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ABSTRACT
DEPENDABLE AND SCALABLE PUBLIC LEDGER

FOR POLICY COMPLIANCE
A BLOCKCHAIN BASED

APPROACH

Zhou Wu

Marquette University, 2020
MSCS

Policies and regulations, such as the European Union General Data Protection Reg-
ulation (EU GDPR), have been enforced to protect personal data from abuse during
storage and processing. We design and implement a prototype scheme that could
1) provide a public ledger of policy compliance to help the public make informative
decisions when choosing data services; 2) provide support to the organizations for
identifying violations and improve their ability of compliance. Honest organizations
could then benefit from their positive records on the public ledger. To address the
scalability problem inherent in the Blockchain-based systems, we develop algorithms
and leverage state channels to implement an on-chain-hash-off-chain data structure.
We identify the verification of the information from the external world as a criti-
cal problem when using Blockchains as public ledgers, and address this problem by
the incentive-based trust model implied by state channels. We propose the Verifi-
able Off-Chain Message Channel as the integrated solution for leveraging blockchain
technology as a general-purpose recording mechanism and support our thesis with
performance experiments. Finally, we suggest a sticky policy mechanism as the evi-
dence source for the public ledger to monitor cross-boundary policy compliance.
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Chapter 1

Introduction

In current networked services, personal data is collected by the service providers for

analysis, acquiring insights of the market, customized service provision, etc. The

users may upload data to online service for storage or sharing information within

community (e.g., Facebook, Dropbox). Because of the growing volume of personal

data exposed on the Internet (either passively or actively), the protection against

data abuse has become highly critical. Regulations such as European Union General

Data Protection Regulation (GDPR) were enforced to protect personal data from

abuse during storage and processing. However, the public is hardly able to know

whether the organizations who process their data are properly compliant with the

policies. Disclosure of violations are usually in the form of breaking scandals. Data

abuse or breaches take place not just in untrustworthy organizations. Unfortunately,

well-known cases of data leakage or misuse are related to famous names of

companies that are considered responsible organizations by the society (e.g.

Facebook-Cambridge Analytica data scandal). Even worse, organizations usually

react to such events passively, concealing the truth from the sight of the public. In

2017, Yahoo admitted 3 billion user accounts had been compromised in their data

breach scandal which was disclosed in 2013, but at the moment of the exposure,

they only announced 500 million users impacted.

While the news of data leakage build up the mental tension of the public,

there is no easy solution to achieve absolute security as the public may desire.

Therefore, a more feasible way is to make the data usage transparent and auditable

so that the users could make informative decisions when choosing a service. From

the experience of other industry sectors, transparency would only benefit an area

rather than undermine its credibility, though organizations may hesitate to do so at

the beginning. Transparency allows the users more reaction time to limit the



[2]

damage; and if auditable records exist, the users could measure and compare the

risks of choosing different service providers. On the other hand, the organizations

could benefit from a relatively positive record; and the records could serve as

evidence to which the organizations are able to price their effort on data protection

accordingly.

Therefore, a transparent and auditable public ledger recording the

organization’s performance of data protection seems desirable not only to the

research society but also to the industry sectors in which information technology is

a significant building block. To record policy compliance is a direct approach. It

may seem intuitive at first glance, however, to build an applicable scheme is not a

trivial task, due to the complexity of the current computing environment. Over the

last few years, we have observed a rapid increase on the complexity of data usage

and transmission patterns, which are characterized by broaden categories of devices,

cross-platform data sharing, extensive adoption of outsourced processing,

distributed storage, etc.

To illustrate this complexity, consider the application scenario of social robot

(e.g., Jibo, Kuri, Olly, BIG-i, Zenbo). A social robot is a Cyber Physical System

(CPS) designed to reside in homes and act as personal assistant with a

“personality” that makes it feel like a human companion [1]. In a typical case, the

social robot is not meant to be used in isolation, but in close communication with

robot manufacturer’s cloud service, in order to separate expensive computations

from the robot’s hardware. This design pattern is common in current light weight

devices to reduce the market price and support powerful functionality. In a smart

home setting, a social robot is expected act as a central controller so that it will be

communicating with Internet of Things (IoT) devices directly or indirectly. Several

of the social robot companies plan to or have already released a software

development kit (SDK) for interested parties to create add-on robot skills, which
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Figure 1.1: The CPS with the social robot in a home setting.

will lead the robot to communicate with additional could services other than that of

the robot manufacturer.

In Fig.1.1, the robot manufacturer’s cloud is depicted as cloud A. Apart

from the robot’s cloud that was just described the user could also have the robot

exchange data with other clouds. Examples include Dropbox, Google Drive, and

Facebook. The robot’s company might even allow users to download add-on skills

from platforms such as Google Play. These types of cloud services are depicted as a

cluster of L clouds, in Fig.1.1.

The social robot will be just one of the devices sending or receiving data

from the group of those L clouds. Smartphones, tablet and laptop devices found in

a household today are often already connected to some of the L clouds. In addition,

the user might desire these personal devices to exchange data with the social robot.

For instance, the robot could send pictures taken with its camera through the

Multimedia Messaging Service (MMS) or electronic mail. Some robots that are

marketed not only as a friendly companion but also as a security patrol guard could

also push alerts and videos of what they mark as unusual conditions. Similarly, the
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Figure 1.2: The risk of data management in IaaS cloud: 1) APP instance
multi-server duplication for load balancing, 2) VM cached for fast recovery or
migration, 3) APP and DATA backup on storage server, 4) Hypervisor could check
the memory of VMs

user might want to share information like the contacts address book from the phone

or personal computer to the social robot. The communication among the devices

illustrated in Fig.1.1 could involve the cellular network, the Internet Service

Provider’s (ISP) network or a wireless local network (e.g. WiFi, Bluetooth Low

Energy).

The introduction of a social robot in a home environment adds a significant

degree of complication to the business relationships and network connections

enabled in a smart home. Each of the mentioned clouds may be run by one entity as

a Software-as-a-Service (SaaS), while a different administrative authority may be

supplying the Platform or Infrastructure-as-a-Service (PaaS or IaaS). It could also

be that the same IaaS (e.g., Amazon Web Services) is the layer below two different

SaaS clouds (e.g., the social robot’s cloud and an IoT device’s cloud).

Given this complexity of connections and data movement, it is difficult to
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monitor whether the data is properly protected on every connection and site

because data will cross the boundary of domains, networks, platforms, and even

boundary of nations with different regulations. Even if online service providers are

generally trustworthy, their system could be misconfigured by the lack of

experiences to dealing with the ever growing complexity of current computation

environment. Fig.1.2 illustrates the execution model of an IaaS cloud and the

difficulty in managing data in such environment. The system level intervene by the

cloud infrastructure is out of the control of the service provider at the application

level. A useful public ledger of policy compliance should contain the information of

the entire view of data protection through the involved network.

In this dissertation, we propose a scheme that could provide a public ledger

of policy compliance. To achieve this objective, we leverage public Blockchains as

the public ledger. To address the scalability problem inherent in the

Blockchain-based systems, we utilize state channels to implement the

on-chain-hash-off-chain-data structure. We identify transaction verification as a

critical problem when using the Blockchains as the public ledgers, since Blockchain

is not as dependable as it is supposed to be in this scenario. We suggest a

verification mechanism for the information that out of the view of the blockchain

network, which is based on the incentive-based trust model implied by the state

channel model. Then we propose the Verifiable Off-Chain Message Channel

(VOCMC) as the integrated solution for leveraging blockchain technology as a

general purpose recording mechanism. As mentioned previously, the verification of

external information is critical for blockchain based public ledger, especially in the

scenario considered in this work, where the information published on the ledger

should be reliable. The VOCMC enable the verification of external information and

the integration of blockchain with powerful off-chain computation to overcome the

difficulty of scaling the blockchain. The VOCMC is derived from the state channel,
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and its name emphasises the objective of the dissertation, which is to provide an

approach to verify external information. On top of the VOCMC, we suggest a

mechanism combined with sticky policy [2] to provide cross-boundary policy

enforcement and monitoring, and thus a dependable and scalable public ledger for

policy compliance. The result can be a public auditable record of the policy

compliance, which can serve as the permanent immutable credit record of the

service provider for the customer making informative decisions.

The rest of this dissertation is organized as follows.

• We first formalize the model of public ledger object and its verification

mechanism. We observe that the verification of a blockchain transaction can

be decoupled from the ledger object and in essence is part of the functionality

of the transaction system. Therefore, we formalize this concept by

self-verfiable transaction system, and thus prove its inability of verifying

external information (Chapter 2).

• Secondly, we discuss the definition of VOCMC by starting with the concept of

incentive-based trust. Briefly, if a piece of information is attached with an

incentive that leads to interest conflicts among different parties, their

agreement on what the information is could be a reliable description of the

information. Based on this concept, the VOCMC actively adds incentives to

the concerned external information and makes the participants of the channel

to reach agreements on the information as a verification process. We examine

the security properties under the universally composable security framework

(Chapter 3).

• We thirdly use VOCMC as the building block to construct the prototype of

public ledger of policy compliance, which combines off-chain database and

on-chain hash. How to determine whether a policy complies with regulations
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is out of the discussion scope of this dissertation, though it is a core

mechanism. We assume that there exist a set of policies and a mechanism that

could effectively determine whether a system has successfully complied with

the polices in the set. We selected a representative policy set for concept

demonstration. We leverage the sticky policy to track the user data and collect

evidence required by the inference engine (Chapter 4).

• We evaluated the prototype to demonstrate its effectiveness on scaling

blockchain applications. We performed prototype experiments to determine

spacial and temporal overhead introduced by the implemented system as a

whole, and the monetary and performance cost of on-chain execution. Based

on these pilot tests, we examined how the off-chain component helps scale the

system. We also tested the effectiveness of the sticky policy mechanism on a

particular policy use case, the guaranteed deletion (Chapter 5).

The scalability of a blockchain system is the weakness for a lot of

blockchain-based applications. This issue is amplified when dealing with

micro-transactions in huge magnitude. Off-chain payment channels or state channels

are designed to address the difficulty in scaling the blockchain system. Though the

main objective of our proposed scheme is to provide verification of external

information for the public ledger, it naturally reliefs the tension the system may

suffer. At first glance, off-chain payment channels merge several micro-transactions

into a single on-chain transaction. From another perspective, this process can be

considered as reaching agreement on a sequence of computation results. In other

words, any on-chain computation can be executed by an off-chain process as long as

the result can be verified by the stakeholders, and reach an agreement on it. In

consequence, we can limit the usage of on-chain computations, such as the smart

contracts of Ethereum. The capacity of on-chain computation depends on the

available balance for computation, which is not appropriate for persistent programs.



[8]

Another side effect of executing code on-chain is the halting problem that would

significantly degrade the performance of the blockchain network.
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Chapter 2

Blockchain-based Public Ledger

2.1 Introduction

Blockchain technology is attracting growing attention from both researchers and the

general public after its success in cryptocurrency and the participation of

governments and major financial industry players. Although blockchain and

cryptocurrency technologies are often mentioned together, they are not tautologies;

blockchain is only one of the cryptocurrency building blocks, albeit the most

important.

In general, a blockchain serves as a public ledger for recording transactions.

Transactions in Bitcoin are mainly exchanges of the cryptocurrency, from an

account to another. From this perspective, a blockchain seems like just another kind

of database. What makes blockchain interesting is its combination of technical facts

and non-technical facts to achieve several critical properties for establishing a

cryptocurrency.

In traditional banking, the transaction databases are maintained by

organizations that obtained trust from the public, usually endorsed by the

government or influential investors. Transaction databases are critical for banking

and we need trusted organizations to operate them, because the transaction records

are the only evidence of how the assets are located among millions of accounts. If

the transaction database is secured, the assets owned by accounts are secured. The

security of the transaction database depends on trusted organizations. However,

Bitcoin adopted a security model without the trusted authority, which is referred to

as a trusted third party in the majority of the security framework. The

abandonment of the trusted third party is painful, but the solution provided by

Nakamoto has not only solved the problem of establishing trust without trusted
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parties but also given fundamental support to the value of Bitcoin.

The rest of this chapter illustrates the general framework of the Bitcoin-like

cryptocurrencies, in order to explain what makes blockchain, a database technology,

important and interesting to both industry and academia. As we will see,

blockchain is a smart combination of existing technical and non-technical factors.

This strong coexistence means that it is difficult to decouple blockchain from the

cryptocurrency system for general purpose ledgers, and the performance challenges

are hard to overcome. The definitions and terminology introduced in this chapter

will support the discussion of later chapters.

2.2 The Bitcoin-like Blockchain

Blockchain is a distributed ledger technology (DLT). The Bitcoin blockchain in

particular is based on peer-to-peer (P2P) networks in which every participating

node, called mining node, has to keep the entire transaction database and update its

local version as the data grows. As a result, multiple copies of the ledger exist in the

network. If the copies disagree about some transactions, how do they resolve the

issue and achieve agreement? This problem could refer to the consistency problem,

the consensus problem, or, more generally, the Byzantine fault tolerance

problem [3]. Inconsistent data is common in the Bitcoin-like blockchain. Suppose

every mining node follows the protocol and never crushes. Despite this ideal

execution environment, data inconsistency occurs due to the transfer latency across

the network.

Fig. 2.1 illustrates this type of data inconsistency. Two transactions (i.e.,

transaction R and transaction B) enter the network from nodes with high transfer

latency. Consider the two subnetworks. From the point of view of these

subnetworks, the arriving order of these transactions is different. Another type of

data inconsistency that may occur during valid execution of the protocol of
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Transaction 
R

Transaction 
B

Broadcast from 
red to blue

Broadcast from 
blue to red

Figure 2.1: Transactions R and B enter the network from nodes with high transfer
latency. From the point-of-view of the red nodes (the nodes on the left side),
Transaction R arrived earlier than Transaction B, while blue nodes (the nodes on
the right) consider Transaction B as earlier than Transaction R.

Bitcoin-like blockchain is the fact that mining nodes may get offline and back

online, as every node could join and leave a P2P network anytime as they wish. As

a result, there may always be some nodes with an outdated version of the database.

The most important type of data inconsistency is caused by malicious nodes that

may alter the database for their benefits. In a decentralized system without a

trusted authority, it is difficult to identify if a copy of the database is without

fraudulent transactions.

In order to achieve data consistency in such a complex environment, the

Bitcoin-like blockchain relies on a protocol that tolerates Byzantine failure in that

the mining nodes’ behavior is, in essence, arbitrary and unpredictable, if the

malicious behaviors are considered as a set of failure cases with arbitrary

consequences. Nakamoto provided the original protocol in the Bitcoin white

paper [4], which includes several smart and correlated design decisions that enable

this scheme. Informally, the protocol has the following features:

• The transactions are recorded in a chained data structure, where the
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transactions are arranged in blocks, and each block contains a field which is

the hash of the previous block—then the transaction blocks are chained by

this field.

• The value of a new coming transaction can be verified by the value of

transactions resident in the existing blocks whose value could again be verified

by earlier transactions.

• New blocks are generated through a competition process called mining. The

winning node gets rewarded by obtaining the ownership of new Bitcoins

accompanied by the new-born block.

• All the mining nodes must accept the longest chain as the valid version.

The ideas behind the blockchain are in fact older, and were formerly a

method for time-stamping digital documents. They were introduced by Haber and

Stonetta in a series of works beginning in the early 1990s [5, 6, 7]. By assembling

data into blocks and chaining the blocks with hash pointers, this structure provides

the feature of tamper-evident, as shown in Fig. 2.2. If an adversary had modified

data in any block of the chain, it would invalidate the hash pointers of every

following block. Technically, if we store the last valid hash pointer, the tampering

could be detected even if an adversary modified the data and all the corresponding

hash pointers in the chain. In centralized database architecture, the hash pointers

could be stored by a trusted authority; however, it is not the case for decentralized

systems like the blockchain.

The fundamental assumption behind Bitcoin-like blockchain is that there is

no trusted authority or trusted third party in the system. An individual mining

node has to keep its own copy of the blockchain. An observer cannot recognize

which copy is the valid one, if multiple copies are displayed since, from the

perspective of trust, all the copies are identical without a trusted authority.
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Figure 2.2: Every hash pointer depends on all the previous data and pointers. Once
a piece of data is tampered, the following hash pointers will become incorrect. If an
adversary attempts to modify the data, he has to re-compute every hash pointer
influenced by the modification. If there is a trusted authority keeping the record of
the correct value of the last hash, data tampering is always detectable, even if the
adversary modifies the data and hash pointers appropriately.

Imagine, blockchain A and B store the same data except for a single disagreed data

entry. Correspondingly, the hash pointers are differentiated between blockchain A

and B after that data entry. It is possible that B modified the data, or A did the

modification. However, there is no authentic version kept in a secure place; thus,

one could not tell which is the valid chain without modification.

Nakamoto innovatively solved this problem. Firstly, the generation of hash

pointers becomes a computationally difficult puzzle. As illustrated in Fig. 2.3, to

generate the hash pointer for a data block, the mining node has to find a string of

bit called nonce with which the generated hash pointer displays some required

patterns. In the Bitcoin system, the required pattern for a hash pointer is some

leading zeros in the generated hash. In order to find an answer to a puzzle for a

specific block, the mining nodes have to randomly select a nonce, then calculate the

resulted hash to verify if the hash meets the requirement. Repeat this cycle until a

valid nonce is found and thus a valid hash. This technical decision makes the hash

generation inefficient, and thus inefficient to regenerate the entire blockchain if a

piece of data is modified. An adversary has to successfully solve as many puzzles as

the number of blocks following the data he intends to change.

