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A B S T R A C T

This paper examines the adoption of irrigation technologies and the underlying diversity in terms of intensity of
adoption in 2 irrigated valleys in Central Chile. Results show a low and narrow range of adoption, with only 30
% of farmers adopting technologies. Through a Latent Class Analysis, 2 types of farmers were identified, a small
group comprising moderate to intensive users, and a second one consisting of the majority of farmers mostly
constrained in natural capital. Furthermore, the econometric analysis indicates that education, diversification,
continuous access to water, and perception of water reliability increase the adoption. Conversely, higher water-
land ratios, presence of community reservoirs, and earthen canals reduce the uptake. Overall, the dominance of
fruit and horticulture production, access to agricultural credits, and full irrigation of the farm are the main
drivers of adoption. The latter is a critical factor, indicating a relative abundance of water resources, which,
alongside contextual characteristics, discourages farmers from implementing technologies. The low adoption
rate, as well as the hindering factors, will challenge public and private organizations to design and implement
policies aiming to improve water reliability and management. To generate incentives and increase awareness on
the scarcity of the resource in the light of the predicted reductions in water availability because of climate
change will be crucial as well.

1. Introduction

Water availability and management have become a limiting factor
and a challenge in various parts of the world, especially in countries
with more scarce water resources. The agricultural sector is responsible
for more than 70 % of water withdrawals for consumptive use (Grafton
et al., 2018; Siebert et al., 2010), and irrigation constitutes an essential
practice for agricultural production (Levidow et al., 2014). Given po-
pulation growth and the increasing demand for fiber and food, the
agricultural water usage is foreseen to increase (Mancosu et al., 2015).

Irrigation technologies (IT)1 bring a series of benefits, allowing a
better agricultural and water management, especially in water-resource
scarce areas (Levidow et al., 2014), improvements in water use effi-
ciency, increases in agricultural productivity, and shifts to more prof-
itable crops (Adeyemi et al., 2017; Perry et al., 2017; Taylor and
Zilberman, 2017). Farmers often apply or combine more than one
technology, according to the expected profits (Foster and Rosenzweig,
2010; Green et al., 1996), easiness of use, or low maintenance

requirements (Pokhrel et al., 2018). Because of the benefits of IT, their
adoption has been a matter of study, especially in identifying de-
terminants of adoption. Among these are environmental or producers
characteristics (Fleischer et al., 2011; Green et al., 1996), their effect on
production risk and uncertainty (Foudi and Erdlenbruch, 2012;
Koundouri et al., 2006), their water-saving capacity (Jara-Rojas et al.,
2012; Molle and Tanouti, 2017; Zhang et al., 2019), and water use
efficiency (Chaudhry, 2018; Speelman et al., 2008). More recently,
research also has been focusing on the role of irrigation as a climate
change adaptation strategy (Bryan et al., 2013; Deressa et al., 2009;
Iglesias and Garrote, 2015; Mendelsohn, 2012; Smit and Skinner, 2002;
Varela-Ortega et al., 2016).

Besides, the literature on IT adoption reveals multiple factors in-
fluencing the decision to adopt IT. Socioeconomics characteristics of
farmers such as age, education, family size, and experience as well as
factors like financial constraints, access to credits and information are
found to affect this decision (Bjornlund et al., 2009; Caswell and
Zilberman, 1985; Engler et al., 2016; Wang et al., 2016). Likewise,
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1 Although there are a variety of technologies at on-farm and off-farm level, in this paper irrigation technologies refer to those technologies intended to improve
water delivery at the on-farm level (Perry, 2017), allowing for improvements in water-efficiency and economic benefits as well as reducing environmental burdens
(Levidow et al., 2014).
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adoption of IT is determined by farm attributes (i.e., farm size, location,
land or soil quality, growing crops) and environmental characteristics
(precipitation, temperature) (Caswell and Zilberman, 1985; Green
et al., 1996). Furthermore, policy interventions such as support ser-
vices, subsidies, provision of information and pricing have shown to
affect the adoption of IT (Caswell et al., 1990; Green et al., 1996; Zhang
et al., 2019).

Despite the benefits of IT and the extensive literature regarding
adoption in different irrigation settings, most of the research on this
topic has focused either on specific technologies, e.g., on the decision to
irrigate, or the application of drip or sprinkler irrigation. Other linked
choices are often omitted (Huang et al., 2017; Pokhrel et al., 2018).
Nowadays, complementary technologies and practices such as land le-
veling, irrigation scheduling, soil moisture monitoring, or tailwater
recovery systems strengthen water management, thereby improving the
performance of the irrigation systems (Huang et al., 2017; Montoro
et al., 2011; Pokhrel et al., 2018; Zhang et al., 2019). Moreover, even
though there are scholars who have studied the intensity of adoption of
technologies, such as precision agriculture technologies (Barnes et al.,
2019; Isgin et al., 2008; Paxton et al., 2011) or modern rice technolo-
gies (Mariano et al., 2012), the evidence on IT is still scanty, with some
exceptions (Jara-Rojas et al., 2012; Pokhrel et al., 2018; Wang et al.,
2016).

On the other hand, irrigation decisions may be influenced by either
collective arrangements or because of neighbors' decisions, especially in
irrigation systems with poor control, withdrawal infrastructure, and
conveyance. As members of an irrigation system, farmers share some
environmental context as well as socioeconomic and infrastructural
characteristics such as reservoirs or watercourses (Chaudhry, 2018).
System characteristics receive an increasing interest, considering their
effects on agricultural production (Manero et al., 2019; Song et al.,
2018; Zhang et al., 2013), adaptation to climate change (Tang et al.,
2016) as well as input usage, and irrigation efficiency (Chaudhry,
2018).

Understanding the drivers shaping this technology adoption is re-
quired for further planning and strategic dissemination of farm tech-
nologies (Mariano et al., 2012), allowing policymakers and water
managers to know the extent of policy interventions (Wang et al.,
2016). In this regard, aiming to contribute to the literature of tech-
nology adoption in irrigated agriculture, the present article considers 2
irrigated valleys in Central Chile. Irrigation in Chile holds a long tra-
dition, with private water users associations established since colonial
times (Meza et al., 2012), and roughly 1,1 million hectares of irrigated
lands (Jara-Rojas et al., 2012). Due to climate characteristics, irrigation
is a central factor in agricultural production (Oyarzún et al., 2008).
Moreover, the region in central Chile under consideration currently
suffers the most extensive period of water shortage ever recorded
(Garreaud et al., 2017; Garreaud et al., 2019). Because of this setting of
relative scarcity, Chile has set irrigation as a primordial matter in the
agricultural policy over the past 4 decades2 (Martin and Saavedra,
2018), following a mostly hard-path approach through improvements
in on and off-farm efficiency, as well as in infrastructure for water
storage (Clarvis and Allan, 2014; Meza et al., 2008; Vicuna et al., 2014).
Despite this long-standing irrigation history, the stimulus and support
for adoption of IT, evidence concerning farmers’ decisions in irrigation
adoption is relatively new, with few exceptions (Engler et al., 2016;
Jara-Rojas et al., 2012; Roco et al., 2016; Salazar and Rand, 2016)
Thus, in order to better understand the adoption of IT, this article has
two objectives. First and foremost, the research aims to estimate the
level of adoption of IT in Central Chile, and examine the drivers of such
adoption. The second goal, based on IT, consists in identifying and

classifying farmers according to their adoption decisions. In order to do
so, the article continues as follows. The next section introduces and
describes the study area, the survey conducted, and provides an outline
of the methods employed. Subsequently, the main results are analyzed
and discussed. Finally, a conclusion and a policy implications section
will conclude the research.

