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ABSTRACT 
ALARM FORECASTING IN NATURAL GAS PIPELINES 

 

 

 

Colin Quinn, B.S. 

 

 

Marquette University, 2020 

 

 

 

This thesis examines alarm forecasting methods for a natural gas production 

pipeline to assure the efficient transportation of high-quality natural gas. Natural gas 

production companies use pipelines to transport natural gas from the extraction well to a 

distribution point. Forecasting natural gas pipeline pressure alarms helps control room 

operators maintain a functioning pipeline and avoid costly down time. As gas enters the 

pipeline and travels to the distribution point, it is expected that the gas meets certain 

specifications set in place by either state law or the customer receiving the gas. If the gas 

meets these standards and is accepted at the distribution point, the pipeline is referred to 

as being in a steady-state. If the gas does not meet these standards, the production 

company runs the risk of being shut-in, or being unable to flow any more gas through the 

distribution point until the poor-quality gas is removed. 

Sensors are used to collect real-time gas quality information from within the pipe, 

and alarms are used to alert the control operators when a threshold is exceeded. If 

operators fail to keep the pipeline’s gas quality within an acceptable range, the company 

risks being shut-in or rupturing the pipeline. Predicting gas quality alarms enables 

operators to act earlier to avoid being shut-in and is a form of predictive maintenance.  

We forecast alarms by using a 10th-order autoregressive model, autoregressive 

model with exogenous variable, simple exponential smoothing with drift (Theta Method) 

and an artificial neural network with alarm thresholds. The alarm thresholds are defined 

by the production company and are occasionally adjusted to meet current environment 

conditions.  

  The results of the alarm forecasting method show that we accurately 

forecast natural gas pipeline alarms up to a 30-minute time horizon. This translates into 

sensitivity rates that drop from around 100% at one minute to 82.7% at a 30-minute 

forecast horizon. This means that at 30 minutes, we correctly forecast 82.7% of the 

alarms. All alarm forecasting models outperform the state-or-the-art forecaster used by 

the production company, with the artificial neural network performing the best. 
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CHAPTER 1  

Introduction to Natural Gas Production 

 

 
This thesis examines alarm forecasting methods for a natural gas production 

pipeline to assure the efficient transportation of high-quality natural gas.  Our goal is to 

help a natural gas production company transition from maintaining the pipeline reactively 

to carrying out predictive maintenance. Predictive maintenance is acting based on 

forewarning to find or mitigate degradation [1].  This thesis explores four real-time alarm 

prediction methods used to detect the onset of system degradation so that flow assurance 

is maintained within the pipeline.  

Flow assurance is a term used in the hydrocarbon production industry to refer to 

ensuring a continuous stream of natural gas from the extraction reservoir to the 

distribution (sales) point [2]. As an infrastructure, natural gas pipelines are vulnerable to 

damaging conditions that threaten flow assurance and warrant action, resulting in a loss 

of profit and extra labor. To warn pipeline control operators of these damaging 

conditions, alarms are used to monitor the health of the pipeline and alert control 

operators when action is needed. Acting after an alarm has been triggered is often more 

costly to carry out because damage has already occurred, leading to shutdowns, loss of 

profit, and dangerous environments. Avoidance of unprofitable consequences can be 

achieved through this work on early detection of alarms within non-stationary streaming 

time series data. The alarm forecasting algorithms described in this work aid pipeline 

controllers in achieving flow assurance and allow them to conduct preventative 
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maintenance to decrease operation cost, unsafe environments, and damage to the 

environment.   

This work is sponsored by a natural gas production company operating in 

southwest Texas. To protect sensitive information being exposed from this thesis, some 

data, names, and particular details have been altered to meet the nondisclosure agreement 

made between the natural gas production company and Marquette University. In March 

2018, the sponsoring production company met Marquette University’s GasDay lab to 

discuss the possible development of predictive algorithms for early alarm detection in a 

natural gas production pipeline. In April 2018, a project proposal was agreed upon by 

both the production company and Marquette University, and development began on 

phase one alarm forecasting models. Since April 2018, the GasDay lab has worked 

closely with pipeline controllers of the production company to understand how the 

pipeline operates, what their alarm prediction needs are, and to implement real-time 

forecasting algorithms in their system controls. This research is conducted at the GasDay 

lab within Marquette University, Milwaukee, Wisconsin. The focus of this research is 

applicable to both the natural gas industry and other university research labs. The 

language, industry-related terms, and processes used in this thesis reflect those used at the 

production company sponsoring this work. 

1.1 Chapter Objectives  

This chapter introduces the objective of this thesis. Beginning with this project’s 

highest level of abstraction, we provide an overview of the natural gas production 

process. Then, we give a closer look at production company standards and how they 
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maintain an economical operation. This will lead to the definition of a pipeline alarm and 

how alarms are used to help pipeline operators reactively service the pipeline. This 

introduces the forecasted alarm and the benefits of preventative maintenance in the 

production process. Finally, we give a brief survey of this research project as a whole and 

a summary of the remaining chapters. 

1.2 Introduction to Natural Gas Production Pipelines  

Natural gas production companies use pipelines to transport natural gas from 

point A to point B. Point A is where the gas is extracted from the earth, and point B is 

where the gas is sold to distributors.  Figure 1.1 depicts this transfer.  

 

Figure 1.1: A natural gas pipeline transporting gas from point A to point B 

Natural gas production companies strive to complete this task as efficiently and cost-

effectively as possible. A production company operating at full capacity simultaneously 
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extracts gas from the ground at point A, transports it through the pipeline, and sells it at 

point B twenty-four hours a day, seven days a week [3]. The pipeline connecting these 

two points plays a critical role in this operation, as its throughput determines whether the 

production company’s revenue outweighs the cost of operation. 

A natural gas production pipeline requires billions of dollars of infrastructure and 

highly skilled people to operate correctly [4], [5]. There are numerous moving parts in a 

natural gas production company that are interdependent. The profit margin of a 

production company depends on the success of transporting gas from A to B, and can 

vary widely from day to day. Until the last few years, the state-of-the-art solution to 

ensure reliable production and transportation of natural gas was with human pipeline 

operators and supervisory control and data acquisition (SCADA) systems [6]. Although 

pipeline operators are experts in the field of natural gas production, and there have been 

large technological advancements in SCADA software and pipeline monitoring [7], the 

growing demand for natural gas as an energy source requires new tools to help automate 

the production process. 

The extraction, processing, and transportation of the natural gas is called the 

upstream operation of the natural gas industry [5], [8]. This research concentrates on the 

upstream operation and the flow assurance of a production pipeline (successful 

transportation of natural gas through a pipeline). The goal of this project is to enhance the 

current error-prone processes of upstream operations with the modern advancements of 

data analysis and prediction. Problems can occur in the pipeline that can slow or stop the 

flow of gas. Alarms are used to notify pipeline control operators that a problem is 

occurring and that action is needed. Alarm forecasting allows the pipeline operators to act 
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before an alarm is triggered, which minimizes downtime and reduces the number of 

potential errors in day-to-day operations. If a pipeline operator can detect a problem that 

will slow production with a forecasted alarm, there is less chance of the operation 

slowing or halting. Improving this upstream operation returns a larger amount of gas 

being sold to the distribution vendors, increasing profits and protecting equipment from 

long-term damage.  

There are many opportunities for error in upstream operations of a production 

company. The most common errors on which this thesis focuses are found in the quality 

and characteristics of the gas in the pipeline. The quality of gas refers to the chemical 

makeup of the natural gas, while the gas’s pressure, heat content, and flow rates within 

the pipeline represent the gas’s characteristics. The alarms that alert a pipeline controller 

to a problem correspond to these conditions. To understand what a natural gas pipeline 

alarm is, how it is used in the production process, and the potential benefit of a forecasted 

alarm, the next section presents the production process.  

1.3  Natural Gas Production 

The natural gas production procedure discussed in this section provides a 

simplified version summarized in three steps. This overview of production sets up the 

remaining sections in this chapter and represents the highest level of abstraction needed 

to recognize the contribution of this thesis.   Figure 1.2 can be used as a visual 

representation of each step in the production procedure.  
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  Figure 1.2: Steps in the production procedure 

The first step of the upstream operation is to extract natural gas from the earth. 

Natural gas is accessed using an extraction well, an aperture encased in concrete and steel 

used to access deposits of natural gas deep within the earth [6]. There are a number of 

drilling techniques that have made natural gas and other hydrocarbon resource extraction 

more efficient over the last decade [9], [10], [11], [12]. These techniques will not be 

covered in this work. However, the advancements in hydraulic fracturing and horizontal 

drilling have made the U.S. the world’s leading natural gas producer at 30 trillion cubic 

feet in 2018, 31% of the total U.S. primary energy consumption [12]. At the top of these 

extraction wells, pumps are used to extract the gas slowly from small pockets in rock 

formations or other hydrocarbon reservoirs [13]. Once extracted, a gathering system 

made up of several small-diameter lines take the extracted natural gas from the wellhead 

to a central processing facility [14]. The natural gas in the underground reservoir and in 

the gathering lines is known as raw natural gas. The chemical makeup of raw natural gas 
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differs from the quality of gas allowed in the main pipeline. Raw natural gas contains 

impurities that must be removed before being pressurized and injected into the main line. 

Processing plants are used to collect the gas from the low-pressure gathering lines, 

process the gas to pipeline quality, and inject it into the pipeline.  

The second step in natural gas production is to process the raw natural gas into 

pipeline quality gas. Natural gas is composed of combustible hydrocarbons, gases, water, 

and oil [15]. Processing raw natural gas involves separating non-methane hydrocarbons 

and other impurities from the gas [4]. The plants equipped to do this are known as central 

processing facilities (CPF) and are located near wells along the pipeline. The raw natural 

gas drawn from the wellhead consists of both heavy and light hydrocarbons [4]. In 

general, processing raw natural gas removes water and the heavy hydrocarbons (ethane, 

propane, butane, and pentane) to achieve a quality considered acceptable to transport in a 

pipeline [3], [5]. Regulations set by either state law or by the customer receiving the gas 

require the gas to meet certain specifications [6]. Specifics of what hydrocarbons are 

removed from the gas specific to this project will be discussed in the following section on 

natural gas processing. 

The byproducts created while processing natural gas are also valuable and are 

collected for future sale. There are multiple side-operations taking place during this 

refining process to capture profitable substances [5].  Byproducts such as liquefied 

natural gas (LNG) can be separated from the hydrocarbon stream and sold. Although out 

of the scope of this project, such byproducts can be equally valuable as pipeline quality 

natural gas, and entirely different processes are carried out to retrieve them [16].  Not all 



8 

 

production companies process natural gas the same, as equipment varies from pipeline to 

pipeline and depends on the size of the operation.  

The final step of the production process is to flow the gas down the pipeline to be 

sold at a distribution point. In some instances, a pipeline may have several CPF’s 

operating in parallel, all injecting natural gas into the main pipe simultaneously. This 

means that the gas arriving at the distribution point is really a combination of gas from 

several wells from further up the line. The production pipeline operates in a similar way, 

with Figure 1.3 depicting a version of this coalescent gas stream.  

 

Figure 1.3: Four wells simultaneously injecting gas into the line as the gas flows to the 

distribution point 

No two natural gas wells are identical, and the chemical make-up of each well 

results in different quality gas being injected post-processing [5]. Even the gas extracted 

in the morning can be different from the gas taken from the same well the day before [6]. 

This is an important concept to this work, as the quality of gas being received at the 
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distribution point determines whether the gas will be purchased. The quality of gas can 

fluctuate, which is why the pipeline control room monitors the condition of the natural 

gas within the pipeline to coordinate its processing before it reaches the distribution 

point. After the three steps described in this section, the production company hopes to 

have a high-quality natural gas that the distributors will purchase. 

1.4 Composition of Natural Gas and Production Company Standards 

Now that a general overview of the natural gas production process has been 

presented, this section describes the alarm-triggering situations that arise in daily 

operations. As previously described, the errors that occur in the production process 

normally concern the quality of natural gas being received at the distribution point. This 

section will begin by giving a brief introduction to natural gas found in the U.S.A. and 

then move into the specifics of the gas being produced from the wells along the 

sponsoring production company’s pipeline. The company standards will be discussed in 

relation to the distributor’s needs, which will transition to alarm forecasting. 

Extraction wells found in the U.S.A. produce one of two types of natural gas: 

conventional or nonconventional gas (Figure 1.4). Conventional gas can be extracted 

with traditional (vertical) drilling techniques and can be found in geological formations 

that are generally more accessible and straightforward to develop [6], [17]. Conventional 

natural gas is either associated or non-associated with crude oil.  Associated gas is found 

in oil wells, where the gas can be separate from the oil (free gas) or dissolved into the 

crude oil (dissolved gas) [6]. If the well is producing dissolved gas, the oil must be 

separated from the gas at the wellhead and thoroughly processed before transit. The oil 
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and other byproducts from the processing are captured and sold. Non-associated gas 

wells produce gas that is mixed with little to no crude oil less and requires less post-

extraction processing.  

 

 

Figure 1.4: Visual representation of conventional and unconventional gas wells 

accessing natural gas formations 

Unconventional gas is held in formations that are accessed with newer drilling 

techniques and only recently have proved an economically viable alternative to 

conventional gas wells [18]. Unconventional gas is found in reservoirs with low 

permeability, meaning the gas is trapped in the formation and is unable to flow through 

the tight sands that hold it [19]. Coalbed methane, tight gas, and shale gas are non-

associated and often extracted from these formations with vertical and horizontal drilling. 

Horizontal drilling and hydraulic fracking make natural gas one of the most abundant 

resources in the U.S. The gas measured in this project comes from both conventional and 

unconventional non-associated gas wells.  Operating over 3 million acres, the production 

company operates different wells, and each well produces a different type of gas. 
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The natural gas resource for this project is a part of the Permian Basin, located in 

southwest Texas, primarily in Reeves County (Figure 1.5). There, a pipeline spanning 

approximately 70 miles across the basin carries gas from extraction wells that generate 

the pressure and gas quality signals used in this work. This work will concentrate on four 

of the wells along the pipeline flowing towards a single distribution point, similar as to 

what Figure 1.3 depicts. Of these four wells, all are producing non-associated natural gas 

but vary in chemical makeup. To distinguish between the different types of gas at these 

wells, the gas is further classified into either wet (rich) or dry (lean) gas. 

