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Abstract 13 

Plant cells perceive and adapt to an ever-changing environment by modifying their plasma membrane 14 

(PM) proteome. Whereas secretion deposits new integral membrane proteins, internalization by 15 

endocytosis removes membrane proteins and associated ligands, largely with the aid of adaptor protein 16 

complexes and the scaffolding molecule clathrin. Two adaptor protein complexes function in clathrin-17 

mediated endocytosis at the PM in plant cells, the heterotetrameric Adaptor Protein 2 (AP-2) complex 18 

and the octameric TPLATE complex (TPC). Whereas single subunit mutants in AP-2 develop into 19 

viable plants, genetic mutation of a single TPC subunit causes fully penetrant male sterility and 20 

silencing single subunits leads to seedling lethality. To address TPC function in somatic root cells, 21 

while minimizing indirect effects on plant growth, we employed nanobody-dependent delocalization 22 

of a functional, GFP-tagged TPC subunit, TML, in its respective homozygous genetic mutant 23 

background. In order to decrease the amount of functional TPC at the PM, we targeted our nanobody 24 

construct to the mitochondria and fused it to TagBFP2 to visualize it independently of its bait. We 25 

furthermore limited the effect of our delocalization to those tissues that are easily accessible for live-26 

cell imaging by expressing it from the PIN2 promotor, which is active in root epidermal and cortex 27 

cells. With this approach, we successfully delocalized TML from the PM. Moreover, we also show co-28 

recruitment of TML-GFP and AP2A1-TagRFP to the mitochondria, suggesting that our approach 29 

delocalized complexes, rather than individual adaptor complex subunits. In line with the specific 30 

expression domain, we only observed minor effects on root growth and gravitropic response, yet 31 
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realized a clear reduction of endocytic flux in epidermal root cells. Nanobody-dependent delocalization 32 

in plants, here exemplified using a TPC subunit, has the potential to be widely applicable to achieve 33 

specific loss-of-function analysis of otherwise lethal mutants. 34 

1 Introduction 35 

Cells are delineated by their plasma membrane (PM). The PM houses a plethora of proteins ranging 36 

from receptors and ion channels to structural membrane proteins. Many of these PM proteins, 37 

commonly termed cargo, are responsible for cellular communication with the outside world. In 38 

eukaryotes, endocytosis is the cellular process where cargoes, associated ligands as well as lipids are 39 

internalized from the PM. Endocytosis thereby provides a way to regulate the content and consequently 40 

modulate protein activity at the PM. A predominant and well-studied form of endocytosis is clathrin-41 

mediated endocytosis (CME) (Bitsikas et al., 2014). CME refers to the dependency of the scaffolding 42 

protein clathrin, which coats the developing and mature vesicles (Robinson, 2015). In plants, CME 43 

plays a role in hormone signaling (Irani et al., 2012; Martins et al., 2015; Zhang et al., 2017), nutrient 44 

availability (Wang et al., 2017; Dubeaux et al., 2018; Yoshinari et al., 2019), pathogen defense and 45 

susceptibility (Mbengue et al., 2016; Li and Pan, 2017), and other biotic and abiotic stresses (Li et al., 46 

2011). Consequently, CME is essential for plant development.  47 

Two early-arriving adaptor complexes, the heterotetrameric Adaptor Protein-2 complex (AP-2) and 48 

the hetero-octameric TPLATE complex (TPC) facilitate CME in plants. In contrast to AP-2, TPC 49 

represents an evolutionary ancient protein complex, which is lost in yeast and mammalian cells (Hirst 50 

et al., 2014). The slime mold Dictyostelium discoideum contains a similar complex, named TSET. 51 

TSET however is a hexameric complex in contrast to TPC in A. thaliana, which has two additional 52 

subunits. Also contrary to TPC, TSET is dispensable in D. discoideum (Hirst et al., 2014). The presence 53 

of a full or partial TSET complex in other eukaryotes was confirmed by additional homology searches, 54 

indicative of its ancient evolutionary origin (Hirst et al., 2014).  55 

AP-2 and TPC have both common and distinct functions, possibly relating to cargo specificity and/or 56 

fate of the internalized cargo (Bashline et al., 2015; Sánchez-Rodríguez et al., 2018; Wang et al., 2019; 57 

Yoshinari et al., 2019). In addition, functional diversification of both complexes is reflected in their 58 

mutant phenotypes. Knockout plants in individual AP-2 subunits are affected at various stages of 59 

development but viable (Di Rubbo et al, 2013; Kim et al, 2013; Fan et al, 2013; Yamaoka et al, 2013; 60 

