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Abstract

For most sequenced flowering plants, multiple whole-genome duplications (WGDs) are found.

Duplicated genes following WGD often have different fates that can quickly disappear again,

be retained for long(er) periods, or subsequently undergo small-scale duplications. However,

how different expression, epigenetic regulation and functional constraints are associated with

these different gene fates following a WGD still requires further investigation due to

successive WGDs in angiosperms complicating the gene trajectories. In this study, we

investigate lotus (Nelumbo nucifera), an angiosperm with a single WGD during the K-pg

boundary. Based upon improved intraspecific-synteny identification by a chromosome-level

assembly, transcriptome, and bisulfite sequencing, we not only explore the fundamental

distinctions in genomic features, expression and methylation patterns of genes with different

fates after a WGD, but also the factors that shape post-WGD expression divergence and

expression bias between duplicates. We found that after a WGD genes that returned to single

copies show the highest levels and breadth of expression, gene body methylation, and intron

numbers, whereas the long-retained duplicates exhibit the highest degrees of protein-protein

interactions and protein lengths, and the lowest methylation in gene flanking regions. For

those long-retained duplicate pairs, the degree of expression divergence correlates with their

sequence divergence, degree in protein-protein interactions, and expression level, while their

biases in expression level reflecting subgenome dominance are associated with the bias of
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subgenome fractionation. Overall, our study on the paleopolyploid nature of lotus highlights

the impact of different functional constraints on gene fate and duplicate divergence following

a single WGD in plant.

Keywords: whole-genome duplication, gene expression, methylation, gene balance,

subgenome dominance

Introduction

Gene duplication is one of the most important drivers of eukaryotic evolution. Indeed, by

increasing the amount of raw genetic material on which evolution can work, gene duplication

generates the genetic redundancy through which processes such as subfunctionalization and

neofunctionalization can create functional novelty (Ohno, 1970; Shiu and Bleecker, 2001;

Zhang, 2003; Blanc, 2004; Gout and Lynch, 2015; Sandve et al., 2018). Apart from

small-scale gene duplication (SSD), also whole-genome duplication (WGD), whereby

thousands of novel genes are created at once, has been frequently observed during evolution,

especially in flowering plants (Cui et al. 2006; Vanneste et al. 2014; Van de Peer et al., 2017).

Interestingly, the fate of genes duplicated through such large-scale duplication events often

seems to be different from that of genes duplicated in small-scale events and previous studies

have shown that the chance of survival and maintenance of genes duplicated in a WGD is

very much dependent on their function. On the one hand, despite repeated WGDs in

angiosperms, many genes were found that convergently revert to single-copy status, and in

Arabidopsis, they exhibit more constitutive and higher expression than duplicate genes in

general and are enriched in house-keeping functions (Paterson et al. 2006; De Smet et al.

2013). One explanation is that the deletion of duplicates is needed to prevent copies with

dominant-negative mutations, which might interfere with the correct functioning of the wild

type copy (Paterson et al. 2006; De Smet et al. 2013). On the other hand, there are those genes

that are retained in excess following WGD for a longer time. For these retained duplicate
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genes, gene balance hypothesis (GBH) states that maintaining stoichiometric balance is

crucial, and genes can only be deleted together with their ‘interactors’ where losing or further

duplication of part of the network or complex is detrimental because the stoichiometry is

challenged (Birchler et al. 2005; Freeling 2009; Bekaert et al. 2011; Birchler and Veitia 2012;

De Smet and Van de Peer 2012; Tasdighian et al. 2017a). Genes that underwent SSDs, such as

tandemly duplicated genes, in contrast were found to be selected for either increased gene

dosage or rapid gene turnover in order to confer lineage-specific adaptation because they are

mostly insensitive to dosage-imbalance (Coate et al. 2016; Lan et al. 2017). Although these

theories explain how different mechanisms that potentially affect gene fate after WGD, we

still do not know the difference in functional constraints including quantifiable features such

as expression, epigenetic regulation and protein-protein interactions imposed on those genes

with different fates after a WGD (single copy, WGD and SSD genes).

Studies including a recent investigation on WGDs across plants including 134 sequenced

angiosperms suggests that after diverging from the basal-most angiosperm (Amborella), only

lotus and seagrass (Zostera marina) experienced a single WGD (4×) whereas the other

angiosperms experienced at least a genome triplication (6×) or sequential WGDs (Qiao et al.

2019). However, the scaffold-level genome assembly of seagrass provides limited information

on synteny to study the gene fates after its WGD (Olsen et al. 2016). Case studies of recently

released genomes also show that columbine, Liriodendron and water lily experienced a single

WGD (Aköz and Nordborg 2019; Chen et al. 2019; Zhang et al. 2020). Therefore, the genome

of sacred lotus (Nelumbo nucifera Gaertn.) is one of the few angiosperms carrying a

well-retained intraspecific synteny reflecting only a single ancient WGD coincided with the

K-Pg boundary (Ming et al., 2013; Wang et al., 2013a; Vanneste et al., 2014; Shi et al., 2017).

Because of its relatively simple, ancient WGD history, lotus genome facilitates comparing

genes with different fates (duplication status) following a single WGD. In addition, because

long-retained duplicate pairs descending from the same WGD event can be easily tracked in

species such as lotus, the (functional) factors, including dosage-balance constraint, that shape

the expression pattern divergence of duplicate gene pairs can also be well-investigated. Yet, in
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Arabidopsis, poplar, soybean, tomato or maize, the fact that multiple different rounds of

WGDs occurred makes it difficult to study the fate of the most ancient duplicates

(Rodgers-Melnick et al. 2012; Jiang et al. 2013; Defoort et al. 2019). Other than divergence in

expression pattern, many duplicate pairs might have bias in expression level (Lehti-Shiu et al.

2015). Often, this expression bias between the two copies is associated with subgenome

dominance which is a phenomenon that was initially defined in allopolyploid cotton and later

in other (presumed) paleoallopolyploids: copies residing in one less fractionated (parental)

subgenome tend to show higher expression than those in the other (parental) subgenome

(Langham et al. 2004; Rapp et al. 2009; Flagel and Wendel 2010; Woodhouse et al. 2014;

Cheng et al. 2016; Edger et al. 2017; Vicient and Casacuberta 2017; Bottani et al. 2018;

Cheng et al. 2018).

Therefore, understanding the mechanisms, such as epigenetic regulation and subgenome

dominance underlying the divergence in expression pattern and level after a WGD in lotus

will improve our understanding of how a duplicate pair diverges in function. To better address

the questions as mentioned above, we build an improved assembly of the lotus var. ‘China

Antique’ genome by PacBio long-read sequencing and scaffolding using high-throughput

chromosome conformation capture (Hi-C). This can optimally identify the genomic relics

from both ancient SSD and WGD events. Complementing this chromosome-level assembly

with further whole-genome bisulfite (methylation) sequencing, RNA-seq, and genome

resequencing data, not only allow us to study the mechanisms, such as expression and

epigenetic regulation that coordinate and maintain the functional integrity of genes displaying

different evolutionary fates but also provide further insight into the genetic mechanisms that

create functional divergence of duplicates retained after a WGD.

Results

A chromosome-level assembly of lotus

Based on newly generated data, we obtained an improved assembly and annotation of the
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lotus genome. Combining PacBio Sequel subreads (11.9 G; 1,330,739 subreads with a mean

length of 8.8 kb and N50 of 12.7 kb) with previously published Illumina paired-end reads

(94.2 Gb) (Ming et al. 2013), resulted in a hybrid assembly, containing contigs with an N50

length of 484.3 kb. This assembly is about 12.5 times the length of previously assembled

contigs (v2013) (N50=38.8kb) (Supplementary Figure S1). The final 4,709 contigs cover

about 807.6 Mb. Using genome-wide HI-C, overall, 4,248 contigs (799.7 Mb) were anchored

and ordered into eight different pseudomolecules (chromosomes) (Supplementary Figure S2).

Further optimization of the assembly by gap filling and polishing (error correction using

accurate Illumina reads) resulted in a final assembly consisting of eight pseudochromosomes

(813.2 Mb) and 456 unanchored contigs (8.0 Mb) (Figure 1) (Supplementary Table S1).

