and an outlier dummy score (1 if considered outlier, O if not) is
assigned to o;; (€ O). Finally, outlier dummy scores are summed for each instance,

causing instances that exceed the pre-specified threshold o, (i.e. ?’i‘ir 0;,j = a,) to be

removed from the data set.

To assess the effect of range selection, z,; was set to range from O (high degree of
removal) up to 15 (low degree of removal) with a step size equal to 1, without being
variable-specific (i.e. 7o = 7,). Meanwhile, a, was fixed to 1, reflecting the idea that an
instance with an outlier score in 1 variable becomes less reliable and should, therefore,
be removed from the data.
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1, dij<Qj1-To; (Qjz—Qj1)
0,; =10, Qj1—7To;" (Qj,3 - Qj,l) S dj<Qjz+T,;- (Qj,g - Q,-,l) (Equation 6.1)
1, di;>Qj3+7,;" (Qj,3 - Qj,l)

With d;; the value of the j-th variable of the i-th instance, o;; the outlier dummy score of
dij, Q;1 the first quartile of the j-th variable, Q;3 the third quartile of the j-th variable and
T,,; the user-specified threshold for the j-th variable.

Detection of pseudo-absences
Instance selection based on false absence identification started with the separation of

presences and absences. Based on the absence data set Dabs (Ngps X Nyqr) @ new, equally-
dimensioned matrix A is created. For each variable X; (j < Nyqr) distribution percentiles
UD% and P(l_%)) of the occupied environmental domain (i.e. presence data set, Dpres)

are defined, including a user-specified range threshold (7, ;). Subsequently, Equation
6.2 is applied to d;; (€ Daps) and an absence dummy score (1 if considered potential true
absence, O if not) is assigned to a;; (€ A). Finally, absence dummy scores are summed
for each instance, causing instances that exceed the pre-specified threshold «, (i.e.

Zyﬂr a;;j = ag4) to be maintained in the absence data set. This approach is visualised in
Figure 6.1 for two variables, but can be easily extended to higher dimensions. Lastly, the

presence and updated absence data are merged into a single data set for model training.
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Figure 6.1: Illustration of the false absence concept. Each absence can be classified as a true
absence, a potentially true absence or a false absence when related to occupied environmental
niche. A: Situation of observed absences along two environmental gradients (Xi and Xz) with
respect to the observed environmental domain (light grey) and occupied environmental domain
(dark grey). B: Classification of the observed absences from (A) based on being true or false in the
individual environmental gradients. The value of T, determines the extent of the occupied range in
(A), while the value of o, influences which potential true absences from (B) are ultimately included
in the model training data.
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To assess the effect of range selection, 7,; was set to range from O (high degree of
removal) up to 0.15 (low degree of removal) with a step size equal to 0.01, without being
variable-specific (i.e. 7, ; = 7,). Meanwhile, a, was fixed to 1, reflecting the idea that an
instance with an absence score in 1 variable is situated outside the realised
environmental niche and should be kept in the data set. Hence, potential true absences
are included in the resulting absence data set (see Figure 6.1) and subsequently used as
training data.

=
.

i,j < Pra;
<

S
o

2
a; = aj < dij = P(l_ﬂ) (Equation 6.2)

2 2
1 d;: >P; 14
S
With d;; the value of the j-th variable of the i-th instance, a;; the absence dummy score
of dij, P~,; the lower percentile of the j-th variable, P (1_M) the upper percentile of the j-
2 2

the variable and 7, the user-specified threshold for the j-th variable.

6.2.3.2 Selection of variables

Identification of correlated variables
Correlation-based dimensionality reduction starts by considering the original N, X

N, dataset (D) and the construction of a N4, X N, correlation matrix C. For each
variable X; (j < Nvar), the Pearson correlation coefficient with variable X; (i < Nyar) is stored
in ¢;j (with special cases ¢j; = 1 and cij = cji). Subsequently, variable pairs with a
correlation score exceeding the threshold value (z.) are identified and individually
correlated with the response.

Here, the variable with the highest correlation with the response was maintained in the
data set. In short, the procedure as shown by Algorithm 6.1 was applied. To assess the
effect of correlation threshold selection, . was set to range from 0.25 (high degree of
removal) up to 0.95 (low degree of removal) with a step size equal to 0.05.

Algorithm 6.1: Correlation-based variable removal

Calculate correlation matrix C from dataframe D
FOR each element c in C
IF element c is greater than or equal to correlation threshold .
Store unique variable-variable combination in an overall list L
END if
END for
Sort list L according to decreasing correlation score
FOR each instance in list L
Determine correlation of each variable with response
Remove variable with lowest correlation from L and D
END for
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ldentification of irrelevant variables
The identification of irrelevant variables contrasts the straightforward correlation-based

variable selection as it requires the development of a basic model to derive the
importance scores of the incorporated variables. More specifically, variable importance
was derived by developing CRFs and assessing the decrease in accuracy following
permutation of the variable values, with higher scores being assigned to more important
variables. As patterns and type of information differed among species, model-specific
importance scores are divided by the highest obtained importance score and
subsequently checked against a user-specified threshold (z;). All variables with a relative
importance score below the threshold are consequently removed from the dataset (see
Algorithm 6.2). To assess the effect of threshold selection, z; was set to range from O (low
degree of removal) up to 0.5 (high degree of removal) with a step size equal to 0.05.

Algorithm 6.2: Importance-based variable removal

Develop basic model m
FOR each variable in D
Derive variable importance scores from m
Calculate relative variable importance
IF relative importance is lower than threshold z;
Remove variable from D
END if
END for

6.2.4 Computation time and threshold selection

Improvement of data quality by eliminating instances and variables affects computation
time in two ways: (1) it increases the time needed to prepare the data and (2) it
potentially decreases the time needed to develop the individual model. To assess the
consequences of abovementioned techniques, computation time was registered for the
overall procedure including data preparation and model development as well as for the
application of the model-developing algorithm. Hence, computation time for algorithm
application reflects the average of all repetitions of 5-fold cross-validated models. In
contrast, total time reflects the time needed to prepare the data and create repetitions
of 5-fold cross-validated models, hence providing a single value per macrophyte.

For each technique, the effect of threshold selection on performance and time were
visually assessed for the previously selected macrophytes (see Table 6.1), resulting in the
suggestion of a single, technique-specific threshold value to be used. Subsequently,
models were developed for all 58 macrophyte species, applying data preparation by
combining the abovementioned techniques in the following order: (1) outlier removal,
(2) false absence identification, (3) correlated variable removal and (4) irrelevant
variable removal.
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6.3 Results

6.3.1 Preliminary assessment

Range analysis for the hyperparameter ntree showed that model performance is only
limitedly affected by the number of trees, with relatively stable performance along the
studied range (Figure 6.2). Variability in performance increased with decreasing number
of training instances (i.e. macrophyte prevalence), though hardly changed with
increasing values of ntree. Therefore, a relatively low value (with respect to the default
value ntree =1000) can be selected to reduce the required calculation time. For instance,
at ntree = 200 model performance is relatively stable (Figure 6.2), while reducing the
model development time by 80 % due to the linear dependency between computation
time and ntree (Stekhoven and Bithlmann, 2012). This value was considered for all
further analyses and supported by the work of Oshiro et al. (2012), illustrating a limited
increase of AUC above ntree = 200.

Phragmites Lemna Ceratophyllum Mentha Lemna
australis minor demersum aquatica minuta
1.0
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O 0.84 -~ -
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Figure 6.2: Model performance in function of the number of individual trees developed
within the random forest. Stability of performance (black line) can already be observed from
200 trees onward (dashed grey line), except for L. minuta. Variability in performance between
folds (indicated as standard deviation in grey) is considered to be limited, though tends to increase
as the number of training instances decreases, as illustrated by higher variability for L. minuta
compared to P. australis.

Similarly, including more repetitions to reduce overall variability in model performance
already shows to be effective at low numbers of repetitions (Figure 6.3). For instance,
after 7 repetitions the average performance related to P. australis and L. minor remains
stable, while for M. aquatica and L. minuta some variability can still be observed.
Variability in model performance among repetitions is higher for macrophytes with a
lower number of training instances, and tends to remain relatively stable with increasing
number of repetitions (Figure 6.3). Based on these observations, an overall guideline for
number of repetitions within this study can be set on 10.
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Figure 6.3: Model performance in function of the number of model repetitions. Stability of
performance (black line) can already be observed from 10 repetitions onward (dashed grey line).
Overall, variability in average performance (indicated as standard deviation in grey) is limited, but
tends to increase as the number of training instances decreases.

6.3.2 Individual pre-processing

6.3.2.1 Instance-based removal

Excessively deviating instances were removed from the dataset for 7, values ranging
between O and 15. Generally, a decrease in model performance is obtained by outlier
removal, yet shows to be relatively stable as soon as the most excessive outliers are
removed (i.e. 15 < 7, <10). Further threshold reduction (z, — 5) considers more instances
to be outliers, though causes only limited reduction of model performance for P.
australis, L. minor and C. demersum, while models for M. aquatica and L. minuta already
indicate a performance decrease when 7, drops below 7. Overall, the effect of outlier
removal on model performance is relatively limited, with a maximum decrease in AUC
of 0.05 (C. demersum, see Figure 6.4).

In contrast, required computation time continuously decreases over the applied range
for 7,, showing a larger initial effect for P. australis compared to the other macrophytes.
Moreover, time reduction shows a dependency on data availability with a gradual
reduction for P. australis and a more abrupt reduction for L. minuta for z,-values smaller
than 5. Similar patterns are observed for overall computation time, including the
dependency on data availability (see Appendix, Figure C.6). For instance, an overall
beneficial effect of outlier removal is observed for P. australis, while model development
for L. minuta indicates to be negatively affected. In order to avoid an excessive
performance decrease for low data-availability species, while already providing a 10-30
% reduction in computation time for high data-availability species, a threshold value of

To = 3 can be derived, resulting in a removal of about 760 instances (see Appendix, Figure
C.2).
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Figure 6.4: Effect of outlier-based instance removal on model performance and
computation time. Removal of outliers has, at first, a limited effect on performance and
computation time (except for P. australis). A slight decrease in performance is observed when more
deviating values are considered as outliers (t, — 0), while causing the required computation time
to decrease. A visual trade-off between performance and computation time supports a threshold of
To = 3 (dashed grey line). Performance analyses for all 58 species can be found in Appendix, Figure
C.7 and Figure C.8.

The removal of false absences provides a positive effect on model performance, with
AUC values increasing as 7, decreases, without reaching a plateau (Figure 6.5). As the
threshold becomes more strict (i.e. 7 — 0 %), performance keeps increasing up to net
AUC improvements of 0.2 (L. minor). In general, patterns among macrophytes are
relatively similar and show performance improvements for conservative threshold
values (i.e. t, = 15 %), causing AUC scores to increase with about 0.05 (Figure 6.5).
Similar analyses can be performed for the remaining macrophytes.

In contrast, computation time assessment indicates the existence of a species-specific
tipping point for 74, below which computation time decreases drastically. These tipping
points are related to overall data availability after false absence removal. For instance,
data for P. australis originally represents about 1700 presences and around 2600
absences. As the threshold becomes stricter, more absences are removed, rising to 1000
at t, = 7 % and 2000 at . = 0 % (see Appendix, Figure C.3), which results in only 1600
and 600 absences remaining, respectively. These absences are lower than the number
of presences, which requires subsampling of the latter to create a balanced training set
for model development. The resulting decrease in data size reduces the required
computation time as less instances need to be classified.
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A similar pattern is present in overall computation time, additionally showing an
increase when data availability is too low to support faster model development (e.g. L.
minuta) (see Appendix, Figure C.6). Consequently, any threshold value will affect model
performance positively, yet selecting low values for 7, (e.g. 7« < 5 %) not only improves
performance, but also causes high numbers of instances to be eliminated (up to 1200
instances, see Appendix, Figure C.3). A trade-off threshold value of 7. = 5 % is suggested

to avoid excessive removal.
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Figure 6.5: Effect of false-absence-based instance removal on model performance and
computation time. A continuous increase in performance is observed for each macrophyte as the
threshold becomes more strict. In contrast, computation time remains relatively stable at first,
while a sharp decrease is observed for some macrophytes as t, decreases. A trade-off between model
performance, computation time and the consequences of removing too much ambiguous instances
provides a compromise at t. =5 % (dashed grey line). Performance analyses for all 58 species can
be found in Appendix, Figure C.9 and Figure C.I0.

6.3.2.2 Variable-based removal

Correlated variables provide similar information, yet removal of these variables goes
along with removal of information, illustrated by a decrease in model performance for
decreasing correlation thresholds (Figure 6.6). At high threshold values (i.e. . > 0.85),
the reduction in performance remains relatively limited while at extremely low
threshold values (i.e. 7« < 0.40) a clear decrease in AUC values is observed due to the
limited amount of shared information between limitedly-correlated variables.
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Simultaneously, however, a gain in computation time is observed, following an overall
dimensionality reduction within the search space caused by a decreased number of
variables. The different plateaus observed within the time-specific graphs illustrate the
inherent characteristics of the algorithm, selecting only a subset of all variables for each
split within the tree. This number is based on the number of available variables and

defined as mtry = \/m, being rounded to the lower integer. Hence, as soon as Nyar
decreases sufficiently, mtry will drop with 1 unit, causing less variables to be selected
and, consequently, less potential splitting points to be considered. Therefore, plateaus
exist between each drop, as mtry does not change with every variable being removed.