Bashline et al, 2013). However, ap2 mutants show reduced internalization of the styryl dye FM4-64, 61 

which can be seen as proxy to a difference in cargo uptake (Jelínková et al., 2010), as well as known 62 
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endocytic cargoes like the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1), 63 

the Boron exporter BOR1 and auxin efflux carriers of the PIN family (Di Rubbo et al., 2013; Fan et 64 

al., 2013; Kim et al., 2013; Yoshinari et al., 2016, 2019). 65 

The relatively mild phenotype of ap2 single subunit mutants in plants contrasts with the lethal 66 

phenotype of a single ap2 subunit knockout in mice (Mitsunari et al., 2005). Alternatively, the complex 67 

does not seem to be essential for yeast (Yeung et al., 2013). In Caenorhabditis elegans, AP-2 subunits 68 

are capable of assembling into hemicomplexes which partially retain their functionality (Gu et al., 69 

2013). In plants, AP2M and AP2S are still recruited to the PM in ap2s and ap2m mutants respectively 70 

(Wang et al., 2016), suggesting that AP-2 hemicomplexes might also confer partial functionality in 71 

plants.  72 

In contrast to AP-2, single knockouts of TPC subunits result in fully penetrant male sterility with 73 

shriveled pollen and ectopic callose accumulation (Van Damme et al., 2006; Gadeyne et al, 2014). 74 

Similar pollen-lethal phenotypes are also reported for drp1c (Backues et al., 2010) as well as clc1 75 

(Wang et al., 2013), involved in vesicle fission and clathrin triskelion assembly respectively.   76 

So far, there is only one viable weak allele of one TPC subunit identified. This twd40-2-3 mutant 77 

(Bashline et al., 2015) is however likely merely a knockdown as twd40-2-1 and twd40-2-2 mutants are 78 

pollen lethal (Gadeyne et al., 2014). Knockdowns of TML and TPLATE resulted in seedling lethality 79 

with a reduced internalization of FM4-64, BRI1, RECEPTOR-LIKE PROTEIN 44 (RLP44) and the 80 

cellulose synthase subunit CESA6 (Irani et al., 2012; Gadeyne et al., 2014; Sánchez-Rodríguez et al., 81 

2018; Gómez et al., 2019). Silencing works on the messenger level and phenotypes only become 82 

apparent following degradation of pre-made proteins. As adaptor protein complexes can be recycled 83 

following each round of internalization, approaches affecting these complexes at the protein level have 84 

a more direct effect. In animal cells, conditional delocalization using rapamycin to target AP-2 to 85 

mitochondria has been successfully applied to interfere with endocytosis (Robinson et al., 2010). 86 

Since their discovery, nanobodies, derived from camelid heavy chain-only antibodies (HCAb), have 87 

found their way into a wide variety of applications in biological fields. Nanobodies are similar to 88 

antibodies (Ab) in the sense that they can bind epitopes with high affinity in a highly selective manner 89 

(Ingram et al., 2018). Their applications range from drug discovery, crystallography and imaging 90 

techniques to probing protein functions (Ingram et al., 2018). The latter can be done by enforcing 91 

nanobody-dependent protein degradation or nanobody-dependent localization (Caussinus et al., 2012; 92 

Früholz et al., 2018; Ingram et al., 2018). Nanobodies can be expressed as a single chain, compact and 93 
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stable protein while still retaining high selectivity and affinity for its epitope (Muyldermans, 2013). 94 

This makes them more convenient to clone and to express compared to conventional antibodies.  95 

A nanobody-dependent method, degradFP, was developed in Drosophila melanogaster, to generate a 96 

conditional knockout at the protein level. This tool uses an anti-GFP nanobody, linked to an F-box to 97 

target it for ubiquitin-dependent degradation (Caussinus et al., 2012). This approach has also very 98 

recently been successfully used in plants to degrade WUSCHEL-GFP (Ma et al., 2019). Nanobodies 99 

have also been used in Arabidopsis seedlings to lock down vacuolar sorting receptors (VSRs) in 100 

cellular compartments upstream of TGN/EE, allowing to determine their retrograde trafficking 101 

pathway (Früholz et al., 2018).  102 

Finally, nanobody-dependent lockdown was successfully applied in HeLa cells where EPS15, a 103 

pioneer endocytic accessory protein (EAP) that facilitates initiation of CME by stabilizing AP-2 104 

presence at the PM, was successfully delocalized by expressing an anti-EPS15 nanobody on endosomes 105 

or mitochondria, thereby inactivating it (Traub, 2019).  106 

Lock down of proteins to a cellular compartment of choice and can thus be effectively used in a similar 107 

fashion as the rapamycin-based system from the Robinson lab (Robinson et al., 2010). Here, we explore 108 

the effects on CME by delocalizing a GFP-tagged functional TML-GFP fusion protein to the 109 

mitochondria in the homozygous tml-1(-/-) mutant background using an nanobody directed against 110 

eGFP. 111 

2 Results 112 

2.1 A mitochondrially targeted nanobody can delocalize TML 113 

TPC is a robust multi-subunit complex functioning at the PM and TPC can be affinity purified using 114 

any of its subunits as bait (Gadeyne et al., 2014). In order to delocalize, and thereby inactivate TPC, 115 

we took advantage of the functionally complemented homozygous tml-1(-/-) mutant expressing 116 

