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Abstract— In this paper, we propose a multi-view subspace
clustering model for hyperspectral remote sensing images that
makes use of rich complementary information from multiple data
sources (views). To capture the nonlinear data structure in each
view, we introduce a novel type of spatial regularization based on
hybrid hypergraphs. The constructed hybrid-hypergraph in each
view consists of a series of multi-scale local hypergraphs and a spa-
tially non-local hypergraph, which enables a comprehensive anal-
ysis of image data. Experimental results on real data demonstrate
superior performance compared to the state-of-the-art.

1 Introduction
Hyperspectral images (HSIs) acquired by airborne or satellite-
borne sensors measure the objects on the Earth’s surface with
hundreds of spectral bands, offering this way far better dis-
crimination between different materials than conventional mul-
tispectral images. Clustering of HSIs, which groups similar
pixels in an unsupervised manner, is crucial in a number of ap-
plications in remote sensing.

Subspace clustering methods based on a self-representation
model, where the input data is used as a dictionary, enjoy great
success in HSI clustering. Let X ∈ RB×N be the input HSI,
where B denotes the number of bands and N the number of
pixels. Each column of X represents a spectral signature in a
given pixel. The sparse coding problem is defined as follows:

arg min
A

Ψ(X−XA) + λΦ(A), s.t. diag(A) = 0, (1)

where A ∈ RN×N is the coefficient matrix of X; Ψ(X−XA)
is a given loss function accounting for the data fidelity, e.g.,
‖ · ‖2F or ‖ · ‖1; Φ(A) is a regularization term, encoding a priori
knowledge about A; λ is a parameter that balances the trade-
off between the data-fit and regularization terms. The represen-
tative low-rank representation (LRR) [1] and sparse subspace
clustering (SSC) [2] models utilize ‖A‖∗ and ‖A‖1 to promote
the low-rank property and sparseness of the representation ma-
trix, respectively. Recent works improve the clustering perfor-
mance by using spatial regularization, such as the centralized
smoothing regularization [3], `2 norm based regularization [4]
and the `1,2 norm based joint representation [5, 6]. Their re-
sulting coefficients matrix A is combined with its transpose to
yield a symmetric similarity matrix: W = (|A| + |AT |)/2,
which is then applied within the standard spectral clustering.

The main limitation of the aforementioned methods is that
they are designed for processing single-source data without
considering the complementary information from other data
sources/features that can be useful to uncover data clusters.
A recent multi-view sparse subspace clustering method for
HSI [7] fails to employ the spatial information, and due to
this its performance is sometimes inferior to single-view meth-
ods. In this paper, we propose a multi-view subspace cluster-
ing model that combines the information from multiple data

sources and employs effectively local and non-local spatial in-
formation from each of the views.

2 Preliminaries
A hypergraph is a generalization of a normal graph where
edges are replaced by hyperedges, which can connect more
than two vertices simultaneously. The connected vertices cor-
respond to entities with similar characteristics. By enabling si-
multaneous connections among the groups of vertices, the hy-
pergraph encodes effectively high-order geometric data struc-
ture. We denote by Gh = (V, Eh,Wh) a hypergraph where
V = {vi}Ni=1 is the set of vertices corresponding to all the data
points;Eh = {ei}Mi=1 is a collection of subsets of V and each ei
is called a hyperedge of Gh; Wh is a diagonal matrix for the hy-
peredge weights. An incidence matrix H ∈ RN×M represents
the connections of vertices within each hyperedge, defined as:

h(vi, ej) =

{
1, if vi ∈ ej
0, otherwise. (2)

The vertex degree of each vertex vi ∈ V and the edge degree of
each hyperedge ei are given by

d(vi) =
∑

ej∈Eh

Whjjh(vi, ej) (3)

d(ej) =
∑
vi∈V

h(vi, ej). (4)

Denote by Dv and De two diagonal matrices with Dvii =
d(vi) and Deii = d(ei). We formulate a manifold con-
straint based on the hypergraph by Γ(A) = tr(ALAT ), where
L = Dv −HWhD

−1
e HT is the Laplacian matrix of Gh.

