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Abstract

Background: Scalable and accurate health outcome prediction using electronic health record (EHR) data has gained much
attention in research recently. Previous machine learning models mostly ignore relations between different types of clinical data
(ie, laboratory components, International Classification of Diseases codes, and medications).

Objective: This study aimed to model such relations and build predictive models using the EHR data from intensive care units.
We developed innovative neural network models and compared them with the widely used logistic regression model and other
state-of-the-art neural network models to predict the patient’s mortality using their longitudinal EHR data.

Methods: We built a set of neural network models that we collectively called as long short-term memory (LSTM) outcome
prediction using comprehensive feature relations or in short, CLOUT. Our CLOUT models use a correlational neural network
model to identify a latent space representation between different types of discrete clinical features during a patient’s encounter
and integrate the latent representation into an LSTM-based predictive model framework. In addition, we designed an ablation
experiment to identify risk factors from our CLOUT models. Using physicians’ input as the gold standard, we compared the risk
factors identified by both CLOUT and logistic regression models.

Results: Experiments on the Medical Information Mart for Intensive Care-III dataset (selected patient population: 7537) show
that CLOUT (area under the receiver operating characteristic curve=0.89) has surpassed logistic regression (0.82) and other
baseline NN models (<0.86). In addition, physicians’ agreement with the CLOUT-derived risk factor rankings was statistically
significantly higher than the agreement with the logistic regression model.

Conclusions: Our results support the applicability of CLOUT for real-world clinical use in identifying patients at high risk of
mortality.

(J Med Internet Res 2020;22(3):e16374)  doi: 10.2196/16374
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Introduction

Background
High-precision predictive modeling of clinical outcomes (eg,
adverse events such as the onset of disease and death) is a
clinically important but computationally challenging task. If
physicians can be notified about the risks of adverse events in
advance, they may be able to take steps to prevent them.
Electronic health records (EHRs) are widely used in US
hospitals and are becoming more mature over time [1]. They
have been actively researched for predictive modeling [2-8].

Almost 6 million patients are admitted annually to intensive
care units (ICUs) in the United States for airway support, for
hemodynamic or respiratory monitoring, and to stabilize acute
or life-threatening medical problems [9-15]. Patients in ICUs
are vulnerable to many acute diseases and often suffer from
chronic illness, but the leading causes of death in the ICU are
multi-organ failure, sepsis, and cardiovascular disease.
Approximately 10% to 30% of adult patients die before hospital
discharge in ICUs [16-30]. Regression models have been widely
used for predicting mortality for ICU patients [31]. Goal-directed
sepsis care represents an example of a successful,
evidence-based approach to the care of critically ill patients
with sepsis that uses predictive modeling to target patients at
high risk for mortality with life-saving upstream therapies [21].

During the past several years, neural network models have
shown a great success for many artificial intelligence
applications including computer vision, natural language
processing, and predictive modeling [4,32-34]. Neural
network-based predictive models include the convolutional
neural network (CNN) and recurrent neural network (RNN)
framework.

Although studies show that CNN models do not necessarily
outperform conventional predictive models such as regression
models [35], RNNs [36] have been shown to work well with
sequential data such as longitudinal EHRs. There have been
promising results regarding the use of RNNs in clinical
applications such as diagnosis predictions [6,37,38].
Autoencoders [39] are another class of neural networks that
extract rich representations using large unlabeled EHR data and
have shown state-of-the-art performance in prediction [4].

Although NN-based predictive models have been developed,
most models are based on bag of features, and few have
explicitly modeled the complex relationships between different
types of EHR data. Clinical events and diagnoses are not isolated
but instead are complex, multifaceted, and often correlated. For
example, diagnostic testing leads to a new finding, which may
lead to a specific treatment. Therefore, we believe it is important
to account for such relationships to improve the predictive power
of a model.

Objective
The main objective of this work is to develop innovative
prediction models to accurately predict patient mortality using
patients’ longitudinal EHR data. An important component of
our models is a correlational neural network, which is a special
neural network model that accounts for correlations between
different types of features. We modeled the relationships
between different types of clinical features in the EHR through
a correlational neural network and integrated them into
LSTM-based predictive models for improved performance.

Contributions
Our main contributions include learning of latent features from
different clinical data types and integrating the learned latent
features for outcome prediction using longitudinal EHR data.
Our results show that the integration of latent features yielded
the highest results for predicting patient mortality using the ICU
data.