TMLprom::TML-GFP (Gadeyne et al., 2014). In this background, we introduced expression of a 117 

nanobody directed against eGFP (GFPNb) (Künzl et al., 2016), which we visualized by fusing it to 118 

TagBFP2. We targeted the fusion protein to the mitochondria using the import signal of the yeast 119 

mitochondrial outer membrane protein Tom70p as described before (Robinson et al., 2010). This 120 

targeting signal is functional in plants as we have previously colocalized constructs containing this 121 

signal with mitoTracker in N. benthamiana leaf epidermal cells (Winkler et al., unpublished results). 122 

We used the PIN2prom to drive expression of MITOTagBFP2-GFPNb in epidermis and cortex root 123 
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files, which are easy to image with respect to future experiments. MITOTagBFP2-GFPNb localized to 124 

discrete punctae in Arabidopsis wild type roots (Figure 1A). These punctae appeared to have different 125 

sizes, with the large ones likely representing clusters. Co-staining with the mitochondrial dye 126 

MitoTracker Red revealed hardly any colocalization (Figure 1A), which might suggest that expression 127 

of MITOTagBFP2-GFPNb has an effect on mitochondrial fitness. Nevertheless, we used this tool to 128 

attempt to delocalize TML away from the PM.  129 

In complemented tml-1(-/-) Arabidopsis roots, TML-GFP is recruited predominantly at the plasma 130 

membrane in a single confocal section (Figure 1B). Combining this line with the GFPNb, whose 131 

expression was restricted to the root epidermis and cortex files (Figure 1C), led to a change in the 132 

uniform plasma membrane labeling of TML to a denser staining of discrete punctae in these cell files. 133 

Most of those were still near the plasma membrane and colocalized with the fluorescent signal from 134 

the nanobody, indicating effective delocalization of TML-GFP (Figure 1C and enhanced in 1D). This 135 

delocalization was not apparent in the deeper layers of the root, where TML remained uniformly 136 

recruited to the plasma membrane (Figure 1C). Detailed analysis using spinning disk microscopy 137 

confirmed the strong recruitment of TML to those mitochondria that were present in the focal plane of 138 

the PM (Figure 1E and 1F, arrowheads). Next to the mitochondria however, TML was still recruited 139 

to endocytic foci at the plasma membrane in root epidermal cells. The density of endocytic foci in 140 

epidermal root cells is very high (Dejonghe et al., 2016, 2019; Sánchez-Rodríguez et al., 2018) and the 141 

density of endocytic foci, marked by TML-GFP, appeared similar between epidermal cells in the 142 

complemented mutant (control) background and in those cells that in addition also expressed GFPNb. 143 

The fluorescence intensity of the foci was however markedly reduced, in agreement with a substantial 144 

amount of TML-GFP accumulating at the mitochondria (compare Figure 1E and 1F).  145 

2.2 Nanobody-dependent delocalization of TML also affects other endocytic players  146 

In plants, the heterotetrameric AP-2 complex and the octameric TPLATE complex are presumed to 147 

function largely, but not exclusively, together to execute CME (Gadeyne et al., 2014; Bashline et al., 148 

2015; Wang et al., 2016; Adamowski et al., 2018). Both TPC and AP-2 have been shown to be involved 149 

in the internalization of cellulose synthase (CESA) complexes or the Brassinosteriod receptor BRI1 150 

for example (Bashline et al., 2013, 2015; Di Rubbo et al., 2013; Gadeyne et al., 2014; Sánchez-151 

Rodríguez et al., 2018). 152 

Moreover, a joint function is also suggested from proteomics analyses, which could identify subunits 153 

of both complexes when the AtEH1/Pan1 TPC subunit was used as bait in tandem-affinity purification 154 

assays (Gadeyne et al., 2014). To investigate whether our tool, aimed at delocalizing TPC, would also 155 
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interfere with AP-2 recruitment at the PM, we tested the localization of AP-2 when TML was targeted 156 

to the mitochondria. To do so, we crossed our TML-GFP line, in tml-1(-/-) and expressing 157 