2. Methods and materials

2.1. Study area

In Chile, irrigation water management, as well as water manage-
ment of other productive sectors, is governed through the Water Code
of 1981 (WC81). The WC81 declares water as an economic good based
principally on a complete separation of water from land, and defines
private and permanent property rights on water (WR), allowing the free
transferability of this resource. Another central feature of WC81 is the
orientation towards private management, thereby reducing the capacity
of regulation and intervention by the state (Vergara and Rivera, 2018).
In terms of irrigation, the Code states that owners of WR are responsible
for water management through three different levels of organization. At
natural source level, management is organized by the Vigilance Com-
mittees (Juntas de Vigilancia, JV). For artificial sources, WR owners
gather either in Comunidades de Agua (Water Communities, WC) which
are in charge of secondary infrastructure (canals), or Asociacion de
Canalistas (Canal Users Associations, CA), responsible for the admin-
istration of main infrastructure such as reservoirs and primary canals
(Martin and Saavedra, 2018; Valdés-Pineda et al., 2014). These dif-
ferent water associations have some common responsibilities, such as
conveying and delivering water to users according to WR ownership,
conflict resolution, and collection and management of water fees
(Donoso, 2014).

This research considers two sub-watersheds of the Maule River
Basin in Central Chile: the Ancoa and the Achibueno river valleys
(Fig. 1). Central Chile has a Mediterranean climate with a hetero-
geneous distribution of water availability throughout the year. Most of
the rain occurs in periods in which agricultural production is less in-
tensive with lower demand for irrigation; determining an imbalance
between water demand and supply, and a relative scarcity for agri-
cultural production (Vicuna et al., 2014; World Bank, 2011). The region
receives, on average, 870 mm of rainfall, with June and July as the
rainiest and coldest months, whereas January, February, and December
are the driest and warmest months with median temperatures around
18 °C (AGRIMED, 2017).

The study area consists of the valleys irrigated by the Ancoa and the
Achibueno rivers, which are managed by the Ancoa and Achibueno
JV’s. Under each JV, there are a series of autonomous WC. In this case,
31 WC’s are part of Ancoa, holding 7.418,0 (l*s−1), providing water to
circa 10.000 ha (CNR, 2013). On the other hand, 22 WC’s are under JV
Achibueno, administrating 20.767,2 l*s−1, and irrigating 25.000 ha
(CNR, 2013). Moreover, since 2014, the area benefits from a header-
reservoir with a storage capacity of 78,3 hm-3, allowing storage and
better distribution of the water rights, and with the adverse effects of
the drought affecting Central Chile since 2010 (Garreaud et al., 2017;
Garreaud et al., 2019). This part of Chile is appropriate for a multi-
plicity of crops, and in the region, cash crops coexist with self-con-
sumption agriculture, thereby all farm sizes are found as well. (
Fernández et al., 2019; Jara-Rojas et al., 2012). Specifically, corn, rice,
blueberries, raspberries, and perennials, such as apple and cherry trees,
are the main crops cultivated (Jara-Rojas et al., 2012).

2.2. Data collection

The data were gathered in the Chilean summer, between December
and February of 2018/19. The primary source of information utilized to
select the sample comes from the Ancoa and Achibueno JV’s. Each JV

2 Irrigation became more relevant since 1985, when the Chilean state pro-
mulgated Law 18.450 of Irrigation and Drainage. This act states a clear focus on
increasing the irrigated land areas, rather than water-saving purposes.
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keeps a list of farmers (and their water shares) because they pay annual
fees for conveyance from the primary canal to the water intake point3 .
Unfortunately, the JV’s and the WC‘s do not maintain detailed and
updated records about their members. In most of the cases, they have
lists of farmers and their water shares, yet lack the spatial location of
water withdrawals and farms as well as telephone numbers.

In terms of agricultural policy regarding the sampled farmers,
Chilean farms are divided into 3 main categories: small, medium, and
large farms (Martínez et al., 2014; OECD, 2008), which define the type
of subsidies and the technical support they receive4 . This research
entails information on the whole spectrum of farms, the sole require-
ment being a member of a WC. In total, 335 farmers of 26 WC’s from
both JV’s were surveyed. The sampling followed a 2stage strategy,
centered on water rights. First, farmers were divided into two groups
(JV), according to the number of individuals of each JV. Afterwards,
irrigators of main canals of each JV were selected through a propor-
tional sampling, keeping the weight of each canal in the area.

The data comprises personal, social, and farm characteristics, as
well as info on natural capital (land and water shares), IT, practices and
crops, and some physical and contextual characteristics of the canals. In
order to register the applied IT, a prior selection was made based on the
existing literature (Bjornlund et al., 2009; Huang et al., 2017; Levidow
et al., 2014; Perry et al., 2017) and previous studies carried out in Chile
and neighboring areas (Engler et al., 2016; Jara-Rojas et al., 2012; Roco
et al., 2014, 2016), taking into account the technologies funded by the
government (CNR, 2013) and in consultation with the members of JV’s
and some WC’s. After a pre-test period, where a low adoption range and
rate of IT were found, farmers were required to enumerate and describe
their IT, classified into 9 technologies. An important remark is that this
study focuses on technologies (and techniques) that allow farmers to
improve irrigation, but practices routinely applied to receive water
rights, such as weed control in on-farm canals, withdrawal works, etc.,
were excluded. In addition, in order to characterize farmers' context

and environment within each canal, self-reported data on their location
and physical infrastructure characteristics were also gathered.

2.3. Methods

To meet the objectives of the article, a methodological approach
consisting of 2 parts is applied. In the first part, the determinants af-
fecting the number of irrigation technologies adopted is estimated. The
second part is oriented towards disentangling the most applied com-
binations of IT implemented at the field level.

2.3.1. Econometric analysis
Regression analysis is utilized to model and estimate determinants

influencing technology adoption.
Since the variable of interest is a non-negative count, the most ap-

propriate approach is a count data model. The usual way to deal with
count data is assuming that y follows a Poisson distribution, with a
probability density function (Long and Freese, 2006; Wooldridge,
2010):

= = = … = …Y y x e µ
y

with y m and iPr( / )
!

, 0, 1, , ; 1, , n
µ y

(1)

and

= = =Var y x E y x µ e( / ) [ / ] X (2)

With µ = expected mean = variance= (y/x), where y is the count data
variable, and xand β are vectors of independent variables and para-
meters to estimate respectively.