It is not enough to secure the valid blockchain by just raising the difficulty of
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Figure 2.3: In Bitcoin like blockchain, there is a field called nonce with which the
resulted hash of a block will demonstrate some required patterns. Currently, the
required pattern is the number of leading zeros in the resulted hash pointer. The
process to find a valid nonce is called mining.

its hash generation. Suppose an adversary with a supercomputer, then it is possible

to recreate a blockchain in an acceptable time span. The second requirement to

secure the valid blockchain is that the honest mining nodes control the majority of

computation power in the network. Since new blocks are rapidly added to the

blockchain, an adversary could not just recreate the historical blocks to tamper the

data, but also generate the hash for new blocks correspondingly. To be successful,

the adversary has to maintain computation resources stronger than the honest

nodes; otherwise, the tampered blockchain could be recognized by the miss of the

most recent blocks. Based on the assumption that the majority of computation

resource is controlled by the honest nodes, the Bitcoin-like blockchain further

requires the mining nodes to accept the longest chain as the currently valid version,

since the probability is high that an adversary could not generate blocks faster than

the honest nodes as the computation power owned by the adversary is weaker.

Interestingly, Nakamoto did not specify a strong technical method to protect

the valid hash pointers. For instance, other distributed systems split a secure key

among nodes, and no single node could access and modify critical data [8, 9, 10]. In

Bitcoin, multiple different versions are allowed, and the authentication condition is

simple—by the length of the chain. The critical factor enabling the entire approach

is the assumption of honest majority computation power. In principle, if an
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adversary has the computation resource to recreate a blockchain that is longer than

generated by the honest nodes, there is no doubt that the tampered data will

become the valid version.

Assumptions are often not reliable. The assumption under the centralized

system is that the authorized third party is trustworthy, which is not always true,

and that is why systems like blockchain will appear. Though the assumption under

blockchain can become unreliable as well, there is a fair way to make the reliability

probability high. The answer is to reward honest nodes by incentive. The honest

miners are encouraged by rewarding them with financial benefits—the coins. In the

Bitcoin protocol or other similar cryptocurrency scheme [4, 11], incentive comes in

two ways:

• the nodes who find a new block will be automatically rewarded with Bitcoins;

• the owner of the transactions will pay the mining nodes transaction fee.

Technically, these two types of incentive could not prevent misbehavior from

happening, since a successful adversary could get all the rewards. By misbehaviors

such as forking the blockchain or selfish mining, dishonest miners could rubber the

coins of honest miners by simply invalidating blocks generated by them. If the

assumption had held, such an attack would fail in that the adversary is unlikely to

generate more blocks than the honest majority. Forking the blockchain will increase

the risk of mined blocks being discarded, which means the legal revenue is decreased.

There is another layer of incentive—the reputation of the entire system and,

thus, the value of the rewards. If the adversary controls a dominant computation

power and misbehaviors happen consistently, the market confidence will be

impacted, the honest players and the public will quit, and the currency will become

worthless [12]. An essential fact to the success of Bitcoin is the interest binding

between the players and the system. The rewards are in the form of Bitcoin. In
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honest players
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Figure 2.4: Reputation of the system guarantees the rewards to the participants,
and thus the participants will voluntarily preserve the reputation of the system.
The increase of honest players helps maintain the portion of the computation
resource controlled by the honest players. Therefore, the probability of a successful
attack is kept low, which in turn enhances the system reputation.

order to make the rewards they get worth more, the mining nodes have to preserve

the reputation of the system in public, which forms a benign cycle, as demonstrated

by Fig. 2.4:

• the more significant reputation of the system leads to the higher value of the

coins and thus the value of the rewards;

• more rewards lead to more honest players;

• the presence of more honest players increases the computation resource

controlled by the honest parties;

• it is difficult for the dishonest player to increase their portion of computation

resource controlled

• the possibility of successful misbehavior remains low;
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• the reputation of the entire system gets enhanced.

The success of Bitcoin, and any other cryptocurrency, depends also on less

controllable factors. The system needs a bootstrap at the early stage. Early

acceptance by the public is vital for the thriving of the entire ecosystem.

It is clear that the components of the Bitcoin system are integrated tightly.

Without the incentive scheme, the blockchain is vulnerable to adversaries with

strong computation power. The security scheme of blockchain is weak from the

aspect of technology. The technical improvement from its original version is the

hash puzzle. Nevertheless, the puzzle could not make the scheme completely secure,

because it is a randomized computation. The adversary wins or loses by chance.

By this point, we have discussed the success of Bitcoin, not the success of

blockchain. We observed that it is challenging to discuss blockchain without the

background of cryptocurrencies because the attempt to decouple the blockchain

from a binding cryptocurrency usually results in fundamental modifications to the

underlying trust assumptions. The success of Bitcoin also depends on human

factors. It is true that the blockchains of successful cryptocurrencies preserve

important properties, especially the Byzantine fault tolerance in a decentralized

anonymous network without a trusted authority. However, this property is

technically quite expensive. For instance, more mining nodes generally lead to a

greater extent of decentralization of computation resources, which is good for the

security of the entire system, but also leads to more fierce competition into owning a

new block. The result is that the performance of the entire system would not scale

with the increase of computation resources. In fact, the performance is degraded in

terms of energy consumption, since the rate of block generation is somehow locked

by the protocol. More mining nodes simply increase energy consumption per block.

Hence, if we discuss blockchain without human factors, constrains become

obvious. For example, to scale the blockchain, researchers introduced permissioned
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blockchain, where the mining nodes could only join the network with permission. In

such a system, miners are more easily identified and traceable, in order to regulate

the behavior of miners, while miners could participate or quit as they wish and

anonymously. The difference is subtle comparing to a system enabled by a trusted

authority.

This observation inspires our introduction of the model of incentive-based

trust. It is important to understand the degree of trust provided by the

incentive-based approach and the scenarios in which such an approach is applicable.

In the following section, the pros and cons of blockchain as public ledger will be

discussed in detail.

2.3 Blockchain as Public Ledger

The blockchain serves as the ledger of transactions in Bitcoin. Comparing to its

predecessors [5, 6, 7], Nakamoto’s blockchain is characterized by the following

remarkable features:

• Distributed ledger—each mining node maintains its local copy of the

blockchain with the requirement that mining nodes have to update their local

copy once a version with longer chain length is found.

• Public accessibility—any user can view the transactions published on the

blockchain network.

• Immutability—transactions are confirmed and accepted by all nodes in the

network through the mining process in which the transactions are added into

blocks that are finalized by proof of work (by solving the hash puzzle); once a

transaction is confirmed in this manner, the probability of malicious

modification to the transaction is negligible, because the adversary has to

resolve the hash puzzles for the following blocks influenced by the modification.
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• Public verifiability—transactions could be verified by preceded transactions

in the blockchain.

Due to these desirable properties, blockchain is a promising technique for

public ledger providing auditability and transparency, such as decentralized

information management, immutable record-keeping for possible audit trail, and

robust and available system. Therefore, an increasing number of works aim to

decouple the blockchain from cryptocurrency as a pure database technology—the

distributed ledger technology [13]. As discussed in section 2.2, the immutability is

essentially based on the assumption that the majority of computation resource is

controlled by honest players. More precisely, a successful attacker has to control

over 50% of the mining power in order to succeed in forking the blockchain with

non-negligible probability [12]. However, this assumption also makes it difficult to

realize these desired properties without the appearance of a build-in incentive

strategy. In cryptocurrency, the primary source of reward is the coins mined during

the process of block generation. Thus despite the cheap transaction fee, miners

likely join and stay in the network, which provides a stable population base of active

miners. If the rewards purely come from transaction fees, the cost for the ledger

user would be unsustainable, considering the energy consumption of a blockchain

network with the scale comparable to that of Bitcoin. The estimated electricity used

per transaction of Bitcoin is reaching 200 kWh. Ethereum transactions seem much

cheaper than that of Bitcoin, scoring an electricity consumption of 37 kWh.

However, compared to the 0.01 kWh of Visa transaction, we can imagine 3700 times

of processing fee, if we use a blockchain-based credit card [14].

For reducing the cost of blockchain application and scalability, researchers

have introduced permissioned or private blockchain, contradictory to permissionless

or public blockchain, i.e., the Bitcoin-like blockchain. A private blockchain is able to

adopt different algorithms to scale the performance. Nodes cannot join a private
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blockchain network by simply downloading the current version of the blockchain and

broadcasting a joining announcement. Intentional nodes have to apply for

permission from the blockchain owner. Thus the permission itself serves as a kind of

a behavior limitation to the mining nodes, because to get permission the identity of

joining nodes shall be verified, which implies a non-anonymous network.

Adversaries to such a system do not enjoy a leisure equivalent to that of public

blockchain—to join freely, try attacks, and then quit freely. If attackers get caught

in a public blockchain, they can simply start using another identity.

Mining in private blockchain is organized. For example, in Hyperledger

fabric [15], transactions would be firstly ordered by the Ordering Service Nodes, and

then send to some peers designated by an endorsement policy for execution (instead

of mining nodes, nodes in Hyperledger are called peers to indicate that their

function is not mining blocks, but executing code in transactions). The result would

be endorsed by the designated peers, and other peers need only validate the

endorsement instead of re-executing the transaction. This treatment eliminates

mining competition and avoids blockchain forking. It further reduces the

computation workload by the endorsement scheme.

Despite the performance gain of a private blockchain, it indeed changes the

essential trust model of the original blockchain, which, for some advocates of

blockchain technology, is the spirit of this technology. The decentralized trust model

is suspectable in permissioned blockchain in that the owner of the blockchain is the

only entity to release the permission. The behaviors of participants are not

independent of the influence of the owner; therefore, the immutability and integrity

of data are under potential threat. The idea to eliminate the trusted authority

comes from a fundamental question: is the trusted authority actually trustworthy?

It is similar to the political problem of how to prevent the government from abusing

its unlimited power.
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This dissertation inclines to the public or permissionless blockchain mode for

the following reasons:

• Technically, the difference between private and public blockchain mainly

reflects the tradeoff between performance and security features. Suitable

decisions depend on application scenarios. There is no “one-size-fits-all”

consensus protocol (Byzantine fault tolerance), which is a well-established

understanding [16];

• Existing public blockchain still has potential with regard to scalability, when

combined with other technologies, such as off-chain channels;

• When considering off-chain extensions, public and private blockchain are

logically equivalent because they provide the same interfaces for off-chain

applications.

The choice between private and public blockchain is mainly about the

conflict between performance and immutability of data. We can choose private

blockchain for better performance, vice versa, depending on the nature of

application scenarios. Now we consider the feature of public verifiability, which is

another primary reason for the adoption of blockchain as a public ledger.

2.3.1 Questionable Public Verifiability of Blockchain

Public verifiability and immutability of data of blockchain attract researchers

looking for transparent and immutable record keeping for possible audit trail [17].

However, approaches often leverage the public accessibility instead of the

verifiability feature. For instance, consider a blockchain-based financial statement

publishment system, where companies anonymously publish their statements on a

blockchain for audit. A questionable logic in such a system is that if a company
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Algorithm 1: Ledger Object L
1 Init:S ← ∅
2 function L.get()
3 return S
4 function L.append(r)
5 S ← S‖r /* ‖ is the concatenation operator */

6 return

tries to cheat, such misbehavior is detectable because of the public verifiability of

the blockchain, and therefore the auditing result is provably correct. If there is no

anonymous requirement, public accessibility may provide some degree of verifiability

since it is relatively easy to build a connection between the financial statement and

the company and its operational activities. Nevertheless, with anonymity, as long as

the number of income and outcome matches, there is no way to identify a cheater by

the use of blockchain. To understand this problem, we should examine the public

verifiability of blockchain in detail.

Let us start with a formal definition of a ledger object for the convenience of

further discussion. We borrow the form from Antonio F. Anta and Maurice

Herlihy [18, 19].

Definition 1. A ledger L is a sequence of records over a sequential history H

defined as follows. The initial value of the sequence L.S is the empty sequence ∅.

Suppose the value of the sequence in ledger L is L.S = V at the invocation of an

operation π, then:

1. if π is an L.getp() operation, then the response of π returns V , and

2. if π is an L.appendp(r) operation, then set the value of sequence in ledger L to

L.S = V ‖r.

Operations get() and append() are defined in Algorithm 1.

This definition describes a ledger as an append-only list of records and does

not capture the distributed nature of blockchain, but it is enough for the discussion
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of the public verifiability of blockchain in this section. We extend it to a distributed

version at the end of this chapter. Note, though the operation get() only returns the

entire list S, other types of reading operation could easily be implemented on top of

get(). This treatment is for the simplicity of the definition and reflects the essence.

In the work of Maurice Herlihy [19], a ledger with public verifiability is

realized by adding a Boolean function Valid(). Precisely, Valid() is invoked by the

operation append() with an input of a sequence of records S and returns true if and

only if some semantics are preserved. Upon the return value of Valid(), append()

fails or accepts the operation request. The formal definition of the validated ledger

is extended from Definition 1, taking into account the influence of Valid() to the

execution route:

Definition 2. A validated ledger VL is a sequence of records over a sequential

history H defined as follows. The initial value of the sequence VL.S is the empty

sequence ∅. Suppose the value of the sequence in ledger VL is VL.S = V at the

invocation of an operation π, then:

1. if π is a VL.getp() operation, then the response of π returns V ,

2. if π is a VL.appendp(r) operation and Valid(V ‖r) = true, then set the value

of sequence in ledger L to L.S = V ‖r and respond with ACK, and

3. if π is a VL.appendp(r) operation and Valid(V ‖r) = false, then keep the

value of sequence in ledger L to L.S = V and respond with NACK.

Operations get(), append(), and Valid() are defined as in Algorithm 2.

The semantics need to be preserved for Bitcoin-like blockchain by Valid() in

Maurice Herlihy’s work [19] and described as preventing double-spending. However,

this is not a precise abstraction of the verification mechanism of Bitcoin-like

blockchain. To the best of our knowledge, few works are aiming to understand and
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Algorithm 2: Validated Ledger Object VL
1 Init: S ← ∅
2 function VL.get()
3 return S
4 functionVL.append(r)
5 if Valid(S‖r) then
6 S ← S‖r

/* ‖ is the concatenation operator */

7 return ACK
8 else return NACK

Bob: 8 BTC

New Transaction:
Bob send Alice 3 BTC

Bob: 8 -> 5
Alice: 2 -> 5

Alice: 2 BTC

New 
block

Figure 2.5: The transaction verification of Bitcoin-like blockchain relies on previous
transactions. In this case, Bob intends to transfer 3 BTC to Alice. The mining
nodes check if the account of Bob has enough balance to complete this trade by
tracing back along the blockchain to find transactions that transfer more than 3
BTC to Bob and those Bitcoins have not yet been spent.

model the verification mechanism of blockchain, and thus lead to drawbacks of

applications relying on the verification feature.

Fig. 2.5 displays how the verification mechanism works. Suppose Bob

transfers Alice 3 units of Bitcoin,

1. a new transaction is broadcasted to the network announcing that Bob

transfers Alice 3 units of Bitcoin;

2. the mining nodes check the blockchain to find if any transactions are

indicating Bob has enough units to complete this transfer;
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3. if Bob has enough Bitcoin in his account, the mining nodes include this new

transaction in a block; and

4. when the block containing the new transaction is successfully mined, the

transfer is completed.

What makes the verification process subtle is the structure of the account

information. Bitcoin accounts do not have integrated data in the blockchain to

describe their status, though there are Bitcoin wallet applications that collect and

summarise necessary data to represent an account. Instead, only the transactions

are listed in the blockchain. In order to check if an account has enough balance to

finish a transaction, mining nodes traverse the blockchain to find one or more

transactions whose combined balance is greater than the required value, and that

have not been spent yet. A new transaction must refer to the transactions whose

balance is spent in this new transaction, which means a transaction with a

balance is an incoming transaction and has no further transactions refer

to it.

Fig. 2.6 illustrates a case possible for the example in Fig. 2.5. The first

incoming transaction is of balance 2 BTC and referred by two spending transactions

that spend 1 BTC each. Thus when the Bob-to-Alice transaction is announced, the

mining nodes would not include it into a candidate transaction for this transfer.

When miners find the transaction with a balance of 7 BTC, they stop traversing the

blockchain and pick this transaction as the one spent by the new transaction. In the

new transaction, 3 BTC are transferred to Alice, and the rest 4 BTC are included in

a self-transfer to Bob, and the transaction with a balance of 7 BTC is referred.

Clearly, there is a linked list of transactions related to every unit of Bitcoin,

from the latest incoming transaction back to its origin. An important feature of

Bitcoin is that the only source of Bitcoin is the mining activity. Whenever a block is

mined, the miner who solves the puzzle could include a transaction that indicates a
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Historical Transactions of Bob's Account

to Bob: 2 BTC from Bob: 1 BTC

from Bob: 1 BTC

to Bob: 1 BTC

to Bob: 7 BTC

from Bob to Alice: 3 BTC

from Bob to Bob: 4 BTC

New transaction

Figure 2.6: A possible situation of transactions corresponding to the example in
Fig. 2.5. The first to-Bob transaction is a spent transaction which could be used for
completing this trade. The second to-Bob transaction is a not-spent transaction,
but indicates a balance not enough to complete the transfer. The third is a
not-spent transaction and has enough balance, thus the new transactions refer to it
transferring 3 BTC to Alice and the rest back to Bob.

certain amount of Bitcoin is transferred to the miner’s account. Unlike the

traditional banking system, there is no deposit transaction that injects balance from

another source. This feature is important because, in essence, the “space” of Bitcoin

is closed. Formally, we model the Bitcoin transaction system by the Self-Verifiable

transaction system:

Definition 3. A self-verifiable transaction system VT consists of three

components:

1. an element base EB which is initialized as an empty set ∅—an element is

noted as a tuple {ei, value}

2. a label set ID which is defined over the space of strings with a fixed length,

3. a transaction forest T F whose trees are rooted in the element base EB—the

nodes in layers below the roots satisfy the requirement as follows,
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• every node t contains a tuple {id, value, parent}, where id ∈ ID,

• if a node t has child nodes, its value t.value equals the sum of the values

of its child nodes, t.value =
∑

i∈child ti.value.

