
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Dissertations (2009 -) Dissertations, Theses, and Professional 
Projects 

EEG Characterization of Sensorimotor Networks: Implications in EEG Characterization of Sensorimotor Networks: Implications in 

Stroke Stroke 

Dylan Blake Snyder 
Marquette University 

Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu 

 Part of the Biomedical Engineering and Bioengineering Commons 

Recommended Citation Recommended Citation 
Snyder, Dylan Blake, "EEG Characterization of Sensorimotor Networks: Implications in Stroke" (2020). 
Dissertations (2009 -). 918. 
https://epublications.marquette.edu/dissertations_mu/918 

https://epublications.marquette.edu/
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/dissertations_mu?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/dissertations_mu/918?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages


EEG CHARACTERIZATION OF SENSORIMOTOR NETWORKS: 

IMPLICATIONS IN STROKE 

 

 

 

 

 

 

 

 

 

By 

 

Dylan B. Snyder, B.S. 

 

 

 

 

 

 

 

 

 

A Dissertation submitted to the Faculty of the Graduate School, 

Marquette University, 

in Partial Fulfillment of the Requirements for 

the Degree of Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

Milwaukee, Wisconsin 

 

May 2020



ABSTRACT 

EEG CHARACTERIZATION OF SENSORIMOTOR NETWORKS: 

IMPLICATIONS IN STROKE 

 

 

Dylan B. Snyder, B.S. 

 

Marquette University, 2020 

 

 

The purpose of this dissertation was to use electroencephalography (EEG) to 

characterize sensorimotor networks and examine the effects of stroke on sensorimotor 

networks. Sensorimotor networks play an essential role in completion of everyday tasks, 

and when damaged, as in stroke survivors, the successful completion of seemingly simple 

motor tasks becomes fantasy. When sensorimotor networks are impaired as a result of 

stroke, varying degrees of sensorimotor deficits emerge, most often including loss of 

sensation and difficulty generating upper extremity movements. Although sensory 

therapies, such as the application of tendon vibration, have been shown to reduce the 

sensorimotor deficits after stroke, the underlying sensorimotor mechanisms associated 

with such improvements are unknown. While sensorimotor networks have been studied 

extensively, unanswered questions still surround their role in basic control paradigms and 

how their role changes after stroke. EEG provides a way to probe the high-speed 

temporal dynamics of sensorimotor networks that other more common imaging 

modalities lack. Sensorimotor network function was examined in controls during a task 

designed to differentiate potential mechanisms of arm stabilization and determine to what 

degree the sensorimotor network is involved. After sensorimotor network function was 

characterized in controls, we examined the effect of stroke on the sensorimotor network 

during rest and described the reorganization that occurs. Lastly, we explored tendon 

vibration as a sensory therapy for stroke survivors and determined if sensorimotor 

network mechanisms underlie improvements in arm tracking performance due to wrist 

tendon vibration. We observed cortical activity and connectivity that suggests 

sensorimotor networks are involved in the control of arm stability, cortical networks 

reorganize to more asymmetric, local networks after stroke, and tendon vibration 

normalizes sensorimotor network activity and connectivity during motor control after 

stroke. This dissertation was among the first studies using EEG to characterize the high-

speed temporal dynamics of sensorimotor networks following stroke. This new 

knowledge has led to a better understanding of how sensorimotor networks function 

under ordinary circumstances as well as extreme situations such as stroke and revealed 

previously unknown mechanisms by which tendon vibration improves motor control in 

stroke survivors, which will lead to better therapeutic approaches.
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

 

1.1 Introduction 

 

 

Sensorimotor networks play an essential role in completion of everyday tasks 

from reluctantly walking to work Monday morning to opening your favorite beverage 

Friday evening. Hidden beneath these often-unappreciated abilities is a complex system 

consisting of a primary controller, the brain’s sensorimotor networks, which processes 

sensory information and generates motor plans, muscle actuators that set the plans into 

motion, sensory feedback elements that supply the sensorimotor networks with 

information about task execution, and neuronal tracts that act as communication 

pathways between components. If any one of these subsystems becomes corrupted, the 

successful completion of seemingly simple motor tasks becomes fantasy. 

While sensorimotor networks have been studied extensively, unanswered 

questions still exist, such as, what is the sensorimotor network’s role in basic control 

paradigms (e.g. upper extremity stabilization) and how are sensorimotor networks altered 

after an insult (e.g. stroke). When sensorimotor networks are impaired due to stroke, 

varying degrees of sensorimotor deficits emerge, most often including loss of sensation 

and difficulty generating upper extremity movements. Although sensory therapies, such 

as the application of tendon vibration, have been shown to reduce sensorimotor deficits 

after stroke, the underlying cortical mechanisms associated with such improvements are 

unknown (Conrad et al., 2011a, 2011b, 2015). The purpose of this dissertation was to 

characterize sensorimotor networks and examine the implications of stroke on 

sensorimotor networks; this knowledge will lead to an improved understanding of how 
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sensorimotor networks function and potentially open the door to improvements in stroke 

rehabilitation strategies. 

We examined the activity and connectivity of sensorimotor networks in controls 

and stroke survivors using electroencephalography (EEG). First, we sought to understand 

how healthy sensorimotor networks function. To accomplish this, we examined 

sensorimotor networks in controls during upper extremity tasks designed to determine 

what degree the sensorimotor network is involved in arm stabilization. After normal 

sensorimotor network function was characterized in controls, we wanted to describe the 

effect that stroke has on sensorimotor networks in the most basic of states, rest (i.e. 

baseline). Once we had described the baseline cortical changes and reorganization that 

occurs to stroke sensorimotor networks during rest, we examined stroke survivors’ 

sensorimotor networks during active states of control (i.e. tasks). During the tasks, we 

explored tendon vibration as a sensory therapy for stroke survivors and determined if 

sensorimotor network mechanisms underlie improvements in arm tracking performance 

seen in chronic stroke survivors due to wrist tendon vibration. This chapter provides an 

overview of sensorimotor networks in the brain, how they are believed to control upper 

extremity movements, how sensorimotor networks are disrupted and the effects of this 

disruption after a stroke, and current techniques used to examine sensorimotor networks. 

 

1.2 Cortical Networks 

 

1.2.1 Origins of Cortical Networks 

 

 

Cortical networks are regions of the brain that pass information to and from each 

other to achieve an objective. The roles of cortical regions and how cortical regions 
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interact to achieve the cortical network’s objective is a complicated question. In early 

experimental stimulation work investigating the location of sensation and motor function 

in the cerebral cortex, sensory and motor homunculi were defined (Jasper & Penfield, 

1949; Penfield & Boldrey, 1937; Schott, 1993). The homunculi mapped the sensory and 

motor cortices to certain regions of the body with the medial portion near the longitudinal 

fissure representing the lower limbs, lateral portion near the temporal lobe representing 

facial features and the central regions representing the upper limbs (Jasper & Penfield, 

1949; Penfield & Boldrey, 1937; Schott, 1993). Although this rough sensorimotor map of 

homunculi can be used as a general guideline for sensory and motor location in the 

sensorimotor cortices, more recent functional Magnetic Resonance Imaging (fMRI) 

research has revealed there exists no clear boundary between regions with activation 

patterns, suggesting a more distributed, overlapping representation than previously 

thought (Indovina & Sanes, 2001; Lotze et al., 2000; Schieber, 2001). As science and 

technology have advanced, it is becoming increasingly evident that the brain does not 

relegate tasks to individual cortical regions but instead uses a multitude of interacting 

cortical regions or cortical networks (Ashe & Georgopoulos, 1994; Bressler, 1995; 

Colebatch et al., 1991; Connolly et al., 2003; Corbetta, 1998; Demandt et al., 2012; 

Fortier et al., 1989; Mazoyer et al., 2001; Pfurtscheller & Lopes da Silva, 1999; Sukerkar, 

2010). 

Typically, cortical networks are defined as being either structurally connected, 

using methods such as diffusion tensor imaging to identify anatomical connections, or 

functionally connected, using imaging modalities such as functional magnetic resonance 

imaging (fMRI), electroencephalography (EEG) or magnetoencephalography (MEG) to 
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identify areas of the cortex that have similar activation time courses indicative of 

increased connectivity between regions (Berman et al., 2012; Cheng et al., 2012; 

Karamzadeh et al., 2013; O’Neill et al., 2017; Sun et al., 2004). While structural and 

functional connectivity define connectivity differently, they are intrinsically linked. 

Anatomical connections identified with structural connectivity lay out the foundational 

pathways that cortical regions use to communicate, ultimately resulting in similar 

activation patterns detected with functional connectivity techniques (Huang & Ding, 

2016; Straathof et al., 2019). Investigations into structural cortical networks have 

identified areas of the brain (e.g. paracentral, posterior cingulate, precuneus and superior 

parietal gyri) that constitute a central core in the brain’s structural pathways (Hagmann et 

al., 2008). The brain’s central core consists of regions are that are densely connected 

locally and link modular regions of the cortex (Hagmann et al., 2008). Functional cortical 

network research has revealed that the brain utilizes varying cortical networks for 

different tasks such as memory consolidation, cognition, vision, and movement (Bressler, 

1995; Corbetta, 1998; Mazoyer et al., 2001; Sukerkar, 2010). 

 

1.2.2 Resting State Cortical Networks 

 

 

Cortical networks are not limited to states of active cortical processing. Resting 

state networks are regions of the brain that are connected while the participant is at rest or 

in a relaxed state. It may seem counterintuitive to find any networks at all while at rest, 

but the brain is in fact constantly active. Using fMRI, Biswal and colleagues were the 

first to report the sensorimotor network in the absence of a task (Biswal et al., 1995). 

Following this groundbreaking study, research into resting state networks intensified with 
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the most commonly observed resting state network being the default mode network. The 

default mode network consists of nodes residing in the medial prefrontal gyrus, anterior 

cingulate, posterior cingulate and angular gyri and is thought to be associated with 

emotional processing, self-reference and remembering previous experiences 

(Damoiseaux et al., 2006; Muldoon et al., 2016; Raichle et al., 2001; Raichle, 2015). 

Other commonly reported resting state networks include the executive control network, 

mesial visual network, lateralized fronto-parietal networks, auditory networks, and 

temporo-parietal network (Aoki et al., 2015; Biswal et al., 1995; Brookes et al., 2011; 

Raichle, 2015; Rosazza & Minati, 2011). Historically, resting state network analysis has 

mainly been restricted to fMRI studies, with only a limited amount of research performed 

on resting state network analysis in other imaging modalities. Investigations using EEG 

and MEG have revealed resting state networks corresponding spatially to their fMRI 

counterparts, although the precise relationship between fMRI and EEG/MEG measures of 

brain activity is unknown (Barry et al., 2007; Brookes et al., 2011; Chen et al., 2008; 

Hipp et al., 2012; Qin et al., 2010). 

 

1.2.3 Properties of Cortical Networks 

 

 

Cortical network frequency characteristics as measured by EEG and MEG are 

determined by the size of the neuronal population within the network and the spatial 

extent of the network. Cortical networks containing a larger neuronal population or 

spatial extent oscillate at lower frequencies than networks with a smaller neuronal 

population or spatial extent (Bullock et al., 1995; Buzsáki & Draguhn, 2004; Eckhorn, 

1994; Kopell et al., 2000; von Stein & Sarnthein, 2000). Nunez developed a theoretical 
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framework for the inverse relationship between frequency of activity and spatial scale of 

a network (Nunez, 2000). When examining the effect of spatial scale on cortical network 

frequency using EEG, von Stein and Sarnthein (2000) showed that local visual sensory 

integration (visual cortex) involves gamma (>30Hz) band activity, mid-range multimodal 

semantic integration (parietal and temporal cortex) involves upper alpha (8-12Hz) and 

lower beta (12-30Hz) band activity, while long rang interactions in a working memory 

paradigm (prefrontal and posterior association cortex) involves theta (4-8Hz) and alpha 

(8-12Hz) band activity (von Stein & Sarnthein, 2000). These cortical network frequency 

responses arise from the physical architecture of the networks, speed of communication 

due to axon conduction/synaptic delays and the number of synapses involved in the 

network path (Nunez, 1995; von Stein et al., 2000). 