The newly assembled genome contains 58.5% repetitive sequences, of which 48.7% of

the total assembly consists of known transposable elements and 9.1% of unknown repeats

(Figure 1) (Supplementary Table S2). Gene annotation based on a repeat-masked genome

yielded a total of 32,124 protein-coding genes (Figure 1). The accuracy of the new assembly

was assessed by a previous SNP-based linkage map of lotus (Liu et al. 2016). The majority of

uniquely-mapped SNP markers from a given linkage group aligned within the same

pseudochromosome in the new assembly, whereas in the old assembly these markers showed

a partitioned and mosaic distribution over different megascaffolds (v2013) (Supplementary

Figure S3). To assess the completeness of the assembly, we investigated to what extent the

1,440 plant conserved gene set of BUSCO was recovered: 94.6% (1362) of the gene set was

completely retrieved, 3.1% (44) was partially retrieved, and 2.3% (34) was ‘missing’. This

shows that our assembly is the most complete lotus assembly to date when comparing to the

other lotus assemblies (Supplementary Table S3) (Gui et al. 2018). This is supported by the

fact that the number of syntenic orthologs, for instance in relation to monocots, is

substantially higher in our new assembly than in an older version: 5,421 Brachypodium

distachyon genes and 5,922 rice genes showed a collinear relationship in the new assembly,

whereas in the old assembly the numbers were 3,690 and 4,040, respectively (v2013)

(Supplementary Figure S4). Comparing eudicot genomes from the Plant Genome Duplication
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Database (PGDD) and our lotus assembly to both B. distachyon and rice learns that both the

new and old assemblies of lotus share more collinear orthologs with the two monocot

genomes than the other eudicots (Supplementary Figure S4). Although lotus and the other

eudicots in the PGDD together form a sister group to monocots, the genome architecture (at

least considering synteny) of lotus seems to resemble that of monocots most, probably

because most eudicots present in the PGDD have undergone at least one triplication or further

rounds of WGDs subsequent to eudicot radiation (Ming et al. 2013).

Classification of single-copy and duplicated lotus genes

To define different classes of lotus duplicates (Yupeng Wang, Wang, et al. 2013; X. Wang et al.

2017), first, within-species syntenic blocks were identified (see Methods). Such blocks,

showing conservation in gene content and order, and thus potentially representing remnants of

a WGD, were found across all chromosomes (Figure 1) (Supplementary Table S4).

Comparison of peaks in 4dTv (fourfold degenerate site transversion) distances which

represent age distributions formed by the divergence of syntenic duplicates (4dTv

median=0.158) and divergence of orthologs between lotus and Macadamia ternifolia (the

other sequenced Proteales species) (4dTv median=0.405), suggests that most syntenic

duplicates (WGD) have been derived from a duplication event after the split between

Macadamia and lotus (Mann-Whitney U test, p<0.01) (Supplementary Figure S5).

Next to 2,353 orphan genes (defined as genes in lotus that have no homolog in any other

considered plant species), we identified 29,771 genes with homologs in other species

(non-orphan genes) (Supplementary Table S5). Among these lotus genes, so-called dispersed

duplicates are the most abundant (13,235), followed by duplicates resulting from WGD

(referred to WGD) (9,482), tandemly duplicated genes (2,622), single-copy genes (2,261),

proximal duplicated genes (1,566), and finally duplicates that underwent both WGD and

tandem duplication (WGD&TD) (605), as classified by MCscanX (Supplementary Figure

S6A) (Supplementary Table S5). Orphan genes are mostly either single-copy (62.14%)
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dispersed duplicates (33.81%) (Supplementary Figure S6B) (Supplementary Table S5). The

above-defined gene groups were used to further study how the fate of genes, for instance after

WGD, correlates with functional constraints, reflected by protein-protein interactions, gene

expression, and epigenetic and sequence properties. Lotus-specific orphan genes were

analyzed separately.

Single-copy genes and WGD-derived duplicates of lotus show conservation in copy

number in related taxa

Here we estimated the extent to which dosage sensitivity (copy number conservation) of lotus

genes depends on their duplication status, Hereto we first grouped lotus genes according to

their duplication status in lotus (as defined above, ‘single-copy genes’, ‘WGD’, ‘tandem

duplicates’, and others) and subsequently assessed whether the orthologs of these lotus genes

retained the same copy number status in two related eudicot species, namely Macadamia

ternifolia, and Vitis vinifera. Macadamia was chosen because it is the sequenced Proteales

species that is closest to lotus, while Vitis, with only one eudicot genome triplication, was also

chosen because of its relatively conserved genome architecture compared to the other core

eudicots (Jaillon et al. 2007). To assess the variation in copy number across the studied

species, we used the coefficient of variation (C.V.). The average copy number among the

three species (as shown in the violin plot) varies largely among the genes of different

duplication status, and therefore standard deviation cannot serve to assess the variation in this

case (Figure 2A). Single copy genes (grouped according to their single-copy status in lotus)

have a median of the average copy number among the three species close to one, indicating

that, for genes grouped as single-copy in lotus, there is a general strong selection against gene

redundancy in the related species as well (Figure 2A). For genes classified as lotus

WGD-derived duplicates, a median of the average copy number between one and two was

found, suggesting that genes belonging to this group also tend to display a limited level of

gene redundancy in the three studied taxa (Figure 2A). Interestingly, dispersed and

WGD-derived duplicates show, after single-copy genes, respectively the second and the
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third-lowest C.V. for variation in copy number, and therefore presumably exhibit higher

dosage-sensitivity than local duplicates (tandem, proximal, and WGD&TD) (Kruskal-Wallis

test, all pvalues<0.01) (Figure 2B). This is in line with the gene balance hypothesis, which

states that WGD-derived duplicates are more dosage-sensitive or more strict in preserving

their copy numbers than local duplicates (Coate et al. 2016; Lan et al. 2017). For the group of

the dispersed duplicates the interpretation is less trivial as these genes contain WGD-derived

duplicates that lost collinearity, local duplicates that lost ‘proximity’ to other duplicates,

transposed duplicates or ‘angiosperm-conserved single-copy genes’ (‘angio-singles’) that

were created by earlier pre-angiosperm duplications but stopped duplicating during

angiosperm radiation. By examining the proportion of ‘angio-singles’ in each of the studied

gene groups using annotations described in a previous publication (De Smet et al. 2013), we

found that next to the group of single-copy genes, the group of dispersed duplicates contains

the second-highest enrichment of ‘angio-singles’ (Figure 2C). Greater 4dTv distances

between the most similar dispersed duplicates than between corresponding orthologs

(Nelumbo versus Amborella) (Kruskal-Wallis test, all pvalues<0.01) (Supplementary Figure

S7) suggest that ‘angio-singles’ in dispersed duplicates were mostly created by early

duplications prior to angiosperm radiation. As those early duplicates stopped duplicating

during angiosperm radiation they were classified as so-called single-copy genes in

angiosperms. This explains why the group of dispersed duplicates also shows a low C.V. in

copy number.

Single-copy genes and WGD-derived duplicate genes have high expression level and

breadth

To understand why single-copy genes and WGD-derived duplicates are more highly

constrained in copy number, we compared the level and breadth of gene expression for the

above-defined gene groups. This is because genes expressed at higher levels tend to be under

stronger selective pressure (Akashi 2001; Drummond et al. 2005; Jovelin and Phillips 2011;

Song et al. 2017). Average gene expression levels (log-transformed FPKMs), observed in 41
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samples representing a variety of tissue-types, varied substantially among the studied gene

groups. Single-copy genes showed on average the highest expression level (Kruskal-Wallis

test, all p-values<0.01) (Figure 2D) (Supplementary Table S6). This result is consistent with a

previous finding in Arabidopsis showing that the angiosperm-conserved single-copy genes

generally show higher expression than duplicated genes (De Smet et al. 2013). This larger

expression ubiquity also implies that single-copy genes are more likely involved in

house-keeping functions than genes belonging to the other groups. When focusing on the

duplicated genes, genes retained after WGD show on average a significantly higher

expression level than genes from groups representing other types of duplicates

(Kruskal-Wallis test, all p-values<0.01) (Figure 2D). Because essential genes are found to be

highly expressed in Arabidopsis and other plants (Lloyd et al. 2015), this suggests that both

single copy and WGD-derived duplicates might constitute the more essential genes in lotus.

Therefore, the strong purifying selection from gene essentiality of these two groups of genes

might play an important role in constraining their dosage-sensitivity (copy number change

among taxa).

