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ABSTRACT The accurate detection of cracks in paintings, which generally portray rich and varying content,
is a challenging task. Traditional crack detectionmethods are often lacking on recent acquisitions of paintings
as they are poorly adapted to high-resolutions and do not make use of the other imaging modalities often at
hand. Furthermore, many paintings portray a complex or cluttered composition, significantly complicating
a precise detection of cracks when using only photographic material. In this paper, we propose a fast crack
detection algorithm based on deep convolutional neural networks (CNN) that is capable of combining
several imagingmodalities, such as regular photographs, infrared photography andX-Ray images.Moreover,
we propose an efficient solution to improve the CNN-based localization of the actual crack boundaries and
extend the CNN architecture such that areas where it makes little sense to run expensive learning models
are ignored. This allows us to process large resolution scans of paintings more efficiently. The proposed
on-line method is capable of continuously learning from newly acquired visual data, thus further improving
classification results as more data becomes available. A case study on multimodal acquisitions of the Ghent
Altarpiece, taken during the currently ongoing conservation-restoration treatment, shows improvements over
the state-of-the-art in crack detection methods and demonstrates the potential of our proposed method in
assisting art conservators.

INDEX TERMS Digital painting analysis, crack detection, virtual restoration, machine learning, morpho-
logical filtering, convolutional neural networks, transfer learning, multimodal data, Ghent Altarpiece.

I. INTRODUCTION
Paint cracking (or craquelure) is the most common type of
deterioration encountered in old master paintings. Cracks
appear in paint layers as a consequence of stress caused by
different factors, including the ageing of the materials used
(age cracks), a defective technical execution at the painting
stage (premature cracks), and adverse storing conditions [1].
The main cause for cracking in 15th century Flemish paint-
ings lies in the fluctuation of relative humidity, causing the
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wooden support, usually made from Baltic oak, to shrink and
expand. Cracking also often occurs in the top varnish layer
due to oxidation. Visually, cracks can be divided into two
main categories, i.e. cracks that are darker than their sur-
rounding background, and vice-versa, cracks that are brighter
than their background.

The automatic detection of cracks proved to be a con-
siderable help in various art analysis tasks. For example,
in [2], [3] crack detection was used in combination with
inpainting methods, to digitally remove cracks in selected
areas of the Ghent Altarpiece. The method was applied on
the depiction of a book in the panel of the Virgin Annunciate
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and made a better deciphering of its content possible. Addi-
tionally, crack patterns can offer insights on the structural
condition or conservation history of a painting [1].

Crack detection methods reported in the literature can
roughly be divided into three categories: filtering-based
methods [4], machine-learning based methods [5], [6], and
methods combining the two [2]. Filtering-based methods
typically employ a variety of grayscale morphological fil-
ters followed by a thresholding step with either a man-
ual or automatic selection of the threshold value, using
e.g. Otsu’s method [7]. Machine learning methods include
methods based on vector classification [3], [5], [6], [8] and
tensor classification [9]–[11]. Numerous feature learning
and classification methods have been proposed recently for
high-dimensional data processing in other domains, such as
hyperspectral processing [12]–[14]. Although hyperspectral
imaging is becoming interesting in art investigation, e.g. for
non-invasive analysis of pigments and for analysis of under-
drawings, it is less relevant for crack detection due to rela-
tively small spatial resolution. Moreover, some paint cracks
are best visible in radiography images. Hence, a multimodal
imaging approach combining high-resolution macro pho-
tographs in the visible and infrared spectral ranges together
with radiographs is preferred for crack detection. In [3], [8] a
Bayesian approach termed, the Bayesian Conditional Tensor
Factorization (BCTF) method [15] was used to detect cracks
on a multimodal dataset of high-resolution images of the
Ghent Altarpiece. Several typical limitations of the methods
described above should be noted: Firstly, most of the available
crack detection techniques have been developed for single
modality images and cannot exploit well the rich information
supplied by other imaging modalities that are now common
and readily available in conservation science and practice;
secondly, traditional approaches require hand-engineering of
features to be used in the classification task. Next, when deal-
ing with high-resolution images, computational complexity
becomes a huge problem for most of the existing methods;
finally, to the best of our knowledge, the existing approaches
for crack detection in paintings were not able to deal well
with situations where on-line learning is desired. This is very
important because hand labelling data for each painting is
impractical.

The work presented here is, as far as the authors are
aware, the first attempt to detect cracks in paintings by
using deep learning, and in particular convolutional neural
networks (CNNs). The prior research closest to our method
can be found in the works of [5] and [6] in which the
authors use morphological filtering operations for the pre-
liminary detection of cracks and subsequently refine the
result using a fully connected neural network. However, our
work presents significant differences: We use deep learn-
ing based on convolutional neural networks rather than a
traditional neural network that was employed in [5], [6].
The overall learning architecture is thus different, includ-
ing a different optimization method, activation function and
loss function. Also, as opposed to these earlier methods,

our method is designed to effectively process multimodal
data.

In [9], [10], [16], [17], convolutional neural network are
used to detect cracks in road surfaces (and similar surfaces).
The problem that we address is much more challenging.
Paintings feature a much more complex background structure
compared to roads. Cracks in paintings are often difficult to
distinguish from other background objects, such as eyelashes
and other line-like details, which makes their automatic
detection using only one modality much more challenging.

A common problem that arises when CNN-based methods
are applied to the detection of line-like structures is impre-
cise delineation (widening) of the detected lines. Partially,
the problem can be solved using an extended set of training
data, which includes additional negative samples taken at the
crack boundaries [16]. However, this does not completely
avoid excessive thickening, and may also lead to a decrease
in classification accuracy.

To solve this problem, we introduce a compensation
method that penalizes false broadening of the crack bound-
aries. This is one of the important technical novelties of this
work. The proposed approach yields clearer delineation of
the actual crack boundaries, avoiding the common thickening
phenomenon.

The main contributions of this work are the following:
(i) We explore the potential of deep learning for crack

detection in paintings.We are not aware of any reported
works that apply CNNs or other deep learning models
to the problem of crack detection in paintings, except
for our preliminary result in a conference abstract [18].

