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Abstract 

Influenza virus infections are major causes of morbidity and mortality. Research using cultured cells, bulk 

tissue, and animal models cannot fully capture human disease dynamics. Many aspects of virus-host 

interactions in a natural setting remain unclear, including the specific cell types that are infected and how they 

and neighboring bystander cells contribute to the overall antiviral response. To address these questions, we 35 

performed single-cell RNA sequencing (scRNA-Seq) on cells from freshly collected nasal washes from healthy 

human donors and donors diagnosed with acute influenza during the 2017-18 season. We describe a 

previously uncharacterized goblet cell population, specific to infected individuals, with high expression of MHC 

class II genes. Furthermore, leveraging scRNA-Seq reads, we obtained deep viral genome coverage and 

developed a model to rigorously identify infected cells that detected influenza infection in all epithelial cell types 40 

and even some immune cells. Our data revealed that each donor was infected by a unique influenza variant 

and that each variant was separated by at least one unique non-synonymous difference. Our results 

demonstrate the power of massively-parallel scRNA-Seq to study viral variation, as well as host and viral 

transcriptional activity during human infection. 
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Introduction 

Influenza virus causes acute respiratory infections and results in 3-5 million cases of severe illness and up to 

500,000 deaths worldwide annually (McMorrow et al., 2015; Paget et al., 2019; World Health Organization, 

2014). Influenza virus primarily infects the human airway epithelium. Most infections are limited to the upper 55 

respiratory tract, which includes the nasal tract, sinuses, pharynx, and larynx, but infections can progress to the 

lower respiratory tract to cause severe disease (Iwasaki and Pillai, 2014). Investigations on host responses to 

influenza based on in vitro studies and in vivo murine models have provided insights in the viral pathology, but 

studies of host responses to influenza virus at the site of infection in humans are relatively sparse (Pulendran 

and Maddur, 2015). Human airway epithelium cell lines (e.g. A549) and air-liquid interface culture systems 60 

have been used to study the tissue responses to infection and to monitor viral life cycles (Slepushkin et al., 

2001; Wu et al., 2016), but these systems cannot fully represent the complexity of infection. Similarly, animal 

models have been widely used in influenza virus research, yet interpretation of these results can be 

confounded by dissimilarities between these models and humans, and between lab-adapted and natural 

viruses (Hemmink et al., 2018; Hirst, 1947; Kim et al., 2015; Radigan et al., 2015; Shin et al., 2015). For 65 

example, laboratory mouse models such as C57BL/6J are not natural hosts to influenza virus, and human 

influenza virus inoculated in their nasal tract cannot progress to the lung (Ivinson et al., 2017). Similarly, the 

sialic acid glycosylation in murine airway cells is not representative of that found in humans (Ibricevic et al., 

2006). Finally, host factors critical for controlling infection, such as MX1 which is nonfunctional in common 

laboratory mouse strains, differ between mice and humans (Shin et al., 2015; Verhelst et al., 2012). Indeed, 70 

studies of host-viral dynamics in the human airway in vivo are sparse (Pulendran and Maddur, 2015) and until 

recently, capturing the complexity of the human airway during infection has not been possible. 

Single-cell RNA sequencing (scRNA-Seq) has been revolutionary in decoding processes in heterogeneous 

tissue. Studies on host tissue responses to influenza virus infection have been limited by bulk measurement 

that mask cell type-specific responses, changes that result from the asynchronous nature of infection, and 75 

changes in cell composition that occur during infection. scRNA-Seq permits simultaneously map human and 

viral transcripts in a single cell (Martin-Gayo et al., 2018; Russell et al., 2019b; Zanini et al., 2018a, 2018b), 

and has been applied to various host-virus interaction scenarios (Cristinelli and Ciuffi, 2018), including human 

immunodeficiency virus (HIV) (Bradley et al., 2018; Kazer et al., 2019) and hepatitis C virus (HCV) infection 

(McWilliam Leitch and McLauchlan, 2013). To date, scRNA-Seq in the context of influenza virus infection has 80 

been applied to the A549 cell line and mouse models (Kudo et al., 2019; Russell et al., 2018, 2019a; 

Steuerman et al., 2018; Vera et al., 2019). However, given that such studies cannot recapitulate the natural 

course of influenza infection, an investigation of the response to influenza virus infection and viral replication 

efficiency in its natural setting is warranted. To address these issues, we sought to obtain samples directly 

from humans with acute influenza infection for scRNA-Seq. 85 

The nasal mucosa serves as a barrier for most airborne pathogens, and cells from this natural niche can 

reliably reflect host-pathogen interactions (Jochems et al., 2017). Therefore, we obtained nasal washes from 

influenza A virus (IAV) or influenza B virus (IBV)-infected adult donors presenting to our medical center to 

unbiasedly sample all cell types at the first line of defense against influenza virus infection. We sought to 

investigate the dynamics of influenza virus infection and the host response at the site of infection in humans at 90 

the molecular level, defining: 1) what cell types the virus infects in the human nasal tract, 2) the interhost 

variability of the virus strain, 3) the variability of inter-/intra-host virus expression patterns, and 4) the 

heterogeneity of host cell type responses to the viral infection. We used Seq-Well (Gierahn et al., 2017; 

Ordovas-Montanes et al., 2018), a portable microwell-based scRNA-Seq technology, to jointly define the 

infecting influenza virus and the host response at the molecular level. Our study defines diverse cell types that 95 

can be infected by and respond to the influenza virus infection in the human nasal tract, including a previously 
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uncharacterized goblet cell population, specific to infected individuals, with high expression of MHC class II 

genes in infected individuals, and revealed the variability of viral sequences between infected individuals. 

Results 

Seventeen different cell types are captured in human nasal wash samples by scRNA-Seq. 100 

During the 2017-18 influenza season, we collected nasal washes from adults who presented to our medical 

center with influenza-like illness (ILI) and were diagnosed with either influenza A virus (IAV) or influenza B 

virus (IBV). We selected samples for further analysis after confirming the presence of viral transcripts by qPCR 

and moved forward with six IAV H3N2 and six IBV donor samples (see Supplemental Table 1). ILI activity 

was high at the time of collection, with prevalence of both IAV H3N2 and IBV Yamagata lineage (CDC, 2019). 105 

We also collected nasal washes from adult volunteers without ILI (n=6 donors). scRNA-Seq libraries were 

generated using the Seq-Well (Version 3) platform then sequenced (Gierahn et al., 2017) (Figure 1A, 

Methods: Sample Collection, RNA sequencing). In addition, for a subset of the donors, bulk RNA-Seq 

libraries were generated to confirm the presence of influenza virus. Additional details on the donors are 

available in Supplemental Table 1. Due to index swapping associated with the NovaSeq sequencing system 110 

(Costello et al., 2018) and a likely bead breakage of ChemGene beads on Drop-Seq based platforms, we 

carried out additional steps to process sequencing reads from scRNA-Seq and remove potential artifacts 

(Methods: Special Notes, Figure S1A). 

We obtained a total of 35,480 cells across all samples (n = 18), in which we detected 18,870 genes. We 

carried out a two-step clustering approach to identify cell types present in the scRNA-Seq data. In the first 115 

round we identified four broad clusters (Figure 1B), including neutrophils (shown in light purple), which have 

been largely absent in data obtained from other scRNA-Seq technologies (Smillie et al., 2019). The remaining 

cells include macrophages (light blue), epithelial cells (circled), and leukocytes such as lymphocytes and 

dendritic cells (lower left). Conventional markers for select cell types, namely KLK7, MUC5AC, and FOXJ1 for 

epithelial cells (McCauley et al., 2018), CSF3R for neutrophils (Ancuta et al., 2009), CSF1R for macrophages 120 

(Lavin et al., 2015), TLR9 for plasmacytoid dendritic cells, and TRAC and TRDC for T lymphocytes, further 

delineated cell heterogeneity inside each broad cluster (Figure 1B-C).  