Further, we found that in lotus the largest gene group, namely the dispersed duplicates,

possesses the highest ratio of silent genes (genes that are not expressed in any of the

investigated samples) (9.61%), followed by proximal duplicates (9.20%) and tandem

duplicates (7.29%), while genes resulting from WGD&TD (2.81%), from WGD (1.15%) and

single-copy genes (1.42%) display much lower ratios of silent genes (Figure 2E). This

explains that even though dispersed duplicates contain a large portion of

“angiosperm-conserved single-copy genes”, they do not show a higher expression level than

duplicates retained from WGD because they also contain a substantial number of silent (likely

pseudogenized) duplicate genes. We further showed that compared to the expressed dispersed

duplicates, the silent dispersed duplicates generally have younger ages (measured by 4dTv),

lower number of introns, smaller protein length and lower selective pressure, suggesting that

they might be recent retrotransposed duplicates (Supplementary Figure S8). Overall, these

comparisons further confirm that losing function by gene silencing is not a random
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phenomenon and that single-copy genes and duplicates retained after a WGD are the least

likely to be silenced.

Moreover, using the Tau index to measure expression specificity across different lotus

tissues, we revealed that single-copy genes (mean Tau index of 0.38) show the lowest

expression specificity of all gene groups (Kruskal-Wallis test, all p-values<0.01). In addition,

WGD duplicates (mean Tau index =0.45) exhibit significantly lower expression specificity

than other types of duplicates (Kruskal-Wallis test, all p-values<0.01) (Figure 2F). Both

single-copy genes and genes retained from a WGD tend to have a wider ‘expression breadth’

than small-scale duplicates, and hence their expression might be essential in most tissues as is

supported by findings in Arabidopsis (Lloyd et al. 2015). By showing higher expression level

and breadth, both single-copy genes and WGD-derived genes might expose themselves to

stronger purifying selection. This is supported by lotus genome resequencing data that show

significantly lower ratios of sequence deletion and nucleotide diversity (π) for single-copy

genes and WGD-derived duplicates than for small-scale duplicates (Kruskal-Wallis test, all

p-values<0.01) (Figure 2G, H).

Differences in expression might be associated with differences in methylation level and

TE distribution

Most cis-regulatory elements reside in gene flanking regions, which play profound roles in

gene regulation. Given the impact of epigenetic regulation on gene expression, we assessed

whether the above-mentioned differences in expression among different gene groups could be

associated with differences in methylation level on gene flanking regions (Lorincz et al. 2004;

Luco et al. 2010; Zhang et al. 2015). Hereto we used methylation data obtained from leaf,

petal, stamen petaloid, and stamen. Cytosine methylation levels at CG, CHG and CHH sites

along the gene (upstream, genic and downstream region) generally display a curved ‘W’

shape with the lowest methylation level being observed close to the gene start and stop sites;

Note that similar ‘W’ like shapes were observed when using an alternative definition of
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flanking regions (see Material and Methods) (Figure 3) (Supplementary Figure S9,10). These

patterns in which the lowest methylation level is observed near the flanking regions agree

with the finding that methylation can inhibit the binding of RNA polymerase II and

transcriptional initiation (Lorincz et al. 2004). Among CG, CHG and CHH sites, the

methylation level is the strongest at CG (mean ML=0.458), (Figure 3A). The average

methylation level in flanking regions (promoters and downstream regions) of genes retained

after a WGD is significantly lower than the methylation levels of genes belonging to other

groups ), indicating that duplicates retained after a WGD are transcriptionally less repressed

by methylation in flanking regions. This is displayed in Figure 3 for methylation levels

observed in leaf. Similar figures were obtained for the methylation data obtained from other

tissues (Supplementary Figure S9,10). This average lower methylation level in flanking

regions for genes that were retained after a WGD is in line with their relatively higher

expression level and breadth. In contrast, the higher expression level and breadth of

single-copy genes as compared to genes from other groups seem not to be associated with

relatively lower methylation levels of flanking regions: single-copy genes display a higher

methylation level in their promoters than genes belonging to the other groups (Kruskal-Wallis

test, p-values<0.01).

In plants, (24-nt) RNA-directed DNA methylation (RdDM) is frequent in regions

containing transposable elements (TEs), likely because most TEs need to be silenced to

reduce TE activity and maintain genome stability. Hence, we assessed the degree to which

differences in methylation level in gene flanking regions can be associated with the presence

of TEs, including both TEs with 24-nt small (interfering) RNA (sRNA+TE) and those without

(sRNA-TE) (Zhai et al. 2008) (see Methods). Interestingly, the differences in TE density,

especially of sRNA-TEs, between the different gene groups resembles the distribution pattern

of the overall CG and CHG methylation levels, where the gene group representing duplicates

retained after a WGD shows the lowest average TE density in gene flanking regions and

concomitantly also the lowest average methylation levels in these flanking regions

(Supplementary Figure S11).
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Unlike gene flanking regions, the methylation level along the gene body (gene region)

seems to be more related to differences in gene expression among the different gene groups.

Whereas DNA methylation is generally believed to repress gene expression (Weber et al.

2007; Stroud et al. 2013; Hirsch and Springer 2017), we found that higher gene body

methylation level tends to occur in the gene groups with higher expression level and breadth,

i.e. single copy and WGD duplicates. Interestingly, we found that for the group of single-copy

genes, on average, the higher methylation level in the gene body seems to correlate with their

greater gene length and exon number (Kruskal-Wallis test, all p-values<0.01) (Figure 2I,J).

The fact that introns often contain TEs which are often associated with higher methylation

levels might explain why single-copy genes also display the highest TE density in their gene

body (Kruskal-Wallis test, all p-values<0.01) (Figure 3)(Supplementary Table S6)(Swinburne

and Silver 2008; Lisch and Bennetzen 2011).

WGD-derived duplicates are constrained by gene dosage balance

The evolutionary fate of duplicates is often explained employing the gene balance hypothesis

(GBH): genes with regulatory or signaling functions such as transcription factors or kinases

will largely impact the regulatory network after a duplication because of their hub-like

properties. Such duplicates are preferentially retained because the loss of one copy might

disrupt many genes to which they directly or indirectly connect (Rody et al. 2017; Tasdighian

et al. 2017a). If gene balance plays a role in the preferential retention of duplicates after a

WGD, this should be reflected in the topological properties of these WGD duplicates

(Freeling and Thomas 2006). To assess the effect of gene balance, we analyzed the

topological properties of genes belonging to each of the studied gene groups in the physical

interaction network. As 27,458 out of 32,124 lotus genes (85.5%) can have the closest

ortholog to corresponding Arabidopsis genes, the protein-protein interactome map from the

'Arabidopsis Interactome Map' was used as a scaffold for the lotus protein-protein interaction

(PPI) network (see Methods)(Arabidopsis Interactome Mapping Consortium, 2011). We

found that indeed genes retained after a WGD show the highest average number of PPIs
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(mean PPIs=1.31) (Kruskal-Wallis test, all pvalues<0.01), while genes belonging to the other

groups only differ marginally in the number of PPIs in which they tend to be involved (Figure

2K). Even though the analyses above suggest that, based on their relatively high expression

level and breadth, single-copy genes are likely to be the more essential genes, these

single-copy genes are not involved in more PPIs than genes from other groups. It appears that

single-copy genes tend to immediately return to their single-copy status after a WGD because

little dosage balance constraint is imposed by the interaction network and a strong selection

against gene redundancy is present (De Smet et al. 2013). Larger protein length for genes is

often found to be associated with the possibility of increased interfacing with different

interactors (Jones and Thornton 1996; Caffrey 2004). Intriguingly, we also found that genes

retained from a WGD have the largest average CDS or protein length (Kruskal-Wallis test, all

p-values<0.01), whereas genes retained after small-scale duplications show a comparably

smaller protein length, which further supports the stronger constraint of dosage balance on

genes retained from aWGD (Figure 2L).

For the different groups of genes, we also assessed the bias in which genes are retained

following duplication by calculating their Gene Ontology (GO) enrichment (K-S test with

pvalue<0.01). We showed that the top 30 most significantly enriched GO terms for gene

groups with different duplication status have no overlapping functionalities (GO terms)

(Supplementary Figure S10). In line with the GBH, we observed that genes retained after a

WGD are mostly enriched in biological terms relating to protein phosphorylation and

regulation of transcription (Supplementary Figure S12). In addition, we found that duplicates

from the lotus WGD were significantly enriched in genes related to trehalose biosynthesis,

polyamine biosynthesis, xylem, and phloem development (Supplementary Figure S12). These

duplications might have contributed to unique features of lotus: because both trehalose and

polyamine (metabolites) help plants to survive in stresses such as drought and cold (Zentella

et al. 1999; Montilla-Bascón et al. 2017; Zhao et al. 2019), the unique longevity of lotus seeds

and their survival during K-pg boundary might have benefited from the duplication of these

biosynthesis genes. Also, the well-developed aerenchyma in stem and rhizome of lotus might
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have benefited from the duplication of genes related to xylem and phloem (Casto et al. 2018).