PIN2prom::MITOTagBFP2-GFPNb with the homozygous complemented tml-1(-/-) line, expressing 158 

TML-GFP as well as one of the large AP-2 subunits, AP2A1, fused to TagRFP (Gadeyne et al., 2014). 159 

Offspring plants that did not inherit the nanobody construct showed PM and cell plate recruitment of 160 

TML and AP2A1, and only background fluorescence in the TagBFP2 channel (Figure 2A). In the 161 

offspring plants that inherited the nanobody construct however, the localization of the adaptor complex 162 

subunits changed. Both TML and AP2A1 accumulated at punctae, which clearly colocalized with the 163 

TagBF2-fused nanobody construct (Figure 2B). The observed delocalization of AP2A1 to the 164 

mitochondria, together with TML strongly suggests that our approach has the capacity to delocalize 165 

TPC and AP-2 rather than TML alone, given that TPC and AP-2 are presumed to be linked via the 166 

AtEH1/Pan1 subunit (Gadeyne et al., 2014).  167 

2.3 Mistargeting adaptor complexes in epidermis and cortex affects root endocytic uptake with 168 

only minor effects on root growth. 169 

In contrast to AP-2, genetic interference with TPC subunits causes fully penetrant male sterility (Van 170 

Damme et al., 2006; Di Rubbo et al., 2013; Fan et al., 2013; Kim et al., 2013; Yamaoka et al., 2013; 171 

Gadeyne et al., 2014). TPC functionality therefore requires all subunits, and constitutive homozygous 172 

loss-of-function backgrounds are therefore non-existing. Abolishing endocytosis in plants, by silencing 173 

TPC subunits (Gadeyne et al., 2014) or over expression of the uncaging proteins AUXILLIN-LIKE 1 174 

or 2 (Adamowski et al., 2018) severely affects seedling development. The effect of silencing TPC 175 

subunits only indirectly affects protein levels and targeting clathrin might interfere with trafficking at 176 

endosomes besides the PM. As TPC and AP-2 only function at the PM, inactivating their function 177 

should not directly interfere with more downstream aspects of endosomal trafficking. Furthermore, by 178 

restricting the expression domain where adaptor complex function is tuned-down to the two outermost 179 

layers in the root should allow to study internalization from the PM, independently of possible indirect 180 

effects caused by the severe developmental alterations.  181 

Visual inspection of seedlings, grown vertically on plates before imaging did not reveal any major 182 

developmental arrest (Figure 3A). Root growth measurements of seedlings expressing either GFPNb 183 

alone, or GFPNb combined with TML-GFP in the complemented tml-1(-/-) mutant background grew 184 

similarly. There was a slight reduction in average root length when WT (Col-0) seedlings, grown in 185 

continuous light, were compared to WT plants expressing MITOTagBFP2-GFPNb. This was also 186 

quantifiable in the complemented mutant background (Figure 3B, left), indicating that this was caused 187 
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by GFPNb expression, rather than TML sequestration. Partial delocalization of TML therefore does 188 

not impair root growth under normal growth conditions. The AtEH/Pan1 TPC subunits were recently 189 

implicated in growth under nutrient-depleted conditions as downregulation of AtEH1/Pan1 expression 190 

rendered plants hyper-susceptible to for example carbon starvation (Wang et al., 2019). We therefore 191 

assessed if delocalizing TML-GFP, as well as other endocytic players, would also render these plants 192 

susceptible nutrient stress. To do so, we used the seedlings, grown for five days in continuous light. 193 

We placed them in the dark for an additional seven days and measured root lengths. We observed only 194 

minor differences. The GFPNb expressing plants showed a mild root growth reduction compared to 195 

the WT control (Figure 3B, middle), similar to what was observed in the light (Figure 3B, left). This 196 

difference was however not as outspoken in the complemented mutant background, indicating that 197 

partial delocalization of TML in epidermis and cortex cells had a mildly positive effect on root growth 198 

in the dark. Comparing root growth in the light and in the dark for every individual seedling allowed 199 

to equalize out the effect of GFPNb expression. This lead to similar ratios in the WT background while 200 

amplifying the effect of partial TML delocalization (Figure 3B, right). Nevertheless, the effects of 201 

TML relocalization on root growth were mild, which was also confirmed in a gravistimulation 202 

experiment. We followed the gravitropic response of 5 days old seedling for 12 hours and observed 203 

only minor differences in root bending following gravistimulation in the seedlings with partial TML 204 

delocalization than those from the complemented mutant line (Figure 3C and 3D).  205 