(ii) We propose a novel method for reducing excessive
thickening of the crack boundaries detected by CNNs.
While this is of crucial importance for our application
in digital painting analysis, the proposed solution is
applicable in general to CNN-based detection of cracks
and other line-like and tubular structures in images.

(iii) To enable efficient processing of multimodal images of
huge spatial resolution, we design an original two-step
procedure with morphological preprocessing. The pro-
posed morphological processing step efficiently and
safely eliminates areas where it makes little sense to
run the learning process.

(iv) We design our network such that it can continuously
learn from new annotations when these become avail-
able. The results demonstrate clearly the efficiency of
our re-training approach where the network trained
on one painting detects successfully cracks in another
painting with relatively few extra labels added.

(v) A thorough evaluation is conducted on multimodal
acquisitions of the Ghent Altarpiece including an elab-
orate case study, which demonstrates the actual benefit
from crack detection for diagnosing the state of specific
panels and the importance of this tool in support of art
painting conservators.

Preliminary results of this work were presented in a con-
ference abstract only [18]. The present paper gives not only
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FIGURE 1. An illustration of the multimodal data set Ghent Altarpiece, publicly available at the website of the Closer to Van Eyck project. Image
copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb.

a much more elaborate description of the overall approach
but it also contains important novel technical improvements
including the proposed compensation approach for accu-
rate detection of crack boundaries, efficient re-training of
the model and a case study conducted to support an actual
painting conservation problem. Figure 1 illustrates parts of
the multimodal acquisitions of the Ghent Altarpiece used in
our study, while additional data have been acquired during
the ongoing conservation treatment of this masterpiece as
detailed later on.

This paper is structured as follows: Section II introduces
the problem of crack detection in paintings in general, and
the particular dataset used in our study. Basic concepts behind
convolutional neural networks and their application to multi-
modal images are reviewed briefly. In Section III. The pro-
posed approach is presented in Section IV and the experi-
mental evaluation on a portion of the Ghent Altarpiece and
comparative analysis with the related state-of-the-art methods
is in Section V. In Section VI, we conduct a case study
where crack detection is employed to diagnose the state of a
panel painting and to provide objective supporting material
for decisions made in the actual conservation process of a
master painting. Section VII concludes the work and gives
possible directions for further research.

II. CRACK DETECTION CHALLENGE
This section discusses the main problems associated with the
detection of cracks in panel paintings. It also provides details
of the multimodal dataset used further on in our study.

A. CRACKS IN PANEL PAINTINGS
Cracks are the most common type of deterioration found
in paintings and can provide invaluable indications in the
assessment of their authenticity. This is due to the fact that
the cracks represent a kind of record of the history of the
painting’s deterioration. Crack patterns, and possibly their

evolution over time, provide crucial information to art con-
servators about the state of the painting and possible causes
of its degradation. As such, crack detection constitutes a vital
input to virtual restoration. The reasons for crack formation,
in addition to environmental factors, are largely related to
the materials used by the artist. Hence, craquelure appears
in a large variability of shapes from simple linear, to complex
web-shaped or even seemingly random.

Automatic crack detection in paintings is far more chal-
lenging than crack detection on visually more uniform sur-
faces, such as roadways. Various thin and line-like painted
objects may appear similar to cracks and in some cases,
cracks are not visible at all in digital photographs because
their color appears the same as the background. Figure 2
illustrates some of these challenges.

B. DATASET
We report the results of our work on a multimodal
dataset of the Ghent Altarpiece1 composed of extremely
high-resolution images taken in severalmodalities: macropho-
tography, infraredmacrophotography (IRP) andX-radiography
(X-Ray) images. Examples of visible and infrared digital
macrophotography are shown in Figure 3. The painting was
captured in sections of 15×20 centimeters with a Hasselblad
H4D-200MS 50 megapixel camera (with a CCD sensor of
49.1× 36.7 mm), equipped with a Hasselblad 120mm macro
lens, resulting in images of 8176×6132 pixels. Lighting was
produced using Broncolor Scoro generators of 3200 Watt/s.

Infrared modalities reveal underdrawings and often show
cracks more clearly than the visual images, due to a reduced
contrast of some painted objects. Figure 3 also includes an
example of X-radiography from the same data set. X-Ray
images reveal valuable information about the structural con-
dition of a painting. The high penetration of X-Rays can
reveal the wood grain and splits in the oak support panels,

1http://closertovaneyck.kikirpa.be/ghentaltarpiece/
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FIGURE 2. Examples of different crack appearances in paintings.

FIGURE 3. A detail of the panel Virgin Annunciate in the Ghent Altarpiece in different imaging modalities. Left to
right: Visual and infrared macrophotography and X-radiography images.

as well as cracks and losses found in several paint layers.
However, the interpretation of these images is often difficult
due to spatial distortions and a severe periodic brightness
distortion on panels, caused by hardwood lattices (called
cradling) attached to the backside.

III. METHODOLOGY
This section reviews basic concepts of convolutional neural
networks and discusses their application to multimodal data.

A. A DEEP CNN FOR MULTIMODAL DATA
Over the recent years, deep learning led to tremendous
improvements in image classification [19]–[22]. Among var-
ious deep learning architectures, the convolutional neural
network (CNN) is dominant in image processing applica-
tions because it cleverly exploits non-local self-similarities in
images to greatly reduce the amount of parameters compared
to a fully connected neural network. Figure 4 illustrates the
basic architecture of a CNN, showing alternating layers of
convolutions with kernels (that are shared across the image)
and pooling layers. The convolutional layers produce feature
maps while pooling layers progressively reduce the spatial
size of the feature maps, increasing the receptive field in
the subsequent layers [23], [24]. This basic architecture was
proposed in the nineties [25], and an overview of recent
developments can be found in [26].