 

Figure 1.5: The Permian Basin located in Reeves Country, Texas (highlighted in blue) 

The difference between wet and dry natural gas is the amount of recoverable 

hydrocarbons present in the gas [5]. The terms wet and dry natural gas are often used in 

the production pipeline’s control room to describe the quality of gas in the pipeline. If the 

line is heavy with wet gas, it is more likely that an alarm will be triggered and errors will 
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occur. If dry gas is flowing through the line, the control room is comfortable with current 

operations and may even try to increase the pipe’s throughput. Understanding the 

differences between these two types of gas provides intuition for the problems that occur 

in a pipeline, thus a formal definition of natural gas’ chemical makeup is provided.  

Natural gas is a naturally occurring combustible hydrocarbon gas. The typical 

chemical composition of natural gas consists of primarily methane (CH4) and less 

prominent hydrocarbons. The less prominent hydrocarbons — Ethane, Propane, Butane, 

etc. – are impurities and processed out before transportation. Table 1.1 shows the typical 

make-up of natural gas. 

The more methane present in the gas, the less processing is needed. Methane-

dense gas falls into the dry gas category and is more valuable than its richer counterpart. 

Gas with high levels of methane already resembles pipeline quality gas and can be 

produced at a faster rate. By the time natural gas is used for residential or commercial 

purpose, the composition of the gas is almost pure methane [6]. Refineries are used to 

achieve this near 100% methane composition in the downstream sector of the industry. 

Despite raw natural gas consisting of 70-90% methane upon extraction, it must still be 

processed to be considered pipeline quality dry gas. Pipeline quality gas differs from 

production company to production company. However, it can be assumed that the gas 

flowing through the main line is as methane-rich as possible. 
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Table 1.1: Typical chemical composition of natural gas 

Hydrocarbon Chemical Formula Percent 

Methane CH4 
 

70-90% 

Ethane C2H6 

0-20% Propane C3H8 

Butane C4H10 

Carbon Dioxide CO2 0-8% 

Oxygen O2 0-0.2% 

Nitrogen N2 0-5% 

Hydrogen Sulfide H2S 0-5% 

Rare gases A, He, Ne, Xe trace 

 

The impurities processed out of raw natural gas include water, ethane, propane, 

butane, and pentanes. These associated hydrocarbons are the natural gas liquids 

previously mentioned as byproducts of the processing procedure and can consist of 0-

20% of the original chemical makeup. The more liquid content present in raw natural gas, 

the richer the gas is. Rich gas, synonymous to wet gas, is removed to create a product that 

has a higher sales value [18]. This removal creates lean gas, or dry gas, consisting of the 

lighter hydrocarbons. Liquid content is one of the main classifiers of natural gas, with 

rich gas indicating that a more rigorous processing procedure is needed, and lean gas 
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indicating the gas already has a low liquid content and ultimately less processing is 

needed. The heavier components of gas, such as ethane, propane, and butane are the main 

contributors to the liquid content. 

Pipeline quality gas is defined by regulations and customer needs. A number of 

impurities can affect the final product gas being delivered to a distribution point [5]. 

Although gas being delivered is considered pipeline quality, impurities can be present 

that effect the final consistency received at the distribution point.  At the distribution 

point, other companies can choose to flow gas from the production company’s pipeline 

into their own. If this exchange takes place, the transaction has been made, and the 

natural gas has been sold. In this transaction, the quality of gas must meet specific 

conditions to be allowed to flow into the purchasing company’s pipe. As previously 

stated, regulations are set by either state law or by the customer receiving the gas that the 

gas meets certain specifications before the customer is allowed to accept the gas [20]. 

This decision of which gas to accept is made by a careful monitoring of the natural gas’s 

quality in a pipeline control room.  

In the production company’s control room, the pipeline is monitored and remotely 

controlled. These controllers are the ones maintaining flow assurance for the pipeline and 

are the first to act when a problem is present in the system. Different gas qualities are 

tracked and presented to these operators to ensure high-quality gas is being received at 

the distribution point. It is because of this that such a detailed explanation of raw natural 

gas processing has been given thus far. If the buyer at the distribution point sees gas 

arriving from the pipeline that contains an unacceptable quality, they have the option to 

reject the gas from flowing into their pipeline and shutting the valve allowing the flow of 
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gas. To counteract the potential problem of being unable to flow gas to the distributor, 

production companies use alarms to warn pipeline controllers that issues are present. 

1.5 Natural Gas Pipeline Alarms 

This section defines what it means for the production company’s pipeline to be 

shut in, how alarms are used in the control room, and the potential for forecasted alarms. 

The actual alarm thresholds specific to this project are presented in Chapter 3 so that they 

can be visualized with the time series to which they relate. In June 2018 and May 2019, 

we visited the production company to learn the specifics of their pipeline operation. The 

information in this section comes from what we learned during these meeting and the 

remote meetings throughout the duration of this project. 

If a distributor chooses to close the valve that allows the flow of gas from the 

production pipeline into their own, this is called being shut in. Avoiding being shut in is 

the goal of the alarm forecasting algorithms developed in this thesis. Being shut in 

triggers a chain of events that is extremely costly and time-consuming for any production 

company to fix. Once a distributor decides to shut in the pipeline, gas from the extraction 

wells continue to flow down the pipeline and begin to pack the line with bad gas, gas that 

contains a quality that exceeds contractual thresholds and is deemed unacceptable to the 

distributor. While more bad gas builds up near the distribution point, the production 

control room operators instruct the processing center operators to pull out of the line, or 

to stop injecting more gas into the pipe. For the pipeline to become functional again, the 

poor-quality gas must either be diffused with gas further down the line or flared from the 

system entirely. 
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Diffusing the low-quality gas is a technique practiced by the production company 

that is usually the first attempt at resolving the issue of being shut in. Diffusing the line 

involves slowly mixing the low-quality gas with high-quality gas in an attempt to achieve 

a quality of gas acceptable to the distributor. Diffusing the gas is preferred over flaring 

the system, as the gas already in the line does not need to be removed. However, flaring 

the gas can take a long time to complete. Depending on how packed the line is, it is 

sometimes more economically sensible to flare the gas instead of diffusing. 

Flaring the pipe involves the removal of all gas from a segment of pipe. 

Depending on how much bad gas in packed into the line, the flared segment of pipe can 

span back from the distribution point to the majority of the main pipeline. This technique 

is faster than diffusing the gas; however, it can cost anywhere from $15,000-$25,000 an 

hour, plus the operation costs to extract, process, and transport that gas in the pipe. Due to 

these large penalties of being shut in, many precautions are made to avoid being shut in. 

1.6 Natural Gas Processing and Transportation 

Natural gas often is found in remote places far from a local market [6]. For the 

gas to be sold, it must be transported from its well of origin to a distributor. For decades, 

pipelines have been the most secure, reliable, and economical tool for this job [3], [6], 

[21], [22]. However, because raw natural gas contains impurities that must be removed 

from transportation, the gas must be processed before it is injected into the pipeline. This 

section breaks down the process of turning raw natural gas into pipeline quality gas, and 

how each process effects the signals used to forecast pipeline alarms.  
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Flow assurance is a term used in the production industry that refers to ensuring 

the flow of hydrocarbons from the extraction well to the distribution sales point [2]. This 

section will be concentrating on mid-stream flow assurance issues such as gas hydrate 

formations, corrosion, erosion, and severe slugging within the pipeline. Each of these 

flow assurance risks has the potential to slow or stop the flow of gas in the production 

process. These issues are prevented by processing the impurities out of natural gas before 

it is injected into the line. Within the pipe, the injected gas is monitored by sensors, 

which produce the signals used to represent the real-time quality of gas. These signals are 

used in the alarm prediction algorithm described in Section 4.2, and understanding how 

the signal reacts to different components of the processing procedure is domain 

knowledge needed to make accurate forecasts. 

Consequences of flowing poor-quality gas through the pipeline fall into two 

categories. The first category involves the flow assurance risks that affect the design and 

integrity of the pipeline (hydrate formation, corrosion, etc.). The second consequence 

stems from marketing/federal law regulations. The production company is held by a 

contractual agreement to deliver a certain amount of high-quality gas to the distribution 

point. CPF’s are used to control the quality of gas and the amount flown to the 

distribution sales point. If this contract is not met, the company could be subject to fines 

and possibly being shut in. Requirements are placed on the hydrocarbons listed in Table 

1.1 as well as internal pipe pressure (measured in pounds per square inch) and the heat 

content (measured in BTU) of the gas. In conjunction with distributor contracts, the 

production company must meet federal regulations.  
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If the poor-quality gas enters the U.S. nation’s natural gas transportation network, 

the company providing the gas can be subject to increased tariffs as the poor quality gas 

can affect the overall network [23]. While the definition of pipeline quality gas varies 

from different organizations, the U.S. Energy Information Administration provides 

general guidelines of the characteristics of pipeline quality gas. The general specifications 

are: 

1) The gas must be within a specific BTU range (1035 BTU per 

cubic foot, +/- 50 BTU) 

2) Be delivered at a specified hydrocarbon dew point temperature 

level (below which any vaporized gas liquid in the mix will tend to 

condense at pipeline pressure)  

3) Contain no more than trace amounts of elements such as 

hydrogen sulfide, carbon dioxide, nitrogen, water vapor, and 

processing oxygen. 

4) Be free of particulate solids and liquid water that could be 

detrimental to the pipeline or its ancillary operating equipment. 

List 1.1: U.S. Energy Administration’s Generalized Pipeline Quality Gas [23] 

Depending on the location of the well, these guidelines become more specific to 

the gas being produced in that area [8]. In this work, the pipeline quality gas 

specifications are set by the distributor at the sales point, and the processed gas is well 

within the federal standards. The specific pipeline quality gas is shown in Table 1.2. 
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Table 1.2: Pipeline Quality Gas Requirements for the Production Pipeline 

Quality Upper Limit Waiver Dependent 

Moisture (H2O) ≤ 7 lbs NO 

Carbone Dioxide (CO2) ≤ 2% YES 

Heat Content (BTU) ≤ 1100 BTU YES 

Hydrogen Sulfide (H2S) ≤ 5 PPM NO 

Maximum Allowable Operating 

Pressure (MAOP) 
≤ 1400 psi NO 

 

As an example of this list’s generality, the BTU content limit specified for the 

production pipeline used in this work is higher than the U.S. Energy Administration’s 

limits. This is allowed due to the rating at which the production company operates.  

The waiver depended column of Table 1.2 refers to the contract between the 

production company and distributor. In some instances, the production company or the 

distributor would like to flow gas outside the limits stated in Table 1.2, so a waiver can 

be activated. Reasons for activating a waiver usually has to do with a gas quality problem 

farther down the line. For example, sometimes it is necessary to enrich the gas’s heat 

content, so heavier hydrocarbons may be blended with the gas to offset the low BTU 

levels [23]. The qualities that may not allow to be altered with a waiver are the qualities 

that threaten flow assurance and the integrity of the pipeline. Flow assurance for this 

project is controlled by the central processing facilities located along the pipeline and is 

referred to as field processing [14]. The role of a CPF is to upgrade poor-quality gas to 
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pipeline quality. Figure 1.6 shows where field processing CPF’s typically are located in 

the production process.  

 

 

Figure 1.6: The typical location of a field CPF processing raw natural gas into pipeline 

quality gas 

Generally, processing gas involves the separation of non-methane hydrocarbons 

and other fluids from methane. This is a several step process [5], [6], [14], [23] that 

begins at the extraction wellhead where the associated or dissolved natural gas is 

separated from the crude oil. One of the main objectives of a natural gas processing is to 

remove the high concentration of carbon dioxide from sour gas and other sulfur 

components to meet stringent emission standards [6]. This process begins with a 

conventional separator using gravity and compression to heat and cool the gas, which 

allows the heavier oil and gas to sink below the lighter hydrocarbons. Then refrigeration 
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units are used to dehydrate the gas stream. This removes water and is vital in avoiding the 

formation of gas hydrates in the main pipe during transportation. Once much of the water 

has been removed, the gas is subjected to contaminate removal and methane separation. 

Contaminate removal removes the hydrogen sulfide, carbon dioxide, water vapor, helium, 

and oxygen from the gas. This is achieved with amine gas treating, where the gas is 

sweetened using aqueous solutions of alkylamines [24]. To separate the NGL from the 

methane, absorptive oil is mixed with the gas stream. The absorptive oil soaks up the 

NGLs (ethane, propane, butane, etc.), while methane stays in gaseous form. The NGL 

and methane are separated with extreme cold temperatures, and the methane-dense gas 

rises above the sinking NGLs. 

After altering the chemical makeup of the raw natural gas, it is compressed and 

injected into the pipeline. Compressor stations are critical to the production process and 

are responsible for the flow of gas through the pipe despite elevation changes, friction, 

and long distances. As the gas is compressed, heat is generated. With every 100 pounds 

per square inch (psi) the gas is compressed, the heat content of the gas increases 

approximately seven to eight BTU per cubic foot [25]. To counteract this, cooling units 

are used so that by the time the gas is injected into the pipe, the gas is at a temperature 

that the pipeline operators deem acceptable. Once the raw natural gas has been 

compressed, the pressure generated by the compressor units forces the gas to flow in the 

direction of the distribution point. 

The signals used to forecast pipeline alarms reflect this process. Depending on 

how each CPF is operating, the signals will change to reflect the current status of the 

system. For example, if a refrigeration unit fails, it is likely that the gas being injected 
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into the main line by that CPF is heavy with water. Subsequently, as the wet gas flows 

towards the distribution point, it is likely that the H2O signal is increasing towards or 

exceeding an alarm threshold. By the time the pipeline controller is alerted of the 

triggered H2O alarm, the pipeline may already be shut in. Similarly, if pipeline controllers 

are made aware of a marketing waiver to increase the heat content of the stream, they 

may instruct a CPF to adjust their processing procedure to output ‘hotter’ gas. This 

changes the behavior of the BTU and other gas quality signals.  

One error in the production process at a single CPF can cause catastrophic failures 

through the entire pipeline, engendering shutdowns, loss of profit, and dangerous 

environments.  As demand for natural gas as a clean burning fuel continues to grow, the 

production industry is being pushed to operate at higher pressures [26]. Operating at 

higher pressures means more pipeline throughput and requires more gas processing.  

Having access to the latest technologies will provide efficient and resource-saving 

improvements to production companies.  

1.7 Contribution of Thesis 

The use of machine learning and artificial intelligence in the energy industry has 

proven itself to be beneficial and effective. However, many areas of this industry have yet 

to be explored [27]. There is little work published in the field of natural gas production 

pipeline alarm predicting. Based on an extensive literature review (Chapter 2), this is the 

first published algorithm to predict natural gas pipeline alarms. This is due to several 

reasons: First, this problem is specific to a single natural gas production company, and 

second, until this point, pipeline operators have been the main source of detecting issues 



23 

 

in the system. Although different production companies have different means of 

production, this work can provide the foundation on which algorithms are developed to 

aid their systems. 