The subtle differences observed by comparing the effect of delocalization of TML on plant growth are 206 

likely a consequence of the restricted expression domain of GFPNb. We therefore monitored the effects 207 

of delocalizing TML more directly by visualizing the internalization of the styryl dye FM4-64, which 208 

in plants is commonly used as proxy for endocytic flux (Rigal et al., 2015; Jelínková et al., 2019). To 209 

rule out indirect effects of targeting GFPNb to the mitochondria, we compared endocytic flux between 210 

WT (Col-0) expressing MITOTagBFP2-GFPNb, TML-GFP in tml-1(-/-) and two independent lines of 211 

TML-GFP in tml-1(-/-) expressing MITOTagBFP2-GFPNb. We observed a slight decrease in 212 

endocytic flux when comparing wild type seedlings with the complemented tml-1(-/-) line and a strong 213 

reduction in endocytic flux between the complemented mutant and both complemented mutant lines 214 

where TML was partially delocalized. Direct visualization of endocytic flux therefore allowed us to 215 

conclude that expression of the PIN2prom::MITOTagBFP2-GFPNb has the capacity to interfere with 216 

endocytosis in Arabidopsis root epidermal cells and that this tool certainly has the capacity to generate 217 

knockdown, and maybe even knockout lines at the protein level. 218 

3 Discussion 219 
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Analyzing how impaired TPC function directly affects endocytosis is hampered by the male sterility 220 

and/or seedling lethal mutant phenotypes following genetic interference of individual subunits 221 

(Gadeyne et al., 2014). Here, we explored to impair TPC function at the protein level by delocalizing 222 

a functional and essential subunit in its respective complemented mutant background. We were inspired 223 

by previous work in animal cells. However, instead of using rapamycin-dependent rerouting of one of 224 

the large AP-2 subunits, combined with silencing the endogenous subunit (Robinson et al., 2010), we 225 

took advantage of the complemented tml-1(-/-) mutant line expressing TML-GFP (Gadeyne et al., 226 

2014) in combination with targeting a nanobody directed against GFP (GFPNb) (Künzl et al., 2016) to 227 

the mitochondria. We expressed the GFPNb in epidermis, cortex and lateral root cap as we expected 228 

ubiquitous constitutive expression to be lethal for the plant. Moreover, the epidermis and cortex cell 229 

files are easily accessible for imaging purposes. Proteins fused to this mitochondrial targeting signal 230 

colocalized with MitoTracker in transient N. benthamiana experiments (Winkler et al., unpublished 231 

results). This was not the case in Arabidopsis roots, indicating that constitutively decorating the 232 

mitochondria with the GFPNb construct affected their functionality without however causing a severe 233 

penalty on overall plant growth. The GFPNb system was capable of delocalizing TML-GFP and this 234 

caused the appearance of strongly fluorescent GFP-positive aggregations. Detailed inspection revealed 235 

however that our approach was insufficient to remove all TML from the PM. Compared to the control 236 

cells, sequestration of TML-GFP led to an overall reduction in signal intensity at the endocytic foci, 237 

without visually affecting their overall density. This also correlated with a significant reduction in 238 

endocytic tracer uptake, a proxy for reduced endocytosis. Intuitively, a reduced amount of complexes 239 

per endocytic spot would correlate with a weaker signal rather than a reduction in density. Our 240 

observation therefore fits with the occurrence and requirement of several TPC units to efficiently 241 

internalize a single clathrin coated vesicle.  242 

The minor differences in root length, observed when TML-GFP was delocalized in the GFPNb lines, 243 

as well as the minor effects observed upon gravistimulation can be explained by the limited expression 244 

domain of the PIN2 promoter. Nevertheless, the observed effects are weak when compared to 245 

disrupting other parts of the CME machinery. Inducible overexpression of AUXILIN-LIKE1/2 results 246 

in complete seedling growth arrest with drastic effects on cell morphology (Adamowski et al., 2018). 247 

The same holds true for inducible expression of dominant-negative clathrin HUB and DRP1A 248 

(Kitakura et al., 2011; Yoshinari et al., 2016). Furthermore, estradiol-inducible TPLATE and TML 249 

knockdown lines are noticeably shorter, show less gravitropic capacity and also show bulging cells 250 
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(Gadeyne et al., 2014). As we did not observe cellular effects in epidermal or cortical cell files, we 251 

conclude that our approach lacked the required strength to block endocytosis, but only reduced it.  252 