In contrast, small-scale duplicates (groups of tandem and proximal duplicates) are mostly

enriched in metabolic processes, while genes resulting from a combination of WGD&TD are

enriched in transport processes (Supplementary Figure S12). Thus, both the PPI network and

GO functional enrichment analyses suggest that gene-balance-driven selection determines the

retention of duplicates after a WGD.

Orphan genes in lotus display unique properties

Orphan genes, comprising 7.32% of all lotus genes, are either single-copy genes or form

dispersed duplicates, suggesting they are either not retained after lotus WGD or appeared after

the lotus WGD (Supplementary Figure S6A, B). They show a much lower average expression

level, an elevated ratio of silent genes and a higher expression specificity than genes with

homology to known proteins (non-orphan genes) (Kruskal-Wallis test, p-values of all pairwise

comparisons <0.01) (Figure 2D, E, F). The relatively higher average π and the ratio of

sequence deletion of orphan genes suggest that they are under more relaxed selection than

genes from other groups (Figure 2G, H). Moreover, they have on average a shorter CDS, a

shorter gene length and the lowest number of exons, implying that they are shorter and have a

less complex gene structure (Figure 2I, J, L). Additionally, orphan genes only display small

differences in ML and TE density between their flanking regions and gene bodies (Figure 3)

(Supplementary Figure S9). Meanwhile, with much higher ML and TE density in gene

flanking regions than non-orphan genes, it is more likely that most dispersed orphan genes

were created by transposed duplications mediated by TEs (Figure 3) (Supplementary Figure

S11). Hence, as orphan genes exhibit features that reflect their relatively weaker functional

relevancy, especially weak expression and rapid sequence turnover within lotus populations,

than all non-orphan genes, they were not used to study the fate of genes after a WGD.

WGD-derived duplicates that have diverged in function
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WGD-derived duplicates can subfunctionalize and/or neofunctionalize due to changes in the

protein-coding domain, or because of regulatory changes causing divergence of expression.

Here, we focused on the latter phenomenon and assessed the degree to which duplicate pairs

retained from a WGD diverged in gene expression behavior. Hereto we relied on the

interconnectivity score calculated based on the coexpression network (Hsu et al. 2011)

(Figure 4A). Based on the interconnectivity score, duplicates retained after a WGD were

subdivided into five groups: gene duplicates belonging to group A (connectivity >0.5 with a

p-value <0.01) tend to share many neighbors in the coexpression network and are unlikely to

have subfunctionalized or neofunctionalized. The degree of connectivity gradually decreases

for duplicates belonging to group B and C but still is larger than what can be expected by

chance, given the local connectivity of the duplicate pairs under study. In contrast, duplicate

pairs belonging to group D share no coexpressed neighbors and the absence of shared

neighbors is significant given the local connectivity of the genes in a pair (connectivity <0.15

and p-value >0.99). These genes diverged in expression pattern are more likely to have

subfunctionalized or neofunctionalized (Figure 4A). Genes belonging to group E (with

connectivity <0.15 and 0.99>x>0.1) show detectable connectivity in the coexpression

network but this connectivity is not higher than what can be expected by chance. As for these

gene pairs, it is difficult to decide whether they share coexpression neighbors, they were not

considered for further analyses.

To compare the degree of functional constraint on duplicates with different levels of

expression divergence, we further assessed sequence and expression related characteristics for

gene pairs belonging to each of the different groups (excluding group E). In line with the

observed increase in expression divergence, also both the number of nonsynonymous

substitutions (dN) and the number of synonymous substitutions (dS) in Group A (the group

with duplicates that display the most conserved expression behavior) are significantly lower

than those in Group D (the group most diverged in expression behavior) (Kruskal-Wallis test,

all pvalues<0.05), which further shows a gradual increase from Group A to Group D (Figure

4B, C). Thus, duplicate pairs that show little expression divergence tend to retain their
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sequence similarity (especially Groups A and B). This indicates that these genes are conserved

and under higher functional constraint which might be related to a relatively stronger dosage

balance. We indeed also observed that duplicates that displayed the largest sequence and

expression conservation (Group A) are also more frequently interacting in the PPI network

than duplicates that display the most divergent expression behavior (Group D) (as assessed by

the degree of the duplicate genes in the protein-protein interaction network) (Kruskal-Wallis

test, all p-values<0.01), and accordingly a gradual decrease from Group A to Group D was

observed, which seems in line with a previous study on WGD-derived duplicates and

small-scale duplicates in Arabidopsis, tomato and maize (Figure 4D) (Defoort et al. 2019).

Moreover, both the average gene expression level and expression breadth (expressed as the

opposite of the Tau index) in Group A are significantly higher than Group D (Kruskal-Wallis

test, all p-value<0.01), which also exhibit a gradual change from Group A to Group D (Figure

4E, F). This indicates that duplicate pairs more conserved in their expression behavior are

involved in more generic functions, whereas as expected, the duplicates more divergent in

expression behavior tend to have more specialized functions. The small difference of

tissue-specificity (Tau index) between Group A and Group B might indicate they are both still

under strong functional constraints (Kruskal-Wallis test, all p-value=0.141). However, we did

not observe that the degree of expression divergence between duplicated gene pairs belonging

to different groups exhibits any significant association with overall methylation level (in

tissues) or TE density (Supplementary Figure S13-S15). This suggests that the gradual

increase in gene expression level of duplicates from Group D (less conserved in expression

behavior) to Group A (most conserved in expression behavior) is not related to a decline in

methylation level. Because the methylation level of a gene can change in different tissues, we

also calculated how the methylation pattern between duplicates is different in a well-defined

region of the gene (gene body, upstream or downstream) by using correlation coefficient (r).

A gene’s methylation pattern is here defined as the variable of methylation levels in the four

tissues on a defined region of the gene (see Materials and Methods). This analysis was

performed for CG, CHG and CHH methylation, and for each genic region separately. We

found that duplicates belonging to group A (the group most conserved in expression behavior)
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display significantly more correlated CG methylation patterns in their genic region (with the

highest r) than those of group D (Kruskal-Wallis test, all p-value<0.01), with a gradual

decline from Group A to Group D (Figure 4G). This trend was not visible for the CHG nor

CHH sites in upstream and downstream regions of duplicates (Figure 4H, I) (Supplementary

Figure S16A-F). This suggests that the level to which CG methylation occurs in different

tissues tends to be more conserved for duplicates that are more conserved in expression

behavior. Subfunctionalized genes tend to display more differences in CG methylation level

across tissues in their genic regions.

The duplicates with the most conserved expression behavior (Group A) are enriched in

GO terms related to protein translation (ribosome) and regulation of transcription, both

functions which are known to be dosage-sensitive (Supplementary Figure S17) (Edger and

Pires 2009; Jiang et al. 2013). In contrast, the duplicates that are most diverged in expression

(group D) are mainly enriched in transport mechanisms (e.g. transmembrane transport,

spermine biosynthetic process, anion transport), which are not typical dosage-sensitive

functions. As a reference, we also analyzed duplicates from the Arabidopsis K-pg boundary

WGD (At-β) and the recent WGD (At-α) with a similar strategy (using a similar grouping

based on their degree of expression divergence) (Supplementary Figure S18). In line with our

results in lotus also here GO terms related to ribosome synthesis and regulation of

transcription and biological processes are enriched in the groups representing the genes that

displayed the least expression divergence after duplication (respectively Group A of At-β and

At-α) (Supplementary Figure S19, S20). For the duplicates from At-β (Group D) that diverged

most in expression, GO terms related to response to chemicals, hormone, and stimulus were

most enriched whereas for the diverged genes of At-α (group D) enriched GO terms related to

membrane, transferase activity, and oligopeptide transporter activity (Supplementary Figure

S19, S20). This analysis shows that both in lotus and Arabidopsis duplicates that display the

least expression divergent are related to dosage-sensitive functions whereas the duplicated

most divergent in expression (sub-functionalized) tend to have lineage-specific functions. For

example, group D in lotus was enriched in ‘circadian regulation of calcium ion oscillation’.
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This enrichment could be associated with the presence of four lotus genes (namely,

Nn-CRY1a,b and Nn-CRY2a,b) being homologous to respectively Arabidopsis Cryptochrome

1 (CRY1) and Cryptochrome 2 (CRY2) (Figure 4A) (Supplementary Figure S17, S21). While

CRY1 is a flavin-type blue-light photoreceptor, participating in blue-light induced stomatal

opening and thermomorphogenesis, CRY2 is a blue/UV-A photoreceptor controlling flowering

time and cotyledon expansion (Endo et al. 2007; Wang et al. 2016; Zhou et al. 2019).