Next we independently analyzed each of the four broad clusters (Methods: Clustering) in order to distinguish 

additional cell populations. Subclustering of these initial broad clusters revealed all of the known cell types in 

the upper respiratory tract (Denney and Ho, 2018; Deprez et al., 2019; Ruiz García et al., 2019; Vareille et al., 125 

2011; Wu et al., 2016). The clusters dominated by neutrophils (NEU, CSF3R+) and by macrophages (MAC, 

CSF1R+) showed homogeneous populations that did not cluster into subtypes, however in both clusters cells 

from infected donors showed an increased activation state as suggested by high expression of ISG15, RSAD2 

and IFIT3 (Figure 1B-C, Figure S1B-D). Epithelial cells were subclassified into non-cycling basal epithelial 

cells (BasalEPI, KRT5+), squamous cells (KLK7+) (Pettus et al., 2009), goblet cells (GOB, MUC5AC+), ciliated 130 

epithelial cells (CEP, FOXJ1+) (Ruiz García et al., 2019), and a cluster of class II HLA+ highly expressing cells 

that also expressed Goblet marker genes (MUC5AC and MUC16) (GOBClassII) (Figure 1D, Figure S2C). 

GOBClassII cells also expressed specific interferon-stimulated genes at high levels (e.g. CXCL10, CXCL11, IFI6, 

and IFITM3) (Figure 1E, Figure S2C). Within the ciliated epithelial cell cluster, we found a subset of cells with 

high viral mRNA expression (Figure S2D). Closer inspection showed these cells are a mixture of FOXJ1+ cells 135 

(n = 115), MUC5AC+ cells (n = 16), FOXJ1+ MUC5AC+ double positive cells (n = 23), and FOXJ1- MUC5AC- 

double negative cells (n = 156) (Figure S2D,F). We refer to these cells generically as CEP.  

Leukocyte subclustering revealed the presence of CD8+ T cells (CD8T, CD8A+), proliferating CD8+ T cells 

(MKI67+), gamma delta T cells (γδT, TRDC+, TRGC1/2+), CD4+ T cells (CD4T, TRAC+, CTLA4+), natural 
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killer cells (NK, FCGR3A+, NKG7+), and B cells (B, CD19+); this same cluster included plasmacytoid dendritic 140 

cells (pDCs, TLR7/9/10+) and conventional dendritic cells (cDCs, CLEC10A+) (Li et al., 2020). We also found 

two types of granulocytes in this cluster: eosinophils (EOS, CLC+) (Gomolin et al., 1993) and mast cells 

(MAST, HDC+) (Li et al., 2018) (Figure S3).  

In total, we identified 17 distinct cell types, including five epithelial cell types (CEP, GOB, BasalEPI, Squamous 

and GOBClassII), six myeloid cell types (NEU, EOS, MAST, MAC, cDC and pDC), and six lymphoid cell types 145 

(CD4T, CD8T, proliferating CD8T, γδT, B, and NK) (Figure 1B, Figure S1E-F). Marker genes for each cell 

type are provided in Supplemental Table 4.  

A goblet cell type expressing high levels of MHC class II is abundant in the infected upper respiratory 

tract. 

Acute and chronic respiratory diseases harm mucosal barrier integrity, affecting cell type composition by 150 

inducing epithelium regeneration and immune cell infiltration (Ordovas-Montanes et al., 2018; Ruiz García et 

al., 2019; Vieira Braga et al., 2019). We investigated whether the distribution of cell types sampled in infected 

donors differs from that of healthy controls. Overall, neutrophils and all five types of epithelial cells are more 

abundant in infected donor samples (21,727 neutrophils, 8,938 epithelial cells), after taking into account the 

randomness of sampling and the high variability in the number of cells found in each sample (Xu et al., 2019) 155 

(Methods: Cell type enrichment statistical test). Infected donors generally yield more cells than healthy 

donors (t-test, P = 0.003, Figure S1G). Although the fraction of epithelial cells was variable across donors 

(Figure S1E-F), infected donors yielded more GOBClassII compared to healthy donors (p = 0.03, Wald test), with 

3 infected donors having more than 2% of their cells classified as GOBClassII. On the other hand, healthy donors 

contributed more BasalEPIs (p = 0.015, Wald test) and GOBs (p = 0.015, Wald test) (Figure 1F). Infected 160 

donors also yielded more innate immune cells and adaptive immune cells, such as MAC, cDC, proliferating 

CD8T cells and 𝛾𝛿T cells (p = 0.015, p = 0.03, p = 0.0003, and p = 0.03, respectively, Wald test) (Figure S1H). 

Eosinophils were found in only seven infected donors (six of them are IAV donors with 91% of EOS derived 

from donor IAV7).  

Taken together, the combined scRNA-Seq data generated from human nasal wash samples contains cell 165 

types that are both normally resident in the upper respiratory tract as well as induced or recruited during the 

viral insult. The various types of epithelial cells found in these data, and the GOBClassII, in particular, which we 

specifically identified in infected donors, reflect the important cellular dynamics at play during influenza virus 

infection.  

Viral transcripts are detected in epithelial cells as well as some immune cells.  170 

Influenza virus predominantly infects epithelial cells but can also infect various types of immune cells (Iwasaki 

and Pillai, 2014). In a mouse model, viral mRNA was detected in all lung cell types sampled, with epithelial 

cells harboring the highest viral loads (Steuerman et al., 2018). Furthermore, in vitro and in vivo experiments 

have shown a wide range of influenza viral transcriptional activity across infected cells (Russell et al., 2018; 

Steuerman et al., 2018). Here, we sought to both identify virally infected cell types and determine the cellular 175 

viral load in human nasal wash samples. 

Our in vivo samples revealed a wide range of viral expression even within a given cell type (Figure 2A). 

However, mere detection of low levels of viral mRNA does not provide certainty of viral infection since these 

mRNAs may originate from ambient RNAs during scRNA-Seq sample preparation (Lun et al., 2019; Steuerman 

et al., 2018; Young and Behjati, 2018). Ambient RNAs from lysed cells can result in a sample-specific 180 

contamination. In particular, virus-induced cell lysis causes viral RNAs to dominate the ambient RNA pool. We 

therefore estimated a sample-specific distribution of ambient influenza mRNA contamination and predicted 
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cells most likely to be infected using a hurdle zero inflated negative binomial (ZINB) model and a support 

vector machine (SVM) classifier (Figure 2B, Figure S4, Methods: Identifying viral infected cells). Briefly, 

cells were first grouped into healthy, virus-, and virus+ based on viral exposure. A ZINB model was applied for 185 

virus+ and virus- cells in each highly infected donor, and predicted if a cell was infected or not. Based on the 

genes that are significantly differentially expressed between predicted infected cells and predicted uninfected 

virus- cells, a SVM classifier was built for selected cell types (CEP and Squamous cells) to classify infected or 

uninfected (bystander) cells (workflow illustrated in Figure 2B). A total of 671 out of 30,546 cells (2.2%) from 

the infected donors were classified as infected (Figure 2C). The remaining cells from infected donors were 190 

classified as bystander cells, and cells from healthy donors were termed healthy cells. Viral mRNA expression 

was robustly detected in 11 out of the 17 cell types identified in infected donors (Figure S4E). We found that all 

subtypes of epithelial cells were infected, as well as NEU, MAC and T lymphocytes. However, no dendritic 

cells, NK, B, or mast cells were predicted to be infected according to the ZINB model.  

Based on the expression rank of viral genes, we divided the expression rank into tertiles and classified the viral 195 

infection states of each infected cell as low, medium or high (Figure 2D). This stratification revealed that 

ciliated epithelial cells carry the largest viral load (Figure 2D) for cells from both IAV- and IBV-infected donors. 

(Figure S5).  