Similar patterns are observed for overall computation time, showing generally faster
data pre-processing and model development, though patterns become less clear as data
availability decreases (see Appendix, Figure C.6). Threshold selection based on these
results is not straightforward, yet was chosen at z. = 0.70 to avoid removal of more than
10 variables (see Appendix, Figure C.4).
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Figure 6.6: Effect of correlation-based variable removal on model performance and
computation time. Removal of correlated variables has no straightforward effect on
performance, though a limited effect on performance and computation time is observed at first (t.
> 0.9). Required computation time decreases with variable removal and illustrates the
characteristic plateaus related with algorithm settings. Selection of an intermediate threshold
value (i.e. t. = 0.7) considers variables with a relatively high correlation. Performance analyses for
all 58 species can be found in Appendix, Figure C.11 and Figure C.12.
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A reduction in performance is also observed following the removal of irrelevant
variables. As the required contribution of each variable increases (i.e. 7; — 50 %) AUC
values decrease to reach a macrophyte-specific plateau (Figure 6.7) caused by many
variables being removed (see Appendix, Figure C.5). Nevertheless, at low threshold
values (i.e. 7; < 10 %) model performance is hardly affected due to the removal of mostly
irrelevant variables, while providing a minor decrease in computation time (1 to 6 %).

Similar to correlation-based variable removal, computation time decreases when more
variables are eliminated, reaching a species-specific plateau. However, overall
computation time tends to increase as the calculation of variable importance requires
an additional model to be developed, being the main contributor to the overall required
time (see Appendix, Figure C.6). Threshold setting at z; = 10 % was supported by visual

assessment of performance, computation time and number of variables being removed.
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Figure 6.7: Effects of importance-based variable removal on model performance and
computation time. Removal of irrelevant variables has, at first, limited effect on performance
and computation time. A clear decrease in performance can be observed as soon as relative
importance scores exceed 20 %. In contrast, effects on computation time are already visible when
removing the most irrelevant variables (ti < 15 %). Threshold selection at t; (10 %, dashed grey line)
illustrates the technique-specific trade-off between performance and speed. Performance analyses
for all 58 species can be found in Appendix, Figure C.I3 and Figure C.14.
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6.3.3 Overall pre-processing

Based on the results obtained for a selection of macrophytes, a set of thresholds was
identified for overall data pre-processing regardless of the considered macrophytes
(Table 6.2). Hence, these were used as general guidelines during further data pre-
processing, while highlighting that future species-specific research can benefit from
individual threshold analysis and setting. Here, however, the aim was to identify
generally applicable threshold values rather than species-specific.

Table 6.2: Summary of technique-specific threshold values for data pre-processing.
Depicted threshold values were used during combinatory data pre-processing.

Step Threshold Value
Outlier removal (-) T 3
False absence removal (%) Ta 5
Correlated variable removal (-) Tc 0.7
Irrelevant variable removal (%) Ti 10

Application of these thresholds supported a clear increase in model performance for the
five selected macrophytes, showing an increase in AUC ranging between 0.799 + 0.001
up to 0.848 + 0.001 (P. australis) and 0.752 + 0.003 up to 0.831 + 0.004 (M. aquatica)
(Figure 6.8). Similarly, data pre-processing showed to positively affect model
performance for the majority of the 58 macrophytes, with AUC values after pre-
processing being higher than the reference AUC values (Figure 6.9A). However,
increased data pre-processing also affected the required computation time (Figure
6.9B), causing relative differences in computation time to be higher than the relative
differences in AUC (Figure 6.9C).
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Figure 6.8: Effect of data pre-processing on model performance for a selection of five
macrophytes, expressed as AUC. An increase in performance is observed when data is pre-
processed, contrasting baseline performance (light grey) versus performance following
combinatory data pre-processing (dark grey). Error bars indicate the standard deviation over 10
repetitions of five-fold cross-validated models.
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Figure 6.9: Effect of data pre-processing on performance and computation time for all
considered macrophytes (N = 58). Most models benefit from data pre-processing, yet require
more computation time to improve data quality. A: Performance, expressed as AUC; B:
Computation time, expressed in seconds; C: Relative change in performance versus relative change
in computation time as part of a trade-off analysis. The diagonal black line indicates the agreement
line with points above the line indicating an increase due to data cleaning (A, B) or higher relative
change in performance compared to computation time (C).

6.3.4 Final model evaluation

The resulting models were used to process a pseudo-independent dataset as a manner
of testing the models’ performance on external data. In general, external model
performance was lower than internal model performance (Figure 6.10A), yet still
provided acceptable models (AUC > 0.6). Additional processing of the test data (i.e.
removal of potential false absences) increased external performance (Figure 6.10B) and
showed to be slightly closer to internal model performance (Figure 6.10C).
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Figure 6.10: Model testing with external test set for all considered macrophytes (N = 58).
Testing was performed with two external datasets: (i) the original test set, (ii) the original test set
devoid of false absences. Test performance was lower than internal performance, while processing
the test set increased model performance. A: Difference between the original test performance and
internal performance; B: Difference in performance between the processed and original test set and
C: Difference in performance between the processed test set and the internal validation.
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6.4 Discussion

6.4.1 Data pre-processing affecting performance and speed

Generally, data cleaning clearly affected model performance, with AUC values declining
along more stringent threshold values for three of the four pre-processing techniques,
yet overall outperforming random classification (i.e. AUC > 0.5). Removal of outliers and
variables (both correlated and irrelevant) showed to negatively affect model
performance, depicting downward trends of AUC due to reduced data availability.
Effects remained relatively limited, as illustrated by the removal of irrelevant variables
causing the largest drop in AUC (i.e. from 0.78 to 0.64 for C. demersum), supporting the
claim that random forests are relatively robust towards the inclusion of outliers and
redundant variables (both correlated and irrelevant) (Breiman, 2001; Fox et al., 2017;
Vezza et al., 2015). In contrast, improved model performance was observed following
the identification and removal of potential false absences. More specifically, model
performance showed a continuous increase in AUC along rising threshold levels (i.e. zq
— 0), with highest performance scores being obtained when each instance within the
assumed realised niche was removed from the background data.

The patterns obtained in this study comply with literature related to niche identification
and predictor selection. For instance, Acevedo et al. (2012) showed that extending the
environmental range made it easier to discriminate suitable from unsuitable habitats,
thereby causing artificially increased AUC values. Hence, by decreasing the
environmental range via outlier elimination, a drop in AUC scores is expected, which
explains the obtained patterns in Figure 6.4. Similarly, Anderson and Raza (2010)
applied a niche-corrected absence selection approach by excluding suitable conditions
from the background data and observed an increase in model performance. By excluding
these false absences, the distinction between suitable and unsuitable habitats was
improved along with the support to obtain elevated AUC scores. Hence, by improving
the discrimination within the observed environmental domain, a rise in AUC is

expected, which supports the obtained performance increase in Figure 6.5.

In contrast, appropriate predictor selection supports an overall simplification of the
observed environmental domain and, thus, model complexity. This niche simplification
increases the model’s transferability and application, as managers tend to request simple
and understandable models (Bennetsen et al., 2016). However, dimensionality reduction
of the environmental domain rarely provides improved model performance, as
predictors are either irrelevant or of limited importance within the observed domain.
The exclusion of these predictors positively reduces model complexity, but negatively
affects the combined explanatory power towards the observed variance in the response
variable. Consequently, variable selection is expected to cause a decrease (or at least a
stand-still) in performance, which clarifies the patterns in Figure 6.6 and Figure 6.7.
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However, despite being applied and discussed in literature, it should remain clear that
data pre-processing is not without consequences. Both instance and variable removal
inherently affect data availability, species response curves and delineation of the
occupied environmental domain. Preferably, only a fraction of the assessed
environmental range is occupied by the species under consideration in order to
distinguish between suitable and unsuitable habitats. However, as the extent of the
considered biogeographical range is user-dependent and affects model performance
conditions (Acevedo et al., 2012; Anderson and Raza, 2010; Phillips et al., 2009), care
should be taken to delineate a reasonable domain. Moreover, the assumption underlying
niche-based absence selection states that no unsuitable conditions exist within the
observed realised niche, though extends to the idea that all relevant variables are
observed and reported (Anderson and Raza, 2010). More specifically, it does not allow
the presence of an unrecorded environmental variable or any biotic interaction to cause
a species’ absence, which supports model simplification and regularisation, but violates
ecological theory.

Ultimately, model performance was improved through combinatory data pre-
processing, following technique-specific threshold selection based on visual assessment
of trends in performance, computation time and data characteristics. A general increase
in model performance was observed, with net AUC improvements up to 0.2 and internal
validation scores ranging between 0.7 and 0.9, supporting the claim that the
improvement of data quality has potential beneficial effects on model performance.
Slightly lower AUC scores were obtained when models were tested with an external data
set (ranging between 0.54 and 0.83; average: 0.68 + 0.07), due to the inclusion of false
absences. Indeed, elimination of these absences significantly (Wilcoxon rank sum test;
W = 774.5, p < 0.001) increased performance scores (ranging between 0.56 and 0.90;
average: 0.76 + 0.08) and suggested that remaining false absences might artificially
deflate performance. This is especially the case when the external data is not a perfect
subsample of the original distribution (e.g. rare species).

Lastly, data cleaning supported a decrease in the required computation time for model
development for each pre-processing technique, while an overall increase in total
computation time for combinatory pre-processing is obtained. Compared to the relative
changes in performance, computation time changed drastically by implementing data
cleaning, mostly showing an increase in pre-processing time and a decrease in model

development time.

147



CHAPTER 6

6.4.2 Implications for environmental research

Raw environmental data harbours an invaluable treasure of information, hidden in
complex patterns and a significant amount of noise. Elimination of the latter simplifies
pattern discovery and the development of species distribution hypotheses. The
qualitative trade-off analyses performed here provided threshold values for the
identification and elimination of outliers (7, = 3), false absences (to = 5 %), correlated
variables (zc = 0.7) and irrelevant variables (z; = 10 %). Despite frequent application
within correlative ecological modelling, threshold values are only limitedly reported and
often case-specific, underlining the need for a solid conceptual framework to govern

sound and comparable results and conclusions to support decision-making (Kotsiantis
et al., 2006; Zhang et al., 2003).

Unfortunately, data collection and cleaning remain expensive steps within species
distribution studies (Zhang et al., 2003). To start, data collection by means of field
campaigns is time-, energy- and budget-intensive, causing researchers to refrain from
data removal and data sharing, which increases the need for thorough data cleaning
(Catalano et al., 2019). Recent movements towards open data and uniform data bases
(e.g. Global Biodiversity Information Facility, GBIF) have eased the process of gathering
occurrence information, thereby causing an exponential growth in occurrence-based
modelling of habitat suitability and species distributions (Peterson et al., 2015). Yet, the
available data is to be used with care as the provided quality is subject to the preferences
of the original owner of the data (Maldonado et al., 2015), causing data reliability to
become an additional aspect to be considered within correlative habitat suitability and
species distribution modelling. For instance, herbaria and museums are increasingly
improving data availability by digitising their collections, though these observations
often bias results as they lack detailed georeferencing (Maldonado et al., 2015; Peterson
et al., 2015). In addition, due to the high variety in data quality, data cleaning can take
up to 80 % of all time spent on a research project (Zhang et al., 2003). Even when
automated, further tuning remains necessary to find the appropriate threshold values.

Here, the selected techniques have been tuned manually to act as a filter for the data to
be used, while they provide the opportunity to be included in the model development
algorithm and act as wrapper functions with tuneable hyperparameters (e.g. Boets et al.
(2013a), Gobeyn et al. (2017)). Moreover, alternative approaches do exist, including
visual outlier identification (Gobeyn et al., 2017), distance-based pseudo-absence
selection, input variable selection by means of Genetic Algorithms (D'Heygere et al.,
2003; Gobeyn et al., 2017), variable transformation (Kotsiantis et al., 2006) and variable
construction (Kotsiantis et al., 2006). Each of these techniques includes some kind of
user-dependent threshold selection and influences model performance and output
(including decision-making) differently. This underlines the need for a well-developed
framework to support sound model development.
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6.4.3 Contribution to the study objective

The aim of this chapter was to assess the effects of technique-specific threshold selection
on model performance and the required computation time in order to provide guidelines
for further pre-processing of the adopted Limnodata Neerlandica. Throughout the
chapter, threshold values were altered to infer their effect on model performance and to
allow a trade-off between model performance, computation time and data loss. By
considering these ranges, a more pronounced basis was created to bring forward a set of
threshold values for supporting after-imputation data cleaning within the overall study
objective (see Section 1.2.1). Similar to Chapter 5, it should remain clear that this chapter
contributes mostly to the overall study objective, while providing suggestions for
application outside the considered framework. More specifically, it is recommended to
perform similar analyses with different combinations of environmental variables and
species occurrences to support empirical threshold selection.

