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ABSTRACT 

CHARATERIZATION OF NEUROIMAGE COUPLING BETWEEN 

EEG AND FMRI USING WITHIN-SUBJECT JOINT  

INDEPENDENT COMPONENT 

ANALYSIS 

 

 

Nicholas John Heugel B.S. 

 

Marquette University, February 2020 

 

 

 

The purpose of this dissertation was to apply joint independent component 

analysis (jICA) to electroencephalography (EEG) and functional magnetic resonance 

imaging (fMRI) to characterize the neuroimage coupling between the two modalities.  

EEG and fMRI are complimentary imaging techniques which have been used in 

conjunction to investigate neural activity.  Understanding how these two imaging 

modalities relate to each other not only enables better multimodal analysis, but also has 

clinical implications as well. In particular, Alzheimer’s, Parkinson’s, hypertension, and 

ischemic stroke are all known to impact the cerebral blood flow, and by extension alter 

the relationship between EEG and fMRI.  By characterizing the relationship between 

EEG and fMRI within healthy subjects, it allows for comparison with a diseased 

population, and may offer ways to detect some of these conditions earlier.  The 

correspondence between fMRI and EEG was first examined, and a methodological 

approach which was capable of informing to what degree the fMRI and EEG sources 

corresponded to each other was developed.  Once it was certain that the EEG activity 

observed corresponded to the fMRI activity collected a methodological approach was 

developed to characterize the coupling between fMRI and EEG.  Finally, this dissertation 

addresses the question of whether the use of jICA to perform this analysis increases the 

sensitivity to subcortical sources to determine to what degree subcortical sources should 

be taken into consideration for future studies.  This dissertation was the first to propose a 

way to characterize the relationship between fMRI and EEG signals using blind source 

separation.  Additionally, it was the first to show that jICA significantly improves the 

detection of subcortical activity, particularly in the case when both physiological noise 

and a cortical source are present.  This new knowledge can be used to design studies to 

investigate subcortical signals, as well as to begin characterizing the relationship between 

fMRI and EEG across various task conditions. 
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CHAPTER 1: 

INTRODUCTION AND BACKGROUND 

 

 

The neuroimaging of brain activity with simultaneous functional magnetic 

resonance imaging (fMRI) and electroencephalography (EEG) capitalizes on the 

complementary strengths of the methods, but poses challenges with respect to cross-

method data integration and interpretation (Ahlfors & Hamalainen, 2012; Dale et al., 

2000; Kujala et al., 1995; Z. Liu & He, 2008; J. Mangalathu-Arumana, Beardsley, & 

Liebenthal, 2012).  FMRI measures the hemodynamic response related to neural activity 

at high spatial (millimeter) but low temporal (on the order of seconds) resolution, 

whereas EEG provides a high temporal (on the order of milliseconds) but low spatial 

resolution (centimeter) measurement of large-scale neural activity. Due to the differences 

in spatiotemporal resolution and type of measurement, fMRI and EEG provide 

complementary information but may reflect the activity of partially divergent neural 

sources in the brain. 

Understanding when and why the fMRI and EEG activity are coupled (i.e. 

correlated), and when they diverge is important for understanding brain function.  When 

EEG activity is correlated with changes in the hemodynamic response, source 

localization approaches that leverage the spatial resolution of fMRI, such as fMRI 

constrained EEG localization, can be used to characterize brain activity over short 

timescales (R. N. Henson, Flandin, Friston, & Mattout, 2010; T. Nguyen, Potter, 

Grossman, & Zhang, 2018; Toma et al., 2002).  EEG activity that becomes uncoupled 

from the hemodynamic response can be an indicator of neurologic disease or dysfunction.  

Diseases including Alzheimer’s, Parkinson’s, hypertension, and ischemic stroke, have 
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been shown to have an altered relationship between fMRI and EEG (Frank M Faraci, 

Baumbach, & Heistad, 1990; Girouard & Iadecola, 2006; Ibarretxe-Bilbao, Junque, 

Marti, & Tolosa, 2011; Kazama, Wang, Frys, Anrather, & Iadecola, 2003; Mackert et al., 

2008; John Polich & Corey-Bloom, 2005; Prvulovic, Bokde, Faltraco, & Hampel, 2011; 

Sperling, 2011).  Thus, the ability to directly measure the relationship between fMRI and 

EEG can enable detailed non-invasive characterization of the brain network dynamics 

that support perception, sensorimotor control, and cognition and provide an important 

avenue for investigating disease pathology. 

This dissertation is aimed at developing an analysis approach to characterize the 

relationship between simultaneously acquired fMRI and EEG data by leveraging joint 

independent component analysis (jICA) as a data-driven approach to parse task-related 

brain activity that covary between EEG and fMRI.  The analysis approach developed here 

optimizes the spatial overlap between coupled EEG and fMRI signals to determine how 

well fMRI and EEG signals account for one other, applies a methodological approach to 

characterize the relationship between the fMRI and the EEG, and finally, examines the 

conditions under which jICA of simultaneous EEG/fMRI can enhance the detection of 

subcortical signals in the brain. 

The following sections provide an overview of the origins of EEG and fMRI 

signals and current understanding about how the two imaging modalities are related.  The 

conditions under which EEG and fMRI signals can become uncoupled are then discussed, 

followed by a brief review of blind source separation techniques for neuroimaging 

analysis including jICA. 
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1.1 Electroencephalography and its Origins 

 

 

While EEG is a recording of the electrical field potentials measured at the 

scalp, its relationship to neural activity requires an understanding of how neurons 

produce electrical currents.  In neurons, electrical currents result from the 

transportation of ions across the cellular membrane.  This bulk flow of ions 

outside of the cell, and through the surrounding resistive tissues gives rise to the 

change in electrical potential measured by EEG at the scalp.  Neurons produce 

electrical currents in two ways, via the action potentials, which transmit 

information from a neuron via the axon, and post-synaptic currents at the 

dendrites, which correspond to the input to a neuron (shown in figure 1).  While 

the action potential produces a large signal (~100 mv ∆V), it only lasts 1-2 ms 

(Da Silva, 2010; Olejniczak, 2006).  Post-synaptic potentials are generally smaller 

in amplitude (~20mv ∆V) but last for 20-40ms (Da Silva, 2010; Olejniczak, 

2006).  Due to this longer lingering depolarization, and the neuron being able to 

receive multiple inputs simultaneously it is much more likely for potentials to 

overlap in both time and space, the signal observed in EEG is believed to arise 

primarily from post-synaptic potentials (Da Silva, 2010; Olejniczak, 2006). 
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Figure 1. Depicted is a cell with dendrites, soma and axon. In orange are indicated 

the direction of current flow for the action potential (down the axon) and the 

excitatory and inhibitory postsynaptic potentials (synapsing onto the dendrites and 

 

 

Although the post synaptic potentials are believed to be the primary contributor to 

electrical potentials measured at the scalp, the geometry of the neuron they arise from is 

also believed to play a role.  Stellate cells with radially oriented dendrites will tend to 

generate currents that cancel each other out producing what are referred to as “closed 

fields” (Figure 2) (Da Silva, 2010; Johns, 2014; Llinás, Joyner, & Nicholson, 1974; 

Nunez & Srinivasan, 2006).  Other cells, Pyramidal and Purkinje cells in particular, 
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dendrites that run parallel to each other, or extend only in limited directions.  These cells 

produce extracellular currents that sum, rather than cancel, and produce an “open field” 

(Figure 3) (Da Silva, 2010; Llinás et al., 1974; Nunez & Srinivasan, 2006).  In the 

neocortex, pyramidal cells are highly structured running parallel to each other and 

perpendicular to the cortical surface.  This structure allows for the extracellular currents 

from multiple pyramidal cells to sum together and produce larger local signals than could 

be obtained with a less structured anatomy.  For this reason, pyramidal cells in the 

neocortex are believed to be the primary contributor of measurable extracellular currents. 

Figure 2. A stellate cell with radially oriented dendrites is shown.  In gray an axon 

synapses onto the soma of the stellate cell producing a current source.  At the end of 

the dendrites excitatory postsynaptic potentials produce current sinks.  In yellow is 

the direction of the generated dipoles. Adapted from (Johns, 2014) 
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Figure 3. The general structure of pyramidal cells is shown.  The long dendritic 

trees extend off one side of the cell resulting in net current dipoles (Yellow arrow) 

that does not cancel within the cell.  In the neocortex, the pyramidal cells have a 

highly structured arrangement with the dendritic trees running parallel to each 

other, and perpendicular to the cortical surface.  The result is that the net current 

dipoles of each pyramidal cell sum together. Adapted from (Lopez da Silva, 2010). 

 

 

In pyramidal cells excitatory synapses occur primarily on the apical dendrites, 

causing a net flow of ions into the dendrite, creating a current sink within the dendrites.  

Inhibitory synapses occur primarily on the basal dendrites, producing a net egress of ions 

from within the cell.  So, when taken together the source in basal dendrites and the sink 

in the apical dendrites produce a net current dipole (Figure 3) (Da Silva, 2010; Llinás et 

al., 1974). In the case of neocortical pyramidal cells, these current dipoles are all oriented 

in the same direction, so when they are firing synchronously their net current dipoles sum 
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together, producing a signal measurable by EEG.  Single neurons, are not likely to be 

detectable within the aggregate neural activity occurring inside the brain.  To be 

detectable, two additional conditions are needed.  First, neural activity, in this case the 

inputs to neocortical pyramidal cells, needs to occur synchronously within a localized 

region (~400 μm) of the brain so that the resulting electrical dipoles overlap temporally 

and sum together (Kajikawa & Schroeder, 2011).  Second, the orientations of the 

resulting current dipoles need to be aligned so that the electrical current sum spatially as 

they propagate through the surrounding tissue.  When these conditions occur a net current 

dipole is created, known as a local field potential (LFP), that is detectable by EEG 

electrodes on the scalp.  Due to the regular anatomical structure of pyramidal cells in 

cortex the dipoles generated tend to be oriented perpendicular to the cortical surface 

(Figure 3).  As a result EEG is believed to be more sensitive to signals from the top of the 

gyri and bottom of the sulci, where the dipoles point towards the sensors, and less 

sensitive to activity along the walls of the sulcus, which are oriented parallel to the 

sensors and more likely to be canceled out by activity on opposite sulcal walls (Figure 4) 

(Nunez & Srinivasan, 2006).  Because electrical currents do not pass unaltered through 

tissue, the currents become diffused as the tissue density changes between the cerebral 

spinal fluid and the skull.  This diffusion partially offsets the decreased sensitivity to 

activity along the sulcal walls, since that activity can theoretically diffuse in a way to hit 

the scalp electrodes but results in a spatially spreading of the signal that reduces the 

overall spatial resolution of EEG.  
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Figure 4. A representation of how the net current dipoles (displayed here as arrows 

in the neocortex) are oriented with respect to the cortical surface, skull, and scalp.  

Dipoles along the walls of the sulcus are more likely to cancel each other out.  The 

result being that EEG is recordings have greater sensitivity to net current dipoles 

generated on the top of gyri, or the bottom of the sulci. Adapted from (Nunez and 

Srinivasan, 2006).  

 

 

The diffusion of the electrical current through the skull plays a primary role in 

reducing the spatial resolution of EEG; however, it is not the only contributor.  While the 

forward model explains how the current dipoles sum and project to the electrodes, the 

mathematics for the inverse model, mapping EEG signals to specific locations in the 

brain, are not as simple.  The solution to the inverse problem is ill-posed; for a finite set 

of measurements made at the surface of a volume, there are an infinite number of current 

source combinations and orientations that could produce the surface measurements.  By 

incorporating assumptions about the locations (the cortical surface), the orientations 

(perpendicular to the cortical surface) and/or the number of current sources, it is possible 

to produce an estimate of the inverse matrix.  This inverse matrix can then be used to help 
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localize where the signals measured at the electrodes originated on the cortical surface.  

Since the inverse matric is an ill-posed problem, the localization is not an exact inverse of 

the forward projection, and as a result there is nonhomogeneous uncertainty in the spatial 

extent of the EEG activity, contributing to the poor spatial resolution of the modality 

(Ahlfors & Hamalainen, 2012; Kujala et al., 1995; Ou, Nummenmaa, Golland, 

Hämäläinen, et al., 2009).  For example, a large frontal electrode activation could arise 

from a source in the frontal cortex that is radially oriented, or from bilateral sources in the 

auditory cortex that are tangentially oriented (Vaughan, 1974).  So depending on the 

specific topographic map, it is possible for large uncertainties to exist in source locations. 

1.2 Functional Magnetic Resonance Imaging 

 

 

As neurons fire action potentials, the local reserves of glucose and oxygen within 

the cells become depleted. To maintain neural function additional oxygen and glucose 

must be delivered by the blood supply.  This localized increase in blood flow to 

accommodate increased metabolic demand in response to neural activity is known as the 

hemodynamic response.  While a complete understanding of the mechanisms that link 

neural activity to the cerebral blood flow is still an active and ongoing inquiry, there are 

several mediators known to be involved.   

As the action potentials and post synaptic potentials fire, and extracellular 

currents become active the extracellular concentrations of K
+
 and H

+
 increases.  These 

increased ionic concentrations, then lead to hyperpolarization of the arterials which 

causes them dilate (F M Faraci & Sobey, 1998; Kuschinsky, Wahl, Bosse, & Thurau, 

1972; T. S. Nguyen, Winn, & Janigro, 2000).  Another mechanism by which cerebral 
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blood flow is mediated by neural activity is through extracellular signaling.  As glutamate 

receptors on the arterials become activated, they trigger a chemical cascade that results in 

the production and release of nitric oxide (NO), a powerful vasodilator (F M Faraci & 

Breese, 1993; Girouard & Iadecola, 2006; C Iadecola, Li, Ebner, & Xu, 1995; Lindauer, 

Megow, Matsuda, & Dirnagl, 1999; Nielsen & Lauritzen, 2001).  Downstream glial cells 

synapsed to the capillaries will trigger pericytes to either contract, sealing off the 

capillary, or relax, to allow blood flow through the capillary, allowing the blood to be 

shunted to the regions that need it (Costantino Iadecola, 2004).  While the increase in 

extracellular K
+
, H

+
, and NO all lead to local dilation of the arterials, there still needs to 

be dilation of the arteries upstream to prevent a drop in blood pressure.  This localized 

increase in blood flow through the arterioles and capillaries is what fMRI ultimately 

measures. 

The primary way fMRI is used to measure the changes in the cerebral blood flow 

is through a blood oxygen level dependent (BOLD) contrast, less commonly used 

contrasts are arterial spin labeling and diffusion MRI.  Because oxyhemoglobin is 

diamagnetic (it produces a magnetic field in the opposite direction of the one it is 

exposed to) and deoxyhemoglobin is paramagnetic (it produces a weak magnetic field in 

the same direction of the one it is exposed to) it is possible to measure the local ratio of 

oxyhemoglobin to deoxyhemoglobin (Belliveau et al., 1990; Logothetis, Pauls, Augath, 

Trinath, & Oeltermann, 2001; Ogawa, Lee, Kay, & Tank, 1990).  When cerebral blood 

flow to a region increases, the ratio of oxyhemoglobin to deoxy hemoglobin changes, 

which is measured by fMRI.  In vivo studies of neural vascular coupling have noted that 

increased cerebral blood flow to a region, and by extension BOLD signal, is delayed with 



11 

 

respect to the measured  neural activity that generated it (~ 4s) and can last up to 10 

seconds (Logothetis et al., 2001; Mazzoni, Whittingstall, Brunel, Logothetis, & Panzeri, 

2010).  This delayed increase in cerebral blood flow with respect to the originating neural 

activity is the primary driver of the low temporal resolution of fMRI. 

1.3 Relationship between EEG and FMRI 

 

 

EEG and fMRI are characterizing neural activity through two different 

mechanisms.  EEG measures large-scale synchronous neural activity directly through the 

electrical fields generated by neurons, while fMRI measures neural activity indirectly by 

way of the increased blood flow in response to increased metabolic demand. 

While the relationship between fMRI and EEG is often treated as a linear 

relationship, the interaction between the measured signals more complex and nuanced.  

Extensive in-vivo research has been conducted to characterize the relationship between 

local field potentials, the summation of the local current dipoles, and the local cerebral 

blood flow (Logothetis, 2008a).  Multiple studies have shown that the changes in LFPs 

and cerebral blood blow (termed neurovascular coupling) are strongly correlated (Goense 

& Logothetis, 2008; Logothetis, 2008a; Logothetis et al., 2001; Mazzoni et al., 2010; 

Shmuel, Augath, Oeltermann, & Logothetis, 2006), however, it has been shown that by 

inhibiting nitric oxide production it is possible to elicit neural activity without a 

corresponding BOLD response(Burke & Bührle, 2006).  While this is most relevant in 

neurological diseases that have been shown to alter the vasculature regulation, such as in 

hypertension, Alzheimer’s disease, or Parkinson’s disease, it is also of use when there is 

damage to the vasculature, as in ischemic stroke (Frank M Faraci et al., 1990; Girouard & 
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Iadecola, 2006; Ibarretxe-Bilbao et al., 2011; Kazama et al., 2003; Mackert et al., 2008; J. 

Polich, 2005; Prvulovic et al., 2011; Sperling, 2011). These disease states, as well as the 

study by Burke, demonstrate that while LFP and BOLD activity may be correlated, they 

are not tightly coupled, and that there are conditions under which the relationship 

between them can become nonlinear. 

The imaging modalities themselves also offer ways in which the relationship 

between EEG and fMRI signals (termed neuroimage coupling) could become uncoupled.  

Because the EEG is primarily sensitive to large-scale synchronous activity, neural 

activity that is not sufficiently synchronous, or whose current dipoles are not aligned, 

could produce a weak EEG signal, while eliciting a BOLD response measurable by 

fMRI.  EEG sensitivity is also reduced in response to neural activity localized along the 

walls of the sulci. FMRI also offers ways for the signals to be uncoupled, fMRI spatial 

sensitivity is not homogenous, with physiological noise from respiration, heartbeat, and 

brain activation as well as inhomogeneities in the magnetic field producing spatially 

dynamic noise (Krüger & Glover, 2001; Triantafyllou et al., 2005).  Because the BOLD 

response takes ~4s to respond to neural activity, a strong transient signal that is present 

within a period of weaker more sustained activity may not be easily identifiable within 

the fMRI, while the EEG sensors could more easily distinguish such a transient signals. 

EEG and fMRI also have very different spatial sensitivities with respect to each 

other.  The average in-plane resolution of fMRI is approximately 9mm
2
 before smoothing 

(Goense & Logothetis, 2008).  This activity is capable of being measured anywhere 

within the brain, and produces a 3-D volumetric representation of the BOLD response.  