M and NP segments are the most highly expressed, while the NS segment drops out in highly infected 

cells. 200 

IAV and IBV genomes each contain eight segments, with some segments encoding more than one protein 

through alternative splicing, some of which disrupt interferon production of the host cell (Garfinkel and Katze, 

1993; Kochs et al., 2007a). Success in expressing all eight influenza genome segments in a cell is critical for 

reproductive infection for both IAV and IBV (Sheng et al., 2018; Vasilijevic et al., 2017). An expression 

hierarchy of M>NS>>NP>NA>HA>>PB2~PB1~PA was reported by previous in vitro single cell transcriptome 205 

studies in IAV-infected A549 cells and by bulk measurements of IAV-infected MDCK cells (Hatada et al., 1989; 

Russell et al., 2018). It is unclear whether this expression pattern holds true in vivo. Viruses lacking one or 

more segments have a higher chance of being recognized by the host (Vasilijevic et al., 2017). IAV deficient in 

the segment NS has been associated with higher antiviral response in vitro (Russell et al., 2019a). The NS 

segment encodes for the NS1 protein, which antagonizes the host antiviral response by interfering with IRF3 to 210 

suppress interferon (IFN) and tumor necrosis factor (TNF) expression (Geiss et al., 2002; Kochs et al., 2007b).  

To address whether such phenomena occur in vivo during human infection, we examined viral transcripts in 

samples from influenza-infected donors. First, we examined expression hierarchy. Because certain influenza 

genome segments yield transcripts with the same 3’-end sequence by alternative splicing (Dubois et al., 2014), 

and our data captures viral mRNA transcripts with a bias toward the 3’-end, we were unable to differentiate 215 

those alternatively spliced transcripts. While targeted probes could be used to specifically measure expression 

levels of different isoforms in future studies, here, we quantified expression at the segment level. In cells with 

high viral loads, we detected expression of all eight segments in the majority of infected cells (IAV: 61%, IBV: 

90%) (Figure 3A). Contrary to in vitro studies, we observed that segment 5 (NP) and segment 7 (M) were most 

highly expressed in both IAV- and IBV-infected cells, regardless of cell type, while the other six segments had 220 

lower expression (Figure 3B). The trend was consistent across cells with lower infection levels, and for both 

IAV and IBV samples (Figure 3B).  

Next, we considered viral segmental dropout. For all IBV segments and for all but one IAV segment (segment 

8, NS), a clear correlation was observed between viral load and segment expression (r = 0.53 - 0.89, 

Pearson’s correlation). However, the IAV NS segment had a poor correlation with viral load (r = -0.07, 225 

Pearson’s correlation), especially in cells with the highest viral load. In fact, for 7 out of the 11 cells with the 

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 17, 2020. . https://doi.org/10.1101/2020.04.15.042978doi: bioRxiv preprint 

https://paperpile.com/c/OB6EFn/4eOl+m2Wu
https://paperpile.com/c/OB6EFn/4eOl+m2Wu
https://paperpile.com/c/OB6EFn/RRtz+qMIC
https://paperpile.com/c/OB6EFn/sJrj+bf1i
https://paperpile.com/c/OB6EFn/sJrj+bf1i
https://paperpile.com/c/OB6EFn/RRtz
https://paperpile.com/c/OB6EFn/bZ8W
https://paperpile.com/c/OB6EFn/u3nj+EGBC
https://paperpile.com/c/OB6EFn/5fEE
https://doi.org/10.1101/2020.04.15.042978
http://creativecommons.org/licenses/by-nd/4.0/


7 

highest viral loads (viral load > 75%), NS was not detected (Figure 3C). This drop-out would not be otherwise 

expected assuming that segment detection is similar for all segments (P < 0.0001, Chi-squared test) (Figure 

3C). IAV segment expression in each infected cell also had higher variability compared to IBV segment 

expression (Figure S6). However, limited by the small number of NS-negative cells, we were unable to 230 

conclude on the difference between IFN production efficiency between NS-positive and NS-negative cells. 

scRNA-Seq allows detection of single nucleotide variants (SNVs) in viral transcripts and shows that at 

least one unique strain infected each individual. 

Influenza viruses possess high evolutionary potential due to their high mutation rate (Chen and Holmes, 2006; 

Hadfield et al., 2018; Nobusawa and Sato, 2006). However, it is unclear how different selection pressures and 235 

stochastic processes affect the overall viral evolution dynamics (McCrone et al., 2018). A number of studies 

have investigated the inter- and intra-host diversity of the viral sequences in virus-challenged humans and in 

animal models (Iqbal et al., 2009; Leonard et al., 2016; Lin et al., 2019; Murcia et al., 2010, 2012). These 

studies, performed in a laboratory-controlled setting, highlight the rapidness of allele fixation within the host 

and the genetic diversity between hosts of influenza viruses. Because the evolutionary dynamics between 240 

hosts and within hosts during the course of natural infections in humans is less clear, we looked for single 

nucleotide variants (SNVs) in our dataset.  

By combining all scRNA-Seq influenza mapping reads for each donor we obtained deep coverage of the 

influenza genome (average 595x per donor, Figure S7). Since scRNA reads are associated with technical 

biases (McCrone and Lauring, 2016) and index swapping that occurred during the sequencing of pooled 245 

variables introduced additional variability (Costello et al., 2018), we restricted our analysis to the most common 

SNVs and implemented many steps to remove known biases that can affect variability estimates (Methods: 

Virus genotyping and SNV calling). We then estimated influenza sequence variability from the samples 

collected in a single-season of geographically localized infection, by using available sequences for IAV (H3N2) 

(NCBI:txid2069524) and IBV (NCBI:txid2067645) strains collected in Massachusetts earlier in the same 250 

season (Method: Genome Alignment). For each infected donor, we used stringent criteria to identify positions 

that differed from the reference. We excluded two IBV donors (IBV3 and IBV5) due to low infection levels that 

resulted in low read coverage. We built consensus sequences for IAV and IBV, and identified positions that 

harbored SNVs in our patient samples. We found a total of 80 SNVs in the six donors with IAV, and 39 SNVs in 

the four donors with IBV (Supplemental Table 2). Bulk RNA-Seq libraries generated from excess nasal cells 255 

not loaded on Seq-Well confirmed the variant calls (with the exception of IAV6 and IAV7, for which no extra 

cells were available for bulk RNA sequencing). These high confidence SNVs were used to estimate interhost 

variability. For each donor, we estimated the major SNV for each position as well as its frequency (Methods: 

Virus genotyping and SNV calling). We find that each donor has at least one unique SNV, and IAV and IBV 

had an average of 6.5 unique and 7.5 unique SNVs, respectively (Figure 4A-B). Parsimony analysis of the 260 

variable positions showed no correlation with the timing of the sample collected (Figure 4C, Supplemental 

Table 1).  

We found non-synonymous and synonymous SNVs in both IAV and IBV. IAV and IBV genomes showed a 

similar non-synonymous to synonymous ratio (dN/dS) with IAV having a dN/dS = 0.25 and IBV dN/dS = 0.34 

(Figure 4D). Regardless of viral strain, non-synonymous SNVs in segments 5 and 7 (NP and M) are 265 

consistently absent. We observed at least one unique non-synonymous SNV in each donor’s viral genomes 

(Figure 4A). For IAV, non-synonymous SNVs that may affect protein charge, hydrophobicity or structure are 

as follows: PB2: T64I and A707S, PB1-F2: G23E; HA: K43E and T228A; NA: S217L and Y284H; NS: M119V, 

and F128S. For IBV, those SNVs are PB2: S591R; PA: T60A; NA: L74P and G234R; NS: N199D and E235K 

(all non-synonymous SNVs are provided in Supplemental Table 3). Altogether, each IAV or IBV infected 270 

donor has a distinct viral strain, harboring unique SNVs that are not present in other donors, and each donor 
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had at least one non-synonymous SNVs. This result indicates that even in a relatively constrained geographic 

location, thousands of different influenza viral strains are likely circulating during a season.  