The chapter complies to the recommendation of performing data pre-processing prior
to data-driven model development in order to eliminate noise within publicly available
data (Maldonado et al., 2015). It was expected that noise was present in the Limnodata
Neerlandica, as data was collected by various companies and institutions over a period
of thirty years (see Section 4.2.1). More specifically, this noise was expected to be present
in the instances (i.e. extremely deviation values, recording of false absences) and among
the variables (i.e. correlations and non-influential variables), with a potential to
negatively affect model performance (Murphy et al, 2010). In literature, noise
elimination through data pre-processing is often done in a partial and subjective manner
(e.g. Forio et al. (2018), Fox et al. (2017), Gobeyn et al. (2017)), though deserves more
scrutiny due to its negative effect on data availability.

In general, the removal of noise (outliers, false absences, correlated and irrelevant
variables) supported the expected changes in model performance, although three out of
four methods caused a decrease in the performance metric score (see Section 6.3.2).
Only the removal of false absences affected model performance positively, mainly due
to a clearer delineation of the realised niche. Due to the performed range assessment,
threshold values for the pre-processing of the imputed Limnodata Neerlandica could be
defined via a visual trade-off between model performance, computation time and data
availability, resulting in thresholds for the elimination of outliers (z, = 3), false absences
(ta = 5 %), correlated variables (zc = 0.7) and irrelevant variables (z; = 10 %). By
performing such a visual trade-off, a certain degree of subjectivity is introduced, yet this
is considered to be lower than simply adopting thresholds from similar studies. More
importantly, the implementation of these pre-processing thresholds creates species-
specific data sets, which support the construction of qualitative models to describe the
abiotic suitability of wetland habitats for specific aquatic macrophytes.
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6.5 Conclusion

Occurrence data contain valuable information on species distribution patterns and
dynamics, but require data cleaning prior to pattern inference. During cleaning, data is
unavoidably lost as environmental domains become more strictly delineated.
Identification and elimination of outliers and variables that are correlated or irrelevant
inherently increase potential overlap of presence and background domains, while
discarding potential false absences supports the identification of more distinct (yet less
detailed) environmental niches. Accordingly, a decrease or increase in model
performance is observed whenever the environmental domains of presences and
absences are characterised by respectively more or less relative overlap due to data
quality improvement. In contrast, a decrease in computation time required for model
development is observed for each type of data cleaning, with inclusion of the data pre-
processing step causing overall computation time to be both lower and higher than
without data pre-processing, depending on the applied technique. A visual trade-off
analysis of performance and computation time, supplemented with the effects of
threshold selection on the sample size or dimensionality of the data, identifies
thresholds for the elimination of outliers (7o = 3), false absences (t. = 5 %), correlated
variables (z. = 0.7) and irrelevant variables (z; = 10 %), while supporting improved model
performance following combinatory data pre-processing. The increased data quality and
resulting decreased model complexity underline the added value of data pre-processing
within the framework of species distribution modelling and model transferability.
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Abiotic habitat suitability models to
assess restoration potential

and invasion vulnerability®

Highlights

- Only a fraction of the suitable abiotic habitats is occupied by macrophytes

- Key variables are temperature, pH, nitrate, ammonium and oxygen

- Managing key variables impacts habitat suitability more than business-as-usual
- Models are able to identify locations with high invasion potential

5 This chapter is based on Van Echelpoel, W.; Forio, M. A. E. and Goethals, P. L. M. (in preparation) Abiotic
habitat suitability models as first-level assessment for restoration potential and invasion
vulnerability



CHAPTER 7

Abstract

Macrophytes have a steering role in ecosystem functioning, yet their presence is affected
by a myriad of physical, chemical and biological variables. Improving and safeguarding
macrophyte-influenced ecosystem services requires identification and management of
suitable habitats. First-level habitat suitability scores were defined by linking abiotic
conditions with presence/absence data for 58 macrophyte species by means of
conditional random forests. Developed models showed good discriminative and
classification power, with final AUC (Area Under the receiver operating characteristic
Curve) values between 0.846 + 0.008 and 0.888 + 0.002, while sensitivity and
specificity ranged between 0.736 + 0.008 and 0.796 + 0.003 and between 0.738 + 0.007
and 0.791 + 0.002, respectively. Temperature, nitrate, oxygen, ammonium and pH were
major abiotic habitat descriptors and affected habitat suitability in a similar, yet species-
specific way. In general, suitability scores increased along rising temperature and pH
values, followed by a drop at high pH levels (> 8.5). In contrast, a negative effect of rising
nitrate and ammonium levels on habitat suitability occurred, confirming the anticipated
positive impact of pollution reduction on macrophyte presence. Management aiming at
optimising nitrate-nitrogen (0.5 mg-L™ up to 1.5 mg-L*), oxygen (4 mg-L™" up to 7 mg-L-
1), ammonium-nitrogen (0.3 mg-L! up to 0.5 mg-L?) and pH (7 up to 8.5) will positively
impact the chances for macrophyte survival. Historically, species prevalence has been
increasing and is generally characterised by a lag between predicted and observed
presence, though this trend is expected to continue. Yet, improved abiotic conditions
can indirectly threaten native macrophyte species when also habitat suitability for
invasive alien species increases. Similar patterns were observed for the native Lemna
minor and alien Lemna minuta, requiring further quantification of physiological
processes via laboratory experiments to elucidate actual field effects.
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7.1 Setting the scene

In Chapter 2 it became clear that the conservation of ecosystem structure and
functioning within wetlands should focus on macrophytes to benefit from their capacity
to compartmentalise the prevailing habitat. Identifying optimal conditions and
strategies underlies management success and is highly supported by the development
of habitat suitability models (HSMs), which often rely on publicly available data.
Chapter 5 and Chapter 6 highlighted some opportunities to improve data quality and
thereby provided the data-related foundation of this chapter. Here, the application of
HSMs for inferring optimal habitats for macrophyte presence is introduced and
discussed within a conservation framework.

Macrophyte management represents a challenging endeavour as their presence is
affected by a combination of geomorphological, hydrological, chemical and biological
conditions (Bakker et al., 2013; Bornette and Puijalon, 2011). For instance, historic
eutrophication caused drastic decreases in macrophyte stocks due to the proliferation
of phytoplankton, thereby increasing turbidity, toxic compounds and oxygen
fluctuations (Scheffer et al., 2001; Scheffer et al., 1993b). Even with improved abiotic
conditions and reduced phytoplankton competition, no straightforward restoration
path to the initial biotic conditions exists. This multitude of potential pathways is caused
by a myriad of biotic processes, including (propagule) dispersal, seed bank composition
and presence of opportunistic species (Bakker et al., 2013; Scheffer et al., 1993b).

In addition, increasing globalisation amplifies the pressure of invasive alien species
towards aquatic systems, leading to physical, chemical and biological habitat changes
caused by intentional and unintentional introductions (Richter et al., 2003; Sala et al.,
2000). Hence, conservation and improvement of native macrophyte habitats require the
identification of (i) habitats suitable for supporting macrophyte presence, (ii) habitats
vulnerable to invasion, distinguishing between sites with and without native species
being present and (iii) habitats that require optimisation of their abiotic conditions and,
if possible, which variable(s) to focus on. HSMs can provide such information, but with
the important side note that due to their correlative nature, no undisputable conclusions
on causality can be inferred.

Within this chapter, conditional random forests (CRFs) are developed and optimised to
derive habitat suitability for a selection of macrophyte species. The aim is to combine
ecological restoration and invasive alien species management by defining the effect of
species-specific key variables on habitat suitability and elaborating on management
options to optimise abiotic conditions. By tackling these issues, an answer is provided
to RQ2.2, as defined in Chapter 1. Hence, this chapter concludes with a statement on
which variables generally affect habitat suitability and how management can help with
reaching optimal conditions.
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7.2 Materials and methods

7.2.1 Characterisation of the data and modelling technique

Data within the Limnodata Neerlandica was subsampled to contain spatiotemporally
referenced observations of macrophytes and the prevailing physicochemical conditions
(see Chapter 4), providing information on 4344 instances, 176 variables and 576
macrophytes. Data pre-processing was performed as outlined in Chapter 6, following (i)
missing data imputation, (ii) macrophyte selection, (iii) outlier removal, (iv) false
absence removal, (v) correlated variable removal and (vi) irrelevant variable removal.
Consequently, for each macrophyte, a specific data set was created due to the pre-
processing being partially macrophyte-specific.

Ultimately, data for 58 macrophytes were available (see Appendix, Table D.1 and Figure
D.1), yet only a subset of five macrophytes with varying prevalence level, growth form
and origin will be highlighted in more detail (see also Chapter 6, Table 6.1): Phragmites
australis (55 %), Lemna minor (44 %), Ceratophyllum demersum (29 %), Mentha
aquatica (18 %) and Lemna minuta (5 %). Species prevalence within these data sets is
higher than reported in Table 6.1 and intrinsically linked to the removal of false absences
during data pre-processing. Additional R-packages for this chapter were party and
PresenceAbsence (Freeman and Moisen, 2008a; Stekhoven, 2013).

Conditional random forests were developed to link macrophyte occurrence with the
prevailing abiotic conditions, starting at default hyperparameter values, except for ntree,
which was set at 200 (see Section 6.3.1). Subsequently, hyperparameter settings were
optimised by means of randomly sampling the initial global search space, followed by
an iterative optimisation within a local search space. Evaluation of model performance
was done with AUC, Sn and Sp (see Section 3.4.2.1) and contrasted with species-specific
null models. Finally, species-specific variable importance scores were determined via the
developed models (Model Improvement Ratios; MIRs) and used for partial dependence
analysis. A detailed description of the methodology can be found in Chapter 4.

7.2.2 Model application

A positive temporal trend in both habitat suitability and macrophyte occurrence was
expected due to improved management and dispersal. Optimised models were applied
to the original (imputed) data set to infer macrophyte-specific habitat suitability scores
for all sampled sites. Discretisation of the Habitat Suitability Index (HSI) scores followed
threshold identification via minimising the absolute sensitivity-specificity difference
and subsequent temporal grouping to derive annual prevalence (predicted number of
suitable sites divided by the total number of sites). Observed and predicted annual
prevalence were compared to infer (i) the temporal trend of macrophyte prevalence and
(ii) the potential macrophyte presence.
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To mimic the potential effects of changing abiotic conditions on habitat suitability and
illustrate the value of the constructed species-specific models towards management, six
scenarios were developed. These scenarios represent three starting conditions (average,
extreme and nutrient enrichment) and two management options (business-as-usual and
focus on key variables), as mentioned in Table 7.1 and summarised in Table 7.2. The
starting conditions were based on the observed environmental conditions in 2010 due
to a lack of sufficient data from subsequent years. Moreover, observations were limited
to the months April until September to limit seasonal bias within the temporal trends.

For each variable, the mean (X¥) and standard deviation (s) were estimated (see
Appendix, Table D.2) and used as a statistical basis for determining the three different
starting conditions. First, the variable means were adopted when the starting conditions
were defined to represent the average situation (X; ‘AVG’ scenarios). Secondly, nutrient-
related variable means were increased with two times the standard deviation to reflect
eutrophic sites, representing the nutrient-enriched situation (X for non-nutrient
variables and X + 2 - s for nutrient variables; ‘NUT’ scenarios). Thirdly, variable means
were increased with two times the standard deviation to reflect highly polluted sites,
representing the extreme situation (X + 2 - s; ‘EXT scenarios). Several exceptions were
considered in the latter, as pollution is reflected differently within the included
environmental variables. More specifically, temperature and pH were not changed (i.e.
X) and oxygen (saturation) was decreased instead of increased (i.e. X — 2 - s). Actual
values can be found in Appendix, Table D.3.

For each variable, specific end points were defined depending on the performed
management activities. First, variable-specific temporal trends were used for deriving
the average change rates for each individual variable, reflecting the business-as-usual
situation (‘BAU’ scenarios). Secondly, partial dependence plots were used for identifying
the key habitat descriptors and their associated optimal conditions, reflecting
management with a focus on the main habitat descriptors (‘KEY’ scenarios). For these
key variables, an exponential temporal pattern was assumed, while all remaining
variables were assumed to follow the temporal pattern as defined in the BAU scenario.
The actual values can be found in Appendix, Table D.3.

Table 7.1: Assignment of scenario-specific codes. Business-as-usual management relies on the
continuation of variable-specific historical trends, while management focusing on key variables
considers the optimal values of partial dependence plot as management endpoints. Starting point
conditions are derived from observation data gathered in 2010. A more detailed description of each
scenario can be found in Table 7.2.

Average conditions Extreme conditions Nutrient enrichment
Business-as-usual AVG-BAU EXT-BAU NUT-BAU
Key variables AVG-KEY EXT-KEY NUT-KEY
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Table 7.2: Characterisation of management scenarios under different starting
conditions. Information extends the codes mentioned in Table 7.1.

Code Description

AVG-BAU  Baseline starting point with business-as-usual management.
Starting point of each variable represents the average value observed in
2010. Management entails no alterations towards the previous period,
hence the same temporal trend is assumed. Trends were derived by fitting
variable-specific linear models to the temporal data (see Figure D.3).

AVG-KEY  Baseline starting point with management focusing on key variables.
Starting point of each variable represents the average value observed in
2010. Management entails variable-specific procedures being solely applied
to the five key variables, with endpoints derived from the partial
dependence plots (see further).

EXT-BAU  Extreme starting point with business-as-usual management.
Starting point of each variable represents the mean observed in 2010,
supplemented with two times the standard deviation (X + 2 - s). Variable-
specific exceptions were considered, depending on the included variables.
Management entails no alterations towards the previous period, hence the
same temporal trend is assumed. Trends were derived by fitting variable-
specific linear models to the temporal data (see Figure D.3).