 In addition to the frequency specific characteristics associated with cortical 

network architecture, analysis of cortical networks using graph theory metrics involving 

the network’s clustering coefficient and path length between nodes has revealed that 

cortical networks tend to aggregate into structures known as small world topologies 

(Bassett & Bullmore, 2017; Bassett & Bullmore, 2006; Wang et al., 2010). Small world 

topologies are described as having a high degree of clustering or connections between 

neighboring nodes with few connections between distant nodes. On average, small world 

topologies have shorter path lengths between any two nodes of the network when 

compared to random network topologies, resulting in more efficient communication 

(Bassett & Bullmore, 2017; Bassett & Bullmore, 2006; Wang et al., 2010). The cortex 

might organize into these small world topologies due to the brain supporting both 

segregated (local) as well as distributed (long range) processing. 
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1.3 Cortical Control of the Arm 

 

 

1.3.1 Cortical Control of Arm Movements 

 

 

The cortical network primarily associated with the generation of movement, 

including movements of the arm, is the sensorimotor network and is comprised of regions 

located on the precentral and post central gyri. While the sensorimotor network is 

responsible for the generation of movement commands sent to the arm, it does not act 

alone to control arm movements. The brain is a dynamic system continuously sending 

commands to muscles and receiving sensory input. Information received about the state 

of the arm and environmental conditions from proprioceptive and visual receptors enable 

the sensorimotor control system to react and adapt to changing environments (Scheidt & 

Ghez, 2007; Scheidt & Stoeckmann, 2007). When either sensory modality is removed, an 

increase in the error of arm control is observed (Gordon et al., 1995).  A complete model 

of cortical control of arm movements would not be complete without including brain 

areas associated with receiving, processing, and integrating feedback including the frontal 

cortex, somatosensory cortex, parietal cortex, occipital cortex, and cerebellum. 

Interactions between the sensorimotor cortex and these secondary regions play a central 

role in planning movements, completing movements, processing movement feedback, 

and movement error correction (Ashe & Georgopoulos, 1994; Colebatch et al., 1991; 

Connolly et al., 2003; Demandt et al., 2012; Fortier et al., 1989; Pfurtscheller & Lopes da 

Silva, 1999; Sukerkar, 2010). 

While the complex networks of cortical areas involved in control of arm 

movement do receive feedback about arm movements, the accuracy of the feedback 
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received is often degraded by noise and delayed due to limited axonal conduction 

velocities (Mutha et al., 2008; Pruszynski et al., 2008). The lack of excessive error during 

arm movements implies that prediction, using some form of internal representation or 

model, might be utilized for control of the arm. A popular theory for a forward model 

involves the creation of a copy of efferent motor commands that is stored within the brain 

and used as an internal model to predict the resulting movement and corresponding 

sensory feedback (Bridgeman, 1995; Feinberg, 1978; Gauthier & Robinson, 1975; 

Shadmehr et al., 2010). When generating movements, the internal model is used to 

predict and then compare the planned movement with what the body is actually doing. 

Errors from this comparison are then used to calculate the next motor command update 

(Shadmehr et al., 2010). 

 

1.3.2 Cortical Control of Arm Stabilization 

 

 

While numerous motor control studies indicate cortical involvement in the control 

of arm movements (Ashe & Georgopoulos, 1994; Colebatch et al., 1991; Connolly et al., 

2003; Demandt et al., 2012; Fortier et al., 1989; Pfurtscheller & Lopes da Silva, 1999), 

cortical involvement in the control of arm stabilization, at the end of the movement, is 

less clear. At least three possible mechanisms have been proposed for control of arm 

stabilization: 1) increased impedance of the arm through the co-contraction of 

antagonistic muscles (e.g. Franklin et al. 2004) 2) spinal or supraspinal reflex circuits to 

provide corrective muscle activity (Kurtzer et al., 2008) and/or 3) intermittent voluntary 

corrections to errors in position (Hasan, 2005). Although mentioned as separate 

mechanisms, co-contraction, reflex control, and voluntary corrections are not mutually 
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exclusive and most likely work together to provide robust stabilization of the arm. The 

first two mechanisms, co-contraction and spinal/supraspinal reflex activity, may require 

little to no cortical involvement during arm stabilization while the third mechanism 

would likely require robust cortical involvement via the sensorimotor network. 

Co-contraction acts to stabilize the arm by activating antagonistic muscle pairs 

(Franklin et al., 2004). A lack of cortical activity during sustained contractions has been 

observed in sustained wrist contractions and isometric contractions of the lower limb 

(Alegre et al., 2003; Gwin & Ferris, 2012), suggesting the cortex may not be directly 

involved in arm stabilizing co-contractions. This phenomenon may arise from a lack of 

movement-related sensory feedback (Weiller et al., 1996), cortical oscillations 

maintaining the current motor state (Engel & Fries, 2010; Pfurtscheller & Lopes da Silva, 

1999) or co-contraction mechanisms located at the spinal level. Cremoux and colleagues 

(2017) have observed increases in co-contraction after a spinal cord injury; possibly due 

to reduced cortical influence on spinal mechanisms that inhibit antagonist muscle activity 

(Cremoux et al., 2017). 

The spinal/supraspinal reflex mechanism for stabilization works by tailoring the 

reflex responses of the motor system to resist perturbations to position (Kurtzer et al., 

2008; Shemmell et al., 2009; Soechting et al., 1981). While the short latency reflex 

(~25ms) timing indicates responses driven by spinal cord mechanisms, long latency 

reflexes (40-100ms) may include cortical involvement (Crago et al., 1976; Marsden et al., 

1983). Long latency, supraspinal reflex activity has been shown to be cortically 

modulated and to generate cortical activity (Abbruzzese et al., 1985; Cheney & Fetz, 

1984; Pruszynski et al., 2011a; Pruszynski et al., 2008; Pruszynski et al., 2011b; 
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Shemmell et al., 2009). However, the cortical activity associated with long latency 

reflexes is not as extensive as volitional movements (Suminski et al., 2007). Further, long 

latency reflex activity is still present in spinalized cats and monkeys (Ghez & Shinoda, 

1978; Tracey et al., 1980), raising questions about whether supraspinal structures are 

directly involved in the reflex response.  

Cortically-driven intermittent voluntary corrections may also play a role in 

stabilization of the arm (Hasan, 2005). When using fMRI during a proprioceptive wrist 

stabilizing task, Suminski and colleagues observed cortical network activity (Suminski et 

al., 2007). The involvement of cortical networks during stabilization processes may arise 

due to limitations associated with co-contraction and spinal/supraspinal reflexes. Co-

contraction is only useful for perturbations that can be subdued by joint and musculature 

properties, and spinal/supraspinal reflex amplitude modulation is limited with changing 

task goals (Mutha et al., 2008). Cortical involvement during stabilization can be 

beneficial due to the highly context-dependent responses generated as a result of 

proprioceptive and visual information arriving at the cortex. Hasan proposed that stability 

of a perturbed system is not guaranteed by continuous resistance but rather by later 

events, including voluntary corrections (Hasan, 2005). If cortically-driven intermittent 

voluntary corrections were involved in the process of arm stabilization, one might expect 

the cortical activity during arm stabilization to resemble sensorimotor network activity 

seen in voluntary goal directed movement.  
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1.4 Stroke 

 

 

1.4.1 Incidence 

 

 

Stroke is an event of massive cell death within the brain resulting in a rapid loss 

of neurological function due to a reduction of blood supply to the brain. Strokes are either 

classified as ischemic where the lack of blood supply is caused by a blockage such as a 

thrombosis or hemorrhage where the lack of blood supply results from a ruptured vessel. 

Each year approximately 800,000 US residents experience a stroke incident with around 

600,000 of these being first time events (Mozaffarian et al., 2015). Stroke is one of the 

major causes of serious physical and cognitive long-term disabilities (Centers for Disease 

Control and Prevention (CDC), 2009) and prevents around 50% of stroke survivors from 

returning to work (Vestling et al., 2003). 

 

1.4.2 Sensorimotor Deficits following Stroke 

 

 

Motor dysfunctions such as abnormal muscle synergy patterns, spasticity and 

paresis (Brunnstrom, 1970; Gracies, 2005; Lance, 1980) as well as sensory dysfunctions 

including deficits in tactile, proprioceptive, pressure and thermal sense are common after 

stroke (Carey, 1995). These motor and sensory deficits ultimately result in a functionally 

corrupt motor control system that has trouble initiating and stopping movements; the 

movements that are produced are usually uncoordinated, slower, less smooth and have a 

reduced overall range of motion compared to the neurologically intact population (Beer et 

al., 2000; Cirstea & Levin, 2000; Fang et al., 2007; Kamper et al., 2002). Deficits in 

motor control may arise from the inability to generate appropriate motor commands 
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and/or to correctly process sensory feedback. Studies have reported that stroke patients 

with both sensory and motor deficits exhibit lower functional outcomes than those with 

motor deficits alone (Patel et al., 2000), and that sensory impairment is a strong predictor 

of length of recovery and long-term functional outcomes of stroke survivors (Carey, 

1995; Tyson et al., 2008). This suggests sensory information plays an important role in 

motor control and has generated interest in exploring the use of sensory interventions to 

facilitate stroke rehabilitation.  

 

1.4.3 Cortical Networks After Stroke 

 

 

Immediately following a stroke, task-related brain activity in the ipsilesional and 

contralesional sensorimotor cortex during paretic finger movements is increased in the 

stroke population when compared to the neurologically intact population (Chollet et al., 

1991; Weiller et al., 1992). As stroke survivors recover over time, decreases in 

abnormally increased cortical activity correlate with improved functional recovery 

(Ward, 2003). Patients who display poor recovery, retain higher levels of cortical activity 

outside the primary sensorimotor areas while well recovered patients have normal levels 

of activity resembling controls (Ward et al., 2003).  

Many fMRI studies have examined the effect of stroke on cortical networks in 

sensorimotor task-based paradigms. The most common findings include increased 

activity in both hemispheres (excluding the lesioned region) and decreased connectivity 

within and between hemispheres (Carey et al., 2002; Grefkes et al., 2008; Mintzopoulos 

et al., 2009; Rossini et al., 1998; Ward et al., 2003). EEG and MEG measures of 

sensorimotor activity in task-based studies have shown impairment specific changes in 
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cortical activity following stroke. These include a decrease in activity above the lesion, 

increased cortical asymmetries between hemispheres and connectivity increases within 

the lesioned motor networks of well recovered stroke participants (Bönstrup et al., 2018; 

Platz et al., 2000; Rossiter et al., 2014; Stępień et al., 2011; Strens et al., 2004). After 

stroke, decreases in functional connectivity occur throughout the brain, but mainly in the 

lesioned hemisphere (Crofts et al., 2011; Crofts & Higham, 2009; De Vico Fallani et al., 

2009; Tuladhar et al., 2013). Changes in fMRI and EEG/MEG network 

activity/connectivity relate to functional/behavioral outcomes, and both indicate that 

brain networks normalize with recovery (Bönstrup et al., 2018; Grefkes et al., 2008; 

Grefkes & Fink, 2014; Strens et al., 2004; Ward et al., 2003). 