EEG on the other hand is recording the measurements of activity at the scalp, and while 
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EEG can be source localized the resolution is only between 3 cm to 6 cm (Babiloni, 

Cincotti, Carducci, Rossini, & Babiloni, 2001; Burle et al., 2015).  This is further 

complicated by the fact that source localization will localize the activity onto the cortical 

surface, limiting it to a 2-D sheet, rather than in 3-D.  Additionally, since the source 

localization is an ill-posed problem, the specific assumptions used to perform the source 

localization can impose spatial shifts to the EEG that vary by spatial location, and 

temporal activation.  This difference leads to challenges in comparing fMRI to EEG, 

since to compare the two modalities it is often beneficial to bring them into the same 

space.  Most typically, this involves projecting the volumetric fMRI onto the cortical 

surface as well, which not only gives up the volumetric information, it also requires the 

user to choose what method to use to determine where fMRI activity falling in voxels 

covering multiple cortical surfaces should be projected.   

Another important aspect to consider when comparing fMRI and EEG sources is 

their sensitivity to subcortical signals.  Due to the ability of fMRI to collect recordings 

from the entire head volume, it has been able to detect and report subcortical activity.  

EEG, on the other hand, was long considered to be unable to detect the deeper sources in 

the brain.  This conception has been undergoing revision in the past several years as 

several studies have reported detecting activity from subcortical regions using EEG and 

magnetoencephalography (MEG) (Breier, Simos, Zouridakis, & Papanicolaou, 1998; 

Gross et al., 2001; Ioannides et al., 1995; Jerbi et al., 2007; Tesche, 1996).  These have 

since been backed by simulation studies that have shown that based on our current 

understanding of the subcortical structures and the strength of their local field potentials, 

it is possible to detect them with EEG and MEG.  However, the sensitivity varies wildly 
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from 40 trials to detect open source signals such as in the hippocampus, to 3500 or more 

in structures believed to be closed fields such as the thalamus (Attal, Bhattacharjee, 

Yelnik, Cottereau, Lefevre, et al., 2007; Attal & Schwartz, 2013; T. Dumas, Attal, Dubal, 

Jouvent, & George, 2011; Thibaud Dumas et al., 2013; Krishnaswamy et al., 2017).  

These wildly varying sensitivities to subcortical signals represent another way in which 

fMRI and EEG signals from the same region may be uncoupled.   

Finally, coupling and uncoupling between EEG and fMRI can be tied to the task 

being performed.  Studies have reported nonlinear relationships between EEG and fMRI 

tied to stimulus rate and duration in response to visual (Zhongming Liu et al., 2010; 

Yesilyurt, Ugurbil, & Uludag, 2008; Yeşilyurt, Whittingstall, Uğurbil, Logothetis, & 

Uludağ, 2010) and auditory signals (Binder, Rao, Hammeke, Frost, et al., 1994; Rees et 

al., 1997).  In these conditions there seems to be a role in the habituation of the associated 

regions in the nonlinear relationship.  While the regions tasked with the initial processing 

of the stimuli continue to respond at higher presentation rates regions tied to attention and 

higher level processing show diminishing evoked responses to the faster rates.  The result 

is an fMRI signal that keeps growing with increased presentation rate, tied to lower level 

sensory processing, and an EEG signal whose response begins to taper off as higher level 

areas become habituated. 

 

 

 

 

1.4 Joint Independent Component Analysis (jICA) 
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Since there are multiple ways for EEG and fMRI signals to become uncoupled, 

developing an approach which can identify when uncoupling occurs, and can characterize 

the relationship, is crucial for combining imaging modalities to understand brain 

function.  Multiple data-driven approaches have been developed to analyze simultaneous 

EEG and fMRI signals.  FMRI-informed integration approaches bias or limit ERP source 

reconstruction to regions detected as active with fMRI (Aftanas et al., 1998; Bobes et al., 

2018; Dale et al., 2000; Huster, Debener, Eichele, & Herrmann, 2012; Ou, Nummenmaa, 

Golland, & Hämäläinen, 2009; Xu, Sheng, Qian, Luo, & Gao, 2018).  Such approaches 

are able to address the spatial shift of the EEG sources by restricting them to the location 

of the fMRI activity.  However, this oftentimes comes at the cost of assuming the EEG 

and fMRI are completely coupled, or guessing the degree to which the signals may be 

uncoupled.  Alternatively, ERP-informed integration approaches will use ERP features 

defined a priori to analyze the fMRI data  (Bénar et al., 2007; Debener, 2005; Jann et al., 

2009; Liebenthal et al., 2003; Mizuhara, Wang, Kobayashi, & Yamaguchi, 2005; Murta, 

Leite, Carmichael, Figueiredo, & Lemieux, 2015; Portnova et al., 2018).  While these 

approaches do not impose coupling between the neuroimaging measurements, it only 

considers EEG signals that were deemed to be of importance, and analyzes the EEG 

activity at the level of the electrodes.  Neurogenerative approaches attempt to model the 

generation of EEG and fMRI signals to estimate the sources that best explain 

experimental data, and allow uncoupling between the measurements (Huster et al., 2012; 

Rosa, Daunizeau, & Friston, 2010; Sotero & Trujillo-Barreto, 2007, 2008).  However, 

neurogenerative modeling approaches are identifying the model that best describes the 
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data, and not directly informing on the extent of coupling and uncoupling between the 

modalities.  All of these approaches seek to use the patterns present within the data to 

extract relationships and understanding of the task performed.  However, to do so require 

also requires assumptions to be applied, whose accuracy can strongly impact the outcome 

of the analysis.  Such approaches offer the possibility of extracting relationships that 

would not be readily detected using standard analysis approaches.  Because data-driven 

approaches can be designed to take all the data into consideration and extract underlying 

relationships across the modalities, it is ideal for characterizing the relationship between 

EEG and fMRI. 

Recently jICA has been implemented in investigating EEG and fMRI data both 

across and within subject (Adali, Levin-Schwartz, & Calhoun, 2015; V. Calhoun, Adah, 

& Liu, 2006; J. Mangalathu-Arumana et al., 2012; Jain Mangalathu-Arumana, 

Liebenthal, & Beardsley, 2018; Moosmann, Eichele, Nordby, Hugdahl, & Calhoun, 

2008).  

JICA seeks to take observations from multiple modalities and to estimate the 

mixing matrix which defines how those underlying joint sources combine into the 

recorded observations (Figure 5).  It takes the inverse of this mixing matrix, and uses it to 

create multiple components, each containing a joint source.  To do this, jICA imposes a 

strict assumption that the mixing matrix must be identical for all modalities, this forces a 

linear relationship between the fMRI and EEG within any given joint source component.   
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Figure 5. Depiction of how the observations (X
i
) used in jICA are assumed to be a 

combination of an underlying joint source (S
i
), that has been multiplied through a 

mixing matrix (A).  Adapted from (Levin-Schwartz, 2014). 

 

 

To estimate the activity within each joint source component jICA seeks to identify 

activity that covaries between modalities when observed across subjects, within-subject 

jICA modifies this to look for signals that covary across task within a subject, and places 

that activity within a component.  JICA then continues seeking activity that covaries 

between modality, but adds an additional constraint that seeks to maximize the 

independence between components.  This differs from approaches like principle 

component analysis (PCA), canonical correlation analysis (CCA), and independent vector 

analysis (IVA); a generalized form of CCA, in that jICA analysis is seeking to maximize 

the independence between components, rather than seeking to identify uncorrelated 

signals.  While the terms are often used interchangeably due to the fact independent 

signals are by definition uncorrelated, the difference is an important one.  Independent 

signals are defined as follows𝑃(𝑋, 𝑌) = 𝑃(𝑋) ∗ 𝑃(𝑌), that is that there joint probability 

is equal to the product of their individual probabilities.  What this means is that the values 

measured in X have absolutely no impact on the values measured in Y.  For a signal to be 

uncorrelated, its Pearson correlation coefficient must be equal to 0, indicating that there is 
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not a linear relationship between the two random variables.  This importantly does not 

say there is no relationship between the two signals, only that the relationship between 

them has to be nonlinear.  The result is that approaches like PCA, CCA, and IVA will 

allow nonlinear relationships to exist between components, while jICA is attempting to 

have no relationship across components.  This ability to separate signals that covary 

across modality but are independent from other signals is of particular interest to this 

research.  When performing specific tasks, networks associated with the task would be 

expected to covary with the task, whereas unrelated networks would not.  What this 

means for EEG and fMRI is that within-subject jICA is able to extract features from 

within both modalities that covary with each other and will place them within a 

component, while separating them from any signals that are independent from them, such 

as noise or other cortical networks unrelated to the task.  It is worth noting that the 

restriction within-subject jICA imposes that both modalities vary across task conditions 

identically does have implications on the analysis of the components. Specifically, it 

produces the effect that when the two modalities have a non-linearity present, it will be 

split across multiple components (Jain Mangalathu-Arumana et al., 2018).  The same 

study also demonstrated that despite being split across multiple components there was 

typically a spatial or temporal feature that linked the multiple components together.  By 

checking for such linking features across the components, and recombining any signals 

that have been identified as being split apart, this feature of jICA analysis can be 

accounted for and mitigated. 
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1.5 Specific Aims 

 

 

The goal of this dissertation is to develop an analysis approach to characterize the 

relationship between EEG and fMRI within-subject and optimize the fusion of EEG and 

fMRI to study brain function.  To achieve this goal, we address three specific aims 

designed to optimize the spatial correspondence between EEG and fMRI, characterize the 

task-dependent relationship between EEG and fMRI, and investigate of using jICA 

applied to EEG and fMRI to characterize deep neural sources in the brain.  Each aim is 

presented in a separate chapter and formatted as a standalone paper. 

1.5.1 Specific Aim 1: Develop a method for spatial overlap estimation of 

electroencephalography and functional magnetic resonance imaging responses. 

 

The use of simultaneous EEG and fMRI to study neural activity has been steadily 

rising.  Multiple approaches have been developed to fuse the two modalities together, 

from fMRI constrained analysis to jICA constrained approaches.  However, these 

approaches either assume that the EEG and fMRI are both measuring nearly identical 

activity, or are having to make assumptions as to the degree to which these modalities are 

recording the same signals.  To date there has not been an approach designed to 

quantitatively assess how well the activity associated with the two modalities correspond 

to each other.  The primary challenge with trying to quantify this is that when EEG is 

source localized, it aligns poorly with the fMRI source locations. We hypothesize that the 

problem in quantifying how well EEG and fMRI correspond to each other is tied to the 

source localization of the EEG whereby the sources undergo an unknown degree of 

spatial shifting, and that by accounting for this shift, a better estimate of the 

correspondence between EEG and fMRI sources should be possible.  To test this 
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hypothesis we are going to transform the fMRI data so that it undergoes the same spatial 

shift the EEG will undergo, thereby transforming them both into a common space.  We 

expect that this transformation, will lead to an improved measure of how well EEG and 

fMRI activity correspond to each other. 

1.5.2 Characterize neuroimaging coupling between EEG and fMRI in a syllable 

detection task. 

 

Analysis of simultaneous fMRI and EEG tends to inherently assume a linear 

relationship between EEG and fMRI based off of observations between LFP and cerebral 

blood flow, but this has not been closely investigated in the case of the neuroimaging 

modalities.  Previous simulations have demonstrated that by applying jICA and making 

use of the mixing coefficient it is feasible to extract the relationship between EEG and 

fMRI, although this has not been shown experimentally yet.  We hypothesize that the 

weighted mixing coefficient extracted from within-subject jICA can be used to 

characterize the task-dependent relationship between the EEG and the fMRI in a task 

with a known nonlinearity.  This will be done by collecting simultaneous EEG and fMRI 

from subjects performing a task with variable presentation rates and adapting the 

previously developed approach to produce weighted mixing coefficients for this 

experimental data set.  We expect that the weighted mixing coefficients will be able to 

extract, and quantify the nonlinearity present in the experimental task, as predicted by the 

previous simulations. 

1.5.3 Quantify the sensitivity of within-subject jICA for the detection of subcortical 

signals. 

  

Recent experimental studies have begun to report the detection of subcortical 

signals with EEG and MEG.  Follow up studies and simulations have begun validating 
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this overturning of the long held belief that only activity from the neocortex was 

sufficiently structured to be detectable with EEG.  These studies considered standard 

analytical approaches to EEG and MEG data, and did not take into consideration the 

impact of blind source separation approaches.  Because the previous aims are directly 

investigating the relationship between EEG and fMRI it is paramount to understand how 

applying within-subject jICA changes the detectability of subcortical activity so that the 

potential impact of subcortical sources can be properly assessed and accounted for.  We 

hypothesize that the application of within-subject jICA to tasks containing subcortical 

activity will improve the sensitivity for subcortical source detection compared to when 

EEG is used alone. The experimental data from Aim 2 will be used to define the baseline 

signal and noise characteristics of the computational model.  Subcortical sources in the 

hippocampus and the amygdala will then be defined using previously developed 

approaches and placed within the physiological noise. To compare the efficacy of jICA it 

will be compared against the results obtained using temporal ICA and trial averaging.  

We expect that within-subject jICA utilizing fMRI and EEG will outperform other 

approaches when it comes to the detection of subcortical sources. 
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CHAPTER 2: 

METHOD FOR SPATIAL OVERLAP ESTIMATION OF 

ELECTROENCEPHALOGRAPHY AND FUNCTIONAL MAGNETIC 

RESONANCE IMAGING RESPONSES 

 

 

2.1. Introduction 

The neuroimaging of brain activity with simultaneous functional magnetic 

resonance imaging (fMRI) and electroencephalography (EEG) capitalizes on the 

complementary strengths of the methods, but poses challenges with respect to cross-

method data integration and interpretation (Ahlfors & Hamalainen, 2012; Dale et al., 

2000; Kujala et al., 1995; Z. Liu & He, 2008; J. Mangalathu-Arumana et al., 2012).  

FMRI measures the hemodynamic response related to neural activity at high spatial 

(millimeter) but low temporal (on the order of seconds) resolution, whereas EEG 

provides a high temporal (on the order of milliseconds) but low spatial resolution 

(centimeter) measurement of large-scale neural activity. Due to the differences in 

spatiotemporal resolution and type of measurement, fMRI and EEG provide 

complementary information but may reflect the activity of partially divergent neural 

sources in the brain. 

Both the blood-oxygen-level-dependent (BOLD) fMRI and scalp event related 

potential (ERP) responses are thought to be near-linearly correlated with local field 

potentials (LFPs), but only scalp ERPs are also correlated with fast spiking activity 

(Logothetis, 2008a; Logothetis et al., 2001; Mathiesen, Caesar, Akgören, & Lauritzen, 

1998; Mazzoni et al., 2010; Viswanathan & Freeman, 2007).  Second, depending on the 

location and orientation, synchronous electric sources may summate or attenuate one 

another, resulting in a potential mismatch with the BOLD response. Third, because the 
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primary generators of ERP activity are presumed to be large pyramidal cells in the 

neocortex that have a highly regimented structure and orientation relative to the cortical 

surface, the source activity is typically modeled by electrical dipoles limited to the 

neocortical layer and with an orientation perpendicular to the cortical surface (Ahlfors & 

Hamalainen, 2012).  Thus, there may be a mismatch between the imaging modalities, for 

example if subcortical sources are measured only with fMRI. 

We propose a data-driven approach to estimate the spatial overlap between maps 

of brain activity generated from fMRI and ERP measurements that assumes that 

overlapping, but not identical, sources of neural activity contribute to each measurement. 

That is, different from fMRI-informed integration approaches that limit or bias the ERP 

source reconstruction to regions detected as active with fMRI (Aftanas et al., 1998; 

Bobes et al., 2018; Dale et al., 2000; Huster et al., 2012; Ou, Nummenmaa, Golland, & 

Hämäläinen, 2009; Xu et al., 2018), or ERP-informed integration approaches that use 

predefined ERP features to analyze the fMRI data (Bénar et al., 2007; Debener, 2005; 

Jann et al., 2009; Liebenthal et al., 2003; Mizuhara et al., 2005; Murta et al., 2015; 

Portnova et al., 2018), the approach presented here does not impose coupling between the 

neuroimaging measurements. Neurogenerative approaches that model the generation of 

EEG and fMRI signals to estimate the sources that best explain experimental data allow 

uncoupling between the measurements (Huster et al., 2012; Rosa et al., 2010; Sotero & 

Trujillo-Barreto, 2007, 2008).  However, neurogenerative modeling does not explicitly 

inform on the extent of coupling and uncoupling between the modalities. 

The proposed fMRI and ERP spatial overlap estimation (fMRI-ERP SOE) method 

is applied to task-related activity extracted from individual data and consists of the 
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following key steps: 1) distributed source reconstruction of the task-related ERP 

activity (ERP source model), 2) transformation of the volumetric fMRI activity to the 

ERP spatial scale by forward modelling of the scalp potential field distribution and 

backward source reconstruction (fMRI source simulation), and 3) optimization of fMRI 

and ERP thresholds to maximize spatial overlap without a priori constraints of 

coupling (overlap calculation). The representation of both fMRI and ERP signals in a 

common ‘nonnative’ source imaging space enables the fMRI-ERP SOE approach to 

maximize the ability to spatially correlate fMRI and ERP sources of activity while 

minimizing assumptions regarding neuroimaging coupling. 

In this study, the extent to which simultaneous BOLD fMRI and ERP 

measurements reflect common versus distinct sources of neural activity was estimated in 

an auditory oddball paradigm with parametric variation of the deviant size. The results 

indicate that approximately 73% of the activity measured with ERPs overlapped spatially 

with that recorded with fMRI, and vice versa. Most, but not all, of the regions in which 

activity was recorded with only fMRI or only ERPs were adjacent to areas of joint 

activity, suggesting a relatively tight but imperfect coupling between the neuroimaging 

measures in this paradigm. 

 

 

 

 

2.2. Methods 
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EEG and fMRI were acquired simultaneously from 24 subjects as they performed 

an auditory oddball discrimination task with five levels of tone frequency deviants. 

Details of the experiment design, image acquisition, pre-processing and jICA were 

reported previously (J. Mangalathu-Arumana et al., 2012) and are briefly summarized 

here. 

2.2.1. Subjects 

 

 

Twenty fours subjects, ages 18–40, participated in the original study (J. 

Mangalathu-Arumana et al., 2012).  Of these, seven subjects were excluded from the 

analysis because their anatomical MR-images did not cover the entire skull (as needed to 

construct a head model). Two additional subjects were excluded from the group analysis 

during preprocessing because jICA returned components with non-physiological data 

structures (z-scores >30 and no spatiotemporal variation across electrodes), indicating a 

failure of jICA to parse the signals into independent components. Data from the 

remaining fifteen subjects (8 females and 7 males) were used in the current analyses. All 

subjects provided written informed consent according to the Institutional Review Boards 

of the Medical College of Wisconsin and Marquette University, and were compensated 

for their participation in the study. 