EXT-KEY  Extreme starting point with management focusing on key variables.
Starting point of each variable represents the mean observed in 2010,
supplemented with two times the standard deviation (X + 2 - s).
Management entails variable-specific procedures being applied to the five
key variables, with endpoints derived from the partial dependence plots (see

further).

NUT-BAU  Nutrient enrichment with business-as-usual management
Starting point of each nutrient variable represents the mean observed in
2010, supplemented with two times the standard deviation (X + 2 - s).
Variable-specific exceptions were considered, depending on the included
variables. Management entails no alterations towards the previous period,
hence the same temporal trend is assumed. Trends were derived by fitting
variable-specific linear models to the temporal data (see Figure D.3).

NUT-KEY  Nutrient enrichment with management focusing on key variables.
Starting point of each nutrient variable represents the mean observed in
2010, supplemented with two times the standard deviation (¥ + 2 - s). For
all other variables, the starting point was represented by the average value
observed in 2010. Management entails variable-specific procedures being
solely applied to the five key variables, with endpoints being defined by the
partial dependence plots (see further).
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The effects of the different scenarios on habitat suitability were subsequently assessed
by applying the optimised macrophyte-specific models and deriving the suitability
index. It should be noted that these scenarios were not developed to closely represent
actual natural conditions and trends, but rather to illustrate the potential usage of the
constructed models to assess scenario outcomes in function of the considered starting
conditions. The obtained outcomes are meant to illustrate how management decisions
can be steered by prevailing abiotic conditions.

Finally, the developed models were considered to contrast habitat preferences between
two congeneric species. More specifically, occurrence observations of the native Lemna
minor and the alien L. minuta (see Box 7.1) were confronted with predictions to
determine (i) the ability of conditional random forest to identify suitable habitats for
both Lemna spp. and (ii) whether the majority of the sites were more likely to support
L. minor than L. minuta. It should be noted that the results have to be interpreted with
care, as (i) data covered almost 30 years of sampling, (ii) pseudo-absences were used and
(iii) L. minuta was relatively recently introduced (thus expected to violate the
equilibrium assumption (Gallien et al., 2012)).

Box 7.1: Selection of Lemna minor and Lemna minuta

The freshwater system that is considered as baseline throughout this work is
characterised by slow-flowing water and elevated nutrient conditions (see Section
1.2.1). These conditions strongly support the presence of floating macrophytes,
including the free-floating duckweed species (Bakker et al., 2013; Zhang et al., 2017).
Among these duckweeds, Lemna minor frequently occurs in European surface waters,
while Lemna minuta originates from North and South America and has reached a
widespread status throughout Europe (Hussner, 2012). L. minor and L. minuta are
morphologically similar and are often reported in the same locations, though their
habitat preferences are not necessarily identical.

The development of species-specific models allows for distinguishing habitat
preferences between these congeneric species and identifying the consequences of
management on species-specific habitat suitability. Moreover, it can be used as an
early-warning tool to locate sites with significantly higher HSI scores for the alien
species compared to the native species. However, such applications merely illustrate
preferences and suitability scores, while actual management decisions on avoiding
species presence are to be made by the user.
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7.3 Results

7.3.1 Model performance and optimisation
Hyperparameter optimisation provided a selection of species-specific settings, depicting
an overall increase in ntree and decrease in mtry, when compared to the baseline settings

(i.e. 200 and \/m , respectively), see Table 7.3. These settings were used to perform all
subsequent analyses. Differences between internal and external validation were
observed to be minimal (see Table 7.4), indicating that overfitting within the developed
models hardly occurred. Surprisingly, differences in performance between the baseline
and optimised models were often small (Table 7.4), suggesting a limited influence of
hyperparameter tuning within this framework. Moreover, due to specifying nsplit and
nleaf relative to the number of training instances (instead of absolute, see Section
4.2.3.3), model performance tended to be slightly lower when applying the optimal
hyperparameter set. More specifically, it restricted the size of each individual tree within
the random forest, thereby reducing complexity at the expense of performance.

External validation of species-specific models with pseudo-independent data indicated
good model performance, with AUC values ranging between 0.85 + 0.02 (Lemna
minuta) and 0.888 + 0.005 (Ceratophyllum demersum). Sensitivity and specificity were
generally lower than AUC scores, but followed a similar pattern by ranging between 0.74
+ 0.03 (L. minuta) and 0.796 = 0.008 (C. demersum) and between 0.74 + 0.02 (L.
minuta) and 0.791 + 0.007 (C. demersum), respectively (Table 7.4). All models greatly
outperformed null models, with 95-percentile scores between 0.596 (Phragmites
australis) and 0.653 (L. minuta) for AUC, between 0.561 (P. australis) and 0.604 (L.
minuta) for sensitivity and between 0.560 (L. minor) and 0.605 (L. minuta) for
specificity (Table 7.4).

Table 7.3: Selected hyperparameter settings for conditional random forest development
linking species occurrence to abiotic conditions. Four hyperparameters were varied during
the optimisation process, being ntree (number of individual models to be developed in the
ensemble), mtry (number of variables to be considered for each split within the tree), nsplit
(minimum fraction of instances in a node in order to be considered for splitting) and nleaf
(minimum fraction of instances in a terminal node in order to be kept).

Macrophyte ntree mtry nsplit nleaf
Phragmites australis 1540 2 0.04 0.01
Lemna minor 1890 2 0.09 0.01
Ceratophyllum demersum 1690 2 0.09 0.01
Mentha aquatica 1290 2 0.04 0.01
Lemna minuta 1040 2 0.09 0.01

160



ABIOTIC HABITAT SUITABILITY MODELS

Table 7.4: Overview of performance scores for a selection of macrophytes. Null models were
developed with permuted data and 95-percentiles were derived from 1000 models. The baseline
model applies default hyperparameter values, while the optimised model makes use of adapted
hyperparameter settings (see Table 7.3). Both model types were evaluated internally (cross-
validation) and reported as Baseline and Optimised. The optimised model was also evaluated
externally with a pseudo-independent test set (10 % of original data), being reported as Evaluation.
Performance is described by Area under the Receiver Operating Characteristic Curve (AUC),
sensitivity (Sn) and specificity (Sp), and rounded to three digits.

Macrophyte AUC Sn Sp

Phragmites australis

Null model (Pos) 0.596 0.561 0.562
Baseline 0.874 £ 0.003 0.783 £ 0.007 0.782 + 0.007
Optimised 0.863 + 0.003 0.772 £ 0.007 0.772 £ 0.006
Evaluation 0.850 + 0.002 0.756 + 0.003 0.754 + 0.004
Lemna minor
Null model (Pos) 0.596 0.561 0.560
Baseline 0.839 + 0.005 0.751 + 0.007 0.748 £ 0.008
Optimised 0.823 + 0.004 0.743 £ 0.006 0.744 + 0.006
Evaluation 0.851+ 0.003 0.753 + 0.005 0.755 + 0.005
Ceratophyllum demersum
Null model (Pos) 0.621 0.577 0.577
Baseline 0.861 + 0.006 0.770 + 0.009 0.770 £ 0.010
Optimised 0.854 + 0.006 0.768 + 0.009 0.765 = 0.008
Evaluation 0.888 + 0.005 0.796 + 0.008 0.791 £ 0.007
Mentha aquatica
Null model (Pos) 0.609 0.569 0.568
Baseline 0.857 + 0.008 0.769 + 0.007 0.768 + 0.009
Optimised 0.862 + 0.008 0.778 £ 0.009 0.776 £ 0.010
Evaluation 0.856 + 0.007 0.757 £ 0.011 0.756 = 0.010
Lemna minuta
Null model (Pys) 0.653 0.604 0.605
Baseline 0.842 + 0.026 0.764 + 0.027 0.753 + 0.019
Optimised 0.854 £ 0.025 0.774 £ 0.020 0.766 + 0.018
Evaluation 0.846 + 0.024 0.736 + 0.025 0.738 £ 0.023
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7.3.2 Variable importance

The importance of environmental variables to describe the occupied habitats varied
among species and showed to be relatively high for temperature and nitrate (see
Appendix, Figure D.2). Within the selected subset of macrophyte species, both variables
were among the five most informative variables, with MIRs ranging between 1.00 (s <
0.01) (P. australis) and 0.9 + 0.2 (L. minuta) for temperature and between 1.00 (s < 0.01)
(L. minor) and 0.4 + 0.1 (L. minuta) for nitrate (Figure 7.1). Inclusion of chlorophyll a
during model development tended to be beneficial for L. minor, C. demersum and L.
minuta, while models for P. australis and M. aquatica were more affected by ammonium
and pH. Oxygen supported habitat description for both Lemna spp., while sulphate
provided additional explanation for L. minuta and C. demersum (Figure 7.1).

Additional informative variables for these macrophytes included chloride (P. australis),
potassium (L. minor), Kjeldahl-nitrogen (C. demersum) and total phosphorus (M.
aquatica) as depicted in Figure 7.1. An overview of variable importance for all considered
macrophytes (58 species) is provided in Appendix (Figure D.2), illustrating the
dominance of both temperature and nitrate over other variables. On average (i.e. over
all 58 species), temperature was characterised by the highest MIR (0.7 + 0.3), followed
by nitrate (0.5 + 0.3), oxygen (0.3 = 0.3), ammonium (0.3 + 0.2) and pH (0.3 + 0.2).

Phragmites Lemna Ceratophyllum Mentha Lemna
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Figure 7.1: Variable importance of the five most informative variables for a selection of
macrophytes. Variable importance is expressed as Model Improvement Ratio (MIR), describing
the relative importance of a variable with respect to the most informative variable. Temperature
and nitrate recur for each macrophyte with either one as the most influential variable, while highly
equal scores between both variables are obtained for C. demersum and M. aquatica. Vertical black
lines indicate the standard deviation on the calculated MIRs.
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Changes in temperature, nitrate, oxygen, ammonium and pH showed a clear impact on
the habitat suitability index (HSI) of the selected macrophyte species, although the
magnitude of the effect declined along decreasing average variable importance (Figure
7.2). Higher temperatures tended to have a positive effect on habitat suitability for each
macrophyte, with the highest increase in average HSI for P. australis (from 0.240 +
0.008 up to 0.593 + 0.004). Steep improvements in habitat suitability mainly occurred
between 12 and 17 °C, while reaching an optimum around 20 °C (Figure 7.2).

Analogous patterns were observed for the remaining four variables, showing an overall
negative effect on HSI when aquatic conditions were becoming too extreme. For
instance, an optimal pH range was observed between 7 and 8.5 with lower HSI scores
towards both extremes, while also oxygen indicated higher habitat suitability when
concentrations ranged between 2 mg-L"! and 7 mg-L! (Figure 7.2). Similarly, nitrate and
ammonium showed a clear hormesis effect on habitat suitability as HSI scores were
highest at concentrations above complete absence (i.e. 0 mg-L') and below the observed
extremes. More specifically, optimal conditions were slightly above zero (around 0.5
mg-L? for nitrate-N and 0.2 mg-L! for ammonium-N) and indicated generally
suboptimal conditions at higher levels, which illustrates the potential negative effects of
fertiliser run-off and wastewater discharge on macrophyte presence.

Temperature (°C) Nitrate-N (mg-L™") Oxygen (mg-L™") Ammonium-N (mg-L™") pH (-)

- P. australis
— L. minor
© C. demersum

Mean Habitat Suitability Index

© M. aquatica

— L. minuta
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Figure 7.2: Partial dependence plots (PDPs) of the five most-informative variables for a
selection of five macrophytes. Plots were derived from macrophyte-specific optimised
conditional random forests and show the inferred effect of an environmental variable on the
habitat suitability for a specific species. An optimal range can be observed for each variable, with
a general positive effect of temperature and negative effect of nitrogen. Some models did not
contain all selected variables, resulting in an absence of a variable-specific influence plot.
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P. australis showed to be the most generalist species among the considered macrophyte
species, often reflecting the highest average suitability score, except at low temperature
and pH values (Figure 7.2). In contrast, M. aquatica frequently exhibited the lowest HSI
scores, indicating a more specialist behaviour. C. demersum seemed to be the least
affected, being partially consequential to the exclusion of chlorophyll a, sulphate and
Kjeldahl-nitrogen (see Figure 7.1) throughout this analysis. Differences in habitat
suitability scores between L. minor and L. minuta were generally higher at undisturbed
conditions (i.e. low temperature, low nitrate and high oxygen concentrations) and
tended to decrease towards higher disturbance (Figure 7.2), indicating a reduced
discrepancy in habitat suitability due to nutrient pollution or overall climate change.