Viral infection induces type I and type III IFN signaling in infected cells and IFN signaling responses 

from bystander cells.  275 

We next examined differential gene expression between all bystander and infected epithelial cells from donors 

with IAV or IBV and healthy epithelial cells from control donors. Irrespective of the viral type, 225 genes were 

found to be upregulated in infected epithelial cells compared to bystander cells, and 376 genes were found to 

be uniquely upregulated in bystander cells compared to healthy controls (Supplemental Table 5). Differential 

expression analysis revealed the upregulation of type III IFNs (IFNL1-3) in infected epithelial cells (Figure 5A). 280 

As type III IFNs are critical in barrier tissue response to infection (Broggi et al., 2020), epithelial cells could be 

the major producers of type III IFN in the human nasal tract during influenza infection. Inspection of type I and 

type III IFN transcripts across all cell types showed that indeed, infected epithelial cells are the main producers 

of both type I IFN and type III IFN transcripts (Figure 5B-C). Infected CEPs dominated the IFNB1 and type III 

IFN transcript production (Figure 5D). Type I and III IFN transcript upregulation was also seen in select 285 

immune cells during infection (Figure 5B-D). 

Given the clear upregulation of classical IFN response genes (e.g. CCL5, IFIH1, IFIT1-3, IFI6,27,30) in both 

bystander and infected cells, with a stronger upregulation in infected cells (Figure 5A), we sought to better 

understand how cells respond to IFNs. To this end, we compiled “IFN production” and “IFN response” gene 

sets, and performed gene set enrichment analysis (GSEA) (Subramanian et al., 2005) (Figure 5E-F, 290 

Supplemental Table 6). Consistent with the expression of the IFNL cytokine, the IFN production gene sets 

were most highly upregulated in bystander and in infected CEPs. IFN response gene (IRG) sets, on the other 

hand, revealed an interesting pattern: while IRGs were induced in nearly all bystander cells relative to healthy 

cells, especially CEPs, NEUs did not exhibit this trend (Figure 5F, left panel). This was despite the fact that 

NEU were the most abundant immune cell in our samples and hence the cell type for which we had most 295 

power to detect such trend. Beside bystander NEUs, we also found that infected CEPs also failed to 

upregulate IRGs. This was surprising given that infected CEPs had the highest levels of IFNLs (Figure 5F, 

right panel). IFN unresponsiveness within infected CEPs may reflect the ability of influenza virus to block 

IRGs, but not the production of IFNLs. Furthermore, inspection of transcript abundance for type I receptors 

(IFNAR1 and IFNAR2) and type III IFN receptors (IFNLR1 and IL10RB), revealed that while IFNAR1, IFNAR2 300 

and IL10RB transcripts were ubiquitous (Figure S8A-C), expression of IFNLR1 (encoding a member of the 

type III IFN receptor heterodimer), was cell type-specific with the lowest expression found in NEU, the cell type 

with the lowest IRG response (Figure 5G). This suggested that the response to influenza detection was driven 

by type III IFNs, which were produced in infected cells, specifically infected CEPs. Type III IFNs likely triggered 

a cell type-specific response in cells having robust expression of IFNLR1. The low expression of IFNLR1 in 305 

neutrophils also indicated that the responsiveness of neutrophils to type III IFN signaling was context-

dependent, as a high expression of IFNLR1 was reported in neutrophils obtained from bone marrow and blood 

(Broggi et al., 2017; Espinosa et al., 2017; Galani et al., 2017).  

Given that MHC class II upregulation by IFN-γ has been shown in A549 cells (Uetani et al., 2008), the induction 

of MHC class II transcripts observed in goblet cells (GOBClassII) during influenza infection was likely a 310 

consequence of IFN response activity. In fact, we found that MHC class II gene expression was higher in 

bystander and infected cells compared to healthy, influenza-naive cells for most epithelial cell types (Figure 

S9), suggesting that epithelial cells in general have the potential to become antigen presenting cells under 

pathogen attack, with goblet cells exhibiting the highest potential. 
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Discussion 315 

In this study, we generated the first comprehensive cell atlas of human nasal cells during influenza infection. 

Our study uniquely captured the following: (1) cell populations both harboring virus and responding to infection 

in the natural infection niche, (2) computational methods for identifying virally infected cells and viral SNVs 

from scRNA-Seq data, (3) diversity of viral sequences for seasonal influenza viruses within a proximal 

geographical distance, (4) human transcriptomic modulation in individual cells from the site of primary influenza 320 

viral infection, and (5) type III IFN as the predominant response to influenza infection in human nasal tract.  

Our data revealed two strong trends regarding epithelial cells. On one hand, MHC class II gene expression in 

epithelial cells was overall upregulated. Most strikingly, a subset of goblet-like cells expressed high levels of 

transcripts from MHC class II genes. This suggested that the epithelium may complement the professional 

antigen presentation cells at the site of infection. Based on in vitro studies and studies on polyps from patients 325 

with allergic diseases (Arebro et al., 2016; Kalb et al., 1991; Salik et al., 1999; Wang et al., 1997), increased 

levels of MHC class II transcripts in epithelial cells may be a standard response to IFNs. On the other hand, 

basal epithelial cells were depleted in the upper respiratory tract. Tissue damage caused by the influenza virus 

infection may drive basal epithelial cells to differentiate for tissue repair, making basal cells less likely to be 

detected by transcriptional analyses. However, we cannot rule out the possibility that our observation is 330 

affected by the sampling bias, where infected donors shed more fully differentiated epithelial cells. 

We identified a large number of neutrophils in our nasal wash populations, and they were clearly split into two 

cell populations, one of which expressed active markers (e.g. ISG15, IFIT3, and RSAD2) mostly from infected 

donors. Neutrophils are mostly depleted in scRNA-Seq datasets generated from the 10x Genomics platform 

(Park et al., 2018; Smillie et al., 2019). Neutrophils are prone to activate their RNases that prevent efficient 335 

mRNA capture during prolonged incubation time and harsh conditions during single-cell capturing in 

technologies such as 10x and inDrop (Schwartz et al., 2018). We found eosinophils, another important 

granulocyte, predominantly in one patient. It is unclear what role, if any, eosinophils have in combating 

influenza infection. The individual where we found eosinophils may have been afflicted with an allergic reaction 

in addition to an influenza infection. Further studies with larger sample sizes will provide insight to this matter. 340 

Studies in human primary polarized airway epithelial cell cultures have suggested that airway epithelial cells 

are primarily responsible for type III IFN production (Fox et al., 2015; Ioannidis et al., 2013; Killip et al., 2015; 

Klinkhammer et al., 2018; Okabayashi et al., 2011). We found that infected ciliated epithelial cells from human 

nasal cells were the major producers of type III IFN transcripts during natural infection, within days following 

symptoms and diagnosis, consistent with the observations from in vivo models and air-liquid interface systems. 345 

Interestingly, we noticed that viral infection seems to disrupt the IFN response in infected ciliated epithelial 

cells, as evidenced by downregulation of interferon response genes compared to bystander cells. However, 

epithelial cells maintained high expression of genes in the IFN production pathway. We could not however 

evaluate whether IFNs themselves were suppressed perhaps due to the small size of IFN genes that reduces 

their detection rate in scRNA-Seq libraries. Taken together the effects on IRGs show a failure to suppress viral 350 

infection by highly infected epithelial cells. 