The core of a CNN is the convolutional layer. The convolu-
tion operation is in actual implementations typically replaced
by cross-correlation: a filter mask called kernel is moved

over the image and the sum of products between the kernel
coefficients and pixel values is computed at each location.
Typically, multiple kernels are used in each layer. Assuming
that kernels are sliding with the step of one pixel, i.e., with
stride equal to one, the network output in the k-th feature map
of the l-th layer, at spatial location (i, j) is:

x l,ki,j = ρ(
D∑
d=1

H l
−1∑

p=0

W l
−1∑

q=0

wl,k,dp,q · x
l−1,d
i+p,j+q + b

l,k ) (1)

where ρ denotes the activation function, d indexes the input
feature map, H l and W l are spatial sizes of the kernels
composed of the weights wl,k,mp,q , and bl,k is the bias term.
The existing approaches for applying CNNs to multimodal

data can be divided into two main types. The first approach
trains a separate convolutional neural network for each input
modality [27] as illustrated in Figure 5(a). Training in such
a structure is typically done sequentially, on separate streams
of input data. After all neural networks have been trained,
their fully connected layers are united into one compound
vector [28], or alternatively, the most discriminating char-
acteristics are extracted from each vector [29]. This type
of architecture has been applied to RGB-D [30], [31] and
audio-visual data [32], [33].

The second type of multimodal architecture (see
Figure 5(b)) is trained on all the input modalities jointly [34].
This type of architecture was applied to hyperspectral image
processing in [35]–[37]. We adhere to the second approach
because it allows us to learn and exploit the correlation that
exist among different imaging modalities.
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FIGURE 4. A generic concept of a classifier based on a convolutional neural network (CNN).

FIGURE 5. Different types of CNN architectures for the classification of
multimodal data, where: x - source data, w - kernel, AF - activation
function, FM - features map, MP - layer subsampling, FC - fully connected
layer.

IV. PROPOSED METHOD
In the very high-resolution scans of paintings that we are
dealing with, it is of interest to avoid running the deep
learning model on image regions that can be confidently
identified (by means of lightweight processing) as crack-free.
This way, the whole process can be significantly acceler-
ated, facilitating user interaction and avoiding unnecessary
computational burden. Thus, the proposed method consists
of two processing stages: (i) a morphological filtering stage
and (ii) a classification stage bymeans of a convolutional neu-
ral network. The morphological filtering essentially ensures
that the amount of pixels to be classified in the second
stage is strongly reduced as only those image regions that
cannot be safely rejected as crack-free are retained for fur-
ther CNN-based processing. We train a convolutional neural
network architecture with hand-labeled data. The network
trained on a given set of paintings can be applied to a new
painting, possibly with re-training when new annotations
become available. We feed all the input modalities simul-
taneously to our network, like in the architecture depicted
in Figure 5(b). As the experimental results will demonstrate,
this choice allows for rapid training and re-training of the
model. We extend the standard CNN architecture by intro-
ducing a compensation method that successfully eliminates

excessive thickening of the crack boundaries, as detailed
in Section IV-D.

A. GENERAL OVERVIEW OF THE PROPOSED METHOD
The general scheme of the proposed method is illustrated
in Figure 6. The morphological filtering block, which makes
an initial rough selection of crack candidate pixels, can be
omitted when running the proposed method. However, its
use can significantly reduce the overall computational cost,
as well as slightly reduce the number of false positives. The
proposed convolutional neural network architecture, trained
on manually labelled data, is used to further classify selected
pixels and to remove false positives. The proposed boundary
correction approach based on the introduced shift coefficient
improves the final classification result, as it will be demon-
strated in the experimental section. Each processing block is
explained in detail next.

B. PREPROCESSING WITH MORPHOLOGICAL FILTERING
Using multimodal input data at high resolutions can render
the resulting computational complexity of machine learn-
ing infeasible for practical use. To alleviate this problem,
we introduce a preprocessing stage based on morphological
filtering. Morphological filtering has been widely used in
crack detection, e.g., in [2], [4], [5]. In our approach, the role
of this stage is to divide the input data into two classes,
i.e. pixels possibly belonging to a crack (which will later
be refined in a classification stage) and background (non-
crack) pixels that will not be subjected to further classifica-
tion. The particular choice of the morphological operators
allows for false positives (as these can later be removed
by the CNN model) while ensuring that false negatives are
very unlikely (i.e., the pixels rejected as non-cracks should
indeed be non-cracks with overwhelming probability). With
such a mode of operation, the morphological pre-processing
stage actually does not compromise the final crack detection
accuracy.

We obtain a preliminary selection of crack pixels by feed-
ing each modality to a morphological ‘‘bottom-hat’’ and/or
‘‘top-hat’’ operation, emphasizing bright objects and dark
objects, respectively. To recall, ‘‘top-hat’’ filtering subtracts
the result of the morphological ‘‘opening’’ from the original
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FIGURE 6. General schematic of the proposed method.

FIGURE 7. Workflow of the construction of a binary mask for the initial
detection of crack pixels.

image and ‘‘bottom-hat’’ subtracts the result of the morpho-
logical ‘‘closing’’ from the original image.

With an appropriately chosen structuring element,2 the
cracks in the image will be highlighted, along with other
small-scale objects. Since in the infrared and X-ray images
cracks are always dark, only a ‘‘bottom-hat’’ operation is per-
formed on those modalities. In visual photographs (i.e. RGB
images) cracks can appear both dark and bright, so both the
‘‘bottom-hat’’ and ‘‘top-hat’’ operations are applied on those
images. Each filtered result is converted to a binary image by
thresholding, where the thresholds are determined for each
modality separately using the Otsu method [7]. The resulting
binary maps are combined into one so-called binary crack
map using the logical ‘‘OR’’ operator, as shown in Figure 7.

C. PROPOSED CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURE
The task of the classifier is to assign each of the candidate
pixels, selected after the preliminary morphological filtering,

2A disk-shaped structuring element with a diameter of 3 pixels was used
for all experiments.

to one of two possible classes: crack or non-crack (i.e.,
the background). We designed the architecture of our con-
volutional neural network with two goals in mind: (i) ensur-
ing high classification accuracy, and (ii) enabling efficient
re-training when new annotations become available. To this
end, we maximize the depth of the network by removing
the sub-sampling layers and reducing the size of the kernels
in the convolution layers, as described in [21]. The overall
architecture is depicted in Figure 8.