Therefore, these four circadian rhythm related genes that underwent post-WGD

subfunctionalization might be associated with the lineage-specific adoption of lotus specific

characteristics related to the rigorous rhythm of flower opening and closure.

Subgenome dominance and fractionation

Subgenome dominance is a phenomenon in polyploids, particularly allopolyploids, in which

genes are preferentially lost from one parental subgenome and for which the genes that are

retained on this parental subgenome are also expressed at lower levels than their

corresponding copies on the alternative parental subgenome (Wang et al. 2017; Zhao et al.

2017; Liang and Schnable 2018). Here we wanted to assess whether we could find evidence

for subgenome dominance in lotus. For most syntenic blocks, there are many more

non-anchor genes (singlets) than anchor genes (collinear genes), suggesting there has been

extensive gene loss and genome rearrangement after the lotus WGD (Figure 5A). Most of the

syntenic genome fragments are different in the degree to which gene duplicates are retained

(retention of gene numbers), and all pairs of the syntenic regions are different in length

(Figure 5A). Only 19 out of the 130 syntenic regions with at least six ancestral genes are

significantly biased in gene retention (χ2 test, p<0.05), rendering it is difficult to partition

syntenic genomic fragments based on the significance of gene retention. (Supplementary

Table S7). Hence to study subgenome dominance we instead grouped the detected syntenic

genomic fragments into two groups based on their number of retained ancestral genes and

length of the syntenic fragments: we distinguished a group of respectively the less (LF) and

the more fractionated regions (MF) (Figure 5A). Duplicated genes of which one copy has an
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FPKM that is twice as high as that of the alternative copy were identified. The copy with the

higher FPKM was referred to as the dominant copy. Interestingly, less fractionated fragments

always have a higher ratio of copies with dominant gene expression (mean=34.49%,

SD=1.16%) than more fractionated fragments (mean=29.97%, SD=1.16%). This subgenome

dominance can be congruently observed for all 41 surveyed RNA-seq samples obtained from

different tissues (Figure 5B). In addition, by investigating the CG, CHG and CHH

methylation and the ratio of sRNA-TE and sRNA+TE in both genic and flanking regions, we

found that methylation level and TE density are significantly lower in the less fractionated

fragments than in the more fragmented ones (Mann-Whitney U test, all p-value<0.01). This

association between subgenome dominance and differential methylation might underly the

expression bias between the two copies (Figure 5C-H) (Supplementary Figure S23, S24).

Next, we wondered whether the association between subgenome dominance and

differential methylation would still hold if we would focus on the subgroups of genes that are

respectively more or less subfunctionalized (where the level of subfunctionalization is proxied

by the degree to which the duplicates diverged in expression behavior, see above). We noticed

in the analysis performed above that duplicate pairs with more conserved expression behavior

across tissues (group A ) tend to have mutually more similar patterns of CG methylation

levels on gene body across tissues than duplicates with more divergent expression behavior

(group D). Because of the aforementioned observation, we would expect that duplicates with

more conserved expression behavior would possibly display a smaller difference in

methylation level between the MF and LF regions than the duplicates with more divergent

expression behavior (group D), i.e. group A might be less likely show subgenome dominance.

However, the (most) subfunctionalized duplicate pairs (Group D) do not show any remarkable

differences in methylation level as compared to pairs from the other groups (Supplementary

Figure S25-S30). This indicates that subgenome dominance is likely a phenomenon that acts

independently from subfunctionalization (as defined in this work).

Discussion
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Since WGD is frequent and common during plant evolution (Cui et al. 2006; Vanneste et al.

2014; Zwaenepoel et al. 2019; Zwaenepoel and Van de Peer 2019), understanding how

different genes evolve after a WGD is important for evolutionary biology. In this study, we

updated the assembly and annotation of the lotus var. ‘China Antique’ genome by using

long-read sequencing data and HI-C. This updated reference assembly largely improved the

detection of collinearity to the other species, as well as within genome collinearity (relics of

WGD). Notably, we performed integrative methylation and expression analyses which, when

combined with all relevant genomic analyses, provide a unique opportunity to study how

functional constraints and dosage balance may determine the fate of genes after a single round

of WGD. We observed that single-copy genes display the highest expression level and breadth

and do not show a hub-like behavior by having few protein interactors. In line with a previous

study, also in lotus single-copy genes maintain their single-copy status regardless of a WGD

because there appears to be a strong selection against gene redundancy (Paterson et al. 2006;

De Smet et al. 2013; Li et al. 2016). The observed differences in expression behavior and the

observed functional bias among duplicates after the WGD in lotus are in line with the GBH

(Birchler et al. 2005; Freeling 2009; Bekaert et al. 2011; Birchler and Veitia 2012; De Smet

and Van de Peer 2012; Tasdighian et al. 2017a). Duplicates retained after a WGD are on

average more highly expressed, show a functional bias towards conservative functions shared

among plant lineages such as gene transcription and signaling, have the highest number of

protein-protein interactions, and are the greatest in CDS length by having the longest proteins

potentially providing more interface(s) for interacting proteins. However, in keeping with

previous studies, local duplicates in lotus show lower and more condition-dependent

expression, and are enriched in lineage-specific functions such as metabolism,

disease-resistance and other dosage-insensitive functions (Rodgers-Melnick et al. 2012; Wu et

al. 2012; Denoeud et al. 2014; Lan et al. 2017).

The above observations are further supported by evolutionary patterns observed at the

sequence level (nucleotide diversity and the ratio of sequence deletion in gene coding regions).

Single-copy genes show the highest sequence conservation which is consistent with studies in
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Arabidopsis (De Smet et al. 2013). In addition, WGD duplicates exhibit relatively higher

sequence conservation than local duplicates, agreeing with what has been observed in

Arabidopsis, rice and Populus (Rodgers-Melnick et al. 2012; Wang 2013). The degree to

which genes display sequence conservation seems to be correlated to their expression breath

rather than to their expression level. Genes that have been retained following multiple ways of

duplications such as TD and WGD have been suggested to have undergone strong selection

for higher dosage (Katju and Bergthorsson 2013). For instance, in lotus, the expansion of the

LPR1/2 gene by TD and WGD resulted in adaptation to a low-phosphate aquatic environment

(Ming et al. 2013). Other examples of multiple duplication events in certain gene families in

Arabidopsis and Brassica have been associated with increased immunity (Hofberger et al.

2015). Interestingly, among all locally duplicated genes detected in our study, genes that

underwent both ‘WGD&TD’ show significantly higher average expression levels, lower

methylation levels and lower TE densities in promoters than proximal and tandem duplicates.

This suggests that also in lotus, genes that underwent both WGD and tandem duplication are

selected for the higher overall gene products not only through multiple duplication events but

also by other mechanisms such as transcriptional and epigenetic regulation.

Notably, we could show that the relatively higher expression level of genes retained after

WGD might be associated with a differential epigenetic regulation. Cytosine methylation in

genic and flanking regions affect gene expression (Hirsch and Springer 2017). We observed

that indeed genes that were retained after a WGD showed decreased methylation levels in

gene flanking regions as compared to other gene groups explaining their higher expression

level. In addition, as was observed in other studies, increased methylation was associated with

a higher presence of TEs (Weber et al. 2007; Zemach et al. 2010; He et al. 2011; Park et al.

2012; Stroud et al. 2013; Hirsch and Springer 2017). In contrast to what is generally expected

i.e. that gene body methylation generally represses gene expression, we found that lotus

single-copy genes which are the most abundantly expressed were also the most abundantly

methylated in their gene bodies. This has also been observed in rice (Yupeng Wang, Wang, et

al. 2013). So in lotus, it appears that gene body methylation of single-copy genes seems to
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induce expression rather than repressing it (Su et al. 2011; Takuno and Gaut 2012; Bewick et

al. 2016). In lotus, the observed gene body methylation pattern of single-copy genes is also

associated with the presence of TEs. The abundant methylation on the gene bodies (genic

regions) for single-copy genes could be associated with a similar TE distribution and the

presence of abundant introns, indicating that methylation is involved in silencing TEs.

Alternatively, it has been shown that gene body methylation can enhance splicing accuracy by

improving the distinction of exon-intron boundaries (Lorincz et al. 2004; Luco et al. 2010).

This might be particularly relevant in maintaining the functional integrity of single-copy

genes, given their high intron number (Lorincz et al. 2004; Luco et al. 2010). However, future

functional and genetic studies on TEs and introns of single-copy genes are necessary to

support these hypotheses.