We developed two important methodologies that can be applied to other host-virus dual transcriptome scRNA-

Seq studies: 1) a statistical test for identifying viral infected cells from scRNA-Seq data, overcoming the 

confounding ambient RNA contamination in scRNA-Seq, and 2) an approach that uses scRNA-Seq to map 

virus sequence variability in addition to viral gene expression. In fact, despite limitations from the 3’-end 355 

transcript bias of scRNA-Seq, we showed that we were able to define viral sequences and make viral SNV 

calls for each highly infected donor. Although we only captured viral transcripts (instead of the viral genome), 
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our stringent SNV calling method allowed us to identify viral genomic variations and differentiate them from 

random errors introduced by RNA polymerases. We showed that, within a small geographical region and a 

defined sampling time frame, influenza viruses from infected donors have variabilities in their genetic 360 

sequences, with each donor harboring a unique viral sequence. Twenty percent of these variants also had 

predicted amino acid changes. The fact that we are able to identify SNVs from scRNA-Seq data opens up the 

possibility to directly study the viral sequence in each single cell from primary human samples, and suggests 

that these techniques can be similarly applied to other viruses. Because we were limited by the short read 

lengths and the index swapping issues that particularly confound low frequency variant calls (Methods: Virus 365 

genotyping and SNV calling) (Costello et al., 2018), we were unable to characterize the intrahost viral 

genetic variability. However, these two issues can be addressed in the future by using a different sequencing 

strategy that reduces index swapping, and using longer reads that capture a greater fraction of each transcript, 

doing so should empower follow up studies to explore intrahost variability of the viral sequence. 

Our study clearly showed the power of studying upper respiratory tract samples from influenza-infected 370 

humans coupled with single-cell technologies to understand local host responses. Future studies applied to 

other human respiratory viruses will allow for comparative analysis of the host-pathogen interplay and potential 

identification of host or viral factors that are responsible for increased or reduced virulence (Ziegler et al., 

2020). Technological advances that bring sequencing applications closer to patient care will delineate the 

mechanisms that mediate influenza pathogenesis in humans, which will be crucial for designing improved 375 

vaccines and therapeutics against influenza and other respiratory viruses. 
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Figure Legends 

Figure 1.  380 

scRNA-Seq captures the cell type distribution in nasal wash samples from humans with acute 

influenza infection. A. Schematic of sample collection, processing, and data analysis. Donors had a 

diagnosis of influenza A virus (IAV) (n = 6) or influenza B virus (IBV) (n = 6) by rapid antigen test or respiratory 

virus panel and had detectable viruses in sequence or were healthy volunteers (n = 6). B. t-distributed 

stochastic neighbor embedding (tSNE) representation includes 35,480 cells clustering in two-dimensional 385 

space, colored by 17 distinct cell types identified. Cell barcodes with >1000 unique molecular identifiers (UMI) 

were denoted as cells. C. tSNE shows the normalized expression of gene markers for cell types found the 

major four broad clusters: an immune cell cluster including T lymphocytes (TRAC, TRDC) and dendritic cells 

(TLR9 for plasmacytoid dendritic cells), epithelial cells (FOXJ1, MUC5AC and KLK7), macrophages (CSF1R), 

and neutrophils (CSF3R). D. All epithelial cells were subsetted and reclustered. tSNE plot showing the new 390 

embedding of all epithelial cells with cells colored by cell types. E. The GOBClassII cell cluster shows high 

expression of HLA class II transcripts and interferon response genes (HLA-DPA1 and CXCL10 shown as 

examples). F. Fraction of each epithelial cell type out of all cells found in each donor. The number of each cell 

type from each healthy (n=6) and infected (n=12) donor was plotted here. The black line shows the mean. *: p 

< 0.05, Wald test. 395 

Figure 2. 

Viral transcripts are detected in epithelial cells as well as immune cells in human nasal washes. A. 

tSNE representation shows the raw expression of IAV (H3N2) or IBV transcripts in all cells before identifying 

infected cells. Viral metagenes, composed of all eight segments, are plotted here. The arrows point to the 

group of highly infected cells. B. Workflow of identifying viral infected cells from infected donors. This method is 400 

described in detail in Methods: Identifying Viral Infected Cells. C. tSNE representation of cells in different 

cellular states: healthy, bystander, and infected after classification. D. The distribution of viral load in cell types 

predicted to be infected by the ZINB model and the SVM classifier. Viral load for each cell is calculated based 

on the fraction of viral transcripts to total transcripts. Viral load status is empirically classified by bystander 

(cells predicted and classified as bystander by ZINB model and SVM classifier), low, medium, or high based on 405 

the tertile of viral gene expression rank in a cell.  

Figure 3 

The M and NP segments are the most highly expressed, while the NS segment drops out in highly 

infected cells. A. The fraction of cells either expressing all eight viral segments or having at least one 

segmental dropout in each viral load state. B. Normalized expression levels of each viral segment from either 410 

IAV- or IBV-infected cells. Viral segment expression is colored by the viral load of their host cell. C. Scatter 

plots showing the correlation between viral load (the fraction of viral mRNA from the virus for each cell) and the 

normalized expression level for each viral segment in each infected cell per donor. The Pearson correlation 

coefficient r is calculated for each segment. ***: P < 0.0001. 

Figure 4 415 

scRNA-Seq allows detection of SNVs in viral transcripts and shows that at least one unique strain 

infected each individual. Sequencing reads mapped to influenza reference genomes from valid cells (>1000 

UMIs) were used to identify SNVs present in each donor. Variant calls were made based on the reference 

genomes, and were converted to consensus if present in more than half of donors for each viral subtype to 

avoid reference bias. A. Quantification of SNVs private to each donor. IBV3 and IBV5 are not shown in this 420 
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analysis due to lack of enough infected cells. Of all variants found in each viral subtype (n=80 for IAV, n=39 for 

IBV), each donor harbored unique SNVs. Variable positions not covered in valid cells are marked as no 

coverage. These positions are not considered in parsimony analysis. B. Barcode plot showing the classification 

of each variable position found in each donor. C. Unrooted dendrogram showing the SNVs Hamming distances 

among donors. The donor numbering represents the sequence of collection time. No correlation between 425 

sample collection time and position on the dendrogram is found. D. The number of non-synonymous and 

synonymous variants from all SNVs defined (n=80 for IAV, n=39 for IBV). Variant positions with no coverage in 

any of the donors are not considered. The dN/dS ratio (ratio of the number of non-synonymous SNVs to 

synonymous SNVs) is noted on top of each segment.  

Figure 5 430 

Viral infection induces type I and type III IFN production in infected cells and IFN signaling response 

from bystander cells. IFNA and IFNL metagene expressions are calculated as the sum of all mapped IFNA 

genes and mapped IFNL genes. Only cell types that have non-zero expression of each metagene are shown 

here. Gene expression counts shown in this figure are normalized counts. A. Heatmap on the row-scaled 

normalized expression z-scores of all significantly differentially expressed genes (DEGs) identified in epithelial 435 

bystander cells in comparison to healthy cells and infected cells in comparison to bystander cells. Aggregate 

pseudobulk gene expression (see Method: Aggregated pseudobulk gene expression calculation) was 

calculated per cellular infection state of all epithelial cells. The top 40 DEGs are annotated with text on the 

heatmap. B. IFNA metagene expression levels in different cellular states across cell types. The black points 

are the mean expression levels. C. IFNB1 expression levels in different cellular states across cell types. The 440 

black points are the mean expression levels. D. IFNL metagene expression levels in different cellular states 

across cell types. The black points are the mean expression levels. E. The enrichment of type I IFN production 

gene sets (GO:0032648, GO:0032481, GO:0032728, GO:0032727, GO:0032647, GO:0032479) tested by 

GSEA. Enrichment of gene sets was tested between bystander cells and healthy cells, and between infected 

cells and bystander cells for each cell type. The normalized enrichment score (NES) for each comparison per 445 

cell type is shown here. Positive NES denotes enrichment of gene sets in bystander cells when compared to 

healthy cells, and in infected cells when compared to bystander cells. Gene sets were not tested in cell types 

with less than 10 cells in any cell state, thus left blank on the plot. NES values are colored by their significance. 