The Poisson Model (PRM) accounts for observed heterogeneity
(observed differences among sample members) by specifying the rate y
as a function of observed X’s. However, in practice, the PRM seldom fits
well due to two issues: overdispersion (underdispersion), and the pre-
sence of an excess of zeros (Wooldridge, 2010). Overdispersion5 means
the variance exceeds the mean, i.e., Var(Yi)/E(Yi)> 1, violating the
Poisson assumption (Eq. 2), implying that PRM underestimates the
dispersion of the outcome (Cameron and Trivedi, 2010; Long and
Freese, 2006). If overdispersion exists and is ignored, PRM estimates

Fig. 1. Ancoa and Achibueno irrigated valleys in Central Chile.

3 Although each canal keeps an updated list for fees collection, some WC’s
have delegated this action to JV’s hands, facilitating farmers payments to both
JV and WC, as well as preventing high levels of indebtedness.
4 In Chile, small farms are distinct in two aspects: they own less than 12

hectares of irrigation units (HBU), and their income must come primarily from
agricultural production.

5 Underdispersion goes on the opposite way, that is, the variance is lower than
the conditional mean.
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will be consistent but inefficient, with standard errors biased down-
ward, although the model might include the correct variables. To
overcome this problem, a Negative Binomial Regression Model (NBRM)
can be used instead (Isgin et al., 2008; Loeys et al., 2012; Long and
Freese, 2006). In that case, the probability mass function of NB is:

= = +
+ +

Y y µ
y µ

µ
µ

Pr( / , ) ( y )
! ( )

y1

1

1

1 1

1

(3)

Where is gamma distribution, α is the variance parameter of the
gamma distribution, and μ is the intensity or rate parameter (Cameron
and Trivedi, 2010; Paxton et al., 2011). The second issue is the excess of
zeros in the data set. In many empirical cases, the Poisson model (or
NB) fails to estimate zeros. As an alternative, a zero-inflated model (ZI)
allows dealing with both overdispersion and the excess of zeros. ZI’s are
mixture models, with two separate components representing the out-
come distribution: the first modeling the probability of excess of zeros
(“false or not always zeros”), and the second accounting for the non-
excess of zeros (“true or always zeros”) and non-zero counts (Barnes
et al., 2019; Isgin et al., 2008; Loeys et al., 2012).

Bearing this in mind, a PRM was run as the initial model, testing for
overdispersion and excess of zeros. This was done by simultaneously
running an NBRM model. The variance of an NBRM is:

= = +Var Y x E Y x µ µ( / ) [ / ] * 2 (4)

Where α is the dispersion parameter, and with (Eq.3) reducing to (Eq.2)
when α = 0. Overdispersion was tested by the generalized likelihood-
ratio test (LLR), and if it exists (α ≠ 0), the NBRM model must be
selected (Cameron and Trivedi, 2010; Long and Freese, 2006). The
excess of zeros in the sample is tested by the modified versions of the
Vuong test, corrected by the Aikake Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) (Desmarais and Harden, 2013;
Wilson, 2015).

a Explicatory Variables

This section gives details on the dependent and explicatory vari-
ables. The conceptual model is:

=Y f X R C P( , , , ) (5)

Where Y is the number of IT implemented by irrigator i, with y= 1, …,
N; X is a vector of farmers' characteristics, and R comprises natural
resources variables; C is a vector containing farmer contextual and
physical variables within a WC; and finally, P is a set of perceptual
variables. Given that irrigators apply a total of 9 different technologies
(Table 2),3 different specifications of the dependent variable were
constructed (Table 1). First, Y1 represents the total number of IT, con-
sidering each different technology. For Y2, those technologies related to
scheduling, namely scheduling, meteorological stations, and programming
tools are grouped in a single category. Finally, as some farmers use the
same IT for irrigating more than one crop, this peculiarity is captured
by Y3, accumulating the total number IT, including the totality of ef-
ficient irrigation systems.

The explanatory variables include a set of regressors usually applied
in the agricultural technology adoption literature (Caswell and
Zilberman, 1985; Green et al., 1996; Isgin et al., 2008; Jara-Rojas et al.,
2012; Mariano et al., 2012; Pokhrel et al., 2018; Tang et al., 2016).
Table 1 of Annex 1 in the Supplemental material provides a complete

explanation as well as descriptive statistics for the full set of variables.
Regarding households characteristics (HH), Age corresponds to the

age of the HH head; Gender refers to the sex of the respondent (0 if
Female and 1 if Male); Education corresponds to the level of schooling
(years) of the HH head, and Experience denotes the years of farming and
irrigation by the HH head. For farm variables, Owner refers to whether
the farmer owns the plot (0 if yes, 1 if other). Social capital states if the
farmer participates in social organizations (1 if yes, 0 otherwise); Non-
farm income (NA_income) indicates whether a farmer gets income from
non-agricultural activities or not, and Agricultural advisor considers
whether a farmer receives recommendations from external people, ei-
ther public or private. The last variable of this subset is Access to
Agricultural Credits (Credits), taking 1 if a farmer states that he is subject
to apply for credits for agricultural activities (purchase of inputs, irri-
gation infrastructure, etc.).

The subset of natural capital includes Farm size (ha), water shares
(ws), and a diversification index. The land size and water shares re-
present proxies of farmers’ wealth. One ws in Ancoa is equivalent to 1,
and in Achibueno it is 1,5 l*s−1. To get a standard measurement, the ws
in Achibueno were therefore multiplied with 1,5. Crop diversification is
measured through the Herfindahl index (HI index) (Roco et al., 2017;
Wuepper et al., 2017),

=
=

HI x( )
n

N

n
1

2

(6)

Where xn is the proportion of area for the n-th crop respecting the total
area under production. The index is a continuous measure of diversi-
fication, ranging from 0 (complete diversification) to 1 (whole specia-
lization). For a better understanding of the level of diversification, a
variant of the index (1-HI) yielding the opposite results is applied,
meaning 1 for a fully diversified farmer (Roco et al., 2017).

Moreover, a set of binary variables capturing the productive em-
phasis of each farmer is introduced, according to the predominant crop.
Thus, 5 variables, cereals (C) fruit (F), annual crops(C), vegetable (V),
and forage production (Fo), were included.

Contextual or environmental characteristics capture the fact that
farmers share some characteristics in certain settings such as socio-
economic and infrastructure context (Chaudhry, 2018; Wang et al.,
2018). In irrigation systems, farmers may share a watercourse, a water
delivery system, or reservoirs. From the set of characteristics that
members could share, this article focuses on infrastructure variables,
intended to increase the reliability and certainty with which farmers
receive their water shares. This article uses lining, location, presence of
a water community reservoir, organization for water withdrawal, water
fees, and canal extension as contextual variables. When lining water
conveyance is improved, water losses are reduced. Farmers were asked
about the canal lining in the section close to their water intake. Hence,
Lining is a binary variable taking the value of 1 if a farmer reports a
section fully or partially lined, and 0 if it is an earthen canal (Tang
et al., 2016). The variable water community reservoir (wcr) describes if a
WC owns an off-farm reservoir, receiving a value of 1 if affirmative, and
0 otherwise. Although such infrastructure does not produce extra water,
it allows for storage and use when required. The organization of water
withdrawal (ww) refers to irrigator's access to water. WW is a dummy
variable: 1 if withdrawal is continuous and permanent, and 0 if it is
organized in turns6 . Type of canal (canal) captures the position or lo-
cation of a farmer in the canal network within a particular waterway.