 

 

2.2.2. Experimental Design 

 

The experiment consisted of an auditory oddball paradigm with four-tone 

sequences, each composed of three standard 1000 Hz tones and one deviant tone (in 3
rd

 or 
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4
th

 position), presented binaurally. The task consisted of pressing one of two buttons to 

indicate whether the deviant tone sounded higher or lower in frequency than the standard 

tones (J. Mangalathu-Arumana et al., 2012).  The tones were 100 ms duration with 

rise/fall times of 5 ms and were presented at 800 ms stimulus onset asynchrony. The 

deviant tone frequencies (five lower, and five higher, than the standard tone frequency) 

were selected individually to correspond to 50, 65, 75, 85, and 95% task performance 

accuracy (as determined in a prescan test). 144 trials were presented per task level, for a 

total of 720 trials, broken into 12 runs, acquired in 2 sessions on separate days. The onset 

of each tone sequence was jittered relative to the time of image acquisition, such that the 

deviant tone was always presented 4 s before the middle of the next image acquisition 

block, and the image acquisition coincided with the estimated peak of the BOLD 

response (Hall et al., 1999).  Auditory stimuli were delivered using a pneumatic, MRI-

compatible headphone system (Avotec, Inc., Stuart, FL), and the sequence of stimulus 

presentation was controlled with the Presentation software (Neurobehavioral Systems 

Inc., San Pablo, CA). 

2.2.3. Data Acquisition and Pre-Processing 

 

The study was conducted on a GE 3 T Signa Excite scanner (GE Health Care, 

Milwaukee, WI). High-resolution whole brain anatomical images were acquired first in 

each session, using a 3D spoiled gradient-echo (SPGR) sequence (0.9 × 0.9 × 1 mm 

voxels). Functional MR images consisted of axially-oriented T2*-weighted, gradient-

echo, echo planar images acquired using a clustered volume acquisition and covering the 

whole brain (TE = 25 ms; flip angle = 77°; TR = 2 s; stimulus blocks = 7 s; 3 × 3 × 3.5 mm 

voxels), such that a single functional volume was acquired during each trial 4 s after 
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stimulus onset. EEG was recorded continuously during fMRI, at 500 Hz sampling rate, 

using an MRI-compatible MagLink system consisting of a 64-channel MagLink cap (62 

monopolar electrodes, and 2 bipolar leads for ECG and VEOG), SynAmps amplifier, and 

a Scan 4.4 Workstation (Compumedics Neuroscan, Inc., TX). Sintered Ag/Ag-Cl 

electrodes were positioned per the extended International 10–20 system, with a hard-

wired reference at CPz. 

MR image preprocessing was performed in AFNI (Cox, 1996). The raw fMRI 2D 

image slices at each time point were transformed to 3D and spatially registered to the 

third functional image in the first run. The functional image series was then registered to 

the anatomical image (consisting of an average of the anatomical images from sessions 1 

and 2, to obtain higher anatomical accuracy) using the align_epi_anat.py program in 

AFNI. Multiple regression was performed to estimate the BOLD activity associated with 

the response to the deviant in each task level, using level 1 (corresponding to 50% 

performance accuracy) as a baseline, and translation and rotation motion parameters 

estimated during registration were used as noise covariates. 

The raw EEG was preprocessed with the Scan 4.4 Edit module (Compumedics 

Neuroscan, Inc. TX). Channels with a variance > 20μV in the baseline period (-200 to 

−50 ms) were excluded from further analysis. An average of 7 (range 0–9) channels per 

subject was excluded. The EEG was filtered using a 0.1–30 Hz zero-phase bandpass FIR 

filter with a 48 dB/octave roll-off. The ballistocardiogram artifact introduced by the MR 

environment was corrected (Ellingson et al., 2004). Removal of MR gradient artifacts 

was unnecessary because the clustered functional image acquisition design for 
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simultaneous fMRI/EEG (J. Mangalathu-Arumana et al., 2012) prevented the epochs of 

interest from being contaminated. 

ERPs were computed for each task level using an epoch time from −200 ms to 

800 ms relative to deviant onset. The epochs were demeaned to compensate for slow 

drifts occurring during EEG acquisition. Epochs in which the signal exceeded ±200 μV 

were deemed to contain artifacts and were discarded. The remaining epochs were sorted 

and averaged by task level. The average number of accepted epochs per subject and level 

was 86%. 

As with the fMRI preprocessing, the ERP response to task level 1, the hardest task 

level, was subtracted from the ERP responses to the other four task levels. The resulting 

fMRI and ERP responses associated with task levels 2–5 were used as input for jICA. 

2.2.4. Joint-ICA 

 

The fMRI and ERP datasets were submitted to within-subject jICA, as described 

previously (J. Mangalathu-Arumana et al., 2012). The datasets were vectorized and 

concatenated by level. The input to jICA consisted of four features, each containing the 

fMRI and ERP responses for one of the four task levels, such that the resulting 

components represented within-subject fMRI and ERP responses that co-varied across 

task levels (known as Multi-run jICA). 

Components containing task-relevant activity were identified in each imaging 

modality as those exceeding an amplitude threshold of p < 0.05 relative to the distribution 

of activity across all components in that modality. The joint (multimodal) component 

containing the most active samples (either ERP time points or fMRI voxels) was used to 

define a component activity threshold. The threshold (in samples) for including 
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components in the subsequent analyses was set to #
𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑛𝑚𝑜𝑠𝑡𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙#𝑜𝑓𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
, based 

on a monte carlo simulation of the random distribution of active samples across 

components when task-related activity is constrained to a single component. This 

approach set a permissive (low) threshold for the inclusion of task-related activity from 

other components by underestimating the number of active samples per component when 

no task-related activity is present. In 12 subjects, only one joint component passed the 

threshold. In the remaining 3 subjects, there were 2 suprathreshold joint components, 

which were summed for subsequent analysis to avoid losing activity of interest. 

2.2.5. FMRI and ERP Spatial Overlap Estimation (fMRI-ERP SOE) Method 

 

A schematic overview of the fMRI and ERP spatial overlap estimation (fMRI-

ERP SOE) method is shown in Figure 6. The approach includes three main components, 

1) distributed source reconstruction of the task-related ERP activity (ERP source model), 

2) transformation of the volumetric fMRI activity to the ERP spatial scale by forward 

modelling of the scalp potential field distribution and backward source 

reconstruction (fMRI source simulation), and 3) optimization of fMRI and ERP 

thresholds to maximize spatial overlap without a priori constraints of coupling (overlap 

calculation). It is important to note that the proposed analysis pipeline can be applied to 

data that is not processed using jICA. It can also be applied separately to the individual 

jICA components, which would be recommended in studies where the task-related 

activity is consistently parsed to several components (e.g., studies with more 

experimental levels. 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0005
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Figure 6.  Workflow for fMRI and ERP spatial overlap estimation (fMRI-ERP 

SOE) method. The functional imaging measurements used as input to jICA, and the 

anatomical images used to create the head and cortical surface models, are shown in 

orange. The structural/functional pre-processing steps used to create the anatomical 

model and extract task-related activity are shown in green. Processing steps for the 

task-related ERP activity are shown in red and those for the fMRI activity, 

including projection to the common source space, are shown in blue. The steps for 

ERP and fMRI threshold optimization, and characterization of source map spatial 

overlap, are shown in purple. 

 

2.2.5.1. ERP Source Model 

 

 

Distributed source reconstruction was used to localize the cortical areas 

contributing to the scalp ERPs (see steps in red, Figure 6). For each subject, models of 

the head and pial surface were created in Freesurfer (https://surfer.nmr.mgh.harvard.edu/) 

using the recon-all script on the subject’s averaged MR anatomy. The head model was 

then imported into Brainstorm (http://neuroimage.usc.edu/brainstorm/), the pial surface 

was down sampled to 15,000 vertices, and a boundary element model (BEM) of the 

cortical surface was created. Whitened and depth-weighted linear L2-minimum norm 

estimates were used to estimate the amplitude of source activity at each vertex oriented 

perpendicular to the cortical surface. Finally, the absolute value of source activity at each 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0005
https://surfer.nmr.mgh.harvard.edu/
http://neuroimage.usc.edu/brainstorm/
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vertex and time point was converted to z-scores computed relative to the baseline period 

(−200 ms to −50 ms). 

2.2.5.2. FMRI Source Simulation 

 

 

To facilitate comparisons in the spatial domain, the fMRI volumetric activity was 

simulated as ERP activity by projection to the cortical surface, forward construction of 

the scalp potential field distribution, and backward source reconstruction (see steps in 

blue, Figure 6). For each subject, the volumetric fMRI component was projected 

orthogonally onto the inflated pial surface in Freesurfer using mri_surf2vol and smoothed 

with a 6 mm full width half maximum Gaussian kernel to fill in small spatial 

discontinuities resulting from the projection. The map of surface activity was imported 

into Brainstorm and down sampled to 15,000 vertices. The amplitude of activity at each 

vertex was multiplied by a 400 ms unit amplitude square-wave to simulate a time course 

and the resulting spatiotemporal activity was forward projected to the scalp electrodes 

using the lead field matrix. Gaussian noise was added to each electrode to match the 

noise covariance of the experimentally-measured EEG. The fMRI activity was then 

submitted to the same source localization procedures used for the ERP analysis. 

2.2.5.3. Overlap Calculation 

 

 

The estimate of overlap between fMRI and ERP source maps may vary as a 

function of individual differences in activation, and the statistical threshold defining 

significant activity. In the present work, we opted to identify on an individual basis, the 

amplitude threshold for the fMRI source map and the temporal and amplitude thresholds 

for the ERP source map that maximized their spatial overlap on the cortical surface (see 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0005
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steps in purple, Figure 6). This individualized optimization procedure assumes that 

simultaneous fMRI and ERP measurements largely reflect the local field potential 

activity of the same neural sources, with partial divergence driven primarily by 

differences in the spatiotemporal resolution of the measurements. 

The thresholds were optimized on a vertex-wise basis. The amplitude thresholds 

spanned the range [0, 95] % of the maximum amplitude (steps of 0.01), and the ERP 

temporal thresholds spanned the range [20, 800] ms (20 ms steps). Thresholds were 

optimized using a class membership function (O) based on the vertex-wise 

correspondence between the ERP and fMRI source maps, 

𝑂 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛∗𝑈𝑛𝑖𝑜𝑛2∗𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛3

(
𝑡𝑜𝑡𝑎𝑙𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

2
)

6  where the intersection corresponds to the number of 

vertices with significant activity in both imaging modalities, the union corresponds to the 

number of vertices with significant activity in at least one imaging modality, and the 

exclusion is defined by the difference between the union and the total number of vertices. 

The denominator scales the membership function to one when the ERP and fMRI maps 

overlap completely and the union is balanced by the exclusion. Optimization of the 

membership function within the threshold space was used to maximize the spatial overlap 

between fMRI and ERP sources while promoting sparsity in the activation map. 

The optimized thresholds were applied to create binary ERP and fMRI source 

maps, with edge correction to account for stochastic variations in the boundaries of active 

regions. Vertices that were inactive but surrounded by active vertices in one imaging 

modality, and were active in the other modality, were labeled as active in both modalities. 

To determine the statistical significance of the optimized ERP temporal threshold, 

a Monte Carlo simulation with 1000 iterations was used to determine the likelihood that a 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0005
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phase-randomized signal with the same power spectrum would exceed the temporal 

threshold. The distribution of consecutive data points in the phase-randomized signal that 

met or exceeded the ERP amplitude threshold at each vertex was calculated to determine 

the 0.05 confidence interval. A Šidák correction was applied to adjust for multiple 

comparisons across vertices (Sidak, 1967). Vertices in which the activity did not exceed 

the temporal threshold were marked as inactive in the binary maps. In a second Monte 

Carlo simulation with 1000 iterations, the spatial distribution of active vertices in the 

fMRI and ERP source maps was randomized to estimate the probability of obtaining the 

observed spatial overlap between source maps. 

2.2.5.4. Overlap Estimation 

 

 

Regions of overlap (and no overlap) between ERP and fMRI source maps were 

estimated within, and across, subjects. For the analysis across subjects, the individual 

cortical surface models were aligned to Freesurfer's FSaverage anatomy using spherical 

transformations, and the same alignment transform was applied to the individual signed 

Z-score and binary overlap maps. The individual binary maps were summed at each 

vertex to determine the number of subjects with supra-threshold activity across imaging 

modalities. 

Regions of interest (ROIs) were created that corresponded to the areas of overlap 

in ERP and fMRI activity across the group. First, an ERP-fMRI overlap mask was 

created by thresholding the group overlap count map at 9 subjects, and applying a cluster 

threshold of 3 vertices, resulting in a corrected p < 0.05 (computed using a 1000 iteration 

Monte Carlo simulation of expected cluster sizes based on a randomized distribution of 
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the vertices with overlapping fMRI/ERP activity in the source projection space). The 

overlap mask was then grown by one vertex in every direction to smooth the boundaries 

and account for 99% of the fluctuations in the spatial extent of backward projected ERP 

sources simulated using the experimentally measured electrode noise covariance. 

The final ERP-fMRI overlap mask consisted of six distinct ROIs, in the right and 

left superior temporal planes, right lateral superior temporal sulcus, right and left inferior 

parietal lobules, and right ventral central sulcus. Within in each ROI, the number of 

vertices per time point that exceeded the global (p < 0.05) amplitude threshold were 

counted in each subject and averaged across subjects to create mean time courses of 

activation. 

The degree of fMRI-ERP overlap obtained with the SOE approach was compared 

to the degree of fMRI-ERP overlap obtained with strictly jICA, that is, without 

simulating the fMRI as ERP activity, and with independent thresholding of the 

components in each modality. When the SOE approach was not used, the ERP amplitude 

threshold in each subject was set leniently (p < 0.1) using the amplitude distribution 

across all components to maximize spatial overlap and Monte Carlo simulations were 

used to set the temporal threshold ( = 50 ms) resulting in a corrected map-wise threshold 

of p < 0.05. The volumetric fMRI in each jICA component was projected onto the cortical 

surface. The fMRI amplitude threshold was set to p < 0.05 using the amplitude 

distribution across all components and Monte Carlo simulations were used to set the 

vertex cluster threshold resulting in a corrected map-wise threshold of p < 0.05. Counts of 

the number of subjects with activity at each vertex were computed as detailed above, for 

ERP, fMRI, and ERP - fMRI overlap.  
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2.3. Results 

 

 

Table 1 summarizes the results of the optimal (i.e., maximizing the overlap) 

threshold calculation and the ERP and fMRI spatial overlap estimation in each subject. 

Across the group, the mean amplitude threshold of the ERP maps was a z-score of 2.68 

(standard deviation – SD = 2.14). The mean temporal threshold of the ERP maps was 

442 ms (SD = 258.2 ms). The mean amplitude threshold of the fMRI maps was 9 

(SD = 2.1). The optimized ERP amplitude and temporal thresholds were negatively 

correlated across subjects (R= -0.85). FMRI amplitude thresholds were not correlated 

with ERP amplitude or temporal thresholds (R=-0.01 and R = 0.23, respectively). 

  

https://www.sciencedirect.com/science/article/pii/S0165027019302584#tbl0005
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Table 1. Individual ERP (amplitude and temporal) and fMRI (amplitude) 

threshold values that maximize the overlap between ERP and fMRI source 

maps. 

Subject 

Number 

ERP 

amplitude 

threshold 

(Z-score) 

ERP 

temporal 

threshold 

(ms) 

fMRI 

amplitude 

threshold 

(Z-score) 

Extent of 

fMRI 

activity 

overlapped 

by ERP 

activity 

(%) 

Extent of 

ERP 

activity 

overlapped 

by fMRI 

activity 

(%) 

4009 0.37 740 5.71 69.1 73.03 

4018 4.53 20 3.92 70 73.5 

4137 1.44 640 18.58 76.3 74.3 

4138 0.25 740 5.24 79.2 66.8 

4170 2.39 660 7.29 80 84 

4177 0.66 620 12.4 65.9 67.3 

4192 1.22 720 9.78 74.5 76.8 

4237 1.57 420 6.75 81.4 76.1 

4282 1.05 580 9.7 69.8 71.3 

4283 3.76 440 21.63 82.2 85.5 

4284 6.14 260 7.79 58.15 65 

4287 3.12 300 5.35 69.9 78.01 

4296 4.39 60 5.71 64.7 62.6 

4410 2.06 400 5.34 79.5 78.3 

4498 7.3 40 10 66.7 68.3 

 

 

Figure 7 shows an example of the class membership function following an 

exhaustive search of the ERP amplitude and temporal threshold space for a representative 

subject. The figure illustrates the trade-off between the ERP amplitude and temporal 

thresholds that resulted in similar levels of overlap between ERP and fMRI source maps. 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0010
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Figure 7.  Example of the ERP threshold optimization map for a representative 

subject (#4287) at an fMRI amplitude threshold of 5.35. The color map depicts the 

output from the overlap class membership function as a function of ERP amplitude 

and temporal threshold for the subject. The extended region of dark red indicates a 

trade-off between amplitude and temporal thresholds to maximize the spatial 

overlap between the ERP and fMRI source maps. 

 

 

The extent of spatial overlap between ERP and fMRI source maps across subjects 

is shown in Figure 8. For the fMRI source maps, the extent of overlap with the ERP 

source maps ranged from 58.15% to 82.2%, with a mean overlap of 72.5% (SD = 7.2%). 

For the ERP source maps, the extent of overlap with the fMRI source maps ranged from 

62.6% to 85.5%, with a mean overlap of 73.4% (SD = 6.7%). Across subjects, the extent 

of ERP activation overlapped by fMRI activation and extent of fMRI activation 

overlapped by ERP activation were positively correlated (R = 0.73). For the sample 

population, the slope of the best fit line (=0.68x+23.85) was not significantly different 

from a unit line (ANCOVA, F (1) = 1.37, p = 0.187). 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0015
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Figure 8.  Spatial overlap between ERP and fMRI source maps computed with the 

fMRI-ERP SOE method. The percentage of ERP activation overlapping with fMRI 

activation is plotted against the percentage of fMRI activation overlapping with 

ERP activation (blue squares). The two measurements were positively correlated 

(R = 0.73), and their relationship was well described by the line y = 0.68x+23.85 (in 

black). The unit line is shown in green. The percentage overlap obtained with a 

randomized spatial distribution of ERP and fMRI activity is represented by the red 

square dot (red circle denotes +5 standard deviations). 

 

 

Figure 9 shows the ERP and fMRI source maps, and areas of activity overlap, in a 

representative subject. For this subject, the suprathreshold fMRI activity overlapped with 

84% of the suprathreshold ERP activity, and the suprathreshold ERP activity overlapped 

with 80% of the fMRI activity. 