The input of our network is a tensor x0u,v ∈ Rn×n×M

composed of M two-dimensional n × n patches centred at
(u, v) from theM available modalities. In the first convolution
layer we have:

x1,ku,v = ρ(
M∑
m=1

H l
−1∑

p=0

W l
−1∑

q=0

w0,k,m
p,q · x

0,m
u+p,v+q + b

l,k ) (2)

For all subsequent layers (i.e. l > 1), feature maps are
calculated as in (1).

Our network produces 100 feature maps in the first convo-
lutional layer, 200 in the second and 300 in the third layer. The
first fully connected layer has 300 neurons. The spatial size of
the filters for convolution operations remains the same across
all layers. Exponential linear units (ELU) were used for the
activation functions ρ [38]:

ρ(x) =

{
x if x > 0
a(ex − 1) if x ≤ 0,

(3)

where a > 0 is a hyperparameter that controls the value
at which the ELU saturates for negative inputs. This acti-
vation function retains all the advantages of ReLU, but is

FIGURE 8. The proposed convolutional neural network architecture for crack detection in paintings with multimodal data.
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FIGURE 9. An illustration explaining the problem of excessive thickening of crack boundaries using the traditional CNN
approach. Yellow marks the central pixel of the window from which a tensor is formed for classification. After classification, this
central pixel is assigned a response from the CNN, which corresponds to the response for the tensor formed around it. In the
detection result, red denotes a false alarm, and green correctly detected crack pixel.

more resistant to noisy data, and results in a higher classi-
fication accuracy compared to activation functions such as
ReLU [39], leaky ReLU [40] and shifted ReLU [38]. Fur-
thermore, the authors of [38] have shown that when using the
ELU activation function, the use of normalization in mini-
batches [41] does not give a significant advantage. All kernels
are initialized randomly at the beginning of the training pro-
cedure. The last layer of the architecture consists of a softmax
function. Let zι, ι ∈ {crack, non-crack}, denote the outputs of
the second fully connected layer. These are the output scores
that the network gives to each of the classes for a given input
tensor. The softmax translates these scores to:

y(zι) =
ezι∑
κ e

zκ
, (4)

When training the neural network, we use the Adam opti-
mizer [42], which is more effective than standard backprop-
agation. The main difference is the use of gradient change
history from previous iterations. The weights are updated as
follows:

1w(τ ) = η
(
g(τ )+ εw(τ − 1)

)
+ µ1w(τ − 1), (5)

where 1w is the weight change ε is a regularization coef-
ficient, µ is the momentum, η is the learning rate, and τ is
the current iteration. The parameter ε allows to avoid over-
fitting by imposing a ‘‘penalty’’ for excessive growth of the
weights. The µ parameter gives inertia to the weight change,
which avoids getting stuck in local minima. The variable g(τ )
maintains the history of the gradient changes as follows:

g(τ ) =
D(τ )
1− β

√
1− α
S(τ )

, (6)

where S(τ ) and D(τ ) are defined as:

S(τ ) = αS(τ − 1)+ (1− α)∇E(τ )2; S(0) = 0, (7)

D(τ ) = βD(τ − 1)+ (1− β)∇E(τ ); D(0) = 0, (8)

The parameters α and β are fixed to 0.999 and 0.9, respec-
tively, and ∇E(τ ) is the error gradient from the previous

iteration. Using this optimizer allows to quickly achieve a
global minimum error, due to the adaptive change of the
weight update step.

To evaluate andminimize the losses of our network, we use
the cross-entropy function, defined as:

Loss(yκ , y′κ )=−
1
K

K∑
κ=1

[
yκ · log(y′κ )+(1− yk ) · log(1− y

′
κ )
]

(9)

where y′ is the label predicted by our classifier, and y is the
ground truth label.

D. ENHANCING THE ACCURACY OF THE CRACK
LOCALIZATION
A common limitation of standard CNN architectures, includ-
ing those that were employed in crack detection on road sur-
faces (and similar surfaces) [9], [10], [16], [43], is their inabil-
ity to accurately delineate the crack boundary. The essence of
the problem lies in the fact that the tensor containing a crack
pixel gives a high response, regardless of the position of the
crack pixel inside the tensor. As a result, crack detection with
CNNs suffers from excessive thickening at the boundaries of
the detected cracks. Figure 9 depicts an example of a sliding
window along a crack. Notice that the probability that the
tensor contains a crack remains approximately unchanged
during the window movement, which causes neighboring
pixels to be marked as part of a crack. The actual crack width
cannot be restored by some simple morphological thinning
operation. This is a serious limitation since the width of
cracks in paintings varies a lot from one place to another
and thus providing only the crack centerline or a skeleton
means loosing important information, which is unacceptable
for most tasks where crack detection is required.

Applyingmorphological filtering prior to CNN-based clas-
sification can alleviate this problem to some extent. This is
simply because the preprocessing step already rejects some
pixels that do not belong to cracks. However, some actual
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cracks may be lost as well. In the literature, multiscale con-
volutional networks [44]–[47] are often used to solve this
problem. However, the computational complexity of these
models is still prohibitive for processing very high-resolution
data in multiple modalities as we need to do, especially when
user interaction and re-training processes are a requirement.

We propose a low-complexity solution for accurate local-
ization of small objects, that can be combined with any CNN
architecture. The main idea is to account for the position of
crack pixels relative to the center of the tensor through a shift
coefficient. We define the shift coefficient at location (i, j) as
follows:

si,j = argmax
σ∈S

H−1∑
p=0

W−1∑
q=0

Fi,jGσp,q
(
Xi−2+p,j+q + Yi+p,j−2+q

)
(10)

where Fi,j ∈ {−1, 1} is a binary label denoting the type of
crack, taking the value 1 for dark and -1 for bright cracks,

Gσp,q =
1

2πσ 2
e−

p2+q2

2σ2 is a symmetric lowpass Gaussian filter,
X and Y are finite-difference approximations of the second
derivatives of an input image channel3 in horizontal and
vertical directions, respectively.4 S denotes the set of possible
σ values, with a range depending on the size of the cracks.
We determine the labels Fi,j by comparing the values of

the ‘‘bottom-hat’’ and ‘‘top hat’’ filtering results. Both mor-
phological filters are applied to the digital visual macropho-
tograph. Let ξ ti,j denote the value of the ‘‘top-hat’’ filtered
image at location (i, j) and ξbi,j the value of the ‘‘bottom-hat’’
filtered image at the same location. For robustness, we take
the maximum value within a small window centred at (i, j).
Knowing that bright cracks give a larger response in the ‘‘top-
hat’’ filtered image and the dark ones in the ‘‘bottom-hat’’
image, we assign the labels as follows: Fi,j = 1, if ξbi,j >

ξ ti,j; else Fi,j = −1.
We refer to the binary map Fi,j at all image locations as

the fusion map. Figure 10 depicts an example of a fusion
map. The obtained shift coefficient imposes a penalty on
the falsely widened regions of the detected cracks, as shown
in Figure 11.
In particular, at the final classification stage, the shift coef-

ficient value is multiplied with the estimated crack probabil-
ity in the second fully connected layer of the convolutional
neural network.