Table 1
Descriptive statistis for each dependent variable specification.

Variable Description Mean Variance Min Max Var/Mean ratio

Y1 Number of IT implemented by farmers 0,47 0,75 0 5 1,6
Y2 Number of IT implemented, grouping scheduling technologies in an unique category 0,45 0,68 0 4 1,5
Y3 Number of IT’s accumulating implementation per crop 0,65 1,42 0 6 2,2
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Canal is 1 if a farmer gets water from the central canal, and 0 if he gets
it from a secondary or tertiary level canal.

Annual fees is a binary variable with the value of 1 if a farmer pays
more than average annual fees across the 26 canals, and 0 otherwise.
When having to pay expensive fees, farmers might take care of their
water, using it more efficiently. Canal Extension (Extension) is a variable
that considers the length of each primary canal. Canal Extension takes 1
if the extension surpasses the average length for the 26 canals (km), and
0 otherwise. Also, wua is a dummy variable referring to the JV, with 0
for Ancoa and 1 for Achibueno. This variable is capturing the distinctive
features of each wua, such as governance or operation rules.

Finally, since 2010 Central Chile has endured the most extensive
drought ever recorded (Aldunce et al., 2017; Garreaud et al., 2019),
encompassing most of the territory where irrigated agriculture thrives.
Recent research in adjacent areas has shown that farmers perceive
changes in rainfall (decreasing) and temperatures (increasing) as well
as more frequent drought periods (Roco et al., 2015). Given the con-
nection between climate and water supply for irrigation, 4 perception
questions related to the availability and struggles for water use during
the agricultural season were asked. These questions were listed as fol-
lows: a) How do you qualify your access to water rights? (accessibility);
b) Does your water withdrawal enable you to irrigate your farm fully?
(full irrigation); c) How do you value your irrigation skills? (se-irriga-
tion), and d) Do you have any problems with getting your water?
(problems). The variables were measured on a 5 point-Likert scale ran-
ging from 1 (Very negative) to 5 (No negative, no problem perception).
For each question, 4 dummy variables were set, taking 1 if the answer
was over the average, and 0 otherwise.

2.3.2. Latent class analysis
The second objective of the paper is to analyze the underlying di-

versity of IT within the sample and to determine types of farmers in the
study area. To that end, the IT forming the dependent variables in the
regression analysis are used as the inputs variables for segmenting ir-
rigators. Thus, this research assigns farmers in homogeneous classes of
technologies instead of grouping them according to the characteristics
of the observations. To accomplish the former, a Latent Class Analysis
approach (LCA) was employed, a method applied extensively in social
sciences, but not much in agricultural research, with some exceptions
such as the adoption of improved agro-technologies (Bizimungu and
Kabunga, 2018), and perception of farmers to climate change (Arbuckle
et al., 2014; Barnes et al., 2013).

LCA is a method which, by a statistical procedure, identifies class-
membership probabilities for a set of observations by using the re-
sponses of a set of observed or “manifest” variables (Barnes et al., 2013;
Linzer and Lewis, 2011). The goal is to determine the smallest number
of “latent classes” sufficiently explaining the unobserved associations
among the set of manifest variables (Magidson and Vermunt, 2004).

The key characteristic of this method is that both the latent and the
observed variables are categorical (Linzer and Lewis, 2011; Skrondal
and Rabe-Hesketh, 2007). An LCA is a model-based clustering tech-
nique similar to cluster analysis, given the fact that both methods group
individuals into homogenous classes (Vermunt and Magidson, 2002).
However, LCA shows some advantages, since it is based on a statistical
model, the selection of the number of clusters (classes) is defined based
on statistical tests, and techniques to handle missing data are also
available (Arbuckle et al., 2014; Kaufman and Rousseeuw, 2009;
Vermunt and Magidson, 2002).

Formally, LCA is fitted as follows. First, let Yijk denote the observed
value of the j manifest (observed) variable, for individual i who gives
the k-th response to the j-th variable. In this case, j are the irrigation

technologies, and k, the possible outcome is binary; thus, Yijk can take
values of 1 or 0. In addition, jrk is the class-conditional probability that
an observation i belongs to a class r, with r= 1, …, R, yielding the k-th
outcome for the j-th variable. Within each class,

=
=

1
k

K

jrk
1

j

(6)

According to Linzer and Lewis (2011), and assuming mutual in-
dependence of responses within each class, the probability that an in-
dividual i in a specific class r yields a particular j set of outcomes is the
product of:

=
= =

f Y( , ) ( )i r
j

J

k

K

jrk
Y

1 1

j
ijk

(7)

The probability density function across the classes is the weighted sum;

=
= = =

P Y p p( , , ) ( )i
r

R
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j
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K

jrk
Y

1 1 1

j
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(8)

Thus, the model parameters pr , and jrk are estimated by the latent
class model. The posterior probability P̂ r Y( \ )i i for an individual be-
longing to a specific class is estimated by Bayes’ theorem as follows:

=
=

ˆ ˆ
ˆ

P r Y
p f Y

p f Y
( \ )

( ˆ )
( ˆ )

i i
r i q

q
Q

r i q1 (9)

where p̂r and ˆq are the estimates of pr , and jrk, by the Expectation-
Maximization algorithm (EM), which proceeds in an iterative way.
Firstly, the E-step creates a function for the expectation of the log-
likelihood evaluated using the current estimate for the parameters (pr
and jrk). Then, the M-step computes parameters maximizing the ex-
pected log-likelihood found on the E step. The estimates for pr and jrk
are used to determine the distribution of the latent variables in the next
E-step. Finally, the model selection is based on the Bayesian
Information Criterion (BIC), and the Aikake Information Criteria (AIC),
opting for the model that minimizes the values of AIC and BIC (Barnes
et al., 2013; Linzer and Lewis, 2011).

3. Results

3.1. The technological level of adoption of irrigation technologies

Fig. 2 shows the total number of IT implemented by irrigators in the
study area. In the sample, 70 % of farmers have not implemented any
technology intended to manage their water rights, and only around 11
% have put in place 2 or more practices. In terms of area, 26 % of the
production land is irrigated by an efficient irrigation system (EIS).

At the farm level, EIS is the most utilized IT, representing 39 % of
those farmers implementing at least one practice, but only reaching 18

Fig. 2. Number of ITs and farmers’ currently applying those technologies.

6 Although water rights are defined as continuous and permanent by the
Chilean Water Code of 1981, some canals apply turn systems for some parti-
cular reasons, like land subdivision (and subsequently the water rights).
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% of the sample (Table 2). EIS constitutes 47 % for farmers adopting 1
IT, and 39 % from those applying 2 IT. Wells are behind EIS, with 15 %
of adoption. Moreover, wells constitute 43 % for a single technology,
and jointly with EIS, both represent 90 %, and 65 % of 1 and 2 adopted
IT, respectively. On the other hand, scheduling is marginally adopted,
with only 3,3% of the farmers within the sample using it. In addition, it
is always adopted jointly with other IT. Humidity retention techniques
are also minimally implemented by only 9 (2,6%) of the farmers.