 

 

Figure 9. Example of the spatial overlap estimation between ERP and fMRI source 

maps in a representative subject (#4237). Activity exceeding the significance 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0020
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threshold only in the ERP source map is shown in red, only in the fMRI source map 

is shown in blue, and in both the ERP and fMRI source maps is shown in green 

 

 

Figure 10A shows the count of subjects with suprathreshold activity in both 

imaging modalities at each vertex on the cortical surface mesh. Regions of consistent 

ERP and fMRI overlap in activity (in 9 or more subjects) were observed in the bilateral 

insula and inferior parietal lobule, and in the right superior temporal gyrus and ventral 

central sulcus. Additional regions with less consistent ERP and fMRI overlap (in 6–8 

subjects) were observed in the middle temporal, frontal, and superior parietal cortices 

(primarily in the right hemisphere). Figure 10B shows six ROIs in which there was 

consistent ERP and fMRI overlap, and the time course of activation within the ROIs 

measured as the mean (across subjects) number of suprathreshold vertices. In the early 

(<300 ms) period of the ERP, there was only weak activity in the superior temporal 

cortex, peaking in the bilateral insula at 140 ms, and in the right superior temporal sulcus 

and insula at 242 ms. The later (>300 ms) ERP activity, which was stronger and 

sustained, originated from the perisylvian ROIs. 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0025
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0025
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Figure 10.  Group fMRI and ERP spatial overlap estimation (fMRI-ERP SOE) map. 

(A) Color map representing the number of subjects with overlapping fMRI and 

ERP activity at each vertex. For visualization, the maps were thresholded at 6 

subjects. B) ROIs with consistent (in 9 or more subjects) ERP and fMRI activity 

overlap and the time course of activity in each ROI. The time course was measured 

as the mean (across subjects) number of suprathreshold vertices at each time point. 
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Figure 11 shows regions in which there was significant activity in one imaging 

modality but not the other, in 6 or more subjects. Small regions of non-overlap between 

fMRI and ERP activity were observed in the Sylvian fissure, and in the posterior superior 

temporal and orbitofrontal cortex. The maximal number of subjects with activity in only 

one modality was 8. 

 

 

 

Figure 11.  Non-overlap between fMRI and ERP source maps, computed with the 

fMRI-ERP SOE method. Non-overlap is expressed as the number of subjects with 

activity in one modality (ERP, top; fMRI, bottom) but not the other. For 

visualization, the maps were thresholded at 6 subjects. The color bar indicates the 

number of subjects with non-overlap at that location. 

 

 

For comparison with a generic method (using only jICA), the spatial overlap 

between fMRI and ERP joint components that were thresholded independently is shown 

in Figure 12. A high degree of spatial overlap was observed across subjects within each 

imaging modality (up to 8 subjects), in temporoparietal regions implicated in the auditory 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0030
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oddball response. However, between ERP and fMRI maps, the regions of maximal 

overlap were limited to 4 subjects (Figure 12c). 

 

 

 

Figure 12.  Group spatial overlap in (A) ERP, (B) fMRI, and (C) both ERP and 

fMRI, estimated using strictly jICA, and independent thresholding of source maps 

in each neuroimaging modality. Overlap is expressed as the number of subjects with 

activity at each vertex. For visualization, the maps were thresholded at an overlap of 

2 subjects (note the different scale of 2–8 subjects in this Figure). 

 

 

The benefits of jICA with fMRI-ERP SOE versus just jICA can be seen from a 

comparison of Figures 5a and 12 c. Figure 10a shows the spatial overlap across subjects 

between ERP and fMRI source maps calculated with the fMRI-ERP SOE method. Figure 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0035
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0025
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0035
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0025
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0035
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12c shows the spatial overlap across subjects between fMRI and ERP source maps 

without SOE correction of the spatial bias related to the ERP source localization. The 

spatial overlap peaks at 13 subjects for the fMRI-ERP SOE method and at only four 

subjects for just jICA. 

2.4. Discussion 

 

 

In this paper, we present a data-driven method to estimate the spatial overlap 

between maps of brain activation originating from simultaneous fMRI and ERP 

measurements, termed fMRI-ERP SOE. The fMRI-ERP SOE method is based on the 

parsimonious assumption that simultaneous fMRI and ERP responses largely reflect local 

field potentials generated by the same neural sources. However, a distinctive feature of 

the fMRI-ERP SOE method is that it allows divergence in the sources of activity 

contributing to the measurements in each modality. 

FMRI-ERP SOE of sources of the auditory oddball response revealed regions of 

consistent (in 9 or more of 15 subjects) activity overlap between imaging modalities in 

the insula, superior temporal, and inferior parietal cortices, in-line with previously 

reported sources of this response (Justen & Herbert, 2018; Liebenthal et al., 2003; J. 

Mangalathu-Arumana et al., 2012; John Polich, 2007; Sijbers et al., 1999).  Strong 

activity in these areas was observed predominantly after 300 ms, in the time window of 

the P3 ERP response associated with cognitive processing during attentive oddball 

detection (Picton, 1992; John Polich, 2007). The earlier (<300 ms) and weaker (due to 

subtraction of the level 1 response) activity coincided with the latencies of the N1 and 

mismatch negativity (MMN) responses associated with automatic auditory processing 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0035
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and oddball detection (Campbell, Winkler, & Kujala, 2007; Näätänen, Paavilainen, 

Rinne, & Alho, 2007; Naatanen & Picton, 1987). The magnitude of the P3 is influenced 

by the cognitive context and demands of the task, whereas that of the N1 and MMN is 

influenced primarily by the physical properties of the stimuli. In the present experimental 

design in which the baseline (level 1) corresponded to chance deviant detection, the 

variation in deviant responses across the experimental levels (2–5, corresponding roughly 

to 65–95% deviant detection) reflected primarily a change in attentive perceptual and 

cognitive processing of the deviants, as indexed by P3, and minimally a change in 

subliminal auditory processing of sound frequency, as indexed by N1 and MMN. 

The fMRI-ERP SOE method displayed important benefits relative to strictly jICA 

of fMRI and ERP. JICA with fMRI-ERP SOE revealed a greater extent of reliable 

activation in the right superior temporal cortex, considered to contribute to the generation 

of the auditory oddball response, than just jICA of the same data. Consistent activity was 

detected in the right superior temporal sulcus in both modalities when estimated with 

fMRI-ERP SOE (Figure 10A), but not when estimated strictly with jICA. Activity in the 

right superior temporal sulcus was observed in the jICA-fMRI map (Figure 12B) but not 

the jICA-ERP map (Figure 12A), resulting in no overlap in this area with jICA. The weak 

EEG sensitivity to sources of activity in the superior temporal cortex may be due to 

incomplete (and inconsistent across subjects) coverage of this area by EEG electrodes 

especially in the ventral portion. Indeed, a study comparing fMRI and ERP activation 

maps in visual and auditory paradigms reported fMRI-ERP uncoupling specifically in 

auditory superior temporal areas, and attributed it to sparse EEG coverage (Minati et al., 

2008). 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0025
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0035
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0035
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The advantages of using fMRI-ERP SOE to characterize the spatial relationships 

between fMRI and ERP sources center on the 1) projection of both datasets into a 

common (non-native) source space that accounted for the effects of spatial bias during 

source localization; and 2) the optimization of the fMRI and ERP thresholds to maximize 

the overlap between the sources measured with each method. In this sense, the 

considerably lower overlap of using jICA alone (i.e., when assumptions of neuroimage 

coupling are minimized), could be related to the spatial error associated with ERP source 

localization, as well as the arbitrary nature of neuroimaging data thresholding. 

The fMRI-ERP SOE also revealed brain regions in which activity was less 

consistent across subjects, notably in the right inferior frontal cortex (Figure 10A). The 

right inferior frontal cortex is considered to be part of a ventral attention network 

involved in stimulus-driven orientation and deviance detection (Justen & Herbert, 2018; 

Knight, 1984; Pardo, Fox, & Raichle, 1991; M. Posner, 1990; Michael Posner, 1992; 

Soltani & Knight, 2000). The variability in activation of right frontal areas could reflect 

attentional fluctuations and individual differences in cognitive control during task 

performance. However, differences in measurement quality could also contribute to 

inconsistent signal amplitudes in frontal cortex. Specifically, frontal activity measured 

with EEG could in some instances be generated by tangentially oriented sources in 

bilateral temporal cortex as opposed to radially oriented frontal sources (Ahlfors & 

Hamalainen, 2012). In line with the possibility of ‘ghost’ frontal sources in the present 

ERP data, the most consistent activation across subjects in the jICA-ERP map was in the 

right inferior frontal cortex (8 subjects, Figure 12A), but this area was inconsistently 

activated in the jICA-fMRI map (2 subjects, Figure 12B). 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0025
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0035
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0035
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Across the group, approximately 73% of the activity at each brain location was 

measured with both neuroimaging modalities, and the remainder 27% was measured in 

one modality but not the other (Table 1, Figure 8). The activity measured in only one of 

the modalities largely fell adjacent to areas of ERP-fMRI spatial overlap (see Figure 9, in 

a representative subject) and was in the same vicinity in both modalities (e.g., sylvian 

fissure), suggesting that it reflected primarily differences in the extent of overlapping 

activation rather than complete uncoupling between the modalities. However, there were 

also regions of single modality activity that were not adjacent to areas of overlap; for 

example, activity measured only with EEG in the right inferior frontal cortex and bilateral 

parietotemporal cortex in the representative subject. The non-overlap group map (Figure 

11), however, showed that areas of non-overlap were largely inconsistent across subjects. 

Taken together, the present results suggest the existence of comparatively small areas of 

modality uncoupling, in variable brain locations. The results demonstrate the potential 

utility of the fMRI-ERP SOE method to investigate the factors contributing to uncoupling 

between the fMRI and EEG measurements. The strong positive correlation, with a near 

unit-slope, between the extent of fMRI and ERP spatial overlap (Figure 8) is also 

indicative of limited uncoupling between the measurements in each modality. In this 

analysis, uncoupling between the modalities, i.e., activity measured with one 

neuroimaging modality but not the other, would be observed as a positive correlation 

with a steeper slope (reflecting more extensive ERP activity), or a shallower slope 

(reflecting more extensive fMRI activity). 

The optimal amplitude and temporal thresholds for maximizing the spatial overlap 

between imaging modalities spanned a wide range, with ERP z-scores between 0.25 and 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#tbl0005
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0015
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0020
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0030
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0030
https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0015
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7.3, ERP temporal thresholds between 20 and 740 ms, and fMRI z-scores between 3.9 

and 21.6. The amplitude and temporal ERP thresholds were found to be negatively 

correlated, suggesting a trade-off between them. The amplitude thresholds were generally 

higher for fMRI than ERP, likely because of the additional temporal threshold applied 

strictly to ERP signals. The threshold values identified as optimal for maximizing overlap 

were in some subjects well outside the range typically used for neuroimaging data 

analysis, yet their application resulted in statistically significant and biologically 

plausible activation maps. Thus, the proposed threshold optimization and fMRI-ERP 

SOE analysis may have value for exploring data more comprehensively than possible 

with more typical analysis approaches. 

The fMRI-ERP SOE approach shares some similarities with neurogenerative 

modeling approaches. Both use statistical methods to investigate the relationship between 

fMRI and EEG without imposing a constraint of coupling between the signals. However, 

neurogenerative approaches attempt to reduce the errors associated with EEG source 

reconstruction by informing the forward generative model with physiological parameters. 

Our approach on the other hand, attempts to reduce the spatial discrepancies between 

EEG and fMRI by forward modeling the fMRI as an EEG scalp distribution and applying 

the same source reconstruction procedure to both modalities (i.e., biasing the fMRI to the 

EEG spatial scale). While the accuracy of neurogenerative approaches depends on the 

accuracy of the EEG forward model, our approach accepts that EEG source 

reconstruction is imprecise and applies the same bias to the fMRI. Thus, the methods can 

perhaps best be seen as complementary. For example, the fMRI-ERP SOE can be used to 
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identify areas of coupling and uncoupling, and this information can be used to constrain 

and improve the precision of a neurogenerative source model. 

The fMRI-ERP SOE is a data-driven method to quantitatively estimate the spatial 

relationship between sources of brain activity measured with fMRI and EEG. The present 

study demonstrated that the addition of this method provides greater spatiotemporal detail 

of the cortical dynamics than solely jICA, a common method for multimodal integration 

(Arumana, 2012; Ma, Phlypo, Calhoun, & Adali, 2013; J. Mangalathu-Arumana et al., 

2012; Moosmann et al., 2008). Furthermore, the fMRI-ERP SOE method provides a 

means to estimate the degree of non-overlap between the sources measured with each 

neuroimaging modality, and this aspect could be useful to study uncoupling. As such, we 

propose that the addition of fMRI-ERP SOE provides a more comprehensive method for 

the integration of data from the two neuroimaging modalities. The fMRI-ERP SOE 

method could be used to study the conditions under which uncoupling can occur. For 

example, at high stimulation rates in healthy individuals (Goense & Logothetis, 2008; 

Jerbi et al., 2007; Muthukumaraswamy & Singh, 2008; Nagarajan et al., 1999) and in 

individuals with compromised neurovascular coupling (F M Faraci, Baumbach, & 

Heistad, 1990; Kazama et al., 2003; Mackert et al., 2008). 

One limitation of the approach is the long computation time. The exhaustive 

search of the amplitude and temporal threshold space performed to maximize spatial 

overlap is computationally demanding, requiring several hours of processing per subject. 

In experimenting with optimization approaches, we consistently found that the fMRI-

ERP overlap metric plateaued for different ERP amplitude and temporal threshold 

combinations (see Figure 7 for an example in one subject). Due to this, gradient based 

https://www.sciencedirect.com/science/article/pii/S0165027019302584#fig0010
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approaches that would have sped-up the optimization process were inadequate because 

they would not consistently converge to the global maximum. To ensure detection of the 

threshold combination that maximized the spatial overlap between fMRI and ERP 

measures, it was necessary to employ an exhaustive search of the threshold space in the 

present study. 

In the future, the fMRI-ERP SOE method could be refined and expanded in 

several ways. First the exhaustive search to optimize thresholds could be made more 

efficient by refining the class membership function to emphasize sensitivity to a global 

solution in the amplitude/temporal threshold space. This would in turn facilitate more 

efficient searches for the optimal thresholds using, for example, gradient-based 

approaches. The fMRI-ERP SOE approach could be applied to continuous EEG/fMRI 

data by convolving the fMRI time series with the simulated evoked time course. Finally, 

the fMRI-ERP SOE could also be examined when subcortical sources are also modeled. 

In summary, the new fMRI-ERP SOE analysis pipeline for estimating the overlap 

of sources of activity measured simultaneously with fMRI and ERP revealed the 

dynamics of perisylvian regions associated with auditory oddball detection at a 

spatiotemporal detail not available with measurements from just one of the imaging 

modalities, or strictly jICA of measurements from both modalities (J. Mangalathu-

Arumana et al., 2012). The fMRI-ERP SOE suggested that areas of non-overlap in 

sources of activity between the modalities were relatively small and inconsistent across 

subjects, at least in this paradigm. Future research should examine the factors 

contributing to uncoupling between fMRI and ERP measurements, whether physiological 
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(e.g., due to individual differences in neuroanatomy or function), and/or methodological 

(e.g., due to modality differences in imaging sensitivity in specific brain regions). 
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CHAPTER 3: 

 

CHARACTERIZATION OF THE NEUROIMAGING COUPLING BETWEEN 

EEG AND FMRI IN A SYLLABLE DETECTION TASK 

 

 

3.1 Introduction 

 

 

Electroencephalography (EEG) and functional magnetic resonance imaging 

(fMRI) are complimentary noninvasive neuroimaging measures in that EEG is a direct 

measure of large-scale neural activity with high temporal (milliseconds) and low spatial 

resolution, and fMRI is a high spatial (millimeters) and low temporal (seconds) resolution 

measure of the hemodynamic response associated with neural activity.  Whether 

measuring brain activity with both EEG and fMRI offers a more complete view of brain 

function depends on an understanding of the factors that affect the coupling and 

uncoupling between neuroimaging modalities. That is, meaningful integration of EEG 

and fMRI requires knowledge of the conditions under which they do and do not reflect 

the activity of the same sources, in healthy and pathological brains. 

Neurovascular coupling, and uncoupling, has been demonstrated at the level of 

single neurons and neuronal assemblies in the brain. Single cell studies in animals have 

observed correlation of the hemodynamic response to post-synaptic local field potentials, 

and a weaker correlation to pre-synaptic spiking activity within neurons (Devor et al., 

2003; Goense & Logothetis, 2008; Logothetis, 2008b; Logothetis et al., 2001; Niessing et 

al., 2005; Shmuel et al., 2006). Intracranial EEG studies in patients with epilepsy have 

found neural activity in the gamma band (> 32 Hz) most strongly correlate to the 

hemodynamic response in brain regions associated with vision, semantic processing, 

auditory processing, and attention, while the beta band (15-32 Hz) shows a weaker 
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correlation, and the delta (<4 Hz) and theta (4-8 Hz) bands show a negative correlation to 

the hemodynamic response.  (Koch, Werner, Steinbrink, Fries, & Obrig, 2009; Mazzoni 

et al., 2010; Muthukumaraswamy & Singh, 2008, 2009; Niessing et al., 2005).  

At the macro scale of EEG and fMRI, neuroimage uncoupling may be a product 

of the differences in spatial and temporal sensitivity between the modalities. fMRI has 

good and even sensitivity throughout the brain, whereas EEG has higher sensitivity to 

cortical activity represented by electrical dipoles oriented perpendicular to the gyri and 

sulci, and weaker sensitivity to electrical dipoles oriented perpendicular to the sulcal 

walls (Nunez & Srinivasan, 2006), and located in deep subcortical structures (Grech et 

al., 2008).  On the other hand,  the slow rise of the BOLD response (approximately 4s in 

many cortical areas  (Buckner et al., 1996)) renders it insensitive to transient neural 

activity that is well captured by EEG.   

Joint independent component analysis (jICA) is a blind source separation approach 

applicable to multimodal neuroimaging data (V. Calhoun et al., 2006; Moosmann et al., 

2008).  In its instantiation within-subject, jICA of fMRI and EEG extracts independent 

components containing activity that covaries across modalities as a function of 

experimental conditions  (J. Mangalathu-Arumana et al., 2012; Jain Mangalathu-

Arumana et al., 2018).  The aim of the present study was to investigate the pattern of 

coupling between EEG and fMRI as a function of stimulus presentation rate, including 

the range in which the BOLD response is non-linearly related with presentation rate (J.R. 