1.8 Outline of Remaining Chapters 

The remaining portion of this thesis begins with a review in Chapter 2 of current 

literature and work done in the field of energy forecasting and time series analysis. In 

Chapter 3, we will introduce the data used in this work, anomaly detection and 

imputation, and the framework for real-time alarm forecasting. Chapter 4 continues with 

the implementation in several forecasting techniques: 10-order autoregressive model, 10-

order autoregressive model with exogenous variables, simple exponential smoothing with 

drift model (Theta method), and an artificial Neural Network. Chapter 5 presents 

discussion, interpretation, and comparison of the experimental results.  Finally, Chapter 6 

covers final thoughts such as a project summary, future work, and final words. 
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CHAPTER 2  

Project Relevance and Literature Review 

 

2.1 Chapter Objectives 

This chapter presents the history and context of this work, and it analyzes, 

interprets, and critically evaluates the existing literature on alarm forecasting in natural 

gas pipelines. Beginning with this project’s relevance and incentive, the following 

sections present the reader with a background of natural gas production, pipeline 

technology, and the growing need for preventative maintenance. Mathematical work will 

be discussed involving modern time series, regression, and real-time error detection 

applications that are reviewed and linked to alarm forecasting in the natural gas field.  

2.2 Project Relevance and a Change in Natural Gas Production 

To meet the growing demand for fossil fuels, natural gas production companies 

need to embrace new technologies and develop more capable processes to maintain flow 

assurance while simultaneously increasing production. This idea of increasing production 

is not isolated to just the natural gas industry, but all the energy production industries. 

The harnessing of energy through the use of new technologies has fueled the U.S. 

economy since the industrial revolution [28]. As humans evolve, more energy is needed 

to meet our needs. Hence, energy production has transformed over time [29]. The first 

known practical use of natural gas was in 500 B.C., when the Chinese used naturally 

occurring gas to boil sea water, producing salt. They achieved this using hollowed 

bamboo trunks to capture the gas seeping from the earth’s surface, unknowingly making 
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the world’s first natural gas pipeline [6], [30]. Although the technology has changed, we 

still use the same fundamental idea today. 

From a few bamboo trunks to the three million miles of carbon-steel pipe that 

spans the United States today, the goal of a natural gas pipeline is still to transport gas 

from its extraction point to its place-of-use [31].  Clean burning, abundant, and versatile, 

natural gas consumption in the United States has doubled since the 1980s and reached an 

all-time high in 2018 [32], [33]. The U.S. Energy Information Administration reports a 

predicted 5% rise in natural gas usage by 2050, as well as a 11% decrease in coal and a 

7% decrease in nuclear energy [34]. The U.S. is the world’s leader in natural gas 

production and consumption, making this energy industry a significant part of the 

economy with 31% of the total U.S. energy consumption being supplied from natural gas 

[12]. This continuous increase in natural gas use puts pressure on production companies 

to meet the demand, extracting and flowing more natural gas through their systems than 

ever before.  

This surge in the production industry has come with a cost. Despite natural gas 

emitting less global warming emissions than coal or oil, carbon dioxide and other heat-

trapping gasses are still released when natural gas is combusted [29], [35]. Drilling, 

extracting, and transporting natural gas introduces the possibility of methane leakage, an 

even more detrimental occurrence than carbon dioxide contributing to greenhouse gas 

emissions [35]. The natural gas production industry accounted for about a third of the 

methane released into the atmosphere in 2018 [6], [32], [36]. Hence, stricter 

environmental regulations force industry compliance, resulting in the production 

industry’s adoption of new technologies to reduce production errors. Strict emission 
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standards enforced by the U.S. government keep the increasing demand of North 

America’s natural gas production and transportation in check. Production companies can 

produce as much gas as they want, but are required to maintain certain standards or 

otherwise be subject to penalties discussed in Chapter 1 [23]. While the environmental 

impact of any hydrogen-based energy source’s production is an unfortunate trade off, 

other repercussions from the production process is pressuring the natural gas industry to 

find alternative solutions for safely keeping up with demand. 

Over the last 40 years, pipeline accidents have killed more than 500 people, 

injured 4000 more, and cost nearly seven billion dollars in property damage across the 

U.S. [21]. Of these figures, natural gas production was specifically responsible for 24 

deaths, 99 injures, and over a billion dollars’ worth of damage from 2010 to 2018 alone 

[37]. Each accident that occurs is a blemish on the natural gas industry, rightly bring up 

questions of safety and putting pressure on pipeline companies to make changes. Pipeline 

failure can occur for many reasons. The most common cause is that pipelines are 

becoming older and may not be maintained over time [21].  With the introduction of the 

Natural Gas Pipeline Safety Act of 1968 [38],  programs such as the Pipeline and 

Hazardous Material Safety Administration [39] are actively enforcing federal regulations 

and industry standards to force outdated production pipelines to use the new technologies 

available in production.  

Despite the negative environmental impacts and safety faults of the natural gas 

industry, natural gas is the most energy efficient and cleanest-burning fossil fuel [29], 

[40], [41], [42]. Pipelines are the most cost effective and safest ways to move natural gas 

over long distances [3], [6], [21], [22]. With the affordability of today’s digital 
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technologies and research in the field of natural gas production, new ways to maintain, 

protect, and control pipelines are becoming more accessible than ever before. Smarter 

production leads to more volume being produced, fewer errors, and responsible care for 

the earth; all while supplying energy to those who rely on it. 

The production company sponsoring this work is aware of the repercussions that 

result from an inefficient and unsafe production process. Situations that slow or stop the 

flow a gas cost the production company significant amounts of time and money to 

correct. Therefore, their incentive for sponsoring this pipeline alarm forecasting project is 

to remain on the leading edge of natural gas production technology and to reduce the cost 

of reactively maintaining the pipeline.  Searching for ways to maximize the throughput of 

the pipeline projects such as this are investments for the future of the production 

company and represent their first steps in predictively maintaining the pipeline. 

2.3 Types of Maintenance and Natural Gas Production Technology  

Without the appropriate technology to assist in the increasing demand of North 

America’s natural gas consumption, outdated and under-maintained production pipelines 

can result in serious financial loss for production companies and ecological disasters [43]. 

Once shut-in, the production company suffers a loss as pipeline workers try to identify 

and correct the disruption to flow assurance. This reactive process is a fault in the 

production company’s operational efficiency, and new forms of maintenance have been 

introduced in an attempt to reduce downtime and expended resources. Understanding 

these forms of maintenance motivates how production companies stand to benefit from 

alarm forecasting in natural gas pipelines. 
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Because of entropy, maintenance is required to keep anything in working 

condition. A human body needs nutrition and exercise, while a gas pipeline needs 

periodic cleaning and replacement of corroded or weak segments. There is value in 

different kinds of maintenance to offset cost and labor and to resume common function. 

According to the Federal Energy Management Program, three types of maintenance are 

common [1]. 

Known as the “run it 'till it breaks'' model, reactive maintenance is the simplest to 

adopt. Labor and capital cost is deferred until something breaks. At that point, what is 

broken is fixed. No other action is taken on the machine while it is running. While 

rudimentary, reactive maintenance has its advantages in low costs and less staff while 

nothing is out of service. Preventative maintenance is acting based on a schedule or time 

to find and mitigate degradation. This is analogous to periodically cleaning the inside of 

the pipe to flush out any accumulated flow blockage. However, no amount of 

preventative measures will prevent catastrophic failures, but rather decrease the number 

of regular deteriorations. Predictive maintenance is based on actual measurements that 

can detect the onset of system degradation. This is not based on time but rather on 

condition. For production facilities, the cost and time benefit of conducting predictive 

maintenance can be appreciable by saving 8% to 12% over a preventative model [1]. 

Historically, the natural gas production industry performs a form of reactive 

maintenance [3]. This form of operation is outdated, as the maintenance is required after 

the problem has occurred, and the damage has been done. Although reactive maintenance 

is logical and will always be a part of a dynamic system such as natural gas processing, 

new technologies allow for action to be taken before a reactive process is carried out.  



29 

 

Different from the scheduled preventative maintenance carried out on a pipeline [1], [3], 

[6], [44], predictive maintenance allows pipeline controllers to act before issues occur. 

This is made possible through the constant monitoring of the pipeline, a control center, 

and pipeline operators.   

Constant monitoring of the pipeline is achieved through wireless sensor networks 

(WSN) systematically installed throughout the pipeline. Digital technologies and wireless 

communications allow the sensors to relay real-time information back to the pipeline 

control center to help determine machinery health, plan maintenance intervals, and 

reduce downtime. Especially valuable in the oil and gas industry due to extraction wells 

often being in remote places, [45] shows how the deployment of wireless sensor networks 

in pipelines has been a large contributor to safer and more efficient natural gas 

transmission by connecting offsite pipeline controllers and onsite pipeline personnel. 

Alakbarov [46] walks through the architecture of a modern WSN system and stresses the 

importance of reliable communication between the pipeline and the control room. These 

works point out that these sensor networks are so valuable to the production process, it is 

not unusual for gas plants to employ a full-time instrument technician to ensure accurate 

sensor calibration and maintain communication with the control room [6].  

Pipelines often have many sensors simultaneously sending a stream of data to the 

control room. This leads to a huge amount of daily data generation. Similar to the 

technology used in this thesis, [47] addresses the large-scale data being communicated 

from the WSN installed on pipelines using big data techniques. Once the data has been 

recorded, it is communicated to the pipeline control room for immediate analysis. This 
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vital analysis is enabled by software packages that receive and parse the incoming WSN 

data.  

Pipeline control rooms like the one used in this research can be outfitted with 

supervisory control and data acquisition (SCADA) systems [6]. SCADA systems provide 

highly configurable industrial hardware/software applications used to manage process 

control and remote data transmission [7]. The natural gas pipeline technology overview 

[3] explains the importance of these systems and how with WSN’s, SCADA systems give 

pipeline operators more control over equipment, processes, and communication from 

remote places. Article [48] discusses how SCADA systems continuing role in gas 

production has evolved over the last 30 years, increasing recognition and popularity for 

IT-based automation. Still, the coordination of a natural gas production pipeline involves 

many complicated processes simultaneously occurring. Uraikul [22] explains how the 

near-instantaneous information provided by SCADA systems gives pipeline controllers 

the consistent, fast and reliable decision support they need to ensure safe transportation of 

the large qualities of gas flowing through the pipeline.  

Good pipeline controllers are familiar with the system they are operating, 

knowledgeable of the tools at their disposal, and quick to recognize immediate threats to 

the pipeline. They direct, control, and monitor the gas from extraction well to distribution 

sales point. The importance of a qualified pipeline controller is critical to the success of 

production. Thus many guides, manuals, and other relevant literature has been published 

by production companies and the U.S. government to aid these workers [49], [50], [51]. 

These guides and regulations inform pipeline controllers of the limits within which they 

can operate the pipeline as well as federal regulations. Operators follow their own set of 
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guidelines, as each production pipeline is rated for different flow rates and performance. 

They are the decision-makers that keep the pipeline operating and the primary users of 

the alarm forecasting algorithms and the other tools described in this section. It is with 

these tools and operation experts that it is possible to perform predictive maintenance on 

a production pipeline.  

Natural gas is being produced at unprecedented rates [52]. The only way the 

modern production pipeline can ensure the most reliable, productive, and safe operation 

is through the adoption of new pipeline technologies. Developments such as WSN and 

SCADA enable new real-time data analysis to help production companies predictively 

maintain their pipeline. New areas of research have been developing in the field of 

natural gas production with the intent to manage the safe transportation of this fossil fuel. 

2.4 Past Work in the Field of Natural Gas Production Pipelines 

The ability to forecast natural gas alarms in production pipelines comes from a 

foundation of years of research from engineers, mathematicians, and industry experts. 

This section highlights some recent work leading to this thesis. The application of real-

time pipeline data to forecast alarms in natural gas production pipelines is a relatively 

new area of research. In fact, the definition of an alarm used in this work is not an 

industry standard, rather a standard of the production company sponsoring this research. 

Therefore, little work has been published in the natural gas production field that includes 

the use of alarm thresholds as a form of predictive maintenance. However, there have 

been many closely related works that strive to achieve the same objective of maintaining 

a production pipeline using machine learning, artificial intelligence, and big data 
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analytics. In most of the following work, the goal is the same: to protect the pipeline from 

failure. 

Continuing the theme of Chapter 1, if gas being injected into the pipeline is low-

quality, numerous problems can threaten flow assurance. Three commonly found 

problems in production pipelines include hydrate formation, leaks, and corrosion. Work 

devoted to combating these problems is relevant to this thesis’s concentration as they all 

fall under the umbrella of obstacles that our alarm forecasting is trying to overcome. 

Many of the variables used to analyze and predict these problems are the same used to 

forecast alarms. While we are not specifically concentrating on hydrate formation, 

pipeline leaks, or corrosion, our general-case forecaster can alert controllers to the 

situations in which these problems can occur or may occur in the future.  

One of the three common internal issues pipelines are combating today is the 

formation of natural gas hydrates. Gas hydrates are clathrate physical compounds of 

water and natural gas, where the molecules in the gas are trapped in polygonal crystalline 

structures made of water molecules [53].  These crystalline structures, or simply ice-

looking crystals, can accumulate within a pipeline, causing potentially production-halting 

blockage, damage to pipeline structural integrity, and transport system equipment failure 

[4]. As shown in work such as [54], hydrates can form anywhere in the pipeline where 

hydrocarbons and water are present at the right temperature and pressure.  Presenting an 

additional concerning aspect of hydrate formations, [5] points out that they can occur 

within minutes without prior warning — stressing the importance of real-time detection 

systems. 
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Thus, several computational approaches address the issue of hydration formation. 

Naseer [26] discusses how the formation of gas hydrates can be combated with 

computational fluid dynamics, locating and predicting hydrate build up in certain sections 

pipe. Research in [55] describes a method using kinetic inhibition to prevent flow channel 

blockage of these hydrates. [56] follows a control strategy of using thermodynamic 

inhibitors to push the hydrate formation phase boundary away from the temperature and 

pressure conditions at which natural gas hydrates form. While all these approaches are 

substantially different, they all rely on the data being produced within the pipeline. 

Specifically, the data used to forecast alarms such as pressure, temperature, H2S, and 

H2O. 