The abnormal increases in cortical activity outside of the primary sensorimotor 

areas, abnormal connectivity patterns and increased asymmetries after stroke may 

indicate a redistribution of neurological functions to healthier tissue as a potential 

recovery mechanism (Cicinelli et al., 1997; Delvaux et al., 2003; Johansen-Berg et al., 

2002; Platz et al., 2000; Rossini et al., 1998; Wang et al., 2010). Random growth of new 

axonal connections might also contribute to network re-organization after stroke 

(Carmichael, 2006, 2008; Wang et al., 2010). James and colleagues showed that 

asymmetric reorganization can facilitate recovery rather that a return to symmetry (James 

et al., 2009). Further, Johansen-Berg and colleagues used disruptive transcranial magnetic 

stimulation (TMS) applied to the contralesional motor cortex to demonstrate that motor 

networks can be redistributed after stroke (Johansen-Berg et al., 2002). The 

redistribution/re-organization of cortical networks after stroke might lead to a shift in the 

frequency of cortical communication. Specifically, cortical networks might have a higher 
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reliance on local network (high frequency) activity due to less efficient long-range 

pathways or dysfunctional hubs in global (low frequency) networks.  

 

1.4.4 Tendon Vibration as a Therapeutic Intervention 

 

 

Sensory feedback is a key component of closed loop systems, e.g. human motor 

control. Depending on how the feedback is altered, the system might produce a better or 

worse output. The application of an extraneous vibration to the neurologically-intact 

population has been shown to improve motor learning and motor control (Conrad et al., 

2011a, 2011b, 2015; Priplata et al., 2003; Rosenkranz & Rothwell, 2012). Extraneous 

stimuli such as vibration and somatosensory electrical stimulation applied to people with 

stroke improve spasticity, balance control, arm tracking, arm stabilization, hand function, 

and reduce the magnitude of stretch reflexes (Celnik et al., 2007; Conrad et al., 2011a, 

2011b, 2015; Dewald et al., 1995; Levin & Hui-Chan, 1992; Priplata et al., 2006; Wu et 

al., 2006). The mechanisms underlying these changes in sensorimotor control are unclear. 

When vibration is applied to wrist flexor tendons during a motor task, improvements in 

muscular function are not isolated to the wrist but are seen throughout the arm (Conrad et 

al., 2011a, 2011b, 2015). This observation suggests that vibration enhances not only 

cortical function of the stimulated area but also areas not directly associated with 

stimulation, possibly by way of improved cortical network function.  

Non-invasive stimulation techniques alter cortical activity and connectivity. The 

application of external stimuli to the cortex using transcranial direct current stimulation 

and repetitive transcranial magnetic stimulation in the neurologically intact and stroke 

populations increases not only the functional connectivity of the stimulation site, but also 
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the connectivity of regions distant from the site of stimulation (Bestmann et al., 2005; 

Grefkes et al., 2010; Grefkes & Fink, 2011; Polanía et al., 2011). A transcranial magnetic 

stimulation study found that vibration at the muscle can modulate the excitability of the 

motor cortical circuits and increase motor evoked potentials (Rosenkranz & Rothwell, 

2003), furthering the idea that vibration induces supraspinal changes during motor 

control. The possibility that an enhanced sensory signal excites widespread cortical 

networks is an exciting prospect for functional rehabilitation in stroke.  

Tendon vibration is thought to increase proprioceptive sensory information by 

activating Ia-afferent neurons (Cordo et al., 1995; Roll et al., 1989); however, tendon 

vibration also affects Golgi tendon organs and muscle spindle secondaries (Burke et al., 

1976; Fallon & Macefield, 2007). The flow of additional proprioceptive information via 

tendon vibration might help to boost task-relevant proprioceptive signals of the limb 

through a stochastic resonance process, and help the system overcome the sensory 

deficits typically seen in people with stroke (Connell et al., 2008).  

 

1.5 Electroencephalography 

 

 

1.5.1 Physiological Origins 

 

 

EEG is a recording of the brain’s electrical potential at the scalp. Even though all 

neurons may play a small role in the generation of EEG, pyramidal neurons in the gyri 

and sulci of the cortex are the primary contributors to EEG due to their regular 

anatomical organization, proximity to the scalp, and their orientation perpendicular to the 

cortical surface. The inputs to the pyramidal neurons, post synaptic potentials, generate 

neuronal current flow toward the soma (cell body) of the neuron that can be well 
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characterized as an electrical dipole (Murakami & Okada, 2006; Sanei & Chambers, 

2007). When large populations of pyramidal cells, typically macro columns consisting of 

1000s of neurons, are active at the same time, their dipole activity synchronizes and sums 

together to produce the electrical potentials measured on the scalp by EEG (Baillet et al., 

2001; Hari & Salmelin, 1997; Misulis & Head, 2003). Due to noninvasive nature of EEG, 

i.e. being recorded at the scalp, the cortical signal must pass through the pia matter, 

arachnoid membrane, dura matter, skull, periosteum, and skin before being recorded at 

the electrode; this process attenuates and effectively low pass filters the brain’s electrical 

signal giving the EEG a bandwidth of about 100Hz (Cooper et al., 1965). The soft tissues 

and skull also create a smearing effect that, along with the limited number of EEG 

electrodes, causes the signal’s spatial resolution to be on the order of centimeters (Michel 

et al., 2004). However, the temporal resolution of EEG (millisecond range) is much finer 

than other neuroimaging techniques such as fMRI, which measures hemodynamic 

responses, because it is a direct measurement of neuronal activation (Logothetis, 2002, 

2003; Nunez & Srinivasan, 2006).  

 

1.5.2 EEG Challenges 

 

 

 Recording EEG is not a straight-forward process and presents many challenges. 

During the recording process, EEG data can become contaminated with artifacts due to 

muscle activity (face, neck, jaw, eyes), eye blinks, head movements, impedance changes 

over time and electrical line noise. Advances in EEG hardware such as active electrodes, 

which amplify EEG signals at the scalp to minimize line noise and any movement 

artifacts, have improved the quality of neural signals measured from the cortex. Filtering, 
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template subtraction and blind source separation techniques such as independent 

component analysis (ICA) have also been employed in post-processing to remove EEG 

signal artifacts (Correa et al., 2007; Jervis et al., 1989; Mognon et al., 2011). ICA 

decomposes data into statistically independent components which can then be examined 

for distinct artefactual characteristics in space and time and can then be removed 

(Delorme et al., 2012; Makeig et al., 2004; Mognon et al., 2011; Puce & Hämäläinen, 

2017; Stone, 2004). 

 

1.5.3 EEG Analysis 

 

 

Early research using EEG mainly examined evoked or event related potentials at 

the electrode level, which indicate a measure of cortical processing of underlying areas 

and provide information about the time course of EEG activity (Luck & Kappenman, 

2011). Evoked potentials are phase locked to an event, such as a movement cue or 

sensory response, and are typically averaged across many trials to increase the signal to 

noise ratio of the cortical signal. However, interpreting the underlying cortical areas 

responsible for the activity can be difficult due to the signal smearing effect (i.e. volume 

conduction). Volume conduction is generated by the spatial blurring of cortical point 

sources measured at the scalp. Source localization techniques have allowed for more 

accurate localization of neuronal activation patterns on the cortical surface and help 

reduce the effect of volume conduction by including estimates of tissue properties in the 

forward model (Baillet, 2011; Grech et al., 2008). 

More recently, the analysis of induced responses by way of time-frequency 

analysis has been used to examine cortical activity. Induced responses are not phase 
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locked to an event and are thought to arise from higher order processes described as 

‘binding’ or neural synchronization (David et al., 2006; Singer, 1995). When examining 

induced responses, trials are typically transformed to the frequency domain and averaged 

to improve the signal to noise ratio, after which modulations of frequency band power 

can be observed (Kilavik et al., 2013; Pfurtscheller et al., 1996; Pfurtscheller & Lopes da 

Silva, 1999; Pfurtscheller et al., 1998). Generally, there are five defined categories in the 

frequency domain know as EEG frequency bands: delta (0-4Hz), theta (4-8Hz), alpha (8-

12Hz), beta (12-30Hz) and gamma (>30Hz). Time-frequency analysis of EEG has led to 

the discovery of beta band (12-30Hz) power fluctuations above the sensorimotor cortex 

during movement referred to as event related desynchronization (decrease in power 

during movement, ERD) and event related synchronization (increase in power following 

movement, ERS) (Pfurtscheller et al., 1999; Pfurtscheller & Lopes da Silva, 1999).  ERD 

is generally thought to indicate cortical activation whereas ERS is thought to indicate the 

resetting or end of cortical processing (Pfurtscheller & Lopes da Silva, 1999; Steriade et 

al., 1990). When an area of the cortex becomes active, neuronal activity within the active 

region de-phases, due to local information processing, from the baseline oscillatory state 

of the cortex resulting in a decrease in power (Pfurtscheller et al., 1999; Pfurtscheller & 

Lopes da Silva, 1999; Steriade et al., 1990). 

In addition to the analysis of cortical activity, an exciting area of EEG research 

involves connectivity analyses to identify the interactions between brain regions 

associated with cortical networks (Siegel et al., 2012). Numerous connectivity measures 

exist (e.g. Granger causality, coherence, correlation, dynamic causal modeling, etc.) to 

examine how cortical regions interact. Functional connectivity measures quantify 



19 
 

 
 

dependencies between cortical signals while effective connectivity measures quantify the 

directed influence of one cortical region on another (Sakkalis, 2011; Schoffelen & Gross, 

2009). Two of the more common functional connectivity techniques examine the 

correlations between amplitude changes in signals over time and the phase coherence 

between signals (Brookes et al., 2011; Hipp et al., 2012; Rappelsberger, 1989; Siegel et 

al., 2012; Stam et al., 2009). Coherence is the frequency domain analog to cross-

correlation of signals in the time domain and gives an estimate of frequency power 

accounted for between two signals of interest (Schoffelen & Gross, 2009). Coherence 

values are defined across all frequencies between the two signals and can range from 0 to 

1. A value of 1 means the two signals are perfectly coherent at that frequency with a 

constant phase difference while a value of 0 means the signals are not coherent at that 

frequency with a randomly changing phase difference. 

While many EEG connectivity measures exist, they all suffer from the effects of 

volume conduction. Volume conduction is theorized to propagate instantaneously and 

results in significant spatial correlation between EEG electrodes that can extend over 

distances larger than 8cm (Nunez et al., 1997) even if the cortical regions immediately 

below the electrodes are not functionally connected. Source localization techniques can 

help reduce the effect of volume conduction on connectivity analyses (Baillet, 2011; 

Grech et al., 2008). However, current source localization techniques require a re-

referencing of EEG signals to a common average reference, which may alter true 

connectivity patterns (Essl & Rappelsberger, 1998; Nunez et al., 1999; Rappelsberger, 

1989; Zaveri et al., 2000). More recently, imaginary coherence (Nolte et al., 2004), 

orthogonalization techniques (Brookes et al., 2012; Hipp et al., 2012) and other phase 
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metrics excluding zero lag connectivity (Nolte et al., 2008) have been used to mitigate 

this issue.   

 

1.6 Specific Aims 

 

 

The purpose of this dissertation was to characterize sensorimotor networks and 

examine the implications of stroke on sensorimotor networks. We examined the activity 

and connectivity of sensorimotor networks in stroke survivors and controls using EEG. 

Sensorimotor network function was examined in controls during upper extremity tasks 

designed to differentiate potential mechanisms of arm stabilization and determine to what 

degree the sensorimotor network is involved in arm stabilization. After basic 

sensorimotor network function was characterized in controls, we examined the effect of 

stroke on the sensorimotor network at baseline (rest) and described the reorganization 

that occurs. Lastly, we explored tendon vibration as a sensory therapy for stroke 

survivors and determined if sensorimotor network mechanisms underlie improvements in 

arm tracking performance seen in chronic stroke survivors due to wrist tendon vibration. 