Similar partial dependence analyses were performed for all 58 macrophytes within the
provided data set, though required the exclusion of one species as none of the selected
variables were included in the developed model. The remaining 57 species showed
similar patterns as observed for the selected subset, though averaging all species-specific
responses caused relatively high deviation around the overall mean (Figure 7.3). This
illustrates that preferences among macrophytes are similar regarding the main drivers
and benefit from general guidelines, while additional fine-tuning is required when

aiming for improving habitat suitability for a specific species.
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Figure 7.3: Partial dependence plots (PDPs) of the five most-influential variables for all
macrophytes (N = 57). The average influence of a specific environmental variable on habitat
suitability (black line) follows a similar pattern as observed in Figure 7.2. Moreover, similar
optimal ranges can be observed for each variable, with a general positive effect of temperature and
negative effect of nitrogen. The grey ribbon depicts the standard deviation of the mean.
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7.3.3 Application of optimised models

Application of the optimised species-specific models on the complete data set suggested
a suboptimal use of suitable habitats (Figure 7.4). Over time, an overall increase in
suitable and occupied habitats was observed for each macrophyte, although the limited
repeated temporal sampling clouds the presence of clear patterns (i.e. only a few sites
were sampled more than once). Discrepancies between observations and predictions
tended to increase with decreasing observed prevalence, showing a high degree of
overlap for P. australis (period: 1990-2010) and a clear difference between the locations
occupied by and available for L. minuta (Figure 7.4). No observations of L. minuta before
1999 were included in the common data, though the upward trend indicated a rising
reporting frequency (Figure 7.4), which is likely to increase further as more locations
will provide a suitable habitat and dispersal pressure rises. Temporal trends of all 58
macrophyte species show relatively similar patterns and can be found in Appendix,
Figure D.5 and Figure D.6.

Phragmites Lemna Ceratophyllum Mentha Lemna
australis minor demersum aquatica minuta
081 — Observations
- Predictions |
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Year

Figure 7.4: Temporal trend of observed and predicted prevalence of a selection of
macrophytes. Prevalence is determined by the fraction of sites where macrophyte presence is
observed (solid line) or where conditions are suitable to support macrophyte presence (dashed
line). The fraction of both suitable and occupied sites increases in time and indicates a suboptimal
use of the available suitable habitats. Similar analyses of all 58 macrophyte species can be found
in Appendix, Figure D.5 and Figure D.6.

On average, abiotic conditions at the end of the sampling period (i.e. 2010) already
supported relatively high habitat suitability scores (see Figure 7.4, Figure 7.5 and
Appendix, Table D.2). The analyses suggested that, without any action being taken,
suitability might commence dropping after 10 years (AVG-BAU), potentially due to
inadequate nutrient concentrations. Indeed, when relying on a continuation of the
temporal trend, nitrate concentrations dropped to O mg-L* (see Appendix, Figure D.4)
and negatively influenced HSI (see Figure 7.2). In contrast, when management aimed at
obtaining PDP-derived optimal conditions (see Figure 7.2), habitat suitability tended to
remain relatively stable (AVG-KEY; Figure 7.5).
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Polluted sites generally benefitted from any type of management, though indicated
better absolute improvement in suitability with variable-specific action, especially with
respect to P. australis and M. aquatica (EXT-KEY; Figure 7.5). Similarly, temporal
analysis of the eutrophic systems suggested that a focus on managing key variables
(NUT-KEY) provided higher habitat suitability scores compared to the business-as-usual
(NUT-BAU) scenario (Figure 7.5).

Throughout these scenarios, highest suitability scores were generally observed for P.
australis, while M. aquatica showed to be greatly affected by the prevailing nutrient
conditions (Figure 7.5), thereby corroborating their relatively generalist and specialist
behaviour, respectively. C. demersum was only limitedly affected by any type of
management, except for the business-as-usual scenario towards average starting
conditions (AVG-BAU; Figure 7.5), which is potentially linked with a different degree of
dependence on the considered variables. L. minor and L. minuta showed relatively
similar patterns regardless of the scenario, with generally higher suitability scores for L.
minor, although comparable scores were observed when management focused on key
variables under non-extreme starting conditions (AVG-KEY and NUT-KEY; Figure 7.5).
Hence, a preference of both Lemna spp. towards the same abiotic conditions is to be

expected.
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Figure 7.5: Effects of management and starting conditions on habitat suitability.
Management is generally beneficial, except for business-as-usual with average variable values.
AVG: Average starting conditions; EXT: Extreme starting conditions; NUT: Nutrient-enriched
starting conditions; BAU: Business-as-usual; KEY: Management focused on key variables (see
Figure 7.2). To improve visualisation, standard errors (N = 10) are depicted as grey ribbons instead
of standard deviation.
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Similar to the partial dependence plots (Figure 7.2) and the management scenarios
(Figure 7.5), higher suitability scores for L. minor occurred for the majority of locations
(79.0 %) within the original data compared to L. minuta. However, not all sites with
reported L. minor presence sustained lower HSI scores for L. minuta compared to L.
minor and vice versa. About a quarter (28.3 %) of the locations with L. minor presence
provided higher suitability scores for L. minuta, while even a higher fraction (39.0 %) of
the sites occupied by L. minuta supported higher HSI scores for L. minor (Figure 7.6).
The majority of sites (71.4 %) remained, however, unoccupied by either species, though
showed generally higher HSI scores for L. minor. Moreover, the HSI frequency
distribution of all unoccupied sites suggested that several sites provided suitable
conditions for Lemna spp. presence, which additionally illustrates the suboptimal use of
suitable habitats.
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Figure 7.6: Habitat suitability of Lemna minor and Lemna minuta conditional to their
occurrence. Sites with absence of both Lemna spp. (top-left) cover a range of suitability scores
and are mostly situated below the agreement line indicating that the majority of unoccupied sites
provides slightly more suitable conditions for L. minor. Sites with observed L. minor presence and
L. minuta absence (top-right) show a similar pattern, indicating slightly better conditions for L.
minor and corroborate the observations. Sites with observed presence of L. minuta (bottom row)
are situated on both sides of the agreement line and reflect similar suitability scores for both
Lemna spp.
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7.4 Discussion

7.41 Model performance and variable importance

Overall, obtained models provided good discriminatory power and classification
accuracy (Swets, 1988), while hyperparameter tuning hardly affected the selected
performance indicators, suggesting that conditional random forests represent a valuable
approach within ecological data-based modelling, even under default settings (see also
Fox et al. (2017) and Freeman et al. (2015)). Higher performance scores for random

forests have been reported in literature, though these tend to vary among applications
(see Table 7.5).

Table 7.5: Comparison of the obtained AUC scores with reported literature. Most studies
rely on accuracy, Cohen’s kappa or the True Skills Statistic (TSS) to complement AUC. °: mean
value; : median value.

Topic AUC Reference
lsjpsjilal bird distributions in the 0.917* + 0.076 Barbet-Massin et al. (2014)
T 1bi e )

emporal bird distributions in 0896+ 0.090  Barbet-Massin et al. (2014)
the USA
Fish distribution in lake 0.891° Guo et al. (2015)
ecosystems
Biotic interactions in fish 0.85 — 0.95 Vezza et al. (2015)

distribution models
Distribution of European

. 0.943* + 0.005 Fukuda et al. (2013)
grayling

Still, model performance is potentially deflated due to the inclusion of false absences
within both the training and test data. Such non-occupation of suitable habitats
originates from a variety of ecological processes, including limited macrophyte dispersal
and increased stochasticity of extinction due to spatial isolation (Demars and Edwards,
2009). The majority of these false absences were excluded during data pre-processing
in order to reduce ambiguity and to avoid reduced model performance scores (Gallien
et al., 2012; Guisan and Theurillat, 2000). Yet, the lack of a clearly defined niche in
combination with the trade-off between model performance and data loss impedes the
elimination of all false absences. Hence, several suitable unoccupied sites remain in the
training and test data, resulting in model misclassifications and reduced model
performance. This deflation, on the other hand, is counteracted by the spatiotemporal
autocorrelation of the test data (Araujo et al., 2005a; Araujo et al., 2005b; Elith and
Leathwick, 2009), although the relative contribution of both biases remains unknown.
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Importance-based variable ranking identified temperature as a major descriptor of
habitat suitability, showing a positive effect on habitat suitability scores when
increasing. This complies with literature reporting (i) temperature as best-predicting
factor for macrophyte diversity (Demars and Edwards, 2009), (ii) growth limitation at
low temperatures in clear lakes (Dale, 1986), (iii) an optimal range for photosynthetic
activity between 20 °C and 35 °C (van der Heide et al., 2006), (iv) higher invasion
vulnerability at higher temperatures (Hussner, 2009) and (v) dense floating mats
causing temperature increases (Netten et al., 2010). Hence, an increase in temperature
due to, for instance, climate change, can have a beneficial effect on macrophyte
presence, although also negative effects due to soil anoxia and related stress have been
observed (Genkai-Kato and Carpenter, 2005).

In contrast, suitability scores were negatively related with increasing nitrate (NO3) and
ammonium (NH}) levels, reflecting the expected harmful effect of water pollution on
macrophyte occurrence and diversity (Bakker et al., 2013; Barker et al., 2008; Scheffer et
al., 1993b). More specifically, under elevated nutrient levels, phytoplankton has the
potential to grow rapidly and outcompete macrophytes by changing nutrient conditions
and light penetration (Lu et al., 2012; Scheffer et al., 1993b).

Surprisingly, oxygen was selected among the five most informative variables to delineate
the occupied abiotic habitat. Macrophytes are relatively independent of oxygen within
the water column due to their inherent production capacity, though tend to reduce
oxygen during nocturnal respiratory activity (Caraco and Cole, 2002; Carr et al., 1997).
Moreover, higher suitability scores were generally linked with reduced oxygen
concentrations (i.e. around 4.5 mg-L!), which often reflects reduced chemical water
quality (Srebotnjak et al., 2012). This observation is potentially caused by biotic
feedback, which takes place when species occur in a specific environment and modify
the prevailing abiotic conditions due to their presence (Vitousek et al., 1997). For
instance, the elevated HSI scores for the floating L. minuta at low-oxygen conditions
might depict an effect of its presence on abiotic conditions (i.e. causing a drop in oxygen
by limiting light penetration) rather than its presence being affected by low oxygen
levels. Similarly, the presence of the floating alien Eichhornia crassipes negatively
affected oxygen concentrations within the invaded tidal environment of the San
Francisco Estuary (Tobias et al., 2019), while the presence of the submerged alien Elodea
nuttallii positively affected oxygen saturation within invaded lakes in Northern Ireland
(Kelly et al., 2015). Hence, the identified variable importance ranking merely reflects the
capacity of the variable to delineate and describe the occupied habitats rather than
providing information on steering behaviour. More specifically, no distinction can be
made between variables that (1) affect macrophyte presence, (2) are affected by
macrophyte presence and (3) combine both processes.
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7.4.2 Temporal trends and future potential

Despite the annual fluctuations, positive temporal trends were observed for macrophyte
prevalence within the study area. Both observed and predicted prevalence scores
increased in time, while concentrations of the main pollutants (ammonium, nitrate,
phosphorus) decreased (see Appendix, Figure D.3). This suggests that management
efforts to reduce surface water pollution have provided positive results at the biotic level.
However, these results should be interpreted with care as they are only valid under the
assumption that sites were selected randomly (i.e. without any preference towards
vegetated or non-vegetated sites). As this assumption might be too strict for specific
years, it is considered likely that the depicted prevalence scores do not reflect the actual
conditions, causing temporal patterns to fluctuate. More importantly, it is crucial to
maintain management measures as (1) individual variables are often characterised by a
wide range (see Appendix, Figure D.3) and (2) many surface waters in the Netherlands
are still highly eutrophic (van Puijenbroek et al., 2014).

Indeed, management measures positively influenced HSI scores for most macrophytes,
especially when paying specific attention to altering the most descriptive variables (i.e.
KEY management). A clear distinction with BAU management was observed in favour
of KEY management, except when dealing with extremely polluted sites (EXT). This
illustrated that the identification of key habitat descriptors can help in delineating
management actions, but that case- and species-specific management actions are
required for locations situated outside the realised niche. More importantly, it
confirmed that macrophyte presence is influenced by a plethora of interacting variables
(Bakker et al., 2013; Demars and Edwards, 2009).

It should remain clear that the management scenarios in this study were composed by
combining theoretical starting conditions and temporal patterns based on observed
environmental conditions and patterns, respectively (see Section 7.2.2 and Appendix
D.2). Hence, the resulting simulations merely illustrate the value of abiotic HSM
towards scenario analysis and can be used to confirm and develop macrophyte-specific
hypotheses. For instance, the high HSI scores for P. australis suggested a relatively high
generalist behaviour, which has been illustrated by its highly invasive character
(Bellavance and Brisson, 2010; Zedler and Kercher, 2004). Similarly, HSI scores for M.
aquatica were strongly influenced by nutrient concentrations and suggested a more
specialist behaviour, thereby contrasting reports on its presence in constructed
treatment wetlands (Dhir et al, 2009; Vymazal, 2013). Such characterisation is
inherently nested in the study design, which resulted in the selection of generally
occurring species (and, thus, the exclusion of actual specialist species from the study).
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Throughout the simulated timeframe, HSI scores for the native Lemna minor and the
alien L. minuta depicted relatively similar patterns and a decreased discrepancy when
management focused on optimising the key descriptors, except for extremely polluted
sites. This confirms field observations of both Lemna spp. coexisting and favouring
similar environmental conditions (Ceschin et al., 2016; Paolacci et al., 2016), including a
preference towards eutrophic conditions. However, due to the alien nature of L. minuta,
it remains possible that the occupied environmental domain and associated model
predictions underestimate the potential domain and habitat suitability scores (Gallien
et al., 2012). The upward temporal prevalence trends illustrate its endeavour to reach
equilibrium and depict the so-called ‘invasion debt’ (Strayer, 2010). Moreover,
simulations showed that pollution reduction supports increased habitat suitability for
both Lemna species, implying a further increase in the future due to continuously
decreasing nutrient concentrations (Blaas and Kroeze, 2016).