Other work in pipeline failure includes leak detection. Like the data sets used in 

this research, leak detection is heavily reliant on time series and rates-of-change in 

various signals. Because a leak has serious detrimental effects on both pipeline operations 

and the environment, a production pipeline will undergo preventative maintenance 

through periodical inspections conducted by maintenance personnel. This requires 

intensive human involvement and fails to provide real-time feedback to pipeline 

operators. The leak detection methods described in [57] help reduce these periodical 

inspections by incorporating hierarchical leak detection and localization through the use 

of WSNs. Wan [57] uses the phrase “alerting pipeline operators” and describes false 

alarms and the reliability of WSNs in natural gas pipelines. Summarizing recent 

advancements of pipeline monitoring and leak detections, [43] provides an excellent 

overview of the different types of leak detection systems, including many that involve 

temporal-based signal processing. Natural gas pipeline leaks are serious problems to 
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encounter. As such, there is an equal concentration on how and where these leaks 

originate.  

Corrosion causes natural gas pipeline leaks [58]. As described in Section 1.4, raw 

natural gas consists of different compounds. There is dry gas, gas that requires little post-

extraction processing, and there is wet gas, which must be thoroughly processed before 

pressurization and injection into the pipe. One of the reasons why wet gas must be 

processed significantly more than dry-gas wells is the high level of water, CO2, and H2S 

present in the gas. Gas with high levels of water and these dissolved gasses is referred to 

as acid gas for its potential to corrode the inside of a pipeline. Several works [58]–[61] 

have carried out analysis of pipeline corrosion due to the presence of acid gas to reduce 

leakage accidents and pipeline segment weakening. While these works show the problem 

of pipeline corrosion is prevalent and makes production companies susceptible to large 

economic loss, stopping leaks before they begin has caught the attention of many.  

The corrosion of pipelines has led to several works being published aiming to 

predict and combat acid gas corrosion. ObaniJesu [62] focuses on the development of a 

predictive model for the corrosion rate in natural gas pipelines, specifically with H2S as 

the corroding agent in different operating situations. Much like how the alarm forecasting 

methods in this thesis need to adapt to different operating situations, [62] models 

situations with varying temperature, pressures, and acidity of the gas within the pipe. 

Anticipating the other challenges of flowing low-quality gas through the line, [63] ties in 

gas hydrate formation and its contribution to corrosion rate along subsea pipelines.  

Failure to detect and correct corrosive gas damage to a pipeline can result in large 

scale ruptures or explosions. Bedairi [64] shows how a finite-element method using an 
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elastic-plastic fracture mechanics approach can predict crack-in-corrosion defects, while 

also bringing to light the lack of assessment methods or current codes for these large-

scale incidents.  The methods described in each of these works are based in mathematical 

foundations and are further discussed in Section 2.5. 

2.5 Time Series Analysis and the Natural Gas Industry 

Forecasting alarms with machine learning is approached as either a classification 

or a regression problem. The output of a classification-based model is binary: An alarm is 

either present, or it is not present. A regression-based approach predicts future values 

which are compared against rules that define an alarm. The benefit of a regression-based 

model is in its output, since it can be used to diagnose the state of the pipeline rather than 

just an alarm being imminent. Several models can be trained with multiple time horizons 

that give control operators more discretion in avoiding unsafe states or unacceptable gas. 

One of the first steps in many data analyses applications is performing regression 

analysis [65]. Autoregressive models have gained popularity over the last few decades 

due to their simplicity, effectiveness, and practical nature in the time series domain. Such 

an analysis can provide useful information about correlation and the directionality of the 

data, how to estimate the model coefficients, and determining the validity and usefulness 

of the model [66]. The correlation found in data sets indexed by time has led to the 

significant development of time series work in industrial production [66]. The temporal 

aspects of the data sets used in this work contain valuable information relating to how the 

system responds to issues threatening flow assurance. Hence, much work has been put 

into the fitting and analysis of time series models.  
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Development of such work is seen in [67] and [68] when the fitting of time series 

models and autocorrelation analysis was published in the 1960s. The inspiration behind 

these works and many others was to find efficient ways for parameter estimation while 

working with data serial dependence. Due to the nature of time data points, it is 

understandable that one observation is often statistically dependent on another 

observation recorded at a different time [65]. This property of time series data violates 

one of the fundamental assumptions of statistical modeling that the data must be 

statistically independent. Work such as [69] show how to test and avoid the misleading 

results that can arise from serial dependence in time series forecasting. If the proper steps 

are taken, there are many examples of successful regression-based time series models. 

Linear regression has been proven successful in the energy production industry. 

Thus, it is the first method explored in this work (Section 4.4). In a similar application to 

forecasting alarms in natural gas pipelines, Vitullo [70] demonstrates the use of time 

series to forecast the amount of gas local utilities need to flow to satisfy hourly and daily 

demand. Similar papers [71] and [72] also provide examples of successful forecasting in 

the natural gas industry through the use of historical demand and consumption of natural 

gas. Often, univariate time series forecasting models are augmented by including other 

data sets measuring similar qualities.  

The autoregressive models with exogenous variables (ARX) presented in Section 

4.5 exploit relationships one signal has with others. It can be very beneficial to consider a 

group of time series variables as opposed to concentrating on one single series, thus 

making the model more dynamic and sensitive to changes elsewhere in the system. Spliid 

[73] lays out how large multivariate time series can be used with distributed lags for fast 
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estimation forecasting models. Akouemo [74] applies this idea to the natural gas industry 

and incorporates the important idea of how an ARX anomaly detection can be used to 

detect and impute anomalous data.  

Time series analysis has attracted much attention. To determine some of the most 

accurate methods, competitions such as the M-Competitions [75] are designed to test 

extrapolation methods in a variety of scenarios and areas of research. Using three 

thousand time series, the M-3 competition [76] tested each model entered using real-

world objectives with the aim to help forecasters make business decisions. The winner of 

the M-3 competition was the Theta method [77], the third forecasting method used in this 

work. Out of the 24 methods submitted in this competition, the Theta method performed 

the best based on empirical and efficiency-benchmarking assessments.  

The Theta method is a specific decomposition technique that uses the projection 

and combination of individual components [77]. Otherwise known as simple exponential 

smoothing with drift, as proved in [78], the decomposition of both long-term and short-

term components are extracted from the data and are referred to as the ‘theta lines.’ The 

long-term trend component is the first theta line, which removes the curvature of the time 

series so that it can be a good estimator for long-term behavior of the series. The short-

term trend component of the data doubles the curvatures of the series to gain better 

approximations of the short-term behavior. Then, components are combined with 

optimized weightings to produce a forecast value of the original series. Time series work 

has been continued with the Theta method and has found success in non-competition 

work such as [79]. More in-depth analysis has been carried out [80] to optimize 
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univariate and multivariate time series forecasting to better fit each application of this 

method in specific business settings.  

The last method described in Chapter 4 is an artificial neural network (ANN) 

forecasting model. Al-Fattah [81] points out the advantages of ANN models in time 

series forecasting. In some applications, they outperform traditional time series models. 

Al-Fattah [82] shows how to predict natural gas production in the U.S. using an ANN 

similar to the network described in 0. While introducing their technique, [82] describes 

how the nonlinearity of ANN transfer functions introduces advantages in time series 

forecasting compared to conventional regression techniques. Nonlinear ANNs have 

proven successful as huge collections of data have become available over the last few 

years [47]. These data-driven, self-adaptive models work well with the natural gas 

production industry’s large datasets, and success has been found using dimension 

reduction techniques seen in [83] to identify production variables that have direct flow 

assurance implications.  

Chapter 2 has described the balance needed in the natural gas production industry 

between increasing output and maintaining flow assurance. The combination of the above 

works reflects the inspiration of the research completed in this thesis. A creative aspect of 

each work is how the author applies the data available to them to best achieve their 

objective. Without data, these methods would not exist and the internal workings of 

production pipelines would be less well understood. Chapter 3 presents and analyzes the 

data use in this thesis to forecast alarms in natural gas pipelines.  
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CHAPTER 3  

Introduction to Signal Data and Alarm Thresholds 

 

3.1 Chapter Objectives 

This chapter introduces the gas quality signals used in this project. For each 

signal, we define alarm thresholds and discuss the behavior of the signal. Then, we 

explain the data cleaning process and the tools used to conduct this research.  

3.2 Natural Gas Signals and Alarm Thresholds 

Tens of sensors are within the pipeline providing a constant flow of information 

to the pipeline operators in the control room. Each sensor measures a pipeline condition, 

such as gas composition (Table 1.1), internal pressure, flow, etc. These sensors allow 

operators to monitor changes within the system, determine processing machinery health, 

and assist the pipeline controllers with the transportation of large amounts of natural gas 

safely through the pipeline. This section specifies which sensor signals are used to 

forecast alarms.   

While there are many sensors concurrently collecting and sending information to 

the control room, only a few are used to forecast alarms. The signals chosen in this work 

are the ones that have the greatest impact on flow assurance. The pipeline conditions 

these signals measure are deciding factors of whether the pipeline operates as normal or 

gets shut in. For example, controllers have less interest in trace amounts of rare gases 

than the internal pressure of the pipe. The production company has provided five signals 
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that they regard as most important to ensure flow assurance: pressure (psi), heat content 

(BTU), hydrogen sulfide (H2S), carbon dioxide (CO2), and moisture (H2O). 

All five pipeline signals are recorded at five locations along the pipeline. Four sets of 

the signals are generated at each central processing facility (CPF), while the last set is 

from the distribution point. The set of signals being generated at the distribution point is 

the target data to be forecast. The distribution point signals are used by the sales point 

operators (different from the production pipeline operators) to determine if the gas 

flowing into the sales point is of an acceptable quality. [5] provides a general overview of 

acceptable quality gas. This work uses more stringent characterizations in the form of 

alarm thresholds to define what is acceptable. 

 

Figure 3.1: Alarm thresholds for a generic time series 

Alarm thresholds can be thought of as gas quality limits. If a sensor measurement 

of a pipeline condition exceeds or falls below an alarm threshold, an alarm may be 

imminent, and the pipeline may get shut in. The production company defined four types 
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of alarms — high-high, high, low, and low-low. Figure 3.1 shows the generic four alarm 

thresholds.  

The high-high alarm signifies an extreme system lapse, and the pipeline is either 

already shut in or close to it. If a high-high alarm is triggered, the main concern of the 

pipeline controller is to protect the production equipment from damage, and to reduce the 

amount of line pack building at the distribution point. The next alarm threshold is a high 

alarm. Lower that a high-high alarm, high alarms indicate a serious problem is forming in 

the system, and action is needed to correct the trajectory of the signal. Conversely, a low 

alarm indicates that the signal is falling beneath the acceptable level. A low-low alarm 

alerts controllers of a potential equipment failure or a shut-in worthy problem in the 

system. Tables 3.1 - 3.5 present each target signal along with its corresponding alarm 

thresholds. 

3.3 Pressure Signal (psi) 

Pressure is what moves gas through the pipe, with the gas flowing from high 

pressure to low pressure [6], [25]. This is a fundamental principle of a natural gas 

production pipeline and is the main tool used by the pipeline controllers to control the 

natural gas delivery system [84]. By closely regulating the pressure, the controllers 

manage how much gas is in the system, how fast it is moving, and coordinate the 

production of several wells at once. Pressure is a measure of the pounds per square inch 

(psi) within the pipe and has been deemed the most important condition in the system by 

the production company involved with this project. Excessive pressure is the most 
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common reason for the pipeline being shut in. Figure 3.2 shows the pressure time series 

for the distribution point fluctuating between 950 psi and 1250 psi. 

 

Figure 3.2: Pressure time series recorded at the distribution point from January 2018 – 

May 2018 

The exact thresholds for the pressure time series and their occurrences within our 

data are summarized in Table 3.1. 

Table 3.1: Pressure alarm thresholds and their observed occurrences and frequency 

percentage (N = 210,000) 

PSI 

 Threshold Occurrences Frequency (%) 

High-high > 1200 294 0.14 

High > 1185 2458 1.20 

Low < 1070 3171 1.55 

Low-low < 1055 1730 0.85 

 

Table 3.1 shows the overall frequency of triggered alarms is quite low. We 

expand upon this effect in Chapters 4 and 5 when choosing model structures and error 
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metrics. The next signal discussed, measuring the gas heat content (BTU), shows a 

similar number of alarms triggered. 

3.4 Heat Content Signal (BTU)  

The term “heat content” is used in the production industry to help characterize the 

quality of natural gas. When the gas is sold at the distribution point, its heating value is a 

main determinant of its sales price. Gas with a lower heating value is not as valuable as a 

gas with a higher value [85]. This heating value variable depends on the gas consistency 

and how much energy is released when the gas is burned [40]. It is measured in British 

Thermal Units (BTU) (the amount of energy needed to increase the temperature of one 

pound of water by a one degree Fahrenheit [17]). These qualities are important to both 

the production company and the distributor, as a contractual agreement holds the 

production company responsible to deliver gas that meets the standards of the distributor. 

Figure 3.3 shows the heating value signal recorded at the distribution inlet varying 

between 1000 BTU to 1160 BTU.  

Figure 3.3 shows that most of late March is operating under a low alarm.  The 

pipeline operators confirmed this irregularity is authentic and not anomalous data.  
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Figure 3.3: Heat content (BTU) time series signal recorded at the distribution point from 

January 2018 to April 2019 

Table 3.2 shows that the number of low alarms is higher than the number of other 

alarms during this time. 

Table 3.2: BTU alarm thresholds and their observed occurrences and frequency 

percentages (N = 523,600) 

BTU 

 Threshold Occurrences Frequency (%) 

High-high > 1115 1309 0.25 

High > 1105 1966 0.37 

Low < 1045 6980 1.31 

Low-low < 1035 1419 0.27 

 

Pressure and BTU are the first signals identified due to their importance. While all 

signals in this work are being monitored constantly in the pipeline control room, the 

pipeline operators identified Pressure and BTU signals to have triggered the highest 

number of alarms in recent production. However, looking beyond recent production, the 
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next signal examined is the sulfur content of the gas, which represents an extreme threat 

to the pipeline’s long-term structural health if not closely regulated.  

3.5 Hydrogen Sulfide Signal (H2S) 

The sulfur content, or the amount of hydrogen sulfide (H2S) present in gas, is one 

of the two components that determines if gas is “sweet” or “sour.” Sweeter gas contains a 

lower sulfur content and less carbon dioxide, while sour gas contains an unacceptable 

amount of these gases. H2S is a carefully monitored quality, as sour gas is not accepted at 

the sales points due to its corrosive nature and potential to damage the pipeline [6].  

Sulfur stress cracking has been an issue within the production industry, and considerable 

research has led to new methods for sweetening of sour natural gas [86]. In this work, gas 

is labeled sour when the H2S sensors read values greater than 3 parts-per-million (ppm).  