 

1.6.1 Aim 1: Determine if Cortical Networks Are Involved in Visuomotor Control         

of Arm Stability 

 

 

To test this aim, EEG data were recorded from young healthy participants while 

they completed tasks designed to differentiate three potential mechanisms for control of 

arm stability: 1) increased impedance of the arm through co-contraction of antagonistic 

muscles 2) corrective muscle activity via spinal/supraspinal reflex circuits and/or 3) 

intermittent voluntary corrections to errors in position. EEG beta band power fluctuations 

were used as indicators of brain activity and coherence between EEG electrodes was used 
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as a measure of functional connectivity between brain regions. If cortical error correction 

networks are being utilized during stabilization, we would expect the cortical activity 

during control of arm stability would mimic voluntary goal directed movement. We 

hypothesized that cortical error correction networks contribute to arm stabilization. 

 

1.6.2 Aim 2: Characterize the Reorganization of Resting State Cortical Networks      

After Stroke Using EEG 

 

 

To test this aim, EEG data were collected from chronic stroke and neurologically-

intact participants while they were in a relaxed, resting state. EEG power was used as an 

indicator of network activity and correlations of orthogonalized EEG band envelope 

activity were used as a measure of functional connectivity between cortical regions. We 

expected cortical networks after stroke to have a higher reliance on local network activity 

with less efficient pathways connecting local regions, resulting in a shift to higher 

frequency. We hypothesized that cortical networks are more asymmetric after stroke and 

that there is a shift in the frequency due to changes in cortical communication after 

stroke. 

 

1.6.3 Aim 3: Determine if Cortical Network Mechanisms Underlie Improved              

Arm Tracking Performance in Chronic Stroke Survivors                                       

Due to Wrist Tendon Vibration 

 

 

To test this aim, EEG data were collected from chronic stroke and neurologically-

intact participants while they completed a series of figure-8 tracking tasks. Brain activity 

(EEG beta band power fluctuations), functional connectivity between brain regions 

(spatially correlated coherence), and arm tracking performance were compared before, 

during, and after tendon vibration. If cortical mechanisms underlie stroke survivors’ 
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improved arm tracking performance with the application of tendon vibration, we would 

expect stroke survivors’ cortical activity and connectivity to approach that seen in 

controls when tendon vibration is applied. We hypothesized that application of tendon 

vibration to the wrist forearm flexor tendons causes tracking improvements in the paretic 

arm by increasing the cortical activity and connectivity in the regions displaying cortical 

deficits after stroke.  



23 
 

 
 

CHAPTER 2: THE ROLE OF THE CORTEX IN VISUOMOTOR                  

CONTROL OF ARM STABILITY 

 

 

2.1 Introduction 

 

 

Visuomotor control of arm posture might involve cortical structures that provide 

motor commands to correct errors in position. During movement, agonist muscles are 

activated to move the limb toward the target, which is followed by antagonist muscle 

activation to provide braking. While numerous motor control theories describe the control 

of arm trajectory during a reach (Feldman, 1986; Flash & Hogan, 1985; Houk et al., 

2000; Kalaska et al., 1997; Latash et al., 2010; Todorov & Jordan, 2002), the control of 

the stabilization phase after the end of the movement is less clear. At least three possible 

mechanisms have been proposed for visuomotor control of arm posture: 1) increased 

impedance of the arm through the co-contraction of antagonistic muscles (e.g. Franklin et 

al. 2004) 2) spinal or supraspinal reflex circuits to provide corrective muscle activity 

(Kurtzer et al., 2008) and/or 3) intermittent voluntary corrections to errors in position 

(Hasan, 2005). In this study, we examined electroencephalography (EEG) data during a 

series of arm stabilization tasks to test the hypothesis that cortical error correction 

networks are involved in visuomotor control of arm posture. 

Each of the proposed mechanisms of arm stabilization has potential advantages 

and limitations. Co-contraction acts to stabilize the arm by activating antagonistic muscle 

pairs (Franklin et al., 2004). This mechanism is beneficial because it increases joint 

stiffness without the necessity for a complex motor control network to respond 

continuously to perturbations and appears to be the preferred method of stabilization 

when a dynamic force field is present (Franklin et al., 2003a; Franklin et al., 2003b). 
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Increasing the co-contraction of the arm during arm movements and postural 

maintenance tasks results in better movement accuracy and less positional error 

respectively, providing increased stability to the limb during reach (Franklin et al., 2003a; 

Franklin et al., 2003b; Gribble et al., 2003; Scheidt & Ghez, 2007). A limitation of co-

contraction for postural control of the arm is that it is thought to be metabolically 

inefficient (Gribble et al., 2003; N. Hogan, 1984), because increased muscle activity is 

related to an increase in metabolic costs (Foley & Meyer, 1993; Hogan et al., 1996; Sih & 

Stuhmiller, 2003). Co-contraction is also only useful for perturbations that can be 

subdued by joint and musculature properties. The stiffness of the joint cannot exceed the 

physical properties of the tissues and tendons being used to stabilize the joint. Some 

joints, such as the ankle, have such low stiffness that they fall short of the of the 

minimum required for stability, which may also occur in the joints of the arm if strong 

perturbations are encountered (Hof, 1998; Morasso & Sanguineti, 2002; Morasso & 

Schieppati, 1999). 

The spinal/supraspinal reflex mechanism for stabilization works by tailoring the 

reflex responses of the motor system to resist perturbations to position (Kurtzer et al., 

2008; Shemmell et al., 2009; Soechting et al., 1981). Both short latency (~25ms) and 

long latency reflexes (40-100ms) are observed in response to muscle stretch; reflex 

regulation may be beneficial for stabilization because of the speed of the correction and 

limited need for higher level processing (Crago et al., 1976; Marsden et al., 1983). Short 

latency reflexes can modulate their response depending on the underlying muscle activity 

(Mortimer et al., 1981; Soechting et al., 1981), providing a generic response to muscle 

stretch that may not account for task context. On the other hand, long latency reflex 
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mechanisms can modulate their responses to muscle stretch and perturbations in a task 

specific manner, acting as an intermediary between short latency reflexes and volitional 

responses (Mutha et al., 2008; J. Pruszynski et al., 2008; Shemmell et al., 2009; 

Soechting et al., 1981). While long latency reflexes are able to modulate the direction and 

amplitude of their responses when prior knowledge of the task is known (Pruszynski et 

al., 2008), Mutha and colleagues showed that the amplitude modulation of long latency 

reflexes is limited during movements with changing task goals (Mutha et al., 2008). 

Modeling studies have suggested that the cyclic response of reflex activity coupled to a 

viscoelastic system could lead to unbounded amplification of an initial perturbation and 

even resemble spastic clonus due to reflex delays (Baratta et al., 1998; Hidler & Rymer, 

1999). The absence of clonic activity during visuomotor control of arm posture suggests 

that reflex gains may be limited under normal circumstances, reducing this instability 

issue. 

Cortically-driven intermittent voluntary corrections could also provide 

visuomotor control of arm posture (Hasan, 2005). Cortical involvement during 

stabilization can be beneficial due to the highly context dependent responses generated as 

a result of the proprioceptive and visual information arriving at the cortex. However, 

cortically-driven corrections of arm posture are limited by the long delays (150-200ms) 

associated with sensory feedback and generation of corrective responses (Mutha et al., 

2008; Pruszynski et al., 2008), as well as a larger computational load associated with the 

use of higher-level motor control mechanisms to achieve stabilization goals without 

excessive cumulative errors. The lack of excessive error implies that prediction using 
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some form of internal representation or model may be utilized for visuomotor control of 

arm posture (Shadmehr et al., 2010).  

Co-contraction, spinal/supraspinal reflex and cortically-driven voluntary 

correction mechanisms of arm stabilization are not mutually exclusive and are most likely 

all employed during stabilization tasks. Experiments involving arm movement tasks have 

shown co-contraction decreases over time, possibly indicating a shift from a co-

contraction mechanism, which provides greater accuracy in the absence of a fully formed 

internal model, towards internal representations of the movement and feedforward 

control after practice (Franklin et al., 2003b; Gribble et al., 2003). Co-contraction also 

shares a relationship with short latency reflexes. In unstable environments, as the level of 

co-contraction increases the magnitude of the reflex response also increases suggesting 

both are used to compensate for perturbations (Akazawa et al., 1983; Soechting et al., 

1981). Research investigating the disruption of cortical activity using transcranial 

magnetic stimulation or disconnect between the cortex and the spinal cord in the people 

with spinal cord injury have shown that reflex activity is lowered and the baseline level 

of co-contraction is increased respectively when cortical drive is reduced (Shemmell et 

al., 2009). When investigating balance of an inverted pendulum with the ankles, Loram 

and Lakie (Loram & Lakie, 2002) showed that stability requires not only intrinsic ankle 

stiffness but also anticipatory neural modulation of ankle torque. Further, intersegmental 

interactions during brief force perturbations show electromyography (EMG) responses in 

segments downstream from the perturbed segment that exacerbate instead of resist 

perturbations (Koshland et al., 1991; Lacquaniti & Soechting, 1984, 1986). It has been 

suggested that this unexpected response cannot be completely explained by reflex activity 
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and may arise from a repertoire of voluntary movements (Koshland et al., 1991; Latash, 

2000). Although co-contraction and spinal/supraspinal reflex activity both contribute to 

stabilization, there also appears to be a cortical component. Hasan proposed that stability 

of a perturbed system is not guaranteed by continuous resistance but rather by later 

events, including voluntary corrections (Hasan, 2005). 

In this study, we set out to identify the cortical mechanisms of visuomotor control 

of arm posture. We collected EMG, kinematic, and electroencephalography (EEG) data 

across four different experimental tasks designed to differentiate potential stabilization 

mechanisms and determine which are involved in stabilization of arm posture. Our 

approach used a reach and hold paradigm to place the arm at a target position where the 

mechanisms of visuomotor control of arm posture were tested during the ensuing hold 

period. We used a position control task with minimal arm stabilization requirements, a 

co-contraction task with pure arm co-contraction, a voluntary task with pure volitional 

arm movement and a perturbation task consisting of a force field in which participants 

were asked to stabilize their arm. EEG beta band (13-26Hz) power fluctuations during 

stabilization were used as indicators of brain activity associated with motor function 

(Pfurtscheller & Lopes da Silva, 1999; Pfurtscheller & Lopes da Silva, 1999; Steriade et 

al., 1990), and the coherence between EEG electrodes was used to measure functional 

connectivity between cortical areas (Rappelsberger et al., 1993). We tested the hypothesis 

that cortical error correction networks contribute to arm stabilization. Due to the 

involvement of co-contraction during stabilization of reach, we anticipated that 

perturbations during postural stabilization of the arm would show signs of increased 

EMG co-contraction. If cortical error correction networks are being utilized during 
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stabilization, we would expect the cortical activity during visuomotor control of arm 

posture would mimic voluntary goal directed movement. Further, we postulated that 

invoking cortical visuomotor control networks would result in higher connectivity 

between the sensory regions interpreting the error and the motor regions correcting 

posture. 

 

2.2 Methods 

 

 

2.2.1 Participants 

 

 

A sample of 10 right-handed healthy participants (age 21-34 years, 6 male) 

participated in the study. All participants gave written informed consent, and all 

procedures were approved by the Marquette University Institutional Review Board in 

accordance with the Declaration of Helsinki. Inclusion criteria required that the 

participants be healthy with no known neurological disease or injury.  