F. The enrichment of type I IFN response gene sets (GO:0034340, GO:0035456, GO:0035455, GO:0060338, 

GO:0035458, GO:0005132) tested by GSEA. G. IFNLR1 expression levels in different cellular states across 450 

cell types. The black points are the mean expression levels. 
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Supplemental Tables and Figure Legends 

Supplemental Table 1 455 

Summary of donor information, scRNA-Seq and bulk RNA-Seq library preparation and viral detection.  

Supplemental Table 2 

Details on viral genetic variation detection.  

Supplemental Table 3 

Details on non-synonymous variants of the viral genomes. 460 

Supplemental Table 4 

Top 50 differentially expressed gene markers for each cell type tested by edgeR. 

Supplemental Table 5 

edgeR results of bystander cells compared to healthy cells and infected cells compared to bystander 

cells in epithelial cells. 465 

Supplemental Table 6 

Genes from either IFN production gene sets or IFN response gene sets 

 

Figure S1  

Related to Figure 1 470 

Cell type distributions across donors. A. Images of bead loading on Seq-Well platform. Arrows point to the 

speculated broken beads. B. tSNE of all cells colored by donors. C. tSNE of all cells colored by the four major 

cell type clusters. D. Normalized expression of three interferon stimulated genes (IFIT3, ISG15, RSAD2). E. 

Fraction of cell types across donors. F. Raw counts of each cell type for each donor. G. The total number of 

cells in scRNA-Seq data collected from healthy, IAV- or IBV-infected donors. The total number of cells 475 

collected from influenza-infected donors is significantly increased compared to those from healthy donors (t-

test, P =0.003). H. Fraction of each immune cell type in infected or healthy donors. The number of each cell 

type from each healthy (n=6) and infected (n=12) donor is plotted here. The black line shows the mean. *: p < 

0.05, Wald test. 

Figure S2 480 

Related to Figure 1 

Epithelial cell cluster cell type identification. A. Ten clusters were called by density clustering from the 

epithelial cell cluster. B. tSNE plot colored by donors. C. Normalized expression of cell type markers in each 

cell type. The black points are the mean expression of expressing cells. D. tSNE plots on the influenza viral 

transcript expressions. E. Fraction of epithelial cell types found in each donor. F. The expression levels 485 

(normalized expression and percentage of cells expressing) of marker genes per epithelial cell type.  
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Figure S3 

Related to Figure 1 

Leukocyte cluster cell type identification. A. Twelve clusters were called by density clustering from the 

leukocyte cell cluster. B. tSNE plot colored by donors. C. Normalized expression of cell type markers for each 490 

cell type in the leukocyte cluster. The black points are the mean expression of expressing cells. D. Cell types 

identified. E. tSNE plots on the influenza viral transcript expression. F. Cell types found in each donor. HC1 

and IBV6 do not yield cell types shown here. 

Figure S4 

Related to Figure 2 495 

Background viral transcript estimation and infected cell type identification. A. Histogram of viral counts 

in human nasal wash cells from HC3 nasal wash cells spiked-in with WSN-infected MDCK cells. The red line is 

the fit of viral counts predicted with the ZINB model. B. histogram of viral counts in human nasal wash cells 

from HC4 nasal wash cells spiked-in with WSN-infected MDCK cells. The red line is the fit of viral counts 

predicted with the ZINB model. C. The expression of human cells and dog genes in each cell in HC3 and HC4 500 

nasal wash cells spiked-in with WSN-infected MDCK cells. Cells are colored by their predicted infection state. 

D. Histogram of viral counts in each of the highly infected donors. The red line is the fit of viral counts predicted 

with the ZINB model. E. Fraction of cells predicted to be infected by ZINB models for each cell type, broken 

down by cells from either IAV- or IBV-infected donors. F. Infected and bystander cells predicted by ZINB 

models and classified by SVM for CEP and Squamous cells. The result of SVM classification for CEP and 505 

Squamous cells was used for infected cell classification. G. Precision-Recall curve for each SVM classifier.  

Figure S5 

Related to Figure 2 

Viral load states breakdown in IAV- or IBV-infected donors. Fraction of cells classified in each viral load 

state for cells from IAV- or IBV-infected donors 510 

Figure S6 

Related to Figure 3 

IAV segment expression is more variable. Chi-squared test was applied to each IAV and IBV high viral load 

cell to test if the expression of each viral genome segment is equally likely. The adjusted p-values are plotted 

against the viral load of each cell. The red dash line intercepts the y axis at 0.05. 515 

Figure S7 

Related to Figure 4 

Read coverage on influenza genomes from the scRNA-Seq data for all twelve influenza virus-infected 

donors. Reads from scRNA-Seq libraries mapped to each viral genome are plotted here. The minimum and 

maximum numbers of reads covering each base are noted. PCR duplicated reads were removed. The average 520 

PCR duplication rate is estimated to be 4x. A. Read coverage for IAV infected donors. B. Read coverage for 

IBV infected donors. 
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Figure S8 

Related to Figure 5 

Expressions of type I and III IFN receptors in different cellular states across cell types. Violin plots of the 525 

normalized expressions of IFNAR1, IFNAR2, and IL10RB in different cellular states across cell types. The 

black points are the mean expression of expressing cells. A. IFNAR1 normalized expressions. B. IFNAR2 

normalized expressions. C. IL10RB normalized expression. 

Figure S9 

Related to Figure 5 530 

MHC class II gene expression in different cellular states across cell types. The normalized expression of 

MHC class II metagene is calculated by the sum of the normalized expression of all MHC class II genes 

mapped in the scRNA-Seq data and CIITA, the gene encoding the transcription factor for MHC class II. The 

black points are the mean expression of MHC class II metagene. 

  535 
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Methods 

Sample collection 

Approvals from Institutional Review Boards.  

All procedures were approved by the University of Massachusetts Medical School Institutional Review Board 

(IRB protocol # H00009277) and participants signed an informed consent document whenever required by 540 

IRB. 

Subject enrollment.  

Nasal washes were obtained from adult healthy controls and from adults with diagnosis of acute influenza A or 

B by rapid antigen test (Flu A or B antigen, direct fluorescence antigen test) and/or by respiratory virus panel 

(PCR testing for influenza A, influenza A H1, influenza A H3, influenza B, adenovirus, metapneumovirus, 545 

respiratory syncytial virus A, respiratory syncytial virus B, rhino/enterovirus, parainfluenza 1, parainfluenza 2, 

parainfluenza 3), who show symptoms up to seven days. Samples were obtained by irrigation of each naris 

with up to 10 mL of saline, and collected in a single container. The sample was then transported to the 

research laboratory for processing. Upon receipt, the sample was immediately stored on ice and 10 mL cell 

growth media (DMEM or RPMI1640 with 10% fetal bovine serum) was added. The material was strained using 550 

a 40 μM nylon cell strainer (Corning) into a 50 mL centrifuge tube. Cells were pelleted at 1300 rpm for 10 min 

at 4°C. All but 1 mL of supernatant was discarded, the pellet resuspended in the remaining 1 mL of 

supernatant, and material was transferred to an Eppendorf tube and pelleted at 2000 rpm for 5 min. If the pellet 

contained visible blood, 200 μL of RBC lysis solution (Sigma) was added to resuspend the pellet and incubated 

at room temperature for 2 min, after which 1 mL of cell media was added, and the cells were pelleted at 2000 555 

rpm for 5 min. The final pellet was resuspended in up to 1 mL of media and quantified.  

For two healthy donor samples (“HC3” and “HC4”), 2,000 influenza A/WSN/33-infected MDCK cells (infected 

for overnight at a multiplicity of infection of 1) were added to 18,000 primary human cells prior to loading on the 

Seq-Well array. This was performed to measure any potential cross-contamination from dead cells and free 

viral transcripts in the sample. Association of either canine or A/WSN/33 viral transcripts with human cell 560 

barcodes, or vice versa, would suggest that a well contained both human and canine material (i.e., either 

multiple cells per well or RNA contaminants from lysed cells are present).  