Figure 3.4: Hydrogen sulfide (H2S) time series signal recorded at the distribution point 

from May 2018 to April 2019 
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Figure 3.4 displays the H2S signal, showing that the controllers of the pipeline do 

a relatively good job maintaining the level of H2S under 3ppm. The exact thresholds for 

the H2S time series and their occurrences within our data are summarized in Table 3.3. 

Table 3.3: H2S alarm thresholds and their observed occurrences and frequency 

percentage (N = 388,880) 

H2S 

 Threshold Occurrences Frequency (%) 

High-high > 2.75 700 0.18 

High > 2.50 3660 0.92 

Low < 0.35 13209 3.31 

Low-low < 0.10 7251 1.82 

 

Both Table 3.3 and Figure 3.4 show the low and low-low alarm being triggered 

more often than any high-alarm. This was interesting to us, as having very little hydrogen 

sulfide in the gas stream indicates very lean, high-quality gas. The need for any low 

alarms seemed unnecessary, yet the pipeline controllers told us that the low alarms can 

help manage machinery at the CPF.  If a gas stream at a CPF is registering almost zero 

sulfur content, the pipeline controllers use that information to check on the equipment 

and possibly reduce the revolutions per minute of the gas sweetening machinery to 

prevent unnecessary wear. A similar situation can be seen when monitoring the carbon 

dioxide signal. 

3.6 Carbon Dioxide Signal (CO2) 

Carbon dioxide is the second component of sour gas. CO2-rich gas is not corrosive 

and has little to do with flow assurance on its own. However, when combined with 
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hydrogen sulfide, acid gas forms which leads to critical problems for production pipelines 

(Section 2.3). If the pipeline were to get shut-in, flaring any amount of acid gas from the 

system must be avoided due to the amount of greenhouse gas released. This usually 

forces production to halt until the gas can either be diffused with sweet gas or back-flown 

for reinjection into the ground. Figure 3.5 shows the levels of CO2 from May 2018 to 

April 2019 fluctuating between 0.25 and 1.75 parts-per-million. 

 

Figure 3.5: Carbon dioxide (CO2) time series signal recorded at the distribution point from 

May 2018 to April 2019 

The exact thresholds for the CO2 time series and their occurrences within our data 

are summarized in Table 3.4. 
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Table 3.4: CO2 alarm thresholds and their observed occurrences and frequency 

percentage (N = 530,842) 

CO2 

 Threshold Occurrences Frequency (%) 

High-high > 1.75 15129 2.85 

High > 1.50 24829 4.67 

Low < 0.50 6516 1.23 

Low-low < 0.25 679 0.13 

 

Figure 3.5 shows the carbon dioxide signal triggering high alarms in late March. 

This correlates with the BTU signal triggering low alarms in late March and is a result of 

the production pipeline producing higher quality gas during that time. Table 3.4 shows 

the H2S alarm thresholds and their frequency of being triggered. Similar to how the H2S 

signal triggers low alarms, the low alarms for CO2 do not indicate a failure; rather they 

relay information back to the pipeline controllers that they use for adjusting the system. 

3.7 Water Content Signal (H2O)  

The moisture content is measured in pounds of water per million standard cubic 

feet of gas [6]. Figure 3.6 shows the water content measured at the distribution point. 

Water or water vapor (H2O) is almost always present in raw natural gas, ranging from 

trace amounts to saturation [5]. In this production operation, gas is dehydrated as it is 

pulled from the wellhead to the processing plant via refrigeration units. 
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Figure 3.6: Water content (H2O) time series signal recorded at the distribution point 

from May 2018 to April 2019 

The exact thresholds for the H2O time series and their occurrences within our data 

are summarized in Table 3.5. 

Table 3.5: H2O alarm thresholds and their observed occurrences and frequency 

percentage (N = 533,026) 

H2O 

 Threshold Occurrences Frequency (%) 

High-high > 6.5 8102 1.52 

High > 5.0 14809 2.78 

Low < 1.2 1058 0.20 

Low-low < 1.0 87 0.02 

 

The number of low and low-low alarms shown in Table 3.5 are the fewest of all the 

signals, with low-low alarms being triggered only 0.02 percent of the time. This fact was 

discussed with the pipeline controllers, who decided to keep the low alarm thresholds as-

is but declared the lower H2O alarms generally less important than the other signals 
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discussed. The effect of this decision is discussed in the Chapter 5 when considering the 

performance metrics used to evaluate the H2O forecast models. 

3.8 Preparation of Raw Time Series Data 

This section describes the cleaning process carried out on the time series signals 

presented in Sections 3.3-3.7. The process begins with the initial retrieval of the data in 

raw form and ends with the cleaned time series used to train the alarm forecasting 

models. The following section begins with a brief overview of the data conversion from 

comma separated value (csv) files to MATLAB time series. Then, the cleaning of those 

time series objects leads to a discussion of non-uniform time series and linear modeling. 

Finally, the anomaly detection and imputation method is examined.  

The production company supplies the data used in the project via csv files, with 

each file containing the historical signals generated from central processing facilities 

located along the pipeline. As in many cases when using signal data collected in the field, 

there are many ‘NULL’ entries in each file, either from communication failure between 

the pipeline sensors and the control room or temporary equipment failure. Unix scripts 

are used to located and delete any ‘NULL’ time-value pairs. After each signal is 

separated into its respective csv file, the ‘time’ column vector of each csv is converted 

from a Microsoft Excel timestamp to a character vector in preparation to turn the csv 

signals into MATLAB time series objects. 

The csv files are read into MATLAB and stored as .mat files. In most time series 

models, the sampling rate or interval at which observations are recorded is vital 

information when processing raw data [66]. The time series and signal processing 
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algorithms described in Chapter 4 require a signal with a consistent sample rate. The 

signals received by the production company are asynchronous [87], meaning that there is 

no uniform amount of time between each sensor reading. Each signal must be converted 

to be uniformly sampled while also maintaining the natural behavior of the data. Each gas 

quality behaves differently in the pipeline, so a consistent sample rate must be chosen for 

all five time series such that the natural behaviors of each signal remain present in the 

interpolation. 

 The non-uniformly sampled pipeline signals are received in the control room and 

presented to the operators via a supervisory control and data acquisition (SCADA) 

system. The SCADA system provides our algorithms the data needed to make real-time 

forecasts, so the sampling rate matters. The production company’s SCADA system 

samples on average every nine seconds; however, the SCADA sample rates can range 

from 5 to 200 seconds, as shown in Figure 3.7. 

 

Figure 3.7: Histogram of sampling intervals of the distribution point’s pressure signal 
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Figure 3.7 shows the most frequent sampling rate is 9 seconds. The pipeline 

controllers determined that a consistent ten-second sampling rate would maintain the 

integrity of the data and that the SCADA system would be able to provide consistent 

observations to the alarm forecasting algorithms using a sample-and-hold approach. This 

allows us to resample the time series objects using ten-second intervals with built-in 

MATLAB R2019b resample functions [88] and produce a uniform time series. Then we 

begin the process of detecting and correcting possible inaccurate observations with our 

time series anomaly detection and imputation algorithm.  

3.9 Time Series Cleaning — Anomaly Detection and Imputation 

Anomalous data degrades our alarm forecasting model parameters and real-time 

forecasts. To avoid anomalous data being used in our parameter estimation and 

forecasting, we implement an anomaly detection and imputation technique. This section 

defines what an anomalous observation is and how we differentiate between real and 

erroneous signal observations.  

In many real-time monitoring tasks, it is vital to have accurate machinery and 

skilled workers to identify abnormal behavior quickly. In this setting, we have the sensors 

within the natural gas production pipeline and the pipeline controllers monitoring the 

SCADA system. The controllers interpret the data produced from the sensors to 

determine the state of the system. If an unusual event is occurring, the controllers are the 

first to identify and categorize what is happening. For example, if pipeline maintenance 

requires the internal pressure of the pipe to be lowered for a few hours, alarms are 

triggered, but no action is taken because the controllers are aware of the necessary 
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maintenance. Such human-interactive events create data that does not represent the usual 

day-to-day signals needed to train the forecasting model parameters and ultimately 

degrades our forecasting models. Conversely, if a naturally occurring event appears in the 

data, it is crucial to include that event in the training data so that we can forecast the 

correct alarms for that situation.   

Knowing the difference between naturally occurring events and anomalous data 

falls into domain knowledge that the production controllers possess. Figure 3.8 shows 

examples of anomalous observations (circled in red) found within the raw time series 

signal. The anomaly detection and imputation considers the domain knowledge of the 

pipeline controllers and statistical likelihoods of each point being a natural observation or 

an error. 

 

Figure 3.8: Pressure time series with confirmed anomalies circled in red 

The anomaly detection and imputation algorithm used in this work is based on 

[74] by Akouemo, who applied this technique to the similar problem of natural gas 
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energy forecasting. The converted algorithm used in this work stems from her 

hypothesis-driven outlier detection method but has been modified to fit the problem of 

this research.  

There are two areas in which anomaly detection is used. The first is to determine 

whether the training data is legitimate when estimating the model coefficients. If a model 

is trained using anomalous signals, the model may produce erroneous forecasts. This is 

especially true when applying the model to out-of-sample signals, which is the main 

intent of the production company controllers.  

The second application of anomaly detection is operation of our forecasting 

algorithm in real-time. As the SCADA system receives new data, it is possible that some 

observations are anomalous. To detect these occurrences, the anomaly detection 

algorithm is fed the most recent observation and uses a Bayesian maximum likelihood 

classifier [66] to label it anomalous or not. If identified as anomalous, the data point is 

replaced with model estimates. 

Chapter 3 introduced the gas quality signals used in this project to forecast 

pipeline alarm. For each signal, we present alarm thresholds and explain the signal’s 

behavior. The data cleaning process is described to give an idea of the issues in our 

datasets, which leads to the anomaly detection and imputation algorithm discussion.  

Once the data has been cleaned and parsed, it is possible to forecast each signal using the 

methods presented in Chapter 4.  
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CHAPTER 4   

Forecasting Methods and Framework 

4.1 Chapter Objectives 

This chapter begins by providing a description of the alarm forecasting 

framework used in this work. We then define the training and testing data sets and a 

baseline model to help evaluate each forecasting method. The first method implements a 

10th-order autoregressive model. The second method is an extension of the first 

autoregressive model but incorporates exogenous variables from different central 

processing facilities (CPF). Then, the Theta method is examined, where simple 

exponential smoothing with drift is applied to the data sets. Finally, an artificial neural 

network is used to forecast pipeline signals.  

4.2 Framework for Real-Time Alarm Forecasting 

This section introduces the notation used in this chapter and describes the 

framework for real-time alarm forecasting. A time series is a set of data ordered in time 

[66]. In this work, a distribution point signal, 𝑌, is 

𝑌 = { 𝑦(𝑡), 𝑡 = 1, … , 𝑁}. 

In this form, 𝑦(𝑡) is the value of the distribution point signal 𝑦 at time 𝑡. Time 𝑡 is 

uniformly spaced at 10-second intervals (Section 3.8), and the values of 𝑦(𝑡) have been 

tested for anomalies (Section 3.9). The signals at the distribution point are differentiated 

with signal type subscripts. Thus, 𝑌𝑝𝑠𝑖, 𝑌𝐵𝑡𝑢, 𝑌𝐻2𝑠, 𝑌𝐶𝑂2
, and 𝑌𝐻2𝑂 are the signals for 
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pressure, heat content, hydrogen sulfide, carbon dioxide, and moisture content, 

respectively. 

The notation used to describe the alarm forecasting algorithms is shown in Figure 

4.1.  

 

Figure 4.1: Notations of each central processing facility data set showing how each well 

is referenced in the alarm forecasting equations  

The gas received at the distribution point is a function of the signals from the CPFs,  

 𝑌 = 𝐹(𝑋1, 𝑋2, 𝑋3, 𝑋4), (4.1) 

where 𝑋1, 𝑋2, 𝑋3, and 𝑋4 are the exogenous signals from 𝐶𝑃𝐹1, 𝐶𝑃𝐹2, 𝐶𝑃𝐹3, and 𝐶𝑃𝐹4, 

respectively. Similar to the notation used for the signal 𝑌 from the distribution point, 𝑋 is 



57 

 

subscripted to indicate the CPF from which it came and the type of signal. For example, 

𝑋2,𝐵𝑡𝑢 is the BTU signal from 𝐶𝑃𝐹2. 

The target signal produced at the distribution point 𝑌 is modeled as lagged 

versions of the signals from the CPFs. Let 𝑙1, 𝑙2, 𝑙3, and 𝑙4 be the time it takes the natural 

gas to flow from 𝐶𝑃𝐹1, 𝐶𝑃𝐹2, 𝐶𝑃𝐹3, and 𝐶𝑃𝐹4 to the distribution point, respectively.   

Equation 4.2 is the model currently used by the control room operators to combine the 

lagged signals from the CPFs to predict the distribution point signal. Let 𝑤𝑖 represent 

weights for each exogenous signal. 

 

𝑦̂(𝑡) =  𝑤1𝑥1(𝑡 − 𝑙1) +  𝑤2𝑥2(𝑡 − 𝑙2)

+ 𝑤3𝑥2(𝑡 − 𝑙3) + 𝑤4𝑥4(𝑡 − 𝑙4), 
(4.2) 

where 𝑡 > max (𝑙1, 𝑙2, 𝑙3, 𝑙4). 

Our algorithm forecasts pipeline signals 1 to 30 minutes into the future. After 

each forecast is made, the 30 estimates are compared against the alarm thresholds (Figure 

3.1) for the predicted gas quality. If any of the forecasts cross the low, low-low, high, or 

high-high thresholds, an alarm is raised for that time horizon. It is possible to have 

several alarms in different signals being triggered at once. The term time horizon, 

represented with ℎ, is used to indicate which of the 30 forecasted time horizons is 

triggering an alarm. Forecasted distribution point values ℎ minutes into the future are 

denoted by 𝑦̂𝑠𝑖𝑔𝑛𝑎𝑙(𝑡 + ℎ). For example, the H2O signal at the distribution point 

forecasted 10 minutes into the future is 𝑦̂𝐻2𝑂(𝑡 + 10).  

The methods below are tools for the pipeline operator and have been developed 

with their requests in mind. Each method is implemented in an algorithm that fires every 
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ten seconds to display the alarm forecasts to the pipeline operators via the SCADA 

system. Algorithm 4.1 shows the general algorithm for each forecasting technique as it 

operates on one signal. 

