
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Open Access Articles Open Access Publications by UMMS Authors 

2020-03-18 

Comparisons of Antibody Populations in Different Pre-Fusion F Comparisons of Antibody Populations in Different Pre-Fusion F 

VLP-Immunized Cotton Rat Dams and Their Offspring VLP-Immunized Cotton Rat Dams and Their Offspring 

Lori McGinnes Cullen 
University of Massachusetts Medical School 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs 

 Part of the Amino Acids, Peptides, and Proteins Commons, Immunology of Infectious Disease 

Commons, Immunopathology Commons, Immunoprophylaxis and Therapy Commons, Maternal and Child 

Health Commons, Respiratory Tract Diseases Commons, Virology Commons, Virus Diseases Commons, 

and the Viruses Commons 

Repository Citation Repository Citation 
Cullen LM, Boukhvalova MS, Blanco JC, Morrison TG. (2020). Comparisons of Antibody Populations in 
Different Pre-Fusion F VLP-Immunized Cotton Rat Dams and Their Offspring. Open Access Articles. 
https://doi.org/10.3390/vaccines8010133. Retrieved from https://escholarship.umassmed.edu/oapubs/
4202 

Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles 
by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/oapubs
https://escholarship.umassmed.edu/oa
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/oapubs?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/35?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/35?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/36?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/37?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/745?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/745?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/990?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/53?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/998?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/987?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3390/vaccines8010133
https://escholarship.umassmed.edu/oapubs/4202?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://escholarship.umassmed.edu/oapubs/4202?utm_source=escholarship.umassmed.edu%2Foapubs%2F4202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Lisa.Palmer@umassmed.edu


Article

Comparisons of Antibody Populations in Different
Pre-Fusion F VLP-Immunized Cotton Rat Dams
and Their Offspring

Lori M. Cullen 1, Marina S. Boukhvalova 2, Jorge C. G. Blanco 2,* and Trudy G. Morrison 1,3,*
1 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School,

Worcester, MA 01655, USA; Lori.McGinnes@umassmed.edu
2 Sigmovir Biosystems Inc., Rockville, MD 20850, USA; m.boukhvalova@sigmovir.com
3 Program in Microbiology and Immunology, University of Massachusetts Medical School,

Worcester, MA 01655, USA
* Correspondence: j.blanco@sigmovir.com (J.C.G.B.); trudy.morrison@umassmed.edu (T.G.M.)

Received: 26 February 2020; Accepted: 14 March 2020; Published: 18 March 2020
����������
�������

Abstract: Respiratory syncytial virus (RSV) infection poses a significant risk for infants. Since the
direct vaccination of infants is problematic, maternal vaccination may provide a safer, more effective
approach to their protection. In the cotton rat (CR) model, we have compared the immunization
of pregnant CR dams with virus-like particles assembled with the prototype mutation stabilized
pre-fusion F protein, DS-Cav1, as well two alternative mutation stabilized pre-fusion proteins (UC-2 F,
UC-3 F) and showed that the alternative pre-fusion F VLPs protected the offspring of immunized dams
significantly better than DS-Cav1 F VLPs (Blanco, et al. J. Virol. 93: e00914). Here, we have addressed
the reasons for this increased protection by characterizing the specificities of antibodies in the sera of
both immunized dams and their offspring. The approach was to measure the levels of total anti-pre-F
IgG serum antibodies that would block the binding of representative pre-fusion specific monoclonal
antibodies to soluble pre-fusion F protein targets. Strikingly, we found that the sera in most offspring
of DS-Cav1 F VLP-immunized dams had no mAb D25-blocking antibodies, although their dams
had robust levels. In contrast, all offspring of UC-3 F VLP-immunized dams had robust levels of
these D25-blocking antibodies. Both sets of pup sera had significant levels of mAb AM14-blocking
antibodies, indicating that all pups received maternal antibodies. A lack of mAb D25-blocking
antibodies in the offspring of DS-Cav1 F VLP-immunized dams may account for the lower protection
of their pups from challenge compared to the offspring of UC-3 F VLP-immunized dams.

Keywords: vaccines; virus-like particles; pre-fusion F proteins; antibodies; maternal antibodies

1. Introduction

Respiratory syncytial virus (RSV) is the most common lower respiratory tract viral pathogen of
neonates and infants [1]. This virus accounts for 33.1 million acute lower respiratory tract infections,
3.2 million hospitalizations and an estimated yearly mortality of 118,200 for this population [2]. RSV
infections are a common cause of infant physician office visits [3]. Despite decades of effort, no vaccine
has yet been licensed. Furthermore, the use of any licensed RSV vaccine for immunization of infants
will be problematic due to safety issues and the immaturity of their immune systems. As a result of
these difficulties, maternal immunization for the protection of their offspring is considered a better
approach [4–14].

We have developed novel virus-like particle (VLP) vaccine candidates for RSV [14–18]. In contrast
to soluble proteins, VLPs robustly stimulate immune responses without the complications of adjuvant
addition [19]. VLPs are safer as vaccines for many populations, such as the very young, compared
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to infectious, attenuated, or vector viruses, since they do not contain a genome and do not produce
a spreading infection. Our VLPs are based on the core proteins of Newcastle disease virus (NDV),
NP and M proteins, and they are assembled with the RSV F and G protein ectodomains fused to the
transmembane and cytoplasmic domains of the NDV F and HN proteins, respectively.