Allowed operations in the system are defined as follows:

• Element generation, gen(id)—add a new element e into the element base

EB, and create a new tree with one child node rooted with the newly generated

element in the forest T F ,

• Validation, valid(T F)—take the transaction forest and the element base as

the input, and return true if and only if the sum of the values at the root layer

equals the sum of the values of all the leaves,

• Transfer, transfer(idfrom, idto, value)—take as input the ID of the sender

idfrom, the ID of the receiver idto, and the value, find a set of leaves with

t.id = idfrom satisfying
∑

i∈found ti.value ≥ value, add child nodes with

t.id = idto satisfying
∑

i∈added ti.value = value, and add a child node with

t.id = idfrom satisfying t.value =
∑

i∈found ti.value− value; invoke valid()

with the transaction forest T Fupdated with newly added nodes; if

valid(T Fupdated) = true, accept the transfer. Otherwise, rollback the

transaction forest.

Operation gen(), transfer(), and valid() are defined as in Algorithm 3.

Per the model definition of the self-verifiable transaction system, we can

provide a proof of the verifiability feature of Bitcoin-like blockchain to prevent

double-spending attacks.

Theorem 1. Let VT be a self-verifiable transaction system, as defined in

Definition 3. Then there is no double-spending transactions iff VT .valid() returns

true.
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Algorithm 3: Self-verifiable transaction system VT
1 Init: EB ← ∅, ID ← {0, 1}n, T F ← ∅
2 function VT .gen(id)
3 e = new element

4 EB ← EB ∪ e
5 new node t← {id, e.value, e}
6 T F ← T F ∪ t
7 function VT .valid(T F)
8 if sum(ti∈roots.value) = sum(tj∈leaves.value) then
9 return true

10 else return false
11 function VT .transfer(idfrom, idto, value)
12 find a set of leaves C:
13 sum(ti∈C .value) ≥ value
14 ti∈C .id == idfrom
15 create new set of nodes NC:
16 sum(ti∈NC .value) = value
17 ti∈NC .id = idto
18 ti∈NC .parent = idfrom
19 create new node t:
20 t.value = sum(ti∈NC .value)− value
21 t.id = idfrom
22 t.parent = idfrom
23 T F ← T F ∪NC ∪ t
24 if VT .valid(T F) then
25 return ACCEPT
26 else
27 rollback

28 return NACCEPT

Proof. By Definition 3, the fact that VT .valid() returns true indicates that the

sum of the values at the root layer equals the sum of the values of all the leaves in

the transaction forest T F . Another fact is that if a node t has child nodes, its value

t.value equals the sum of the values of its child nodes, t.value =
∑

i∈child ti.value.

Thus, we can divide each tree by the method below,

• for a node with only one child node, keep it the same,

• for a node t with multiple child nodes, create a dummy set of nodes in which
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each dummy node corresponds to a child node and satisfies

tdi .value = tci .value∑
di

tdi .value = t.value

tdi .id = t.id

tdi .parent = t.parent

• abort if any of the conditions could not be satisfied.

Repeat this treatment from the leaves up to the roots, and then we get a dummy

forest in which each tree is a linked list with every node that has the same value. In

essence, we have established a 1-on-1 map between every not-spent transaction to

its element base. Obviously, if this 1-on-1 map is established successfully, it is

equivalent to the fact that the sum of the values at the root layer equals the sum of

the values of all the leaves in the transaction forest T F . This 1-on-1 map indicates

no element is spent twice as well. Therefore, the problem is reduced to there is no

double-spending transaction iff the 1-on-1 map could be created. We have shown

⇒, we now prove ⇐. Suppose there is a pair of double-spending transactions. Then

there must be at least one node tds whose value is less than the sum of the values of

its child nodes, tds.value <
∑

i∈child ti.value. Thus, the dividing operation is

aborted, and the map could not be created.

We defined the operation valid() as comparing the sum of leaves and the

sum of roots for the conciseness of discussion. From the basic definition, a

formulation for quicker verification could be induced.

Theorem 2. For a new transaction t of transfer(idfrom, idto, value) in a

self-verifiable transaction system VT , the operation valid(t, tparent, tsibling) is

equivalent to the operation valid(T F) in Definition 3, which is defined as below,



[30]

• return true, if the sum of the values of t and tsibling equals the value of tparent,

• return false otherwise.

Proof. For simplicity, we only discuss the case with only one node involved. Proving

the case with multiple nodes follows by separating them into several single node

cases. From the structure of the forest, a transfer transaction might add at most

two children to a node, with the constrain that the sum of the new child nodes

equals their parent’s value. Therefore, this operation would not change the sum of

the leaves layer, and the equivalence holds.

This model of self-verifiable transaction system helps understand the

verifiability of Bitcoin-like blockchain. The insights we achieved from the study is

that the verifiability of Bitcoin-like blockchain is actually provided by the

self-verifiable transaction system. This transaction system is established on top of a

distributed ledger object, and the feature provided by the distributed ledger object

is the public accessibility.

It seems that this combination could provide public verifiability; however, we

show the limitation of the self-verifiability transaction system, and when combining

with Bitcoin-like blockchain, its verifiability is undermined.

From the proof of Theorem 1, the verification of a transaction is, in essence,

to find the origin of the information contained in the transaction from the element

base EB. In other words, if the information does not have its origin in the element

base EB, then it could not be verified by the operation valid(). A double-spending

transaction could not be validated because it indeed introduces information whose

origin is out of the element base EB. Apparently, the reliability of the

self-verifiability transaction system relies on the generation of elements because the

verifiability of the system could not guarantee the operation gen() is

valid. An implicit feature in the self-verifiability transaction system is that the
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generation of elements is always valid by default. In Bitcoin-like blockchain, the

validity of generation is justified by proof of work, which is out of the transaction

system itself.

Consider leveraging the Bitcoin-like blockchain (which is a combination of a

ledger object and a self-verifiable transaction system) for general-purpose record

keeping. We must firstly extend Definition 3 to support data that is different from

cryptocurrency. We provide an extended definition after the necessary discussion.

As mentioned previously, Bitcoin-like blockchain justifies the generation of its

cryptocurrency by proof of work during the mining process. This method is a

natural choice because the transaction system is exclusively designed for

cryptocurrency, and the system pays the miners for their work with newly generated

currency. However, proof of work could not justify arbitrary data. For instance, a

service provider violates a privacy policy, but announces to the blockchain that it

complies with the policy. This announcement, in this case, is incorrect information,

probably misleading, even malicious. A blockchain with self-verifiability transaction

system has two possible treatments when dealing with this information:

• treat the information as a transaction, then valid() returns false and reject

the information, or

• treat the information as operation gen(), then add it into the element base

without verification.

Assume the system supports such information by assigning a recognizable

value. Then, the first treatment always rejects such information regardless its

correctness since there is no element in the element base EB corresponding to the

information. By definition, a transaction could be accepted only if a related element

has been generated prior to the transaction; otherwise, valid() always returns

false. On the other hand, the second treatment accepts the information without
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justification because proof-of-work is unable to make a judgment on the correctness

of specific information. Obviously, the first treatment is not applicable for general

purpose data storage, because it prevents any data from being kept into a

blockchain system. The second treatment is the only way to include arbitrary data

into Bitcoin-like blockchain, but the reliability of data could not be ensured. Back

to the example, the ledger includes the incorrect report regarding the policy

enforcement performance of the service provider. The public might make misled

decisions, if people trust this ledger as a reliable data source.

We extend the self-verifiable transaction system by a hybrid-verifiability

transaction system, as defined below.

Definition 4. A hybrid-verifiability transaction system HV consists of four

components:

1. an internal element base IE which is initialized as an empty set ∅—an

element is noted as a tuple {ei, value},

2. a label set ID which is defined over the space of strings with arbitrary length

{0, 1}∗,

3. an external element base XE which is initialized as an empty set ∅—an

element is noted as a tuple {id, string|id ∈ ID},

4. a transaction forest T F whose trees are rooted in the internal element base

IE—the nodes in layers below the roots satisfy the requirements that follow,

• every node t contains a tuple {id, value, string, parent}, where id ∈ ID,

• if a node t has child nodes, its value t.value equals the sum of the values

of its child nodes, t.value =
∑

i∈child ti.value.

Allowed operations in the system are defined as follows,
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• internal element generation, INgen(value)—add a new element ie into

the internal element base IE, and create a new tree with one child node rooted

with the newly generated element in the forest T F ,

• external element generation, EXgen(id, string)—add a new element xe

into the external element base XE,

• validation, valid(T F)—take the transaction forest and the element base as

the input, and return true if and only if the sum of the value field at the root

layer equals the sum of the value field all the leaves (the string field is not

taken into account),

• transfer, transfer(idfrom, idto, value, string)—take as input the ID of the

sender idfrom, the ID of the receiver idto, and the value, find a set of leaves

with t.id = idfrom satisfying
∑

i∈found ti.value ≥ value, add child nodes with

t.id = idto satisfying
∑

i∈added ti.value = value, add a child node with

t.id = idfrom satisfying t.value =
∑

i∈found ti.value− value, and invoke

EXgen(idto,string); invoke valid() with the transaction forest T Fupdated with

new added nodes; if valid(T Fupdated) = true, accept the transfer, otherwise

rollback the transaction forest.

Operation INgen(), EXgen(), transfer(), and valid() are defined as in

Algorithm 4, 5.

This definition provides the functionality for general-purpose data storage. It

captures the fact that the blockchain system is not reliable when serving as a

general-purpose ledger, because it lacks the capability of verifying external

information. The essential difference between the operations INgen() and EXgen() is

that the INgen() is a trusted method, i.e., the information generated by INgen() is

believed to be the truth, while EXgen() only generates an element for injected
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Algorithm 4: Hybrid-verifiability transaction system HV
1 Init: IE ← ∅, XE ← ∅, ID ← {0, 1}n, T F ← ∅
2 function HV .INgen(value)
3 e = new element

4 e.value = value
5 IE ← IE ∪ e
6 new node t← {id, e.value,∅, e}
7 T F ← T F ∪ t
8 function HV .EXgen(id, string)
9 e = new element

10 e.value = value
11 e.id = id
12 XE ← XE ∪ e
13 function HV .valid(T F)
14 if sum(ti∈roots.value) = sum(tj∈leaves.value) then
15 return true
16 else return false

external information, but does not guarantee its authenticity. This model is a

reasonable abstraction of the Bitcoin-like blockchain. The block mining process

functions as the INgen() in which the coins are generated as elements, and the

proof-of-work justifies the generation of coins as truth. The Bitcoin transactions are

monetary only, and the verification process only determines whether an address

owns enough coins to complete a transfer. There are no transactions that transfer

coins which are not derived from mining. The “coin”, or its equivalent, is the only

verifiable object in the ledger.

Though the Bitcoin-like blockchain allows users to upload some data by

attaching a string of bit in transactions, it accepts this data field without any

verification. In our definition, the operation EXgen() corresponds to this feature.

Defining the inclusion of external data as a type of generation of elements is a

natural choice, as mentioned previously. There is an additional benefit of this

decision: we could retain the definition of allowed operations as an option for users,

and a self-verifiable transaction system could be defined on top of XE without too
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Algorithm 5: Hybrid-verifiability transaction system HV
1 function VT .transfer(idfrom, idto, value)
2 find a set of leaves C:
3 sum(ti∈C .value) ≥ value
4 ti∈C .id == idfrom
5 create new set of nodes NC:
6 sum(ti∈NC .value) = value
7 ti∈NC .id = idto
8 ti∈NC .parent = idfrom
9 create new node t:

10 t.value = sum(ti∈NC .value)− value
11 t.id = idfrom
12 t.parent = idfrom
13 T F ← T F ∪NC ∪ t
14 HV .EXgen(id, string)
15 if HV .valid(T F) then
16 return ACCEPT
17 else
18 rollback

19 return NACCEPT

much effort. Ethereum [11] allows its blockchain network to execute arbitrary user

scripts as a smart contract with a fee, which enhanced the ability of verification.

However, the validity of external information still depends on the reliability of the

information source. In a smart contract implementation, Hawk [20], an additional

private layer is introduced to verify the external proof of contract compliance, where

its blockchain only takes currency transfer as transactions. This mechanism could

be effectively modeled as a distributed ledger combined with a special extension of

the hybrid-verifiability transaction system.

To conclude this section, the data from the world outside blockchain (which

is modeled as the combination of distributed ledger and hybrid-verifiability

transaction system) is not reliable due to a lack of applicable verification

mechanism. More precisely, the reliability of data in blockchain depends on the

reliability of the data source. Data in the blockchain is differentiated by the

properties of the related generation process INgen() and EXgen() in which INgen()
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represents reliable data source guaranteed by the mining process, and EXgen()

represents unreliable source respectively. Therefore, to leverage blockchain as a

reliable public ledger, we should add another layer of verification to the EXgen() in

order to create a reliable data source. We discuss how to establish an additional

verification mechanism in chapter 3.

2.3.2 Distributed Ledger Object

In the preceding section, we discussed the ledger and its verifiability on the base of

the centralized model. One reason for this treatment is that it simplifies the

discussion of verifiability without impacting the generality, because the verifiability

of the transaction system does not depend on the ledger object, as demonstrated by

the analysis. As a consequence, it is unnecessary to consider the verification when

defining the distributed ledger object. A more important observation is that even

the consensus does not influence the verifiability of the transaction system; thus, we

did not introduce the operation valid() as part of the distributed ledger object as

Antonio F. Anta, etc. did in their work [19].

Another technical decision is that our definition of distributed ledger is not

based on generic deterministic atomic broadcast service [21] since it does not

capture the nature of the consensus protocol of blockchain. The models with atomic

broadcast, in essence, replace the Byzantine fault tolerance consensus protocol with

consensus in the crash-prone system like the one considered in [22].

We describe the distributed ledger object in Algorithms 6, 7, and 8. In the

pseudo-code, the mining nodes are modeled as servers in which each node maintains

a local copy of the entire blockchain. The consensus algorithm only depends on the

length of the blockchain, i.e., the longest version must be accepted unconditionally.

Thus, an interesting observation is that although the verifiability of the transaction

system prevents the double-spending attack, this attack is still possible in the entire
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Algorithm 6: Client code of a distributed ledger DL executed by process p

1 seq ← 0
2 select L ⊆ S : |L| ≥ f + 1
3 function DL.get()
4 seq ← seq + 1
5 send request(seq, p,GET ) to the servers in L
6 wait response(seq, p,GET, V ) from some i ∈ L
7 return V
8 function DL.append(r)
9 seq ← seq + 1

10 send request(seq, p, APPEND, r) to the servers in L
11 wait response(seq, p, APPEND, res) from some i ∈ L
12 return res

Algorithm 7: Consensus algorithm of a distributed ledger DL
1 function DL.propose(v)
2 if r /∈ Si.DL.V then
3 DL.append(v)
4 Vi ← DL.get()
5 if receive(CONSENSUS, Vj) then
6 Vreceived ← Vj
7 if Vreceived ≥ Vi then
8 DL.V = Vreceived
9 else DL.V = Vi

10 broadcast(DL.V )

blockchain system setting with a probability depending on the distribution of

computational power. The double-spending attack is realized by a rollback attack in

essence.

Another problem related to the verification of the transactions is the

append-only feature. This feature is related to immutability, which is a desirable

property for a ledger in that the finalized records are supposed to be reliable as long

as the data source is reliable. However, it could be problematic regarding the

flexibility of general-purpose data storage. For instance, a relational database

requires a more flexible data structure. The append-only feature limits the range of

application scenarios of blockchain. The immutability of blockchain sometimes
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Algorithm 8: Server code of a distributed ledger DL executed by server i ∈ S
1 init: Si ← ∅
2 receive(seq, p,GET )
3 send response(seq, p,GET, Si) to process p
4 receive (seq, p, APPEND, r)
5 DL.propose(r)
6 send response(seq, p, APPEND,ACK) to process p

causes a problem: any operation other than get() increases its size (e.g., attributes

like address could be modified directly, but it must add a new entry to represent an

address change). A possible way of reasonable data modification is to announce a

replacement of the incorrect information. This method is flawed in two aspects: 1)

it wastes the expensive storage resource in the BC system (i.g both the previous

information and its modification are permanently kept in the BC and duplicated

among the mining nodes); 2) It is not efficient to retrieve the current status of a

specific attribute.

In addition, general purpose recording requires a system with scalability,

because of the volume of data entries and frequent incremental and inquiry

operations. When putting all the records into blocks, it generates highly frequent

transactions which could dysfunction a public blockchain network. As a matter of

fact, it takes 10 minutes on average for a Bitcoin block to be mined. For a Bitcoin

transaction to be confirmed, it is expected to take an hour, and the overall

throughput of the network is limited to around 7 transactions per second [23].

Existing solutions for scaling blockchains consider structures with off-chain

databases and on-chain hashes, in which the reliability of the off-chain database

remains questionable.
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2.4 Other Related Work

Kaiwen Zhang et al. structured the requirements for dependable, scalable, and

pervasive distributed ledgers with blockchains, and identifies research challenges to

achieve this objective [24]. One of the particular difficulties besides the scalability

problem is transaction privacy. Because of the transparency of the ledger, it is

possible to construct an activity graph for a particular address. zkLedger [17]

attempted to solve this problem for a public auditable ledger by hiding plain

information via Pedersen commitment and non-interactive zero-knowledge proofs. Z.

Shae and J. Tsai proposed an approach to transform blockchain into distributed

parallel computing architecture for precision medicine [25]. Though different from

the purpose of our scheme, it shares the same extension, i.e., to coordinate on-chain

and off-chain computation. The challenge of the problem is how to keep the

on-chain workload lightweight. Their work depends on an off-chain control node

that could help the on-chain program call off-chain arbitrary code to execute the

main computation. It works when the entire computation is owned by a single

organization. In the presence of collaborators, the output from other participants

could be questionable, and thus a verification process is necessary. There are

discussions about the incentive mechanism underlying the blockchain-based

cryptocurrencies [26, 27]. However, their analysis focuses on the explanation of how

the existing schemes work rather than provide a quantified method to dedicatedly

design incentive frameworks for different application scenarios.