 

2.2.2 Test Apparatus 

 

 

The study was conducted using a custom-built mechanical linkage (Figure 2-1A) 

(APPENDIX A: MANIPULANDUM). The linkage constrained movement to the 

horizontal plane and provided measurements of end-point trajectory using optical 

encoders (Celesco Transducer Products, Inc., Chatsworth, California; BEI Sensors, 

Goleta, California) located at each joint. The device frame was constructed using 

2.5x2.5cm extruded aluminum (80/20 Inc., Columbia City, Indiana) and contained three 

rotational joints to allow unrestricted movement in the horizontal plane. While seated at 

the device, the participant’s forearm was secured to an Ultra High Molecular Weight 
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Polyethylene tray located at the end of the manipulandum. An overhead projector 

displayed hand position and target location on an opaque screen (80x60cm) directly 

above the plane of hand motion. The device was interfaced with LabVIEW (National 

Instruments Corporation, Austin, Texas) in order to control the projector display, record 

(1 kHz sampling rate) kinematic data, and generate digital pulses used to synchronize the 

timing of movement and EMG/EEG data collection. 

 

2.2.3 Experimental Protocol 

 

 

Before testing, EMG data were recorded from each participant as they sat in a 

chair and performed maximum voluntary isometric contractions (MVCs) for the 6 

muscles analyzed in this study. Each MVC was sustained for around 5s. Anterior and 

posterior deltoid MVC data were collected as participants tried to internally or externally 

rotate the arm against resistance while the shoulder was abducted 90o in plane of scapula 

and elbow flexed 90o. Biceps and lateral head of the triceps MVC data were collected as 

participants tried to flex or extend the elbow against resistance while the shoulder was 

abducted 45o in plane of scapula and elbow flexed at 90o. Flexor carpi radialis and 

extensor carpi ulnaris MVC data were collected as participants tried to flex and extend 

the wrist against resistance while the shoulder was in a neutral position and the elbow 

was flexed 90o. These measurements were used later for normalization of EMG data 

obtained during the experimental trials. 
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Figure 2-1: Experimental Setup. A) Illustration of the mechanical linkage and 

experimental setup from the side (inset in top right displays the scene from above). The 

10cm diameter magnet was only present during the perturbation trials. The cursor (white 

circle) projected onto a horizontal screen was linked to hand position. Participants were 

required to move the cursor from the home location (white annulus) to the target (dark 

gray annulus). B) Magnetic repulsion forces in the radial and axial directions. The 

minimum axial distance between the magnets was 7.5cm and occurred when the 2 

magnets were directly over one another (radial distance = 0cm). The maximum force in 

the radial direction of ~20.25N was generated when the center of the 7.5cm magnet was 

over the edge of the 10cm magnet (~5cm). C) Typical perturbation trial. The time shown 

in the figure ranges from 0-6s, just after target presentation to the end of the stabilization 

period. The line represents the cursor’s path (linked to hand position) throughout the trial. 

During the baseline period, the cursor (hand) slowly drifted out of the home location back 

towards the participant. Supplemental Video S1 

(https://doi.org/10.6084/m9.figshare.9199307) displays the typical perturbation trial. 

 

 

The participant’s dominant arm was tested using a period of stabilization 

following movements of the mechanical linkage. The study consisted of four tasks, each 

with 40 trials. Each trial consisted of a baseline period (6.5±1.5s before target 

https://doi.org/10.6084/m9.figshare.9199307
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presentation), target acquisition/stabilization period (0-6s after target presentation) and 

return period (~1s between the stabilization and baseline periods). Prior to each trial, 

participants were required to bring a white cursor (r = 0.5cm), linked to hand position, to 

the home location (gray annulus, r = 4cm) located ~24cm in front of the participants. The 

home location then disappeared, and participants relaxed until the target (blue annulus, r 

= 0.75cm) was presented 30cm away from the home position on an imaginary line 

orthogonal to the participant’s chest. Participants then moved their hand as quickly and 

accurately as possible to the target, at which point the four tasks began. The following 

tasks were tested. 

 

Point-to-point Task (PtP): This task was designed to be a control task with 

minimal arm movements, EMG, co-contraction and stabilization. After the point-

to-point movement, participants were instructed to hold their hand at the target. 

The target and cursor were displayed for the duration of the target 

acquisition/stabilization period. No visual or physical perturbations were applied 

at the target. 

 

Co-contraction Task (CoC): This task was designed to isolate the arm’s EMG, co-

contraction, cortical activity and cortical connectivity associated with a pure co-

contraction. After the point-to-point movement, participants were instructed to co-

contract (10-20% of MVC) their arm at the target. Feedback regarding the level of 

co-contraction was given to the participants by way of cursor color (red: <10% 

deltoid MVC, white: within range, green: >20% deltoid MVC). Visual feedback 

of the target and cursor (level of co-contraction) was displayed for the first 2s of 
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the target acquisition/stabilization period after which both were removed. 

Participants were instructed to hold the level of co-contraction constant after 

feedback was removed. No visual or physical perturbations were applied at the 

target. 

 

Voluntary Task (VOL): This task was designed to identify the EMG, co-

contraction, cortical activity and cortical connectivity associated with a volitional 

movement. After the point-to-point movement, participants were instructed to 

recreate the typical movement profile made when trying to stabilize their arm 

during the perturbation task (see below). This resulted in participants randomly 

moving their arm with approximately the same speed and within the same space 

that they did during the perturbation tasks. Visual feedback of the target was 

displayed for the first 2s during the target acquisition/stabilization period after 

which it was removed. Participants continued to recreate movements similar to 

the perturbation task (see below) after the feedback was removed. No visual or 

physical perturbations were applied at the target. 

 

Perturbation Task (PER): This task was designed to generate EMG, co-

contraction, cortical activity and cortical connectivity associated with arm 

stabilization in an unstable environment. After the point-to-point movement, 

participants were instructed to keep the cursor on the target while axial and radial 

magnetic forces were applied at the target and the visual feedback was 

simultaneously manipulated to create a hyperbolic distortion of cursor position 

about the target. The magnetic force perturbation was created using two 
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Neodymium ring magnets (Applied Magnets, Plano, Texas). The repulsive forces 

generated between the 2 magnets versus the distance of the hand away from the 

center of the target can be seen in Figure 2-1B. The first magnet (d = 10cm, 

thickness = 2.5cm, center hole = 0.8cm) was mounted under the screen target 

location while the second (d = 7.5cm, thickness = 1.2cm, center hole = 0.8cm) 

was mounted on the arm support tray under the hand. The minimum distance 

between the two magnets was 7.5cm, Figure 2-1A. Manipulation of visual 

feedback of arm position was generated using a hyperbolic function, Equation 2.1, 

which changed the relationship between hand location and cursor location near 

the target,  

𝑿𝐶(𝑿𝐻) =

{
 

     √−𝑎2 (1 − (
|𝑿𝐻−𝑿𝑇|+𝑎

𝑎
)
2

) + 𝑿𝑇;         𝑖𝑓 𝑿𝐻 ≥ 𝑿𝑇 

−√−𝑎2 (1 − (
|𝑿𝐻−𝑿𝑇|+𝑎

𝑎
)
2

) + 𝑿𝑇;         𝑖𝑓 𝑿𝐻 < 𝑿𝑇

        (2.1) 

 

where 𝑿𝐶 is the 2-D cursor location, 𝑿𝐻 is the 2-D hand location, 𝑿𝑇 is the 2-D 

target location, and 𝑎 represents the gain, which was randomly selected for each 

trial and varied between 5±2.5cm. Visual feedback was manipulated in the task to 

increase the sensitivity of hand movements around the target, effectively making 

the perturbation task more difficult. The visual gain was randomly selected each 

trial to prevent the participants from learning the perturbation environment. 

Figure 2-1C displays a typical perturbation trial time course.  

 

The tasks were designed in order to compare the stabilization mechanisms active 

in the PER task to those in the CoC task (co-contraction mechanism during stabilization) 

and the VOL task (cortically-driven voluntary correction mechanism during 
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stabilization). Trials were blocked by task, with task presentation randomized across 

participants (the PER task always occurred before the VOL task to allow perturbation 

movement trajectories to be mimicked). Participants were given breaks between tasks to 

prevent fatigue. 

 

2.2.4 Physiological Measurements 

 

 

A 64-channel active electrode actiCAP (Brain Products GmbH, Munich, 

Germany) system arranged in the conventional 10-20 system with the reference at FCz 

and the ground at AFz was used to record EEG data. The EEG cap was placed on the 

participant’s head such that the Cz electrode was in line with the prearticular points of the 

frontal plane and with the nasion and inion points of the sagittal plane. SuperVisc gel 

(Brain Products GmbH, Munich, Germany) was applied between the scalp and electrodes 

to lower the electrode impedances below 10kOhms. EEG data were amplified, sampled at 

1kHz, filtered from 0.1 to 200Hz and notch filtered at 60Hz using a Synamps2 amplifier 

system (Neuroscan, Charlotte, North Carolina), and recorded using the Neuroscan 

software, Scan 4.5. 

A TrignoTM wireless EMG system (Delsys, Inc, Boston, Massachusetts) recorded 

muscle activation from the anterior deltoid (AD), posterior deltoid (PD), flexor carpi 

radialis (WF), extensor carpi ulnaris (WE), biceps (BI), and lateral head of the triceps 

(TRI). The skin was cleaned and lightly abraded before placing electrodes on the muscle.  

EMG data were amplified by 1000 and sampled at 1kHz.   
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2.2.5 Data Analysis 

 

 

EEG data were post processed and analyzed using the EEGLAB toolbox (version 

v13.4.4b) (Delorme & Makeig, 2004), FieldTrip (version 2016-01-03)  (Oostenveld et al., 

2011), Brainstorm (version 3.4) (Tadel et al., 2011), and custom MATLAB scripts 

(version 2014a, MathWorks, Natick, Massachusetts). All EEG data were bandpass 

filtered (0.1-100Hz) using a fourth order zero-phase Butterworth filter. The data were 

then epoched (-3 to 6s relative to the movement cue) and baseline corrected (-3s to cue). 

Bad epochs were removed (average number removed, 4) using EEGLAB’s automatic 

rejection algorithm (V threshold, pop_autorej) and manually by using FieldTrip’s 

visual inspection code (epoch removed if its variance/kurtosis was a visual outlier when 

compared to the other epoch variances/kurtoses for the task, ft_rejectvisual). EEG data 

were separated into signal and artefactual components using an Adaptive Mixture 

Independent Component Analysis (AMICA) (APPENDIX C: INDEPENDENT 

COMPONENT ANALYSIS) (Palmer et al., 2008), with 64 independent temporal 

components. Signal artifacts, including eye blink, EMG, and movement artifacts, were 

identified by distinct artefactual characteristics (Delorme et al., 2012; Makeig et al., 

2004; Mognon et al., 2011; Puce & Hämäläinen, 2017) and removed from the EEG data 

(average number of artefact components removed, 14; minimum number: 4; maximum 

number: 23). The remaining components were then transformed back to the EEG channel 

space. Finally, EEG data were re-referenced to a common average for all data analyses 

excluding the connectivity analyses which re-referenced the data to the average of the 

mastoids (Electrodes TP9 and TP10) (Rappelsberger, 1989). Each re-reference technique 

reintroduced the FCz electrode to the data set. 
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EMG data were processed and analyzed using custom MATLAB scripts (version 

2014a, MathWorks, Natick, Massachusetts). All EMG data were bandpass filtered (10-

350Hz) using a fourth order zero-phase Butterworth filter and then sent through a root-

mean square (RMS) calculation using a 100ms sliding window. To normalize the RMS 

EMG data from the experimental tasks, each muscle’s RMS EMG trace was divided by 

its respective MVC value and multiplied by 100 to obtain the percentage of maximum 

voluntary EMG activation. Each muscle’s MVC was calculated by finding the peak RMS 

EMG value within the muscle’s MVC trial and taking the average of the surrounding 1s 

window of time. EMG co-contraction was calculated at each sample point in time by 

taking the minimum normalized EMG activation from each agonist-antagonistic muscle 

pair (AD/PD, WF/WE, BI/TRI). Normalized EMG and EMG co-contraction data were 

epoched (-3 to 6s relative to the movement cue) and bad epochs identified from the EEG 

data were removed. Normalized EMG and EMG co-contraction data were compared 

across tasks to characterize the contribution of co-contraction mechanisms to stabilize the 

arm during the PER task.  