There has been a resurgence of interest and activity in RSV vaccine development due to the
ground-breaking studies of McLellan, et al. who succeeded in solving the crystal structure of the
RSV pre-fusion F protein and identifying a set of mutations in the F protein, termed DS-Cav1, which
stabilized the pre-fusion form of the F protein [20,21]. We have reported that VLPs assembled with
the DS-Cav1 mutant F protein stimulate, in mice and in cotton rats, neutralizing antibody titers
much higher than those induced by VLPs assembled with the post-fusion F protein or wild-type F
protein [16,22]. Furthermore, the immunization of cotton rat dams with DS-Cav1 F VLPs protected
their offspring from RSV challenge [14].

Since the description of DS-Cav1 F protein, a number of other laboratories and companies have
identified different sets of mutations that reportedly stabilize the pre-fusion F protein [23–29]. A very
important question for vaccine development is whether the different mutation-stabilized pre-fusion
F proteins are indeed the same in terms of structure, antibodies induced, and protection from RSV
challenge afforded by their use as immunogens. We have recently addressed these questions by
comparing the reactivity to monoclonal antibodies and the immunological properties of virus-like
particles (VLPs) assembled with different versions of mutation-stabilized pre-fusion F proteins [18,30].
We have reported that five different pre-fusion F proteins, in VLPs, bind differently to representative
pre-fusion specific monoclonal antibodies (mAb) [18]. Compared to VLPs assembled with DS-Cav1
F protein, two of these alternative mutation-stabilized pre-fusion F protein VLPs induced, in mice,
neutralization titers 3 to 4-fold higher than DS-Cav1 F VLPs [18]. Furthermore, we showed that
the specificities of the population of antibodies induced in mice by the five different VLP-associated
pre-fusion F proteins were different as defined by differences in the serum inhibition of binding of
representative monoclonal antibodies to the soluble forms of the pre-fusion F protein [18]. These
combined results indicate that not all mutant stabilized pre-fusion F proteins are the same with respect
to the population of antibodies they induce.

Using cotton rats (CR), the preferred animal model for RSV [7,14,31,32], we reported that the
immunization of pregnant animals with one of these alternative pre-fusion F VLPs increased their
serum-neutralizing antibody (NAb) titers and significantly increased the protection from RSV challenge
of their offspring compared to the immunization of dams with DS-Cav1 F VLPs [30]. These results
raise the question of why there are differential levels of protection of offspring upon immunization
of their dams with the different VLP-associated pre-fusion F proteins. To begin to account for these
differences, we have compared the specificities of the antibodies induced by the different VLPs in CR
dams and the specificities of antibodies transferred to their offspring. We report that DS-Cav1 F VLPs
and other pre-fusion F VLPs induced different populations of antibodies in pregnant CR dams Most
importantly, the specificities of the population of anti-F protein antibodies in the serum of offspring
did not, in some cases, correlate with the specificities of the population of antibodies in their dams.
The results point to the importance of the selection of the appropriate mutant stabilized pre-fusion F to
formulate a maternal vaccine for the optimal protection of neonates.

2. Materials and Methods

2.1. Cells, Plasmids, Viruses

ELL-0, used for VLP preparation, and Vero cells, used for plaque assays, were obtained from the
American Type Culture Collection and grown in DMEM (Invitrogen, ThermoFisher Scientific; Waltham,
MA, USA) supplemented with penicillin, streptomycin (Invitrogen), and 5% (Vero cells) or 10% fetal
bovine serum (ELL-0) (Invitrogen). Expi293F cells, used for soluble protein production, were obtained
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from ThermoFisher/Invitrogen and grown in Expi293 media (ThermoFisher/Gibco/Invitrogen). RSV,
prototype long strain (ATCC VR-26), was used for infection and challenge.

VLPs contained the RSV F and G protein ectodomains (derived from RSV, strain A2) and
were assembled with the Newcastle disease virus (NDV) core proteins NP and M, as previously
described [15,18,22,33]. The F proteins were assembled into VLPs as chimera proteins with the RSV F
protein ectodomain fused to the NDV F transmembrane (TM) and cytoplasmic tail (CT). The G protein
was assembled as a chimera protein with the RSV G protein ectodomain fused to the NDV HN, TM, and
CT domains [34]. The construction, expression, and incorporation of the chimera proteins into VLPs
have been previously described. Four VLPs were assembled, each with a different mutant F protein
ectodomain: DS-Cav1 F protein, post F protein, UC-2 F protein, and UC-3 F protein. Mutations in
DS-Cav1 protein have been previously described [21]. UC-2 F and UC-3 F proteins both had deletions
of the p27 sequence, including the two cleavage sites combined with the insertion of a linker sequence
GSGSGRS. In addition, UC-2 F had two amino acid substitutions (N67I, S215P), and UC-3 F had three
(N67I, S215P, D486N) [18]. These mutants are similar to SC-DM and SC-TM (single chain double
mutant and single chain triple mutant, respectively), as described by Krarup et al. [27].

The constructions of the genes encoding the soluble DS-Cav1 F protein and soluble G protein
have been previously described [18,22]. The soluble UC-3 F protein was constructed similarly to the
soluble DS-Cav1 protein, as previously described [18].