[40]

Chapter 3

VOCMC for Verification and Scalability

3.1 Off-chain Payment Channel and State Channel

Public blockchains insist on the permissionless property of their consensus

protocols. As a consequence, the scalability of a public blockchain is limited to a

magnitude (about 10 transactions per second) that is not comparable to the

transaction system of the traditional centralized ledger (thousands of transactions

per second) [28, 29]. One category of scaling solutions [30, 31, 32, 33, 34, 35] is

alternative consensus protocols, which fall short of lacking backward compatibility

or fundamentally altering the decentralized security assumption. Off-chain payment

channels (that are referred to as layer-two protocols in [36]) aim to improve the

scalability of Blockchain-based cryptocurrencies for fast and frequent payment

processing [37, 38] by reducing the transaction load on the underlying blockchain.

According to off-chain payment channel protocols, two parties deposit coins

into a shared multi-signature address to open an off-chain payment channel. After

opening, the two parties can make payments to each other by agreement on the

distribution of the deposit coins without generating any on-chain transaction. The

agreement is in the form of a committed transaction. For example, if Alice wants to

initiate a payment to Bob via an off-chain payment channel, she signs a transaction

indicating the resulted balance. This transaction is a commitment transaction that

is not broadcasted to the network immediately. The new payment replaces the

preceded commitment transaction. At closure, the blockchain network takes the

latest commitment transaction and redistributes the deposit coins.

Unless one party could successfully forge the signature of its counterpart, a

dishonest party is only able to cheat by posting an expired commitment transaction

to close the payment channel. Therefore, any transaction for channel closure should



[41]

be finalized after a timeout enough for the counterpart to react to the dispute. A

proven cheater will be punished economically in some way defined by the contract.

A disadvantage of this original form of payment channels is that the payment

channel is pairwise. Only the participants of the transaction that setup the payment

channel could pay each other through it. Thus, the mainstream of research on this

area is to connect existing payment channels into an off-chain payment network. If

Alice wants to pay Bob, they do not have to set up a payment channel between

them, as long as there is a user (we may call her Chris) having a payment channel

with both Alice and Bob. Alice pays Chris, then Chris pays Bob. Any number of

nodes can be added to the chained payment; thus, any pair of users in this network

could pay each other with established additional channels.

Another direction of payment channel research is to generalize it into a

so-called state channel [39]. The participants of a state channel monitor and operate

with some states in concern. In payment channels (a specific state channel), the

interesting state is the deposit paid by the participants. The generalized state

channel could accept any variables as the states. This scheme has the potential to

broaden the adoption of blockchain applications in areas other than

cryptocurrencies, but the potential has not been deeply explored by the researchers.

Raiden is the most prominent project that implements state channel, but currently,

it focuses on the implementation of payment channels via this generalized

framework.

Besides the scalability improvement, the off-chain payment channel, or state

channel, in fact, guarantees the reliability of external information by probable

economic loss resulted from being caught behaving dishonestly. Therefore, we can

build a protocol based on this observation. In the next section, we will discuss an

underlying trust concept, and we call it incentive-based trust, then propose an

information verification framework on top of it.
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3.2 Incentive-based Trust

There are two folds of security concerns related to off-chain payment channels. The

first is that the deposit balance should be correct; the second is that the publishing

of the transaction indicating correct, current balance state should be guaranteed.

State-of-art research has focused on the publishing problem, i.e., how to guarantee

the honest participants could publish the valid commitment transactions by the

normal closure or by the dispute process when the counterparts attempt to publish

an outdated transaction to rollback the state of the balance. On the other hand, the

correctness of the state has not attracted enough attention because the correctness

of the states seems a natural property in such an environment. However, correctness

is not guaranteed in general. Suppose Alice pays Bob 10 USD for a sandwich, which

is described in the transactions, as shown in Fig. 3.1. Although the value of the

payment is correct, the additional information provided by the comment could be

correct, ambiguous, or absolutely ignored. This scenario is a common case when we

examine any type of transaction description. Other examples can be easily found

from the online banking applications. We can identify two types of information from

the example in Fig. 3.1: I. the payment value whose correctness could directly

impact the interest of the participants, II. comment whose correctness may be

irrelevant to the benefit of each participant in this case. We call type I as

incentive-associated information, if we generalize the financial interest. For off-chain

payment channel, the protocol naturally ensures the correctness of the balance state,

because the deposit balance is an incentive-associated information. The participants

will automatically take care of the balance when reaching an agreement.

Similar to the cryptocurrencies, an important factor for the overall security of

the off-chain payment channel is the incentive, which may be more influential than

estimated. Though technically the security of the blockchain network requires that
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Transaction #
-------------------------------
From: Alice
To: Bob
Value: 10 USD
Time: ########
-------------------------------
Comment:

Purchase a 
sandwich from Bob

Transaction #
-------------------------------
From: Alice
To: Bob
Value: 10 USD
Time: ########
-------------------------------
Comment:

Purchase S

Transaction #
-------------------------------
From: Alice
To: Bob
Value: 10 USD
Time: ########
-------------------------------
Comment:

(A) (B) (C)

Figure 3.1: A: a transaction with comment describing the behavior related to this
payment; B: the comment with partial information; C: comment is ignored.

none of the participants controls a dominant majority of the mining resource, in

practice, the formation of mining pools indeed have put threats to this fundamental

security assumption. Mining pools are groups of cooperating miners who agree to

share block rewards in proportion to their contributed mining hash power [40]. By

joining a mining pool, the miners are able to reduce the variance of their mining

rewards. At the time of writing, the top 3 leading mining pools hold over 51% share

of the computing resource; the biggest pool, BTC.com controls 29.6%; and notably,

most of the mining pools are concentrated in China where is estimated 81% of the

network hash rate [40]. With the presence of mining pools, Eyal and Sirer proposed

the selfish mining strategy that allows a pool with 1/3 of the overall hash power to

obtain more revenue than its ratio of the total hash power [41].

Nevertheless, such an attack has not been observed. The pools have been

benign and followed the protocol so far [41]. The assumption is that the majority

miners may avoid strategies that earn more bitcoins but decrease the expected value

of their future mining rewards since a substantial share requires a large amount of

investment to maintain [12]. Different from the measurement of traditional security

solutions, currently the security or trust strength supported by incentive has not

been measured by quantified models, thus how to effectively choose the
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reward-penalty combination remains an open question. Despite the lack of precise

models, we believe the successful applications demonstrate the feasibility of the

frameworks based on this type of security.

In cryptocurrency, the incentive is more rewards than penalties in that the

reputation of the system supports the value of the coins. For the off-chain payment

channel, the penalty has the main influence. Imagine Bob pays to Alice but files a

transaction with less value than expected. Alice double-checks the transaction, then

closes the channel once she finds out about the fraud. Bob may lose part of his

deposit according to the contract. There is another factor that contributes to the

correctness of the states: the direct interest conflict between Alice and Bob. If the

state is incorrect, either the interest of Alice or Bob would be damaged. Therefore,

to protect their benefit from pillage, Alice and Bob have a strong motivation to

carefully monitor the state.

To summarize, we identify three properties that could support effective

verification of external information (states), and ensure the reliability of the

information published on the blockchain, the public ledger:

• there is an incentive that could effectively encourage honest behaviors;

• the value of the states could alter the distribution of interest, which could lead

to direct conflict between the participants; and

• if the incentive strategy is a zero-sum game, the information should be

neutral, i.e., an approximation of the truth with negligible error.

For our work, an inspiring observation is that users and service providers

may hold opposite interests on policy compliance, if the states of policy compliance

are related to the payment process. In consequence, the incentive-based trust can be

applied. Note that, for other application scenarios, the chance is high that we can

set up an environment where the external information can be related to some
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incentives and situations with interest conflict, but it is not clear if such an

environment always exists. Solving this problem needs a refined model describing its

underlying mechanism, which is out of the scope of this dissertation.

3.3 Defining VOCMC

We discuss the two-party variant of VOCMC in this section, where we assume the

two parties are users of a blockchain system in which a type of cryptocurrency is

defined, and each party holds enough balance of the cryptocurrency in some private

address. Upon the establishment, these parties have to transfer some units of the

cryptocurrency form their private addresses into a 2-of-2 multi-signature address as

the deposits, i.e., any transfer from the 2-of-2 address requires 2 signatures to

authorize. This framework could be simply extended to n-party cases by applying an

n-of-n multi-signature address and adjusting protocol synchronization, respectively.

We follow the sketch used in [42] to describe the VOCMC protocol. The

protocol essentially relies on the composition of protocols, and thus we breakdown

the entire protocol into some component protocols universally composable [43], i.e.,

a synchronous version of the UC framework [44]. More precisely, the parties who

run the protocol are modeled as interactive poly-time Turing machines (ITM) [45]

whose inputs are from the environment E , which is modeled as an ITM as well. The

environment E represents anything “external” to the execution of the current

protocol instance, e.g., the inputs from the users, other running instances of

protocols, etc. Further, we define ideal functionalities for the on-chain executed

modules and define the entire protocol as running in a hybrid model with the ideal

functionalities. We will discuss the security implications of this hybrid model in

section 3.4.

In the rest of this section, we will first discuss the ideal functionalities

handling cryptocurrency; second, discuss the VOCMC by dividing it into
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Algorithm 9: Ledger Functionality FL
1 Data: a balance vector(x1, ..., xn)∈ Rn

+

2 Input: message from environment E
3 Upon receive message(add, sid, {(pij , yij)tj=1|t ∈ Zn+, yij ∈ R+}):
4 begin
5 forall j ∈ {1, ..., t} do
6 xij := xij + jij
7 end

8 end
9 Upon receive message(remove, sid, {(pij , yij)tj=1|t ∈ Zn+, yij ∈ R+}):

10 begin
11 if (xij ≤ yij∀j ∈ 1, ..., t) then
12 reply message(NOFUNDS, cid)
13 stop

14 else
15 forall j ∈ {1, ..., t} do
16 xij := xij − jij
17 end

18 end

19 end

subroutines including channel creation, contract registration, off-chain update, and

channel closure. Each discussion contains its on-chain ideal functionality and

off-chain local components.

3.3.1 Ledger Functionality and Incentive Function

This functionality handling cryptocurrency is separated from other on-chain

functionalities because it is a build-in mechanism offered by the public blockchain

system, and thus not a component of the VOCMC but a critical dependence.

Following [46], we model the cryptocurrency mechanism as a special

functionality FL by which the balance owned by each party is tracked, and currency

transfer is made via operations remove and add (see Algorithm 9). The “transfer”

operation is represented by two separate operations remove and add to simplify the

expression, though the underlying execution logic of blockchain is, in effect,
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Algorithm 10: Incentive function Inc(ev1, ..., evn)

1 Data: a vector of party identifiers(p1, ..., pn), a vector of initial
balances(b1, ..., bn), a balance pool bp, pool identifier(p0)

2 Input: a vector of evidences (ev1, ..., evn)
3 begin
4 create a reward vector(r1, ..., rn|

∑n
i ri == bp) according to (ev1, ..., evn)

5 forall j ∈ {1, ..., n} do
6 send message(remove, sid, p0, rj) to ledger functionality FL
7 send message(add, sid, pj, rj) to ledger functionality FL
8 end

9 end

integrated.

Note, the balance vector (x1, ..., xn) includes n elements, where n is the

number of existing parties (p1, ..., pn). The state of the functionality FL is always

public, i.e., the environment E , the parties (p1, ..., pn), and any potential adversary

A have free access to its contents. The vectors (x1, ..., xn) and (p1, ..., pn) are

abstractions of account and balance in the blockchain concept since they are not

maintained explicitly in the blockchain ledger. A party pi corresponds to a set of m

addresses (addi1, ..., add
i
m) where m could be any positive integer. The balance xi for

a party pi is collectively represented by all the transactions on the ledger, related to

the party pi. The underlying detail is omitted in the rest of the discussion. The

balance vector (x1, ..., xn) and the party vector (p1, ..., pn) possess capable expressive

power for the description of this protocol.

The incentive function Inc(ev1, ..., evn) is part of the VOCMC protocol (see

Algorithm 10). Since it encapsulates the calling of the ledger functionality FL and is

the only interface for the protocol accessing the ledger functionality FL after

channel creation, we describe it together with FL.

It holds an initial balance vector (b1, ..., bn) which is different from the

balance vector (x1, ..., xn), i.e., the deposit the parties put into the VOCMC channel

space, which is frozen by the channel from the ledger balance (x1, ..., xn). The frozen
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balance will finally be redistributed according to some reward or penalty policy. An

evidence vector (ev1, ..., evn) is needed to call this function, for the reward policy to

generate the reward vector (r1, ..., rn). Since Inc() could only redistribute the frozen

balance, the reward vector should satisfy the constraint,
∑n

i ri =
∑n

i bi = bp, where

bp indicates the total value of the frozen balance. After the decision of the reward

vector, the balance will be transferred to the parties’ accounts respectively from the

frozen account (denoted as p0 in Algorithm 10).

3.3.2 Channel Creation

In order to create a new VOCMC channel, the environment E has to send messageE

(CREATE, cid, pida, pidb) to the instance of local protocol Π(L) (see Algorithm 11)

run by party ppida to initiate the creation process. cid indicates the global identifier

of the channel to be created, and pidb indicates the other party that the channel will

be created in between. The protocol instance of the initiating party ppida sends to

the on-chain ideal functionality Fch the message (CONSTRUCT) in which CODE INC

contains the incentive function code, the reward policy, and the required initial

value for the balance vector, to request construction of the VOCMC contract. The

ideal functionality (see Algorithm 12) freezes the required initial balance in the

account identified by cid on the ledger and send messageF(INITIALIZING) to the

other party identified by ppidb .

Upon receiving the messageF(INITIALIZING) and messageE (CREATECONF,

cid, pida, pidb), the party ppidb responds with the message(CONFIRM) to confirm the

initialization. Then the ideal functionality Fch freezes the required initial balance

for party ppidb and sends messageF to both parties. Otherwise, there is a timeout

triggered in the protocol instance of party ppida who thereafter has the option to

refund the initial balance frozen during the initiating process.

Note, the communication between the environment E and the other entities
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Algorithm 11: VOCMC Protocol Π(L): Create channel

1 Input: messageF from on-chain functionality Fch, messageE from
environment E

2 Upon receive messageE(CREATE, cid, pida, pidb):
3 begin
4 send message(CONSTRUCT, cid, pida, pidb, CODE INC) to on-chain

functionality Fch

5 wait up to 2∆:
6 begin
7 if receive messageF(INITIALIZED, cid) then
8 send message(CREATED, cid, pida, pidb) to E
9 stop

10 else
11 if receive messageE(REFUND, cid) then
12 send message(REFUND, cid, pida) to Fch

13 stop

14 end

15 end

16 end

17 end
18 Upon receive messageE(CREATECONF, cid, pida, pidb):
19 begin
20 if receive messageF(INITIALIZING, cid, pida, pidb) then
21 send message(CONFIRM, cid, pida, pidb) to Fch

22 wait up to ∆:
23 if receive messageF(INITIALIZED, cid) then
24 send message(CREATED, cid, pida, pidb) to E
25 stop

26 end

27 end

28 end

in the protocol is modeled as taking no time, or this can be achieved by defining the

allowed communication time ∆ between the parties other than the environment as

long enough to neglect the communication with the environment. Therefore, the

initiating party ppida has to wait up to 2∆ to let the party ppidb complete the

communication for confirmation.
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Algorithm 12: On-chain Functionality Fch: Create channel

1 Data: a vector of party identifiers(p1, ..., pn), initializing list, active list
2 Input: message from the parties
3 Upon receive message(CONSTRUCT, cid, pida, pidb, CODE INC):
4 begin
5 if (vocmccid /∈ initializing list) && (FL.xpida ≥ CODE INC.bpida) then
6 send message(REMOVE, sid, ppida , bpida) to ledger functionality FL
7 send message(ADD, sid, cid, bpida) to ledger functionality FL
8 add the pair (vocmccid, τ0) into initializing list
9 send messageF(INITIALIZING, cid, pida, pidb) to ppidb

10 end

11 end
12 Upon receive message(CONFIRM, cid, pida, pidb):
13 begin
14 if (vocmccid ∈ initializing list) && (FL.xpidb ≥ CODE INC.bpidb) &&

(τ − τ0 ≤ ∆) then
15 send message(REMOVE, sid, ppidb , bpidb) to ledger functionality FL
16 send message(ADD, sid, cid, bpidb) to ledger functionality FL
17 remove the pair (vocmccid, τ0) from initializing list
18 add vocmccid into active list
19 send messageF(INITIALIZED, cid) to ppida , ppidb
20 end

21 end
22 Upon receive message(REFUND, cid, pida):
23 begin
24 if (vocmccid ∈ initializing list) && (τ − τ0 > ∆) then
25 send message(REMOVE, sid, cid, bpida) to ledger functionality FL
26 send message(ADD, sid, ppida , bpida) to ledger functionality FL
27 remove the pair (vocmccid, τ0) from initializing list

28 end

29 end

3.3.3 Local Contract Instance Update

Denote any input to the VOCMC at time t before the expected registration time TE

as mt,0≤t≤TE
. The corresponding output to the blockchain network is generated from

Φ(m0,m1, · · · ,mt) where the input to the method Φ(·) is the input sequence till t.

For convenience, we denote the output at time t as Φt, unless ambiguity occurs.