Both models and observations supported the coexistence of L. minor and L. minuta due
to shared abiotic preferences. Yet, extrapolations to long-term natural conditions are to
be performed with care as observations can be temporally biased and merely reflect a
temporary situation. For instance, coexistence may also be caused by a disturbance-
induced survival of L. minuta in a system dominated by L. minor or vice versa, thereby
supporting temporary co-occurrence despite differences in species-specific habitat
suitability. Such disturbances undermine the governing biotic resistance and increase
the opportunity for natural succession, more diverse communities, higher productivity
and nutrient retention, though simultaneously allow invasive (alien) species to establish
(Demars and Edwards, 2009; Engelhardt and Ritchie, 2001; Strayer, 2010; Zedler and
Kercher, 2005). Whether the observed co-occurrence of both Lemna spp. results in
coexistence or outcompetition cannot be derived from the developed models and greatly
depends on their autecological behaviour, functional traits and overall competitive
strength (see also Figure 2.3) (Demars and Edwards, 2009; Kelly et al., 2015; van Kleunen
et al., 2010).

Hence, more information from both controlled-conditions experiments and in-field
observations is required to identify autecological behaviour and species interactions. For
instance, functional traits like nutrient uptake rate and relative growth rate (RGR) can
provide information on the invasive behaviour of a species (Njambuya et al., 2011; van
Kleunen et al., 2010). Experiments performed on the invasive shrimp Dikerogammarus
villosus and the native shrimp Gammarus pulex showed that the functional response (i.e.
resource use) was higher for the invasive shrimp, thereby illustrating its observed
invasive behaviour (Dodd et al.,, 2014). The use of a similar index to infer invasive
behaviour of alien macrophytes might prove useful within a proactive management

framework.
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7.4.3 Consequences for wetland and environmental management

Quantitative assessment of disturbances and macrophyte interactions and how these
processes will change in the future remains a challenge when developing habitat
suitability and species distribution models (Elith and Leathwick, 2009). Invasive alien
species and climate change represent important threats to aquatic ecosystems, including
freshwater wetland systems (Peterson et al., 2008; Rahel and Olden, 2008; Walther et
al., 2009). For instance, dominance by invasive alien macrophytes has already caused
the disappearance of native species due to light limitation, with additional negative
effects on the macroinvertebrate community (Stiers et al., 2011). Moreover, alterations
in environmental conditions induced by climate change (e.g. increased temperatures,
modified hydrological regimes) are expected to be advantageous towards invasive alien
species and indicate an important interaction between two influential pressures (Rahel
and Olden, 2008; Williams and Grosholz, 2008). In order to mitigate future impacts, it
is imperative to develop contemporary wetland management plans that inhibit the
establishment and spread of invasive species.

These management plans should encompass several focus points, including (1) the
identification of locations with suitable abiotic conditions for non-invasive native
species, (2) the identification of locations with suitable abiotic conditions for invasive
species (both native and alien) and (3) the identification of species pools in the
surrounding environment or within the sediment. The developed models in this study
were able to identify key habitat descriptors and to infer overall habitat suitability
conditional to the prevailing abiotic conditions for a selection of macrophyte species.
For instance, abiotic habitat suitability for Mentha aquatica showed to be highly
correlated with nutrient concentrations (nitrate, ammonium and phosphorus), while its
prevalence increased in time due to a reduction in nutrient levels (see Figure 7.1, Figure
7.4 and Figure D.3). Hence, additional nutrient reduction within eutrophic treatment
wetland benefits habitat suitability for M. aquatica.

Similarly, habitat suitability scores for the submerged Ceratophyllum demersum showed
to be less affected by the main habitat descriptors, when compared to the other selected
macrophytes. This reduced relation is potentially caused by the exclusion of chlorophyll
a, sulphate and Kjeldahl-nitrogen from the dependency analysis and suggests that C.
demersum is less sensitive towards generic alterations of the abiotic conditions (i.e.
focusing on the key habitat descriptors as depicted in Figure 7.5). Hence, a more species-
specific analysis and management is needed to significantly affect habitat suitability for
C. demersum and the associated chance of establishment (conditional to its
introduction).
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In addition to a local assessment of the available and required abiotic conditions,
awareness on the presence of a local species pool is essential to decide between natural
succession or manual introduction in order to obtain augmented species richness.
Limited dispersal and connectivity have affected various restoration projects that relied
on seed banks within the sediment or the proximity of local species pools to commence
colonisation after abiotic restoration (Bakker et al., 2013; Hilt et al.,, 2006). Both
processes support natural biotic restoration, though are often beneficial for highly-
competitive generalist species, causing communities with low diversity and high
biomass (Engelhardt and Ritchie, 2001). In absence of a viable seed bank, introduction
greatly depends on the available direct (e.g. connected water bodies) or indirect (e.g.
wind- or animal-induced) dispersal pathways (Murphy et al., 2019).

However, only a fraction of the introduced propagules survives the prevailing abiotic
conditions, being subsequently exposed to biotic interactions, including herbivory and
(if present) the already established macrophyte community (Bakker et al., 2013; Levine
et al., 2004), being conceptually visualised in Figure 7.7. Manual introduction can be
considered when both abiotic and biotic conditions support the species’ presence,
though requires prior investigation on the reasons of their current absence (Bakker et
al., 2013; Bornette and Puijalon, 2011). For instance, high herbivory pressure in lakes or
wetlands causes macrophytes to be absent and renders many re-stocking actions into
failure when the pressure remains unaccounted for (Kérner and Dugdale, 2003).
Similarly, highly turbid water conditions caused by sediment-disturbing fish and
crustaceans provide a poor basis for artificial introduction (Hilt et al., 2006; Strayer,
2010). Hence, despite providing suitable abiotic conditions, the probability of successful
natural succession can be low due to dispersal limitation and biotic interactions (see
Figure 7.7).

BIOTIC Suitable, but

. . cannot be
interactions

[Lethal biotic ] ABIOTIC

: ~N / Outside the
Suitable and DISPERSAL fundamental
reachable niche

Figure 7.7: Conceptual visualisation of the contributing factors underlying macrophyte

presence. Both abiotic and biotic conditions need to be suitable for a species to occur, but they
also need to be reachable to allow natural introduction. Manual introduction avoids the restriction
implied by dispersal and thereby creates more options.
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7.4.4 Contribution to the study objective

The aim of this chapter was to combine ecological restoration and invasive alien species
management by defining the effect of species-specific key variables on habitat suitability
and elaborating on management options to optimise abiotic conditions. By means of
correlative models, macrophyte occurrence data within the Limnodata Neerlandica were
linked with the prevailing abiotic conditions in order to infer species-specific
descriptions of the preferred habitats. These results help identifying species that possess
the potential to thrive in the physicochemical conditions that are present within the
considered wetland (see Section 1.2.1). Moreover, they illustrate how abiotic conditions
can be changed to improve the habitat suitability for a specific macrophyte species,
which additionally allowed the assessment of temporal trends and management
scenarios on the habitat suitability of both native and alien species.

Variable-specific effects on habitat suitability often remained below HSI scores of 0.55
(see Figure 7.2), indicating that a single variable can create relatively unsuitable
conditions and confirming that a concert of variables is needed to provide a suitable
habitat (Bornette and Puijalon, 2011; Demars and Edwards, 2009). Hence, a holistic
approach that targets a range of variables (e.g. wastewater treatment to reduce organic
pollution, buffer strips in agricultural area to reduce nutrient input) to reduce pollutant
concentrations positively affects habitat suitability for macrophytes. Increased
macrophyte occupancy over time supports these inferences and highlights the positive
impact of improved water management on macrophyte presence. Yet, the discrepancies
between the observed and predicted prevalence suggest a temporal lag between abiotic
restoration and biotic colonisation, which has also been observed in several other
restoration projects (Bakker et al., 2013; Jahnig et al., 2011; Verdonschot et al., 2013).

The models that were developed in this chapter allowed to infer (1) the most influential
descriptors to delineate the occupied habitats, (2) the values of these key descriptors to
provide optimal habitat suitability and (3) the effect of different management scenarios
on species-specific habitat suitability scores. Based on these results, the value of data-
driven modelling towards supporting freshwater management is illustrated. Moreover,
within the defined study objective (see Section 1.2.1), nutrient conditions are assumed
to be elevated and thereby resemble the starting conditions of the NUT scenarios. As
temporal improvements in these scenarios support increased habitat suitability, a
similar effect can be expected along the flow path through a constructed treatment
wetland. This is especially interesting towards the implementation of zonation within
the wetland, though remains threatened by competitive generalist species that have a
tendency to create dense monocultures (e.g. Phragmites australis). By combining these
models and field assessments of local species pools, a list of potential harmful or
unwanted species (both native and alien) can be composed.
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7.5 Conclusion

Conditional random forests (CRFs) showed to be a valuable approach for determining
first-level habitat suitability scores, providing good performance and significantly
outperforming null models while performance improvement via hyperparameter
optimisation remained limited. Importance-based variable ranking differed between
macrophytes, with temperature and nitrate as recurring key variables among the
selected species. Nevertheless, a holistic approach tackling multiple variables at once is
requested to obtain a significant increase in habitat suitability as the effect of a single
variable remains relatively small. Further improvements of the developed abiotic habitat
suitability models require laboratory tests and extensions with biotic information
including nutrient use, biomass production, dispersal dynamics and potential
allelopathic behaviour. This need was illustrated by the observation that some sites were
characterised by higher suitability scores for L. minuta while L. minor was observed and

vice versa.
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Functional response and
relative growth rate to

assess invasiveness®

Highlights

- Functional response is insufficient to forecast invasive behaviour
- Relative growth rate was similar among both Lemna species
- Low nutrient requirement and high fresh weight indicate invasiveness

6 This chapter is based on Van Echelpoel, W.; Boets, P. and Goethals, P. L. M. (2016) Functional response
(FR) and relative growth rate (RGR) do not show the known invasiveness of Lemna minuta
(Kunth). PLoS ONE 11, 0166132, doi: 10.1371/journal.pone.0166132.



CHAPTER 8

Abstract

Growing travel and trade threatens biodiversity as it increases the rate of biological
invasions globally, either by accidental or intentional introduction. Therefore, avoiding
these impacts by forecasting invasions and impeding further spread is of utmost
importance. In this study, three forecasting approaches were tested and combined to
predict the invasive behaviour of the alien macrophyte Lemna minuta in comparison
with the native Lemna minor: the functional response (FR) and relative growth rate
(RGR), supplemented with a combined biomass-based nutrient removal (BBNR). Based
on the idea that widespread invasive alien species are more successful competitors than
native species, a higher FR and RGR were expected for the alien compared to the native
species. Five different nutrient concentrations were tested along a nitrogen (4 mg-L* up
to 70 mg-L') and phosphorus (1 mg-L' up to 21 mg-L"') gradient. After four days, a
significant amount of nutrients was removed by both Lemna spp., though significant
differences among L. minor and L. minuta were only observed at lower nutrient
concentrations (i.e. lower than 17 mg-L! for nitrogen and 6 mg-L! for phosphorus) with
higher nutrient removal exerted by L. minor. The derived FR did not show a clear
dominance of the invasive L. minuta, contradicting field observations. Similarly, the RGR
ranged from 0.4 d' to 0.6 d”!, but did not show a biomass-based dominance of L. minuta
(i.e. 0.5 + 0.3 d! versus 0.6 + 0.2 d! for L. minor). BBNR showed similar results as the
FR. Contrary to the expectations, all three approaches resulted in higher values for L.
minor. Consequently, based on our results FR is sensitive to differences, though
contradicted the expectations, while RGR and BBNR do not provide sufficient power to
differentiate between a native and an invasive alien macrophyte and should be
supplemented with additional ecosystem-based experiments to determine the invasion

impact.
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8.1 Setting the scene

In Chapter 7, the potential threat of Lemna minuta towards ecosystem conservation has
been suggested by the decreased discrepancy in habitat suitability index when
disturbance increases (i.e. higher temperatures and nitrate concentrations). However,
these inferences are highly dependent on occurrence data within the invaded range,
which often violate the equilibrium assumption and underestimate the species’ realised
niche (Gallien et al, 2012; Guisan and Zimmerman, 2000). Alternative approaches
consider the implementation of pre-introduction procedures and the study of species-
specific traits, which require a completely different setup, but are crucial to counter

current introduction rates.

Identifying potential introductions, avoiding establishment and impeding further
spread of invasive alien species (IAS) by detection and subsequent large-scale
eradication requires commitment, financial input and highly destructive measures
(Myers et al., 2000). As not all traits of the invader are known, new functions can be
introduced without changing the community composition drastically (e.g. niche
differentiation resulting in an increase in total ecosystem biomass) (Vila and Weiner,
2004). However, this introduction of completely new traits is limited (Funk and
Vitousek, 2007), underlining that knowledge and early detection is required from a

conservation point of view.