2.2. Antibodies

Human mAb D25, mAb AM14, and palivizumab used for antibody-blocking experiments were
the generous gifts of Jason McLellan and Dr. Jorge Blanco. Secondary antibody against human IgG
was purchased from Southern Biotech.

2.3. VLP Preparation, Purification, and Characterization

The preparation of VLPs used as immunogens (abbreviated as DS-Cav1 F VLPs, post-F VLPs, UC-2
F VLPs, UC-3 F VLPs) has been previously described [18]. Briefly, VLPs were harvested from ELL-0 cells
transfected with cDNAs encoding the NDV NP and M protein, the chimera protein H/G, and one of the
three pre-F proteins or the post-F protein. VLPs were collected from cell supernatants and purified by
sequential pelleting and sucrose gradient fractionation as previously described. The conformation of
different F proteins in the VLP preparations was verified by reactivity to mAb, as has been previously
published [14,18].

2.4. Preparation of Soluble F Proteins

Soluble F or G proteins were prepared in Expi293F cells. The cells were transfected with cDNAs
encoding the soluble DS-Cav1 pre-F protein, the soluble UC-3 pre-F protein, or the soluble G protein.
At six days post-transfection, total cell supernatants were collected, and cell debris was removed by
centrifugation. Then, soluble polypeptides were purified on columns using the His tag and the strep
tag and validated as previously described [14].

2.5. Quantification of NP, M, H/G, and VLP Associated F Proteins or Soluble F Proteins

Quantifications of NP, M, RSV G protein, and RSV F proteins in VLPs or in soluble F or G protein
preparations were accomplished after their separation in polyacrylamide gels followed by silver
staining (Pierce Silver Stain, ThermoFisher) or Western blots of the proteins in parallel with protein
standards, as previously described [35].

2.6. Animal Studies

Animal studies have been described previously [30]. Briefly, Sigmodon hispidus cotton rats were
obtained from an inbred colony maintained at Sigmovir Biosystems, Inc. (Rockville, MD USA).
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Three-week-old female cotton rats (4–5/group) were bled by retro-orbital plexus puncture and then
primed by RSV A/Long infection intranasally using a dose of 105 PFU/animal in 50 µl. After 56 days
(8 weeks), females were set up in breeding pairs with RSV-negative males. At day 70 (2 weeks into
gestation), different groups of pregnant cotton rats were immunized with DS-Cav1, Post-F, UC-2 F
VLPs, or UC-3 F VLPs with 100 µg total VLP protein/animal (20 µg F protein), or TNE buffer (50 mM
Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA). Females were bled for serum collection at day 84
(just before delivery). Dams delivered pups at approximately day 84. All pups were eye-bled and
challenged with RSV A/Long (105 PFU/animal) at 4 weeks of age. On day 4 post-infection, all pups
were sacrificed for nose and lung viral titers. All studies were conducted under applicable laws
and guideline and after approval from the Sigmovir Biosystems, Inc. Institutional Animal Care and
Use Committee.

2.7. Blocking of mAb Binding to Soluble DS-Cav1 F or UC-3 F Proteins

To measure the abilities of polyclonal sera to block the binding of mAbs to the F protein
target, different dilutions of sera, in PBS-1% BSA (phosphate buffered saline containing 1% bovine
serum albumin), were incubated for 1 h at room temperature in wells of Ni-coated microtiter plates
(Pierce/ThermoFisher) containing 50 ng of pre-bound soluble DS-Cav1 pre-F protein or soluble UC-3
pre-F protein. Ni-coated plates were used in order to bind the soluble pre-F proteins via the histidine
tag at the carboxyl terminus of the protein and thus orienting the protein in the well with the apex
of the molecule projecting upwards as in virus particles. After removal of the serum, the wells were
incubated with 200 ng/mL of one of the purified mAb and diluted in PBS-1% BSA for 10 min at room
temperature. Then, the mAb was removed, the plate was washed in PBS, and it was incubated with
goat anti-human IgG coupled to HRP (horse radish peroxidase). After incubation for 1 h at room
temperature, the bound HRP was detected as in ELISA assays. The total anti-pre-F IgG in the different
serum dilutions used for mAb blocking was determined using a standard curve of purified CR IgG in
order to measure the ng of serum anti-pre-F antibody in the dilution that blocked the binding of the
mAb (illustrated in Figure A1).

2.8. Statistical Analysis

Statistical analyses (student T test) of data were accomplished using Graph Pad Prism 7 software.

3. Results

3.1. Specificities of Anti-Pre-Fusion F Protein Antibodies Defined Using Soluble DS-Cav1 F Targets

We have previously described and compared immune responses in CR immunized with DS-Cav1 F
VLPs and two alternative pre-fusion F VLPs [30]. CR females were RSV primed by intranasal infection,
mated at 56 days after the RSV prime, and then immunized at various times of gestation with DS-Cav1
F, UC-2 F, UC-3 F, post-F VLPs, or mock-immunized. Sera were collected at day 84, 4 weeks of gestation,
just before the delivery of offspring. Sera were harvested from the offspring at 4 weeks post-birth.
The total ng/mL of anti-pre-F IgG in dams was shown to be similar in all VLP-immunized animals
and 10-fold higher than in the mock-immunized animals [30]. Levels (ng/mL) of total anti-pre-F IgG
in all pup sera were also very similar and approximately 10-fold lower than titers in their dams [30].
For the experiments reported here, comparing the specificities of the antibodies induced by the three
different pre-fusion F VLPs, we have utilized sera from selected groups of animals from this previously
reported study. Specifically, sera from animals immunized at two weeks of gestation and offspring
from these dams were selected for analysis in this study.