E. TRANSFER LEARNING
Convolutional neural networks significantly simplify the task
of re-training when new training data becomes available,
in comparison to more traditional machine learning meth-
ods [48], [49]. Transfer learning and fine-tuning are two

3Dark cracks are better visible in the ‘‘Blue’’ and the bright ones in the
‘‘Red’’ channel of visual macrophotography, so it is best to select one of these
adaptively, depending on Fi,j, although a grayscale version of the original
image can also be used regardless of the crack type.

4In order to make sure that the finite difference matrices have the same
size, their rows and columns are padded with zeros.

FIGURE 10. An example illustrating the construction of a fusion map. a)
Original image (a detail from the panel Singing Angels). b) Fusion map.
Dark cracks appear as white color and light cracks appear as black color
on fusion map.

FIGURE 11. Visualization of penalty maps for the pixels which are
assumed to be part of a crack. a) An original image with dark cracks and
b) the corresponding penalty map. c) An image with bright cracks and d)
the corresponding penalty map. As the distance from the center of the
crack increases, the confidence decreases (the penalty increases).

main re-training strategies have been followed in the lit-
erature. In the first case, the trained network generates an
N-dimensional feature vector, which is then used as a descrip-
tor of the classes of interest also for other data sets that need
to be processed and for which no labeled data are availble.
A CNN is then used as a feature extractor for a new classifier,
which can be another CNN, but also a different type of a
classifier such as SVM, AdaBoost, or any other. In the case
of fine-tuning all layers or some of the layers, usually the
last ones as they are the most discriminative, are re-tuned
using the labeled data from a new data set. In this strategy,
the trained network is used as a weight initializer. The choice
of re-training strategy depends on the number and type of
additional data available for training. If the new data differs
significantly in type from the source, then in practice the first
strategy is typically used, or the second one by training only
the last layers. If the new data is similar to the source data,
then the second strategy is followed by re-tuning of all or only
the last layers of the neural network.

In our work, we use both re-training strategies with a
complete re-traning of the weights in all layers. This decision
is motivated by two main factors: the original training data
and the additional data are of similar type and the number

74542 VOLUME 8, 2020



R. Sizyakin et al.: Crack Detection in Paintings Using Convolutional Neural Networks

FIGURE 12. The evolution of the learning rate of the convolutional neural
network with different types of initialization of weights.

of classes remains unchanged (hence no need to change the
number of outputs in the last fully connected layer). For
training, we combine the original and new training data, and
then use them to re-train the neural network. This approach
has important advantages in practice. Firstly, it improves the
quality of classification continuously as new training data
are obtained; secondly, combining data allows to keep the
previously achieved result. We recommended to keep the
full amount of the source training data, because otherwise
the accuracy of crack detection, achieved during the initial
training, might decrease. Figure 12 compares the evolution of
the learning rate in cases when the weights of the neural net-
work are initialized randomly, and using a previously trained
neural network. The results show that the use of a pre-trained
network to initialize weights allows to significantly speed up
the training process.

F. PREPARATION OF TRAINING DATA
Preparing data to create a training database is carried out
by labelling some parts of the image as crack or non-crack
(i.e., undamaged) classes. Figure 13 shows an example of
such a marked image. Green labelled pixels are crack pixels,
and blue marks the undamaged image parts. A rectangu-
lar area of n × n pixels is extracted around each labelled
pixel and the corresponding parts are extracted from all the
available modalities (in our experiments: visual photographs,
infrared photography and X-Ray images). This data prepa-
ration approach together with the ability to fine-tune the
convolutional neural network with new annotations allows to
improve the classification result continuously.

V. EXPERIMENTAL RESULTS
We report crack detection results on parts of the multimodal
dataset of the Ghent Altarpiece described in Section II-B.
Because of the large dimensions of the images, we report
results only on relatively small parts of the following panels:
Virgin Annunciate, John the Evangelist and Singing Angels.
For evaluating the quality of the detected cracks numerically,
we used ground truth data from [8].

FIGURE 13. An example of a manually marked image as preparation for
training. The image is a detail from the panel Annunciation of the Virgin
Mary. Green marks representatives of crack pixels and blue marks
non-crack examples.

The full proposed method for crack detection, includ-
ing the morphological prefiltering and the refinement of
the improved crack boundary detection, will be denoted
as MCNC.

We compared our MCNC method with its reduced version
without the improved crack boundary localization – MCN,
and against approaches using fully connected neural networks
(NN) [50], Boosting methods (ADA) [51], support vector
machines (SVM) [52], and the Bayesian Conditional Tensor
Factorization method (BCTF) [8]. We also include compar-
isons with two other deep learning methods: a CNN-based
method that was proposed for crack detection in roads [9] and
a deep feature fusion network (DFFN) classifer from [53].

We explain next the experimental setup, with the exact
configuration of our network, which is used in three sce-
narios: default training (Section V-A), training with sub-
sequent fine-tuning (Section V-B) and transfer learning
(SectionV-C).We implement the CNN architecture described
above with two hidden layers, which produce twelve and
eighteen feature maps respectively. The logistic sigmoid is
used as an activation function. Both the first and the second
layer use kernels of size 4×4. Figure 14 shows an input image
together with the first-layer features, and Figure 15 shows
the corresponding feature maps in the second hidden layer.
It can be seen that in some of the feature maps cracks are
already rather well separated from the background. Based on
this, the following parameters were used for training in all the
experiments: the mini batch size equals 100, the kernel spatial
size is 3× 3, the first fully connected layer has 300 neurons,
and the learning rate is 0.0001. The minimum classification
error was achieved on average after 50-70 epochs.