Binder et al., 1994; Rees et al., 1997; Büchel et al., 1998; Rees et al., 1997; Robson et al., 

1998)). Speech syllables were selected as stimuli because they naturally occur at 

relatively high rates (2-4 Hz) in which the BOLD response may change non-linearly. 
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JICA was then used to identify task-relevant brain networks differentiated by the 

relationship between EEG and fMRI responses across task levels.  

3.2 Methods 

 

 

3.2.1 Participants 

 

 

Thirteen neurologically healthy, right-handed, native-English speaking volunteers (9 

male, 4 female), ages 20-33 years, participated in the study. All participants provided 

informed consent in compliance with the Medical College of Wisconsin and Marquette 

University institutional review board policies and were compensated for their 

participation in the study.  

3.2.2 Experimental Design 

 

 

EEG and fMRI were recorded simultaneously in a single imaging session during 

which participants performed a syllable detection task. The task consisted of pressing a 

button upon detecting an infrequent (5% of presentations) target syllable (/ta/) within 

sequences of up to 8 syllables presented at rates of 0.25 Hz, 0.5 Hz, 0.75 Hz, 1 Hz, 1.5 

Hz, 2 Hz, 2.5 Hz, and 3 Hz.  The spoken syllables were derived from natural utterances 

of /bi/, /ba/, /gi/, /ga/, /da/, and /do/, produced by a male speaker and sampled at 44.1 

kHz. The syllables were edited in Praat (www.praat.org), to have a 150ms duration and a 

5ms rise-decay envelope. The stimuli were delivered through a silent scan pneumatic 

headset (Avotec Inc, Stuart, FL) at approximately 65 dB, adjusted individually to 

accommodate individual preferences in hearing and headphone placement. The stimulus 

http://www.praat.org/
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presentation was controlled with E-Prime 3.0 (Psychology Software Tools, Pittsburgh, 

PA). Forty trials were presented at each syllable rate, and in a baseline condition during 

which no stimulus was presented (360 trials total). Each syllable (except the target 

syllable) was presented 305 times, in random order, across all presentation rates. The 

EEG and fMRI from trials containing the target syllable (two per syllable presentation 

rate) were not analyzed. All participants performed the task with accuracy at or above 

80%. 

3.2.3 Data Acquisition 

 

 

FMRI was collected with a GE 3 T Signa Excite scanner (General Electric Health 

Care, Milwaukee, WI). Two sets of high resolution whole brain anatomical images were 

collected using a 3D spoiled gradient-echo (SPGR) sequence (0.9mm × 0.9mm × 1mm 

voxels), one at the beginning and one at the end of the session. Functional MR images 

consisted of T2
*
-weighted, gradient-echo, echo planar images acquired with a clustered 

volume sequence modified to obtain two whole brain volumes back to back 

(TE = 20 ms; flip angle = 90
o
; TR = 1.8 s; slices = 29).  For each 9 s trial, two whole 

brain volumes were acquired in 3.6 s, and the stimulus sequence was presented in the 

subsequent 5.4 s during which no images were acquired. This paradigm minimized 

perceptual masking of the speech syllables by the acoustic noise of the scanner, and 

avoided contamination of the EEG by artifacts related to MR gradient-switching during 

syllable presentation. The syllable sequences were positioned such that the last syllable 

started 4 seconds before the acquisition of the second fMRI volume, to coincide with the 

estimated peak of the BOLD response (Vagharchakian et al., 2012). EEG was recorded 

simultaneously and continuously at full bandwidth, and was digitally sampled at 500Hz, 
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using an MRI-compatible MagLink system consisting of a 64-channel MagLink cap (62 

monopolar electrodes, and 2 bipolar leads for ECG and VEOG), SynAmps amplifier, and 

a Scan 4.4 Workstation (Compumedics Neuroscan, Inc., TX). Sintered Ag/Ag-Cl 

electrodes were positioned according to the extended International 10–20 system, with a 

hard-wired reference at CPz.  Electrocardiogram activity and vertical eye movements 

were recorded with bipolar channels. All electrode impedances were kept below 10kΩ. 

3.2.4 Pre-Processing 

 

 

FMRI was preprocessed in AFNI (Cox, 1996). The two anatomical volumes were 

spatially co-registered and averaged to improve the signal-to-noise ratio of the anatomical 

structures. The functional image series was spatially co-registered to minimize motion 

artifacts, and then registered to the averaged anatomical image. Voxel-wise multiple 

linear regression was used to analyze the individual time series, with a reference function 

representing the target syllable, and the eight syllable presentation rates. Six motion 

parameters were included as covariates of no interest. General linear tests were conducted 

between the activation maps at each syllable presentation rate and the silent condition. 

For visualization (Figure 14), the individual anatomical and functional statistical maps 

were projected into standard stereotaxic space (Talairach & Tournoux, 1988) by linear 

resampling. The statistical maps were smoothed using a Gaussian kernel with 6mm 

FWHM, and averaged across subjects for each syllable presentation rate. 

EEG signals were preprocessed in BrainVision Analyzer v2.1 (Brainproducts GmbH, 

Gilching, Germany), including scanner artifact correction (Allen, Josephs, & Turner, 

2000), bandpass filtering from 0.1Hz to 15 Hz using an 8
th

 order zero-phase shift 
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Butterworth filter, and ballistocardiogram artifact correction.  ICA was applied to remove 

eye blinks, head movement, and residual ballistocardiogram artifacts.  The continuous 

EEG was parsed to trials corresponding to the period from -5000ms to -800 ms relative to 

the onset of the first functional image acquisition. Trials were rejected if they contained 

voltage values exceeding ±200µV and gradients larger than ±80µV/ms.  Event-related 

potential (ERP) responses were computed by averaging trials according to syllable 

presentation rate (and separately averaging silent trials). The level-wise ERPs were linear 

detrended, and baseline corrected by removing the mean voltage value from the period -

200ms to -50ms before stimulus onset. The ERPs were re-referenced to the mastoid 

electrodes for visualization and grand-average (across subjects) ERPs were created for 

each syllable presentation rate and for the silence condition. The grand-average ERP 

from the silent trials was subtracted from the grand average ERP for each of the eight 

presentation rates to remove activity unrelated to syllable processing.   

3.2.5 jICA 

 

 

The individual fMRI and ERP responses were submitted to within-subject jICA, 

as described previously (J. Mangalathu-Arumana et al., 2012). Both datasets were 

vectorized and concatenated by syllable presentation rate. The input to jICA consisted of 

eight features, each containing the fMRI and ERP responses for one of the eight syllable 

sequences, such that the resulting components represented the joint fMRI and ERP 

responses that co-varied across presentation rates. 

Components related to syllable perception were identified in each neuroimaging 

modality as those containing activity within the top 5% of the distribution of activity 

across all components (p<0.05).  Two joint ERP and fMRI components with significant 
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activity related to syllable perception were identified. The primary component (Figure 

133A) contained extensive ERP and fMRI suprathreshold activity, and the secondary 

component (Figure 133B) contained predominantly ERP supra-threshold activity.  

The fMRI components were thresholded voxel wise at p < 0.05, and a voxel 

cluster threshold was applied resulting in a corrected volume-wise threshold of p < 0.05.  

The ERP components were submitted to source localization in Brainstorm (Tadel, Baillet, 

Mosher, Pantazis, & Leahy, 2011) using a weighted minimum-norm estimation (wMNE), 

and thresholded at a corrected map-wise p < 0.05. Regions of interest (ROIs) were 

created that corresponded to the thresholded activity maps (see Table 4).   

For each component and modality, the average activity within ROIs was 

calculated and multiplied by the mixing coefficients to obtain the weighted mixing 

coefficient, reflecting the degree to which each syllable presentation rate contributed to 

the activity (Figure 13). 

 

 

Figure 13. Steps for computing the weighted (level-wise) mixing coefficients. The 

joint ERP and fMRI components resulting from jICA (S1, S2) were multiplied by 

the jICA mixing matrix to reconstruct the level-wise mixing coefficients (C1, C2). 

The average level-wise activity for each modality and component is calculated 

within the ROIs, determined by the top 5% of activity after amplitude and cluster 

thresholds, to obtain the weighted mixing coefficients. 
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3.2.6 Multiple linear regression analysis 

 

 

To compare the effectiveness of our approach, multiple linear regression analysis 

applied to the fMRI data was used to identify regions of cortical activity that varied 

across task difficulty.  To create the multiple linear regression, a general linear model 

analysis was run for each subject across levels to identify the regions associated with the 

task.  Afterwards, a t-test was applied across subjects to define the statistical significance 

of the activity at each voxel.  Finally, the group-level activation map generated by the 

multiple regression analysis was obtained by applying an amplitude threshold (p<0.05) 

and a cluster threshold (corrected p<0.05).   

 

 

 

3.2.7 Detection of task-related brain networks 

 

 

To determine if jICA provided improved the ability to detect task-related brain 

networks, the sensitivity and specificity for detecting regions of significant activity in the 

fMRI results was compared with those from the multiple regression analysis. For each 

jICA component containing significant activity, the receiver operating characteristic was 

measured by varying the amplitude threshold used to define significant activity (p= 0.8, 

0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.05, 0.001).  For each amplitude threshold the 

sensitivity (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
) and specificity (

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
) 

associated with significant activity corresponding spatially to the areas identified with the 
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multiple linear regression mask was calculated.  True positives corresponded to voxels 

with a jICA component that exceeded the amplitude threshold and fell within the activity 

mask from the multiple regression analysis. False positives corresponded to voxels that 

exceeded the amplitude threshold and fell outside of the activity mask.  True negatives 

were defined by voxels within the jICA components that fell below the amplitude 

threshold and were outside of the activity mask, and false negatives corresponded to 

voxels that fell below the amplitude threshold but were located within the activity mask.   

For each jICA component, the sensitivity for detecting significant fMRI activity 

was plotted against 1-specificity to generate the receiver operating characteristic, and the 

corresponding area under the curve was calculated to characterize the detectability of the 

brain network with each jICA component using multiple linear regression analysis. 

 

 

3.3 Results 

 

 

3.3.1 Level-Wise fMRI Group Maps: 

 

 

Figure 14 depicts the fMRI group maps at each of the 8 syllable presentation 

rates. The bulk of the activation was seen on Heschel’s gyrus and the lateral aspect of the 

superior temporal cortex, as well as the inferior parietal cortex, bilaterally, consistent 

with the location of primary and secondary auditory cortices, and surrounding association 

areas (Pickles, 2012). The strong bilateral activation over the superior temporal gyrus and 

sulcus is consistent with the previously documented auditory cortex response to speech 

syllables (Binder, Rao, Hammeke, Yetkin, et al., 1994; Celsis et al., 1999; Dhankhar et 



60 

 

al., 1997; Joanisse & Gati, 2003; Liebenthal, Binder, Spitzer, Possing, & Medler, 2005).    

Based on the multiple regression fMRI maps, Figure 15, these areas showed increased 

activation with increased presentation rate.  The anatomical regions, cluster size, foci of 

activity, and amplitudes are recorded in Table 2. 

 

Figure 14. FMRI group maps to trains of syllables presented at rates varying from 

0.25 (level 1) to 3 (level 8) Hz. The maps were thresholded at a corrected volume-

wise p < 0.05. 

 

 

 
Figure 15. A multiple regression map across levels for the group.  The maps were 

thresholded at a corrected volume-wise threshold p<0.05. 
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Table 2.  The anatomical location, cluster size, peak amplitude and coordinates (in 

Talairach space) of the suprathreshold activation clusters in the group-wise multiple 

regression fMRI map. 

Anatomical 

location 

Cluster size 

(voxels) 

Peak 

amplitude 

(arbitrary 

units) 

X (mm) Y (mm) Z (mm) 

Left superior 

temporal gyrus 

2653 2.37 -46 -23 10 

Right superior 

Temporal Gyrus 

1675 1.52 52 -20 10 

Left precuneus 1080 1.47 -4 -63 38 

Left cuneus 486 1.46 -23 -80 6 

Right middle 

temporal gyrus 

447 1.2 48 -63 6 

Right precuneus 357 1.2 16 -55 42 

Right 

postcentral 

gyrus 

310 1.17 42 -28 51 

Left precentral 

gyrus 

127 1.17 -40 -35 34 

 

 

3.3.2 Level-Wise Grand-Average ERPs: 

 

 

Figure 16 shows the grand-average ERPs to syllables presented at different rates. 

To facilitate visualizing the change in the ERP response with rate, the level-wise 

responses were averaged by pairs as follows: low presentation rate (levels 1+2), medium-

low presentation rate (levels 3+4), medium-high presentation rate (levels 5+6), and high 

presentation rate (levels 7+8). ERPs were observed to the first syllable in a sequence 

(Figure 16A) at all syllable presentation rates, and consisted of negative and positive 

deflections peaking at 214 ms and 304 ms after syllable onset (in electrode Cz). The 

negative and positive deflections presented with central and frontal topography, 

respectively, consistent with the obligatory auditory N1-P2 complex (Alcaini, Giard, 
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Thevenet, & Pernier, 1994; Koerner & Zhang, 2015; Oades, Zerbin, & Dittmann-Balcar, 

1995) and the orienting N1 response (Alcaini et al., 1994; Budd, Barry, Gordon, Rennie, 

& Michie, 1998; Giard et al., 1994). The subsequent positive deflection peaking at 388 

ms after syllable onset (in electrode Cz), with parietal topography, was consistent with 

the novelty P3a (Combs & Polich, 2006; Demiralp, Ademoglu, Comerchero, & Polich, 

2001; Oades et al., 1995; John Polich, 2007; John Polich et al., 1997), and was seen only 

at the lower syllable presentation rates (Figure 16A). The ERPs evoked by the last 

syllable in a sequence were all attenuated at higher syllable presentation rates (Figure 

16B). A 3-way repeated measures ANOVA with syllable presentation rate (low, medium-

low, medium-high, high), syllable position in the syllable sequence (first, last), and ERP 

component as the repeated measure (N1, P2, P3a), revealed a significant main effect of 

ERP component (F(2, 16) =31.63, p<0.001). Significant two-way interactions occurred 

between syllable presentation rate and ERP component (F(2, 16) =10.25, p=0.001), and 

between syllable position in the sequence and ERP component (F(2, 16) =9.44, p=0.002), 

and a three-way interaction of ERP component, syllable position, and syllable 

presentation rate (F(2, 16) =10.96, p=0.001). The amplitudes of N1, P2, and P3a evoked 

by the last syllable were reduced at the higher (3 Hz) versus lower (0.25Hz) presentation 

rates (Table 3.). The ERPs evoked by the last versus first syllable were also reduced at 

the highest presentation rate. 
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Table 3. Post-hoc tests for the three-way ANOVA between syllable position, ERP 

component, and syllable presentation rate. 

T-Test for the last syllable between low presentation 

rate (0.25 Hz) and high presentation rate (3 Hz) 

ERP 

component 

t df Sig. (2-

tailed) 

p 

N1 3.01 12 0.01 

P2 2.63 12 0.022 

P3 2.58 12 0.026 

 

T-Test for the 3 Hz presentation rate between the first 

and last syllable 

ERP 

component 

t df Sig. (2-

tailed) 

p 

N1 2.68 12 0.02 

P2 2.87 12 0.014 

P3 2.46 12 0.03 
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Figure 16. Grand average ERPs to syllables presented at different rates. A) ERPs at 

electrode Cz, evoked by the first syllable in the sequence of syllables presented at 

low, medium-low, medium-high, and high rates. The topographic maps are shown 

for the low syllable presentation rate at the approximate peaks of N1, P2 and P3a. 

B) ERPs at electrode Cz, evoked by the last syllable in a sequence of syllables 

presented at low, medium-low, medium-high, and high rates. 

 

 

3.3.3 JICA of fMRI/ERP: 

 

 

Figure 17 and Table 4 show the fMRI and ERP responses associated with the 

primary (panel A) and secondary (panel B) components resulting from jICA. The primary 

fMRI subcomponent consisted of two large clusters of strong activation in bilateral 

superior temporal gyrus. The secondary fMRI subcomponent consisted of six relatively 
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smaller clusters of weaker activation, distributed in bilateral perisylvian areas, including 

the inferior parietal and post central gyri.   

The ERP subcomponents are shown as butterfly plots of all electrodes, along with 

the global power (green trace), over the 4 s during which stimuli were presented. The 

primary ERP subcomponent contained activity sustained throughout the 4 s window, as 

evidenced from suprathreshold intervals spanning the entire time window (354ms-372ms, 

500ms-538ms, 724ms-796ms, 908ms-1002ms, 1344ms-1362ms, 1916ms-1950ms, 

2704ms-2762ms, and 3190ms-3254ms).  In contrast, the secondary component, contained 

periods of activity at specific time windows, with the largest response from 3822ms-

4102ms (the only time point all levels had a time-locked stimulus), and a second smaller 

response from 510ms-540ms.  The remainder of the time course showed lower levels of 

activity compared to the primary component.  
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Figure 17. fMRI and ERP responses associated with the primary (panel A) and 

secondary (panel B) components of jICA. The fMRI maps were thresholded at a 

corrected volume-wise p < 0.05. The ERP breakout plots show three 1250 ms 

windows corresponding to the periods when, across the 8 syllable presentation rates, 

the highest number of first syllables (5) was presented (0 ms - 1250 ms), the highest 

overall number of syllables (6) was presented (1500 ms- 2750 ms), and the highest 

number of final (perfectly synchronized) syllables (8) was presented (3000 ms - 4250 

ms). In the breakout plots, the red lines indicate the times when a syllable was 

presented. The numbers above the line indicate, on the left, the number of syllables 

across presentation rates that were presented at that time point, and on the right, 

the number of syllables across presentation rates that were presented at that time 

point with an interval greater than 1s from the previous syllable. The asterisks 

indicate periods when, across levels, several syllables were presented in close 

temporal proximity (6 syllables within 250 ms). 
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Table 4. The anatomical location, cluster size, peak amplitude and coordinates (in 

Talairach space) of the suprathreshold activation clusters in the primary and 

secondary fMRI subcomponents. 

Primary fMRI subcomponent 

Anatomical location Cluster size 

(voxels) 

Peak amplitude 

(arbitrary 

units) 

X 

(mm

) 

Y 

(mm) 

Z 

(mm) 

Left superior temoral gyrus 3793 2.9 -50 -25 10 

Right superior temoral gyrus 3298 2.3 59 -20 8 

Secondary fMRI subcomponent 

Anatomical location Cluster size 

(voxels) 

Peak amplitude 

(arbitrary 

units) 

X 

(mm

) 

Y 

(mm) 

Z 

(mm) 

Left precentral gyrus 846 0.63 -31 -20 29 

Left supramarginal gyrus 824 0.51 -35 -33 29 

Right middle frontal gyrus 30 0.5 42 44 16 

Right middle temporal gyrus 223 0.43 52 -12 -3 

Brainstem 212 0.48 -3 -18 -20 

Left precuneus 193 0.64 -27 -61 32 

Right superior temporal gyrus 126 0.43 59 -35 6 

 

Figure 18 depicts the weighted mixing coefficients, representing the dependence 

of the fMRI and ERP responses on syllable presentation rate, for the primary (A) and 

secondary (B) joint components. The coefficients for the primary fMRI and ERP 

subcomponents generally increased with the syllable presentation rate, with a steeper 

slope in the lower range (below 1 Hz), and shallower slope in the higher range (above 1 

Hz). In contrast, the coefficients for the secondary fMRI and ERP subcomponents 
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showed a more complex pattern, with the largest value observed at the lowest syllable 

presentation rate and generally lower values observed at higher presentation rates.  The 

strength of the weighted mixing coefficients was roughly equal between the primary and 

secondary ERP subcomponents, but the secondary fMRI subcomponent was an order of 

magnitude smaller than the primary fMRI subcomponent.  