We have previously compared the relative specificities of murine antibodies induced by different
VLPs measuring the concentration of anti-pre-F binding IgG in sera that will block the binding of
pre-fusion specific mAb D25 and AM14 [18]. We reported that fewer ng of total anti-pre-F IgG in
DS-Cav1 F, UC-2 F, or UC-3 F VLP sera compared to post-F VLP sera were required to block 50%
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binding of the pre-fusion specific mAbs. That is, the DS-Cav1 F, UC-2 F, and UC-3 F VLPs induced sera
that had a higher concentration of D25-blocking and AM14-blocking antibodies/ng of total anti-pre-F
binding IgG than the sera from post-F VLP immunization, as expected.

Using the same approach, we compared the specificities of the anti-pre-F IgG antibodies in the
different sera from the pregnant CR dams by measuring the ng/mL of total anti-pre-F IgG that could
block the binding of two different pre-fusion specific mAb, D25 and AM14. Appendix A, Figure A1,
illustrates the approach for determination of the levels of binding of mAb with different dilutions of
serum IgG. Then, the ng/mL of anti-pre-F IgG in the dilution of sera that resulted in 50% reduction
in binding of the mAb could be determined. Conversion of the dilution of sera to ng/mL takes into
account differences in the total anti-pre-F IgG in the different sera.

Figure 1 shows ng/mL of anti-pre-F IgG in sera from groups of immunized dams that blocks AM14
(panel A) or D25 (panel B) binding to soluble pre-fusion F protein, DS-Cav1 F protein. Similar to murine
sera, the concentration of AM14-blocking antibodies in DS-Cav1 F, UC-2 F, and UC-3 F VLP sera were
similar, although the UC-2 and UC-3 F VLP sera had statistically significantly lower concentrations
of AM14-blocking antibodies than the DS-Cav1 sera. DS-Cav1 F VLP sera had a somewhat higher
concentration of D25-blocking antibodies compared to UC-3 F VLP sera (panel B). That is, more ng/mL
of total anti-pre-F IgG in UC-3 F VLP sera were required to block D25 compared to DS-Cav1 F VLP
sera. However, surprisingly, the UC-2 F VLP sera did not block D25 binding at any dilution of sera,
similar to post-F VLP sera. The differences in levels of D25-blocking antibodies in sera induced by
UC-2 F and UC-3 F VLPs may account, at least in part, for the previously reported higher NAb titers in
dams and much better protection of pups after maternal immunization with UC-3 F VLPs compared to
UC-2 F VLP immunization [30]. As a result of the apparent lack of D25-blocking antibodies in UC-2 F
VLP sera, we proceeded to focus on comparisons of responses to DS-Cav1 F and UC-3 F VLPs.
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the mAb. The results are the mean of three to five separate determinations with standard deviations 
indicated. ***p < 0.0005; **p < 0.005; *p < 0.05. 

Figure 1. Blocking of binding of pre-fusion specific monoclonal antibodies (mAb) by sera from virus-like
particle (VLP)-immunized dams. Shown are the concentrations (ng/mL) of total anti-pre-fusion F
binding IgG that blocked 50% binding of mAb AM14 (panel A) or D25 (panel B) to soluble pre-fusion F
protein (DS-Cav1) target in ELISA. Five groups of RSV primed, and pregnant CR dams were immunized
with 100 µg of four different VLPs (DS-Cav1 F, Post F, UC-2 F, or UC-3 F VLPs) or mock at 2 weeks of
gestation. Sera were harvested from each group at 4 weeks of gestation, just before the delivery of
pups. Sera from each group were pooled, and the ng/mL of anti-pre-F binding IgG that blocked 50% of
the binding of the mAb was determined as described previously [18] and in the Materials and Methods.
Values above 4–5 × 105 ng/mL in VLP sera indicate minimal or no blocking of the mAb. The results are
the mean of three to five separate determinations with standard deviations indicated. *** p < 0.0005;
** p < 0.005; * p < 0.05.

As expected, the sera from post-F VLP immunizations weakly blocked AM14 binding compared
to other sera, had no detectable levels of D25-blocking antibodies, and served as a negative control for
these experiments.

The concentration of AM14 blocking anti-pre-F in sera from RSV primed, mock-immunized
animals is similar to that of DS-Cav1 sera (Figure 1, panel A). However, it is clear that these sera have
very low concentrations of D25-blocking antibodies in the total anti-pre-F IgG (Figure 1, panel B). This
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result may account, in part, to the previously reported low NAb titers in the sera of these animals and
the poor protection of their offspring from RSV challenge.