Regarding the adoption level of the set of IT currently in use, the
results show a low extent of adoption for each IT. When comparing with
adoption rates in Chile, the results are higher than those found by Roco
et al. (2016), who in nearby areas detected rates of adoption of the on-
farm infrastructure of 3 %. The results differ, however, with adoption
rates in more scarce regions in Chile such as the findings of Engler et al.
(2016), who found an adoption rate of 43 % for drip irrigation, and 23
% of scheduling instruments for wine producers. They also differ with
the findings of Molinos-Senante et al. (2016) in the semi-arid north of
Chile, where the adoption rate of EIS was 94 %. Finally, the results
differ with adoption rates in other countries where some technologies
have been supported such as Spain (Alcon et al., 2011) and the U.S.
(Pokhrel et al., 2018; Sears et al., 2018; Taylor and Zilberman, 2017).

3.2. Determinants of the intensity of adoption of irrigation technologies

The second part of the analysis looks for factors influencing the
adoption of IT, utilizing a count data modeling approach. First of all, for
the set of variables included in the regression analysis, both pairwise
correlations and variance inflation factors (VIF) were tested to make
sure there was no severe multicollinearity. The results for the correla-
tions and VIF’s(no higher than 5) determine no problems of collinearity
(O’brien, 2007; StataCorp, 2017) (see Table 2 and 3 in Supplementary
data for more details).

The count data models were estimated for the 3 dependent variables
defined in 3.3.1. At first, overdispersion and zero-inflation were tested.
These tests indicate that for specifications (Y1 and Y2), the PRM is
preferred, and for Y3, the NBRM is a more appropriate model (See
Table 4 in Annex 2 in Supplemental material). Once decided that PRM
and NBRM models yield better results, the second step was to select the
model with the best fit to facilitate the interpretation. The specification
Y2, shows the best goodness of fit measures, minimizing the values for
AIC and BIC 532,82, and 612,92,12 each, and getting the highest
PseudoR2 = 0,224 Table 5 in A Supplementary data material displays
the results for the 6 remaining specifications).

Table 3 displays the results for 3 PRM models with Y2 as dependent
variable (See Table 6 in Supplementary data for more details). PRM1
depicts the results, including land size and ws as regressors, whereas the
second and the third use the variable wl-ratio (PRM2) and PMR3, in-
corporating the series of perceptual variables. Wl-ratio is derived from
the ws and land size quotient, taking a 1 if the ratio exceeds the mean
for the sample and 0 otherwise. To get a better understanding and in-
terpretation, regression coefficients are depicted and analyzed as In-
cidence Risk Ratios (irr7), and the average marginal effects (Long and
Freese, 2006; Mariano et al., 2012).

For the HH variables, none, except for Education, impact the number
of IT for any specification of the dependent variable. These findings are
not consistent with the technology adoption literature analyzed by
count data models, like the results on precision agriculture (Barnes
et al., 2019; Isgin et al., 2008), and on IT (Jara-Rojas et al., 2012;
Pokhrel et al., 2018). Education is highly and positively significant,
increasing the adoption by almost 10 % in terms of irr, but it results in
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7 IRR are also called factor change. For their estimation, each βi is ex-
ponented, so IRR (βi)= eβi. The IRR’s coefficient tells how a change in an X
affects the rate at which Y occurs, while the average marginal effects de-
terminines the impact of any covariate on the number of technologies.
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only a slight increase in the number of technologies. Farms with more
educated heads tend to increase IT, perhaps because they are exposed to
more information, thereby internalizing the benefits (and costs) of these
technologies. This finding is in line with adoption literature, which
states a positive relationship between human capital and the decisions
to adopt modern technologies (Bjornlund et al., 2009; Koundouri et al.,
2006).

Access to technical support has a positive yet not significant impact
on the range of specifications. For ownership, being a renter reduces the
rate, though not significantly. Likewise, Non-agricultural income has no
impact on farmers’ decisions to adopt technologies. Having extra re-
sources, and a more favorable financial capacity could lead to a more
considerable utilization of these types of technologies. On the other
hand, Credits is the variable with the most significant impact of the HH
characteristics on the rate of IT adoption. The incremental change is
roughly 150 % (0,41 technologies according to marginal effects) com-
pared to those who do not have access. This is consistent with the re-
sults of Jara-Rojas et al. (2012). It is noteworthy that in Chile, access to
credits implies a more robust financial backing as well as access to a
broader range of agricultural services, mostly offered by private agents.

Regarding ws and land size, the results are depicted in two ways: as
independent variables, and as the wl-ratio. In PRM1 it is shown that ws
has a negative but non-significant impact on technologies, while land
size slightly increases the rate to acquire an irrigation technology
(0,5%), being consistent with the findings of Green et al. (1996); Isgin
et al., 2008; Engler et al. (2016), and Feike et al. (2017). The wl_ratio, a
sign of water availability per unit of land (ha), causes a significant but
negative effect on IT, reducing on average with 33 % the rate of
adoption. This translates, according to the average marginal effects
(discrete change), in 0,19 fewer technologies for more efficient water
management. The diversification index has a positive and significant
impact, increasing the percentage to apply technologies. IT’s enable
farmers to a more diversified agricultural production (Hussain and
Hanjra, 2004). Both valleys cover a wide range of agricultural pro-
duction, hence requiring customized water management. For the set of
dummies capturing the specificity of agriculture production, farms fo-
cused on fruit and horticulture have higher rates of technology usage
compared to those cultivating annual crops. The coefficients (irr), along
with Credits, are the largest for the set of variables, around 2,43 for fruit,
and 2,58 for horticulture. Translated to number of technologies, these
variables determine an increase in the number of technologies adopted
of 0,36 and 0,39. This positive impact is consistent with the findings of
Feike et al. (2017), who studied the adoption of wells and drip irriga-
tion in China, and it is also in line with research on water management
practices in Arkansas, US (Huang et al., 2017).

For the contextual variables characterizing watercourses infra-
structure and water withdrawals, the models illustrate that canal, ex-
tension, and wua are not significant, but wcr, ww, lining, and fees yield
significant impacts on the adoption of technologies. These results sug-
gest that both proxies of location, with the plausible gains on certainty
on water rights for farmers located in a primary or a shorter canal, are
not triggering decisions to adopt IT. That confirms findings by Zhang
et al. (2013), who did not find an effect of canal length on water pro-
ductivity In China. Regarding location, Manero et al. (2019), working in

Table 3
Regression results incident risk ratios (IRR) for Poisson Regression Models
(PRM) under specification Y2.