1. Receive new time series values from SCADA system every ten seconds 
2. Conduct anomaly detection; Impute if necessary 
3. Enter new data with old data into forecaster 
4. Compare forecasts against alarm thresholds: 

 

If(forecast ≥ High-high alarm threshold) : Trigger high-high alarm 

If(forecast ≥ High alarm threshold) : Trigger high alarm 

If(forecast ≤ Low alarm threshold) : Trigger low alarm 

If(forecast ≤ Low-low alarm threshold) : Trigger low-low alarm 

 

5. Alert if necessary 

 

Algorithm 4.1 — The alarm prediction algorithm in the SCADA system. 

Algorithm 4.1 triggers a single alarm at once. A high-high alarm takes precedence 

over a high alarm, and a low-low alarm over a low alarm.  

Now that the time series used in this work are defined, we split them into training 

and testing data sets. 

4.3 Testing Data and the Naïve Model 

A 70/30 percent split of each signal is used for training and testing the four 

forecasting methods explained below. Throughout the training and testing sets, the low 

frequency of triggered alarms creates an issue discussed in Chapter 6’s summary. In 

addition to the error metrics calculated for each model, a performance measurement 

known as the naïve model is implemented as a basis for comparison.  

Equation 4.2 is an example of a simplistic model that is used to forecast signal 

data. Our first objective with each forecasting model is to outperform a basic, effective 
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model. Hence, a naïve model is used as a basis for comparison. The naïve model for a 

general distribution point signal 𝑦 at time horizon ℎ is 

 𝑦̂𝑠𝑖𝑔𝑛𝑎𝑙(𝑡 + ℎ) = 𝑦𝑠𝑖𝑔𝑛𝑎𝑙(𝑡). (4.3) 

The naïve model simply uses whatever the signal’s current value is at time 𝑡 to be the 

forecasted value at 𝑡 + ℎ [66].  

This elementary forecasting technique is used for two reasons. First, is it is similar 

to how the control room operators manage the pipeline without the alarm forecasting 

algorithms. The easiest way to get an idea of the future is to consider the present, so 

control room operators use the most recent information available to make decisions. 

Second, despite the naïve model’s simplicity, it is accurate enough to be used as a basis 

for comparison. If any of the models presented below cannot outperform the naïve model, 

it is considered unacceptable. This is first tested with the 10th-order autoregressive model. 

4.4 10th-order Autoregressive Model (AR(10)) 

One of the first steps in many data analysis applications is performing regression 

analysis [65]. In time series applications, it is common to see autoregressive terms used in 

forecasting (Section 2.5). Let 𝑦(𝑡 − 𝑛) represent a lagged value from the distribution 

point series 𝑦, and let 𝑦̂(𝑡 + ℎ)  be the forecasted value. A general autoregressive model 

is a function of values at previous time steps. 

 𝑦̂(𝑡 + ℎ) = F(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑝)), (4.4) 

where 𝑝 is the number of lagged values. The value 𝑦(𝑡 − 1) is the signal value recorded 

one minute in the past. 
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The autoregressive model predicts future distribution point values, 𝑦̂(𝑡 + ℎ), 

using the past ten minute’s worth of signal data in 𝑦 and weights 𝛽. The order-𝑃 equation 

is 

 𝑦̂(𝑡 + ℎ) =  ∑( 𝛽𝑚𝑦(𝑡 − 𝑝)

𝑃

𝑝=1

) + 𝛽0. (4.5) 

The equation’s order, 𝑃, is 10.  

The weights, 𝛽, used in Equation (4.5) are found using least squares [67], 

minimizing the mean square of residuals 

 
1

𝑛
∑(𝑦(𝑡) −  𝑦̂(𝑡))2

𝑛

𝑖=1

 (4.6) 

 with respect to {𝛽𝑚; 𝑚 = 1, 2, ⋯ , 𝑀} in Equation (4.6). A 10th-order AR model is trained 

for each time horizon, resulting in 30 models. Next, we incorporate exogenous variables. 

4.5 10th-order Autoregressive Model with Exogenous Variables (ARX) 

The next logical approach to modeling this system is to incorporate exogenous 

variables into the forecasting method. In this case, the exogenous variables are the lagged 

signals of the central processing facilities (CPF). Because each signal holds important 

historical information, autoregressive terms are incorporated for each exogenous signal. 

This combination of autoregressive terms and exogenous variables (ARX) form the 

second forecasting method.  

Referencing Figure 4.1, let  𝑋1, 𝑋2, 𝑋3, and 𝑋4 be the signals of 𝐶𝑃𝐹1, 𝐶𝑃𝐹2,

𝐶𝑃𝐹3, and 𝐶𝑃𝐹4. Let 𝑙1, 𝑙2, 𝑙3, and 𝑙4 be the time it takes the natural gas to flow from 
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𝐶𝑃𝐹1, 𝐶𝑃𝐹2, 𝐶𝑃𝐹3, and 𝐶𝑃𝐹4 to the distribution point, respectively. Let the weight matrix 

𝛽 be size five by ten, with the first row holding the weights for the autoregressive terms 

and the remaining rows the lagged exogenous signals. The autoregressive model with 

exogenous variables is  

 

𝑦̂(𝑡 + ℎ)  =  ∑ (𝛽1,𝑚𝑦(𝑡 − 𝑚)

𝑀

𝑚=1

+ (𝛽2,𝑚𝑥1(𝑡 − 𝑙1 − 𝑚)

+ (𝛽3,𝑚𝑥2(𝑡 − 𝑙2 − 𝑚)

+ (𝛽4,𝑚𝑥3(𝑡 − 𝑙3 − 𝑚)

+ (𝛽5,𝑚𝑥4(𝑡 − 𝑙4 − 𝑚). 

(4.7) 

Lags 𝑙1, … , 𝑙4 are found by comparing a lagged cross-correlation between each signal 

coming from 𝐶𝑃𝐹1 − 𝐶𝑃𝐹4 and the signal at the distribution point. Figures 4.3 and 4.4 

show an example of a lagged signal. 

Figure 4.2 depicts a lag in the H2O signal data from 𝐶𝑃𝐹1 (blue line) to the 

distribution point (black line). The red line is used to help show that when the 𝑋1 H2O 

signal increases, a similar increase is seen in the distribution point’s signal  𝑙1 minutes 

later. 
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Figure 4.2: Visualizing a lag between 𝐶𝑃𝐹1 and the distribution point’s 𝐻2𝑂 signals 

 

Figure 4.3: Lagged cross-correlation between 𝑋1𝐻2𝑂
 and 𝑌𝐻2𝑂  

Figure 4.3 shows the lagged cross-correlation plot between X1H2O
 and YH2O. We 

choose lag 𝑙1 to be the minute with the highest correlation, which is seen at 97 minutes in 

this example. Table 4.1 summarizes the time it takes for gas entering the pipe at any CPF 
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to reach the distribution point.  The 𝑙𝑖’s in Equation (4.7) are found under the column 

‘Lag Time to Distribution’ measured in minutes for each respective gas quality.  

Weight matrix 𝛽5,10 is structured so that each row of 1x10 weights are used in a 

linear combination of the 10 lagged values of each CPF time series. The first column 

vector 𝛽:,1 consists of a bias vector of 1’s to consider the intercept of each series. 

 𝛽5,10 =  [

1 𝛽1,2 ⋯

⋮ ⋮ ⋱
1 𝛽5,2  ⋯

 

𝛽1,10

⋮
 𝛽5,10

]     
} Weights used with series 𝑌

⋮
} Weights used with series 𝑋4.

 (4.8) 

Equation 4.9 illustrates how to calculate the forecasted BTU at the distribution 

point by putting together all the notation defined in this section. 

 

𝑦̂𝐵𝑡𝑢(𝑡 + ℎ)  =  ∑ (𝛽1,𝑚𝑦𝐵𝑡𝑢(𝑡 − 𝑚)

𝑀

𝑚=1

+ (𝛽2,𝑚𝑥1𝐵𝑡𝑢
(𝑡 − 𝑙1 − 𝑚)

+ (𝛽3,𝑚𝑥2𝐵𝑡𝑢
(𝑡 − 𝑙2 − 𝑚)

+ (𝛽4,𝑚𝑥3𝐵𝑡𝑢
(𝑡 − 𝑙3 − 𝑚)

+ (𝛽5,𝑚𝑥4𝐵𝑡𝑢
(𝑡 − 𝑙4 − 𝑚). 

(4.9) 

The 𝑙𝑖’s are gathered from Table 4.1, which illustrates that the further away the CFP, the 

longer the time the gas takes to travel to the distribution point.  
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Table 4.1: The amount of time it takes for a signal’s behavior to effect the signal being 

generated at the distribution sales point 

CPF 

Average Lag Time to 

Distribution 

(𝑳𝒊  - minutes) 

Average Calculated 

Correlation 

𝑋1 92 0.78 

𝑋2 105 0.62 

𝑋3 173 0.41 

𝑋4 209 0.26 

 

The next forecasting method does not use any autoregressive terms as inputs. 

Instead, the Theta method considers recent trends in the signal data to make forecasts.  

4.6 Simple Exponential Smoothing with Drift (Theta Method) 

The Theta Method [77], otherwise known as simple exponential smoothing with 

drift, is used to forecast signals at the distribution point. The unoptimized Theta method 

is   

 𝑦̂(𝑡 + ℎ) = 0.5 ∗ 𝐿0̂(𝑡 + ℎ)  + 0.5 ∗ 𝐿2̂(𝑡 + ℎ) (4.10) 

where 𝑦̂(𝑡 + ℎ) is the forecasted distribution sales point series value h time steps ahead of 

current time t. 𝐿0̂(𝑡 + ℎ) represents a forecasted long-term component extracted from the 

data h time steps ahead of current time t, and 𝐿2̂(𝑡 + ℎ) is the forecasted short-term 
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component extracted from the data h time steps ahead of current time t. Forecasting is 

carried out by an equal weighted combination of these two components.  

𝐿0(𝑡), the first Theta line, is calculated with the linear trend estimates 𝑏𝑜 and 𝑏1,  

 𝐿0(𝑡) = 𝑏𝑜 + 𝑏1(𝑡). (4.11) 

Once completed, the second Theta line is found using 𝐿0(𝑡) in Equation (4.12). 

 𝐿2(𝑡) = 2 ∗  𝑦(𝑡) ∗ 𝐿0(𝑡). (4.12) 

With both Theta lines defined, 𝐿0̂(𝑡 + ℎ) and 𝐿2̂(𝑡 + ℎ)  are calculated to get the 

final forecast 𝑦̂(𝑡 + ℎ). 𝐿0̂(𝑡 + ℎ) is found in the same way as 𝐿0(𝑡) with the exception 

that 𝐿0̂(𝑡 + ℎ) is forecasting h steps ahead. 

 𝐿0̂(𝑡 + ℎ)  = 𝑏𝑜 + 𝑏1(𝑡 + ℎ). (4.13) 

𝐿2̂(𝑡 + ℎ) is forecasted using simple exponential smoothing and incorporates an 

optimized smoothing parameter 𝛼, 

 𝐿2̂(𝑡 + ℎ)  = 𝛼(𝐿2(𝑡)) + (1 − 𝛼)𝐿2̂(𝑡) . (4.14) 

The Theta method, 10th-order autoregressive model, and 10th-order autoregressive 

model with exogenous variables are linear models used to forecast the different signals at 

the distribution point. The next method, an artificial neural network, introduces a 

nonlinear aspect to this work.  

4.7 Artificial Neural Network  

An artificial neural network (ANN) is applied to this work in a manner similar to 

past applications seen in the energy industry (Section 2.4). We use a one hidden-layer, 
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five-node ANN in this work, as suggested in Figure 4.5. The hidden layer neurons are 

sigmoid. The output layer has a linear transfer function.  

Figure 4.4: ANN feed forward architecture with one hidden layers and 40 nodes 

The term neuron follows the traditional naming convention of ANN’s and 

represents the interconnected processing elements grouped in layers. The ANN uses the 

same inputs as the ARX model, with each input node being ten minutes of lagged signal 

data from the distribution point, 𝐶𝑃𝐹1, 𝐶𝑃𝐹2, 𝐶𝑃𝐹3, and 𝐶𝑃𝐹4. The ANN outputs a single 

node, 𝑦̂(𝑡 + ℎ), which is the forecasted value at the current time plus the time horizon, 

𝑡 + ℎ.   

Following a feed-forward architecture, each minute’s input is modified and 

summed in the hidden layer. The hidden layer in the ANN consists of a sigmoid transfer 

function, 

 sigmoid(𝑥) =  
1

1 +  𝑒−𝑥
. (4.15) 
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The sigmoid transfer function takes the values provided by the input nodes and produces 

a scalar that is combined with weights 𝑤𝑖,𝑗. These combinations are summed, and 

appropriate bias values, 𝑏, are applied. The output layer consists of a linear activation 

function 

 linear(𝑥) =  𝑥. (4.16) 

The linear activation function, as in the regression-based models, transforms the 

weighted observations from the hidden layer to obtain a continuous output that represents 

the forecasted signal value. Finally, we use a Levenberg-Marquardt (LM) training 

algorithm to train the ANN [89]. The LM algorithm iteratively optimizes the network 

weights and bias values using a sum of squares error loss function (Equation 4.6). 

Chapter 4 presents the forecasting framework and models used in this work. The 

forecasting framework is developed to be compatible with the existing SCADA 

infrastructure, easily expandable, and require little computational resources to operate. 

The 10th-order autoregressive, autoregressive with exogenous variables, Theta method, 

and artificial neural network makes forecasts 1 to 30 minutes into the future. With the 

forecasting methods defined, Chapter 5 presents an empirical analysis to determine the 

forecasting model that best fits the need of the production company.  
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CHAPTER 5   

Empirical Results and Discussion 

 

5.1 Chapter Objectives 

 

Chapter 5 presents discussion, interpretation, and comparison of the experimental 

results. We present the error metrics used to determine each model’s accuracy along with 

explanations of why each metric is relevant and an appropriate choice. We compare the 

forecasting models to the naïve model and state its performance across all time horizons. 

Numerical and graphical performance reviews are given to compare each forecasting 

model with the others.   