In addition to evaluating our CLOUT models using the
traditional evaluation metrics such as sensitivity, specificity,
and area under the receiver operating characteristic curve, we
studied the interpretability of our predictive models. Specifically,
we designed a simple ablation experiment [40] to identify
important features (or risk factors). Our evaluation results show
that physicians were more in agreement with the risk factors
ranked by CLOUT than the ones ranked by the commonly used
logistic regression model.

In summary, our contributions are twofold: (1) We developed
an innovative long short-term memory (LSTM)–based predictive
model where a correlational neural network is integrated to
identify relationships and latent representations of different
clinical features. Our CLOUT model has state-of-the-art
performance in mortality prediction, surpassing other
competitive NN models and a logistic regression model. (2) We
provide a comprehensive evaluation of risk factors identified
by our neural network models. Our results show that the risk
factors identified by the CLOUT model agree with physicians’
assessment, suggesting that CLOUT could be used in real-world
clinical settings.

Methods

The Medical Information Mart for Intensive Care-III
Dataset
All models are trained and evaluated on the Medical Information
Mart for Intensive Care-III (MIMIC-III) dataset; an EHR dataset
made publicly available by the Massachusetts Institute of
Technology Laboratory for Computational Physiology.
MIMIC-III has been widely used for predictive models [41].
The dataset contains 7537 patients with two or more encounters,
which is the subset we used to build our CLOUT and baseline
models. We call this dataset p-MIMIC. Some demographic
information for patients in this dataset is given in Table 1.
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Table 1. Patient demographic information (N=7537).

ValuesCharacteristic

Age (years)

74.74Mean

66.00Median

Sex, n (%)

4190 (55.59)Male

3347 (44.41)Female

Race, n (%)

5644 (74.88)White

867 (11.50)Black

277 (3.68)Hispanic

226 (3.00)Asian

523 (6.94)Other/unknown

We require two or more encounters because we remove the last
encounter while making predictions, requiring us to have at
least one other encounter with data. We use patient mortality
as our outcome label. This label is obtained in the MIMIC
dataset from the hospital records and the social security death
records. In our dataset of 7537 patients, we have 2825 (37.9%)
documented deaths. Further details about MIMIC are covered
in Multimedia Appendix 1.

The dataset was further divided into train, validation, and test
splits, each containing approximately 69.99% (5275/7537),
9.99% (753/7537), and 20.02% (1509/7537) of the patients,
respectively. Once we picked the optimal model
hyper-parameters using the validation set, the model was
retrained on the combined train-validation set, which contained
79.98% (6028/7537) of the data.

Baselines—Reverse Time Attention Model,
Time-Aware Reverse Time Attention Model, Logistic
Regression Models
Our first set of baseline models are versions of the RETAIN
model, which is one of the few publicly available predictive
models for EHRs. RETAIN was built on an RNN model, and
evaluation has shown that it achieved both state-of-the-art
performance and interpretability [6].

RETAIN by itself does not incorporate temporal information
beyond the RNN framework; such fine-grained temporal
information may be important to patient outcomes. For example,
the severity of 2 acute myocardial infarctions separated by
different durations could have different clinical implications.
On the other hand, there is an option to include the time features
to the encounter vector. Therefore, we implemented time-aware
RETAIN (TaRETAIN) models as additional baselines by
concatenating time information to the input features. We
experimented with two different approaches to create the time
feature: number of days elapsed since the first encounter and

number of days elapsed since the previous encounter. We call
these 2 models TaRETAIN-first and TaRETAIN-previous.

Another baseline model is logistic regression as it has been
commonly used with EHR data. Although logistic regression
is best in interpretability, it is difficult to incorporate temporal
information. We therefore combined all the information
documented in an encounter to form 1 feature vector for each
patient. Our logistic regression model was also augmented with
the l2 penalty.

The CLOUT Models
The CLOUT models are built upon the state-of-the-art LSTM
framework. We provide a description of relevant concepts or
components that are built into our CLOUT models in
Multimedia Appendix 2.

Unlike other RNN models, LSTMs can learn dependencies over
longer intervals more efficiently [42]. In this study, CLOUT
represented all LSTM-based predictive models we built for
EHRs. The central architecture, as shown in Figure 1, is an
attention-based LSTM model that processed the encounter
vectors and made a binary class prediction.