Forecasting invasion impact is a challenge in invasion biology (Dick et al., 2013; Levine
et al., 2003; Pysek and Richardson, 2007), as each organism interacts differently with its
surrounding (Vitousek et al., 1997), making it hard to determine a general effect of
biological invasions. With enhanced competition being theorised as a major mechanism
supporting successful invasion (Levine et al., 2003), several authors have been
investigating the competitive interaction between native and alien species as a first sign
of alien or native dominance (e.g. Vila and Weiner (2004), Njambuya et al. (2011), Gioria
and Osborne (2014)).

Such a competitive advantage depends on a difference in functional identity, which is
hypothesised to be involved in determining the final impact of invasion (Gooden and
French, 2015; Levine et al., 2003). Successful invasions generally occur when the non-
native species displays higher values for competitively advantageous traits, while the
intensity of the advantage is defined by the difference between the trait values.
Therefore, approaches describing a difference in one (or more) functional trait(s) are
applied to predict a species’ invasive behaviour, for instance the functional response
(FR), relative growth rate (RGR), nutrient content and specific leaf area (SLA) (Dick et
al., 2013; Gioria and Osborne, 2014; Grotkopp et al., 2002; Pysek and Richardson, 2007).
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These differences in functional traits are also expected to be expressed at the sub-
individual level (e.g. cellular, molecular, histological), for which (sub-)cellular
biomarkers can be used to identify the factors that influence invasive behaviour (Colin
et al., 2016). Such biomarkers allow to measure and evaluate changes at the cellular,
biochemical or molecular level in response to specific external signals (e.g.
environmental conditions) (Mayeux, 2004). Despite being able to identify changes at
the sub-individual level, the appropriate extrapolation of these biomarker-based results
to the population and community level remains unclear (Friberg et al., 2011). Moreover,
considering a high physiological linkage, a similar response among different species is
to be expected and can challenge the observation of significant differences (Colin et al.,
2016). An additional drawback of this technique is the poor knowledge of appropriate
biomarkers for investigating macrophyte species (Brain and Cedergreen, 2008).
Therefore, subsequent selection of the FR and RGR is based on their applicability, their
ease of application, their link with population and community dynamics, and their focus
on either input (resource use, FR) or output (biomass production, RGR).

The functional response is a known concept in general ecology, but it is only recently
introduced in invasion ecology for comparing the per-capita resource uptake rate of
native and alien species in function of the resource density (e.g. Alexander et al. (2014),
Dick et al. (2013), Haddaway et al. (2012) and Médoc et al. (2015)). It states that an
invasive alien species has a higher functional response compared to the native, because
of its higher resource use efficiency (Dick et al., 2013). In contrast to the functional
response, which focuses on resource use (input-based), the relative growth rate focuses
on the increase in biomass (output-based) to determine the invasion potential of an
alien species and is considered as a proxy for the species’ fitness (Gioria and Osborne,
2014). Therefore, several authors have been investigating the difference in RGR between
native and alien species to predict the invasion potential of an alien species (e.g. Gérard
and Triest (2014), Njambuya et al. (2011), Riley and Dybdahl (2015)). Application of the
RGR to determine the invasive potential of macrophytes is rather limited to rooted
macrophytes (e.g. Barrat-Segretain (2005), Eller et al. (2015), Hussner (2009)), with less
attention towards floating macrophytes (e.g. Netten et al. (2010), Njambuya et al.
(2011)). In contrast, the implementation of the FR concept is rare with respect to
macrophyte assessment, though has proven to be successful for fish and
macroinvertebrates (e.g. Alexander et al. (2014), Dodd et al. (2014)).

Within this chapter, attention is given to resource- and output-based macrophyte traits
to infer their applicability for forecasting the invasive behaviour of an alien species. The
aim is to determine species-specific results for the functional response and relative
growth rate and to establish result similarity. By tackling these issues, an answer is
provided to RQ3.1, as defined in Chapter 1. Hence, this chapter concludes with a
statement on the applicability of the selected traits.
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8.2 Materials and methods

8.2.1 Experimental setup

A pure culture of L. minor was ordered from Blades Biological (United Kingdom,
http://www.blades-bio.co.uk). L. minuta was collected from the Bourgoyen nature
reserve (51.062253, 3.673827), situated near Ghent (Belgium). About 20 fronds of each
species were placed separately in a nutrient medium based on OECD and ISO guidelines
for chemical testing with L. minor and is referred to as the full strength modified
Steinberg medium (OECD, 2006). Fluorescence lamps provided 16 hours of light,
followed by 8 hours of darkness, with an intensity of 45 pmol-m2s* up to
58 umol-m=-s. Temperatures of the growth medium varied between 21.6 °C and 24.0
°C. Every two to three days, new medium was provided and aquaria were rinsed
thoroughly with tap water. Fronds showing the start of algae growth were removed or
rinsed carefully. Selected Lemna spp. plants were grown in these conditions for at least

two weeks to acclimate.

The tests were performed with similar light and temperature conditions as the
aforementioned growth conditions. All recipients were covered at the sides with
aluminium foil to constrain algae growth. The original modified Steinberg medium (Co)
was diluted with deionised water to obtain the following series of concentrations: Co,
0.5-Co, 0.25-Co, 0.125-Cop, and 0.0625-Co, hereafter referred to as: Cl, C2, C3, C4, and C5,
respectively. The composition of the growth medium within these concentration classes
is described in Table 8.1.

Table 8.1: Composition and gradient of the growth medium used for performing the
experiment. The composition of CI is based on the Steinberg medium used for chemical testing
with Lemna minor (OECD, 2006).

Cl1 C2 G C4 c5
Macronutrients (mg-L?)
KNO3 350 175 87.5 43.75 21.875
KH>POy4 30 15 7.5 3.75 1.875
KoHPOq4 4.2 2.1 1.05 0.525 0.2625
MgSO4 49 24.5 12.25 6.125 3.0625
Ca(NOs)2 205 102.5 51.25 25.625 12.8125
Micronutrients (pg-L™)
Hs;BOs 120 60 30 15 7.5
ZnSO4 100 50 25 12.5 6.25
Nax:MoO4 40 20 10 5 2.5
MnCl; 130 65 32.5 16.25 8.125
FeCls 456 228 114 57 28.5
Na-EDTA 1500 750 375 187.5 93.75
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Of each concentration, 0.25 L was poured into a glass recipient and about 500 mg fresh
weight of L. minor or L. minuta was added, along with a control series without
vegetation. Determination of the fresh weight was performed by collecting biomass on
a sieve and blotting the fronds with tissue paper to extract attached water as much as
possible. Each test lasted for four days (96 h), based on a preliminary assessment, and
was performed in triplicate, resulting in a total of 45 recipients per test. In total, two
tests were run, resulting in six replicates for each treatment and a total of 270
measurements. A schematic overview of the experimental set-up for a single series is
depicted in Figure 8.1.

Lemna
minor

Lemna
minuta

Figure 8.1: Schematic overview of the experimental set-up. Relative initial nutrient
concentrations are shown on top and were sampled at the start. The darkness within the
aquariums represents the dilution state of the growth medium (black equals original modified
Steinberg medium). Each recipient was filled with 0.25 L of its respective nutrient concentration
and was performed in triplicate.

8.2.2 Data collection

Growth medium samples were collected at the beginning and at the end of the test and
stored at 4 °C in the dark prior to analysis. Within 36 hours after sampling, nutrient
analysis was performed spectrophotometrically using Merck field kits for total nitrogen
(test kits 1.14963.0001 and 1.14773.0001, operational range from 0.5 to 20 mg-L!) and
total phosphorus (test kit 1.14541.0001, operational range from 0.05 to 5 mg-L"). For
each batch, a blank and standard were used to determine the background signal and
overall test efficiency, respectively. Medium samples of Cl, C2, and C3 were diluted ten
times with deionised water to comply with the operational range of the test kits. For
each sample, the average of three measurements was used for further calculations.
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Initial dry weight content was determined by drying representative subsamples of both
L. minor and L. minuta for at least 48 hours at 60 *C (OECD, 2006). After two days,
plant total fresh weight was determined and adapted to about 500 mg in each sample,
as to keep biomass as constant as possible (FR is considered as the per-capita resource
uptake). Leftover biomass was weighed and dried (48 hours at 60 °C) to determine the
dry weight content and the estimated overall dry weight after two days of exposure. After
four days, Lemna plants were harvested to determine both fresh weight and dry weight
(48 hours at 60 °C).

8.2.3 Calculating characteristic values
Based on the obtained nutrient concentrations, nitrogen and phosphorus mass

(expressed as mg) were derived by taking into account the volume of growth medium
(0.25 L). Absolute nutrient removal was determined as the difference in initial and final
nutrient mass. For this, the initial nutrient mass was determined as the average of all six
replicates per concentration, as each replicate originated from the same batch of
(diluted) growth medium. Finally, the functional response (nutrient mass removed in
function of initial nutrient concentration) was determined. Next to the absolute nutrient
removal, relative nutrient removal (RNR) was calculated (Equation 8.1) for each
individual sample.

RNR = (moavg=ma) 100% (Equation 8.1)

Mo,avg

With RNR the relative nutrient removal (%), mo,ag the average nutrient mass at day O
(mg) and my4 the nutrient mass at day 4 (mg).

The (estimated) dry biomass after exposure was determined after two and four days and
compared with the initial (at day 0) and adapted (at day 2) dry weights, respectively.
Similar to the observed nutrient removal, biomass increase was expressed both in
absolute (dry weight increase) and relative (relative growth rate) terms of which the
latter was calculated based on Equation 8.2, representing the relative growth rate (RGR)
between day 2 and day 4.

In DW4—1n DW2
t

RGR = (Equation 8.2)

With RGR the relative growth rate (d!), DW; the dry weight after four days (mg), DW>
the adapted dry weight after two days (mg) and ¢ the time interval (d).

Subsequently, nutrient removal and biomass increase were combined in a single variable
to determine a more species-specific nutrient removal. Nutrient removal was expressed
per gram biomass, with the latter being rather dynamic, resulting in three different
values: initial dry weight, final dry weight and net dry weight increase.
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The net dry weight increase was used under the assumption that duckweed allocates
nutrients directly for new biomass instead of enriching already existing biomass (Kérner
and Vermaat, 1998). This suggests that an increase in nutrient uptake is directly related
to an increase in biomass production. Follow-up of this nutrient uptake per gram newly
created biomass allows to determine whether new biomass has a continuous nutrient
content or whether additional nutrients are stored. A species with a higher storage
capacity has an advantage towards future disturbances. To determine this biomass-
based nutrient removal (BBNR), Equation 8.3 was applied.

_ Mo,avg —Ma4 .
BBNR = (OWaDW 2) T DWo—DT0) (Equation 8.3)

With BBNR the biomass-based nutrient removal expressing nutrient mass removed per
unit biomass (mg-g™), mo,ag the average initial nutrient mass (mg), ms the final nutrient
mass (mg), DW; the biomass dry weight after four days (g), DW2.s the estimated
biomass dry weight at the beginning of the second period of two days (g), DW: the
estimated biomass dry weight at the end of the first two days (g) and DWj the estimated
initial biomass dry weight (g).

8.2.4 Statistical analysis
Obtained data of both tests were merged into a single data set and subsequently

analysed using MS® Excel® and RStudio (R Core Team, 2016; RStudio Team, 2015).
Outliers were identified by Cleveland dotplots and boxplot construction (Zuur et al.,
2010), though were initially not removed from the data set prior to subsequent statistical
analysis. Not removing any value from the data set was based on the fact that all analyses
were performed by the author and that spatial randomisation was applied when
possible, thereby limiting the amount of valid arguments for outlier removal. During a
second run, extreme values were removed to investigate their influence on the reported

results.

Secondly, normality was tested using the Shapiro-Wilk test. When no significant
difference from the normal distribution was observed (p > 0.05), paired t-tests were
performed, in all other cases (p < 0.05) the paired Wilcoxon signed-rank test was
applied. All p-values were considered as part of a multiple comparison set-up, for which
a correction of the significant threshold value («) is required. This correction is necessary
as multiple comparisons increase the odds of observing a significant difference, though
it increases the possibility of a type II error (accepting the null hypothesis while the
alternative hypothesis is correct) (Armstrong, 2014). In short, a Bonferroni correction
was applied for determining a new threshold value for each batch of five comparisons
(i.e. a=0.01).
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8.3 Results

8.3.1 Nutrient removal

Nutrient analyses performed at day O and day 4 resulted in the average nutrient
concentrations provided in Appendix (Table E.1 and Table E.2) for total nitrogen (tN)
and total phosphorus (tP), respectively. Recovery of a standard solution ranged from 93
to 99 % for nitrogen and from 95 to 98 % for phosphorus. As the initial nitrogen
concentration of C5 (i.e. 4.2 + 0.1 mg-L!) was already quite low, measurements of the
final nitrogen concentrations happened to be below the detection limit of 0.5 mg-L.

These results were set to zero prior to determining average nitrogen concentration.

Subsequently, nitrogen and phosphorus mass (expressed in mg) were inferred from the
measured nutrient concentrations (volume of 0.25 L), resulting in a similar nutrient
content for L. minor and L. minuta (see Figure 8.2 and Figure 8.3). Both total nitrogen
and total phosphorus differed significantly (p-values < 0.01) from the initial mass when
L. minor or L. minuta was present at high (concentration Cl) or low (concentration C5)
nutrient concentrations (see Table 8.2). At intermediate concentrations, both
significant and non-significant differences were observed (see Table 8.2).