Variable Poisson Models

PRM 1 PRM 2 PRM 3

Age 1,008 1,009 1,006
(0,009) (0,009) (0,009)

Education 1,089 *** 1092 *** 1,100 ***
(0,026) (0,025) (0,024)

Agr. Experience 0,994 0,996 1,000
(0,007) (0,007) (0,008)

Gender 0,798 0,819 0,853
(0,193) (0,199) (0,208)

Social Capital 0,956 0,893 0,887
(0,224) (0,182) (0,191)

Technical support 1,197 1,165 1,120
(0,278) (0,242) (0,227)

Non Agr. Income 1,043 0,965 0,956
(0,185) (0,170) (0,165)

Owner 0,908 0,957 0,900
(0,178) (0,190) (0,176)

Credits 2,242 *** 2,525 *** 2,459***
(0,748) (0,733) (0,717)

HI index 1,881 * 2,012 ** 1,956 *
(0,660) (0,690) (0,680)

Fruit 2,567 *** 2,519 *** 2,454 ***
(0,559) (0,543) (0,579)

Horticulture 2,838 *** 2,621 *** 2,576 ***
(0,966) (0,886) (0,892)

Mixed 0,995 0,923 1,069
(0,469) (0,435) (0,494)

Forage 0,726 0,791 0,920
(0,560) (0,527) (0,487)

ww 1,567 ** 1,554 ** 1,455 ***
(0,331) (0,323) (0,305)

wcr 0,616 ** 0,627 ** 0,672 *
(0,163) (0,161) (0,165)

Lining 0,696 * 0,726 0,755
(0,133) (0,135) (0,141)

Canal 1,071 1,068 1,126
(0,206) (0,203) (0,214)

Fees 1,270 1,433 * 1,437 *
(0,343) (0,337) (0,337)

Length 1,044 1,019 1,026
(0,201) (0,189) (0,182)

wua 1,263 1,262 1,240
(0,269) (0,267) (0,248)

Land size 1,005 *
(0,003)

ws 0,998
(0,002)

wl ratio 0,660 * 0649 *
(0,149) (0,144)

Problems 1,261
(0,343)

Accessibility 1,983***
(0,539)

Se-irrigator 1,096
(0,263)

Full irrigation 0,484 *
(0,191)

Constant 0,030 *** 0,033 *** 0,033***
(0,020) (0,023) (0,026)

Pseudo R2 0,222 0,224 0,242
Observations 335 335 335

***p< 0.01, ** p<0.05, * p< 0.1. Robust standard erros in parenthesis.

Table 4
Marginal effects of independent variables on the number of technologies (model
PRM3)b.

Variable Marginal Effect Std. Errors a

Education 0,044 *** 0,010
HI index 0,304 * 0,158
Fruticulture 0,372 *** 0,090
Horticulture 0,403 ** 0,192
ww 0,170 * 0,096
wcr −0,180 * 0,111
Fees 0,164 * 0,105
wl ratio −0,196 * 0,101
Accessibility 0,311 *** 0,124
Full irrigation −0,328 *** 0,177
Credits 0,408*** 0,135

a Standard errors obtained through Delta-method.
b Average Marginal Effects for each covariate are displayed in Table 7 in

Annex 2.
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small irrigation schemes in Tanzania, found a significant yet negative
effect on agricultural production and income for farmers located in
secondary canals.

On the other hand, wcr produces a negative effect, reducing the rate
of adoption of technologies between 35 % and 52 % in terms of irr and
0,2 in the form of marginal effects. The stabilization of water supply
produced by community reservoirs affects farmers’ decisions con-
cerning irrigation negatively rather than generating incentives, coin-
ciding with the findings of Zilberman et al. (2011). On the contrary, ww
positively influences IT usage. Continuous access to water increases the
rate of adoption by 50 % (0,18 technologies) compared to the turn
system, allowing a full exercise of their water rights, and, thus, to
conduct investments oriented towards better management. Further-
more, fees produces a positive effect on two of the three model speci-
fications, rounding an increase in the rate of 50 %(irr). If farmers pay
higher fees, this can either be due to more expensive fees (CLP$*l*s−1),
to the use of larger volumes of water, or both. Bearing that in mind, it is
possible to infer that higher water costs trigger the adoption of IT.
Significant higher fees were also found significant by Jara-Rojas et al.
(2012) working in neighboring areas but focusing on water

conservation technologies. Finally, lining is also impacting the level of
adoption, but not as expected (irr below 1). A better infrastructure re-
duces conveying losses, providing farmers a more reliable environment
for receiving their water shares and conditions for investments. How-
ever, the effect of lining goes in the opposite direction, somehow dis-
incentivizing farmers taking action in terms of irrigation investments.
Although not expected, these results are somehow similar to those
found by Tang et al. (2016) in China, who state that it seems as though
good canal infrastructure is sufficient as a water-saving technology.

Furthermore, when introducing the perceptual variables on PRM3,
accessibility, and full irrigation are significant, but se-irrigation and pro-
blems are not (Table 3). The irr's for the rest of the variables retain the
significance and magnitude with the same interpretation as described
before. Insignificance for se-irrigation points out that regardless of other
personal characteristics, irrigation skills are rated similarly, with 63 %
of farmers rating themselves as good irrigators. However, most of the
farmers (98 %) know neither total irrigation requirements nor the vo-
lume applied to crops each irrigation time.

A more reliable water supply is positively impacting farmers to
implement technologies compared to those who perceive a more defi-
cient availability. A similar effect, but not significant, of reliability of
water on technology adoption was found by Adeoti (2008) in Ghana.
On the other hand, Manero et al. (2019) found a positive impact of
water reliability on yields in Tanzania. Conversely, full irrigation sig-
nificantly decreases the rate of IT implementation by 50 % on average.
Although in terms of irr, ww gets a bigger rate change, full irrigation
yields the most significant effect on the number of technologies, ac-
cording to the average marginal effects.

Examining the marginal effects more closely, Credits, full irrigation,
and accessibility have the highest impacts for the personal and the
contextual and perceptual variables, respectively. While access to
agricultural credits increases the number of technologies by 0,4, Full

Table 5
Regression results and marginal effects for models including the interaction terms Credits-Full irrigation.

Variable IRR Marginal Effectsa IRR Marginal Effectsa IRR Marginal Effectsa

HH characteristics YES YES YES
NNRR characteristics YES YES YES
Contextual characteristics YES YES YES
Perceptual characteristics YES YES YES
Accesibility 1,843 0,277 *

(0,501) (0,125)
Credits 2,489 *** 0,418 ***

(0,727) (0,134)
Full irrigation 0,484 * −0,329 *

(0,189) (0,176)
Credit-No irrigation 0,795 −0,198

(0,405) (0,444)
No Credit-full_rrigation 0,200 *** −0,775 **

(0,085) (0,377)
Credit-full-irrigation 0,593 −0,394

(0,275) (0,419)
Accessibility-No full Irrigation 1,971 0,553

(0,879) (0,432)
No ww-Full_irrigation 0,595 −0,230

(0,274) (0,244)
ww-Full irrigation 0,812 −0,106

(0,369) (0253)
Credit-No ww 2,008 0,218 *

(0,943) (0,132)
No Credit-ww 1,166 0,036

(0,508) (0,099)
Credit-ww 3,116 *** 0,459 ***

(1,416) (0,142)
Constant 0,075 *** 0,026 *** 0,039 ***

(0,057) (0,023) (0,033)
Pseudo R2 0,2499 0,2423 0,2421
Observations 335 335 335

*** p< 0,01, ** p<0,05, * p< 0,1.
a Standard errors obtained through Delta-method.

Table 6
Farmers’ membership probabilities for belonging to each class.