Given a patient with encounters, the encounter vectors derived
from a CLOUT model are e1, e2, ... en. We ran the encounter
vectors through the LSTM framework to get the hidden vectors
at each time step, h1, h2, ... hn. We then used the attention
module to find the weighted sum of these hidden vectors .
Formally, H = a1 . h1 + a2 . h2 + ... an . hn. The vector was then
sent through a linear layer, and the output was squashed between
0 and 1 using a sigmoid function. This final output represented
the probability of a positive class, which in our current
application was the probability that the patient died.

Note that our LSTM architecture is commonly used for sequence
data. The innovation of this work is the representation of the
encounter vector that integrates different types of EHR data,
which we will describe below.
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Figure 1. Our model architecture. LSTM: long short-term memory.

A Simple Concatenation Model
In this version of CLOUT, the encounter vector was derived by
a simple concatenation of different types of features. Every
patient encounter had a set of documented International
Classification of Diseases (ICD) codes, medications, and
laboratory components. We converted these to 3 bit-vectors, ,
, and , respectively, each of the size of the vocabularies.
Bit-vectors are vectors of size equal to the length of the
vocabulary with 1 at the index where the feature is documented
and 0 everywhere else. We passed these bit-vectors through
linear embedding layers to get their dense vector representations.
We concatenated these dense vector representations and passed
the resultant vector through a nonlinear function such as the
rectified linear unit [43] to get the final encounter representation,
.

Representation Through Concatenation With
Autoencoders
Recent work on word embeddings called ELMo [44] has shown
that integrating different levels of representations learned by
neural networks improves predictive performance in natural
language processing applications, as different layers represent
different characteristics of input data. Building on the same
concept, we created a CLOUT model that integrates the
representations of input features learned from an autoencoder
with our inputs before sending them through the prediction
layer. The hidden layer representations contain valuable
information about the relationships between different input
features, and by including this information along with the actual
input features, we enable the model to make predictions with
more knowledge. We integrate the representations using
concatenation.

The Latent Space Representation
ICD codes, medications, and laboratory results are not isolated
unrelated clinical information. They are clinically intertwined
or correlated. For example, as stated earlier, medications depend
upon the diagnoses of the patient in that encounter. To capture
the correlations among EHR data, we added a multi-view latent
space component, as shown in Figure 2, by adapting a
correlational neural network [45] framework.

We used a correlational neural network for 3 views (ICD codes,
medications, and laboratory components) to construct the latent
representation for our latent space model. This component is
graphically shown in Figure 3.

The latent space representation is a measure of the patient
condition—a combination of related information from diagnosis
codes, medications, and laboratory components. The details of
this component are further described in Multimedia Appendix
3.

To integrate latent space representation into the encounter
vector, we first projected the encounter into this latent space to
get the latent space vector, l. We simultaneously performed all
of the operations in the simple concatenation version to find the
encounter vector of that version, ec. The final encounter vector
was the concatenation of l and ec. The model described here is
shown in Figure 2. Note that the c-operation stands for
concatenation.

To evaluate the effectiveness of the correlational neural network,
we also implemented a traditional autoencoder with one hidden
layer f and one output layer g with the goal to reconstruct the
input using a hidden representation of lower dimensions. We
called this model CLOUT-autoencoder.
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Figure 2. Model for constructing the encounter vector. ReLU: rectified linear unit; ICD: International Classification of Diseases.

Figure 3. The correlational neural network for our 3 views. ICD: International Classification of Diseases.

Evaluation
We evaluated each of the baseline and CLOUT models on the
p-MIMIC dataset. We obtain true-positives (TP), false-positives
(FP), true-negatives (TN), and false-negatives (FN). We report
area under the receiver operating characteristic curve

(AUC-ROC) scores for all models, and precision , recall

, and F1-scores  for the top performing
models.

Risk Factor Experiment With Physicians
Predictive models would be of limited clinical use if the models
are not interpretable. To interpret or identify the risk factors in
our CLOUT models, we conduct an ablation experiment, which
has been widely used for feature engineering. We perturb the
patient data to zero out the contribution of a feature and calculate
the corresponding difference in output. This classical method
shows the contribution of each feature, which may correspond
to the risk score.