3.2. Specificities of Anti-Pre-Fusion F Protein Antibodies Defined Using Soluble UC-3 F Targets

The results shown in Figure 1 were obtained using the soluble DS-Cav1 polypeptide as a target
for serum antibody and mAb binding. The UC-3 F protein contains a single amino acid change in the
region of the F protein identified as site φ (amino acids 61–76 and 195–210), which was the D25-binding
site. While UC-3 F VLPs bind D25 at levels comparable to DS-Cav1 F VLPs [20,21], we considered the
possibility that the differences in D25 blocking between UC-3 F sera and DS-Cav1 sera may be due to
the altered site φ sequences in UC-3 F and thus altered populations of site φ antibodies induced by the
different VLPs. Thus, we directly compared the results of D25 blocking with DS-Cav 1 F VLP or UC-3 F
VLP sera, using a soluble DS-Cav1 F target (Figure 2, panel A) or soluble UC-3 F target (Figure 2, panel
B). The post-F VLP sera serve as negative controls. The results showed that UC-3 F VLP sera could
block D25 binding using either target. However, DS-Cav1 F VLP sera only very weakly blocked D25
binding to the UC-3 F target, while the UC-3 F VLP sera had a very high concentration of antibodies
that blocked D25 binding to the UC-3 target. This result may indicate that UC-3 F VLP vaccination
generates a broader spectrum of antibodies that are capable of recognizing alternate conformations of
site φ [36,37].
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Figure 2. Blocking of binding of pre-fusion specific mAb by sera from VLP-immunized dams using
different target antigens. Shown are the concentrations (ng/ml) of total anti-pre-fusion F binding IgG in
VLP sera that blocked 50% binding of mAb D25 (panels A, B), AM14 (panels C, D), or palivizumab
(panels E, F) to soluble DS-Cav1 F protein target (panels A, C, E) or soluble UC-3 F protein target (panels
B, D, F) in ELISA. Determinations were done twice in parallel in order to accurately compare results
with different targets. The results are the mean of the two separate determinations with standard
deviations indicated. *** p < 0.0005; ** p < 0.005; * p < 0.05.
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As controls, we compared the blocking of mAb AM 14 (Figure 2, panels C and D) and palivizumab
(Figure 2, panels E and F) binding to both targets using DS-Cav1 F VLP or UC-3 F VLP sera. Surprisingly,
although the UC-3 F protein did not contain alterations in the binding sites of either mAb, relative
levels of blocking of mAb AM14 binding to the two targets with DS-Cav1 F or UC-3 F VLPs sera were
different. The concentrations of AM14-blocking antibodies or palivizumab-blocking antibodies in
the two sera were the same using the UC-3 F target (Figure 2, panels D and F, respectively), but the
concentrations of blocking antibodies measured with the DS-Cav1 target were statistically significantly
different (Figure 2, panels C and E). These results suggest that the different mutations stabilizing
the pre-fusion F protein affect the populations of antibodies they induce. These results may suggest
that the increased protection afforded to pups by UC-3 F VLP maternal immunization compared to
DS-Cav1 VLP immunization may be due, in part, to the induction of antibodies to site φ that can bind
to a broader range of conformations of site φ.

3.3. Specificities of Anti-Pre-Fusion F Protein Antibodies in Offspring of Immunized Dams

Offspring of dams immunized with UC-3 F VLPs at 2 weeks of gestation were approximately
4-fold better protected from RSV challenge than the offspring of dams immunized with DS-Cav1 F
VLPs [30] (Table 1). After RSV challenge, RSV lung titers in pups of the UC-3 F VLP-immunized dams
were, on average, 4.7 × 102 pfu/gm lung tissue, while the titers in lungs of pups from the DS-Cav1 F
VLP-immunized dams were 1.8 × 103 pfu/gm (Table 1), whereas the average titer of mock-vaccinated
animals was 4.7 × 104 pfu/gm. Since analyses of specificities of dam antibodies do not provide an
unambiguous reason for better protection by UC-3 F VLP dam immunization, we characterized the
specificities of populations of antibodies transferred from dams to pups, which was assessed as
described above. Since we have previously reported that the antibody titers in all pups in the same
litter were very similar [14], we pooled the sera of pups from the same litter. We assessed each pool
separately to determine if there were differences in antibody transfer from different dams. Table 1
shows the average NAb titers of sera from individual pup pools as well as the average RSV titers in the
lungs of each RSV-challenged pup in each pool.

Table 1. Summary of Properties of Dam and Pup Sera.

Vaccine Dam NAb
Titers a

Pup Litter ID
Number
(Litter Size)

Litter
NAb
Titers a

Pup Lung
Titers b

D25–
DS-Cav1
Target c

D25–
UC-3 F
Target c

AM14–
DS-Cav1
Target c

AM14–
UC-3 F
Target c

DS Cav1
VLPs

10.88
10.42
7.14
8.54

541 (6)
542 (2)
543 (4)
544 (4)

5.09
7.99
5.17
5.35

2.6 × 103

1.0 × 102

4.2 × 103

1.3 × 102

-
-
+
-

-
-
+/-
-

+
+
+
+

+
-
+
-

Post F
VLPs

8.55
8.50
8.70
8.17
9.12

546 (7)
547 (4)
548 (5)
549 (4)
550 (3)

4.40
4.76
4.32
4.32
4.32

7.1 × 103

1.3 × 103

2.3 × 103

4.5 × 103

1.5 × 103

-
-
-
-
-

-
-
-
-
-

+
+
+
+
+

-
-
-
-
-

UC-2 F
VLPs

8.94
8.96
10.23
10.26

555 (4)
556 (3)
557 (2)
558 (7)

4.86
4.50
4.39
4.32

2.0 × 102

1.9 × 103

2.6 × 103

4.5 × 103

ND ND ND ND

UC-3 F
VLPs

10.37
10.57
10.46
10.32

567 (7)
568 (1)
569 (3)
570 (5)

5.26
6.15
7.44
7.28

3.3 × 102

1.2 × 102

1.0 × 102

2.4 × 102

+
+
+
+

+/-
-
+
+/-

+
+
+
+

-
+
+
+

a NAb titers log 2; b lung RSV titers pfu/gm lung tissue; c summarizes data in Figure 3: +, competition with mAb
binding; - no competition; +/-, weak competition; ND, not done.