 

Figure 18. Weighted mixing coefficients for the primary and secondary jICA 

components, obtained by multiplying the mixing matrix by the average activity 

within fMRI and ERP ROIs for each component.   

 

 

3.3.4 Comparison of jICA to multiple regression analysis: 

 

 

Comparisons between the activity observed in the primary and secondary 

components with that from the multiple regression analysis revealed several notable 

differences.  Spatial comparison of the regions of significant activity showed a 68% 



69 

 

overlap between the multiple regression analysis and the primary component.  Regions 

that did not overlap tended to be located directly adjacent to areas of overlap, which 

could be due to differences in the thresholds.  For the secondary component, however, 

only 37% of the activity overlapped with the multiple regression analysis.  Regions where 

overlap occurred were limited to the right inferior frontal gyrus, bilaterally in the middle 

frontal gyrus, in the left and right superior temporal gyrus, and around the right 

supramarginal gyrus.  The remaining regions of activity in the secondary component 

were not present in the multiple regression analysis when thresholding to a corrected 

volume-wise p < 0.05. 

The results of the sensitivity and specificity analysis as described in 3.2.7 are 

shown in the region of convergence plot in Figure 19.  The area under the curve for the 

primary component was 0.5, and for the secondary component was 0.38. 

 

 

 

Figure 19. Receiver operator characteristic obtained from comparisons of the 

spatial overlap between significant activity in the multiple regression analysis and 
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the primary and secondary components respectively (amplitude threshold p<0.05 

cluster corrected to p<0.05).   

 

 

 

 

 

 

 

 

3.4 Discussion 

 

 

In this paper, we present a data-driven method for the integration of fMRI and 

EEG recordings of brain function.  The method is based on within-subject jICA to 

identify independent fMRI and EEG signals that covary across experimental levels. The 

method is demonstrated on simultaneous fMRI and ERP responses to speech syllables 

presented at varying rates, extending to the range in which the BOLD response is non-

linearly related to the stimulation. The findings suggest that both coupled and uncoupled 

fMRI and ERP responses can be retrieved and used to characterize brain function with 

high spatial and temporal resolution. 

3.4.1 FMRI Multiple Regression and Grand-Average ERP Analyses: 

 

 

The fMRI multiple regression analysis showed that the amplitude and extent of 

the BOLD response increased with syllable presentation rates from 0.5 to 3 Hz, on the 

left cuneus, left precentral gyrus, right postcentral gyrus, right middle temporal gyrus and 

bilaterally in the superior temporal gyrus and precuneus. This is consistent with prior 

reports showing increased activity in these areas with the increase in presentation rate of 

speech syllables from 0.5 Hz to 4 Hz, and words from 0 words per minute up to 130 
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words per minute (Dhankhar et al., 1997; Mechelli, Friston, & Price, 2000; Price et al., 

1992; Rinne et al., 2005).   The grand average ERPs revealed a sequence of negative-

positive deflections at latencies  and topographies consistent with the auditory N1-P2 

complex, and the novelty P3a complex (Fishman, n.d.; Lightfoot, 2016; Morstyn, Duffy, 

& Mccarley, 1983; John Polich et al., 1997; John Polich & Heine, 1996; Shahin AE Larry 

E Roberts AE Lee M Miller AE Kelly L McDonald AE Claude Alain, n.d.; Shenton et 

al., 1989; Vihla & Eulitz, 2003). The decrease in N1-P2 amplitude at high syllable 

presentation rates is consistent with previous studies observing a log1/2 relationship 

between presentation rate and N1-P2 amplitudes, with the largest increases between 

0.5Hz and 2Hz (Brattico, Tervaniemi, Näätänen, & Peretz, 2006; Budd et al., 1998; 

Butler, 1973; H. Davis, Mast, Yoshie, & Zerlin, 1966; P. A. Davis, 1939; Naatanen & 

Picton, 1987; Nelson & Lassman, 1968; Rigoulot & Armony, 2016; Schweinberger et al., 

2008; Webster, 1971; Woods & Courchesne, 1986; Woods, Courchesne, Hillyard, & 

Galambos, 1980; Zäske, Schweinberger, Kaufmann, & Kawahara, 2009; Zerlin & Davis, 

1967). The P3a, characterized by a frontal central positivity, is associated with the 

detection of novel stimuli and the amplitude of this component is inversely dependent on 

the rate of presentation of stimuli (Barry, Steiner, & De Blasio, 2016; Combs & Polich, 

2006; Demiralp et al., 2001; John Polich, 2007; John Polich & Comerchero, 2003), 

including speech syllables in the range 545ms-2709ms (Yu, Shafer, & Sussman, 2017). 

The sources of the N1-P2 and P3a responses to spoken syllables have been localized to 

the superior temporal and inferior parietal cortex, bilaterally (Ford, Woods, & Crewther, 

2018; Mechelli et al., 2000; Papanicolaou et al., 1990; Price, Thierry, & Griffiths, 2005; 

Rogers, Papanicolaou, Baumann, Saydjari, & Eisenberg, 1990). The fMRI multiple 
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regression and grand-average ERP responses to syllable presentation rate are consistent 

with the same sources of activity in the brain; however, sources cannot be separated, and 

the temporal course of different sources cannot be inferred, from this analysis. 

 

3.4.2 Within-Subject JICA: 

 

 

The primary fMRI subcomponent consisted of the activity in the bilateral 

Heschel’s gyrus and lateral superior temporal cortex, also seen in the fMRI regression 

analysis.  The primary ERP subcomponent consisted of activity that was sustained 

throughout most of the period of stimulus presentation. The weighted mixing coefficients 

indicated that the amplitude of the ERP and fMRI responses associated with the primary 

component increased with the rate of stimulus presentation, at faster pace in the range 

below 1Hz, and more slowly above 1Hz.  This is consistent with the log1/2 model of the 

response of the N1-P2 to varying presentation rates, where the range from 0.5 Hz to 2 Hz 

shows the most rapid change in amplitudes.  The spatiotemporal pattern of activity in the 

primary component is consistent with the obligatory auditory response to sound stimuli in 

primary and secondary auditory cortex (Fishman, n.d.; Koerner & Zhang, 2015; Sussman, 

Steinschneider, Gumenyuk, Grushko, & Lawson, 2008).   

The secondary fMRI subcomponent consisted of distributed activity in perisylvian 

regions, with the largest clusters seen in the left supramarginal and precentral gyri. These 

areas are considered to be part of  a dorsal auditory stream, which in the left hemisphere 

has been associated with phonological processing (Chang et al., 2011; Liebenthal, Sabri, 

Beardsley, Mangalathu-Arumana, & Desai, 2013; Meister, Wilson, Deblieck, Wu, & 

Iacoboni, 2007; Osnes, Hugdahl, & Specht, 2011; Wilson & Iacoboni, 2006), and more 
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generally speech perception.  The precuneus is commonly activated in language tasks (R. 

N. A. Henson, Price, Rugg, Turner, & Friston, 2002; Orfanidou, Marslen-Wilson, & 

Davis, 2006; Raettig & Kotz, 2008; Rissman, Eliassen, & Blumstein, 2003). This area is 

thought to be part of an associative cortical network involved in high level processes, 

including the integration of auditory signals with other sensory information (Cavanna & 

Trimble, 2006; Tulving et al., 1994).  The weighted mixing coefficients for the secondary 

component suggest that the greatest response was observed in response to a syllable 

presented after a silent period of at least 2 seconds. Areas of the middle frontal gyrus 

have been shown to be activated in relation to the orienting response; that is, these areas 

were more strongly activated to unexpected stimuli. The amplitude of activation in the 

right middle frontal gyrus and right temporal parietal junction has been found to be 

correlated with the P3a (Doricchi, Macci, Silvetti, & Macaluso, 2010; Halgren et al., 

1995; Horovitz, Skudlarski, & Gore, 2002; Japee, Holiday, Satyshur, Mukai, & 

Ungerleider, 2015; McCarthy, Luby, Gore, & Goldman-Rakic, 1997; Shulman et al., 

2009). With the exception of the brainstem, all the regions activated in the secondary 

component are known to contribute to the N1 orienting response (Naatanen & Picton, 

1987; Zhang et al., 2011).  Additionally, the right middle frontal gyrus and right temporal 

parietal junction have been shown to be correlated to P3a activation (Doricchi et al., 

2010; Halgren et al., 1995; Horovitz et al., 2002; Japee et al., 2015; McCarthy et al., 

1997; Shulman et al., 2009). Activation in these areas does not vary strongly with 

stimulus presentation rate, rather these areas respond to the first stimulus in a sequence 

and then adapt quickly (Barry et al., 2016; Budd et al., 1998; Zhang et al., 2011). 
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The secondary ERP subcomponent consisted of suprathreshold activation 

primarily 3823ms to 4102ms.  In this time window at 3750 ms, a syllable was presented 

in each of the eight stimulus levels, and in the four lowest levels the syllable was 

presented after a long (>1sec) interval. For the lowest presentation rate, this time 

corresponded to the only syllable presented in the sequence. The pronounced N1 

response to stimuli presented at large intervals is consistent with the involuntary initial 

orienting response to a first stimulus (Budd et al., 1998; Escera, Alho, Winkler, & 

Näätänen, 1998; Giard et al., 1994; Naatanen & Picton, 1987; Sussman, Winkler, & 

Schröger, 2003; Wetzel, Berti, Widmann, & Schröger, 2004)  

The weighted mixing coefficients revealed that the ERP activity in the primary 

and secondary components was of comparable magnitude, while the fMRI activity in the 

secondary component was an order of magnitude smaller than the fMRI activity in the 

primary component. This uncoupling between the fMRI and ERP signals in the 

secondary component could reflect differences in the sensitivity of the imaging 

modalities to the activation dynamics, location, and/or electrical orientation of the 

sources. A likely cause of the neuroimage uncoupling seen is the fMRI being less 

sensitive to transient signals compared to EEG.  Thus, the within-subject jICA 

implemented here permitted the separation of sources in the brain that have different 

spatiotemporal characteristics. The spatiotemporal pattern of activation of each source 

provided the basis for estimating its function. JICA revealed the spatiotemporal dynamics 

of the secondary source despite the uncoupling between the imaging modalities.  The 

approach to studying neuroimaging coupling developed here can be applied to 

characterize variations in the relationship between fMRI and ERP across experimental 
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conditions and brain regions in healthy individuals. The method could also be applied to 

studying diseases that may affect neurovascular integrity; for example Alzheimer’s 

disease and hypertension in which changes in the cellular structure of the vasculature that 

impair the automatic regulation of blood flow (Frank M. Faraci & Heistad, 1998; 

Girouard & Iadecola, 2006; Costantino Iadecola, 2004; Kazama et al., 2003; Mackert et 

al., 2008; John Polich & Corey-Bloom, 2005; Prvulovic et al., 2011; Sperling, 2011).   

 

3.4.2 Comparison between jICA and multiple regression analysis: 

 

 

When the jICA-fMRI results were compared spatially against the multiple 

regression analysis, several regions of significant activity were observed with jICA that 

were not present in the multiple regression analysis. While the strong fMRI activity in the 

primary component was well captured by the multiple regression analysis, the weaker 

activity associated with the secondary component was largely undetected using a volume 

corrected p<0.05.  Subsequent ROC analysis showed that the multiple linear regression 

analysis was more sensitive to activity returned in the primary component than the 

secondary component.  This is consistent with the fact the fMRI activity in the secondary 

component is an order of magnitude smaller than that associated with the primary 

component. When the primary and secondary activity is combined in a single statistical 

analysis such as multiple linear regression, the activity observed in the secondary 

component largely falls below the thresholds typically applied for statistical significance.  

By leveraging EEG’s ability to capture faster, more transient, signals jICA was able to 

identify fMRI activity associated with the orienting response that was not easily 

detectable in the multiple regression analysis. 
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There are several limitations to the proposed method.  First, because the mixing 

coefficients in jICA are shared between imaging modalities, nonlinearities between 

modalities are represented across multiple components (Jain Mangalathu-Arumana et al., 

2018).  Nevertheless, we have previously shown that components reflecting split activity 

from the same source can be recombined based on residual shared features (Jain 

Mangalathu-Arumana et al., 2018).  Other blind source separation approaches such as 

IVA, create a separate mixing matrix for each modality, but does so at the cost of 

decreased sensitivity for lower SNRs (Adali et al., 2015).  Another limitation is that the 

interpretation of the temporal content within a component may not be trivial due to the 

methodological approach overlapping the temporal information across all levels.  This 

can be mitigated in part by choosing experimental designs that intentionally separate the 

timing of task relevant features.   

In summary, the approach developed here for quantifying the relationship 

between activities measured with fMRI and EEG revealed distinct brain networks with 

coupled and uncoupled EEG/fMRI activity. The component with coupled EEG/fMRI 

activity reflected activity in primary and secondary sensory cortices, which increased 

with syllable presentation rate. The uncoupled component (reflecting EEG but not fMRI 

activity) was consistent with activity in higher order association cortices which was not 

dependent on syllable presentation rate.  The approach was able to characterize the 

neuroimage coupling between networks by leveraging the mixing matrix produced by 

jICA.  By leveraging EEG’s ability to capture faster, more transient, signals jICA was 

able to parse fMRI activity that was not easily detectable with multiple linear regression 

analysis. This method could be applied to characterizing the neuroimage coupling of 



77 

 

neural networks in healthy subjects as well as diseases that degrade neurovascular 

integrity. 
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CHAPTER 4: 

ASSESSMENT OF THE IMPACT OF JICA ON THE DETECTION OF 

SUBCORTICAL SIGNALS 

 

 

4.1 Introduction 

 

 

The value of combining functional magnetic resonance imaging (fMRI) with 

electroencephalography (EEG) for studying the dynamics of cortical activity is relatively 

well established. However, this simultaneous fMRI/EEG has rarely been applied to 

studying subcortical activity because the sensitivity of EEG to sources located deep in the 

brain is not well-defined. Here, we use computational simulations of subcortical and 

cortical activity to examine the potential utility of applying blind source separation on 

fMRI and EEG, for increasing the detection and recovery of subcortical activity.  

The detection of neural activity with EEG depends on a number of factors, 

including the type of neural sources and their spatial organization in the brain.  The 

hippocampus is an archicortical structure with sub regions comprised of pyramidal cells 

that are highly organized in space, similar to the neocortex albeit with fewer layers 

(LeDoux, 2007; Nunez and Srinivasan, 2006; Olucha-Bordonau et al., 2015; Whalen and 

Phelps, 2009).  The current dipoles generated within such highly organized structures 

sum constructively to amplify synchronous activity, resulting in open field current 

sources.  In contrast, the amygdala is comprised of neurons with radial dendritic 

geometries (e.g., stellate cells), and pyramidal cells with an irregular spatial organization 

(Attal et al., 2007a; Attal and Schwartz, 2013; Berretta et al., 2007; Olucha-Bordonau et 

al., 2015). The current dipoles generated within this type of disorganized structure can 

sum constructively or destructively, depending on the spatial orientations of the active 
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neurons. When there is no dominant orientation among active neurons, the current 

dipoles will tend to cancel out resulting in a closed field current source. 

The detection of current sources in the hippocampus and amygdala with 

magnetoencephalography (MEG) has been reported for a number of perceptual and 

cognitive tasks (Balderston et al., 2013; Breier et al., 1998; Cornwell et al., 2008; 

Garolera et al., 2007; Gross et al., 2001; Ioannides et al., 1995; Jerbi et al., 2007; Luo et 

al., 2007; Maratos et al., 2009; Tesche, 1996).  Computational simulations accounting for 

the neuroanatomical structure of the hippocampus and amygdala support the idea that 

activity from these sources can be detected with MEG, as well as EEG (Attal et al., 

2007a; Attal and Schwartz, 2013; Dumas et al., 2013, 2011; Krishnaswamy et al., 2017). 

These simulations suggest that open field current sources in the hippocampus can be 

detected with relatively few trials (21-45), whereas smaller and weaker signals from 

closed field sources require more trials, 100-200 in the amygdala up to 10,000+ in the 

reticular perithalamic nucleus and external pallidum, to be detected (Attal et al., 2007a).  

A recent study using simultaneous scalp and intracranial electrodes demonstrated that 

epileptiform discharges from the amygdala, hippocampus, and thalamus were all 

detectable with scalp EEG recordings (Pizzo et al., 2019). 

One approach to informing EEG analysis with fMRI is to constrain the locations 

of sources to brain regions indicated as active with fMRI, based on an assumption of 

constant spatial coupling between EEG and fMRI signals across subjects and/or 

experimental conditions  (Aftanas et al., 1998; Bobes et al., 2018; Dale et al., 2000; 

Huster et al., 2012; Ou et al., 2009; Xu et al., 2018).  On the other hand, data-driven 

analyses such as joint independent component analysis (jICA) relax the constraint of 
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constant fMRI-EEG coupling. JICA is based on an assumption of correlation between 

EEG and fMRI sources across subjects and/or conditions without requiring coupling 

between the imaging modalities (Arumana, 2012; Heugel et al., 2019; Lee et al., 2008; 

Levin-Schwartz et al., 2014; Ma et al., 2013; Mangalathu-Arumana et al., 2018; 

Moosmann et al., 2008; Rosa et al., 2010). 

This paper reports on a simulation study designed to examine the performance of 

within-subject jICA of fMRI/EEG (jICA-fMRI/EEG) relative to ICA of EEG uninformed 

by fMRI (ICA-EEG), and relative to simple trial averaging of EEG (TA-EEG) for the 

detection of subcortical signals under experimentally realistic conditions. Three sets of 

simulations estimate the detection of current sources in the hippocampus and the 

amygdala, representing respectively open and closed field sources, and in the presence or 

absence of a synchronous cortical current source with similar topography as the 

subcortical source.   