The tensor that is used for classification contains the three
color channels of the visual macrophotographs, the X-Ray
image and single-channel infrared macrophotograph, as well
as a fourth ‘‘modality’’ obtained by morphological filtering,
adding up to M = 9 modalities. The grayscale ‘‘top/bottom-
hat’’ transform is designed to emphasize elements smaller
than the size of a chosen structuring element.5 Hence, the fil-
tered images, containing emphasized cracks (alongwith other

5As motivated earlier, the top- and bottom-hat transform are used for the
visual image, and the ‘‘bottom-hat’’ transform for the X-Ray and IRP images.
We used a disc-shaped structuring element with a diameter of 3 pixels.
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FIGURE 14. An original image (left) and twelve features (right) in the first convolutional layer.

FIGURE 15. Features in the second convolutional layer corresponding to
the input image from Fig. 14.

small-scale objects), are good candidates to serve as addi-
tional channels/modalities for our method. The resulting ten-
sors are of dimensions 7× 7× 9. We compute and apply the
shift coefficient only with tensors that contain a crack with a
probability of 0.9 and above.

The optimal spatial tensor size for training the con-
volutional neural network was obtained experimentally.
Figure 16 shows results of a comparative experiment where
the experimental CNN architecture was applied with different
tensor sizes. The classification was performed only in regions
that were not eliminated as crack-free by the morphological
filtering step. We observe that the spatial window should
ideally cover the entire crack width and a small portion of
the background. Excessively large window sizes give rise to
two problems: a longer training time of the neural network
and more likely false detections.

The approaches using the neural network, boosting method
and support vector machine are built using Matlab 2016b,
with three variants of input data: a raw data tensor, a raw data
vector and a vector of LBP descriptors [54]. In the tensor and
vector variants, the feature tensor/vector is formed by from all
the N modalities, without additional calculations (i.e. using
the raw data). The resulting vector input has 9 elements and
the tensor input contains 441 elements. The descriptor version
uses as input a vector of 20 elements, obtained by combining
the results of LBP texture descriptors (producing a vector
with 18 elements), mean value and standard deviation. These
descriptors are applied in the local window of 7 × 7 pixels,
for each of the N modalities. Subsequently, all the obtained

values are combined into one vector which has 180 features
for a tensor with dimensions 7× 7× 9.

The configuration of the neural network adheres to the
suggestions from [55]. In particular, it has 3 layers with
sigmoidal activation functions with 250 neurons in each layer
for the tensor version, 10 neurons for the vector version and
100 neurons for the descriptor version. Backpropagation was
used for training. The boosting method uses a decision tree
as a weak classifier. The minimum classification error was
achieved after 2000 iterations. In the method using the sup-
port vector machine classifier, a ‘‘linear function’’ is used as
the kernel. The parameter of the Karush-Kuhn-Tucker (KKT)
complementarity condition is 0.05 for all versions.

The method proposed in [9] has 4 convolutional layers and
two fully connected layer. All convolutional layers produce
48 feature maps. The first fully connected layer has 200 neu-
rons. The linear rectification unit (ReLU) is used as the
activation function. The stochastic gradient descent (SGD)
method was used for training.

The method proposed in [53] has 9 convolutional layers
and one fully connected layer. The convolutional layers are
divided into three groups: a low-level residual block, a mid-
level residual block, and a high-level residual block. The
layers of the first residual block produce 16 feature maps,
the layers of the second residual block produce 32 feature
maps, and the layers of the third residual block produce
64 maps. The linear rectification unit (ReLU) was used as the
activation function and the stochastic gradient descent (SGD)
with batch normalization was employed for training.

For the BCTF method, a pixel is considered to be part
of a crack when it has a crack probability of 0.5 or higher.
BCTF uses a vector with 208 vector elements composed of
the RAW multimodal data, as well as their pre-processed
versions obtained with different spatial image filters. Bayes
method is used for classification.

To evaluate the effectiveness of the methods, we use the
following metrics:

FA =
FP

AlPx − DfPx
, FM =

FN
AlPx − UdPx

(11)

P =
TP

TP+ FP
, R =

TP
TP+ FN

, F1 =
2 · P · R
P+ R

(12)
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FIGURE 16. The influence of the input tensor size. a) An initial crack map after the morphological filtering step and the final classification results with
tensor spatial sizes of b) 7 × 7 and c) 15 × 15.

where FA - probability of false alarm, FM - probability of
false missing pixels containing cracks, P - precision, R -
recall, F1 - F1-measure, TP - true positive, FP - false positive,
FN - false negative, DfPx - total amount of pixels belonging
to a crack, UdPx - total amount of pixels not belonging to a
crack, and AlPx - total amount of pixels in the image.
The results presented below are divided into three parts.

The first part presents the results obtained by classical
training, where learning occurs on training samples taken
from the image that needs to be processed. The second
part presents the results obtained through classical training,
followed by an additional fine-tuning using new training
data (i.e., re-training with newly available annotations). The
results described in the third part are obtained by training
the convolutional neural network on other panels (different
from the one that is being processed), which demonstrates
a transfer learning ability. Additionally, we show how the
results improve after adding relatively few annotations from
the panel being processed. This corresponds to the most real-
istic scenario for practical use. All experiments are performed
on a laptop with an Intel Core i7 @ 2.8GHz CPU and 16GB
RAM, GPU Nvidia 1050ti for accelerated training.

A. DEFAULT TRAINING OF THE NETWORK
The first image we consider is part of a book in the Virgin
Annunciate panel. From Figure 17, the variability in crack
types becomes clear: there are fine, white specks at the edge
of cracks which are only visible in the color image, thick
cracks with irregular contrast in the color image, and cracks
crossing letters. This selection includes painted objects with
very similar properties to cracks, which can only be discrim-
inated from cracks by using the different modalities at our
disposal (see Figure 17(a-c)).