The speed of the hand was calculated from the x and y hand positions obtained 

from the optical encoders. Hand displacement was calculated as the Euclidean distance of 

the hand from the target. Speed and displacement data were both epoched (-3 to 6s 

relative to the movement cue) and the bad epochs identified in the EEG data were 

removed. Hand displacement and speed were examined to ensure that the kinematics 

were matched between the PtP and CoC tasks as well as the VOL and PER tasks. 

Distributed source localization was applied to the EEG data to examine the 

spatiotemporal characteristics of beta band power (cortical activity) of the PER task and 
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determine the cortical control mechanisms at play. Distributed current dipole maps were 

computed in Brainstorm using the default MNI/Colin27 anatomical brain template. The 

standard actiCAP electrode locations were fit to the scalp surface so that the Cz electrode 

location was at the vertex as described in the physiological measurements section. A 

boundary element model (BEM) was used to estimate of the forward model 

(OpenMEEG) (Gramfort et al., 2010; Kybic et al., 2005), and a depth-weighted minimum 

L2 norm estimator of cortical current density (Hämäläinen & Ilmoniemi, 1994) was used 

to estimate the inverse model. The source localized data were then bandpass filtered (13-

26Hz) using a zero-phase fourth order Butterworth filter, squared to obtain power, 

averaged across trials, low pass filtered (2Hz) using a zero-phase fourth order 

Butterworth filter to extract the envelope and normalized. For display purposes, the 

normalization process for the data shown in Figure 2-3 was the z-score (baseline period: -

3s to cue). For statistical analyses, the normalization process was the calculation of the 

percent change from baseline (baseline period: -3s to cue), equation 2.2, 

%∆(𝑡) = 100 ×
𝑿(𝑡)−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
        (2.2) 

where %∆(𝑡) represents the percent change from baseline, 𝑿(𝑡) represents the power 

time series, 𝑡 represents time, and 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represents the average power in the baseline 

period. 

EEG beta band power of the source localization data was segmented into seven 

regions of interest (ROIs) using the Desikan-Killiany mapping technique (Desikan et al., 

2006): left Superior Frontal Gyrus, left Caudal Middle Frontal Gyrus, left Pre-Central 

Gyrus, left Post-Central Gyrus, left Superior Parietal Gyrus, left Inferior Parietal Gyrus, 

and left Lateral Occipital Gyrus. The mean beta band power for each of the seven ROIs 
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were then compared across tasks. To examine hemispheric differences, an identical 

process was performed by treating the seven ROIs within each hemisphere as one large 

ROI and comparing the beta band power mean difference between hemispheres. 

EEG coherence was used to quantitatively compare cortical network connectivity 

between the PER task and the VOL (cortically-driven mechanism) and CoC (co-

contraction mechanism) tasks. All-to-all (connectivity between all possible pairs of EEG 

electrodes) temporal connectivity profiles were generated using magnitude squared 

coherence, (equation 2.3),  

𝐶𝑜ℎ2(𝑓) =
|𝐶𝑋𝑌(𝑓) |

𝟐

𝐶𝑋𝑋(𝑓)·𝐶𝑌𝑌(𝑓)
        (2.3) 

where 𝐶𝑜ℎ2 represents the magnitude squared coherence between electrodes 𝑋 and 𝑌, 

𝐶𝑋𝑌 represents the cross spectrum between electrodes 𝑋 and 𝑌, 𝐶𝑋𝑋 represents the auto 

spectrum of electrode 𝑋, 𝐶𝑌𝑌 represents the auto spectrum of electrode 𝑌, and 𝑓 

represents frequency. Every EEG epoch was divided into 9 non-overlapping windows, 

each containing 1s of data. Coherence was then calculated within each window using the 

epochs as the measure of consistency. For each participant and task, this resulted in a 

connectivity matrix that was 4225 (65x65 electrodes) by 9 for every frequency. The 

resulting connectivity matrices were then averaged across the 13-26Hz range and 

baseline corrected by removing the mean of the first 3 time points (representing the 3s 

before the movement cue) to calculate task-based coherence of the beta band. For each 

participant and task, a threshold was calculated by generating a histogram using the 

baseline-corrected connectivity values for all electrode-electrode combinations and 

finding the connectivity value corresponding to the top 5% of all connectivity values 

across the distribution. Connections that fell above the threshold were considered active. 
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EEG task-based coherence data were segmented into three ROIs: Frontal cortex 

(electrodes Fp1, Fp2, AF7, AF3, AF4, and AF8), Sensorimotor cortex (electrodes C3, C1, 

Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4), and Visual cortex (electrodes PO3, POz, 

PO4, O1, Oz, and O2). Intra-regional and inter-regional coherence was then examined at 

each time point by calculating the percentage of active connections (PAC), equation 2.4, 

within each region (intra-region coherence) and between each region (inter-region 

coherence), respectively, 

𝑃𝐴𝐶 = 100 ×
# 𝐴𝑐𝑡𝑖𝑣𝑒

# 𝑇𝑜𝑡𝑎𝑙
        (2.4) 

where 𝑃𝐴𝐶 represents the percentage of active connections, # 𝐴𝑐𝑡𝑖𝑣𝑒 represents the 

number of connections above threshold, and # 𝑇𝑜𝑡𝑎𝑙 represents the total number of 

connections. 

Hand speed, hand distance, EMG activity, EMG co-contraction, EEG ROI beta 

band power, EEG hemisphere beta band power, EEG intra-region coherence, and EEG 

inter-region coherence data were all averaged during the last 2s (4-6s) of the target 

acquisition/stabilization period (referred to the stabilization period from here on out) and 

across trials for each participant. While arm postural stabilization began immediately 

after the reach to the target, we chose to analyze the stabilization period 4-6s after target 

presentation in order to minimize effects due to reach (about 0.5-1.5s after target 

presentation) and the removal of visual feedback (2s after target presentation). Gwin and 

Ferris have shown that beta band desynchronization can persist for around 1s after the 

initial force generation in a sustained knee and ankle isometric task (Gwin & Ferris, 

2012). Pfurtscheller and Lopes da Silva recommend having around 10s between events 

when studying EEG desynchronization in order to allow the frequency band modulations 
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to recover (Pfurtscheller & Lopes da Silva, 1999). In our experience, beta band 

modulations tend to stabilize between 1 and 10s after movement. To prevent fatigue, we 

chose not to extend the period of stabilization analysis beyond 6s which resulted in our 

test period being 4-6s after target presentation. 

 

2.2.6 Statistical Analysis 

 

 

In order to test our hypothesis that cortical error correction networks contribute to 

visuomotor control of arm posture, changes in EEG ROI beta band power, EEG 

hemisphere beta band power, EEG intra-region coherence, and EEG inter-region 

coherence during the stabilization period were characterized across participants using 

repeated measures two-way ANOVAs with task and space as factors in the analysis. 

Changes in EMG activity and EMG co-contraction during the stabilization period were 

characterized across participants using repeated measures one-way MANOVAs (Pillai’s 

Trace) with task as the factor in the analysis; this allowed us to determine if co-

contraction mechanisms were being utilized during the PER task. In order to ensure 

common kinematics between tasks, changes in hand speed and distance during the 

stabilization period were characterized across participants using repeated measures one-

way ANOVAs with task as the factor in the analysis. One-way ANOVAs were used as 

post hoc tests if any effects were found significant in the two-way ANOVAs or one-way 

MANOVAs. The Holm-Sidak method for correcting for multiple comparisons was used 

at each level (between multiple ANOVAs) in the analysis except for the pairwise 

comparisons where the Tukey post hoc test was applied. When assumptions of the 

ANOVA were violated such as normality, a non-parametric bootstrap approach similar to 
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the Zhou and Wong method (Zhou & Wong, 2011) with 10000 iterations was used to 

generate the statistical distributions for the two-way ANOVA, one-way ANOVA, and 

Tukey post hoc test. Statistical tests were performed with a Type I error rate of  = 0.05. 

All variables tested had at least one sample population that violated normality. 

 

2.3 Results 

 

 

2.3.1 Movement Kinematics 

 

 

Hand kinematics (displacement and speed) during the stabilization period were 

similar for the PtP and CoC tasks and for the VOL and PER tasks with more movement 

and displacement occurring in the VOL and PER tasks. The one-way ANOVAs of hand 

displacement (F(3,27)=29.93, p<0.0001) and hand speed (F(3,27)=46.41, p<0.0001) 

during the stabilization period revealed significant differences among the tasks. The post 

hoc analysis (Tukey test) of task differences for hand displacement and hand speed 

revealed that hand displacement (q(27)>8.62, p<0.0001) and hand speed (q(27)>10.25, 

p<0.0001) were significantly lower in the PtP and CoC tasks when compared to the VOL 

and PER tasks. The lack of differences (hand displacement: q(27)<1.17, p>0.848; hand 

speed: q(27)<2.62, p>0.27) between the PtP (hand displacement: 0.24cm (SD 0.06); hand 

speed: 0.22cm/s (SD 0.08) and CoC (hand displacement: 0.37cm (SD 0.13); hand speed: 

0.38cm/s (SD 0.17)) tasks as well as the lack of differences between the VOL (hand 

displacement: 3.04cm (SD 1.58); hand speed: 11.14cm/s (SD 4.86)) and PER (hand 

displacement: 2.73cm (SD 0.85); hand speed: 8.96cm/s (SD 2.61)) tasks indicate that 

hand kinematics were similar within these task pairs during the stabilization period and 

suggest they did not play a role in the significant differences found in the other variables. 
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2.3.2 Muscle Activity 

 

 

In general, the EMG activity during the stabilization period was similar across all 

muscles in the PtP and VOL tasks and in the CoC and PER tasks with higher activity in 

the CoC and PER tasks, Figure 2-2A. The one-way MANOVA of EMG activity during 

the stabilization period revealed a significant difference (F(18,72)=2.97, p=0.001) 

between tasks for the muscles. The post hoc one-way ANOVAs for tasks showed 

significant differences between tasks in each muscle (F(3,27)>2.81, p<0.049). The post 

hoc analysis (Tukey test) of task differences within each muscle revealed that activity in 

PD and BI muscles was significantly lower in the PtP and VOL tasks when compared to 

the CoC and PER tasks (q(27)>3.87, p<0.0361), activity in the TRI and WE muscles was 

significantly higher in the CoC task when compared to the PtP and VOL tasks 

(q(27)>5.15, p<0.0041), activity in the WF was significantly lower in the PtP task when 

compared to the CoC task (q(27)=4.73, p=0.012) while the activity in the WF was 

significantly higher in the PER task when compared to the PtP, CoC, and VOL tasks 

(q(27)>4.55, p<0.018), and the activity in the AD did not result in any significant 

differences across tasks. The similarity in muscle activation between the PER and CoC 

tasks and the differences between the PER task and the PtP and VOL tasks indicate that 

more muscle activity was needed to position the arm during a stabilization (PER) task 

than is normally generated in a volitional arm movement (VOL) task, and that the level of 

muscle activity in an arm stabilization (PER) task resembles that seen in an arm co-

contraction (CoC) task. 
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2.3.3 Muscle Co-contraction 

 

 

EMG co-contraction during the stabilization period was similar across all muscle 

pairs in the PtP and VOL tasks with their EMG co-contraction being lower than the CoC 

and PER tasks, Figure 2-2B. The CoC and PER tasks had similar EMG co-contraction in 

the BI/TRI and WE/WF muscle pairs with a trend towards a significant difference in the 