3 Proposed Method
Let {Xt ∈ RBt×N}Tt=1 denote the multi-view data, where Bt

is the dimension of the t-th data and T is the number of data
sources. The proposed multi-view subspace clustering model
is formulated as follows:

min

T∑
t=1

(‖Xt −XtAt‖2F + λ1Θ(At)

+ λ2‖Et‖1) + λ3‖Z‖∗
s.t. At =Z + Et (∀t = 1, 2, ..., T )

(5)

where λ1, λ2 and λ3 are positive numbers, At is the coefficient
matrix of Xt and Θ(At) = Γl(A

t) + Γn(At) is a hybrid-
hypergraph-based regularization. Γl(A

t) and Γn(At) are de-
fined respectively by

∑p
i tr(AtLt

li
AtT ) and tr(AtLt

nA
tT ),

where Lt
li

is the i-th Laplacian matrix of multi-scale local hy-
pergraphs, p is the number of scales, and Lt

n is the Laplacian
matrix of a spatially non-local hypergraph in t-th data source.



The global low-rank matrix Z in (5) is shared by all the data
sources and indicates the common underlying low-rank struc-
ture in the lower-dimensional subspaces, while the additive
sparse matrices Et represent the deviations from the consen-
sus matrix. The regularization Θ(At) is utilized to model the
important local and nonlocal spatial information in each data
source, which facilitates the uncovery of the intrinsic data clus-
ter structure. Next, we explain how we construct the hybrid-
graph for each view. For simplicity, we take HSI as an example
by removing the index t. Other available imaging data sources
can be incorporated in similar way.

To exploit the local and non-local spatial information of
HSIs, we build the hybrid-hygergraph composed of two types
of hypergraphs: multi-scale local hypergraphs Gil (i = 1, ..., p)
and a nonlocal hypergraph Gn. Specifically, we first uti-
lize a super-pixel segmentation approach [8] to segment HSIs
into non-overlapping super-pixels under different segmentation
granularities, and then based on the segmentation results we
build the multi-scale local hypergraphs. With varying number
of super-pixels ni(i = 1, ..., p), we obtain super-pixel segmen-
tation maps at different scales. To decide the values of ni, we
adopt a simple strategy by setting ni = 2i−1 · n and p = 4,
where n is the smallest value of ni. We calculate n empirically
as n = b 1

2
√
N
‖∇fs‖1c. ∇fs ∈ R1×N is a vector of thresholded

gradient components

∇fsi =

{
1, if ∇fi > δ
0, otherwise, (6)

where∇f is the gradient of the first principle component of X,
and the threshold δ is defined as δ = 1

N

∑
i∇fi. The threshold

excludes the less relevant edges from ∇f and leaves only the
significant ones for further consideration.

By setting the number of super-pixels as {ni}4i=1, we obtain
a set of super-pixels segmentation maps {Fi ∈ RN}4i=1, with
each Fi = {yi1, yi2, ..., yiN}, where yij is an integer between 1
and ni, indicating the label of pixel xj in i-th level segmenta-
tion. We view each pixel as a vertex and each super-pixel as a
hyperedge, and we calculate the resulting incidence matrix Hi

for the multi-scale local hypergraph Gil as follows:

hi(vj , e
i
k) =

{
1, if vj ∈ eik
0, otherwise, (7)

where eik = {vl}l∈{j|yi
j=k} is the k-th hyperedge in the i-th

hypergraph. We calculate the diagonal hyperedge weights ma-
trices as W i

hjj
=
∑

xk,xl∈eij
exp(−‖xk − xl‖2/σ2

1). The cor-

responding matrices Di
v and Di

e for vertex degree and edge
degree are obtained similarly by (3) and (4). We further cal-
culate the Laplacian matrices of local hypergraphs by Lli =

Di
v −HiWi

h(Di
e)
−1HiT .