The protocol is described in Algorithm 13. Similar to the channel creation,
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Algorithm 13: VOCMC Protocol Π(L): Contract update

1 Data: round number br, current output Φt

2 Input: messageE from environment E , message from other party
3 Upon receive messageE(UPDATE, cid, pida, pidb):
4 begin
5 compute Sa ← sign(Φt, pida, pidb, br + 1)
6 send message(UPDATE, sid, br + 1, Sa) to ppidb at τ0

7 wait up to ∆:
8 begin
9 if receive message(UPDATEOK, sid, br + 1, Sb) then

10 if valid(Sb) then
11 br = br + 1, create TemTran(t,Φt, br, Sa, Sb)

12 else if receive message(NEGOTIATE,mnr, sid, nr) then
13 if nr < N then
14 mnr+1 ← messageE
15 send message(NEGOTIATE,mnr+1, sid, nr + 1)
16 goto line 7

17 finalize negotiation

18 else
19 m0 ← messageE
20 send message(NEGOTIATE,m0, sid, 0)
21 goto line 7

22 Upon receive messageE(UPDATECONF, cid, pida, pidb):
23 begin
24 if (receive message(UPDATE, sid, br + 1, Sa)) &&(messageE : OK)

&&(valid(Sa)) then
25 compute Sb ← sign(Φt, pida, pidb, br + 1)
26 send message(UPDATEOK, sid, br + 1, Sb)
27 br = br + 1, create TemTran(t,Φt, br, Sa, Sb)

28 else
29 if messageE : NOTOK then
30 m0 ← messageE , send message(NEGOTIATE,m0, sid, 0)
31 wait up to ∆:
32 if (receive message(NEGOTIATE,mnr, sid, nr))&&(nr < N) then
33 mnr+1 ← messageE
34 send message(NEGOTIATE,mnr+1, sid, nr + 1)
35 goto line 31

36 finalize negotiation
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the environment E sends messageE(UPDATE) and messageE(UPDATECONF) in order to

instruct party ppida to initiate the update process and party ppidb to respond,

respectively. The initiating party ppida then signs the bit string comprising the

output Φt, the identifier of both parties, and a round number br (the round number

indicates the current round of update which is in effect increased upon a successful

update) via a public key encryption system, then sends the output and the

signature Sa by an update request.

When receiving the update request, the party ppidb needs another

environment input to determine if the output Φt matches her local record. If there

is no disagreement on current output, and the signature Sa is valid, then party ppidb

will sign the same bit string and send the signature Sb in an UPDATEOK response.

Both parties will create and hold a temporary on-chain transaction

TemTran(t,Φt, br, Sa, Sb).

Different from the off-chain payment channel, there is a particular difficulty

when applying state channel for data verification: a participant may intentionally

refuse to create a transaction with output Φt that may impact its benefit. To do so,

the participant could refuse to respond to the latest UPDATE request and close the

channel immediately. Thereafter, the latest output Φt will never be published to the

ledger. We introduce a negotiation procedure to address this issue. Once party ppidb

refuses to respond to an UPDATE request, the counterpart could initiate negotiation

by sending a request message(NEGOTIATE,mnr, sid, nr), where nr is the round

number of negotiation. A deadline ∆ is set for the other party to respond to the

negotiation. The negotiation could also be initiated if there is a disagreement on the

output, in which case the environment E indicates the disagreement by NOTOK

message.

If a negotiation request is ignored, a TemTran(t, NEGt) will be automatically

created with default signatures. If the negotiation is responded to, but without
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Figure 3.2: State transition in VOCMC. Negotiation reports indicate that the
information might be unreliable, but the details could help the public make decision
by their own judgement.

reaching an agreement, the negotiation will stay open with a new deadline for

further communication, and thus a VOCMC can not close with any negotiation still

ongoing. If the parties could not reach an agreement after N rounds (the maximum

of rounds allowed) of negotiation, a transaction with information of the negotiation

proceedings, TemTran(t+N∆, NEGN∆), will be automatically created and

submitted to the public ledger. This transaction serves as a report of unsolved

negotiation. Fig 3.2 illustrates the state transitions during the execution of the

VOCMC. The transaction of the negotiation report would not serve as the evidence

for a reallocation of the deposit and may be unreliable because it is unwise to accept

the explanation from any one of the parties with disagreement. Nevertheless, the

negotiation report is still a valuable information source in that it provides more

details than regular transactions.
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Algorithm 14: VOCMC Protocol Π(L): Contract registration

1 Data: list of TemTran
2 Input: messageF from on-chain functionality Fch, messageE from

environment E
3 Upon receive messageE(REGISTER, cid, pida, pidb):
4 begin
5 send message(REGISTER, cid, pida, pidb, TemTran

T
pida

) to Fch at τ0

6 wait up to ∆:
7 begin
8 if receive messageF(REGISTERING, cid, TemTranTpid.br) then
9 wait up to ∆:

10 if receive messageF(REGISTERED, cid, TemTranTpid.br) then
11 mark TemTranTpid as REGISTERED

12 else
13 send message(FINALIZE, cid, pida, TemTran

T
pida

) to Fch

14 end

15 end

16 end

17 end
18 Upon receive messageE(REGISTERCONF, cid, pida, pidb):
19 begin
20 if receive messageF(REGISTERING, cid, TemTranTpida) then
21 send message(REGISTER, cid, pida, pidb, TemTran

T
pidb

) to Fch

22 wait up to ∆:
23 if receive messageF(REGISTERED, cid, TemTranTpid.br) then
24 mark TemTranTpid as REGISTERED

25 end

26 end

27 end

3.3.4 Contract Instance Registration

The local protocol instance (see Algorithm 14) maintains a list of temporary

transactions in its local storage. Recall that temporary transaction

TemTran(t,Φt, br, Sa, Sb) is a contract instance containing the output Φt that could

be uploaded to the public ledger (thereafter, a temporary transaction will be

denoted as TemTranT ). The procedure to submit a TemTranT to be mined and

appear on the ledger and thus available to the public is called “contract instance
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Algorithm 15: On-chain Functionality Fch: Contract registration

1 Data: registering list
2 Input: message from the parties
3 Upon receive message(REGISTER, cid, pida, pidb, TemTran

T
pida

):

4 begin
5 if valid(signaturepida) && valid(signaturepidb) then
6 if TemTranTpidb ∈ registering list then
7 if TemTranTpidb .round < TemTranTpida .round then
8 replace (TemTranTpidb , τ0) with (TemTranTpida , τ̂0)

9 wait up to ∆

10 end

11 else
12 add (TemTranTpida , τ0) into registering list

13 send messageF(REGISTERING, cid, TemTranTpida) to ppida and ppidb
14 wait up to ∆

15 end
16 remove TemTranTpid from registering list

17 register TemTranTpid
18 send messageF(REGISTERED, cid, TemTranTpid.br) to ppida and ppidb
19 end

20 end
21 Upon receive message(FINALIZE, cid, pida, TemTran

T
pida

):

22 begin
23 if (TemTranTpida ∈ registering list) && (τ − τ0 ≥ 2∆) then
24 remove TemTranTpid from registering list

25 register TemTranTpid
26 send messageF(REGISTERED, cid, TemTranTpid.br) to ppida and ppidb
27 end

28 end

registration” [42]. Registration could be invoked anytime the newest TemTranT is

unregistered. An enforced registration point is the channel closure, where the latest

TemTranT must be registered.

The environment E instructs the party ppida to initiate the registration

process and the party ppidb to respond, respectively. Upon the initiating instruction,

party ppida sends to the on-chain functionality Fch the REGISTER message, which

contains the latest TemTranT , i.e., if there are multiple un-registered temporary



[56]

transactions, take the latest and ignore the rest.

The on-chain registration functionality (Algorithm 15) verifies the validity of

the signatures. If valid, the temporary transaction TemTranT will be added to the

list of transactions under the registration process (whose members are currently

unregistered), and a REGISTERING will be sent to both parties. Party ppida resets the

timer upon receiving the REGISTERING message, while party ppidb immediately sends

its own copy of the latest temporary transaction TemTranTpidb as a reaction. If both

the copies from party ppida and party ppidb contain the same round number br, the

functionality Fch then removes the temporary transaction from the registering list

and proceeds it into the mining process. Then, it sends the REGISTERED message to

both parties. A different round number indicates a dispute situation, which has to

be settled by determining the largest round number br. The temporary transaction

with the largest br is submitted for mining. In case party ppidb did not respond to

the registering request, party ppida could force the registration of her own version of

the temporary transaction, if a timeout is triggered after receiving the REGISTERING

message from the on-chain functionality Fch, by sending a FINALIZE message.

3.3.5 Channel Closure

In order to close a VOCMC channel, the latest temporary transactions must be

registered. Therefore upon receiving the messageE(CLOSE) from environment E , the

protocol instance (see Algorithm 16) of party ppida will firstly check if the

TemTranTE is marked as registered. If true, then send message(CLOSE, cid) to

on-chain functionality Fch to initiate the closure process.

The functionality Fch sends messageF(CLOSING, cid) to party ppidb and waits

up to ∆ for response. Upon receiving the CLOSING message, if her own version of

the latest temporary transaction is NOT registered, party ppidb should reply with a

NOTCLOSE message to stop the closure process for the chance to register the
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Algorithm 16: VOCMC Protocol Π(L): Close channel

1 Data: list of TemTran
2 Input: messageE from environment E
3 Upon receive messageE(CLOSE, cid, pida, pidb):
4 begin
5 if TemTranTE marked REGISTERED then
6 send message(CLOSE, cid) to F
7 wait up to 3∆:
8 if receive messageF(CLOSED, cid) then
9 send message(CLOSED, cid, pida, pidb) to E

10 end

11 end
12 stop

13 end
14 Upon receive messageE(CLOSECONF, cid, pida, pidb):
15 begin
16 if receive messageF(CLOSING, cid) then
17 if TemTranTE marked REGISTERED then
18 wait up to ∆:
19 if receive messageF(CLOSED, cid) then
20 send message(CLOSED, cid, pida, pidb) to E
21 end

22 else
23 send message(NOTCLOSE, cid) to F
24 stop

25 end

26 end

27 end

temporary transaction. Otherwise, party ppidb just sets a timer to wait for

additional messages.

If a timeout is triggered after sending the CLOSING message, the functionality

Fch will execute the incentive function to reallocate the frozen balance according to

the evidence vector (ev1, ..., evn), remove vocmccid from the active channel list, and

send messageF(CLOSED, cid) to both parties. When received the CLOSED message,

the protocol instances of the parties then signal the environment E the success of

channel closure for further instructions.

Note, we do not inline the registration process into the channel closure
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Algorithm 17: On-chain Functionality Fch: Close channel

1 Data: active list, a vector of evidence(ev1, ..., evn)
2 Input: message from the parties
3 Upon receive message(CLOSE, cid):
4 begin
5 send messageF(CLOSING,cid)
6 wait up to ∆:
7 if receive message(NOTCLOSE, cid) then
8 stop

9 else
10 execute Inc(ev1, ..., evn)
11 remove vocmccid from active list
12 send messageF(CLOSED,cid)

13 end

14 end

protocol for a concise description. It is the users’ responsibility for settling any

unregistered temporary transactions and open negotiations. The functionality only

prevents premature channel closure.

3.4 Security Analysis of the VOCMC

3.4.1 Sketch of Universally Composable Security

It is necessary to understand the universally composable security [43] framework in

order to thoroughly examine the security properties of the VOCMC protocol. This

paradigm significantly simplified the discussion of protocol security in case complex

patterns of subroutine and communication are adopted for rich enough

representation of more realistic adversarial behaviors. In such cases, a proof based

on the single execution of a protocol instance cannot ensure its security under

parallel and concurrent composition, e.g., Oblivious Transfer [47, 48, 49] whose

initial definition could not guarantee security when multiple instances executed

concurrently.

Instead of extending the security requirements of the composed protocol (as
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in [50, 51, 52, 53]) which results in ever-growing complexity of definitions, the

universally composable security framework adopts protocols that are secure in

isolation with the additional requirement of universally composability : if a protocol

is secure under isolated execution and universally composable, its combination with

other universally composable protocols is secure as well.

Therefore, we could securely compose complex protocols by combining secure

subroutine protocols through a general composition process. In this section, we only

consider the subroutine composition, which is the primary composing type adopted

in the VOCMC protocol. The crux of this approach is to define the subroutine

protocol in a way that is secure in an interactive environment, i.e., the subroutine

protocol should UC-emulate [43] a trusted ideal functionality that preserves all the

security requirements for the subroutine. Let φ denote the subroutine, and π denote

the ideal functionality, respectively. The protocol φ UC-emulates π, if an

interactive environment E could not distinguish if it interacts with the protocol φ

with the presence of an adversary A in the real world, or interacts with the ideal

functionality π with the presence of an adversary S.

Given a protocol φ that UC-emulates π, any party including the adversary

could not gain more information from an instance of φ than an instance of the ideal

functionality π, since adversary A here takes the place of the interactive

environment E . To define universally composable protocols, besides carefully

protecting the secrets by the ideal functionality, the communication sequence and

timing should be preserved in both the real and ideal world, which is the main effort

when sketching the constructive security proof. Typically, the ideal world adversary

S should be constructed capable of relaying the communication flow between the

corrupted parties and the environment and determine the delay of the

communication channel.
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3.4.2 Security of VOCMC

The security proof of VOCMC is relatively straight forward since the subroutines

related to security requirements mostly rely on on-chain functionalities, thus avoid

the difficulty of handling secure computations coordinated with the corrupted

parties. The ideal functionality could be directly replaced by on-chain functionality

without an impact on the security of protocols since the on-chain computation is

supposed to be executed in a secure environment. The assumption of a secure

execution environment of blockchain is based on its fundamental assumption of

decentralized computation resources. It is equivalent to run the secure core of the

protocol by a trusted third party (note, there is no trusted mining node in the

blockchain network, but the network as an entity is trusted). As a consequence, the

security proof is reduced to relaying the communication between the environment

and the parties, which is straight forward. The detailed construction of the message

relay could be found in [42]. This section will discuss some remarkable features of

the functionalities.

Fairness of update. Since there is no secret involved in the message

exchange process except the encryption key, we do not consider the fairness of

information closure in this case. Remember that the initiating party of the update

process will send its own signature along with the initiating message to its

counterpart, who could intentionally not respond with the other signature required

for creating the temporary transaction. As a result, the initiating party could not

create the latest temporary transaction, while its counterpart could. In the current

setting, this flaw of fairness does no harm the protocol, because only when a party

intends to publish the output, she would initiate the update process. This flaw

would not lead to blockage of information publication. The fairness of updates could

be achieved by introducing an on-chain functionality for fair signature disclosure.



[61]

Registration security. Different from off-chain payment channel,

registration of temporary transaction would not always lead to deposit reallocation,

and thus is balance secure. The dispute-like procedure adopted in the protocol is for

confirmation of the agreement on the published information and provides an

opportunity to identify data inconsistency. Note that the submitted transaction

should contain signatures of both parties and has a greater round number, and the

channel would not be closed after a registration; therefore, the registration of an

older temporary transaction would not prevent the latest from registration.

Channel closure and balance security. The fairness of channel closure is

critical in the VOCMC protocol because, upon the closure of a channel, any

unpublished information would be lost, and the frozen balance would be distributed

by the incentive function. If there is any unregistered temporary transaction or

unsolved negotiation, it is possible that the incentive function is executed based on

incomplete or outdated evidence vector and thus incorrect balance distribution. In

the current setting, the channel closure could be stopped directly by the

environment intervention or known unregistered temporary transactions. This

provides an opportunity for malicious prevention of channel closure, e.g., prevent

any channel closure if a party is not satisfied with the current potential outcome of

the incentive function. In order to solve this problem, the channel closure process

could depend on the completeness of registration and negotiation. But, a malicious

party could initiate an infinite negotiation process to achieve the same effect. To

avoid this problem, we could introduce an on-chain functionality to freeze the

creation of negotiation. Only the negotiation open at the initiating time of the

channel closure would be taken into account.
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3.5 Other Related Work

The literature on off-chain protocols is rich. A remarkable large portion of the work

focuses on scaling the blockchain in order to enhance its throughput of payment

transactions. Payment channel networks (PCNs) [37, 54] enable the users to route

payment through a network of existing payment channels, thus avoid unnecessary

channel creation among every pair of channel users. PCNs require routing

protocols [55, 56, 57, 58] to optimize the path searching and secure the chained

payment. Commit chain [59, 60] solved this problem without a network of payment

channels but established a pool that money is freely transferred among the

participants. [61, 62, 63, 64] further improved the privacy of the off-chain payment

channel, which is important because the off-chain channel naturally leads to

information concentration related to a small group of users. Arbitrum [65] and

TrueBit [66] scaled smart contract execution by only verifying the signature of

endorsers through on-chain execution, and smart contract execution and verification

are purely off-chain, which is similar to the methodology of our work. Augur [67]

also relies on human knowledge, but allows the users to open a public

decision-making process where any number of participants could join in and provide

inputs to help the process initiator decide the output and collect their payouts.

Another related research area is the oracle system, which aims to provide

data to a blockchain in a more reliable way. However, proposed systems largely

differ in assumptions and applicability. TLS-N [68] focused on data authenticity and

integrity by a modification to the transportation layer security protocol. Similarly,

TownCrier [69] guarantee authenticated data feeding to the blockchain by

employing trusted execution environments [70, 71]. Astaea [72] and Shintaku [73]

leverage on participants’ domain knowledge and a voting scheme to ensure reliable

data feeding to smart contracts.
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From the perspective of game theory, literature analyzed the incentive

mechanism using Nash equilibrium and proposed alternatives depending on different

game constructions. [74, 75] examined incentive compatibility in the presence of

selfish mining behavior of mining pools. [76] improved the proof-of-stake consensus

protocol by incentivizing miners to propagate blocks as soon as possible using the

Stackelberg equilibrium [77]. The Stackelberg game was as well used in [78] to

design a privacy-aware data sharing protocol via blockchain against the security

attacks from the external world.
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Chapter 4

System Design and Implementation

4.1 Introduction

Determining whether an organization complies with the policies is a challenging

task, given the complexity of the current application environment. A data

provenance view is required for dealing with the cross-boundary problem, which is

introduced by the ever frequent storage and process outsourcing. Fig. 4.1 illustrates

a relatively “simple” scenario where a single medical application is described. The

imaginary application employs a social robot that could recognize oral instructions

from human speech and take actions to complete tasks such as searching for music

or traffic conditions. The robot is connected to a PC client and a mobile client for

local configuration, control, and application interface. The robot provider maintains

a data warehouse for storage of the user data, and outsource the speech recognition

to a SaaS provider who is specialized in natural language processing. The training

data for speech recognition model is acquired from the data warehouse. When the

recognition model is ready, the robot could directly send realtime speech record to

the SaaS for analysis.