Recent results suggest that plant cells very likely contain a feedback loop controlling TPC expression, 253 

as carbon starved plants contained roughly the same amount of full-length TPLATE-GFP, next to an 254 

extensive amount of TPLATE-GFP degradation products (Wang et al., 2019). In case plant cells make 255 

more TPC upon depleting the complex at the PM, DegradFP could provide a viable solution to this 256 

problem (Caussinus et al., 2012). By applying this method in GFP-complemented tml-1(-/-) mutants, 257 

newly synthesized TML-GFP would be broken down immediately, preventing to achieve functional 258 

levels of TPC at the PM. Stronger or inducible promotors and/or the use of a different targeting location 259 

might also increase the delocalization capacity. To avoid lethality due to ubiquitous sequestration, 260 

engineered anti-GFP nanobodies, whose affinity can be controlled by small molecules, could also be 261 

used (Farrants et al., 2020). 262 

Untangling the function of TPC and AP-2 in CME at the plasma membrane requires tools that allow 263 

interfering specifically with the functionality of both complexes.  Our nanobody-dependent approach 264 

targeting TPC via TML resulted in the co-delocalization of one of the large subunits of AP-2, indicating 265 

that we likely are not only targeting TPC, but also AP-2 function. Whether a complementary approach, 266 

by delocalizing AP-2, using AP2S or AP2M in their respective complemented mutant backgrounds, 267 

would also delocalize TPC is something that would be worth trying. Furthermore, as AP2S and AP2M 268 

subunits are still recruited in ap2m and ap2s single mutant backgrounds (Wang et al., 2016), AP-2 in 269 

plants might also function as hemi-complexes similar to what is reported in C. elegans (Gu et al., 2013). 270 

Single mutants therefore might do not reflect functional null ap2 mutants and a similar approach as 271 

performed here might also provide tools to inactivate AP-2 as a whole, which can be highly 272 

complementary to working with the single subunit mutants.  273 

In conclusion, the data presented here is a first step toward the development of specific tools, which 274 

are required to help us understand the functions of AP-2 and TPC. On the long-term, this will generate 275 

insight into endocytosis at the mechanistic level and this will bring us closer to being able to modulate 276 

CME-dependent processes, and thereby modulating plant development, nutrient uptake as well as 277 

defense responses to our benefit. 278 

 279 

 280 
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4 Materials and Methods 281 

4.1 Cloning 282 

Gateway entry clones pDONR221-TagBFP2, pDONR221-MITOTagBFP2 and pDONRP2RP3-283 

GFPNb were generated according to the manufacturer's instructions (ThermoFisher Scientific BP 284 

clonase). pDONR221-TagBFP2 was amplified from pSN.5 mTagBFP2 (Pasin et al., 2014) with 285 

primers: 286 

AttB1-GGGGACAAGTTTGTACAAAAAAGCAGGCTATGTCATCTAAGGGTGAAGAGCTTATCAAAGAGAAT and 287 

AttB2-GGGGACCACTTTGTACAAGAAAGCTGGGTCACCTCCGCCACCTCCACCTCCCAGTCCTGCGTA.  288 

pDONR221-MITOTagBFP2 was generated from pDONR221-TagBFP2 by including the import signal 289 

of the yeast mitochondrial outer membrane protein Tom70p as described before (Robinson et al., 290 

2010). The following primers sequences were used:  291 

AttB1-GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGAAGAGCT TCATTACAAGGAACAAGACAGCCATTTTGGC 292 

AACCGTTGCTGCTACAGGTACTGCCATCGGTGCCTACTATTATTACAACCAATTGCAACAGGATCCACCGGTCGCCACC293 

ATGTCATCTAAGGGTGAAGAGCTT and AttB2-GGGGACCACTTTGTACAAGAAAGCTGGGTACGCTAAGTCTTCCTCT 294 

GAAATCAA.  295 

pDONRP2RP3-GFPNb was generated from an anti-GFP Nanobody construct (Künzl et al., 2016) with 296 

primers attB2-GGGGACAGCTTTCTTGTACAAAGTGGGGATGTATCCTTATGATGTTC and attB3r-297 

GGGGACAACTTTGTATAATAAAGTTGTTTAATGATGATGATGATGATGAGAAGA including a HA-tag, a 3xHis-tag 298 

and a stop codon. 299 

The entry clones of the PIN2 promoter pDONRP4P1R_PIN2prom (Marquès-Bueno et al., 2016), 300 

pDONR221-MITOTagBFP2 and pDONRP2RP3-GFPNb were used in a triple Gateway LR reaction, 301 

combining pB7m34GW (Karimi et al., 2005) to yield pB7m34GW_PIN2prom::MITOTagBFP2-302 

GFPNb.  303 

4.2 Plant material and transformation 304 

Plants expressing pB7m34GW_PIN2prom::MITOTagBFP2-GFPNb were generated by floral dip 305 