Recall that each of our CLOUT models outputs a probability
score that indicates mortality risk. So, the difference in output
would be the reduction in this probability, which we call the
attribution weight of the given feature. We calculated the
attribution weight for each ICD code, medication, and laboratory
component that is documented in the patient's EHRs. These
features would then constitute the risk factors associated with
the mortality, and the attribution weight represents the strength
of the association.

Although ablation experiments have been widely used for
feature engineering and interpretation of neural network models
in many applications [46], they have not been evaluated for
identifying risk factors of patient outcome based on longitudinal
EHRs.

Therefore, we designed a comprehensive evaluation of the risk
factors ranked by CLOUT and compared them with ones ranked
by a logistic regression model. Specifically, we ranked the risk
factors at the patient level and population level. At the patient
level, each risk factor (ie, feature or variable) is weighted by its
contribution to the correct prediction to the patient. We ranked
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the risk factors at the population level by aggregating and
normalizing the attribution weights of features across the patient
population.

Experiment Design
Using stratified random sampling, we selected a subset of risk
factors from the prediction models CLOUT and logistic
regression, respectively, and asked 5 unbiased physicians (4
internists and 1 cardiologist), who were not privy to the reasons
for doing the ranking, to independently judge the clinical
relevance of those risk factors.

To reduce the total number of features that the physicians need
to evaluate, we selected features from CLOUT. Specifically,
for each feature, the ablation experiment output a relevance
score. We bin the features into 3 groups: (1) top 20 features, (2)
20-50 features, and (3) the remaining features. From each bin,
we randomly selected 4 features. We then randomly selected 1
patient and accordingly obtained a total of 12 features for that
patient. We also obtained the ranked list of features by
population and followed a similar bin strategy to select another
18 features distributed across the different feature sets (we
purposely selected those features that differ from the features
we selected from the sample patient so that we could maximize
our evaluation features). Therefore, we selected a total of 30
features (12 by a patient and 18 by the population).

We randomized those 30 features and asked the 5 physicians
who are blinded to the CLOUT rankings to evaluate, for each
feature, its clinical relevance. Specifically, we asked each
physician to score the feature (1-5, with 1 as the least relevant
and 5 the most relevant) based on their clinical knowledge or
guidelines.

We calculated the Pearson correlation coefficient between
physicians’ scores for pairwise agreements between physicians,
and between the CLOUT scores and physicians’ scores. We
also performed a t test for statistical significance. We used the
same 30 features to evaluate the logistic regression model and,

in this case, using the weight assigned by the logistic regression
model for the ranking.

Finally, we performed another evaluation where we first
averaged the scores of all the physicians to obtain a
representative gold standard. We then computed the correlation
coefficients between these scores and the scores from our models
and the logistic regression baseline.

Results

Model Performance
During our experiments, we found that models using abnormal
laboratory components as input (ie, binary coding of
normal/abnormal) performed better than those using all the
laboratory components. Therefore, the results presented here
for the p-MIMIC dataset used only the abnormal labs recorded
in patient encounters through an abnormal flag.

As shown in Table 2, the AUC-ROC results for our CLOUT
models are significantly better (P<.001) than both the RETAIN
and the logistic regression models. The AUC-ROC curves for
the representative models are presented in Figure 4. Our CLOUT
model with concatenated latent space representation (Figure 2)
achieved 0.89 AUC-ROC score, which is more than 0.06
absolute increase over the ICD-RETAIN, logistic regression,
and simple LSTM models and a 0.02 increase over RETAIN
with all codes. To get a better understanding of our results, we
also present the precision and recall scores for each class for
the top models in Table 3.

Our latent space representation model also slightly outperformed
the traditional autoencoder CLOUT model, although it is not
statistically significant. An important result here is the
integration of different levels of representations (input space
and from either an autoencoder or a correlational autoencoder)
substantially improves the performance of a model, which
outperforms one that uses autoencoder alone. The code for our
models and experiments can be found at our CLOUT repository
[47].
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Table 2. Area under the receiver operating characteristic curve scores for different models.