The blocking of mAb D25, AM14, or palivizumab by the sera from each pool was measured using
either soluble targets DS-Cav1 F (Figure 3, panels A, C, E, respectively) or UC-3 F protein (Figure 3,
panels B, D, F, respectively) for antibody binding. Shown are the ng/mL of total anti-pre-F IgG in each
litter that blocks 50% of mAb D25 binding (Figure 3, panels A and B), 50% of mAb AM14 binding
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(Figure 3, panels C and D), or 50% of palivizumab binding (Figure 3, panels E and F). First, it was clear
that the antibody populations in different litters of dams immunized with the same VLP can be quite
different. For example, the D25-blocking antibodies were absent in three of the four litters of DS Cav1
F VLP-immunized animals. However, one of these litters (litter 543) had good levels of D25-blocking
antibodies using the DS-Cav1 target and a 4 to 5-fold lower concentration using the UC-3 F target.
In contrast, all four litters of UC-3 F VLP-immunized dams acquired D25-blocking antibodies measured
using the DS-Cav1 target, although the levels were variable from litter to litter, particularly using the
UC-3 target antigen. One of these litters (568) had no or low levels of D25-blocking antibodies using the
UC-3 F target. These combined results, that the UC-3 F VLP immunization of dams results in a more
consistent level of D25-blocking antibodies in pups compared to the DS-Cav1 F VLP immunization of
dams, may account in part for the better protection, on average, of pups from RSV challenge after the
UC-3 F VLP immunization of dams compared to DS-Cav1 F VLP immunization (Table 1).

Vaccines 2020, 8, x FOR PEER REVIEW 9 of 16 

 

in part for the better protection, on average, of pups from RSV challenge after the UC-3 F VLP 
immunization of dams compared to DS-Cav1 F VLP immunization (Table 1). 

Figure 3. Blocking of binding of mAb by pup sera. 

The concentration (ng/ml) of anti-pre-F binding IgG required to block 50% binding of D25 (panels A, B), 
AM14 (panels C, D), or palivizumab (panels E, F) to soluble DS-Cav1 F (panels A, C, E) or UC-3 F protein (B, 
D, F) targets by ELISA. The sera of the offspring from a single dam were pooled, and each point is the average 
of two separate determinations of the concentrations of anti-pre-F IgG in each pool required to block 50% of 
the binding of each mAb. All pup sera pools contained 3 × 105 ng/mL anti-pre-F binding IgG. Values above 
100,000 ng/mL indicate very minimal or no blocking of binding of mAb. Numbers shown next to points 
identify the pup pools described in Table 1. 

It is significant that all litters had very high concentrations of AM14-blocking antibodies 
using the DS-Cav1 target (Figure 3, panel C), indicating that all pups had acquired maternal 
antibodies. Thus, a lack of D25-blocking antibodies in three litters of the DS-Cav1 F VLP-

Figure 3. Blocking of binding of mAb by pup sera. The concentration (ng/ml) of anti-pre-F binding IgG
required to block 50% binding of D25 (panels A, B), AM14 (panels C, D), or palivizumab (panels E, F)
to soluble DS-Cav1 F (panels A, C, E) or UC-3 F protein (B, D, F) targets by ELISA. The sera of the
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offspring from a single dam were pooled, and each point is the average of two separate determinations
of the concentrations of anti-pre-F IgG in each pool required to block 50% of the binding of each mAb.
All pup sera pools contained 3 × 105 ng/mL anti-pre-F binding IgG. Values above 100,000 ng/mL
indicate very minimal or no blocking of binding of mAb. Numbers shown next to points identify the
pup pools described in Table 1.

It is significant that all litters had very high concentrations of AM14-blocking antibodies using
the DS-Cav1 target (Figure 3, panel C), indicating that all pups had acquired maternal antibodies.
Thus, a lack of D25-blocking antibodies in three litters of the DS-Cav1 F VLP-immunized animals
cannot be due to a failure to transfer antibodies to pups. Further, all litters from dams immunized with
either pre-fusion F VLP had high concentrations of antibodies that blocked the binding of palivizumab
(Figure 3, panels E, F). However, there was variation between litters using the UC-3 F target for the
binding of both AM14 and palivizumab, indicating that there is considerable variability in the transfer
of these specific antibody populations from dams.

Thus, in summary, three-fourths of the litters from DS-Cav1 F VLP-immunized dams had virtually
no detectable D25-blocking antibodies using either target, while all litters had high concentrations of
AM14-like antibodies that blocked binding to the DS-Cav1 target. In contrast, all litters from UC-3 F
VLP-immunized dams had antibodies that blocked D25 binding to the DS-Cav1 target, and all had
antibodies that blocked AM14 binding to the soluble DS-Cav1 target. These combined results may
indicate that the transfer of antibodies that can block D25 binding may account, in part, for the better
protection of offspring by UC-3 F VLP immunization.