Lotus orphan genes were treated separately in the current study because of their

evolutionary transience. The lotus WGD occurred 66 mya after the split with its closest

sequenced relative, Macadamia, about 111 mya (Ming et al. 2013; Hedges et al. 2015). Their

low expression level, high expression specificity, and high methylation level imply that

orphan genes tend to be transcriptionally repressed to avoid producing nonfunctional peptides

(proteins) and that they are not required in most tissues or organs. Their small protein size,

gene length, and exon number are consistent with observations in Drosophila and Arabidopsis

(Guo 2013; Neme and Tautz 2013; Palmieri et al. 2014). Although their high nucleotide

diversity suggests relatively low functional importance, their functionality cannot be excluded

(Li et al., 2009; McLysaght and Hurst, 2016).

Given that long-retained duplicates from a WGD are important genetic material for plant

innovation and evolution, our current study further focused on how those retained duplicates

diverge in expression pattern and level across different lotus tissues. Whereas maintaining

gene balance plays right after WGD, subfunctionalization and neofunctionalization explain

the long-term evolution of duplicates retained from WGD (Lynch and Force 2000; Duarte et

al. 2006; Bekaert et al. 2011; Jiang et al. 2013; Gout and Lynch 2015; Teufel et al. 2016). In

lotus, WGD duplicates displayed a continuous spectrum of expression divergence where some
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duplicates share largely the same coexpression partners whereas other duplicates display a

completely distinct expression pattern. Lotus duplicates that display lower expression

divergence tend to correspond to the hubs of PPI networks, have relatively longer protein and

gene lengths, display higher average expression levels and breadth, more similar pattern of

change of CG methylation in gene bodies across different tissues between duplicate pairs,

relatively low pairwise amino acid sequence divergence and low nucleotide diversity, which

all support they are under a stronger gene balance constraints (De Smet and Van de Peer

2012). Many of these observations are in accordance with studies in, for instance, Arabidopsis,

maize and tomato (Defoort et al. 2019). Yet, in contrast to lotus, these plants underwent

sequential rounds of WGDs which makes it difficult to study the fate of the most ancient

duplicates. Hence the fact that the same findings made in these other species are also

observed in lotus indicates that they are truly associated with the fate of ancient duplicates.

Subgenome dominance can be an important source of bias in expression level between

duplicated gene pairs retained from a WGD and can result in significant differences in gene

retention (content), the intensity of TE insertion, methylation and population-level

polymorphisms between subgenomes (Hughes et al. 2014; Woodhouse et al. 2014; F. Li et al.

2015; Cheng et al. 2016; Zhao et al. 2017). Depending on the studied species, the level of

subgenome fractionation that occurs after a WGD can be significantly different, ranging from

extensive fractionation in e.g. monkeyflower (WGD estimated at 140 mya), maize (11.9 mya),

Brassica (13–17 mya), Arabidopsis (40 mya) and cotton (60 mya) (Hughes et al. 2014;

Woodhouse et al. 2014; F. Li et al. 2015; Cheng et al. 2016; Zhao et al. 2017) to little

subgenome fractionation in e.g. soybean (5–13 mya), banana (65 mya), poplar (8 mya)

fractionation (Garsmeur et al. 2014; Zhao et al. 2017). In our study, about 14.6% of syntenic

block pairs in lotus show significant bias in fractionation, a level which is in between the

fraction observed in the paleoautopolyploid soybean (5.4%) and the paleoallopolyploid maize

(31%) (Zhao et al. 2017). The less fractionated blocks show on average about 4.52% more

(expression) dominant copies than the more fractionated blocks, which is a difference that is

higher than what is observed in soybean (0~1%) but lower than in maize (~10%) (Zhao et al.
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2017). As the extent of biases in lotus (66 mya) is between a paleoautopolyploid and a

paleoallopolyploid, likely, its two ancestral parental genomes had already diverged to some

extent before the formation of ancient polyploid. So far, lotus shows evidence of one of the

oldest appearances of subgenome dominance among the abovementioned plant genomes.

Materials and Methods

Plant material, PacBio Sequel, and HI-C sequencing

Sacred lotus ‘China Antique’ was grown and collected from Wuhan Botanical Garden of the

Chinese Academy of Sciences. DNA from young leaves of ‘China Antique’ was extracted

using Plant DNA Isolation Reagent (Tiangen, China). Two DNA libraries (insert sizes of

10,123 bp and 10,157 bp, respectively) were constructed according to the PacBio library

preparation protocol and sequenced on a PacBio Sequel platform (Pacific Biosciences, USA)

at Annoroad Genomics (Beijing, China). Subreads with a quality score under 0.8 were

discarded. The HI-C DNA library of ‘China Antique’ was prepared at Annoroad Genomics

(Beijing, China) under a previously published protocol (Lieberman-Aiden et al. 2009). Briefly,

the nuclear DNA of young lotus leaves was cross-linked inside the tissue cell sample. Then,

the extracted DNA was digested with the restriction enzyme (HindIII/MboI). Biotinylation

was tagged at the sticky ends of the digested DNA fragments, and then mutually ligated at

random after dilution. The library of condensed, sheared, and biotinylated DNA fragments

were prepared for paired-end (PE) sequencing with 150 bp reads on Illumina HiSeq platform.

Chromosome-level assembly

All contigs were assembled using PacBio and Illumina reads. SparseAssembler was applied to

assemble Illumina PE reads of lotus ‘China Antique’ into short but accurate Illumina contigs

(Ye et al. 2011; Ye et al. 2012). These Illumina contigs and PacBio Sequel reads were

co-assembled into longer contigs with the hybrid assembly tool DBG2OLC (Ye et al. 2016).
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Errors in these hybrid contigs were further polished with all Illumina PE reads using

BWA-MEM and Pilon 2.10 (Li and Durbin 2009; Walker et al. 2014). The HI-C sequencing

reads were mapped on the ‘China Antique’ hybrid assembly contigs using BWA-MEM (Li

and Durbin 2009). Finally, the chromosome-level scaffolding of these contigs was performed

with LACHESIS (Burton et al. 2013). Additional gaps in pseudochromosomes were filled

with PacBio subreads using Jelly and polished with Illumina reads using Pilon 2.10 (English

et al. 2012).

Repeat annotation

Repeats including transposable elements on the new ‘China Antique’ assembly were

annotated following a previously published protocol (Campbell et al. 2014). Generally,

MITEs (miniature inverted-repeat transposable elements) were predicted using MITE-Hunter

under default settings (Han and Wessler 2010). The most abundant plant TEs (transposable

elements), LTRs (long terminal repeat retrotransposons) were collected, false-positives were

filtered, and redundancy was reduced using LTR-harvest, LTR-digest and the Perl scripts

provided by the protocol ‘Repeat Library Construction-Advanced’

(http://weatherby.genetics.utah.edu/MAKER/wiki/index.php) (Ellinghaus et al. 2008;

Steinbiss et al. 2009). Other repeats were collected by RepeatModeler

(http://www.repeatmasker.org). Gene fragments in all collected repeats were excluded by

searching against all plant protein sequences from Plant Plaza 4.0 (Van Bel et al. 2018). After

collecting and building the lotus repeat database, the genome was further annotated using

RepeatMasker (http://www.repeatmasker.org).

Gene Annotation

Protein-coding genes on the ‘China Antique’ assembly were annotated based on (1) RNA-seq

mapping, (2) protein homology searches and (3) ab initio prediction. For gene prediction with

transcriptional evidence, 41 public available RNA-seq data from leaf, petioles, rhizome, root
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and the apical bud of lotus were downloaded from NCBI SRA database and mapped on the

genome using HISAT2-StringTie pipeline (Kim 2015; Pertea et al. 2015). Transcript

coordinates from different RNA-seq samples were further merged using TACO (Niknafs et al.

2016). Coding regions of transcripts were annotated using Transdecoder

(https://github.com/TransDecoder). Homology-based gene prediction was performed using

GeMoMa with genome sequences and gene coordinates from Arabidopsis thaliana, Carica

papaya, Vitis vinifera, Macadamia ternifolia (Proteales) and Brachypodium distachyon as

input (Keilwagen et al. 2016; Nock et al. 2016; Van Bel et al. 2018). Ab initio gene prediction

was performed using Braker2 which took in intron hints from transcript coordinates of

RNA-seq based assemblies (Hoff et al. 2015). The final consensus gene annotations were

produced by EVidenceModeler with weights of ‘RNA-seq > gene homology > ab initio’

(Haas et al. 2008). The longest transcript (isoform) for each gene based on RNA-seq data was

retained to represent the expressed lotus genes for methylation analyses. Gene ontology

annotations were further performed using the 'non-redundant' database of plants via

BLAST2GO with default settings (Conesa et al. 2005). The lotus interactome was inferred

using PPI data from Arabidopsis by the top BLAST hit from orthologs (Arabidopsis

Interactome Mapping Consortium, 2011; Yang et al., 2013).