For the non-local hypergraph Gn, we first extract centralized
patches for all the pixels by using a square window p × p. Let
Xpi

= [xi,xi1 , ...,xiR−1
] ∈ RB×R denote the hyperspectral

patches for the central pixel xi, where R = p2 is the num-
ber of pixels in a patch and {xij}R−1j=1 are the corresponding
neighbours of xi. Then, we exploit each pixel and its K clos-
est neighbours to construct the hyperedges En

h = {eni }Ni=1

based on the patch-wise similarity, measured by s(xi,xj) =
exp(−‖Xpi

−Xpj
‖2F /σ2

2). Let N (xi) represent the index set
of the neighbours of pixel xi. We derive the incidence matrix
Hn for the spatial-wise nonlocal hypergraph Gn as

hn(vi, e
n
j ) =

{
1, if vi ∈ enj
0, otherwise,

(8)

Table 1: Clustering results in Indian Pines

Methods k-means SSC JSSC SSMLC HMSC
OA(%) 66.91 68.00 89.05 79.23 94.28

κ 0.48 0.53 0.85 0.70 0.92
NMI 0.51 0.45 0.73 0.53 0.83

Table 2: Clustering results in Houston

Methods k-means SSC JSSC SSMLC HMSC
OA(%) 74.97 73.18 79.54 74.05 82.18

κ 0.69 0.65 0.75 0.67 0.78
NMI 0.73 0.79 0.78 0.80 0.83

where enj = {vi}i∈N (xj) is the j-th hyperedge. The val-
ues of hyperedge weights Wn

h are calculated by Wn
hjj

=∑
xk,xl∈enj

s(xk,xl). We calculate vertex degree and edge de-
gree matrices Dn

v and Dn
e similarly using (3) and (4), and

we obtain the Laplacian matrix of non-local hypergraph as
Ln = Dn

v −HnWn
h(Dn

e )−1HnT

.
We solve the optimization problem (5) using the alternating

direction method of multipliers. Once obtaining the global con-
sensus matrix Z, we construct the similarity matrix as W =
(|Z| + |ZT |)/2, which is further applied in the standard spec-
tral clustering [9] to obtain the clustering result.

4 Results and Discussion

We test our hybrid-hypergraph based multi-view subspace clus-
tering (HMSC) on two real remote sensing data sets: In-
dian Pines and Houston. The Indian Pines image is of size
85 × 70 × 200, and contains four classes. We employ its
extended multiattribute profiles (EMAPs) spatial feature as a
second data source. For more details of EMAPs, we refer to
[10]. Houston contains registered HSI and pseudowaveform
LiDAR. The hyperspectral image used in our tests is of size
130 × 130 × 144, and has seven classes. To increase the dis-
criminative ability of LiDAR, we follow [11] and employ the
EMAPs spatial feature of LiDAR as the second data source.

We compare the performance of the proposed method with
three single-view clustering methods k-means [12], SSC [2]
and joint SSC (JSSC) [6], and a multi-view clustering method
SSMLC [7]. The clustering results are reported in Tables 1
and 2 with three quantitative evaluation metrics: overall ac-
curacy (OA), kappa (κ) and Normalized Mutual Information
(NMI). We refer to [13] for the details of clustering evaluation.
For single-view clustering methods, we report the clustering
results with the data source that yields the highest OA. In In-
dian Pines, we find that all the single-view clustering methods
produce a higher accuracy with EMAPs spatial feature. On
the contrary, in Houston, HSI yields better performance. This
demonstrates the varying abilities of data sources in uncover-
ing cluster structure. The results in Table 1 and 2 show that our
HMSC achieves the best result in terms of OA, κ and NMI. The
multi-view SSMLC method performs better than the single-
view SSC model, but worse than JSSC. This can be attributed to
the fact that JSSC takes local spatial information into account,
and SSMLC does not. Our model exploits the rich complemen-
tary information from multi-view data and employs jointly the
local and nonlocal spatial information in each view, facilitating
thereby the effective uncovery of intrinsic data cluster structure.
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Based Subspace Clustering of Hyperspectral Images,” Re-
mote Sensing, vol. 12, no. 5, 2020.