In order to leverage the VOCMC, one of the critical facts is the agreement.

Hence, our proposed scheme requires the user, and the service provider could make

an independent judgment on policy compliance. We assume policy compliance

inference engines are deployed at both the user side and the provider side. The

scheme should ensure that the required evidence id sent to both the inference

engines. To achieve this goal, we recommend a sticky-policy-based framework to

track the data footprint and enforce the policy application.
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Figure 4.1: High level description of the proposed scheme with example

4.2 Background: Sticky Policy

Policies can stick to data to define allowed usage and obligations as it travels across

multiple parties, platforms, or administrative domains, enabling users to improve

control over their personal information [79]. The sticky policy is a potential

approach for accountable and enforceable policies [80, 2], which is firstly introduced

by Casassa-Mont et al. [80]. Here, the data owner specifies management constraints

that would be attached to the data by establishing contractual relationships

between data owners and service providers. In order to enforce the owner-specified

policies, a trusted authority (TA) is employed to keep the decryption keys of the

encrypted data. To obtain the decryption key, a party must agree to enforce the

policies associated with the data. Typically, the policies are enforced at the

application level and are tend to be enforced at particular points, e.g., at

administrative boundaries. Since the data is released as the decryption key is

released, the data owner loses the control and track over her data after the release
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point. This mechanism is extended by the following work [81, 82, 83].

A similar idea has been used for tracking data flow within cloud

infrastructures [84, 85, 86]. These works adopted the perspective of Information

Flow Control (IFC), a concept that emphasizes more on policy enforcement on

lower level data transfer, e.g., data sharing among applications within a cloud

infrastructure. Particularly, the proposed IFC is a Linux kernel implementation,

which indicates a data-centric paradigm for data management. Traditionally, user

data is controlled by the processing application and invisible to the operating

system, thus in an OS, when data is shared by multiple applications, each

application has to implement its own data control mechanism, which leads to

difficulties in consistent policy enforcement even though they are in the same

system. The IFC, however, applies data control policies at the OS level, which

enables system-wide consistent policy enforcement beyond isolation and application

borders (within an IFC-enforcing world). This methodology indeed separates the

responsibility of data control from applications. How an application accesses and

processes the data is determined and monitored by the OS according to the policies

associated with the data.

Another related technique is Taint Tracking (TT) [87]. An example of TT

used for privacy preservation is to taint sensitive information, e.g., a list of contacts

in mobile phones, and track it through this closed system [88]. Data leaving the

system (i.e., the phone) is analyzed to ensure it does not contain sensitive

information. The tainting mechanism is to propagate tags through any entities that

may contain sensitive information. Since TT is an OS-level mechanism, it could not

know exactly how the data would be used by a program or process. If the sensitive

data is accessed by an instance of an application, the aroused processes will acquire

the data’s tag(s), which taint the processes as sensitive. The resulting output or

outgoing connections may be tainted as well. By monitoring the tainted objects, the
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occurrence of the issues (e.g., a data leakage, an attack) could be detected.

From the perspective of execution model, the sticky policy actually allows a

data-centered approach that encloses allowed methods with the data object. This

scheme could be further extended to define any allowed operation in the policy

descriptor. Sundareswaran et al. proposed a logging system for data sharing in this

paradigm [89]. In their work, the users’ data is encapsulated with executable code

in JAR files. There is a tradeoff between storage overhead and universal

applicability of the sticky policy. For instance, a system for information flow control

uses a tagging mechanism to identify the policies applied to specific user data within

a PaaS cloud [90, 91] . Since the policy recognition and enforcement system is

embedded in the cloud infrastructure, the tag associated with the user data is quite

lightweight, but this policy enforcement could not be applied when data has to

travel across the boundary of cloud infrastructures (e.g., from EC2 to Azure). If the

enforcement code is attached to the data as [89] or [92], the policy application could

be ensured as the data travel through different cloud infrastructures at the cost of

overhead probably higher than the data in concern. Ideally, the most effective way

to implement the sticky policy mechanism is by a protocol standard in which a

header is defined as the policy descriptor, and the processing methods are defined

for the policy agent. We take this paradigm in this work by assuming there is a

standard policy descriptor attached to the user data, and the corresponding policy

agent is deployed through the entities involved in the service provision.

4.3 System Design Overview

4.3.1 Sticky Policy Based Evidence Collection

Our sticky policy mechanism can be illustrated by Fig. 4.2, where part of the data

flows in Fig. 4.1 is sketched. The user data is accompanied by a policy descriptor
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Figure 4.2: The sticky policy mechanism that enables policy application and
evidence collection in Fig. 4.1

during its entire life cycle, including transmission, storage, duplication, processing,

and deletion. The policy descriptor defines the applied policies, or allowed

treatments. A policy agent parses the policy descriptor to determine the policies

and configure the execution environment. We do not require that the policy

descriptor should carry the execution module but assume that the mechanism for

policy application is deployed within the policy agent at any cloud infrastructure

involved in the service provision. In addition, the policy agent is required to have a

communication mechanism that sends logging updates to the data owner and the

service providers when the data is touched by any program. This log serves as the

evidence feeding into the inference engines in Fig. 4.1.

Because of its inherent flexibility, the sticky policy enabled scheme is

potential to be adjusted to the ever-growing set of policies. Here, we focus our

scheme on following particular problems.

• Consistent cross-boundary policy application. Since any copy of the

user data is accompanied by a policy descriptor, it is straight forward to

maintain a consistent set of applied policies when the data is moved to



[69]

another sticky policy enabled domain.

• Global view of data distribution. A central problem for auditable policy

compliance is to track all the duplication of the user data through the cloud in

that the data is probably copied by various purposes (e.g., backup, buffering,

process outsourcing, etc.) and some are generated in unexpected ways.

Therefore, the violations might happen by not only malicious behaviors but

also by misconfiguration or failure of exception processing. The sticky policy

enabled logging mechanism could help to discover all the intentional and

unintentional duplications.

• Fair availability of information for policy compliance inference.

VOCMC works when all the participants can make informed decisions to

reach an agreement. Thus, the fairness of information acquisition is a critical

feature. Since the protocol allows lag for the participants to make delayed

decisions, the fairness here is in the sense of a unique view of available

information. The sticky policy mechanism should guarantee an independent

“push” notification for all the participants.

Fig. 4.1 outlines the high-level design of our proposed public ledger of policy

compliance. The logging mechanism independently provides evidence to policy

compliance inference engines on both the user side and the provider side. According

to the outputs of the inference engines, the user and the provider reach an

agreement on compliance or violation. Finally, the agreement will appear on the

blockchain (may not in the form of the original record).

4.3.2 Public Blockchain Versus Private Blockchain

The public ledger is recommended to adopt the public blockchain system. The

reason is that the major benefit of blockchain is its immutability and no trusted
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authority involved. This property depends on the assumption of the independence

of the miners and the fact that no (group of) miner controls a dominant computing

power. This assumption probably holds for public blockchain, but not for private

(or permitted) blockchain.

The difficulty in adopting private blockchain as the ledger is that it

essentially introduces a trusted authority. The private chain is owned by, an

organization and the miners have to get permission from the owner. Ricardo N. et

al. [93] pointed out that the only feasible solution for the blockchain-based database

with public auditability is to utilize private BC for the recording, and public

blockchain for the checkpoint. We hold a similar point of view, but realize that the

private BC is a replaceable component, as long as the checkpoint in the public

blockchain is reliable. In a setting where a blockchain is controlled by a trusted

authority, the performance of the blockchain has to be compared with other

distributed database systems.

Note that there are scenarios in which permissioned blockchain is applicable

and probably a better solution than its permissionless counterpart. For instance, a

blockchain-based multi-bank settlement system may adopt permissioned blockchain

because if the participating banks play the role of miners, it is natural that the

miners are independent. In such a system, the population of the miners is under

control and will not decrease and increase frequently. Because of the

non-anonymity, the behavior of the miners is identifiable and detectable.

An observation here is that the assumed attackers in the blockchain-based

system are some malicious block miners. Therefore, if the ledger users are mainly

the miners as well, it is unnecessary to adopt the permissionless blockchain in

practice because they have a direct incentive to guarantee the reliability of the data

and detect any misbehaviors of other miners. For the scenario of this dissertation,

we assume the public is the main data user of the ledger; thus, the interest of the
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miners may be inconsistent with the ledger user. Therefore, we choose the public

blockchain for the ledger.

4.4 Demonstration Cases

This section provides four implementations of policy cases to demonstrate the sticky

policy mechanism as follows,

1. data duplication discovery,

2. guaranteed data deletion,

3. data sharing black and white list, and

4. consent grant and withdraw.

The first two are related to the problem of creating a global view of

cross-boundary data distribution, and the rest are related to the problem of

updating policy across the global data distribution. The sticky policy mechanism is

flexible, because it resembles a container of modules, thus open to extensions. We

do not include access control into the demonstration set in that we attempt to show

the power of this mechanism for cross-boundary policy compliance. Cross-boundary

access control relies on the services in our showcase and could be implemented by

extension.

4.4.1 Shared Communication Protocol and Execution Model

In order to achieve cross-boundary policy compliance, the sticky policy framework

attaches policy descriptors to each applicable file, which makes it difficult to update

the policy descriptors for all the copies of the applicable files at the same time.

Imagine data copies in a single cloud infrastructure. Data might be duplicated due
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Figure 4.3: If the policy descriptor is updated whenever a policy update request
arrives, some of the duplication can not be discovered by this process. There are
unidentifiable duplications caused by lower level system operations without the
participation of the PA.

to caching, keeping backups, or load balancing. The system is usually unaware of

such “unintentional” duplications, e.g., hard drives might be copied at the operating

system level, and thus there is no opportunity to execute the policy agent at all.

Unintentional copies are generally unidentifiable at the copy time. Fig. 4.3

illustrates this problem.

Lowering the implementation level of the policy agent could mitigate but not

eliminate the unidentifiable duplication, because virtual machines are broadly

applied in present cloud infrastructures. It is impossible to apply fine granularity

data management in such application scenarios, e.g., servers in an IaaS cloud.
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Suppose we implement the policy agent with a list of controlled files. It is

possible to add corresponding entries for copies generated by reaching the policy

agent, which is the PA identifiable duplication in Fig. 4.3. With the presence of the

controlled file list, policy updates could be sent directly to every file in the list. On

the other hand, we could not add the PA unidentifiable duplication into the list of

controlled files, and thus they are not reachable when users update policies.

Another consideration is the performance implication of the policy updating

process. If the policy agent updates the policy descriptors of the controlled files

once it receive a request for policy updating from the users, it will generate frequent

random read/write requests for the file system, which will significantly degrade the

performance of the entire system. One reason is that the files may not be actually

accessed by the processes, and the policy updates will cause additional accesses.

Another reason is that the user data and their duplications may not be stored

consecutively in the storage medium.

Alternatively, we consider fetching policy updates at the access time. First,

any user request for policy updates will be applied to a policy database. Second,

whenever the user data is accessed at the policy agent level, the policy agent will

pull the newest policy set from the policy database, and update the policy descriptor

of the accessed files, as illustrated in Fig. 4.4. Note that the policy database in

Fig. 4.4 is logically resident in the user domain in order to offer a cross-boundary

policy application. The cloud provider could cache part of this policy database into

the local domain of the cloud infrastructure to boost performance.

Another critical problem caused by unintentional copies is duplication

discovery. As mentioned previously, the unintentional copies are unidentifiable by

the policy agent at the copy time and thus not included in the global view of data

distribution. This problem is directly related to the guaranteed deletion service,

because the system could not delete a file without the awareness of its existence.
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Figure 4.4: The policy update strategy: the policy database will be updated when
policy update requests arrive, but if there is no data access request, the policy
descriptor attached to that data file will not be updated. The policy descriptor will
only be updated at access time.

Similar to the solution of the policy update problem, we expect to discover

duplication only at the access time. The underlying logic is that if a file is never

accessed, it is equivalent to a non-existent file. Hence, we need the policy agent to

send a message to the user domain with information that is able to distinguish every

duplication. We will provide a detailed discussion in a later section. The point here

is that we could combine the message for duplication discovery and policy updates in

a single round communication, and we aim to limit the message communication to a

single round protocol in order to minimize its performance impact. Algorithms 18

and 19 describe the entities’ behavior in this communication and execution model.

We introduced an entity data owner agent or user agent UA, which is a
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Algorithm 18: Pseudo code of a policy agent PA

1 receive request(idowner, idPA, pid, fid, ACCESS)
2 send request(idowner, pid, fid, STATUS) to user agent UAowner

3 wait response(idowner, pid, fid, UPDATE) from user agent UAowner

4 upon receive response(idowner, pid, fid, UPDATE)
5 update the policy descriptor of (idowner, fid) with UPDATE
6 send response (idowner, pid, fid, ALLOWED OPERATION)
7 to the process ppid

Algorithm 19: Pseudo code of a data owner agent UA

1 receive request(idowner, idPA, pid, fid, STATUS)
2 update(fid,STATUS) to file list
3 read(fid,UPDATE) from policy database
4 send response(idowner, pid, fid, UPDATE) to policy agent UAidPA

container of the policy database and the global view of data distribution. Especially,

the STATUS contains the necessary information to recognize if a previously

unknown data copy is the target file.

A data file is the minimum object that a policy set is applied. All the copies

of the data file share the same policy set. We use fid to identify a group of files,

which are copies of the same file, and share the same applicable policies. Additional

information provided by STATUS distinguishes the copies in a filegroup.

The pid indicates the entity that requests the data access. Be aware that

pid here is a generic identifier that is better to be considered as an information

container with a globally unique identifier. It may contain information that

determines the policies to apply. In practice, this field may include domain

identifier, user identifier, application identifier, system information, etc. The pid is

used here for concision and capture the essence.
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4.4.2 Case 1: Data Duplication Discovery

It is critical to discover any unintentional copy in order to create a global view of

data distribution. As described in Section 4.4.1, the system discovers duplication at

the accessing time via the information carried by the STATUS field in the request.

In the meantime, intentional and unintentional duplication should be treated in a

uniform way. It is clear that if the policy agent does not report copy operation to

the user agent at the copy time, there will be no difference between intentional copy

and unintentional copy. Therefore, it is unnecessary to differentiate these two types

of duplication and specify corresponding system behaviors.

The data duplication discovery subsystem takes into account the following

design points:

• A copy carries exactly the same information as its source. At the

copy time, both the data file and its policy descriptor will be duplicated. As a

consequence, from the view of the user agent, any duplication is

indistinguishable from its source, and the system could not rely on the

information of the file’s initial policy descriptor, such as the fid field.

• This process should be a single-round protocol. This requirement is to

minimize the communication overhead introduced by the mechanism. Also,

the system should minimize the size of the communicated message.

• Messages could carry invalid information. The system should filter out

invalid duplication information. For instance, an attacker could inject fortified

copy information into the data distribution view without actually possessing

the data file. When the user requests data deletion according to the

distribution view, it will trigger a policy violation.
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Algorithm 20: Pseudo code of user agent UA for duplication discovery

1 init: L← ∅
2 function: fileupload(file)
3 HASHfid ← hash(file)
4 Gfid.add(HASHfid)
5 L.add(fid, Gfid)
6 send (idowner, file, fid, HASHfid) to policy agent PAidPA

7 receive request(idowner, idPA, pid, fid, STATUS)
8 if L.search(fid).G.search(STATUS.prehash) then
9 if verify(file, STATUS.timestamp,

STATUS.rnd, STATUS.curhash) then
10 L[fid].G[STATUS.prehash].HASH ← STATUS.curhash
11 else return INVALID
12 else L[fid].G.add(STATUS.curhash)
13 send response(idowner, pid, fid, ACC) to policy agent PAidPA

The resulted process is described in Algorithms 20 and 21, when the user

agent initializes a list of controlled files. When uploading files to cloud providers by

invoking fileupload(), the function will generate an initial hash and create a file

group for the uploaded file. The hash is used as the identifier for the initial copy in

the filegroup.

Since the policy descriptor will be copied at the copy time, the system has to

create a copy identifier at the access time (see Algorithm 21). More specifically, the

policy agent will hash the data file with the current timestamp and an additional

random number. The random number is introduced corresponding to the situation

in which multiple copies get accessed at the same time. The timestamp, random

number, newly generated hash value, and previous hash value will be included in

the STATUS field of the request sent to the user agent.

Upon receiving a request, the user agent will search the controlled file list L

by fid. If an entry is found, then search the corresponding copy group Gfid using

STATUS.prehash (at this point, the user agent does not know the newly generated

hash). If the corresponding entry is found for STATUS.prehash, update that entry

with STATUS.curhash, which is the treatment for a previously known copy. Before
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Algorithm 21: Pseudo code of policy agent PA for duplication discovery

1 receive request(idowner, idPA, pid, fid, HASHfid, ACCESS)
2 STATUS.prehash← HASHfid

3 STATUS.rnd← random()
4 STATUS.timestamp← now()
5 STATUS.curhash← hash(file, STATUS.rnd, STATUS.timestamp)
6 send request(idowner, pid, fid, STATUS) to user agent UAowner

7 wait response(idowner, pid, fid, ACC,UPDATE) from user agent UAowner

8 upon receive response(idowner, pid, fid, ACC,UPDATE)
9 update the policy descriptor of (idowner, fid) with UPDATE

10 HASHfid ← STATUS.curhash
11 send response

(idowner, pid, fid, HASHfid, ALLOWED OPERATION)
to the process ppid

the update, the STATUS.curhash should be verified to guarantee its validity.

According to the way of hash generation, this process could filter out the fortified

request without actually holding a copy of the file.

If there is no entry in the copy group Gfid for the STATUS.prehash (this

will happen when a copy is accessed after its source file was accessed, vice versa), it

indicates a previously unknown duplication has been found. Therefore, the system

will add a new entry to the filegroup Gfid with STATUS.curhash. Note that, at

the copy time, the source file and its copy are equivalent, and the system has to

update the file’s hash at every access time to differentiate each copy. Essentially,

each duplication is identified by its access pattern.