For training, 20,000 samples of crack pixels and
19,000 samples of undamaged areas were used. According
to this result we can conclude that the method based on

TABLE 1. A comparison of different methods for the Annunciation virgin
Mary panel. Corresponding index: d -descriptors, t-raw data tensor,
v-vector through modalities.

convolutional neural networks is capable of locating cracks
with an accuracy similar to the BCTF method, with slightly
better precision P and F1 scores compared to BCTF. Addi-
tionally, it is important to note that the vast majority of
false alarms in the BCTF method are falsely detected
cracks, while in the MCN method and its improved version
MCNC false alarms consist of excessive thickening of crack
boundaries.

Several conclusions can be drawn from the results
in Table 1: The classification methods based on features
calculated from multiple imaging modalities yield better F1
score than methods that are classifying stacked hand-crafted
features calculated for each patch. The proposed MCN
approach (with both MCN and MCNC variants) outperforms
all the other methods in terms of precision and the F1 met-
ric. The improved algorithm with the more precise bound-
ary detection (MCNC) reduces significantly false broaden-
ing of the detected cracks, which is numerically reflected
in reduced false alarms, and in improved precision and
F1 metrics.
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FIGURE 17. Comparative results of a Bayesian multimodal approach BCTF and the proposed MCNC on part of the panel Annunciation virgin Mary.
a) RGB image, b) X-Ray image, c) IRP image, d) The BCTF crack map, and e) The MCNC crack map. Green – true positives, Red – false positives, Blue –
false negatives. f) BCTF–MCNC comparison: Blue – detected by both methods, Red – BCTF only, Green – MCNC only.

B. DEFAULT TRAINING OF THE NETWORK WITH
SUBSEQUENT FINE-TUNING
Now we analyse the case where the network is first trained
with a certain, relatively small, amount of annotations and
then subsequently re-trained adding new annotations. This
scenario is of practical importance to the users (art conser-
vators and restorers). The image that we consider is part of
the Singing angels panel. This image is quite challenging for
the detection of cracks due to several reasons: the low contrast
of cracks in the visual image (see Figure 18(a)), the absence
of some cracks in the IRP image (see Figure 18(c)) and in
the X-Ray image and the noisy nature of the X-Ray image
(see Figure 18(b)). An additional complicating factor for
the detection of cracks is the slight spatial shift between
all available modalities due to the registration procedure.
A total of 17,000 samples of cracks and 22,000 samples of
undamaged areas were used for training.

The results in Table 2 show excellent perfomance of
tensor-based methods indicating hereby also their robust-
ness to the present distortions in the input data including
noise, low contrast and imperfect alignment of the imaging
modalities.

TABLE 2. The comparison of different methods for the Singing angels
panel. Corresponding index: d -descriptors, t-tensor with raw data,
v-vector through modalities.

The proposed MCN approach shows superior precision
in the crack detection, and the benefit from the improved
boundary localization is also evident here when comparing
the numerical results of MCNC with MCN.

An important advantage of using a learning-based clas-
sifier with convolutional neural networks is that it enables
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FIGURE 18. Comparative results of BCTF and the proposed MCNC on part of the panel Singing Angels. a) RGB image, b) X-Ray image, c) IRP image, d)
The BCTF crack map, and e) The MCNC crack map. Green – true positives, Red – false positives, Blue – false negatives. f) BCTF–MCNC comparison:
Blue – detected by both methods, Red – BCTF only, Green – MCNC only.

FIGURE 19. The effect of re-training MCNC with new training samples. a) Crack map of the
re-trained method MCNCr . Green – true positives, red – false positives, blue – false negatives. b)
Comparison MCNC – MCNCr . Blue – detected by both methods, red – MCNC only, green – MCNCr
only.

continuously improving the results when new annotated
data become available. To evaluate this re-training ability
of our network, we augment the previous training set with
some new training data. The new training data set consists

of 13,000 samples of crack pixels and 8,000 samples of
undamaged areas.

The detection result of this retrained method – MCNCr
is shown in Figure 19 and numerical results are reported
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FIGURE 20. An example of using MCNC trained on different panels. a) Part of John Evangelist panel, b) The BCTF crack map, c) The result of MCNC
trained on parts of other panels. Green – true positives, Red – false positives, Blue – false negatives.

FIGURE 21. Comparative results of BCTF and MCNCr . a) Part John Evangelist panel, with labelled
cracks (green) and background (blue), b) BCTF – MCNCr comparison. Blue – detected by both
methods, Red – BCTF only, Green – MCNCr only.

TABLE 3. Improving the MCN classification result by extending the
training dataset. Corresponding index: r -re-training.

in Table 3. Evidently, adding some amount of new training
data led to a noticeably improved result, without the need
for a complete re-training of the neural network. As it will
be demonstrated next, using this procedure the convolutional
neural network also adapts quickly to searching for cracks in
new paintings that were not previously used for training.

C. EXAMPLE OF TRANSFER LEARNING
Here we apply the previously trained network to another
panel (i.e., to a different image), first directly and then after
re-training with relatively few annotations from the new
panel. Figure 20(a) portrays the result of processing a small
part of the Johh Evangelist panel, consisting of only the visual
modality. This result is obtained with our MCNC method
that was trained on different images, the results of which
are presented earlier (Annunciation virgin Mary and Singing
Angels, from Section V-A and V-B). It is important to note
that the BCTF method in this experiment has been specially
trained to detect cracks for this particular image. Figure 20(b)

shows the result by superimposing the crack map obtained
with BCTF and manual labeling of crack pixels. Figure 20(c)
shows the result by superimposing the crack map obtained
with the improved MCNC method and manual labeling of
crack pixels.

As expected, the MCNC model that was trained on other
paintings, different from the one that is being processed,
was not able to detect all the cracks and yielded also a
significant number of false positives. To improve on the
result, the user can manually add training samples from
the areas of the image where the cracks were missed,
as well as from those areas where false positives appeared.
Figure 21 shows the crack detection result after adding
approximately 3,000 positive and 3,000 negative additional
tensors. This is about 10% of the initially used training
samples.