3.4. Levels of Anti-G Protein Antibodies in CR Sera

It has been shown that anti-G protein antibodies can provide protection from RSV challenge in
animal models [38–42]. Thus, we considered the possibility that the differential protection of offspring
of immunized dams could be due to the differential induction of anti-G antibodies by different VLPs.
To address this question, we determined the levels of total anti-G protein antibodies in the serum of
dams and in their offspring. Figure 4 shows levels of anti-G IgG in the sera of RSV primed dams two
weeks after VLP immunization, (panel A), and in their offspring at 4 weeks after birth (panel B).
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4. Discussion 

Figure 4. Induction of anti-G antibodies in VLP-immunized animals and their offspring. Five groups
of RSV-primed, pregnant CR dams were immunized with 100 µg of four different VLPs (DS-Cav1 F,
Post F, UC-2 F, or UC-3 F VLPs or mock immunized) at 2 weeks of gestation. Panel A shows the ng/mL
of anti-G IgG from individual dams immunized at 2 weeks of gestation. Panel B shows the ng/mL of
pooled pup sera from each dam. There were no significant differences between groups of dams or
between groups of pups.
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There are no significant differences between levels of anti-G IgG in dams or in levels in the pup
sera, although the levels of antibodies in dams were approximately 100-fold higher than the levels
in pups. Thus, the differences in the levels of total anti-G antibodies cannot account for the different
responses to the different VLPs.

4. Discussion

The identification of multiple different mutation-stabilized pre-fusion F proteins led us to ask
if these versions of pre-fusion F protein were indeed identical in terms of the conformation of the
F proteins and, therefore, the properties of the immune responses upon their use as immunogens.
We have addressed this question by comparing the representative mAb reactivity of five different
VLP-associated pre-fusion F proteins and found significant differences in the VLP binding of these
mAb, suggesting differences in their conformation [18]. We also showed that after the immunization of
mice with five different pre-fusion F VLPs, two alternative pre-fusion F protein VLPs (UC-2 F VLPs
and UC-3 F VLPs) induced 3 to 4-fold higher NAb titers than DS-Cav 1 F VLPs [18]. Using these
two alternative pre-fusion F VLPs as immunogens in pregnant CRs, we showed that UC-3 F VLPs
resulted in better protection of their offspring from RSV challenge compared to the offspring of dams
immunized with DS-Cav1 F VLPs or UC-2 F VLPs [30].

To begin to understand the reasons for the increased pup protection after UC-3 F VLP immunization
of their dams, we compared populations of antibodies induced in dams by the different VLPs and
antibody populations transferred to their offspring. We quantified the concentrations of pre-fusion F
specific serum antibodies in the different groups that blocked the binding of representative monoclonal
antibodies to the target soluble pre-fusion F protein. We used mAb D25, a pre-fusion specific site φ

antibody [20,21], and AM14, a trimer and pre-fusion specific antibody [43,44], as well as palivizumab,
a site 2 antibody that binds both pre- and post-fusion F proteins [44].

The serum antibodies induced in dams by the three pre-fusion F VLPs (DS-Cav1 F, UC-2 F, and
UC-3 F VLPs) all contained AM14-blocking antibodies, although the concentration of these antibodies
was higher in serum after DS-Cav1 F VLP immunization compared to UC-2 F VLP or UC-3 F VLP
immunization (Figure 1). The antibodies induced by DS-Cav1 F VLPs and UC-3 F VLPs in dams
also blocked D25 binding, although the concentration of these antibodies was higher after DS-Cav1
F VLP immunization. Most striking was the absence of D25-blocking antibodies after UC-2 F VLP
immunization. Since site φ, recognized by D25, is considered a dominant epitope for the induction of
NAb, this result is consistent with the lower average NAb titers in the sera of dams immunized with
UC-2 F VLPs compared to that in UC-3 F sera (Table 1). The UC-2 F protein varies from UC-3 F by a
single amino acid change near the stalk at the base of the globular head domain of the pre-fusion F
protein, which is a position that is very distant from site φ, the D25-binding site. However, alterations
in this region of the molecule may affect the overall conformation of the protein used as an immunogen,
affecting the D25-binding site.

The minor differences in the concentrations of D25 or AM14-blocking antibodies in dams after
immunization with DS-Cav1 F VLPs and UC-3 F VLPs do not clearly account for the significantly
increased protection from RSV challenge of offspring of UC-3 F VLP-immunized animals (Table 1).
This issue led us to address the concentration of blocking antibodies using different target antigens for
the blocking experiments (Figure 2). Comparing the blocking of mAb binding using soluble DS-Cav1
F or UC-3 F proteins as target antigens, we found that relative concentrations of blocking of mAb D25,
AM14, or palivizumab by serum antibodies varied with the target antigen used. Most striking were
the differences in the serum blocking of D25 binding to soluble DS-Cav1 F and UC-3 F target proteins.
The UC-3 F VLPs induced antibodies that blocked D25 binding to both targets, while the DS-Cav1 F
VLP induced sera that only very weakly blocked D25 binding to the UC-3 F target. The ability of the
UC-3 F VLP sera to effectively block the binding to the two targets in contrast to DS-Cav1 F VLP sera
may indicate that antibodies in the UC-3 F VLP sera more broadly recognize different conformations
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of site φ in the pre-fusion F proteins [36] and may contribute to the increased NAb in dams and the
increased protection from RSV challenge of the offspring of these dams.