Validation of genome assembly

Accuracy and structural completeness of the new genome assembly were assessed using (1)

previously published SNP markers from genetic linkage groups, (2) ratio of genome

collinearity with other species and (3) conserved single-copy genes of plant from BUSCO.

For comparison, SNP markers from a high-density lotus genetic map from a previous study

were downloaded and mapped onto the new and old ‘China Antique’ assemblies (Liu et al.

2016) using bowtie allowing no mismatch other than SNP site (Langmead 2010). Collinearity

between the genetic map and the genome assembly was anchored by SNP markers.

Distributions of SNP markers on genome assemblies were inspected by bar plots, and

collinearity was visualized by dot plots. To assess the genome architecture using genome
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collinearity, we searched homologous genomic blocks in genomes of two monocots, Oryza

sativa (rice) and Brachypodium distachyon, against the new (v2018) and old (v2013) ‘China

Antique’ assemblies using MCScanX (Wang et al. 2012). First, potential anchors between the

two genomes were identified using BLASTP (E <1e−5). Then, MCscanX found all

orthologous syntenies with at least six anchor points. For further comparisons, orthologous

syntenies between other eudicots species and the two monocot representatives were

downloaded from Plant Genome Duplication Database (Lee et al. 2013). To assess the

completeness of the gene regions in the assembly, 1440 conserved plant single-copy genes as

a benchmark were searched using BUSCO v2 (Simão et al. 2015).

Classification of genes by duplication status

Duplicated genes in extant genomes typically originated through different duplication events.

Depending on the size of the genomic regions involved in the duplication event, a distinction

is made between small (SSD) and large-scale duplications (LSD). LSD can be maintained as

syntenies which likely are retained from WGD. Within SSD, a distinction is made between

local (tandem and proximal duplication) versus dispersed duplications (Freeling 2009;

Yupeng Wang, Li, et al. 2013). Tandem duplicates lead to a cluster of two or more consecutive

paralogous sequences while proximal having one or a few intervening genes. Dispersed

duplicate are mainly unclassified duplicates. Genes that underwent both WGD and tandem

duplications often exist, which we refer to as ‘WGD&TD’ (Matus et al. 2008; Liebrand et al.

2014).

To identify ancient genome duplication of lotus, homologs were first identified by

all-against-all BLASTP for syntenic anchors (E <1e−5). Intra-specific syntenic blocks were

identified with the same approach as the one used for the identification of orthologous

synteny described above using MCscanX (Wang et al. 2012). To identify WGDs, raw 4dTv

(the number of transversion 4-fold degenerative sites) of all syntenic paralogous pairs were

calculated and further corrected for possible multiple transversions at the same site based on a
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previous method (Tang et al. 2008). A histogram of 4dTv for all syntenic paralogs was plotted

with a bin size of 0.01. To classify syntenic blocks according to WGDs, the median of 4dTv

of each syntenic block was used. Syntenic blocks with less than six duplicate pairs with valid

4dTv after correction were classified as syntenies of uncertain origin. Other divergence

parameters including dS or Ks (synonymous substitution rate), dN or Ka (nonsynonymous

substitution rate) and dN/dS for all syntenic paralogs were calculated using codeML from

PAML package (Yang 2007). Further, 4dTv of orthologous divergence were also plotted in

histograms. For the fragmented genome assembly Macadamia ternifolia, orthologous pairs

were predicted using OrthoMCL (Li et al. 2003; Neale et al. 2014). The chronological order

of WGDs and species split (Nelumbo versus Macademia) were confirmed by the

Mann-Whitney U test based on rate calibrated 4dTv.

Single-copy genes and genes of other duplication status including those originating from

dispersed duplication, tandem duplication, and proximal duplication events, WGD&TD were

also detected by MCscanX (Wang et al. 2012). All lotus genes without homology to other

sequenced species were defined as orphan genes, while the rest was regarded as non-orphan

genes whose ancestral proteins appeared at least before the split of lotus and Macademia (111

mya). The family Nelombonaceae (in Proteales) is a species-poor clade with only two closely

related Nelumbo species. To obtain lotus orphan genes, Macadamia ternifolia (the other only

sequenced Proteales genome) and PlantPlaza 3.0 database were used in phylostratigraphic

analyses (Arendsee et al. 2014). The groups of genes of different duplication status were used

for subsequent comparative analyses. As most orphan genes are evolutionarily transient, they

were analyzed separately (Arendsee et al. 2014).

To explore the dosage sensitivity for our studied groups (subdivided as described above),

we defined for each lotus gene its orthologs inMacademia and Vitis vinifera using OrthoMCL

(Li et al. 2003; Neale et al. 2014). For each gene, we calculated the average copy number of

its orthologs in the three taxa. For each lotus gene, its coefficient of variation (C.V.) in the

number of copies observed in the three species was used to estimate the dosage-sensitive. For

each of the studied gene groups, the average copy number and C.V. were reported.
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Nucleotide diversity and the ratio of sequence deletion of lotus genes

Illumina re-sequencing data from 18 Asian lotus individuals including rhizome lotus, flower

lotus, seed lotus, wild lotus, and Thai lotus were downloaded from NCBI (Supplementary

Data) (Huang et al. 2018). Illumina reads were mapped to the new ‘China Antique’ assembly

using BWA-mem (Li and Durbin 2009). Mapped files were processed by Picard

(https://broadinstitute.github.io/picard/). The SNP variants were called by HaplotypeCaller of

GATK 3.7 with further hard filtering of ‘QD < 2 || FS > 60 || MQ < 30’ (McKenna et al. 2010).

Nucleotide diversity (π) of each CDS from each annotated gene was estimated using

Popgenome (Pfeifer et al. 2014) in R. The ratio of sequence deletion for each gene is

calculated by the ratio of InDel length in each CDS. A Mann-Whitney U test or

(non-parametric) Kruskal-Wallis test was applied to compare average π and the average ratio

of sequence deletion of gene CDS between (among) different gene groups in Graphpad

PRISM 7.

Expression analysis

All 41 RNA-seq samples used for gene annotation were also used for expression analyses.

The average expression level per gene for each gene group showing different fates after the

lotus WGD was estimated by the average log-transformed FPKM values of the genes in a

group. Tissue-specific expression was assessed by the Tau index. (Yanai et al. 2005), To

define ‘tissue’ we clustered the 41 samples using the log-transformed FPKM data (Euclidean

distance). Samples clustered in 8 distinct tissue groups: leaf, petiole, apical, rhizome

internode, root, rhizome (later swelling), rhizome (middle swelling), rhizome (stolon). The

Tau index was calculated as follows:

;;
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where and is the expression for tissue i.

To build the coexpression network, the genes with an expression value in at least 2 samples

were retained (28578 are present in the network with 480849 edges). The ‘rank of correlation

coefficient’ (Obayashi and Kinoshita 2009) was used to determine the degree of pairwise

coexpression. To calculate the rank-based correlation the gene-gene Pearson correlation

matrix derived from the log2-transformed FPKM values was transformed into a rank matrix.

For every gene-gene combination the Mutual Rank score was calculated using the following

formula:

where Rank(A →B) is the rank of the correlation of gene B with gene A as compared to its

correlation with all other genes (Obayashi and Kinoshita 2009). Smaller MR scores

correspond to a higher degree of pairwise correlation between two genes and can be

converted to a network edge weight using the following formula

guaranteeing that the range of edge weights in the

coexpression network scales between 0 and 1. A small value (one) was added to the FPKM

values before log transformation to avoid having undefined values of the rank-based

correlation for zero values.

Grouping WGD genes based on their expression behavior

Post-WGD duplicate pairs were subdivided into groups based on their expression divergence.

To assess the degree to which duplicate pairs diverged in expression, we used an
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interconnectivity score (Hsu et a. 2011). The interconnectivity between a pair of duplicated

genes assesses the degree to which two duplicate genes share neighbors in the coexpression

network. The higher the connectivity score, the more the duplicates are assumed to share the

same expression profile.

where N(i) and N(j) describe the number of neighbors that are located at most three edges

distance of respectively the nodes i and j in the duplicate pair (i, j). The number of shared

neighbors between the genes of the duplicate pair is normalized by the total number of

neighbors of the two genes in the duplicate pair.