5.2 Error Metrics  

Each pipeline alarm forecasting algorithm predicts alarms at time horizons 1 

through 30 minutes. We predict alarms by forecasting the value of each gas quality and 

then detecting if the quality threshold is met by the forecast (Algorithm 4.1). This 

threshold check is done for each time horizon. Two measures are used to summarize the 

performance of the algorithm: root-mean-square error (RMSE) and mean-absolute-

percentage error (MAPE). These error metrics demonstrate the accuracy of the gas 

quality forecasts.  
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RMSE is a measure of the average residual. Let 𝑦(𝑡) be the value of signal 𝑦 at 

time t, 𝑦̂(𝑡) be the predicted quality at time t, and T be the total number of forecasts. The 

RMSE is 

 RMSE =  √
∑ (𝑦̂(𝑡) −𝑦(𝑡) )2𝑇

𝑖=1

𝑇
. (5.1) 

The RMSE is a good measure of error but can be overly influenced by outliers. 

RMSE is measured in the units of signal 𝑦.  

We also present the MAPE, which measures the average absolute error. It is 

unitless and represents the percent of error. 

 MAPE =  
1

𝑇
∑

|(𝑦̂(𝑡) − 𝑦(𝑡))|

𝑦(𝑡)
.

𝑇

𝑖=1

 (5.2) 

RMSE and MAPE are based on the continuous output of each model, meaning they do 

not represent how well each model forecasts alarms.  To measure binary presence of an 

alarm, we use sensitivity as a metric. The sensitivity is a measure of how many alarms are 

correctly predicted out of all possible alarms. Let TP (true-positive) be the number of 

alarms that are correctly predicted, and FN (false-negative) be the number missed alarms. 

Sensitivity is then found with equation 5.3.  

 Sensitivity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (5.3) 

We present the sensitivity because the number of non-alarms is far greater than the 

number of alarms. Summarizing Tables 3.1 – 3.5, the average of each alarm considering 

each signal is presented in Table 5.1.  
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Table 5.1: General frequencies of all alarms considering all time series signals 

Alarm Frequency (%) 

Alarm PSI BTU H2S CO2 H20 Avg. Alarm Frequency (%) 

High-high 0.14 0.25 0.18 2.85 1.52 0.988 

High 1.2 0.37 0.92 4.67 2.78 1.988 

Low 1.55 1.31 3.31 1.23 0.2 1.52 

Low-low 0.85 0.27 1.82 0.13 0.02 0.618 

 

The high alarm is triggered most frequently, but it only occurs approximately 2% 

of the time. Since all the methods in this work are based on regression analysis, and that 

an alarm is either triggered or not, sensitivity helps us obtain statistical measures of this 

binary classification.  

The experimental results are shown in two respects. The first considers the 

numerical output of each forecasting method in comparison with the true values of the 

series (RMSE, MAPE). The second considers the binary classification of the presence of 

an alarm (sensitivity). The five natural gas pipeline signals being used in this work are 

forecasted 1-30 minutes into the future. We select results from time horizons 1, 15, and 

30 minutes to compactly compare the performance of each model. This is shown in 

Figure 5.2. The sensitivity of the forecasted alarms is plotted across all 30 time horizons 

to show that out of all the alarms that were truly triggered, how many each forecasting 

method correctly predicted. To provide the production pipeline operators the most 

amount of warning, the 30-minute time horizon is an important upper-bounding case of 

the performance of each model. 
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5.3 Naïve Model Results 

Section 4.2 describes the naïve model and how it is used as a baseline performance 

metric. This section displays the naïve model results and acts as an introduction to 

understanding the result plots used for each of the forecasting methods (Sections 5.4 – 

5.9). We present the MAPE and sensitivity of the naïve model below for the pressure 

target data set (the signals recorded at the distribution point). In the empirical results 

section (Section 5.4), we see that the naïve model is a comparable alternative to the 

purposed forecasting methods.  

 

Figure 5.1: Naïve model MAPE  for pressure time series over all time horizons 

Figure 5.1 shows the MAPE over each time horizon of the naïve model forecasting 

the pressure at distribution point. The naïve model’s MAPE increases almost linearly 
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with the time horizon. This is expected since the naïve model simply uses the current 

value as the forecasted value at time horizon 30.  

The sensitivity plot shows the true-positive rate of the naïve model over time. 

Figure 5.2 shows how the naïve model predicts the four pressure alarm thresholds over 

all time horizons.  

 

Figure 5.2: Naïve model pressure (psi) sensitivity w.r.t time horizon 

The sensitivity shows how many alarms were predicted correctly at each time 

horizon where 1 indicates 100%. Here we see the alarm prediction accuracy falls 

approximately linearly from near 100% accuracy at 1 minute to 60-95% accuracy at 30 

minutes. The naïve model performed the worst for the high-high alarm forecasts, while 

the low-low alarms were predicted correctly 95% of the time.  When evaluating the five 
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sets of models below, only the high alarm sensitivity rate is considered. This is because 

the high alarm is the most frequently triggered alarm out of all the datasets (Table 5.1) 

and pipeline controllers are generally more concerned with high alarms for each signal 

than the low. Higher pressure, H2S, CO2, and H2O contents indicate serious conditions in 

the pipeline that require the immediate attention of the controller, while their 

corresponding low alarms are not as urgent. We begin the analysis of results below.  

5.4 Empirical Results of all Models 

This section presents the empirical results of the four model types described in 

Chapter 4: 10th-order autoregressive (AR(10)), autoregressive with exogenous variables 

(ARX), Theta, and artificial neural network (ANN) forecasting models. Table 5.2 

summaries the numerical findings for these models. These results measure the ability of 

each model to forecast future signal values and do not represent alarm forecasting 

accuracy. For each signal in Table 5.2, the best performing forecasting model is 

highlighted in blue. 

Two models consistently outperform all others. The ARX and ANN are the best 

predictors at time horizon 30. For the pressure signal, the ARX performs best at time 

horizon 30, while the ANN forecasts with higher accuracy at the 15-minute mark. For all 

other signals, the ANN performs best at time horizon 30.  
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Table 5.2: The results of each forecasting method at time horizons 1, 15, and 30 minutes 

PSI 

 Time Horizon = 1 min. Time Horizon = 15 min. Time Horizon = 30 min. 

Model RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) 

Naïve 0.23 0.01 1.68 0.08 3.06 0.15 

AR 0.19 0.01 1.07 0.06 2.07 0.11 

ARX 0.23 0.01 0.94 0.05 1.29 0.07 

Theta 0.22 0.01 1.55 0.08 2.82 0.14 

ANN 0.19 0.01 0.83 0.05 1.45 0.08 

BTU 

 Time Horizon = 1 min. Time Horizon = 15 min. Time Horizon = 30 min. 

Model RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) 

Naïve 0.56 0.01 2.77 0.12 3.84 0.17 

AR 0.60 0.01 2.33 0.09 3.21 0.13 

ARX 0.48 0.01 1.71 0.07 2.94 0.10 

Theta 0.52 0.01 2.57 0.11 3.56 0.16 

ANN 0.62 0.01 3.72 0.05 2.62 0.06 

H2S 

 Time Horizon = 1 min. Time Horizon = 15 min. Time Horizon = 30 min. 

Model RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) 

Naïve 0.04 0.48 0.14 5.73 0.14 6.18 

AR 0.02 0.48 0.09 4.86 0.11 7.01 

ARX 0.02 0.47 0.08 4.20 0.10 5.24 

Theta 0.02 0.48 0.10 5.28 0.12 5.71 

ANN 0.02 0.47 0.03 3.59 0.03 4.02 

CO2 

 Time Horizon = 1 min. Time Horizon = 15 min. Time Horizon = 30 min. 

Model RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) 

Naïve 0.02 0.34 0.06 3.49 0.08 5.08 

AR 0.01 0.36 0.05 3.05 0.05 4.11 

ARX 0.01 0.40 0.05 3.37 0.06 4.68 

Theta 0.01 0.32 0.06 3.24 0.07 4.71 

ANN 0.01 0.43 0.02 1.15 0.02 1.67 

H2O 

 Time Horizon = 1 min. Time Horizon = 15 min. Time Horizon = 30 min. 

Model RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) 

Naïve 0.02 1.03 0.06 1.95 0.10 2.87 

AR 0.02 0.62 0.05 1.69 0.09 2.60 

ARX 0.02 0.82 0.06 1.88 0.09 2.69 

Theta 0.02 0.95 0.06 1.82 0.09 2.67 

ANN 0.03 1.72 0.04 2.06 0.05 2.43 
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While the ARX and ANN models are the overall best forecasters at time horizon 

30, there are instances where other models are better at shorter time horizons. Sections 

5.5-5.10 provide an in-depth analysis of the results for each signal over all time horizons 

and compares the forecasters visually. 

5.5 Pressure (psi) Signal Alarm Forecasting Results 

The control room operators labeled the pressure signal to be the most critical 

pipeline variable. We test our pressure forecasting models and compare their 

performance. Figure 5.3 shows each mode’s MAPE performance across all time horizons.  

 

Figure 5.3: MAPE of all pressure forecasting models over the 30 time horizons  

All pressure models outperform the naïve model as measured by MAPE. In time 

horizons 1-15, the simple autoregressive model (AR10), artificial neural network (ANN), 
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and autoregressive model with exogenous variables (ARX) do the best short-term 

forecasting. In the later time horizons, we see the ARX and ANN models perform the 

best. Both these models use inputs from exogenous variables. This confirms that the 

lagged pressure signals coming from the upstream central processing facilities (CPF) 

have a significant influence on the pressure signals being recorded at the distribution 

point. It should also be noted that 𝐶𝑃𝐹2 does not have enough pressure data to be 

included as an exogenous variable, so that signal is excluded from training the pressure 

models (Equation 4.7). Next, we evaluate each pressure model’s high alarm forecasting 

accuracy. 

 

Figure 5.4: High alarm sensitivity of all pressure forecasting models over the 30 time 

horizons  

A higher sensitivity rate translates to more alarms being predicted correctly. In 

Figure 5.4, the ARX model (yellow line) correctly predicts 93.3% of the alarms at time 
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horizon 30. Because the pipeline control operators need as much time as possible to react 

to a triggered alarm, the farthest time horizon is the most important. The results from 

Figure 5.4 indicate that the ARX model is the best overall pressure forecasting model for 

time horizons 24-30.  

The sensitivity plot contradicts the MAPE results seen in Figure 5.3. The ANN 

has the lowest MAPE scores. However, it does poorly when forecasting high alarms 

according to the sensitivity plot. The ANN struggles to forecast alarm-triggering pressure 

events, but does well when forecasting the steady-state signal (when no alarms are 

present). This quality of the ANN is unhelpful to the pipeline controllers and suggests 

that the ARX model is the best pressure signal forecaster. Figure 5.4 illustrates an 

example where the sensitivity plot provides more useful information than the MAPE plot 

when trying to identify appropriate models.  

For each signal in this chapter, it is important to consider the frequency of alarm 

occurrences per threshold (Table 3.1). The testing dataset for the pressure time series 

contained the largest number of high alarms, so the sensitivity rate of the high alarm 

threshold is the best threshold to test for the pressure models. In other testing datasets, a 

different alarm threshold may be a more logical choice to test. The heat content 

forecasting model is an example of this. The low alarm threshold is the most important 

for monitoring the gas heat content, but the lack of these alarms in the testing data set 

results in the high threshold being used to calculate the model’s sensitivity. 
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5.6 Heat Content Signal (BTU) Alarm Forecasting Results 

The heat content (BTU) signal also is prioritized by the production company as an 

essential signal when maintaining flow assurance. Figure 5.3 shows how each BTU 

forecasting model performs at the 30 different forecasting horizons in terms of MAPE. 

 

Figure 5.5: MAPE of all BTU forecasting models over the 30 time horizons  

Figure 5.5 shows the ANN and ARX are the two best BTU forecasting models 

when considering MAPE. Of the two, the ANN outperforms the ARX over time horizons 

2-30. We verify if the ANN remains the best performer when forecasting the high alarms 

by examining the sensitivity in Figure 5.6.  

Unlike the pressure model ANN, the BTU ANN is a top performer when looking at 

the sensitivity of high BTU alarms. Considering the ANN’s MAPE and sensitivity rate, 
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the BTU ANN is the best model for forecasting pipeline alarms. The AR model 

outperforms the ARX model, which signifies that the exogenous variables for BTU are 

not as significant as in the pressure model. The Theta method was one of the worst 

performers, only correctly identifying 75% of the high alarms at time horizon 30.  

 

Figure 5.6: High alarm sensitivity of all BTU forecasting models over the 30 time 

horizons  

For the BTU signal, low alarms are more important to pipeline operators than 

high alarms. As opposed to pressure, where a high alarm requires the immediate attention 

of the pipeline controllers, high heat content indicates high-quality gas is in the pipe and 

does not pose an immediate threat. Yet, a low BTU signal can violate the agreement held 

between the production company and buyer, causing the buyer to shut in the pipeline. 

Ideally, we want to test the low alarm's sensitivity, but because the testing set does not 
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include any low alarms we use the high alarm threshold to evaluate each model’s alarm 

sensitivity.  

Despite the pressure and BTU signals being identified as the most important 

signals by the pipeline controllers, the remaining signals discussed in this chapter still 

have the potential to shut in the pipeline. However, the hydrogen sulfide, carbon dioxide, 

and moisture content signals are more easily influenced by human intervention, and our 

data cleaning process identified significantly more outliers in these data sets. This is due 

to the pipeline operators having more control over the processing equipment that controls 

these signals and the general volatility of each signal. Next, we describe the results of 

modeling the remaining signals.  

5.7 Hydrogen Sulfide (H2S) Signal Alarm Forecasting Results 

Figure 5.7 shows the MAPE of each H2S model. The H2S MAPE scores are 

higher than the pressure or BTU model MAPEs. This higher error rate is also seen in 

MAPE scores for the CO2 and the H2O signals (Figure 5.9 and 5.11). By normalizing 

each signal and calculating its variance, we find that the H2S, CO2, and H2O signal 

variability is higher than the pressure or BTU variability, thus explaining the higher 

MAPE range.  

 



81 

 

 

Figure 5.7: MAPE of all H2S forecasting models over the 30 time horizons 

All H2S alarm forecasting models outperform the naïve model, except that the 

AR(10) model fails over time horizons one through eight. MAPE errors range from 4.0 - 

6.2%, with the ANN performing the best at 4.1%. The AR(10) model performs the worst, 

exceeding 6% at time horizon 30.  

Figure 5.8 shows the sensitivity of high alarms for each H2S model. The 

sensitivity plot confirms the ANN to be the best performing H2S forecasting model. 

However, all other models fail to predict more than 70% of high alarms correctly at time 

horizon 30, perhaps because there are few high alarms in the H2S testing dataset. Table 

3.3 shows the frequency of high alarms is less than 1%. With such a low occurrence rate 

of high alarms, the sensitivity is not the best criteria by which to evaluate the H2S alarm 
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forecasting models. Therefore, the MAPE plot (Figure 5.7) is considered to be a better 

representation of the forecasting performance of the H2S model. 