Technology Class 1: Precarious Class 2: Technological

EIS 0,062 0,688
On-farm reservoir 0,008 0,154
Well 0,087 0,401
Programming tools 0,000 0,175
Solar Panels 0,000 0,048
Soil Levelling 0,005 0,106
Humidity retention 0,000 0,143
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irrigation reduces them by 0,33. Accessibility, on the other hand, in-
creases the number by 0,32. These variables, in some way, represent the
availability (or lack) of financial and natural resources and the in-
centives for farmers to adopt IT.

As these variables are binary, interactions among these 3 variables
are introduced to PRM3, yielding relevant results (Table 5). Firstly, for
the Credits-Full irrigation combination, the irr's are below 1, meaning
that each combination reduces the rate to implement practices relative
to the base category. However, only the interaction "No credit-Irrigation"
is significant, depicting the largest reduction in proportion (80 %) and
number (0,78) of technologies compared to the base, No credit-No irri-
gation, suggesting that irrigating the full land perception has a domi-
nant effect, which represents the perception of sufficient water to irri-
gate.

Secondly, the interaction full irrigation-accessibility unexpectedly
produces no significant results. Since both variables have opposite ef-
fects, it seems that the variables cancel out each other's individual ef-
fects. Finally, in terms of the last interaction between credits and ac-
cessibility, the figures show that both variables complement each other,
increasing the irr’s with positive marginal effects. However, only credit-
accessibility is significant, with a factor change of 0,47 more technolo-
gies.

As it was stated before, it seems that the statement of full irrigation
generates a dominant effect on the adoption of technologies, which may
be interpreted as a relative abundance of the resource. According to the
data, half of the farmers hold less than 1,3 l*s−1, and 75 % of them are
under the sample mean (1,86). When turned into a water-land ratio;
however, only 28 % of farmers in the sample have less than 1
l*s−1*ha−1. Therefore, full irrigation could be explained by either
capturing larger water applications respecting the water shares they
own given the poor infrastructure and lack of control of water with-
drawals or due to possible internal arrangements within each canal.
This positive perception in terms of irrigation is strengthened by the
head-reservoir, which allows for stabilization and better resource dis-
tribution and reducing farmers' exposure to water shortages, discoura-
ging farmers' adoption of IT. This decreasing need for adopting risk-
reducing measures due to improvements in water supply by dams co-
incides with those described by Biswo et al. (2018).

3.3. Latent class analysis results

Complementing the econometric analysis, an LCA was performed to
identify the underlying diversity of IT in the study area, despite the
figures showing a low rate of adoption. Table 2 depicts that the most
utilized technology is EIS (18 %), followed by wells (15 %). Conversely,
humidity sensors, and solar panels are the least used practices. To classify
farmers, 4 LCA models were run, increasing the number of LC from 1 to
4, selecting the model that best disaggregates the data in homogenous
classes while minimizing the AIC and BIC criteria. The results show that
the model with 2 classes gets the best fit.8 In this LCA, membership
classes make up 88 % (C1), and 12 % (C2). C1 is the Non-technological,
and C2 the Technological class. Table 6 depicts the average probability
distribution of belonging to each class for each technology.

The Non-technological class comprises the vast majority of farmers
(n = 295). The main feature of this group of farmers is that they have
no technologies. This implies that the bulk of the farmers are techno-
logically precarious. If they apply (59), it is only 1 technology (either
EIS or wells) but with a low probability, around 9%. In figures, for this
group, 28 irrigators use EIS, 26 utilize wells, and only 3 hold a re-
servoir, though not jointly. As a result, there is a clear preference for
infrastructure technologies among farmers in this group. These 59
farmers overlap with the Technological irrigators class (n = 40), con-
taining farmers’ with the highest item responses for the set of

technologies and practices (Fig. 3). C2 is distinct because farmers have
installed EIS (32) and wells (23), but in addition to these technologies,
C2 contains the totality of irrigators making use of irrigation pro-
gramming tools.

C1 entails 80 % (236) of farmers with no technologies, implying
water applications by surface irrigation methods, such as flood and
furrow. By contrast, C2 comprises irrigators applying at least one
technology, ranging from 1 to 5, with 2 (67,5%) and 3 (17,5%) the most
applied. For those farmers using 2 technologies (n = 27), the most
common “packages” are EIS and a well (n = 11); or an EIS plus a
programming tool (n = 4).

Differences in characteristics conforming the two groups were
tested through statistical analysis (Table 10 in Supplementary Data).
Class 1 is less educated and has more farming experience, while Group2
receives more technical support and has a higher percentage of farmers
with access to agricultural credits (significant at 10 % and 1 % re-
spectively). In terms of natural resources capital, Group1 holds smaller
plots, lower water rights dotation, and less area using EIS, all significant
at 1%. However, they have a higher water-land ratio, 1,90 vs. 1,54 for
C2 (Table 7). These figures contribute to explain the low rate of
adoption, confirming the regression analysis results, i.e., access to
credits and larger water-land ratios generate disincentives to invest.

In terms of agricultural production, both clusters entail irrigators
growing the 4 main crop categories. More specifically, C2 is dominated
by fruit production, with 68 % growing either raspberries, blackberries,
blueberries, and apples, and cereals as the second-largest type of crop (8
farmers, 20 %). In C1 annual crops and fruit are the dominant crops,
both comprising 88 % of the agricultural land under production for this
class (38,3 % and 49 % each). One relevant issue makes up fruit pro-
duction, which consists of 2 sub-segments. Class 1 focuses on small-
scale production based on berries (raspberry and blackberry); mean-
while, Class 2 grows more extensive areas with apple, cherry-tree, or
blueberries.

Out of the 431 plots cultivated in Class 1, 402 (93 %) are watered by
flood or furrow. For Class 2, 52,3 % of crops are being cultivated using
EIS, out of which 63 % makes up fruit and 44 % horticulture (both
significant at 1 %). Pastures and forage are irrigated by surface irriga-
tion in both classes.

Regarding contextual and infrastructural characteristics, C1 con-
tains 40 % of irrigators who have access to water by turns, whereas 22
% in C2 do. Out of 126 irrigators declaring being on a turn regime, 93 %
are in the non-technological class. Likewise, in C1 a higher proportion
of irrigators is located at a secondary canal level (46 %) and pay fewer
annual fees, with 85 % of farmers’ payments below average (both sig-
nificant at 1 %). Finally, in terms of perception, the only distinctive
difference is related to the perceived water availability (at 1 %), with
Class1 giving a lower valuation (0,54, vs. 0,8 for Class2).