As indicated by the visual result in Figure 21 and the
numerical results in Table 4, adding this relatively small
amount of new training data improves the result signifi-
cantly. Furthermore, this indicates that a pre-trained MCN
can quickly be adapted for the detection of cracks in other
panels.

The obtained result is now similar to the result of BCTF,
which was especially trained and tuned for this panel. This
clearly shows the ability of the proposed method to adapt to
crack detection on new panels.
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FIGURE 22. a) Positions of wooden reinforcements (marked in red) on the back side of the central panel Adoration of the Mystic Lamb. The
black rectangle marks an area of interest for inspecting cracks. b) The labelled color version of the marked image part, where green denotes
examples of cracks and blue examples of non-crack areas.

TABLE 4. MCN classification result before and after extending the training
dataset. Corresponding index: b-before and after a transfer learning.

D. DISCUSSION
The results show clearly that classical classification meth-
ods such as SVM, AdaBoost and standard fully connected
networks are inferior to deep learning methods in the task
of crack detection in paintings. The BCTF method shows
comparable performance to deep learning approaches, and
can even outperform the CNN-based method [9] and the deep
feature fusion method [53] in this task, because it makes
efficient use of mutimodal data. However, the parameters of
BCTF have been carefully optimized for each new image at
hand and its computational complexity makes it less prac-
tical for processing large images. The proposed approach
yielded better results compared to the CNN-based method
that was earlier proposed for crack detection in roads [9]
and also better performance compared to the deep learning
method [53]. This can mainly be attributed to the fact that
our approach efficiently deals with large-scale multimodal
data, is more carefully adapted to the problem of crack detec-
tion in paintings, and that it includes a novel compensation
technique to improve the localization of the exact crack
borders.

Compared to BCTF, the proposed approach yields com-
parable or slightly better results but without the need to be
specifically trained for each new image. The results showed

clearly that the proposed MCNC trained on other panels and
retrained with only relatively few annotations from the new
painting performs even better than BCTF that was trained
specifically for the particular image. This fact and the ability
of the proposed MCNC to process larger images make it
especially interesting for practical use. A limitation of the
proposed approach is that some of the detected cracks still
show up slightly wider than they actually are. Although
the proposed compensation approach reduces significantly
false thickening of the crack boundaries compared to the
traditional CNN-based classification methods, this effect is
not entirely suppressed, which can be a point of interest for
further research.

VI. CASE STUDY: MYSTIC LAMB PANEL
This section shows a practical example of the application of
the proposed method in assisting the conservation carried out
by the Belgian Royal Institute of Cultural Heritage (KIK-
IRPA). The conservators were interested in investigating how
much the vertical wooden reinforcements applied during the
19th century on the reverse side of the panel of the Adoration
of the Mystic Lamb had affected the formation of cracks on
the front side, over time. Especially as the grain of the wood
of these blocks (Figure 22) runs vertically, i.e. in the opposite
direction of the original panel, such damage may have been
expected.

The main difficulty in detecting cracks in the image
shown in Figure 23(a) is its high resolution (6, 000 ×
11, 500 pixels), as well as the absence of additional modal-
ities, such as infrared macrophotography and X-Ray images.
Moreover, to obtain an acceptable result, it is necessary to
mark a large amount of data for training. We used approx-
imately 150,000 tensors of two types (Figure 22(b)) to
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FIGURE 23. Crack detection results. a) Original image, b) Original image with the reinforcement area superimposed,
c) Crack map detected by MCNC, d) Blured crack map.

train the network. The training process took approximately
15-20 minutes. The process of classifying the image shown
in Figure 22(b)) took around 0.5 hours, using an Nvidia
1050ti graphics card. Manually detecting all the cracks on
such a large image would take many hours or days of tedious
work.

In Figure 23(c) the result of the crack detection, the loca-
tion of the reinforcements (Figure 23(b)), and a blurred ver-
sion of the crack map (Figure 23(d)) are depicted. A standard
smoothing filter with a sliding window size of 15× 15 pixels
was used for blurring. The blurred version presents a kind
of heat map, indicating the density of the detected cracks.
This waywe identify areas of higher crack concentrations and
visually assess whether they correspond to the areas where
the reinforcements are attached to the back of the painting.
The analysis of the results indicated a slight increase in crack
density in the areas around one of the sharp corners of the
reinforcement blocks. However, this could also be coinciden-
tal since other areas of increased density did not correspond
with the shape of the blocks, but are likely related to the
different mechanical behavior of the paint layers according
to their composition, or to accidental damages. Therefore,
it could not be concluded on the base of these measurements
that the reinforcements caused local tensions within the paint
layers. No additional consolidation treatments were needed in
these areas. However, to prevent possible tensions along the
joints of the support, the blocks were replaced with fastenings
with the grain running parallel to the direction of the wood in
the panel.6

6This work was carried-out by Jean-Albert Glatigny during the conserva-
tion project by the Royal Institute for Cultural Heritage (KIK-IRPA).

VII. CONCLUSIONS
In this paper we explored the potential of deep learning for
crack detection in paintings and developed an efficient crack
detection method based on convolutional neural networks.

The proposed method is designed to efficiently process
high-resolution multimodal images with an arbitrary number
of image channels. Our two-step procedure with morpho-
logical preprocessing efficiently and safely eliminates the
areas where it makes little sense to run the learning process,
hereby greatly reducing the total computation burden. Own-
ing to the inherent continuous-learning property of CNNs,
our MCN/MCNC method improves its performance when
new annotations become available, without the need to fully
re-train the network. The results demonstrate clearly the
efficiency of our re-training approach where the network
trained on one painting successfully detects cracks in another
painting with relatively few extra labels added.

Another important contribution of this paper is an efficient
approach to alleviating an inherent limitation of CNN-based
methods, which is manifested by false thickening of the
detected line-like structures such as cracks. The proposed
compensation method significantly improves the localization
of actual crack boundaries. The proposed solution is appli-
cable in general to CNN-based detection of cracks and other
line-like or tubular structures in images.

A thorough evaluation on multimodal acquisitions of the
Ghent Altarpiece demonstrates the benefit of crack detection
in diagnosing the state of panels and the importance of this
supporting tool for art conservation practice.
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