 

Figure 5.8: High alarm sensitivity of all H2S  forecasting models over the 30 time 

horizons 

While the results for the H2S models are generally not as good as the pressure or 

BTU models, the ANN forecasting 76% of the high alarms out of the few occurrences 

that exist in the testing signal is promising. These results are similar as those seen for the 

CO2 models presented next.  
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5.8 Carbon Dioxide (CO2) Signal Alarm Forecasting Results 

As discussed in Section 3.5, the CO2 signal is directly related to the H2S content 

signal. Figure 5.9 presents the MAPE plot of all CO2 forecasting models below. 

 

Figure 5.9: MAPE of all CO2 forecasting models over the 30 time horizons 

Figure 5.9 shows that the ANN is the best model to forecast the CO2 signal. We see 

that the naïve, AR(10), ARX, and Theta model results are grouped together over the 30 

time horizons and forecast a maximum 4.0 – 5.2% error.  While all the CO2 models 

outperform the naïve basis comparison model, only the ANN performs under 1.5% 

MAPE error at time horizon 30.  

Figure 5.10 shows the CO2 low alarm sensitivity rate.  
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Figure 5.10: Low alarm sensitivity of all CO2 forecasting models over the 30 time 

horizons 

The naïve model outperforms all but the ANN in the sensitivity plot. The worst 

performer, the Theta method, forecasts low alarms just above a 50% success rate. The 

Theta methods forecast is a combination of a local curvature forecast and linear trend. 

The weighting of these components are of equal parts, but these results indicate that the 

Theta model would benefit from a heavier weighting on curvature based on the volatility 

of the CO2  signal.  Figure 5.10 introduces the lowest sensitivity rates seen in any signal 

thus far. The final signal, H2O, is examined next.  
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5.9 Moisture Content Signal (H2O) Alarm Forecasting Results 

The moisture content (H2O) signal contains periodic characteristics and has a 

testing set that contains no high or high-high alarms. The MAPE of each H2O forecasting 

model is presented below in Figure 5.11. 

 

Figure 5.11: MAPE of all H2O forecasting models over the 30 time horizons 

Due to a lack of high or high-high alarms, the low alarm will be analyzed with the 

sensitivity plot. Despite a high alarm being more concerning to a pipeline operator, the 

low alarm sensitivity gives an approximation of how well the models forecast general 

H2O signal alarms.  
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Figure 5.12: Low alarm sensitivity of all H2O forecasting models over the 30 time 

horizons 

Figure 5.12 shows that not all H2O forecasting models outperform the naïve model. 

The models that failed to do this is the AR(10) and Theta, with sensitivity rates below 

75% at time horizon 30. The ANN and ARX models outperformed the basis model, but 

not by an amount that is statistically significant.  

5.10 Overall Alarm Forecasting Model Comparison 

This chapter presents four methods for alarm forecasting in natural gas production 

pipelines. The results show all forecasting model performances in terms of RMSE, 

MAPE, and sensitivity. Some models perform better than others, and other models 

provide valuable insights in understanding the pipeline system as a whole. To 
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demonstrate the contributions of this research, each model developed to forecast alarms is 

tested against the current state-of-the-art forecaster used in the pipeline control room at 

the start of this project.  

Chapter 4 introduces the current state-of-the-art forecasting method used in the 

pipeline control room. A weighted average of each signal recorded at 𝐶𝑃𝐹1- 𝐶𝑃𝐹4 is used 

to keep the pipeline operators aware of the quality of gas estimated to arrive at the 

distribution point. This weighted average model (Section 4.3) is replaced by the naïve 

model (Section 4.3) as the state-of-the-art alarm forecasting model after it was proven the 

naïve model presented better results when forecasting alarms. The weighted average 

model struggles to forecasting signal values outside the steady state range, which is 

understandable as the system is in a steady state more than 95% of the time (Table 5.1). 

The naïve model is accurate enough to give estimates signals up to 30 minutes in advance 

(i.e., forecasts at least 50% of alarms correctly at time horizons 30) and forecasts rare 

signal event with more consistency. The results above show each of our purposed 

forecasting models outperform the weighted average and naïve model, allowing us to 

draw final conclusions for the 10th-order autoregressive model (AR(10)), the 

autoregressive model with exogenous variable (ARX), the Theta method, and the 

artificial neural network (ANN) models.  

The first conclusion is that the artificial neural network performs the best out of 

all forecasting techniques. The ANN averages an alarm forecasting sensitivity of 

approximately 94.2% for time horizon 5, 88.6% for time horizon 15, and 82.7% for time 

horizon 30. This means we are confident the ANN predicts 82.7% of all alarms 30 

minutes into the future. 30 minutes’ warning offers pipeline controllers more time to 
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correct system issues that they otherwise would not have of until an alarm is already 

triggered or the pipeline is shut in. 

The autoregressive model with exogenous variables (ARX) performs second best. 

Although performing poorly when forecasting CO2 alarms, the ARX model consistently 

has the second lowest MAPE and RMSE when forecasting all other signals. The ARX 

averages a sensitivity of 90.3% for time horizon 5, 81.8% for time horizon 15, and 79.1% 

for time horizon 30. Both the ANN and the ARX use lagged exogenous variables (signals 

being generated at the upstream central processing facility). We calculate lags in Section 

4.4 by looking at the lagged cross-correlation of the distribution points signal and each 

CPF. The success of these models shows that lagged gas quality signals coming from the 

upstream CPFs influence the signals being recorded at the distribution point.  

The AR(10) model is not as successful as the ARX or ANN, but still provides 

useful information to understand the system we are forecasting. In cases where the 

AR(10) outperforms the ARX (BTU forecasting, Figure 5.10), it is reasonable to assume 

that the ARX’s exogenous variables are not significant when forecasting that signal, and 

could possibly be hurting its performance. The same hypotheses could be formed about 

the exogenous variables in ANN. The AR(10) averages a sensitivity of 87.5% for time 

horizon 5, 79.6% for time horizon 15, and 71.2% for time horizon 30. The small amount 

of information the AR(10) forecasts with can limit its ability to forecast at large time 

horizons. The lowest performing model, the Theta method, also has higher error rates at 

larger time horizons. 

The Theta method produces an average sensitivity of 88.3% for time horizon 5, 

77.0% for time horizon 15, and 66.8% for time horizon 30. The Theta method 
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outperforms the AR(10) in the early time horizons. However, because the Theta method 

relays on an equal combination of local curvature and long-term trend information to 

forecast, we see a significant drop in performance in the larger time horizons. Many of 

the signal’s local curvatures at time 𝑡 are substantially different 𝑡 + 30 minutes into the 

future. Hence, the Theta methods error rates increase more than usual the farther out it 

forecasts. We discuss this limitation in the future work section of Chapter 6. 

A major error metric used in this work is the sensitivity of a model forecasting a 

specific alarm threshold. For all forecasting models, we encounter too few triggered 

alarms to test all four alarm thresholds (high-high, high, low, low-low). Subsequently, we 

test each model’s alarm forecasting accuracy with the alarm threshold that contains the 

highest occurrence rate. This means if the testing set contains the highest number of low 

alarms, the low alarm threshold is selected to calculate the sensitivity rates across all the 

time horizons.  The disadvantage of this decision is that we make assumptions on overall 

model performance based on a sometimes-irrelevant alarm threshold. An example of this 

is using a low alarm threshold to test the H2O forecasting models. Less moisture in the 

pipeline is a good thing; hence, low alarms do not have the same importance as high or 

high-high alarms. Similar concerns as this is expanded in the research summary in 

Chapter 6. 
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CHAPTER 6  

Benefits of Alarm Forecasting in Natural Gas Pipelines and Future Work 

Considerations 

 

6.1 Chapter Objectives 

Chapter 6 discusses the contributions of this thesis and suggests opportunities for 

future work. The contributions of our research include an alarm forecasting framework 

and four techniques to forecast alarms in natural gas production pipelines. Future work is 

suggested based on the experience gained from this project and the initial response of the 

pipeline controllers using the forecasting algorithms. Then, a conclusion is drawn about 

the work. 

6.2 Contributions of Our Work 

Natural gas production companies use pipelines to transport natural gas from 

point the extraction well to distribution point. This work helps a natural gas production 

company achieve this goal by providing the tools needed to forecast pipeline alarms up to 

30 minutes in advance. Pipeline alarms alert control room operators of immediate threats 

to the system. Delaying action until after an alarm has been triggered is often costly 

because damage may have already occurred, potentially leading to shutdowns, loss of 

profit, and dangerous environments. This research shows how production pipelines can 

avoid unprofitable consequences through the application of our alarm forecasting 

algorithm. The alarm forecasting algorithms described in this work aid pipeline 

controllers in achieving flow assurance and allow them to conduct preventative 
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maintenance to decrease operation cost, unsafe working conditions, and damage to the 

environment.   

The top performing alarm forecasting algorithm in this research uses an artificial 

neural network with exogenous variables to forecasts future pressure, heat content, 

hydrogen sulfide, carbon dioxide, and moisture content signals. The ANN averages an 

alarm forecasting sensitivity of 94.2% for time horizon five, 88.6% for time horizon 15, 

and 82.7% for time horizon 30. This outperforms the current state-of-the-art forecaster 

(naïve model), which forecasts alarms five minutes into the future with an average 

accuracy of 89.4%, 15 minutes into the future with an average accuracy of 83.8%, and 30 

minutes into the future with an average accuracy of 74.1%. These higher accuracies 

return a higher number of correctly predicted alarms. More correctly predicted alarms 

return larger amounts of gas being sold to the distribution vendors, increasing profits, and 

protecting equipment from long-term damage. 

The forecasting framework requires little computational resources to operate, 

provides real-time anomaly detection, and is developed to work seamlessly with existing 

control room software. The framework is flexible enough to allow pipeline controllers to 

change alarm thresholds at their discretion and add additional signals to be forecasted 

with ease. The framework manages the forecasting algorithms and alerts the pipeline 

controllers to immediate threats in the system. 

A defining quality of this project was the decision to build our alarm forecasting 

models using regression-based methods. The regression-based approach to predicting 

alarms is used favoring a classification-based approach because the alarm thresholds can 

be changed after the algorithm is deployed. In practice, unsafe and alarm-triggering 
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values are avoided by control operators, which makes actual alarm occurrences in 

reported data scarce. Since alarms are triggered when a threshold is exceeded, a 

regression model cannot only predict when an alarm will trigger but tell expected values 

at multiple time horizons to allow operators to perform more appropriate corrective 

actions. 

6.3 Future Work 

This work presents several opportunities for future research. Forecasting alarms 

with machine learning is commonly approached with either classification or regression. 

Our initial search for alarm forecasting methods included a classification approach [90], 

but because of the relative infrequency of positive cases of alarms, our classifier did not 

perform well. The output of a classification-based model is binary: An alarm is either 

present, or it is not present. Due to this nature of an alarm, this research problem will do 

well to further explore the classification modeling techniques seen in industry.  

For the techniques we did implement in this work, some can be expanded upon. 

The Theta method is known for being one of the most robust time series forecasting 

methods available. However, in our work, the Theta forecaster consistently performs 

worst out of all methods. We believe this to be a penalty of our short-term forecasting, as 

explained in Section 5.10. However, the optimization of tuning parameters mentioned in 

[77], [81] as well as multivariate expansions of the Theta method [79] might benefit the 

alarm forecasting model.  

The artificial neural network (ANN) and autoregressive model with exogenous 

variables (ARX) find success when using the lagged signal values from the central 
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processing facilities upstream. All methods would benefit from further exploration of this 

idea. In the models discussed in this work, only a one signal type is used as input to 

forecast the same signal ℎ minutes into the future. That is, the hydrogen sulfide 

forecasting models only take hydrogen sulfide signals as inputs. We speculate that if we 

included other signals besides hydrogen sulfide as inputs to the hydrogen sulfide 

forecaster, the relationship the hydrogen sulfide signal has with other signals might 

uncover ways increase model performance. 

The relationships between hydrogen sulfide and carbon dioxide discussed in 

Chapter 3 introduces a chance to test this theory. The combination of high hydrogen 

sulfide and carbon dioxide is a common reason for the pipeline to get shut in.  If we were 

to include both these signals with lagged observations in the training of the ANN and the 

ARX model, the relationship between the two signals may help when forecasting at time 

horizons beyond 30 minutes. This is just one example of where we might be able to 

exploit the relationship of one signal to another to forecast alarms.  

Looking to new signals entirely to forecast alarms at further time horizons may 

prove beneficial. Chapter 2 points out that a pipeline control room is monitoring 

anywhere from 80 to 100 signals at once. The models in this work use only the pressure, 

heat content, carbon dioxide, hydrogen sulfide, and moisture content signals. If we can 

access the other signals the control room is monitoring, a more robust forecaster may be 

obtainable. For example, the internal pressure of the pipe is directly related to the amount 

of gas being flown into it. If we acquired the flow-rate time series for each CPF and the 

distribution point, the flow-rate data may improve our pressure forecasting ability. Other 
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signals, such as machinery revolution-per-minute rates, may also help combat the 

problem of human intervention in day-to-day operations.  

The pipeline control room operators are trained to log unusual occurrences seen in 

the pipeline. An example of an unusual occurrence would be if one of the central 

processing facility’s dehydration units fails. If this event occurs, the control room 

operators log the failure and instruct the pipeline workers to fix the issue. Our models are 

not aware these events, which hurt our forecasting ability. If we could gain access to the 

control log that the operators maintain, we may be able to develop an algorithm that 

detects the failure and adjusts the forecasting models appropriately based on the type of 

failure.  

 Natural gas production companies produce massive datasets every day. While the 

production company sponsoring this work requested this specific alarm forecasting 

project, there are many opportunities for improvement through all upstream production. 

From leak detection to flow dynamics, new ideas are being applied to similar datasets 

like the ones in this work to ensure the safe and reliable transportation of natural gas.  

6.4 Conclusion 

In conclusion, the alarm forecasting models in this thesis are powerful tools to help 

natural gas production companies predictively maintain their pipeline. Forecasting alarms 

help pipeline controllers avoid being shut-in, saving production companies significant 

resources that otherwise would be spent on reactively maintaining the pipeline. The end 

user of this work, the pipeline controller, contributed valuable insight to this project and 

worked closely with us to explain the characteristics of the pipeline signals used in this 
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research. Through our combined efforts, all alarm forecasting models outperform the 

state-or-the-art forecaster being used by the production company, with the artificial 

neural network successfully predicting 82.7% of all alarms 30 minutes in advance.  
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