AD/PD muscle pair. The one-way MANOVA of EMG co-contraction during the 

stabilization period revealed significant differences (F(9,81)=6.84, p<0.0001) between 

tasks for antagonistic muscle pairs. The post hoc one-way ANOVAs for tasks showed 

differences between tasks in each muscle pair (F(3,27)>6.51, p<0.0015). The post hoc 

analysis (Tukey test) on task differences within each muscle pair indicated that co-

contraction in the BI/TRI and WE/WF pairs was significantly lower in the PtP and VOL 

tasks when compared to the CoC and PER tasks (q(27)>4.62, p<0.0138) and the co-

contraction in the AD/PD pair was significantly higher in the CoC task when compared to 

the  PtP and VOL tasks (q(27)>5.33, p<0.0028) with evidence for the co-contraction in 

the AD/PD pair being higher in the CoC task when compared to the PER task 

(q(27)=3.58, p=0.066). The similarity in muscle co-contraction between the PER and 

CoC tasks and the differences between the PER task with the PtP and VOL tasks 

indicated that more muscle co-contraction was used to position the arm in the 

stabilization (PER) task while minimal muscle co-contraction was used in the control 

(PtP) and volitional arm movement (VOL) tasks. 
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Figure 2-2: Muscle Activity and Co-contraction. A) EMG activity during the stabilization 

period. B) Co-contraction during the stabilization period. Muscles examined were the 

anterior deltoid (AD), posterior deltoid (PD), flexor carpi radialis (WF), extensor carpi 

ulnaris (WE), biceps (BI), and lateral head of the triceps (TRI). Both EMG activity and 

co-contraction were normalized to the respective muscle’s MVC. The figures show the 

%MVC averaged across all participants (n = 10, 6 male) with the error bars denoting the 

95% confidence interval about the mean. Significant differences determined via post hoc 

analysis (Tukey test) are indicated by stars (* indicates p<0.05, ** indicates p<0.01, and 

*** indicates p<0.001).  

 

 

2.3.4 Beta Band Spatiotemporal Power 

 

 

EEG beta band power was examined to identify the time course of task-related 

activity across the cortex (decrease in beta band power from baseline) and to determine if 

the cortical activity during a stabilization (PER) task resembled that of volitional control 

(VOL), co-contraction (CoC) tasks, or neither. A decrease in beta band power relative to 

baseline was identified in premotor, motor, sensory, and parietal cortices and was located 
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bilaterally in all tasks as shown in Figure 2-3. Source localization revealed that the 

spatiotemporal patterns of beta band power decrease were similar between the PtP and 

CoC tasks and the VOL and PER tasks, respectively. The time course of activity for the 

PtP and CoC tasks had a transient desynchronization during movement onset followed by 

a return to baseline power levels during the stabilization period. In contrast, beta band 

desynchronization was sustained throughout the movement and stabilization periods for 

the VOL and PER tasks. The spatial extent of decrease in beta band power during the 

initial reaching movement was slightly more extensive during the reach period for the 

VOL and PER tasks than the PtP and CoC tasks possibly indicating differences in 

planned motor commands due to the experimental block design. Similarities in 

spatiotemporal EEG beta band power between the PER and VOL tasks and the 

differences between the PER task compared to the PtP and CoC tasks indicate that 

cortical networks used to control the arm during the stabilization (PER) task share similar 

areas and levels of activation as those involved in volitional arm movements (VOL), 

while minimal cortical network activity is associated with stabilization via arm co-

contraction (CoC). 
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Figure 2-3: EEG Source Localization of Beta Band Power. The z-score averaged across 

participants (n = 10, 6 male) are shown for each task. Each brain image shows a snapshot 

of a key time point taken from the continuous activity time course averaged across all 

participants. Only values above or below a z-score threshold of ±3 are displayed. 

Negative values indicate beta band desynchronization while positive values indicate a 

resynchronization. The left hemisphere in each plot represents the hemisphere 

contralateral to the arm (dominant) tested. 

 

 

2.3.5 Beta Band Hemisphere Power 

 

 

The EEG beta band power during the stabilization period was lateralized with the 

left (contralateral) hemisphere having more beta band desynchronization as shown in 

Figure 2-4C. The VOL and PER tasks had similar activity as did the PtP and CoC tasks 

with the VOL and PER tasks’ activity being higher, Figure 2-4D. The two-way ANOVA 

of beta band hemisphere power during the stabilization period showed no interaction 

effect but revealed a main effect of task (F(3,27)=14.51, p<0.0001) and hemisphere 

(F(1,9)=9.32, p=0.012). The post hoc analysis (Tukey test) of task differences indicated 
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that the decrease in power was significantly lower in the PtP and CoC tasks when 

compared to the VOL and PER tasks (q(27)>5.12, p<0.008). The analysis of hemispheric 

EEG beta band power demonstrated similar patterns of hemispheric activation across all 

four tasks, although the PtP and CoC tasks activated the pattern to a lower degree than 

the VOL and PER tasks. This could indicate an increased computational load during 

volitional movement generation (VOL) and stabilization (PER) of the arm when 

compared to a control (PtP) and arm co-contraction (CoC) task.  

 

2.3.6 Beta Band ROI Power 

 

 

In general, beta band power during the stabilization period was similar across all 

ROIs in the VOL and PER tasks with a larger decrease in beta band power than the PtP 

and CoC tasks as shown in Figure 2-4B. The PtP and CoC tasks had similar beta band 

power in all ROIs except for the Lateral Occipital gyrus where the CoC task showed a 

resynchronization of beta band power. The two-way ANOVA of ROI beta band power 

during the stabilization period revealed a main effect of task (F(3,27)=13.2, p<0.0001), a 

main effect of ROI (F(6,54)=6.97, p<0.0001) and an interaction effect between task and 

ROI (F(18,162)=3.82, p<0.0001). The post hoc one-way ANOVAs for task showed 

differences between tasks in all ROIs (F(3,27)>5.12, p<0.0058). The post hoc analysis 

(Tukey test) of task differences within each ROI indicated that the decrease in power in 

the Superior Frontal, Post-Central, and Superior Parietal gyri was significantly lower in 

the PtP and CoC tasks when compared to the VOL and PER tasks (q(27)>4.12, p<0.038), 

the decrease in power in the Caudal Middle Frontal and Pre-Central gyri was 

significantly higher in the PER task when being compared to the PtP and CoC tasks 
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(q(27)>4.03, p<0.0358), the decrease in power in the Inferior Parietal gyrus was 

significantly higher in the PER task when comparing it to the PtP and CoC task 

(q(27)>4.26, p<0.0293) while the decrease in power in the Inferior Parietal gyrus was 

significantly higher in the VOL task when comparing it to the CoC task (q(27) =6.44, 

p=0.008), and the decrease in power in the Lateral Occipital gyrus was significantly 

lower in the CoC task when comparing it to the PtP, VOL, and PER tasks (q(27)>4.69, 

p<.0123). Similarities in ROI EEG beta band power between the PER and VOL tasks and 

the differences between the PER task compared to the PtP and CoC tasks indicated that 

similar cortical areas with similar levels of activation were used to control the arm in the 

stabilization (PER) task as those involved in volitional arm movements (VOL). 

Meanwhile, arm co-contraction (CoC) had minimal activation across ROIs and even 

inhibited cortical activation (negative beta band power) in the posterior ROIs. 
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Figure 2-4: ROI Beta Band Power. A) Brain with seven ROIs examined: 1) left Superior 

Frontal Gyrus (SF), 2) left Caudal Middle Frontal Gyrus (CM), 3) left Pre-Central Gyrus 

(Pre), 4) left Post-Central Gyrus (Post), 5) left Superior Parietal Gyrus (SP), 6) left 

Inferior Parietal Gyrus (IP), and 7) left Lateral Occipital Gyrus (LO). B) ROI beta band 

power during the stabilization period for the left hemisphere (contralateral to tested arm). 

C) Hemispheric beta band power during the stabilization period. D) Cortical beta band 

power during the stabilization period, average of 14 ROIs (7 from each hemisphere). The 

figures show the beta band power percent change from baseline averaged across 

participants (n = 10, 6 male) with the error bars denoting the 95% confidence interval 

about the mean. Significant differences determined via post hoc analysis (B and D: Tukey 

test, C: two-way ANOVA main effect) are indicated by stars (* indicates p<0.05, ** 

indicates p<0.01, and *** indicates p<0.001). 

 

 

2.3.7 Beta Band Electrode Coherence 

 

 

EEG beta band coherence was examined to identify the cortical areas that were 

functionally connected during the tasks, how their interactions evolved over time and to 

compare the connectivity during stabilization for the task conditions (PER, VOL, CoC, 

PtP). Task-based coherence maps for electrode C3 (electrode over the sensorimotor 
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cortex associated with the task) and for all electrode combinations during each task are 

shown in Figure 2-5 and 2-6, respectively. Every coherence head map for electrode C3 

had a similar pattern of coherence with the highest task-based coherence occurring 

around the mirrored electrode (C4) in the opposite hemisphere and the lowest task-based 

coherence concentrated in the area around electrode C3. Patterns of task-based coherence 

were similar between the PtP and CoC tasks and the VOL and PER tasks, respectively. 

The temporal profile of the PtP and CoC tasks had a transient increase in coherence 

during movement onset and early stabilization followed by a return to near baseline 

levels during late stabilization. In contrast, an increase in coherence was sustained 

throughout the movement and stabilization periods for the VOL and PER tasks. Even 

though the temporal patterns of task-based coherence were similar between the VOL and 

PER tasks, the PER task had much higher levels of coherence throughout electrodes that 

extended into the occipital areas. All-to-All coherence maps (maps of coherence between 

an electrode and all other electrodes) indicated that the PER task had more active 

connections at each time point and that the connections had a larger increase in coherence 

than the other three tasks. Similarities in EEG beta band coherence between the PER and 

VOL tasks and the differences between the PER task compared with the PtP and CoC 

tasks indicated that the cortical networks used in an arm stabilization (PER) task share 

similar task-based functional connectivity patterns as those involved in volitional arm 

movements (VOL), while minimal task-based functional connectivity seemed to be 

involved with arm co-contraction (CoC). The fewer functional connections to visual 

regions during the arm co-contraction (CoC) and volitional arm movement (VOL) tasks 
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as compared to the arm stabilization (PER) task point to the increased role visual 

information played in the arm stabilization (PER) task. 

 

 

Figure 2-5: Electrode C3 Task-Based Coherence Maps Within the Beta Band. The task-

based coherence (coherence change from baseline period) averaged across participants (n 

= 10, 6 male) is shown for each task. Each head plot corresponds to a one second 

coherence window displaying key time ranges of the movement that indicate how 

electrode C3’s (left motor cortex) task-based coherence varied spatially with different 

electrodes. Values of coherence were interpolated between electrodes. Negative values 

indicate a decrease in coherence while positive values indicate an increase in coherence 

relative to the baseline period. The left half of each plot represents the hemisphere 

contralateral to the arm (dominant) tested. 
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Figure 2-6: All-to-All Coherence Maps of Connectivity Within the Beta Band. Task-

based coherence (relative to the baseline period) averaged across participants (n = 10, 6 

male) is shown for each task. Each head plot corresponds to a one second coherence 

window displaying a key time range during the movement period and indicates the 

degree of functional connectivity between all pairs of electrodes. Only values above or 

below a task-based coherence threshold of ±0.05 are displayed; corresponding to the top 

5% of coherence values observed during the baseline period. For each task, the threshold 

was calculated by generating a histogram of the baseline period task-based coherence 

values averaged across participants for all electrode-electrode combinations and finding 

the coherence value at which only 5% of all coherence values fell above. Negative values 

indicate a decrease in coherence while positive values indicate an increase in coherence 

relative to baseline. The left hemisphere in each plot represents the hemisphere 

contralateral to the arm (dominant) tested. 