Despite the difference in grouping farmers, the classes detected for
the LCA - the non-technological and technological types- present some
similarities with other clustering studies. For instance, Takeshima
(2016) found out that in Nigeria, for the less technological cluster, a
minority (33 %) of farmers use irrigation to some extent. Robert et al.
(2017), working in India, grouped farms into 3 groups, defining one
group as the technological and more diversified. Lastly, Maton et al.
(2005) in France found 2 types of irrigation strategies according to ir-
rigation practices: intensive and extensive irrigators.

The results of the econometric and latent class analysis jointly allow
for a better understanding of the low rate of adoption of IT, leading to a
series of considerations for further developments regarding technology
adoption and on-farm irrigation water management not only in this
study area but for the wider agricultural irrigation in Chile as well as in
similar environments.

For farmers adopting IT, there is a clear preference and tendency for
the adoption of infrastructural technologies to the detriment of im-
proved IT, such as scheduling or programming tools. Despite the well-
known benefits of these techniques, the precise timing and amount of8 See table 9 in Annex 3 for the goodness of fit of each Latent Class model.
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water applied (Bjornlund et al., 2009; Montoro et al., 2011) and re-
ducing the overall application and potential gains in efficiency and
yields (Gleick, 2003), the results show a minimal usage of scheduling,
being only applied in fruit production, which is the most profitable crop
in the study area.

However, these results in terms of extent and type of adoption of IT
are somehow expectable, since they match with technologies subsidized
by public programs mostly through the act “Ley 18.450 de Fomento a la
Inversion Privada en Obras de Riego y Drenaje”, which aims to foster
the implementation of on-farm (and off-farm) irrigation infrastructure
such as efficient irrigation systems and reservoirs. Excluded in this law
are management techniques such as scheduling (Engler et al., 2016).
The promotion of these type of technologies has been common in other
countries such as the US, Spain (García-Mollá et al., 2019), India
(Bahinipati and Viswanathan, 2019; Malik et al., 2018), Australia
(Grafton and Wheeler, 2018) and China (Zhang et al., 2019), where
programs have a water conservation focus and some of them also in-
centivize the adoption and implementation of scheduling (Sears et al.,
2018). The Chilean program differs in explicitly orienting towards an
expansion of the irrigated land (Engler et al., 2016), and improving the
transparency and legal security of the water rights (Clarvis and Allan,
2014). However, recent research has shown that the implementation of
EIS (drip irrigation) increases the adoption of scheduling, claiming for
the inclusion of management tools to the current set of subsidized
technologies (Engler et al., 2016).

It may be argued that the adoption of IT depends on means and
incentives (Levidow et al., 2014). According to the results of our case
study, credits and full irrigation are the main drivers influencing the
adoption of IT, where the former may represent the availability (lack)
of financial resources or means demonstrated to influence the adoption
of IT (Alcon et al., 2011)- and full irrigation the availability of water
giving incentives (disincentives) to adopt IT. Out of these incentives
(disincentives), water availability (scarcity) has been shown to be a
driver of the adoption of technologies (Olen et al., 2015; Taylor and
Zilberman, 2017). Conversely, the relative abundance of surface water
disincentives farmers to invest and adopt IT and reduce water usage
(Mendelsohn and Dinar, 2003).

Nevertheless, in addition to these factors, it is possible to introduce
a set of elements hindering the adoption of IT. Some institutional and
policy factors have demonstrated to trigger the adoption of irrigation
technologies. In this setting, policy instruments like water pricing have
shown to boost the adoption of IT (Alcon et al., 2011; Berbel and
Gómez-Limón, 2000; Zilberman et al., 2011). In this regard, the relative
water abundance in the study area, next to some distinctive features of
the allocation process and the characteristics of irrigation water rights
–no cost for initial allocation, the full and permanent ownership on a
certain amount of resources (l*s−1), poor conveyance and control in-
frastructure at canal level - the current focus of the irrigation programs,

Fig. 3. Technology adoption scope for technological and non-technological
classes.
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and the presence of a head-reservoir shape an unsuitable scenario to
apply policies to increase willingness to adopt, such as pricing, and as a
result, do not generate enough incentives to adopt IT.

However, for a better understanding of IT adoption and irrigation
management in the study area, deeper comprehension of this stated
relative abundance water is needed, especially given the divergence
between this relative abundance, and the manifest water shortage
scenario of central Chile in the last decade (Garreaud et al., 2019).

4. Conclusions and policy implications

This article examines the adoption of irrigation technologies and the
underlying diversity in terms of intensity of adoption in 2 irrigated
valleys of the Maule region in Central Chile, where a mixture of farming
coexists. The results show a low level and range of technology adoption,
with only 30 % of farmers adopting technologies and efficient irrigation
systems and wells as more widespread practices. This conforms to the
subsidies provided by the Chilean government over the past 4 decades.

This low level of adoption was disaggregated in 2 groups by a Latent
Class Analysis. A small group was comprised of moderate to intensive
users of technologies, while the second group gathered the majority of
non-adopters, most of them restricted in terms of natural capital and
financial barriers.

Econometric analyses showed that the adoption of technologies
depends on a series of factors. Particularly education, diversification,
and the dominance of fruit or horticultural production positively impact
the number of technologies. Conversely, higher water-land rates,
community reservoirs, and unlined canals reduce adoption. The relative
abundance of water and accessing financial capital are the main factors
influencing the adoption of technologies.

Although the results are case-study specific to these two irrigated
valleys, they allow addressing some policy implications to both the
public sector and private agents. To date, the irrigation policy in Chile
focuses on improvements in efficiency and on and off-farm infra-
structure, aiming at increments of agricultural productivity, and fa-
voring projects with the largest increases in irrigated land. This policy
does not incorporate technical support, and it is restricted to a limited
type of technologies. Therefore, if the goal is to increase the rate of
adoption, widening and facilitating access to public subsidies and re-
laxing entry barriers for those with limited resources, creating irrigation
extension programs to support and spread the range of subsidized ir-
rigation technologies, including management techniques, is required.

Given the low rate of adoption, programs incentivizing the im-
plementation of irrigation technologies are still needed. Nevertheless, it
is also crucial to consider a few other elements. The results show that
contextual characteristics are hindering adoption rates, challenging the
correct design of policy and programs. Moreover, efficiency-oriented
policies can raise the pressure over water resources, leading to incre-
mental water consumption and irrigated areas, instead of water-savings
if control on water resources is absent (Perry et al., 2017; Sears et al.,
2018). Switching from less to more efficient irrigation causes changes in
the demand of water, and such improvements may also be a source of
adverse spillover effects for those placed downstream (Grafton et al.,
2018; Vicuna et al., 2014). Moreover, those improvements do not un-
iquely depend on individual efforts, but demand collective decisions in
many situations, requiring financial and technical capacity as well as a
suitable environment and governance, at both canal and basin level.

Finally, irrigation technologies are considered essential in dealing
with water shortages, as well as in developing long-term adaptation
strategies in light of climate change. Reductions in water availability
are expected for central Chile, challenging public and private organi-
zations to design suitable policies and programs, increasing reliability,
generating incentives, and raising farmers’ awareness for better water
resources management.
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