4.2 Methods 

 

 

4.2.1. Structure of simulations  

 

 

Three sets of simulations were designed to examine the performance of jICA-

fMRI/EEG for the detection of sources in the hippocampus and amygdala, as detailed in 

Table 5.  The first set of simulations compared the detection of sources with different net 

orientations within the hippocampus using jICA-fMRI/EEG, ICA-EEG, and TA-EEG.  

The second set of simulations compared the detection of sources with varying open field 

strengths within the amygdala using jICA-fMRI/EEG, ICA-EEG, and TA-EEG.  The 

final set of simulations examined the effect of a simultaneous cortical source on the 
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detection of sources in the hippocampus and amygdala, as a function of the pattern of 

stimulus response with respect to the subcortical source. 

Two hundred trials per subject were used in each set of simulations across the 

three analysis approaches. This number of trials was selected because it was found 

adequate for detecting amygdala activity in prior simulations (Attal and Schwartz, 2013), 

and considered practical for simultaneous EEG/fMRI experiments.   

 

 

Table 5.  Parameters used for the three sets of simulations.  Included in () are the 

specific values or conditions used. 

 Simulation 1 Simulation 2 Simulation 3 

Sources Hippocampu

s 

Amygdala Amygdala Hippocampus+

cortex 

Amygdala+

cortex 

ROIs 8 1 1 1 1 

Orientation

s 

n/a 17 1 n/a 1 

Field 

strengths 

(percent of 

open field) 

 

n/a 

 

1 (1%) 

6 (0.3%, 

1%, 3%, 

5%, 7%, 

9%) 

 

n/a 

 

1 (1%) 

Analyses  jICA-

EEG/fMRI, 

ICA-EEG, 

TA-EEG 

jICA-

EEG/fMRI, 

ICA-EEG, 

TA-EEG 

jICA-

EEG/fMRI

, ICA-

EEG, TA-

EEG 

jICA-

EEG/fMRI, 

TA-EEG 

jICA-

EEG/fMRI, 

TA-EEG 

Detection 

measure 

 

AUC 

 

AUC 

 

AUC 

AUC, 

Correlation 

Coefficient, 

FFT ratio 

AUC, 

Correlation 

Coefficient, 

FFT ratio 

Patterns of 

activity 

(between 

cortex and 

subcortex) 

 

 

n/a 

 

 

n/a 

 

 

n/a 

 

 

2 (same, 

different) 

 

2 (same, 

different) 

Trials 200 200 200 200 200 

Simulated 7 7 7 7 7 
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subjects 

Conditions 

(ROIs X 

Orientation

s X Field 

strength X 

Pattern X of 

activity X 

Simulated 

subjects) 

 

 

 

 

56 

 

 

 

 

42 

 

 

 

 

119 

 

 

 

 

14 

 

 

 

 

14 

Simulations 

per set of 

conditions 

 

1000 

 

1000 

 

1000 

 

1000 

 

1000 

Total 

number of 

simulations 

 

56,000 

 

42,000 

 

119,000 

 

14,000 

 

14,000 

 

 

4.2.2 Anatomical model 

 

 

A head model containing the cortex and subcortex was constructed using the 

Colin 27 brain (Holmes et al., 1998) using the standard anatomical feature segmentation 

in Freesurfer version 6.0 (Dale et al., 1999).  The segmented features were imported into 

Brainstorm version: 3.190502 (Tadel et al., 2011) and a boundary element head model 

which included the scalp, outer skull, inner skull, hippocampus, amygdala and the entire 

cortex  for each hemisphere, was constructed.  The entire cortex and left hippocampus 

were represented by 15,000 and 750 vertices, respectively, placed on their surface. The 

left amygdala was represented by 10 vertices placed in isotropic voxels covering the 1 

cm
3
 volume of the amygdala. Electrode locations on the head model were specified using 

a 64-channel template of the extended international 10-20 system. The forward and 
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inverse projection matrices were generated for all vertices on the cortex, hippocampus, 

and amygdala. 

4.2.3 Experimentally derived noise 

 

 

EEG noise was simulated from EEG obtained in a simultaneous fMRI/EEG 

experiment in seven subjects performing a syllable detection task (Heugel et al., in 

preparation). For each set of simulations in one subject, 1600 ms segments of 

experimental EEG from random trials (including silent trials) were used to simulate the 

EEG noise. At each electrode, the EEG segments were Fourier-transformed into the 

frequency domain, the phases were randomized across frequencies, and frequency 

representation was transformed back into the time domain to remove any temporal 

structure. The result was noise that had the same spectral power as the experimental EEG, 

but no temporal structure related to experimental conditions.   

Similarly, fMRI noise was simulated from experimental fMRI activation in the 

hippocampus and amygdala, collected simultaneously with EEG in the same seven 

subjects (Heugel et al., in preparation).  The mean and standard deviation of the fMRI 

response to silent trials was calculated for each voxel and used to define a normal 

distribution. The normal distribution at each voxel was randomly sampled to create noise 

that was matched statistically to the experimental data but without spatial structure.   

For the first two simulations JICA-EEG/fMRI and ICA-EEG, 200 trials were split 

evenly between five experimental levels varying in signal strength (20%, 60%, 100%, 

140%, and 180% of the variance of the noise).  For TA-EEG, 200 trials were drawn from 

the middle level corresponding to the average signal strength across levels.  
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4.2.4 EEG signal generation 

 

 

The approach outlined in (Attal et al., 2007b) was used to define the amplitude of 

the current sources in the amygdala and hippocampus. For each subcortical region, the 

current density weighting (𝛾𝑖) was defined relative to the strength of a cortical source 

such that 𝛾𝑖 =
𝜎𝑐

𝑒𝑐∗𝑑𝑖
, where i represents the subcortical structure being modeled, 𝜎𝑐 is the 

surface current density of the cortex, 𝑒𝑐 is the cortical thickness of the cortex, and 𝑑𝑖 is 

the estimated cellular density of the subcortical structure.  The current density weighting 

was subsequently used to scale the subcortical signal. 

The subcortical signal was simulated as a 300 ms, 12 Hz sinewave placed at 726 

ms from the onset of a 1600 ms window.  The variance of the signal was scaled to 

simulate changes in activity across five experimental levels in simulation sets 1-2, and ten 

levels in simulation set 3. An additional cortical source was defined such that it 

overlapped with the subcortical signal in the period of 726-875 ms, and there were only 

subcortical and cortical signals, respectively, in the initial period of 876-1025 ms and the 

final period of 576-725 ms (simulation set 3, Figure 23A). The levels provide 

independent observations for within-subject jICA (referred to here as jICA-EEG/fMRI). 

The variance of the signal at the middle level was scaled to equal that of the noise so that 

signal variance of the two lower experimental levels were less than the noise while the 

signal variance of the two higher experimental levels were greater than the noise (Figure 

20).  Based on the type of subcortical current source being simulated (hippocampus or 

amygdala), the signal was additionally scaled by the current density weighting 

representing the ratio of subcortical-to-cortical activity. 
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Figure 20: Signal amplitudes (blue sinewaves) in the five experimental levels used in 

simulation sets 1-2, relative to variance of noise (shaded region).  The variance of the 

signal in level three was scaled to be equal to the variance of the noise. 
 

 

The hippocampus was modeled as an open source with dipoles oriented 

perpendicular to its surface, and with a current density weight that was 1.5 times larger 

than an equivalent cortical current source (Attal et al. 2007b). The amygdala was 

modeled as a closed field current source with an unconstrained net current dipole 

orientation relative to its surface. Each dipole in the amygdala was represented by a 3-

dimensional vector with the same orientation and a current density weight that was 4 

times larger than an equivalent cortical current source (Berretta et al., 2007; Dumas et al., 

2011; García-Amado and Prensa, 2012).   

The cortical signal was simulated as a 300 ms, 4Hz sinewave.  Each subcortical 

current source (ROI #5 for the hippocampus, orientation # 16 for the amygdala) was 

separately forward-projected to the EEG electrodes, and a weighted minimum-norm 
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source localization constrained to the cortical surface was performed to create a 

distributed cortical current source with the same scalp topography as the subcortical 

current sources (Figure 17 C-E).  To restrict the cortical activity to a focal distribution an 

amplitude threshold (p < 0.05) and vertex cluster threshold resulting in a corrected map-

wise threshold of p < 0.05 were applied to define a focal region that approximated the 

spatial distribution of each respective subcortical source 

The same scaled signal for each experimental level was applied to all the vertices 

within a region of interest (ROI), and the vertices outside the ROIs were left empty. The 

signal was forward projected onto the EEG electrodes, and the electrode with the largest 

amplitude of subcortical signal was identified and recorded. Trials for each experimental 

level were created by adding the forward projected signals to the experimentally derived 

noise at the level of the electrodes. 

4.2.5 FMRI signal generation  

 

 

The cortical and subcortical fMRI signals for each experimental level were 

generated by scaling the variance relative to the voxel-wise noise.  The variance of the 

signal at the middle level was scaled to equal that of the noise so that signal variance of 

the two lower experimental levels were less than the noise while the signal variance of 

the two higher experimental levels were greater than the noise.  Silent trials were 

simulated to use as a baseline that consisted of the experimentally-derived noise only.     

4.2.6 Structure of Analyses  

 

 

The detection of subcortical sources with jICA-fMRI/EEG was compared to ICA-

EEG and TA-EEG.  For jICA-fMRI/EEG and ICA-EEG, level-wise averages were used 
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as input, and for TA-EEG averages across all levels were entered. For JICA-EEG/fMRI 

and ICA-EEG, the level-wise EEG average time course was concatenated across 

electrodes (64 electrodes x 800 time points) and combined into an observation matrix 

with rows corresponding to the vectorized level-wise EEG (Arumana, 2012). For JICA-

EEG/fMRI, the voxel-wise fMRI for the entire volume (475,136 voxels) was vectorized 

for each level and concatenated with the corresponding EEG electrode-time course to 

form a single joint observation matrix.  Prior to ICA, dimension reduction using principle 

component analysis was performed in fusion toolbox v 2.0d 

(http://trendscenter.org/software/fit/), using an automated estimate for the number of 

independent signals to reduce over parsing.  

For JICA-EEG/fMRI and ICA-EEG, components containing activity varying with 

experimental level were identified in each imaging modality as those exceeding an 

amplitude threshold of p<0.05 relative to the distribution of activity across all 

components in that modality (Heugel et al., 2019).  For TA-EEG, the entire epochs were 

averaged across all trials to produce an average time series for the electrode ensemble.  

 

4.2.7 Subcortical signal detection 

 

 

Signal detection theory was used to determine the receiver operator characteristic 

(ROC) associated with the detection of a signal in the presence of noise.  The area under 

the ROC curve (AUC) was used as a summary statistic to compare the detection of 

subcortical sources from EEG across simulations. To estimate the ROC, the EEG time 

series from the channel most sensitive to the subcortical signal was used. One hundred 

amplitude thresholds, ranging from 0 to the maximum value of the signal, was applied 

http://trendscenter.org/software/fit/
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above and below the baseline and the suprathreshold time points in the EEG were 

counted during the 300 ms period that the subcortical source was active and during a 

subsequent 300 ms period with no subcortical or cortical activity. Hits and false positives 

were marked if the number of suprathreshold time points in the subcortical active and 

subcortical inactive periods, respectively.  The process was repeated 1000 times for each 

amplitude threshold to construct the ROC and calculate the AUC. If the AUC exceeded 

0.7, the subcortical signal was considered successfully detected (Attal et al., 2007a). 

The results of the simulations, using AUC as a measure of subcortical source 

detection, were compared between the three analyses (jICA-fMRI/EEG, ICA-EEG, TA-

EEG) using ANOVA with additional factors of ROI (in the hippocampus), dipole 

orientation (in the amygdala), or open field strength, as appropriate for each set of 

simulations.  The third set of simulations included separate ANOVAs for the two 

additional measures of subcortical detection.  

 

4.2.8 Simulation 1: Detection of an open field subcortical source 

 

 

The first set of simulations was designed to examine jICA-EEG/fMRI relative to 

ICA-EEG and TA-EEG in the detection of an open field subcortical signal.  To test the 

effect of current source orientation on hippocampal source detection, the entire surface of 

the left hippocampus was subdivided into 8 equally-sized (~2𝑐𝑚2) ROIs (Figure 21), 

each with a different net current dipole orientation. 
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Figure 21: ROIs in left hippocampus used to simulate eight sources with different 

net current dipole orientations.  (A) Medial view looking from the right side of the 

head. (B) Anterior view looking head on.  L-lateral, M-medial, A-anterior, P-

posterior, D-dorsal, and V-ventral. 
 

 

4.2.9. Simulation 2: Detection of a closed field subcortical source 

 

 

The second set of simulations was designed to examine jICA-EEG/fMRI relative 

to ICA-EEG and TA-EEG in the detection of a closed field subcortical source. The 

amygdala was modeled as a closed field current source by scaling it between 0.1 and 9% 

of the net current source density of an open field, and the effect of source strength on 

detection was tested for dipole orientation 2 (0° zenithal, 45° azimuthal). To test the 

effect of orientation of the amygdala net current dipole on detection, 17 amygdala dipole 

orientations were simulated that covered the top half of a sphere in 45
o
 increments of 

azimuth (θ) and zenith (φ) angles (Figure 22). Current dipoles oriented toward the bottom 

hemisphere are equivalent in terms of signal detection, and were not simulated. For the 

orientation simulations, the amygdala open field strength was set to 1%. 
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Figure 22: Simulated amygdala dipole orientations, shown in (A) 3D perspective, (B) 

posterior view, and (C) dorsal view.  Red lines denote orientations in the X-Y plane 

(0
o
 zenithal), blue lines denote orientations extending 45

o
 from the X-Y plane (45

o
 

azimuth), and the black line denotes the dipole oriented along the Z-axis (90
o
 

zenithal). The dipoles were numbered from 1 to 16, starting from 90
o 

zenithal and 0
 o
 

azimuthal and continuing clockwise in the X-Y plane before decreasing the zenithal 

angle. 

 

 

4.2.10 Simulation 3: Detection of a subcortical source in presence of a simultaneous 

cortical source 

 

 

The third set of simulations examined the detection of the subcortical current 

source with jICA-fMRI/EEG relative to TA-EEG in the presence of temporally and 

spatially overlapping cortical activity.  The subcortical and cortical current sources 

overlapped for 150ms of their 300 ms activations (Figure 23).  
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Figure 23: Characteristics of spatiotemporally overlapping cortical and 

hippocampal (#5) simulated sources. (A) Time course of the simulated 4 Hz cortical, 

and 12 Hz subcortical, signals. The light gray shading denotes the time intervals 

containing only cortical (576-725 ms), or only subcortical (876-1025 ms) activity. 

The dark gray shading denotes the time interval when the cortical and subcortical 

activity overlapped (726-875 ms). (B) Change in cortical and subcortical signal 

amplitudes with experimental level. (C) Topographic map of the simulated 

subcortical activity at the scalp electrodes. (D) Topographic map of the simulated 

cortical activity at the scalp electrode.  

 

 

For this set of simulations, the number of experimental levels was increased to 10 

to optimize the separation of current sources using within-subject jICA-EEG/fMRI 

(Mangalathu-Arumana et al., 2018). Four conditions were tested: In the first two, the 

cortical and subcortical (amygdala or hippocampus) sources co-varied linearly as a 

function of experimental level. In the last two, the subcortical sources varied nonlinearly 

with experimental level, whereas the cortical source varied linearly (Figure 23 B). The 
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variance of the experimentally derived noise was set to be equal to the average power 

across all 10 levels. 

The ROC analysis was used to test the effect of the spatiotemporally overlapping 

cortical source on detection of the subcortical source with each of the analyses. Two 

additional measures were used to quantify how well the subcortical current source was 

parsed from the cortical current source during the time period that the signals overlapped. 

First, the ratio of the power at the subcortical frequency (12Hz +/- 1 frequency steps) to 

the total power across all frequencies over the 1600 ms trial interval was calculated. 

Second, the correlation coefficient between the simulated and retrieved subcortical 

signals during the period of cortical and subcortical overlap was calculated.  

 

 

 

 

 

 

 

 

 

4.3 Results 

 

 

4.3.1 Simulation 1: Detection of an open field subcortical source 

 

 

The detection of a hippocampal current source with the three analyses (jICA-

EEG/fMRI, ICA-EEG, and TA-EEG) is shown in Figure 24, for the eight hippocampal 

ROIs.  A two-way ANOVA revealed significant main effects of analysis type (F(2,144) 

=253, p<0.001) and ROI (F(7,144) = 28.6, p<0.001)), and an interaction between analysis 

type and ROI (F(14,144) =13.1, p<0.001). Post-hoc tests revealed that the effect of 
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analysis type was due to increased detection of hippocampal sources with TA-EEG 

compared to jICA-EEG/fMRI (t(55) =6.18, p<0.001) and ICA-EEG (t(55) =20.6, 

p<0.001), and with jICA-EEG/fMRI compared to ICA-EEG (t(55) =6.74, p<0.001).  The 

effect of ROI was due to increased detection of hippocampal sources in ROIs 2, 6, 7 and 

8 versus 1, 4, and 5 (t(20)>2.33, p<0.05), and overall lower detection of the source in 

ROI 3 (t(20)>3.25, p<0.01). For jICA-fMRI/EEG and ICA-EEG, the subcortical signals 

in less detectable ROIs were parsed to more than one component, suggesting that the ICA 

analyses over estimated the number of independent signals in the data.  
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Figure 24. Average area under the curve (AUC) for detecting hippocampal activity 

with jICA-EEG/fMRI, ICA-EEG, and TA-EEG, as a function of the hippocampal 

ROI (ROI locations shown in Figure 15).  The breakout plot shows the TA-EEG 

more clearly.  Error bars denote one standard deviation from the mean of the seven 

simulated subjects.   

 

 

The strength of the net current dipole and the angle between the net current 

dipole, and the vector from the ROI center of mass to the sensor most sensitive to the 

hippocampal source are shown in Figure 25A and B respectively.  The correlation 

coefficient between the net dipole strength and the AUC for jICA-EEG/fMRI (r=0.767), 
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TA-EEG (r=0.584), and ICA-EEG (r=0.749) were calculated.  Additionally, the 

correlation coefficient was calculated between the AUC and the vector from the ROI 

center of mass to the electrode most sensitive to the hippocampal source for jICA-

EEG/fMRI (r=0.7301), TA-EEG (r=0.785), ICA-EEG (r=0.489). 

 

 

Figure 25. Strength of the net current dipoles for each of the hippocampal ROIs (A) 

and angle between the net current dipole and the vector from the ROI center of 

mass to the sensor most sensitive to the hippocampal source. 