The reference series (i.e. no plants) did not show a significant difference (all p-values >
0.01) for nitrogen mass, though some series (Cl and C2) showed a significant difference
(p-values < 0.01) for phosphorus mass. Correcting for the analysis efficiency (based on
the recovery of a standard solution), however, resulted in p-values not exceeding the
threshold level of 0.01. Consequently, it can be stated that, in general, the presence of
both Lemna minor and Lemna minuta significantly affected the nutrient content of the
provided growth medium.

Table 8.2: Obtained p-values after comparing initial and final nutrient masses. Significant
differences (p < 0.01) can be found at high (CI) and low (C5) nutrient concentrations and at several
intermediate nutrient concentrations.

Nitrogen Phosphorus
L. minor L. minuta L. minor L. minuta
C1 < 0.001 < 0.001 0.002 < 0.001
C2 0.031 0.031 0.001 0.031
(65 0.31 0.007 < 0.001 < 0.001
C4 < 0.001 < 0.001 0.031 < 0.001
5 < 0.001 < 0.001 < 0.001 <0.001
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No significant differences in nutrient removal were found between L. minor and L.
minuta, except for nitrogen at concentration C4 (t = -5.3557, df = 5, p = 0.003) and
phosphorus at concentration C3 (t = -6.1281, df = 5, p = 0.002) (see Figure 8.2, Figure 8.3
and Table 8.3). Relative nutrient removal, as calculated with Equation 8.1, showed that
at low concentrations, relatively more nutrients were removed (Figure 8.4). Still, a
slightly higher relative removal was observed for L. minor in comparison with L. minuta,
with similar significant differences for nitrogen at concentrations C4 and for phosphorus
at concentration C3. In short, the FR is able to identify a difference in nutrient removal,

though it is limited to only one out of five concentration levels for each nutrient.
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Figure 8.2: Absolute nitrogen removal by L. minor (dark grey) and L. minuta (light grey).
A: Nitrogen mass present at beginning (black bars) and after four days (grey bars). B: Amount of
nitrogen removed in function of the initial amount of nitrogen, representing the functional
response.
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Figure 8.3: Absolute phosphorus removal by L. minor (dark grey) and L. minuta (light
grey). A: phosphorus mass present at beginning (black bars) and after four days (grey bars). B:
amount of phosphorus removed in function of the initial amount of phosphorus, representing the

functional response.
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Figure 8.4: Relative removal of nutrients by L. minor (dark grey circles) and L. minuta
(light grey circles). A: nitrogen removal. B: phosphorus removal. At low nutrient concentrations
relatively high nutrient removal efficiencies are observed.

8.3.2 Biomass increase

At three different moments in time (day O, day 2 and day 4) both fresh and dry weight
of Lemna biomass were determined, with biomass dry weight at day O and day 2 being
estimations based on the observed dry matter content of collected subsamples. Six
samples (three for each species) were removed from the dataset as not enough biomass
was present to determine the dry weight content. The resulting average dry weights
(estimations, except for day 4) are provided in Appendix (Table E.3 and Table E.4).

The increase in biomass dry weight of L. minor between day 2 and day 4 was relatively
similar among different concentrations (all p-values > 0.01) as it ranged from 30 + 10 mg
at concentration C4 to 35 + 4 mg at concentration Cl. In contrast, there was more
fluctuation in the biomass increase of L. minuta, showing the highest increase in dry
weight (32 + 7 mg) at concentration C2 and the lowest increase (18 + 8 mg) at
concentration C4 (see Figure 8.5), though no significant difference was observed.

These fluctuations became less severe when considering the relative growth rate of L.
minuta, ranging from 0.4 + 0.2 d! at concentration C4 to 0.5 + 0.3 d™! at concentration
C5 without any significant difference (all p-values > 0.01). In contrast, the relative
growth rate of L. minor fluctuated more when compared with its related absolute
biomass increase, as it ranged from 0.5 + 0.1 d! at concentration C3 to 0.6 + 0.2 d! at
concentrations Cl and C5 (see Figure 8.5). Nevertheless, these growth rates were
considered to be similar as no significant difference was observed (all p-values > 0.01).

Net biomass increase between day 2 and day 4 differed significantly between L. minor
and L. minuta at concentration C4 (t = 5.3484, df = 4, p = 0.006) (Figure 8.5). In contrast,
at concentration C2, L. minor and L. minuta were characterised by an almost identical
biomass increase (t = -0.0772, df = 4, p = 0.942).
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In relative numbers however, the relative growth rate of L. minor did not differ
significantly compared with L. minuta (all p-values > 0.01), even at concentration C4 (t
=2.7358, df =4, p = 0.052). In short, the RGR did not result in a significant difference at
a single concentration level and is, therefore, not able to differentiate between L. minor
and L. minuta.
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Figure 8.5: Change in biomass for L. minor (dark grey bars) and L. minuta (light grey
bars). A: absolute increase in biomass dry weight (mg) starting from day 2 (estimation) until day
4. B: Relative Growth Rate (RGR, d") in a period of two days. Concentrations range from high (Cl)
to low (C5).
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Relative Growth Rate (d™')

8.3.3 Nutrient decrease versus biomass increase

Throughout the four day experiment, L. minor removed a maximum total amount of 2.1
mg nitrogen, while L. minuta removed 1.7 mg nitrogen (see also Figure 8.2), resulting in
an approximated maximal average nitrogen removal rate of 0.525 mg-d’ and
0.425 mg-d’!, respectively. Therefore, biomass-based nitrogen uptake rates were situated
in between 2.1 mmol-g'-d! (lowest observed dry weight of 17.6 mg) and 0.8 mmol-g*.d!
(highest observed dry weight of 49.1 mg) for L. minor and in between 1.5 mmol-g*-d!
(lowest observed dry weight of 20.2 mg) and 0.6 mmol-g'-d?! (highest observed dry
weight of 47.7 mg) for L. minuta. Similarly, phosphorus was removed at a maximal
average removal rate of 0.19 mg-d! and 0.25 mg-d! for L. minor and L. minuta,
respectively. Resulting biomass-based phosphorus removal rates were situated between
0.4 mmol-g'-d!and 0.1 mmol-g'-d" for both Lemna species.

Nutrient removal in function of biomass increase (i.e. BBNR) varied between 20 mg-g™
and 65 mg-g?! for nitrogen and between 6 mg-g! and 30 mg-g"! for phosphorus and
combined the fluctuations in nutrient removal and biomass increase. In seemingly all
cases a higher nutrient removal per gram newly formed biomass was observed for L.

minor, though no significant differences were observed (all p-values > 0.01) (see Figure
8.6 and Table 8.3).
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Figure 8.6: Nitrogen (A) and phosphorus (B) removal per gram newly formed biomass (dry
weight) after four days for L. minor (dark grey circles) and L. minuta (light grey circles).
Similar patterns as in Figure 8.2 and Figure 8.3 can be observed, though differences between both
Lemna spp. are influenced by the increase in biomass (see Figure 8.5).

In short, BBNR observed similar differences in nutrient removal between L. minor and
L. minuta as the FR, though it was not as powerful considering that all p-values were
higher than the statistical threshold value (¢ = 0.01). A summary of the nutrient
concentrations and obtained p-values for each of the considered functional traits is
provided in Table 8.3.

Table 8.3: Nutrient concentrations and obtained p-values for three functional traits.
Results show minor similarities among the three functional traits measured for L. minor and L.
minuta. Significant differences in functional traits (p < 0.01) are underlined and were only observed
at the nutrient level (i.e. FR). FR: Functional response; RGR: Relative growth rate and BBNR:
Biomass-based nutrient removal.

Cl C2 a C4 5

Concentration
Nitrogen (mg-L") 69 +2 33+2 16 + 2 8.8+0.5 42=+01
Phosphorus (mg-L") 20.99+0.09 10.7+01 543+0.07 258+0.03 133+0.01

Functional traits (p-values)

FR Nitrogen 0.520 0.156 1.000 0.003 0.034
Phosphorus 0.563 0.520 0.002 0.438 0.056
RGR 0.110 0.790 0.220 0.052 0.620
BBNR Nitrogen 0.088 0.062 1.000 0.046 0.260
Phosphorus 0.190 0.280 0.016 0.026 0.540
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8.4 Discussion

8.4.1 Nutrient removal

Overall net nutrient removal by Lemna minor was higher than the nutrient removal
exerted by Lemna minuta and contradicted the expectations of the latter having a higher
functional response than the native L. minor. Even after removal of potential extreme
values (three in total), no additional significant differences were observed. Furthermore,
the difference in nutrient removal was also noticed when considering relative nutrient
removal, showing that at low nutrient concentrations both species were efficient in
using the provided nutrients. This efficiency decreased with increasing concentrations,
though in general, L. minor illustrated a higher resource use efficiency. These results
were not in line with field observations of L. minuta dominating L. minor in Belgian
water bodies.

A similar contrast between field observations and experimental results was obtained
when comparing two subspecies of the macrophyte Phragmites australis. Mozdzer et al.
(2010) clearly observed the expected pattern of higher nutrient removal by the alien
subspecies, but, when applied in practice, Rodriguez and Brisson (2015) observed a
slightly higher nutrient removal by the native subspecies, especially towards phosphorus
removal efficiency. According to Rodriguez and Brisson (2015), this discrepancy was
related to the higher root biomass of the native P. australis, allowing it to take up more
nutrients. This confirms both the obtained observations and reported findings of L.
minor having longer roots (Njambuya et al., 2011), and supports the vital role of roots in
nitrogen uptake by L. minor as highlighted by Cedergreen and Madsen (2002).
Additionally, these contrasting findings underline the idea that a clear difference
between phylogenetically related species is hard to find and that further development
and knowledge of appropriate testing methods is recommended. For instance, Colin et
al. (2016) already mentioned the potential in applying biomarkers for identifying
differences between native and invasive alien species at the sub-individual level, but also
recognised the currently existing knowledge gap inhibiting its widespread application.

These results suggest that, despite its shown applicability at higher trophic levels (i.e.
predator-prey interactions, see Dick et al. (2013)), the functional response approach does
not show a higher nutrient removal by the known alien invader and therefore, does not
allow to predict the invasive potential of L. minuta, solely based on nutrient removal. In
combination with the contrasting results when comparing Phragmites australis
(Mozdzer et al., 2010; Rodriguez and Brisson, 2015), the functional response approach
does not seem to be an appropriate method in predicting the invasiveness of alien
macrophytes.
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8.4.2 Biomass increase
In general, no significant differences were found in both absolute and relative biomass

production between native and invasive Lemna plants. Similar to the functional
response, extreme value removal (eight in total) did not result in additional significant
differences with respect to the RGR. Still, L. minor performed better than L. minuta,
except for condition C2, where an almost similar biomass increase was observed. This is
in line with the higher observed nutrient removal by L. minor described in previous
section, suggesting an overall higher efficiency in nutrient uptake by L. minor-.

Relative growth rates (RGR) during the experimental period ranged from 0.5 d! to
0.6 d’! for L. minor and from 0.4 d! to 0.5 d™! for L. minuta. These values are higher than
reported RGRs of duckweed, which are situated around 0.1 d! (Kérner and Vermaat,
1998; Njambuya et al., 2011) up to 0.3 d! (Cedergreen and Madsen, 2002; Gérard and
Triest, 2014). This might be related to their applied test duration of 14 to 20 days,
potentially leading to overcrowding and related decrease in growth rate (Driever et al.,
2005). In contrast, Korner and Vermaat (1998) only applied a duration of 3 days and
observed a similarly low RGR of 0.1 d™. Yet, they used domestic wastewater as a growth
medium, which differs from an ideal growth medium as defined by the OECD guidelines.

The observed RGRs suggest that L. minor is more effective in creating new (dry) biomass.
However, when focusing on fresh weight (see Appendix, Table E.5 and Table E.6), the
overall fresh biomass increase is larger for L. minuta than for L. minor (639 mg versus
406 mg of fresh weight, respectively), but a lower dry weight content reduces this
difference (34 mg versus 31 mg of dry weight, respectively). Despite the lack of clear
significant differences in RGR on a dry weight basis, L. minor might still be suppressed
by L. minuta producing more new, fresh biomass with a lower dry weight content. This
difference indicates an important drawback of using RGR for dominance prediction
because some field-related information is not taken into consideration. For instance,
Henry-Silva et al. (2008) investigated three different aquatic weeds and observed that
RGR on a dry weight basis did not suffice to accurately predict infestation potential,
suggesting to complement the RGR data with biomass density.

In general, no competitive superiority could be derived from the performed
experiments. Moreover, the obtained results underline the fact that comparing RGRs of
monocultures only depicts the potential direct competition and neglects more
important indirect competition and interactions on the long run (Trinder et al., 2013).
Consequently, the relative growth rate provides information on biomass-based
competition and dominance (Henry-Silva et al., 2008), though is insufficient to describe
or predict the invasive potential of macrophytes as no significant differences in RGR

were observed.
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8.4.3 Nutrient decrease versus biomass increase
Biomass-based nitrogen removal rates of both Lemna spp. fluctuated between

0.6 mmol-g'd! and 2.3 mmol-g'-d! and, thereby, included the range observed by
Cedergreen and Madsen (2002) for L. minor (0.6 mmol-g’-d! up to 0.9 mmol-g*-d?)