Area under the receiver operating characteristic curve, mean (SD)Method

0.82 (0.0103)Logistic regression

0.82 (0.0924)RETAINa (only ICDb)

0.82 (0.0118)TaRETAINc-first (only ICD)

0.82 (0.0919)TaRETAIN-prev (only ICD)

0.86 (0.0105)RETAIN (all codes)

0.83 (0.0104)Long short-term memory with only ICD codes

0.80 (0.0116)CLOUTd—only autoencoder

0.81 (0.0082)CLOUT—only latent space

0.88 (0.0096)CLOUT—simple concatenation

0.88 (0.0107)CLOUT—autoencoder concatenation

0.89 (0.0138) eCLOUT—latent space concatenation

aRETAIN: Reverse Time Attention model.
bICD: International Classification of Diseases.
cTaRETAIN: time-aware RETAIN.
dCLOUT: L(STM) Outcome prediction using Comprehensive features relations.
eBest performing model.

Figure 4. The area under the receiver operating characteristic curves for various models. RETAIN: Reverse Time Attention model; CLOUT: L(STM)
Outcome prediction using Comprehensive feature relations.
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Table 3. Precision, recall, and F-scores for top CLOUTa models.

F-scoreRecallPrecisionMethod and class

CLOUT—Simple concatenation

0.830.820.850

0.730.760.711

0.800.790.80Average

CLOUT—Autoencoder concatenation

0.850.850.850

0.740.740.741

0.810.810.81Average

CLOUT — Latent space concatenation

0.860.880.840

0.720.720.781

0.820.820.82Average

aCLOUT: L(STM) Outcome prediction using Comprehensive features relations.

Risk Factors
To measure agreements among physicians, we compute the
Pearson correlation coefficient between their scores. For
patient-specific features, Table 4 shows the Pearson correlation
coefficient between each pair of physicians and also between

different models and the physicians. With the physician gold
standard ratings computed by averaging, we found that our
model had a correlation coefficient of 0.64, which is higher
(4.9%) than the correlation coefficient of 0.61 with the logistic
regression model.

Table 4. Pearson correlation coefficients for agreement between physicians and models.

Mean (SD)Physician 5, rPhysician 4, rPhysician 3, rPhysician 2, rPhysician 1, rAgreement

Physician-physician agreement

0.72 (0.13)0.880.610.560.811.00Physician 1

0.80 (0.09)0.860.650.871.000.81Physician 2

0.65 (0.14)0.690.491.000.870.56Physician 3

0.59 (0.06)0.611.000.490.650.61Physician 4

0.76 (0.11)1.000.610.690.860.88Physician 5

Physician-model agreement

0.52 (0.11)0.520.320.530.630.60Logistic regression

0.57 (0.14)0.580.300.610.720.65RETAINa

0.20 (0.20)0.170. 55c0.210.13−0.07CLOUTb—only autoencoder

0.54 (0.15)0.530.350. 640.770.42CLOUT—only latent space

0.54 (0.19)0. 670.190.700.640.52CLOUT—simple concatenation

0.53 (0.20)0.620.140.640.700.54CLOUT—autoencoder concatenation

0.58 ( 0.21 )0. 670.180.590. 770. 69CLOUT—latent space concatenation

aRETAIN: Reverse Time Attention model.
bCLOUT: L(STM) Outcome prediction using Comprehensive features relations.
cItalicization signifies highest physician-model agreement in the column.
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Discussion

Principal Findings
In this study, we have developed innovative CLOUT models
and compared them with other state-of-the-art predictive models
with respect to performance on mortality prediction. We found
that the performance of almost every CLOUT model surpassed
the competitive baseline models (eg, RETAIN). The results
support that LSTM is a state-of-the-art framework for
EHR-based predictive modeling.

Our results showed that the integration of different levels of
latent representations (input space and from either an
autoencoder or a correlational autoencoder) substantially
improves the performance from 0.80 to 0.88 AUC-ROC. The
rich representation may provide extra information to the model,
which in turn helps the model make better predictions. The
integration of different types of features (ie, ICD codes,
laboratories, and medications) however had a mixed result.
Specifically, the CLOUT model that incorporated only the
abnormal laboratory results slightly surpassed the CLOUT
model that incorporated all 3 features. This supported the
importance of laboratory results for predicting mortality. Our
results also suggested that there may be noisy information in
the features. When CLOUT was implemented with the latent
vectors included, it had the highest performance, an AUC-ROC
score of 0.89 and an F1 score of 0.82. The result supports our
approach of using the correlational neural network to identify
latent vectors to best represent different but related clinical
observations or variables.

On the other hand, when we incorporated temporal information
as a feature, we showed little improvement in performance using
RETAIN. A possible future direction is to explore
time-dependent attentions, which may allow the model to
integrate the temporal information in the architecture.