Also, we determined for each duplicate gene pair whether the number of shared

neighbors that contributed to the connectivity measure is statistically significant using the

hypergeometric test: for every duplicate pair, the number of up to third order neighbors for

one gene NA was determined and used to calculate the chance of a success p = NA/N where N

is the total number of genes in the genome. The number of up to the third-order neighbor for

the second gene in the pair (NB) was used as the number of trials and the number of neighbors

shared between A and B was considered the number of successes. Using these parameters the

cumulative mass function was calculated to calculate the p-value i.e. observing the same

number of shared neighbors between two genes just by chance. Based on the combination of

the hypergeometric-value and the connectivity score the duplicates were subdivided in 5

groups: group A with connectivity >0.5 and p-value <0.01, group B with connectivity

0.5>x>0.3 and p-value <0.01, group C with 0.3>x>0.15 and p-value <0.01, group D with

connectivity <0.15 and p-value >0.99 and group E with connectivity <0.15 and 0.99>x>0.1.

Group E contains the genes that show a certain but insignificant connectivity. This category

was not retained for further analysis. Duplicate genes that belong to Group A, B and C share

coexpressed neighbors (more for group A >B>C) and they share more neighbors in the

coexpression network than can be expected by chance given the local connectivity of the
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genes in the pair. Genes belonging to group D show a significant low to no connectivity in the

coexpression network.

Comparisons of different gene features

Genomic traits including the length of the CDS, the number of exons and the gene length

were directly obtained from the lotus genome annotation. Given that there is currently no

protein interactome map for lotus, for those lotus genes displaying homology to Arabidopsis

genes, their number of PPIs were inferred from the closest homolog in Arabidopsis

(Arabidopsis Interactome Mapping Consortium, 2011; Yang et al., 2013). Genomic traits

(CDS length, gene length, exon number) and evolutionary parameters (dN, dS, dN/dS, π) were

summarized and compared between different genes of different groups using (non-parametric)

Kruskal-Wallis test in Graphpad PRISM 7.

sRNA+ transposable element (TE), sRNA− TE and methylation level analyses of gene

duplicates

To test whether TE insertion and methylation level differences might contribute to duplicate

gene expression differences, firstly, small RNAs of ‘China Antique’ were mapped to the

genome using bowtie with zero tolerance of mismatch (Shi et al. 2017). Only uniquely

mapped sRNAs were used to define TEs (Cheng et al. 2016). TEs were classified into sRNA+

TEs and sRNA− TEs based on whether there was any small RNA (sRNA) aligning to them.

Gene flanking regions (defined as the region ± 5 kb the gene body) and gene bodies (defined

as the region between the translation start and stop site) were analyzed using a sliding window.

Regions in the overlap between the flanking region and the gene body were excluded from the

flanking regions. For each 5′ and 3′ flanking region, a 100-bp sliding window with 10-bp step

was applied; for each gene body, the 40 evenly divided windows of the gene body were used

(Wang et al. 2015). For each sliding window, the proportion of the sequence being composed

of sRNA+ TE or sRNA− TEs was calculated. The average proportion in each sliding window
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was calculated for each gene group under investigation. These averaged proportions were

then used to estimate the TE density in the flanking regions and gene bodies of different gene

groups. Whole-genome methylation was analyzed based on bisulfite sequencing (BS-seq) on

young leaves from a wild lotus (Khabarovsk, Russia) (NCBI accession: SRX4410560), petal

(SRX4003561), stamen petaloid (SRX4003562), and stamen (SRX4003563). Flanking

regions as defined above were evenly divided into 100 50-bp windows, and the gene body

was evenly divided into 40 windows (Wang et al. 2015). We included both the exons and

introns to the methylation level of gene bodies because pre-mRNAs, being transcribed from

DNA, contain introns. Methylation level including CG, CHG and CHH sites of different gene

groups was estimated using BS-Seeker2 and cgmaptools for each window (Guo et al. 2013;

Guo et al. 2018). Because the results might be dependent on how the flanking regions and

gene bodies are defined, we redid the methylation level assessment with an alternative

definition of the gene body and flanking regions in parallel. Here we used RNA-seq data to

define TSS (transcriptional start sites) and TES (transcriptional end sites) of the longest

transcript for each gene and defined the flanking regions (Figure 3D-F and Supplementary

Figure S9,10). To measure the similarity of methylation change in the four lotus tissues

between a pair of duplicate genes, mean CG, CHG and CHH methylation levels for 2 kb

upstream and downstream regions, and gene bodies of each gene were calculated by

cgmaptools. For each gene a methylation pattern was defined per genic region (upstream,

downstream and gene body). This pattern is represented as a vector with as entries the average

methylation level for that genic region per tissue. The similarity in the methylation pattern of

duplicates was calculated using the correlation coefficient (r).

Subgenome fractionation and dominance

Subgenome fractionation bias was analyzed as outlined previously (Garsmeur et al. 2014).

Numbers of collinear genes and non-collinear genes for pairs of syntenic blocks were tested

for significant fractionation bias (χ2 Test). Differences in TE ratio and methylation between

collinear genes in less fractionated (LF) and more fractionated (MF) syntenic blocks were
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analyzed with the same approach described above. Subgenome fractionation bias is often

associated with subgenome dominance. To test subgenome dominance, all 41 RNA-seq

samples were used. For each RNA-seq sample, the dominant copy was defined as the one

showing an expression that was more than two-fold higher than the expression level of the

alternative copy (FPKM). Further, for each RNA-seq sample, the ratios of dominant copies in

LFs and MFs were summarized and compared.

Accession Numbers

All data generated in this study are available from the National Center for Biotechnology

Information (NCBI) under BioProject PRJNA481856. The raw PacBio sequences are

deposited under SRR7549129 and SRR7549130, HI-C data were deposited under

SRR7615553 and SRR7631523, and Bisulfite sequencing data were deposited under

SRR7544256. Lotus genome assembly is available at https://nelumbo.biocloud.net.
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Document S1. Supplemental Figures S1–S30.

Document S2. Supplemental Tables S1–S8.
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Figure 1. Circos plot of lotus genome assembly. From outside to inside rings: I: size (Mb)

of the assembly for each chromosome; II: density distribution of genes; III: density

distribution of sRNA- TEs; IV: density distribution of sRNA+ TEs; V: dot plot of nucleotide

diversity of CDS for each gene; VI: methylation level of genes and flanking regions; VII:

gene expression level (log- transformed FPKM value) ; VIII: syntenic paralogs are linked by

colored lines.
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Figure 2. Violin plots of expression, functional and genomic features of genes from

different gene groups (based on duplication status). A. The average copy number of

orthologs. B. Coefficient of variance (c.v) of copy number among taxa. C. Ratio of orthologs

as ‘angio-singles’. D. The mean of log-transformed FPKM. E. The ratio of silent genes. F.

Tissue specificity index (based on tau index). G. The average portion of the deleted genic

sequence in tropical lotus comparing to the reference genome (ratio of deletion) . H.

Nucleotide diversity (π). I. Length of the genic region. J. Exon number. K. The number of

protein-protein interactions inferred from the closest homologs in arabidopsis. L. CDS length.

Black line: median; grey line: quantile.
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Figure 3. Differences in average CG, CHG and CHH methylation level (ML) in lotus leaf

along the gene and flanking regions among different gene groups based on the

duplication status. A-C: methylation of all annotated genes. D-F: methylation of the genes

with RNA-seq evidence..

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article-abstract/doi/10.1093/m
olbev/m

saa105/5826357 by G
hent U

niversity user on 04 M
ay 2020



56

Figure 4. Violin plots of expression, functional, methylation and evolutionary features of

WGD-derived duplicate genes with different level of expression divergence (Group A,

Group B, Group C and Group D).A. Connectivity score. B. dN, non-synonymous mutation.

C. dS, synonymous mutation. D. The number of protein-protein interaction inferred from the

closest homologs in Arabidopsis. E. the mean of log-transformed FPKM. F. tissue specificity

index (based on Tau index). G,H,I. r (correlation coefficient) of CG methylation levels in

tissues between duplicates for gene body (G), upstream (H) and downstream region (I). Black

line: median; grey line: quantile.
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Figure 5. Subegenome fractionation and dominance in lotus. A. Differences in the number

of singlets (non-collinear) genes across 130 pairs of duplicate syntenic blocks. B. The ratios

of dominant copies in collinear genes between less fractionated blocks (LFs) and more

fractionated blocks (MFs) across 41 RNA-seq samples. C-H: Differences in average CG,

CHG and CHH methylation level in leaf along gene and flanking regions between duplicates

that belong to less fractionated blocks (LFs) and more fractionated blocks (MFs). C-E:

methylation of all annotated genes. F-H: methylation of the genes with RNA-seq evidence.
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