Assessment of antibodies transferred to the offspring of immunized dams yielded several
surprising results (Figure 3), which likely further impact the protection levels of these pups
from RSV challenge. Three of the pup litters from DS-Cav1 F VLP-immunized dams had no
detectable D25-blocking antibodies using either target F protein, while all the pup litters from UC-3 F
VLP-immunized dams had these antibodies, although their levels varied with the litter particularly
assessed with the UC-3 F target antigen. All litters had high concentrations of AM14-blocking antibodies
using the DS-Cav1 target and the pups from the pre-fusion F-immunized dams had high concentrations
of palivizumab-blocking antibodies on the DS-Cav1 target. While there was more variability in the
blocking of mAb AM14 and palivizumab using the UC-3 F target, these antibodies may contribute to
the increased NAb titers and protection in the offspring of immunized dams compared to offspring
from post F VLP-immunized dams (Table 1).

The polyclonal antibody blocking and binding of mAb to F protein targets may be due to several
reasons, which are not mutually exclusive. The polyclonal sera may contain populations of antibodies
specific for the binding site of the mAb, thus blocking the binding of that mAb. Alternatively,
the polyclonal antibodies may prevent access of the mAb to its binding site by binding to sites
surrounding the mAb-specific epitope. It is also possible that the polyclonal antibody binding of the
target may alter the target protein’s conformation and thus the mAb binding site. These last two
possibilities may account for the observation of the presence of mAb AM14-blocking antibodies in pup
sera from dams immunized with post-F VLPs, although post-F VLPs do not bind this antibody [18].
A possible explanation is that post-F VLPs can boost antibodies that can obscure the AM14 binding site,
leading to the inhibition of AM14 binding and the high concentrations anti-pre-F IgG in that sera that
can block AM14 binding. The failure of the UC-2 F-induced antibodies in dams to block D25 binding or
the variability of pup sera to block mAb binding to two different targets may be due to the different
conformations of the target F or the induction of those changes by the binding of the polyclonal CR sera.

Another interesting finding is that antibodies with different specificities are differentially
transferred from dams to their pups. Most striking is the lack of detection of D25-blocking antibodies in
most pup litters of DS-Cav1 F VLP-immunized dams, even though their dams had robust levels of these
antibodies. Thus, DS-Cav1 F VLPs did not fail to induce D25-blocking antibodies in dams. Furthermore,
failure to transfer these D25-blocking antibodies to the offspring of DS-Cav1 F VLP-immunized animals
cannot be due to a lack of transfer of total antibodies, since all these pups acquired high levels of
AM14 and palivizumab-blocking antibodies. This surprising finding could be due to the different
properties of the antibodies induced by the different forms of the F protein [45]. It has been reported
that digalactosylated antibodies and NK cell-activating antibodies are selectively transferred across
the human placenta [45]. Comparisons of the properties of antibodies induced in dams and those
transferred to pups will be a topic of future studies.

A potential explanation for the differences in immune responses to different mutation stabilized
pre-fusion F proteins may be the result of somewhat altered conformations of the pre-fusion protein
due to the different mutations introduced. Another possibility is suggested by a recent analysis of the
pre-fusion forms of HIV env [46–48], the influenza HA proteins [49], and the Ebola G protein [50]. Studies
of fusion proteins have long hypothesized that the conformational change from pre- to post-fusion
forms must involve multiple intermediates including several reversible pre-fusion conformations prior
to conversion to irreversible intermediates on the path to the post-fusion form (for example, [51]).
Recent studies have clearly shown these intermediates by various protocols including single-molecule
FRET (Forester resonance energy transfer). Furthermore, Gilman et al. have reported recent results
that are consistent with the detection of alternative conformations in the RSV pre-fusion F protein [36].
It has also been suggested that mutations introduced into the HIV env protein to stabilize the
pre-fusion conformation do not stabilize env in its most native form but stabilize it in a conformational
intermediate. Given these results with other viral fusion proteins as well as the RSV pre-fusion F
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protein, it is reasonable to suggest that different mutant pre-fusion F proteins are stabilized at different
stages in the pathway to the post-fusion form, resulting in proteins with different conformations and
different antigenicity.
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Figure A1. Titration of binding of mAb D25 and AM14 to soluble pre-F targets in presence of different
dilutions of CR dam sera. Shown are illustrations of the determinations of dilution of sera induced by
different VLPs that block 50% of the binding of D25 to soluble DS-Cav1 F (panel A) or UC-3 target
(panel B) or that block the binding of mAb AM14 to soluble DS-Cav1 F protein target (panel C) or
to soluble UC-3 F target (panel D). Using the total ng/mL of anti-pre-F binding IgG in each serum,
the ng/mL of anti-pre-F IgG in the dilution of sera that blocks 50% of the binding of the mAb can be
calculated. Total ng/mL of pre-F binding IgG in the dam sera were: Mock, 2.3 × 105; DS-Cav1 F VLP
sera, 4.0 × 106; post F VLP sera, 5.0 × 106; UC-3 F VLP sera, 5.5 × 106. Total ng/mL of anti-pre-F IgG in
pup sera was 3 × 105 ng/mL. All titrations were done two or three times.
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