For the risk factors identified by our models, the average
correlation coefficient between the physicians is mean 0.71 (SD
0.13), and the average Pearson correlation coefficients between
CLOUT and the physicians and between logistic regression and
physicians were 0.58 (SD 0.21) and 0.52 (SD 0.11), respectively.
These results show a significant difference between the
agreement among physicians and the agreement between the
logistic regression model and the physicians (P=.04). In contrast,
the difference in agreement between the CLOUT models and
physicians is not statistically significant, strongly supporting
the validity of risk factors and their ranking identified by
CLOUT.

We also calculated the agreement with RETAIN for reference,
and we found that the average was 0.57 (SD 0.14), which is still
slightly less than the CLOUT model, with CLOUT losing out
a lot with physician 4. Other CLOUT models also have slightly
lower scores as reported in Table 4, but it is notable that the
latent vector models that use the correlational autoencoder have
better correlations (0.58, SD 0.21) with physicians than the ones
that use a simple autoencoder (0.53, SD 0.20). The evaluation
with our gold standard (the average physician scores) also
informs us that CLOUT selects more meaningful features.

Our results show that physician 4 had a low correlation score
with other physicians as well as with our CLOUT models. For
example, lactulose enema, and encephalopathy not otherwise
specified were scored as 2 by physician 4, whereas all the other
physicians gave scores of 4 or greater. When we removed
physician 4, the correlation between the latent space CLOUT
model and the physicians improved from 0.58 to 0.68.

For population-level features, we performed similar evaluation
between physician scores and the CLOUT model scores, and
the average correlation coefficient values were ICD codes −0.19,
medications −0.43, and laboratory components −0.37, which
are lower than patient-specific interpretations. This is not
surprising as many risk factors (eg, severe diseases) are rare
events that are not present for patients in general.

Furthermore, CLOUT models captured important risk factors
while making predictions. In general, our CLOUT models show
that patients with diagnosis codes representing cranial nerve
disorder and cystic liver disease were marked with a high risk
of mortality. This is reasonable as those are diseases with a high
risk of mortality.

Limitations
Our dataset was constructed from EHR data and is, hence, prone
to standard data quality issues that EHRs typically have, as
documented in the literature. EHRs are known to have missing
diagnoses and medication codes for patients when compared
with insurance claims. Furthermore, our analysis of ICU
admissions does not account for death because of accidental
circumstances such as car crashes. We used all the information
exactly as it appears as it is infeasible to comb through all the
records to pick patients for the study. Another limitation we
would like to report is the absence of vital sign features in our
dataset, which we ignore because of the involved preprocessing
steps that are required to handle missing numerical values.

The CLOUT models have significant limitations as well. First,
similar to most predictive models, the risk factors identified by
the CLOUT models include cofounding variables. For example,
we found that patients who have a prescription for a scopolamine
patch have high-risk scores. This is a medication prescribed to
terminally ill patients as part of palliative care regimen to reduce
excessive airway secretion. So, in this case, the actual reason
for palliative care is a strong risk factor for death, not the
medication, which is a confounding factor. Another limitation
of our work is that our models are very dependent on the
population size. Bias could be introduced when the size is small.
However, such limitations exist in most predictive models not
reviewed or guided by physician oversight.

Comparison With Prior Work
We surveyed a variety of approaches to compare our models.
This includes statistical approaches [48-52], deep learning–based
approaches [6,38,53-55], and other phenotyping efforts [4,5].
We also surveyed papers on interpretability. A detailed analysis
of all this can be found in Multimedia Appendix 4.

Conclusions
EHRs are widely available and have enormous untapped
potential to predict patients’ health outcome. EHR-based
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predictive models are potentially hugely useful for clinical
decision support. Our experiments show that incorporating
comprehensive clinical information is useful and can improve
predictions and that integrating latent space representations
learned through a correlational neural network to clinical
information led to the best performing CLOUT model. Our risk
factor experiment with physicians also suggests that CLOUT
models find more clinically relevant risk factors. Our results

strongly support that CLOUT may be a useful tool to generate
clinical prediction models, especially among hospitalized and
critically ill patient populations.

The future directions include new models to incorporate the
temporal information and methods to integrate clinical notes
for predictive models. We may also explore other models to
integrate different views, including the Capsule network model
[56].
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