Influenza A/WSN/33 was passaged in MDCK cells (MDCK ATCC catalog number: PTA-6500. A/WSN/33 

ATCC catalog number: VR-825). 

RNA sequencing 565 

Seq-Well.  

Seq-Well was used according to published methods (Gierahn et al., 2017) to capture single cells on a 

microwell array. Each microwell has only one bead carrying oligonucleotides that have a cell barcode, unique 

molecular identifiers (UMIs), and a polyT tail. Each array was loaded with 20,000 cells. Any remaining cells 

were put in TRIZOL and stored at -80°C. After cell lysis, mRNA transcripts were captured by the 570 

oligonucleotides on the bead. The cDNA libraries were prepared using Illumina Nextera XT Library Prep Kits 

and sequenced using the NovaSeq 6000x System from Illumina. NovaSeq S2 100-cycle sequencing was 

performed at the Broad Institute Genomics Platform.  
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Bulk RNA Sequencing 

Bulk RNA-Seq was performed for a subset of the samples initially stored in TRIZOL® Reagent, Cat.:15596. 575 

RNA extraction was performed following the manufacturer’s directions, and libraries were constructed using 

the NuGen Ovation FFPE RNA-Seq Multiplex System. Libraries were sequenced on an Illumina NextSeq 500. 

RT-qPCR. 

One step RT-qPCR was performed with TaqMan chemistry. Primers and probes used for IAV-M, IBV-HA were 

previously reported (World Health Organization, 2017) and synthesized by Bio-Rad Laboratories. B2M primer 580 

and probe were made by ThermoFisher Scientific (Cat #: 4326319E) and RNA samples were run in triplex with 

IAV and IBV. RT-qPCR amplification was carried out in 10 μL reactions and 3 replicates were run for each 

sample. Each plate contained a range of serial dilutions of viral RNA from B/Mass/3/66 (ATCC, Cat #: VR-523), 

viral RNA from A/PR/8/34 (Charles River Laboratories) and A549 cellular RNA for standard curve generation. 

The QuantiFast Pathogen RT-PCR+IC Kit from Qiagen (Cat #: 211452) was used. Experiments were 585 

conducted to test inter- and intraplate variability. The real-time PCR amplification was performed on a CFX96 

C1000 thermal cycler (Bio-Rad Laboratories) with the following condition: 50°C for 20 min, 95°C for 5 min, 40 

cycles of 95°C for 15 sec and 60°C for 45 sec. The results were analyzed with built-in software. The ratios of 

IAV-M/B2M, IBV-HA/B2M were calculated using standard curves. 

Computational Analysis 590 

Genome Alignment.  

Reads were aligned to the GRCh37 reference genome combined with influenza genomes. 

A/Massachusetts/20/2017 (H3N2): genome ID: CY264272, CY264273, CY264274, CY264275, CY264276, 

CY264277, CY264278, CY264279; B/Massachusetts/18/2017 (Yamagata lineage): genome ID: CY263602, 

CY263603, CY263604, CY263605, CY263606, CY263607, CY263608, CY263609. Reads were additionally 595 

aligned to a panel of respiratory virus genomes: Respiratory syncytial virus A (RSVA), RSVB, human 

parainfluenza virus, human respirovirus, rubulavirus, mumps virus, human rhinovirus (HRV) A, HRVB, HRVC, 

human adenovirus B2 and influenza C virus with the genome IDs: KJ643560, KC283039, KY674966, 

KY674953, KY967354, KY779616, KY674950, MF965239, KY369875, KY369902, KY369880, NC011202, 

KM504277, KM504278, KM504279, KM504280, KM504281, KM504282, KM504283. Mapped reads from each 600 

sample were then corrected for DropSeq barcode synthesis error using the DropSeq core computational tools 

developed by the McCarroll Lab (Macosko and Goldman). Genes were quantified using End Sequence 

Analysis Toolkit (ESAT, github/garber-lab/ESAT) with parameters -wlen 100 -wOlap 50 -wExt 0 -scPrep (Derr 

et al., 2016). Finally, UMIs that likely result from sequencing errors were corrected by merging any UMIs that 

were observed only once and have 1 hamming distance from a UMI detected by two or more aligned reads. 605 

Only cell barcodes with more than 1,000 UMIs were analyzed. Cell barcodes with mostly erythrocyte genes 

(HBA, HBB) were removed. From here on, the remaining cell barcodes in the matrix would be referred to as 

cells. The final gene by cell matrix was normalized using the scran package v3.10 (Lun et al., 2016). The 

normalized matrix was used for dimensionality reduction by first selecting variable genes that had a high 

coefficient of variance (CV) and were expressed (>=1 UMI) by more than three cells. Influenza viral genes, 610 

interferon stimulated genes, and cell cycle related genes were removed from the variable gene list in order to 

minimize the impact of viral responses and mitosis on clustering and cell type identification. This resulted in the 

selection of 2484 variable genes. t-distributed stochastic neighbor embedding (tSNE) was applied to the first 

ten principal components (PCs), which explained 95% of the total data variance (Maaten and Hinton, 2008).  
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Clustering and cell type identification 615 

Density clustering (Rodriguez and Laio, 2014) was performed on the resulting tSNE coordinates (Figure 1B,C) 

and identified four major clusters: epithelial cells, neutrophils, macrophages and leukocytes (Figure S1E). The 

epithelial cell cluster and the leukocyte cluster were then re-clustered independently, as described above, to 

identify populations within each metacluster. Specifically, the epithelial cell cluster was re-embedded using 

2629 variable genes selected by the same criteria mentioned in the previous section and 13 PCs that 620 

explained 95% of the variance. Density clustering on the epithelial cell tSNE map (Figure S2A) revealed ten 

clusters. Differential gene expression analysis using edgeR (Robinson et al., 2010) was performed to identify 

marker genes for each cluster (Figure S2C). For the leukocyte metacluster, 2583 variable genes were 

selected by the same criteria, and 8 PCs that explained 90% of the variance were used as input to tSNE. In 

order to identify specific T cell populations, the following procedures were followed: cells were clustered based 625 

on the tSNE map into six clusters. The top 300 differentially expressed genes (DEGs) that distinguish each of 

the six clusters from all other leukocytes were selected, resulting in 1454 unique genes after removing viral 

transcripts and interferon responding genes. This matrix of 1454 genes by 1160 cells was used for 

dimensionality reduction through PCA and tSNE, followed by density clustering. The second round of 

clustering revealed different T cell groups, including CD4+ T cells, CD8+ T cells, proliferating CD8+ T cells, 630 

and γδT cells, and a small population of B cells and mast cells.  

Identifying viral infected cells.  

To estimate a sample-specific distribution of ambient influenza mRNA contamination from cell lysis and identify 

truly infected cells, two control libraries were generated by spiking-in influenza A/WSN/33-infected Madin-

Darby canine kidney (MDCK) cells to nasal wash cells from two healthy human donors prior to performing 635 

scRNA-Seq. These libraries enabled tracking of reads mapped to each organism and estimation of the amount 

of ambient RNAs per cell.  

Sequencing reads from WSN-infected MDCK spiked-in donors were mapped to a hybrid genome of GRCh37 

reference genome, camFam 3.1, and A/WSN/33 influenza genome (CY034132, CY034133, CY034134, 

CY034135, CY034136, CY034137, CY034138, CY034139). The mapped reads were then processed through 640 

the same pipeline described in Genome Alignment. Only cells with > 1000 UMIs were analyzed. Human cells 

and MDCK cells formed distinct clusters. MDCK transcripts and viral transcripts were found in human cells, 

which suggested those transcripts were the result of ambient RNA contamination. The distribution of ambient 

viral RNAs was overdispersed with zero inflation. We also observed that the viral transcripts and the total 

number of UMIs per cell are correlated. To assess the amount of ambient RNA in the cells, a zero-inflated 645 

negative binomial model (ZINB) was built using the function hurdle (package “pscl v1.5.2”) in R (v3.5.0). The 

observed viral counts were modeled against the total number of UMIs in each cell for each spiked-in donor. 