The policy agent PA could only update the HASHfid for a particular copy

upon receiving the ACC response in order to avoid inconsistency between policy

agent and user agent. A subtle point is when the ACC response is missing. It may

indicate two situations:

• the request is not received by the user agent, and

• the ACC response is not received by the policy agent.

To settle this problem, we could set a timer on the UA side when sending the
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ACC response. If the same request is received before the timer is expired, the UA

will just resend the response. The PA will also set a timer when sending the request.

If the ACC response is not received before the timeout, the PA has to resend the

request. This mechanism is not included in the algorithm description for concision.

4.4.3 Case 2: Guaranteed Data Deletion

Guaranteed data deletion could also refer to secure data deletion [94], data being

forgotten [95], sanitized [96, 97], etc. Most of the works focus on physically erasing

data from the storage media. In their setting, data can be considered as securely

deleted from a storage system, if an adversary with access to the system is not able

to recover the deleted data [94, 98, 99]. Some researchers further require that data

is assuredly deleted when it becomes inaccessible to anyone permanently after it has

been deleted [100, 101, 102, 103].

Incomplete data deletion is common because typical file deletion only

updates metadata of the “deleted” file (e.g., mark the related storage space as

allocatable), while usually leaving the media unchanged until that space has been

overwritten by new files. For instance, research showed that MSDOS disc

formatting operation only overwrites 0.1% of the data [104]. In the cloud

environment, this issue becomes an even more complex problem due to the

unintentional duplication. Particularly, at the time when the data owner sends a

request for data deletion, it is possible that some unintentional copies are

unidentifiable. If the data has been outsourced to other cloud entities, guaranteed

deletion requires WLAN wide search for the data file, which is impractical.

We did not pursue the enforcement of physical erasion of the data upon

request. Supported by the duplication discovery (see Section 4.4.2), we take a

surveillant approach. Remember that a copy is considered as non-existent, if it has

never been accessed. Therefore, immediate deletion is not required in this system.
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Algorithm 22: Pseudo code of user agent UA for guaranteed deletion

1 init: L← ∅
2 function: filedelete(fid)
3 L[fid].DEL MARK ← DEL PENDING
4 send request(idowner, file, fid, DEL) to policy agent PAidPA

5 receive request(idowner, idPA, pid, fid, STATUS)
6 if L.search(fid).G.search(STATUS.prehash) then
7 if verify(file, STATUS.timestamp,

STATUS.rnd, STATUS.curhash) then
8 L[fid].G[STATUS.prehash].HASH ← STATUS.curhash
9 if L[fid].DEL MARK == DEL PENDING then

10 if L[fid].G[STATUS.curhash].DEL == false

11 L[fid].G[STATUS.curhash].DEL← true

12 else return POLICY VIOLATION
13 else return INVALID
14 else
15 L[fid].G.add(STATUS.curhash)
16 L[fid].G[STATUS.curhash].DEL← true

17 send response(idowner, pid, fid, DEL) to policy agent PAidPA

Instead, our goal is auditable and transparent data deletion, i.e., the system could

monitor the data deletion operation and discover undeleted copies in the future.

Physical deletion is irrelevant in this system, because any data access is reported to

the user agent by the policy agent. If supposedly already “deleted” data gets

accessed, the data owner will catch this event, which will trigger a policy violation.

Algorithms 22 and 23 describe the logic of this component. Similar to

duplication discovery, the deletion takes place at the access time in effect. The

method filedelete(fid) only marks the copy group Gfid as DEL PENDING.

When a request arrives for accessing copies in a DEL PENDING group, the user

agent checks whether this is the first access request towards this copy after the

filedelete has been called. If it is the first time, then set its deletion mark as

true; otherwise, issue a POLICY V IOLATION event.

Since it is possible that unidentifiable copies exist after a file is “deleted”, the

system should be open to newfound copies. Whenever a new copy is recognized, add
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Algorithm 23: Pseudo code of user agent UA for guaranteed deletion

1 receive request(idowner, idPA, pid, fid, HASHfid, ACCESS)
2 STATUS.prehash← HASHfid

3 STATUS.rnd← random()
4 STATUS.timestamp← now()
5 STATUS.curhash← hash(file, STATUS.rnd, STATUS.timestamp)
6 send request(idowner, pid, fid, STATUS) to user agent UAowner

7 wait response(idowner, pid, fid, ACC,UPDATE) from user agent UAowner

8 upon receive response(idowner, pid, fid, DEL)
9 update the policy descriptor of (idowner, fid) with DEL

10 HASHfid ← STATUS.curhash
11 send response (idowner, pid, fid, HASHfid, DEL) to the process ppid

it to the group and mark it as deleted. For all these situations, the user agent

should uniformly respond to the access request with DEL to notice the deletion to

the policy agent.

Upon receiving a DEL response, the policy agent has to send the request

process a DEL response. We have not defined the behavior of request processes

upon receiving DEL responses, but since any access has to take place via the policy

agent, access to “deleted” files will be detected and trigger policy violations.

Though this model does not actively delete files upon request and delay the

deletion to the next access request, it will not conflict with the common usability

practice. The user interface could invoke access requests right after the

filedelete() method has been called. This treatment will delete known

duplications immediately.

4.4.4 Case 3: Black/White List for Data Sharing

Black/White list is the showcase of the customizable policy set of the system. We

have to first differentiate two types of data sharing because of the discrepancy

between access patterns:

• A local process p draws and sends part of the data to the request process.



[82]

This access pattern could occur when the user data can be viewed as a list of

entries, and only a few entries will be used at a time, e.g., machine learning

algorithms.

• Send a copy of the target file to the request process. This access pattern

usually occurs when sharing multimedia data, or for load balancing purposes.

The first type could be implemented inside the policy agent by a built-in

attribute-based access control mechanism. PA returns required data entries

according to the applied polices. Since the request process could not acquire full

accessibility to the data, it is not file-level data sharing. This type of data access

could be considered as a procedure in which a process with file-level accessibility

serves as an access agent providing data service to other processes.

The focus of this section is the second type, file-level data sharing, which is

usually related to cross-boundary data sharing. The policy agent has to send the

entire file, including the policy descriptor, to the request process. In essence,

file-level data sharing will create a new copy for the domain who initializes the

sharing request, so the overall method heavily depends on the duplication discovery

mechanism. Note that the policy descriptor could only regulate the behaviors

assisted by the policy agent; thus, the duplication discovery is critical for cases in

which the function of policy agent is bypassed in some way.

The black/white list is not enforced by the system, however, the system will

detect policy violations. Data shared with a third party domain has to be accessed

through the policy agent resident in that domain. Thus the user agent could detect

any access request from domains that are blacklisted by the policy configuration.

The behavior of the user agent for data sharing follows the general treatment

described in Algorithm 19 (see section 4.4.1), and the policy agent is defined in

Algorithm 24. Notably, the user agent will not react to the data sharing request
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Algorithm 24: Pseudo code of a policy agent PA for data share

1 receive request(idowner, idPA, iddomain, pid, fid, SHARE)
2 send request(idowner, pid, fid, STATUS) to user agent UAowner

3 wait response(idowner, pid, fid, UPDATE) from user agent UAowner

4 upon receive response(idowner, pid, fid, UPDATE)
5 update the policy descriptor of (idowner, fid) with UPDATE
6 if isblacklisted(iddomain) then
7 send response (idowner, iddomain, pid, fid, REJECTED) to

ppid
8 else send response (idowner, iddomain, pid, fid, ALLOWED) to

ppid

differently from other requests, though data sharing will lead to additional

duplications.

In fact, the user agent does not distinguish the type of requests except for

the request for consent (see section 4.4.5). The black/white list is only part of the

policy set and will be returned to the policy agent though the policy update

UPDATE. Therefore, the user agent will not create any representative for the

possible new duplications at this moment; however, if the request regards some

unknown duplications that have already existed, the UA will treat it through the

duplication discovery service.

4.4.5 Case 4: Consent Grant and Withdraw

User consent for data usage is an important feature for data service not only

because of the increasing awareness of privacy protection of the public, but also

regulations are established to enforce the transparency of data usage and allow the

data owners to decide how their data will be used.

The grant and withdrawal of consent are different from other policy requests

in that it is a process initiated by the service provider to require additional privilege

from the data owner. In previous cases, the policy agent could only passively check

the policy database for allowed operations or data sharing domain. The consent
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Algorithm 25: Pseudo code of a policy agent PA for consent grant

1 receive request(idowner, idPA, pid, fid, CONSENT )
2 send request(idowner, idPA, pid, fid, STATUS,CONSENT ) to UAowner

3 receive response(idowner, idPA, pid, fid, CONSENT )
4 notify the process ppid with (idowner, fid, CONSENT )

Algorithm 26: Pseudo code of a user agent PA for consent grant

1 receive request(idowner, idPA, pid, fid, STATUS,CONSENT )
2 update(fid, STATUS) to file list
3 consent ← user input
4 update(consent) to policy database
5 send response(idowner, idPA, pid, fid, CONSENT ) to PAidPA

mechanism allows the policy agent to purpose more operations intended to apply

but not yet allowed by the current policy set.

The consent withdraw could be implemented by mechanisms we have already

defined; thus, we have not defined a specific procedure for consent withdrawal. It

can be done in two ways:

• Reduce the allowed operations though the policy updates. This

method is recommended for fine granularity consent control. Since the user

agent could update the policy database anytime without interaction with the

cloud provider, consent withdrawal is under control by the data owner.

• Delete data from the cloud infrastructure. This method removes data

from the cloud storage space and blocks any operation request from the

process in the cloud.

For consent grant, a specific request and corresponding behaviors are defined

as Algorithm 25 and Algorithm 26.

Because the request for consent grant needs human interference, the policy

agent will not wait on response right after the request is sent, but asynchronously

process the response. We use notify() to differentiate this process from the ones
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Figure 4.5: Data structure of the policy descriptor prototype. Except for the policy
language block and the domain history block, every field is with fixed length. The
policy language block is a variable length field whose length is determined by the
language block length field. the domain history block is a variable length field whose
length is determined by the domain history block length field.

that wait on responses. On the side of the user agent, standard duplication

discovery will be conducted, which is represented by update(fid, STATUS) in

Algorithm 26. Then, prompt the data owner for input and update the policy

database according to user input. Therefore, the cloud provider has to send

requests for consent grant and check the policy database later on. We can consider

any policy update is a process of implicit consent grant or withdraw.

How the policy agent handles the response is not essential for the explicit

consent request and left to the request process the responsibility.

4.5 Policy Descriptor Prototype

Based on the policy demonstrations cases, we construct the policy descriptor

prototype whose fields are described below (illustrated in Fig. 4.5).

• Data owner ID. Possible usage of this field is to assist management on the

cloud side. On the other hand, it helps user agents filter out messages that
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received from the socket but aims to other data owners. This field is

recommended to be globally unique, e.g., addresses on a public blockchain.

• Policy agent ID. This field is used to distinguish policy agents, especially in

cases that data is shared by multiple data processors in a single domain.

• File ID. This field is the identifier of a group of duplications belongs to a

data file, i.e., copies with the same file ID contain the same data except for the

policy descriptor.

• Latest file hash. The hash value generated by taking as input the

combination of the data file, the timestamp of the last access, and a random

number. This field serves as the identifier to distinguish copies in a filegroup.

This field will be updated every time it has been accessed, thus this value has

to be synchronized on both sides.

• Last access timestamp. This field is used to record the timestamp of the

last access in order to help verify the file hash. This field has to be updated

whenever the file hash has been updated.

• Nonce. This nonce is the random number that is used to generate the file

hash. The purpose of introducing a random number in the hash generation is

to avoid hash conflict when multiple copies of a single file have been accessed

at the same time.

• Policy agent socket. This field is used for the user agent to create a

communication connection with the policy agent.

• Data owner user agent socket. This field is used for the policy agent to

create a communication connection with the user agent.
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• Deletion mark. This field is used to indicate a copy has to be deleted, which

has two main effects: as the instruction for deletion of the data file on the

policy agent side; as an indicator of policy violation if an access request is

received for a copy marked as deleted.

• Policy language, language version, language length, and policy

language block. The proposed system allows flexibility for policy

representation. Since the policy set is a variable-length list of variable length

content, we do not specify a fixed length for each entry. Instead, the user of

this system could specify a language parser by the policy language and version

field. The language length indicates the offset of the following policy block in

bytes.

• Domain history language, DHL version, domain history block

length, and domain history block. These fields are used to track the

history of data sharing across domains, which is useful, especially for

identifying the origin of a duplication of a data file. Since the request message

is part of the evidence for inference of policy compliance, messages have to be

forwarded to policy agents along the domain history path for fair information

availability. Similar to the policy representation, the user of this system could

specify a language parser by the domain history language and version field.

The domain history block length indicates the offset of the following domain

history block in bytes.
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Figure 4.6: The illustration of the concept demonstration prototype

4.6 System Prototype

4.6.1 Off-chain Databases: Evidence and Inference

We have built a prototype system for the public ledger of policy compliance on top

of the demonstration policy set. The policy violations under consideration regard

the guaranteed deletion, black/white list, and consent grant and withdraw. Data

duplication discovery serves as a critical supporting technique. The communication

for policy requests between the user agent and the policy agent is recorded as the

evidence to infer policy violations. Fig. 4.6 illustrates the structure of the prototype

of the ledger of policy compliance.

The off-chain database is comprised of two levels and should be maintained

on both the data owner side and the cloud provider side:

• The evidence database. It keeps the most detailed records regarding policy
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compliance. Particularly, the prototype system records the request and

response messages between the user agent and the policy agent. Note that the

request and response mechanism could not generate exactly the same view on

both sides. To understand, imagine the scenario of cross-boundary data

sharing. From the data owner’s point of view, there are requests from policy

agents of multiple domains. However, each policy agent only holds its own

requests and response. As a result, the policy agent could not detect some

violations that could be detected by the user agent. For fairness of

information availability, requests and responses should be forwarded to policy

agents along the domain history path.

• The policy compliance database. It keeps the output of the policy

compliance inference engine. The hash that will be submitted to the VOCMC

for agreement is calculated from this database. Although the evidence

database could create the same view on both sides, the two views are not the

same bit-by-bit, which is not suitable for hash functions. The data owner and

the cloud provider, in fact, reach an agreement on both the updates to the

police compliance database and its renewed hash.

We use the on-chain hash as an immutable checkpoint of the police

compliance database. Both sides confirm the content of the database and sign

on-chain transactions through the VOCMC. When retrieving data from the

compliance database, the ledger user could verify its integrity by comparing its

on-chain checkpoint with calculated data hash.

4.6.2 VOCMC Configuration

Suppose the Ethereum blockchain or that with equivalent expressiveness of Turing

completed language is the ledger for the on-chain transactions. The user and the
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provider transfer deposits into a 2-of-2 multi-signature address to open a VOCMC

for pairwise recording. The deposit could be part of the payment for the service

provider, which would be transferred to the provider’s address at the end of the

service provision according to the incentive model. The incentive model is

implemented by the smart contract. Every time an update to the database arrives,

all the parties should sign a temporary transaction that contains the hash of the

renewed view of the database when reaching an agreement on the updated states.

Regarding the finalization, our design choice is that the channel would be

closed when finalizing a record, with the redistribution of the deposit. The reason

for the decision is first that the on-chain cost is almost the same no matter what

kind of transaction is processed, and secondly, that finalization could be caused by

dispute where deposit must be redistributed. The current design processes the

finalization uniformly. If the finalization is triggered by the timeout TE and the

service continues, the deposit will be transferred to another 2-of-2 address as

opening another VOCMC. Figure 4.7 illustrates the ideal case in which all the

participants are honest. The VOCMC output to the BC periodically to set

checkpoints on-chain. During the finalization, the smart contract for the incentive

model would be executed by the miners at the cost of the service provider1.

The objective of the proposed public ledger is to serve as a credit record of

service providers to provide a guide to the customer for informative decision

making, just as the personal credit record helps banks make decisions on loan. A

lesson learned from the current credit records is that mistake is not absolutely

unacceptable, no correction is. The commercial bank would not report a default

once it happens, but provide to the customer a time period to make a late payment

or take other acceptable actions. Similarly, GDPR does not require the data

1This is not required. If the policy compliance database is maintained by a third party, the cost
for on-chain computation could be paid by the third party as it joins the VOCMC by a 3-of-3 multi-
signature address. Moreover, any operation cost will finally be transferred as part of the service
charge to the consumer, thus this is not a essential requirement.
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processor to be absolutely secure. The organizations are allowed time to react to the

event and notify the data leakage to the users in order to minimize the damages.

The negotiation functionality supports this critical feature for a practical solution.

Data or privacy leakage could take place during the process not only because of the

intentional malicious behavior of the organization but also because of

misconfiguration or attacking from outside. Besides providing an approach to

address disagreement, the negotiation of the VOCMC could also serve as a buffering

mechanism to allow the data processing organizations to take corrective actions or

restoring their defensive system.

4.6.3 Anonymity

The BC community promotes anonymity as the default for any BC application in

order to protect the privacy of the users. Because of public visibility, the users’

detailed activities could be reconstructed, if identities are not properly treated. The

basic approach for anonymity in a BC system is to strictly abandon address reuse,

that is, an address can only be used for exactly one transaction, regardless of
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representing a receiver or a sender. Note that anonymity provides on-chain

privacy [20], that is, transactional privacy is provided against the public unless the

contractual parties themselves voluntarily disclose information.