(Clough and Bent, 1998). Constructs were dipped into Col-0 and tml-1(-/-) (At5g57460) mutant lines 306 

described previously (Gadeyne et al., 2014). Primary transformants (T1) were selected on BASTA 307 

containing ½ strength MS medium without sucrose and 0.6% Gelrite (Duchefa, The Netherlands). 308 

PIN2prom::MITOTagBFP2-GFPNb expression was analyzed in the progeny of BASTA-resistant 309 

primary transformants (T2 seeds) by microscopy and T2 lines demonstrating strong expression were 310 
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selected regardless of insert copy number. Next, T2 lines were crossed with the previously described 311 

TML-GFP complemented tml-1(-/-) mutant line expressing also RPS5Aprom::AP2A1-TagRFP 312 

(Gadeyne et al., 2014). Primary hybrids were analyzed via microscopy and best lines were selected on 313 

the basis of both PIN2prom::MITOTagBFP2-GFPNb and RPS5Aprom::AP2A1-TagRFP expression. 314 

4.3 Phenotypical quantification of root growth 315 

Arabidopsis seedlings were grown at 21°C on ½ strength MS medium without sucrose and 0.6% Gelrite 316 

(Duchefa, Netherlands). For root growth and carbon starvation, plants were grown for 5 days in 317 

continuous light upon which the root growth of every seedling was marked. Subsequently, the plates 318 

were covered and left for 7 days in dark after which root growth was marked again. For the 319 

gravistimulation assay plants were grown for 5 days in continuous light, after which the plate was 320 

turned 90°. Pictures were taken at 30-minute intervals using a Canon EOS 650D with a Canon macro 321 

lens EF 100mm and the EOS utility software (Canon Inc.). Root growth and gravitropism 322 

measurements were carried out with Fiji/ImageJ (Schindelin et al., 2012; Schneider et al., 2012). 323 

Statistical difference was determined using the Wilcoxon-signed rank test. For the root growth analysis, 324 

outliers were removed via interquartile range in a single step. Data were analyzed using Rstudio 325 

(Rstudio Team, 2019) with Welch corrected ANOVA to account for heteroscedasticity. Post hoc 326 

pairwise comparison was performed with the package MULTCOMP utilizing the Tukey contrasts 327 

(Herberich et al., 2010). 328 

4.4 FM-uptake quantification 329 

Endocytic tracer FM4-64 stock solution was prepared prior to treatment (2 mM in DMSO, Thermo 330 

Fisher). Roots were stained with 2 μM FM4-64 by incubating the seedlings in FM-containing ½ 331 

strength MS medium without sucrose for 30 min. Treatment was followed by microscopy. Acquired 332 

pictures were analyzed in Fiji/ImageJ (Schindelin et al., 2012; Schneider et al., 2012). PM and cytosol 333 

of individual epidermal cells were outlined (using the Select Brush Tool and Freehand selections, 334 

respectively) and histograms of pixel intensities were generated. Pictures which contained more than 335 

1% saturated pixels were excluded from the quantification. Cytoplasm/PM ratios were calculated from 336 

average intensities of the top 1% highest intensity pixels based on the histograms. Outliers were 337 

removed via interquartile range in a single step. Data were analyzed using RStudio (Rstudio Team, 338 

2019). Data distribution normality was check with Shapiro-Wilk test, and the significance level was 339 

tested with Wilcoxon-signed rank test for non-parametric data. 340 
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4.5 Image acquisition 341 

Confocal images were taken using Leica SP8X confocal microscope equipped with a WLL laser and 342 

using the LASX software (Figure 1 A-D, Figure 2 and Figure 4). Images were acquired on Hybrid 343 

(HyD, gating 0.3-10.08 ns) and Photomultiplier (PMT) Detectors using bidirectional line-sequential 344 

imaging with a 40x water objective (NA=1.10) and frame or line signal averaging. Specific excitation 345 

and emission were used: 405nm laser and filter range 410-470nm for TagBFP2, 488nm laser and filter 346 

range 500-550nm for GFP, 488nm laser and filter range 600-740nm for FM4-64, 555nm laser and filter 347 

range 560-670 for TagRFP. Focal planes of plasma membranes (Figure 1E and 1F) were acquired with 348 

a PerkinElmer Ultraview spinning-disc system attached to a Nikon Ti inverted microscope and 349 

operated using the Volocity software package (Figure 1 E and F). Images were acquired on an 350 

ImagEMccd camera (Hamamatsu C9100-13) using frame-sequential imaging with a 100x oil 351 

immersion objective (NA=1.45). Specific excitation and emission was performed using a 488nm laser 352 

combined with a single band pass filter (500-550nm) for GFP and 405nm laser excitation combined 353 

with a single band pass filter (454-496nm) for TagBFP2. Images shown are single-slice.  354 
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 519 