 

 

4.3.2 Simulation 2: Detection of a closed field subcortical source 

 

Figure 26 shows the detectability of an amygdala current source with dipole 

orientation 2 (0° zenithal, 45° azimuthal), as a function of its electrical field strength 

(defined as a percentage of the open field strength). JICA-EEG/FMRI outperformed ICA-

EEG and TA-EEG at all field strengths except the smallest (0.3% of an open field), and 

ICA-EEG outperformed TA-EEG at field strengths greater than 3% of an open field.  A 

two-way repeated measure ANOVA revealed significant main effects of analysis type 

(F(2,108) =147.65, p<<0.001) and field strength (F(5,108)=63.44, p<<0.001), and an 

interaction between these factors (F(10,108)=4.833, p<<0.001).  Post hoc tests showed 
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that the effect of analysis type and the interaction with field strength were due to 

significantly greater amygdala current source detection with jICA-EEG/fMRI relative to 

ICA-EEG for field strengths greater than 0.3% (t(6)>17.29, p<<0.001) and for ICA-EEG 

relative to TA-EEG for field strengths greater than 1% (t(6)>2.60, p<0.05). 

 

Figure 26. Area under the curve (AUC) for jICA-EEG/fMRI, ICA-EEG, and TA-

EEG detection of an amygdala current source, as a function of the strength of the 

source. The electrical field of the amygdala was varied from 0.3% to 9% of an open 

field current source.  Error bars denote ±1 standard deviation from the mean of the 

simulated subjects.   

 

 

The effect of net dipole orientation on the detection of an amygdala current source 

with 1% of open field strength is shown in Figure 27. A two-way ANOVA showed 

significant main effects of analysis type (F(1,204)=770.77, p<<0.001) and dipole 

orientation (F(16,204)=5.48, p<<0.001). There was also a significant interaction between 

analysis type and dipole orientation (t(118)=21.77, p<<0.001), with amygdala current 

source detection higher for jICA-EEG/fMRI than ICA-EEG for dipoles oriented toward 
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the ipsilateral hemisphere (i.e., dipoles 1,2,3,5,6,7,8,9,10,11,15,16, and 17) (t(6)> 6.2471, 

p< 0.00078). 

 

 

 

Figure 27.  (A)Area under the curve (AUC) indexing detection of an amygdala 

current source, as a function of net dipole orientation. Error bars represent one 

standard deviation from the mean of the simulated subjects.  (B) Spatial 

representation of AUC detection performance with jICA-fMRI/EEG (top) and ICA-

EEG (bottom). The sector polar angle denotes the net dipole azimuth angle and 

eccentricity decreases as zenith angle increases. The color scale codes the AUC. 

 

 

3.3.3 Simulation 3: Detection of a subcortical source with a spatiotemporally overlapping 

cortical source  

 

 

The effects of analysis type and dependence of subcortical and cortical activity 

across experimental level, on the detection of sources in the hippocampus or amygdala, 

are summarized in Figure 28 for the three source detection metrics (AUC, power ratio 

(PR), and time series correlation (TC)). For the hippocampal source, a two-way ANOVA 

of PR showed main effects of analysis type (F(1,24)=12.89, p=0.001), dependence on 

level (F(1,24)=5.39, p=0.029), and the interaction between analysis type and dependence 
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on level (F(1,24)=5.35, p=0.03), a two-way ANOVA of TC showed main effects of 

analysis type (F(1,24)=0.038, p<0.038), and the interaction between analysis type and 

dependence on level (F(1,24)=4.71, p=0.04), and a two-way ANOVA of AUC showed a 

main effect for analysis type (F(1,24)=121.48, p<0.001). 

For the amygdala source, a two-way ANOVA of PR showed main effects of 

analysis type (F(1,24)=17.9, p<0.001), dependence on level (F(1,24)=24.6, p<0.001), and 

the interaction between analysis type and dependence on level (F(1,24)=13.6, p<0.001), a 

two-way ANOVA of TC showed main effects of analysis type (F(1,24)=255.2, p<0.001), 

of dependence on level (F(1,24)=194.2, p<0.001) and the interaction between analysis 

type and dependence on level (F(1,24)=179.6, p<0.001),  two-way ANOVA of AUC 

showed a main effect for analysis type (F(1,24)=219.3, p<0.001). 
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Figure 28.  Detectability of hippocampus and amygdala current sources with jICA-

fMRI/EEG and TA-EEG, in the presence of a spatiotemporally overlapping cortical 

current source with either the same or different dependence on experimental level 

as the subcortical source.  Subcortical source detection was assessed with (A) area 

under the curve (AUC), (B) ratio of the power at the subcortical signal frequency 

relative to the total power (Spower/Tpower), (C) time series correlation between the 

retrieved and simulated subcortical signals (CorrRet-Sim). Asterisks denote 

statistically significant differences (p<0.05). 
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Figure 29 shows example EEG components obtained from jICA-fMRI-EEG of a 

simulation containing amygdala and cortical current sources with different activation 

patterns as a function of experimental level. For the component containing the subcortical 

current source (Figure 29A), the simulated 12 Hz sinewave can be seen in both the 

periods with, and without, overlapping cortical activity. The component with the cortical 

current source (Figure 29B), contained the simulated 4 Hz sinewave and a residual 12 Hz 

sinewave corresponding to the simulated subcortical signal.  The TA-EEG signal 

(averaged across trials from all levels) and the simulated subcortical and cortical signals 

added together, are shown in Figure 29 C and D, respectively.  

 

 

 

Figure 29.  EEG components resulting from jICA-EEG/fMRI and containing the 

(A) amygdala (876-1025 ms) and (B) cortical current sources (575-875 ms). (C) The 

EEG resulting from TA-EEG and (D) the simulated subcortical and cortical signals 

from Figure 16 are shown for comparison.  Panels A-C depicts the activity from the 

most sensitive electrode to the subcortical amygdala source, T7 electrode. 
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4.4 Discussion 

 

 

In this paper, simulations were used to quantify the detection of subcortical 

signals in the hippocampus and amygdala using within-subject jICA of simultaneous 

fMRI and EEG. The first two sets of simulations quantified the detection of open field 

(hippocampus) and closed field (amygdala) subcortical current sources with jICA-

EEG/fMRI in the presence of experimentally derived EEG noise. The third set of 

simulations quantified their detectability in the presence of EEG noise and a 

spatiotemporally overlapping cortical current source. Overall, the simulation results 

indicate that the detection of weaker current sources approximated by a closed field was 

better with jICA-EEG/fMRI relative to the other methods.  

For the detection of the hippocampal open field current source, the simulation 

results showed no benefit for jICA-EEG/fMRI or ICA-EEG relative to TA-EEG. This 

may be due in part to a ceiling effect on detection related to the relative strength of the 

hippocampal source (250% of a cortical source), and the 14-fold reduction in noise 

associated with averaging across 200 trials. Previous simulation studies have added 

Gaussian noise, an approximation of MEG instrumental noise, to the hippocampal signal 

and shown that TA-EEG can detect the presence of hippocampal sources with as few as 

40 trials (Attal et al., 2007b; Dumas et al., 2013).  These studies focus on varying the 

patch size of the subcortical sources, and determining what the smallest patch size is that 

can produce a detectable signal.  Our approach applies the same AUC threshold of 0.7 as 

these studies, however, there are two major differences in the design of our simulations 

and previous studies.  First, we modeled experimentally derived noise to account for 

confounding non-task related neural activity as well as instrumental noise, rather than just 
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the later. Second, we explored the detectability of subcortical sources when a task related 

cortical source was simultaneously active, rather than considering only subcortical 

sources.  Finally, this study expands upon previous work that used ICA to link 

epileptiform discharges recorded from intracranial electrodes to scalp recordings, by 

using fMRI along with scalp recordings to establish a non-invasive blind source 

separation approach for measuring subcortical signals (Pizzo et al., 2019). 

The strength of the net current dipole seems to be the primary factor in how 

detectable subcortical signals are.  For the hippocampal simulations, the AUC for ICA-

EEG and jICA-fMRI/EEG were both correlated to the strength of the net current dipole 

more than to the orientation of the net current dipole.  Likewise, the amygdala source 

showed far greater sensitivity to the strength of the net current dipole, compared to the 

dipole orientation.  While the strength of the net current dipole cannot be known a priori, 

experimental protocols designed to directly elicit a response from subcortical structures 

will allow for easier detection and separation of subcortical sources.  Spontaneous 

activity has been shown to be detectable with intracranial recordings and EEG (Pizzo et 

al., 2019), as well as with intracranial recordings and fMRI (Sharma et al., 2019).  This 

suggests the possibility that our approach using EEG and fMRI could be used to extract 

spontaneous activity noninvasively. 

In the presence of a spatiotemporally overlapping cortical current source, the 

hippocampal or amygdala sources were detected and separated better with jICA-

EEG/fMRI than with the other methods when the subcortical and cortical patterns of 

activity differed across experimental levels.  If spatiotemporally overlapping subcortical 

and cortical sources co-varied across experimental levels, the sources were grouped into 
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the same component and could not be separated using within-subject jICA-EEG/fMRI. 

Future research could examine whether group jICA-EEG/fMRI (Calhoun et al., 2009) 

could provide improved detection and separation of subcortical sources based on 

differences in the ratios of subcortical and cortical activity across subjects.    

The simulations performed here have several limitations. Within-subject jICA 

detects covarying fMRI and EEG signals across experimental levels. If the fMRI and 

EEG responses vary differently across levels, the fMRI and EEG signals will be split 

between separate components. Nevertheless, components containing a split signal can be 

linked back together to reconstitute the source based on residual activity, either spatial or 

temporal, that each component retains (Mangalathu-Arumana et al., 2018). Other data 

driven approaches such as independent vector analysis (IVA), which loosen the constraint 

that the activity of both imaging modalities must vary identically across experimental 

conditions, could also be used (Adali et al., 2015; Du et al., 2017; Ma et al., 2013).  With 

IVA, the likelihood that EEG and fMRI activity would be split into separate components 

is reduced, but detection performance could also be reduced as jICA is maintains 

performance better at lower SNR, due to the constraint of an identical mixing matrix 

(Adali et al., 2015). 

In summary, we performed a series of simulations to determine whether 

informing EEG signal detection with simultaneous fMRI, in the context of jICA-

EEG/fMRI, would improve the detection of the subcortical activity.  The results indicate 

an advantage to using within-subject jICA-EEG/fMRI over ICA-EEG and TA-EEG when 

the subcortical signal is weak, e.g. for detection of signals from nearly-closed field 

current sources such as the amygdala. JICA-EEG/fMRI is also effective for resolving 
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simultaneous subcortical and cortical activity when the patterns of activity differ between 

the two sources.  Within-subject jICA-EEG/fMRI could be used to enhance the detection 

of subcortical sources in heterogeneous populations that are less amenable to traditional 

group analyses (e.g., Alzheimer’s disease, Autism, Cushing’s disease etc.). Thus, within-

subject jICA-EEG/fMRI can be used to characterize the dynamics of cortical and 

subcortical networks noninvasively and at high spatial and temporal resolution.  
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CHAPTER 5: 

SUMMARY OF RESULTS AND FUTURE DIRECTIONS 

 

 

5.1 Summary of Results 

 

 

The overarching goal of this dissertation was to apply joint independent 

component analysis (jICA) as a tool to characterize the relationship between fMRI and 

EEG within subject. We have presented analytical approaches to optimize the spatial 

correspondence between fMRI and EEG sources, identify brain areas in a syllable 

detection task with nonlinear correspondence between EEG and fMRI, and used 

simulations to demonstrate the efficacy of using jICA to improve the detection of 

subcortical sources of brain activity using EEG.  This dissertation was among the first 

studies to leverage blind source separation to characterize the neuroimaging relationship 

between simultaneously acquired fMRI and EEG signals, and to demonstrate the 

advantage of incorporating jICA for the detection of subcortical sources.  The combined 

approaches can be used within subject to investigate the temporal interactions between 

cortical networks and subcortical structures across experimental conditions that support 

perception and cognition.  The remainder of this chapter provides an overall summary of 

the work and outlines directions for future research. 

5.1.1 Specific Aim 1: Develop a Method for Spatial Overlap Estimation of 

Electroencephalography and Functional Magnetic Resonance Imaging Responses. 

 

 

We proposed a data-driven approach, fMRI and ERP spatial overlap estimation 

(fMRI-ERP SOE), to estimate the spatial overlap between maps of brain activity 

generated from fMRI and ERP measurements that assumes overlapping, but not identical, 

sources of neural activity contribute to each measurement. By representing both fMRI 
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and ERP signals in a common ‘nonnative’ source imaging space, fMRI-ERP SOE 

maximized the ability to spatially correlate fMRI and ERP sources of activity while 

minimizing assumptions regarding neuroimaging coupling. FMRI-ERP SOE of sources 

of the auditory oddball response revealed regions of consistent activity overlap in the 

insula, superior temporal, and inferior parietal cortices, in-line with previously reported 

auditory odd-ball experiments.  It also showed less consistent activation in the right 

inferior frontal cortex which is associated with attention.  This approach provides a way 

to quantitatively measure how well fMRI and EEG signals correspond, and can be used 

to inform whether the assumption of approaches like fMRI constrained EEG localization 

are being met. 

5.1.2 Specific Aim 2: Characterization of the Neuroimaging Coupling between EEG and 

FMRI in a Syllable Detection Task. 

 

 

A data-driven method for the integration of fMRI and EEG recordings of brain 

function was proposed. The approach was applied to a syllable detection task with a 

known nonlinear relationship between fMRI and EEG to characterize brain function with 

high spatial and temporal resolution. The approach leveraged jICA’s creation of mixing 

matrices associated with each component to characterize how the activity within each 

component varied between EEG and fMRI across task levels.  The results revealed two 

brain networks associated with the task that responded differently across task levels. The 

activity of the first network, involving the bilateral Heschel’s gyrus and lateral superior 

temporal cortex, increased with syllable presentation rate for both EEG and fMRI, 

consistent with the obligatory auditory response to sound stimuli. The activity of the 

second network included distributed activity in perisylvian regions, with the largest 
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clusters seen in the left supramarginal and precentral gyri, decreased with syllable 

presentation rate in EEG but had had only a weak response with fMRI, consistent with 

the orienting response.  The nonlinearity in the second response was a result of activity 

that was captured by the EEG, but undetected by the fMRI. The areas in the primary 

component represent parts of a neural network that responds to increased stimulus rate, 

while those in the secondary component respond to the onset of stimuli, whose strength 

increases the longer it has been since a previous auditory stimulus.  These results 

demonstrate the ability for this analysis approach to characterize the neuroimage coupling 

between fMRI and EEG in a condition where there are two different networks driving the 

recorded activity. 

5.1.3 Specific Aim 3: Assessment of the Impact of Within-Subject jICA on the Detection 

of Subcortical Signals. 

 

 

In Aim 3, the performance of within-subject jICA of fMRI/EEG (jICA-

fMRI/EEG) relative to ICA of EEG uninformed by fMRI (ICA-EEG), and relative to 

simple trial averaging of EEG (TA-EEG) was examined for the detection of subcortical 

signals under experimentally realistic conditions. The results indicate an advantage to 

using within-subject jICA-EEG/fMRI over ICA-EEG and TA-EEG when the subcortical 

signal is weak, e.g. for detection of signals from nearly-closed field current sources such 

as the amygdala. JICA-EEG/fMRI was also effective for resolving simultaneous 

subcortical and cortical activity when the patterns of activity differed between the two 

sources. These simulations demonstrate how jICA can be applied to improve the 

detection of subcortical sources, and offer an approach to study   cortical and subcortical 

networks non-invasively. 
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5.2 Future Directions 

 

 

5.2.1 Investigation of Alternative Blind Source Separation Algorithms 

 

 

In future studies there are several lines of research that could be explored to 

improve upon the methodological approaches presented here. Alternative blind source 

separation algorithms could be employed within subject to relax the strict constraint that 

EEG and fMRI contributions to a task are the same within a component.  Independent 

vector analysis (IVA) would be an excellent candidate for this type of analysis due to its 

ability to extract signals that are present in a single modality. Independent vector analysis 

is similar to jICA in that it extracts EEG/fMRI signals that covary across task conditions 

into components that are maximally independent in space and time. IVA provides each 

modality with its own mixing matrix, which would allow for nonlinear relationships 

between the modalities without splitting the response across multiple components as 

jICA does.  So where jICA will split activity across two or more components if EEG and 

fMRI signals within a brain network do not vary identically across task conditions, IVA 

should keep the entirety of the signal within the same component and by correlating the 

separate mixing matrices would then encapsulate those differences across levels.  IVA 

seeks to find uncorrelated signals to separate into components rather than independent 

signals, and as such the impact that has on the methodological approaches presented here 

would need to be examined.  This change could build upon all three aims presented 

within this dissertation, and would remove the current need to recombine nonlinear 

responses between modalities into a single component. 
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5.2.2 Characterization of the Detection of Additional Subcortical Sources 

 

 

Another avenue that could be explored would be to build upon the simulations 

presented in the third aim.  The current simulations focused on the amygdala and the 

hippocampus as two representative examples of subcortical sources spanning the range of 

signal strengths from open to closed field structures. However, the current results do not 

directly inform on all subcortical structures.  The size, strength of local field potentials, 

and structure of the other subcortical sources are all expected to impact the detection of 

other subcortical sources using EEG.  By characterizing the relative detection of other 

types of subcortical sources, the combined simulation studies could provide guidelines 

about the types of EEG analyses and experimental designs that can be used to detect 

activity within specific subcortical structures.  

5.2.3 Incorporation of Subcortical Sources 

 

 

The ability of jICA-fMRI/EEG to improve the detection of subcortical sources 

using EEG, suggests a natural extension of the research to incorporate detection of 

subcortical sources into the fMRI source projection analysis and characterization of 

neuroimage coupling.  The presence of a subcortical source could give rise to uncoupling 

in Aim 1, because the EEG activity would be localized to the cortex, but the fMRI 

activity from deep structures would not be captured at all, since only activity near the 

cortical surface is being projected onto the inflated surface.  As a result, uncoupling using 

the fMRI-ERP SOE approach could reflect activity from subcortical sources that have 

been mis-localized to the cortex.  Similarly, characterization of the relationship between 

EEG and fMRI in Aim 2 could be improved by accounting for the presence of subcortical 
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sources as part of the jICA analysis.  While it is a less pressing issue in this case, since 

the volumetric fMRI would capture the subcortical activity, and the EEG would localize 

it to the cortical surface, unless a localization technique incorporating subcortical sources 

was used, it would make the interpretation of the activity within a component more 

challenging by placing a mis-localized subcortical source onto the neocortex.   

The incorporation of subcortical sources as part of the overall EEG analysis is a 

non-trivial task, however.  Approaches to localize subcortical sources with EEG are 

relatively new, requiring additional assumptions, such as signal sparsity, to localize 

subcortical sources.  Because localizing subcortical signals adds added complexity, it 

would be necessary to review the current methodological approaches to ensure whichever 

approach was chosen would not make assumptions that conflict with those made by jICA. 
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