In our scheme, we embrace the anonymity of the data owner, i.e., the user of

the data service. However, to enable auditability, we intentionally allow the reuse of

service provider addresses. A service provider benefits from reusing an address for

all activities related to a certain business since a trackable history record of good

performance helps marketing. On the other hand, if a potential customer is given a

new address with no publicly available historical record, the customer could suspect

misbehavior.
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Chapter 5

Evaluation and Conclusion

5.1 Experiment Setting

The system scales blockchain-based application by reducing unscalable on-chain

operation without sacrificing the information reliability we desired from the

blockchain system. Therefore, the purpose of the experiments is to demonstrate the

capability of off-chain computation to replace on-chain computation. We ran the

policy agent on a MacOS based machine, which is equipped with a 64-bit 3.1 GHz

dual-core Intel Core i7-5557U processor, 16 GB 1867 MHz DDR3 RAM, 512 GB

SSD, and 100 Mbit/s ethernet connection. The user agent is run on a MacOS based

machine which has a 64-bit 2.7 GHz dual-core Intel Core i5 processor, 8 GB 1867

MHz DDR3 RAM, 256 GB SSD, and 100 Mbit/s ethernet connection. The use of

CPU core is set to be the single-core mode for consistent measurement. The

on-chain operations are tested on Ropsten testnet, whose behavior is supposed to be

similar to the Ethereum main network.

5.2 Baseline Spacial Overhead

The cost of the entire system includes the overhead introduced by the sticky policy

mechanism to data access and data process and the cost of the execution of the

VOCMC protocol. In this section, we discuss the spacial overhead of sticky policy

and VOCMC message.

5.2.1 Policy Descriptor

The prototype relies on the Recursive Length Prefix (RLP) [105] to create the

headers and messages; thus, the length of each field of the header could be of
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Header Field Length (bytes)

Data Owner ID 8

Policy Agent ID 8

File ID 8

Last Access Timestamp 8

Policy Agent Socket 10

Data Owner User Agent Socket 10

Latest File Hash 32

Nonce 4

Deletion Mark 1

Policy Language 8

PL Version 8

Language Block Length 8

Policy Language Block NA

Domain History Language 8

DHL Version 8

Domain History Block Length 8

Domain History Block NA

Total 137+

Table 5.1: The length of the fields in policy descriptor of sticky policy

flexible length. For each field, the RLP will prefix two bytes to set the boundary

and indicate the length of the field. For a payload of more than 55 bytes long, the

RLP encoding adds 2+ bytes to indicate its length. Therefore, for the prototype, we

construct the policy descriptor described in section 4.5 for the cost of 137+ bytes

payload (see Table 5.1) and 34+ bytes for the cost of RLP. The uncertainty of the

header length is because of the variable length fields, Policy language block, and

Domain history block. The fields for IDs, timestamp, and length are of the long

integer, which is of the size of 8 bytes. Note that big integer could be used to

replace the long integer, if necessary. All the fields are determined to create a

prototype with a reasonable setting in which the size of each field is by no means

the only option.

The Policy language block and Domain history block are arbitrary strings.
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Field Length (bytes)

Requestor Address 20

Responser Address 20

Message Type 1

Digest of Policy Compliance/Negotiation 32

Round Number 8

Requestor Sign Mark 1

Requestor Signature 41

Responser Sign Mark 1

Responser Signature 41

Negotiation Block NA

Total 165+

Table 5.2: The length of the fields in VOCMC message

We assume the policy block only contains a B/W list of domain names, and the

B/W list consists of 10 items. As well, the domain history block is assumed to

comprise 10 domain names. To estimate a realistic overhead of the policy

descriptor, we pad these block with bytes of the average length of domain names,

which is approximately 10 characters [106], and neglect the cost of the imaginary

languages. The resulted policy descriptor is of length 377 bytes

(137 + 34 + 100 + 3 + 100 + 3, the 3 bytes is for the RLP cost of string longer than

55 bytes). If the user data file is a jpeg image of size 2MB, the spacial overhead

introduced by the policy descriptor approximate 0.019%. We use this pseudo-header

for further performance experiments.

5.2.2 VOCMC Message

Table 5.2 illustrates the minimum construction of VOCMC message fields to

implement the required behaviors described in chapter 3, but a particular message

only carries a subset of these fields.

The possible message type with the largest size is the negotiation message,
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which includes the addresses of requestor and responder, message type, digest of

negotiation history, round number, and a variable-length field negotiation block.

The total number of fixed bytes for a negotiation message is 81 + 10 + 3 = 94 bytes,

in which the extra 10 bytes are the RLP cost for regular length byte array, and the

other 3 bytes are for byte array longer than 55 bytes. All the other message types

are with a fixed message length.

The most frequently used message type is the messages for off-chain contract

instance update, which consist of a pair of request and response. The request

message comprises 140 bytes, including the addresses of requestor and responder,

message type, digest of policy compliance history, round number, requestor sign

mark, requestor signature, and responder sign mark. In addition to the fields of the

request message, the response message has the responder signature field, thus

results in 183 bytes in total.

The message for contract instance registration is an on-chain transaction. We

only consider the payload of transaction data involved. A valid registration message

contains all the fields other than the negotiation block and sign marks; thus, the

total message length is 177 bytes no matter the contract registration is for policy

compliance or negotiation.

5.3 Baseline On-chain Cost

On-chain cost consists of transaction fee and transaction confirmation time. We

examine the on-chain cost in the Ropsten [107] network (one of the Ethereum

test-nets). The Ropsten network executes exactly the same code of the Ethereum

main net; therefore, we could expect quite similar behaviors compared to the main

net execution.
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Operation Cost (Gas)

Functionality deployment 1455,250

Successful channel creation 123,047

Unsuccessful channel creation 157,378

Contract instance registration 237,420

Contract instance registration timeout 212,812

Successful channel closure 142,630

Unsuccessful channel closure 90,231

Table 5.3: The gas cost of on-chain operations

5.3.1 Transaction Fee of On-chain Operations

The transaction fee is measured by Gas, which is kind of the “fuel” to execute code

in the Ethereum network. Every instructions and data storage has a Gas

consumption value. The transaction fee is based on the total Gas consumption of

the transaction. Gas is priced in Gwei (the most-used denomination of Ether, the

cryptocurrency of Ethereum). The transaction fee equals

gas consumption× gas price. For execution, the gas consumption is fixed, but

the user could announce a relatively high gas price to raise the priority of her

transaction. Therefore, we only use gas consumption as an indicator of the

operation cost. Table 5.3 lists the cost of complete execution of the on-chain

operations of VOCMC.

To provide a more realistic sense of the on-chain execution cost, consider

1-Gwei gas price and $0.00000014 ether price. Contract instance registration, the

most-used on-chain operation, is priced 0.0332 in US dollar. Thus, frequent on-chain

transaction submission results in high execution cost, which is another constrain

other than performance when building smart contract applications on the public

blockchain.

By design, the on-chain operations consume a fixed number of gas because

each operation only requires a single round protocol. If multiple rounds are
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necessary (e.g., channel closure) for system security, the users should invoke the

operations multiple times and manage it by off-chain logic instead of relying on the

on-chain execution to handle the multiple-round protocol. The reason is that there

is a maximum gas limit imposed by the block miners, non-deterministic execution

risks out-of-gas exceptions.

5.3.2 Ropsten Transaction Latency

The latency of on-chain operation of VOCMC consists of three components, the

transaction confirmation latency, computer-human interaction latency, and

transaction communication latency. We used a message relay contract to measure

the latency of protocol communication through the Ropsten network. The local

client sends a registration transaction and its timestamp to the relay contract.

Upon receiving the transaction, the contract sends the transaction data and

timestamp to the responder address. The responder client uses the timestamp to

measure the latency. We record an average latency of 83.3 ms.

We used the registration operation to measure the transaction confirmation

latency of the Ropsten network. There are two reasons for this decision: 1) contract

instance registration is the most-used operation, 2) contract instance registration

requires no computer-human interaction. This measurement is used to estimate the

scalability of the prototype system. The transaction confirmation latency is

supposed to be 15s to 20s, which is adjusted dynamically by the mining

difficulty [108].

The tester sent 1 transaction per minute for 1000 minutes, and query the

transaction pool to monitor each transaction’s appearance in the pool and take note

of the time. Finally, query the Etherscan [109] to determine the timestamp of when

the transaction eventually gets incorporated into a block. Fig. 5.1 shows how the

transaction confirmation time varies over 100 minutes. In total, we recorded an
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Figure 5.1: Ropsten testnet transaction confirmation time over a 100-minute period.

average confirmation time of 21.25 seconds and a standard variance of 13.89.

Dynamically, the confirmation time varies from less than 10 seconds to around 70

seconds, as seen in Fig. 5.1. Based on this observation, a wide timeout is

recommended for application logic that relies on transaction confirmation.

5.4 Data Access Delay

We measured the data access delay introduced by the sticky policy mechanism.

Intuitively, there are two types of componential delay: 1) the communication delay

between the policy agent and the user agent, and 2) the time to prepare the

message and list checking. Given a pair of communication parties, most of the

delays tend to be consistent, and fluctuation comes from the communication and

execution environment. Only the time complexity of the hash function is O(n)

where n is a parameter related to the size of the data file, i.e., the execution time of
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Figure 5.2: Data access latency introduced by sticky policy.

the hash function increases as the input file size increases. Therefore, besides

measure the overall access delay, this experiment aimed to examine how user file

size impacts the performance.

We traversed different file sizes from 1 KB to 20 MB. For each file with a

given size, the tester accessed the file 1,000 times to record the average delay and

the standard variance. Both the overall delay and the execution time of the hash

function were recorded in order to get the statistics of the consistent component and

the variable component. Fig. 5.2 shows the result of file sizes from 1 MB to 20 MB

with 1 MB step length.

It can be observed from Fig. 5.2 that the execution time of the hash function

starts to dominate the delay around file size of 7 MB. The consistent component is

ranging from 40 to 53 milliseconds, and the variable part is linear to the file size as

expected. The variance of the overall delay is around 9% of the total. The most
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Figure 5.3: Data access latency introduced by sticky policy for small file.

acceptable range of delay is for multimedia files such as images or short video

streams. It might need to be optimized to adjust to larger files. For the files with

relatively small size (e.g., a text file of some KBs), the hash function overhead is

negligible compared to the consistent component, as seen in Fig 5.3.

5.5 On-chain Strategy and Scalability

This section studies the VOCMC’s impact on the scalability of blockchain-based

general purpose ledger. Due to the lack of data access trace from real productive

cloud infrastructure, we could only examine a simulated scenario in order to catch

some insights into the properties of the prototype system. Table 5.4 lists the

simulation configurations for the experiment.

The simulation is designed to capture system behavior similar to our

application scenario, i.e., the public ledger for the policy compliance record of cloud
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Simulation config Value

Total policy compliance report 1,000

Gap between report generation 60-180 sec.

Size of policy compliance report 640 Bytes

Policy violation rate 5%

Pure on-chain recording Upload per report

On-chain off-chain combination 1 Periodic

On-chain off-chain combination 2 Violation driven

On-chain off-chain combination 3 Combine 1 & 2

Table 5.4: Simulation Configuration of Scalability Test

Strategy Uploads Time (s) Gas cost

Pure on-chain recording 1000 22,183 4.25× 108

Periodic (1200 s) 100 1972 2.37× 107

Violation driven 39 919 9.26× 106

Periodic & violation driven 116 2466 2.75× 107

Table 5.5: Simulation results of 4 different strategies

service providers. The policy compliance is assumed to be a non-frequent record. As

an analog, a credit statement is reported on a monthly basis. We choose a 60-180

second gap and 1,000 records for the balance between low frequency and experiment

efficiency. The 640 bytes is a reasonable choice for an informative policy compliance

report. Notably, as the experiments show, these assumptions on original records are

not essential for the performance of the off-chain boosted public ledger.

This experiment compares the on-chain-checkpoint-off-chain-database

structure with pure on-chain data recording. Though the theoretical upper bound of

transaction data is around 780 KB recently, it is not suitable for our scenario

because it will take quite a long time to buffer 780 KB data of only the policy

compliance report. However, it is simple to fill the block with evidence data. Hence,

it is not necessary to reach the upper bound of uploaded data. For the pure on-chain

recording, the tester uploaded every report once it arrived through transaction data.
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We tested 3 strategies for the on-chain-off-chain combination in which only

the hash value of the current accumulated records is uploaded through the contract

instance registration of the VOCMC. The periodic strategy is useful for the most

general-purpose database that set on-chain checkpoint over a specific period of time.

Violation driven strategy is a special variety of event-driven strategies suitable for

our application scenario. The policy violation is the most concerned records for the

ledger user. This strategy guarantees that violations would be published upon their

occurrence. We assume a violation rate of 5%, i.e., every policy compliance report

has a 0.1 chance to be a violation report. The third strategy combines the periodic

and violation driven strategies for both the merits, which is probably the optimized

option for our scenario. Periodically uploading checkpoint is necessary for the daily

operation of a database, and the violation driven offers on-time information

exposure. Specifically, every time when a violation driven uploading is triggered, the

current periodic cycle will be aborted and start a new cycle, i.e., the timer for

periodical uploading will be reset to zero.

Table 5.5 shows the results, where time is the on-chain transaction

confirmation time. The decrease of on-chain cost is not significantly remarkable due

to the relatively small scale of our experiment (still decrease by orders of

magnitude), and the parameter setting (small period). However, this scheme has

more potential because of the decoupling of the on-chain operation and off-chain

recording. Especially, the performance of the periodic strategy is completed

irrelevant to the generation rate of the records. It only depends on the predefined

time period. For example, if the uploading rate were set to be 1/24 hour, there

would only be 2 uploads during the experiment (the run seen in Table 5.5 took a

totally 119,110 seconds, 33 hours). On the other hand, if we had a 100× record

generation rate, the cost of the periodic strategy would still stay the same, as seen

in Fig. 5.4. Once the uploading rate is determined, the number of uploads would be
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Figure 5.4: Periodic upload is not proportional to the record generation rate. Given
a time period, the number of uploads remains constant, which is determined by an
independent uploading rate.

a constant independent of the number of the records (but related to the uploading

rate).

Though the violation driven strategy outperformed the periodic strategy in

this particular case, the cost is related to the record generation rate. Therefore,

scenarios with a high frequency of events in concern degrade this strategy. The cost

of the combination of these two strategies was more than both the cost of the

strategies, respectively. In fact, all the violation driven uploads were preserved and

did replace part of the periodic uploads, so the combined cost should be greater than

the cost of periodic strategy alone and less than the sum cost of these two strategies.

To conclude, the VOCMC effectively removes the scalability limit when

developing blockchain-based general purpose ledger. The on-chain cost is decoupled

from the scale of the records in concern. The developer could determine the portion
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Figure 5.5: Number of accesses to completely deleted all the copies of file.

of on-chain operation purely according to the acceptable performance and finance

constraints.

5.6 Guaranteed Deletion

We use this case study to examine the effectiveness of the policy application case

supported by our prototype system because guaranteed deletion could also reflect

the performance of the duplication discovery and the consent withdraw. Recall that

a data file will be deleted at the first access after the user agent marks this file as

deleted. As a result, the deletion depends on the access pattern. In this experiment,

we only test the performance under a uniformly random access pattern. Since, in

practice, files may be accessed at very low frequency, even never be accessed, we

counted the number of access between when the deletion was issued and when the

deletion was completed. We assume several copies of the file that would be deleted
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Figure 5.6: The access number required to complete deletion is nonlinear to the
number of copies, growing rapidly for small copy numbers.

are spread in a file system with 10,000 files. We tested the guaranteed deletion on

different numbers of copies, 13 cases from 1-10,000 copies. The total file number in

the file system remained the same, i.e., 10,000 copies means 100% of the files in the

system were copies of the file supposed to be deleted.

Fig. 5.5 shows the results. Notice the labels of the x-axis that the required

number of accesses is not linear to the number of copies. Its functional relationship

can be seen in Fig. 5.6. Under uniformly random access, even just 1 copy needed

10,052 access to hit the copy and complete the deletion. Though uniformly random

access is far from the realistic access pattern in a file system, this is still an

interesting observation, because the unknown duplications could only be touched by

somehow random access if there is no regular scan of all the files in a system. The

access number increased very fast when the copy number was very small, and thus

for most of the realistic scenarios (usually, files would not be duplicated thousands
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of times), the system should erase as many copies as possible through an initial

deletion, i.e., access all the known copies right after the deletion instruction is

issued. Decreasing from 5 copies to just 2 copies could significantly increase the

chance of complete deletion. If a deadline is posted for data deletion, we recommend

scanning the file system regularly to ensure unknown copies could be discovered

before the deadline.

5.7 Conclusion

An innovative approach is proposed for constructing a public ledger of policy

compliance in this dissertation. Particularly, VOCMC is introduced to address the

verification of external information as a critical phase to build a public ledger based

on blockchain technology. We stress that the blockchain is reliable in the sense of

the immutability of on-chain transactions after finalization. However, the blockchain

is lacking instruments to effectively verify external information; that is, it will trust

whatever data provided as input. Therefore, when considering the combination of

on-chain and off-chain architecture, the key is the verification of the information

from the off-chain world. Moreover, the VOCMC displays the potential to further

limit on-chain computation. A reliable verification mechanism for external

information allows depending more on off-chain computations without impacting

the reliability of the outcome.

Particular contributions of this dissertation are as follows,

• We formalized the ledger model and the verification mechanism (self-verifiable

transaction system) of blockchain and proved blockchain’s capability of

internal information verification and its inability to verify information from

the external world, based on our formalization.

• The VOCMC is proposed as the generalized and formalized model of the
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off-chain channel for general purpose recording. Through the concept of

incentive-based trust, we supported the justification of the information

verification mechanism and analyzed the security properties of the VOCMC

under the universally composable security framework.

• A prototype system was designed, in which on-chain hash is leveraged for the

reliable checkpoint, and the VOCMC is used for information verification and

scalability improvement. The sticky policy is employed as a general framework

for policy enforcement and evidence tracking.

• We implemented the concept demonstration prototype with 4 policy

application cases: 1) data duplication discovery, 2) guaranteed data deletion,

3) consent grant and withdrawal, and 4) data sharing black/white list.

• The prototype was evaluated on the Ropsten testnet for the Ethereum

blockchain application. We explored some metrics which confirmed our

expectation on performance and effectiveness. In particular, the decoupling of

the on-chain and off-chain performance allows developers to scale

blockchain-based applications through off-chain components without

sacrificing the reliability of the information.
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