10 Figures 520 

 521 

Figure 1. Expression of a mitochondrial-targeted nanobody against GFP allows delocalization 522 

of TML-GFP. 523 

(A) Representative image of a wild type root expressing MITOTagBFP2-GFPNb counterstained with 524 

MitoTracker Red showing targeting of the construct to cytosolic punctae of various sizes, likely 525 

representing dysfunctional clustered mitochondria. (B) Representative Arabidopsis root image of tml-526 

1(-/-) complemented with TML-GFP showing that the functional TML fusion is predominantly 527 

targeted to the PM. (C and D) Representative overview images and respective blow-ups of the outlined 528 

region of Arabidopsis roots where TML-GFP in tml-1(-/-) was combined with MITOTagBFP2-GFPNb 529 

expression, leading to its delocalization from the PM. (E and F) Representative, rainbow intensity 530 

colored, grazing sections through the PM, showing the recruitment of TML to endocytic foci without 531 

(E) and with partial delocalization of TML-GFP (F, arrowheads). Scalebars equal 20 µm.  532 

 533 

 534 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted March 7, 2020. . https://doi.org/10.1101/2020.02.27.968446doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.27.968446
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nanobody sequestration of endocytic machinery 

 
18 

 535 

Figure 2. Delocalization of TML also affects the targeting of other endocytic players 536 

(A and B) Representative images and blow-ups of the outlined regions of Arabidopsis roots 537 

expressing TML-GFP and AP2A1-TagRFP without (A) and with (B)  MITOTagBFP2-GFPNb 538 

expression. GFPNb expression causes delocalization of both TML and AP2A1. Scale bars equal 20 539 

µm (overview pictures) or 10 µm (blow up pictures). 540 

 541 

 542 

 543 
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 544 

Figure 3. Delocalizing TML-GFP in root epidermal and cortical cells has only minor effects on 545 

root growth. 546 

(A and B) Representative seedling examples and quantification of root growth in light and continuous 547 

dark comparing wild type seedlings (Col-0), wild type seedlings expressing MITOTagBFP2-GFPNb 548 
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(Col-0 x GFPNb), complemented tml-1(-/-) mutants expressing TML-GFP (TML) and complemented 549 

tml-1(-/-) mutants expressing TML-GFP (TML) and MITOTagBFP2-GFPNb (Col-0 x GFPNb) (TML 550 

x GFPNb). The quantification shows a box plot and jitter box representation (the lines represent the 551 

median and the diamonds represent the mean) of individual roots (Col-0, n = 38; Col-0 x GFPNb, n = 552 

39; TML, n = 39 and TML x GFPNb, n= 45) grown in continuous light and subsequently in continuous 553 

dark as well as the respective dark/light ratio. The statistical significance was determined using the 554 

Tukey contrasts procedure for Comparing Multiple Means under Heteroscedasticity. (C and D) 555 

Representative seedling examples and quantification comparing root bending of the complemented 556 

tml-1(-/-) line without (TML) or with GFPNb expression (TML x GFPNb; n = 20 for each genotype) 557 

up to 14 hours after gravistimulation. Error bars represent standard error. Asterisks indicate statistically 558 

significant differences, determined using the Wilcoxon-signed rank test (*: p<0.05; **: p<0.01). Scale 559 

bars equal 1 cm. 560 

 561 

Figure 4. Nanobody-dependent delocalization reduces endocytic flux. 562 

(A) Representative single confocal slices of FM4-64 stained root cells of the different lines for which 563 

endocytic flux was quantified. FM4-64 uptake was compared between wild type Arabidopsis 564 

expressing MITOTagBFP2-GFPNb (Col-0 x GFPNb), the TML-GFP expressing complemented tml-565 
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1(-/-) mutant (TML), and two independent lines of the TML-GFP expressing complemented tml-1(-/-566 

) mutant expressing MITOTagBFP2-GFPNb (TML x GFPNb).  Scale bars equal 20 µm. (B) Box plot 567 

and Jitter box representation of the quantification of the cytoplasm/plasma membrane intensity of FM4-568 

64 as proxy for endocytic flux. The black lines represent the median and the crosses represent the mean 569 

values. The dots represent individual measurements of cells. The rainbow-colored indication of the 570 

dots groups the cells from the different roots that were analyzed. The number of cells (n) and the 571 

number of individual roots (r) are indicated on the graph. The indicated p values were calculated using 572 

the Wilcoxon-signed rank test. 573 

 574 
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