The model performance was evaluated using Q-Q plots and residuals. This model was only applied to highly 

infected donors (IAV1, IAV2, IAV5, IAV7, IBV1, IBV2) to assess the expected fraction of viral ambient RNA per 

cell. 650 

It is notable that human cells carrying high levels of A/WSN/33 transcripts were predicted to be infected after 

applying the ZINB model (Figure S4C-D). Since only a small fraction of these cells also have a high fraction of 

dog mRNAs, human/dog doublets do not explain the high presence of influenza mRNAs. This suggests that 

they may have been infected during the time in which they were mixed together (~1.5hr) before cell lysis on the 

Seq-Well platform. Indeed, a disproportionate number of cells with high influenza viral mRNAs are epithelial 655 

(170 epithelial cells and 64 immune cells), the natural target of influenza virus, further indicating that infection 

after mixing occurred.  
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The ZINB model had no power to predict infection in the case of cells with lower levels of viral transcripts. This 

includes the 298 virus positive cells from half of the infected donors, and a large number of virus positive cells 

that were not predicted to be infected in high viral load donors. To ensure that infected cell identification was 660 

robust, a support vector machine (SVM) classifier was applied to distinguish between infected and bystander 

cells. The SVM classifier was only applied to cell types which had more than 10 cells predicted to be infected 

by the ZINB model, namely CEP and Squamous cells. The gene expression signature related to viral infection 

for each cell type was generated by comparing infected cells predicted by ZINB and bystander cells with no 

viral transcripts using edgeR (Robinson et al., 2010). Genes expressed by more than 20% of the cells were 665 

tested, and genes with at least a 2 fold change (FDR < 0.05) in infected cells predicted by ZINB were selected 

as features for the model. The SVM classifier for each cell type was trained using 70% of the infected cells 

predicted by ZINB and an equal number of bystander cells without any viral transcripts. The remaining cells 

from each cell type were then classified as infected or bystander cells. The SVM classification for CEP and 

Squamous cells showed 3% and 6% false positive rates, respectively.  670 

Cell type enrichment statistical test. 

The method described previously by (Xu et al., 2019) was followed to test for cell type composition changes 

between healthy and infected donors. Briefly, a negative binomial regression model was used to assess if the 

cell type composition between healthy donors and infected cells are significantly different. For each cell type, 

the infection label (healthy or infected) was used as a covariate and the total number of cells sampled from 675 

each donor was used as an offset variable. The Wald test was used on the regression coefficient to assess the 

P value for each cell type. 

Differential gene expression analysis 

Differential gene expression analysis was performed using edgeR, comparing bystander cells to healthy cells, 

and infected cells to bystander cells for each cell type. Comparisons with fewer than 3 cells in any cellular 680 

infection state were not tested. To generate cell type markers, edgeR was used to test for differentially 

expressed genes of each cell type against the rest sixteen cell types with equal weights. Genes were 

considered differentially expressed with at least 2 fold change and false discovery rate less than 0.05. 

Gene Set Enrichment Analysis (GSEA) 

To capture more subtle differences among cell states which affect functionally related genes, gene set 685 

enrichment analysis (GSEA v3.0) (Subramanian et al., 2005) was performed using a ranked gene list 

constructed from the edgeR results. Genes were ranked by their reported fold change (logFC). GSEA was run 

via command line using parameters --nperm 2000 -set_max 3000. The GO term annotation reference was 

obtained from MSigDB C5 collection 

(http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=C5). Significantly enriched gene 690 

ontology (GO) terms were selected based on (1) the normalized enrichment score (NES > 2 or NES < -2), and 

(2) the false discovery rate (FDR < 0.05).   

Aggregated pseudobulk gene expression calculation 

The aggregated pseudobulk gene expression was calculated as ∑g(1,2...i)/∑c(1,2...i) * 1,000,000 for all i cells in a 

group, where g is the normalized UMI count of a gene, and c is the total number of UMI counts in a cell.  695 

Virus genotyping and single nucleotide variants (SNVs) calling.  

For each donor’s scRNA-Seq library, reads mapped to influenza viral genomes were removed of PCR 

duplicates using umitools -dedup (Smith et al.). The remaining reads were then used to identify SNVs using 

mpileup from samtools via command line (Li, 2011). SNVs were called in each donor with following criteria: for 

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 17, 2020. . https://doi.org/10.1101/2020.04.15.042978doi: bioRxiv preprint 

https://paperpile.com/c/OB6EFn/EVuH
https://paperpile.com/c/OB6EFn/JrJe
https://paperpile.com/c/OB6EFn/tbSy
http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=C5
https://paperpile.com/c/OB6EFn/CUat
https://paperpile.com/c/OB6EFn/xfQH
https://doi.org/10.1101/2020.04.15.042978
http://creativecommons.org/licenses/by-nd/4.0/


20 

a highly covered position (> 20 reads), a SNV is called when more than 50% of mapped reads support the 700 

alternative allele; for a lowly covered position (≤ 20 reads), if the alternative allele is supported by > 50% of the 

reads and this allele was also found in other donors with higher coverage, a SNV will be called, otherwise this 

position will not be called in this donor. SNVs called from the scRNA-Seq data were also detected using the 

bulk RNA-Seq data for donors who have both types of library, confirming the accuracy of the SNV detection 

approach in scRNA-Seq data. A hamming distance matrix of the viral sequence in each donor was calculated 705 

by using only the SNV positions covered in all donors. Hierarchical clustering was used to identify the similarity 

of the viruses among donors. Supplemental Table 2 contains details on the SNV called per donor and per 

viral genome segment. 

Special notes: Bead breakage correction 

After single-cell mRNA capturing on the Seq-Well array, cells from each donor were split into five aliquots, in 710 

order to control the number of cells to sequence from each sample. In theory, the cell barcodes within aliquots 

from each donor should collide minimally (1.3% for 78,000 beads determined from random 11 bp 

oligonucleotide simulation). However, we observed the same barcode in different aliquots from the same 

sample, at a much higher rate than expected from random barcode sampling. Further analysis on these 

barcodes revealed that they had similar transcriptome profiles. Based on light microscopy inspection, we 715 

hypothesized that this phenomenon could result from the broken beads that were separated into different 

aliquots. This “bead breakage problem” was corrected by merging cell barcodes across aliquots from the same 

donor with non-random barcode collision whenever they exhibit similar transcriptome profiles.  

Special notes: Illumina sequencing index swapping correction 

Index swapping (hopping), i.e., the integration of free adapters, happens on Illumina patterned flow cells for 720 

sequencing platforms such as NovaSeq, HiSeq4000 and HiSeqX(Costello et al., 2018). This issue impacted 

our analysis when identifying infected cells, genotyping the virus sequences and calling SNVs. We estimated 

the index swapping rate for each flow cell by identifying the same cell barcodes. The swapped reads had the 

same barcode as cell barcodes from another sample. Since Seq-Well utilizes Drop-Seq beads, which have the 

12 bp cell barcodes randomly generated by split-and-pool, random barcode collision can happen. We 725 

estimated the rate of random barcode collision to be 1.3%, given 78,000 beads loaded on each Seq-Well 

array. We also aliquoted each sample into five and each aliquot was indexed differently, so the aforementioned 

bead breakage problem made estimation of the swapping rate and identification of swapped reads challenging. 

To identify the swapped reads from each sample, we only focused on the cell barcodes with more than 1000 

UMI (i.e., true cells) and identified the same barcodes from other samples on the same flow cell. We removed 730 

the reads with those barcodes from other samples in cases where the amount corresponded to less than 5% of 

all reads with the same barcodes on the same flow cell. 
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