 

 

2.3.8 Beta Band Intra-Region Coherence 

 

 

The intra-region task-based coherence during the stabilization period was similar 

in the frontal and visual regions for all tasks (Figure 2-7A). The sensorimotor region 
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showed differences between the PER task and the PtP and CoC task while the PtP and 

CoC tasks and VOL and PER tasks had similar task-based coherence during the 

stabilization period. The two-way ANOVA of intra-region task-based coherence during 

the stabilization period revealed an interaction effect (F(6,54)=3.42, p=0.0062) between 

task and region. The post hoc one-way ANOVAs for tasks showed differences between 

tasks in the sensorimotor region (F(3,27)=7.04, p=0.0018). The post hoc analysis (Tukey 

test) of task differences within the sensorimotor region indicated that the coherence was 

significantly higher in the PER task when compared to the PtP and CoC tasks 

(q(27)>4.91, p<0.0091). The similarities in intra-region task-based coherence in the 

frontal and visual regions indicate comparable levels of communication in these regions 

across tasks. The similar intra-region task-based coherence in the sensorimotor region 

between the PER and VOL tasks and the higher task-based connectivity in the PER task 

when compared to the PtP and CoC tasks indicated that the sensorimotor networks used 

in an arm stabilization (PER) task shared similar task-based functional connectivity 

patterns as those involved in volitional movements, and they tended to be larger than 

those found in the co-contraction (CoC) task.  

 

2.3.9 Beta-Band Inter-Region Coherence 

 

 

The inter-region task-based coherence during the stabilization period was similar 

for all region pairs for the PtP, CoC and VOL tasks (Figure 2-7B). The 

sensorimotor/visual region pair showed higher levels of task-based coherence in the PER 

task compared to all other tasks. The two-way ANOVA of inter-region task-based 

coherence during the stabilization period revealed an interaction effect (F(6,54)=4.70, 
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p<0.0001) between task and region pairs. The post hoc one-way ANOVAs for tasks 

showed differences between tasks in all region pairs (F(3,27)>3.43, p<0.0299). The post 

hoc analysis (Tukey test) of task differences within region pairs indicated that the 

coherence in the frontal/visual and the frontal/sensorimotor region pairs was significantly 

lower in the PtP task when compared to the PER task (q(27)>5.13, p<0.0475) and the 

coherence in the sensorimotor/visual region pair was significantly higher in the PER task 

when compared to the PtP, CoC, and VOL tasks (q(27)>3.89, p<0.048). The increase in 

inter-region task-based coherence of the sensorimotor/visual region pair for the PER task, 

when compared to the PtP, CoC and VOL tasks, suggested an increased reliance of 

sensorimotor processing on visual information during an arm stabilization (PER) task as 

compared to an arm co-contraction (CoC) or volitional arm movement (VOL) task. 
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Figure 2-7: Regional Beta Band Coherence. A) Intra-region beta band coherence during 

the stabilization period. B) Inter-regional beta band coherence during the stabilization 

period. C) EEG electrode head map with electrode groups identified with circles.  Solid 

circle: Frontal cortex (Front) (electrodes Fp1, Fp2, AF7, AF3, AF4, and AF8), dotted 

circle: Sensorimotor cortex (SM) (electrodes C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, 

and CP4), dashed circle: Visual cortex (Vis) (electrodes PO3, POz, PO4, O1, Oz, and 

O2). The figures show the beta band PAC averaged across participants (n = 10, 6 male). 

Error bars denote the 95% confidence interval about the mean. Significant differences 

determined via post hoc analysis (Tukey test) are indicated by stars (* indicates p<0.05, 

** indicates p<0.01, and *** indicates p<0.001). 
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2.4 Discussion 

 

 

2.4.1 Main Results 

 

 

In this study, we set out to identify the cortical mechanisms involved in arm 

stabilization and to test the hypothesis that cortical error correction networks contribute to 

visuomotor control of arm posture. This study demonstrated that visuomotor control of 

arm posture involves co-contraction of antagonistic muscles as well as cortical networks 

with increased connectivity between pathways associated with error correction. 

Specifically, during the stabilization period, cortical activity (reduction in EEG beta band 

power from baseline) during the PER task was comparable to that in the VOL task and 

did not resemble the activity seen in the PtP or CoC task (Figures 2-3, 2-4B, and 2-4D). 

The cortical networks identified during arm stabilization resembled those seen in 

volitional arm movement generation, suggesting volitional corrections may be one of the 

strategies the brain uses to stabilize the arm. The level of network connectivity (change in 

EEG beta band coherence from baseline) between the sensorimotor and visual regions 

was higher in the PER task when compared to the PtP, CoC, and VOL tasks (Figure 2-

7B). Increased connectivity between the sensorimotor and visual regions suggests visual 

feedback of error to the motor cortex for the generation of corrective movements. 

Stiffening of the arm via co-contraction of antagonistic muscle pairs was higher during 

the PER task when compared to the PtP and VOL tasks (Figure 2-2), suggesting co-

contraction mechanisms were also employed during stabilization of the arm. The 

presence of high cortical activity that resembled volitional motor generation and high 

connectivity in error pathways only seen in the stabilization (PER) task indicates the 
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involvement of cortical mechanisms in postural control of the arm that are distinct from 

short-latency impedance control of the arm via activation of antagonistic muscles and 

spinal/supraspinal reflex activity. Cortical networks encompassing sensory, motor and 

visual areas appear to play an important role in stabilization of arm posture. 

 

2.4.2 Role of the Cortex in Visuomotor Control of Arm Posture 

 

 

The comparable levels of cortical activation found between the VOL and PER 

tasks suggests that the brain may be using similar control mechanisms in both tasks. This 

similarity in cortical activity may arise from mapping the changes in limb position and/or 

from motor commands generated during the tasks. While passive movements of the upper 

limb have been found to activate similar cortical areas as active movements, the level of  

activation tends to be less (Formaggio et al., 2013; Guzzetta et al., 2007; Weiller et al., 

1996). Furthermore, isometric force generation (Gwin & Ferris, 2012) and voluntary 

movements under ischemic nerve block conditions (Christensen et al., 2007) have been 

shown to involve cortical activation, indicating that motor output as well as sensory 

feedback/processing is associated with cortical activity. Although it is difficult to 

distinguish motor output from sensory feedback/processing, the need to identify visual 

changes in arm position from the target in the PER task, suggests the observed brain 

activity reflects the processing of sensory feedback in addition to generating volitional 

commands to stabilize the arm. 

Measures of cortical coherence suggest that widespread cortical networks play an 

important role in arm stabilization. During the PER task, connectivity between the visual 

and sensorimotor networks was higher than the other tasks, suggesting the transfer of 
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visual information to sensorimotor cortices (Figure 2-7B). Since the VOL task is also a 

visuomotor task, we expected a similar network to the PER task, but to a lesser degree 

due to the lower task relevance of visual information and the lack of an error signal. 

Although not significantly different, the connectivity between the sensorimotor and 

visual regions was larger for the VOL task when compared to the PtP and CoC tasks 

(Figure 2-7B; p<0.067). Since the movement kinematics and sensory information were 

similar between the VOL and PER tasks, the PER task’s increase in connectivity between 

the sensorimotor and visual regions suggests the recruitment a visual error network. 

Similar sensorimotor/visual networks have been reported in studies involving finger and 

wrist movements where the frontal lobe, sensory cortex, motor cortex, parietal cortex, 

and occipital lobe have been shown to function together to control movement (Chen et 

al., 2003; O’Neill et al., 2017; Sukerkar, 2010). These findings provide support for 

Hasan’s hypothesis that cortically-driven intermittent voluntary corrections provide 

stability to arm posture (Hasan, 2005). 

Although the results support the involvement of a cortical-mediated error network 

during arm stabilization, it is impossible to rule out the influence of spinal/supraspinal 

reflex circuitry on the observed cortical activation. Ideally, the study would have included 

metrics to quantify all three proposed mechanisms of arm stabilization: 1) increased 

impedance of the arm through the co-contraction of antagonistic muscles (Franklin et al., 

2004), 2) spinal or supraspinal reflex circuits to provide corrective muscle activity 

(Kurtzer et al., 2008), and 3) intermittent voluntary corrections to errors in position 

(Hasan, 2005). Long latency, supraspinal, reflex activity is cortically modulated, 

generates cortical activity, and can be task dependent (Abbruzzese et al., 1985; Cheney & 
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Fetz, 1984; Pruszynski et al., 2011a; Pruszynski et al., 2008; Pruszynski et al., 2011b; 

Shemmell et al., 2009). Long latency reflexes also have the capacity to incorporate 

feedback from the task and modulate activity at the cortical level in a fashion similar to 

volitional movements (Mutha et al., 2008; Pruszynski et al., 2011a; Pruszynski et al., 

2011b). However, the cortical activity associated with long latency reflexes is not as 

extensive as volitional movements (Suminski et al., 2007). Previous EEG research 

investigating long latency reflexes and volitional responses suggests different cortical 

mechanisms for each response based on differences in the EEG topographies (Spieser et 

al., 2010). One study suggests that long latency reflexes are associated with different 

visual pathways than voluntary corrections (Mutha et al., 2008), while another has even 

suggested that long latency mechanisms, postural stability and instructed reaction, use 

different neural pathways (Shemmell et al., 2009). Further, long latency reflex activity is 

still present in spinalized cats and monkeys (Ghez & Shinoda, 1978; Tracey et al., 1980), 

raising questions about whether supraspinal structures are directly involved in the reflex 

response. Spinal turtles can generate a scratch reflex (Stein & Grossman, 1980), and 

spinal frogs show stability of limb targeted movements (Pfluger, 1853), suggesting, at 

least in lower vertebrates, that reflexes and stability are still possible without cortical 

input. Thus, while the cortex may play a role in modulating long latency reflex activity, 

the associated cortical component/activity may differ from volitional control, and the 

mechanism of generation may lie within the spinal system. 
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2.4.3 Stabilization Mechanisms 

 

 

The use of co-contraction, spinal/supraspinal reflex and cortically-driven voluntary 

correction mechanisms of postural control are not mutually exclusive and are likely all 

employed during arm stabilization tasks. We found increased levels of arm co-contraction 

in our stabilization (PER) task similar to that found in the pure co-contraction (CoC) task, 

indicating increased impedance of the arm through co-contraction of antagonistic muscles 

(Franklin et al., 2004). This result is consistent with previous research showing increased 

co-contraction of the arm provides stability to the limb (Franklin et al., 2003a; Franklin et 

al., 2003b; Gribble et al., 2003; Scheidt & Ghez, 2007). Although arm co-contraction is 

utilized, the minimal cortical activity in the CoC task compared to the extensive cortical 

activity in the PER task suggests that co-contraction is not the only active stabilization 

mechanism. Though not explicitly tested for in this study, spinal and supraspinal reflex 

circuits (Kurtzer et al., 2008) are likely also present during the PER task since both short 

latency (~25ms) and long latency reflexes (40-100ms) are observed in response to muscle 

stretch (Crago et al., 1976; Marsden et al., 1983). However, the cortical mediated error 

network identified in the PER task most likely reflects voluntary corrections to errors in 

position (Hasan, 2005).  

Co-contraction, reflex control and voluntary corrections probably work in concert 

to provide stabilization after a reach. Co-contraction works to stabilize the limb when 

forces can be subdued with physical properties of the tissues at the joint (Franklin et al., 

2003a; Franklin et al., 2003b). If the mechanical properties of the joint cannot provide the 

required stiffness for stability, reflex activity could increase stability. When reflex 

activity fails to produce stability or a more dynamic mode of stability is required (Mutha 
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et al., 2008), cortically driven voluntary corrections may be used (Hasan, 2005). In line 

with this idea, ankle and wrist stability requires not only intrinsic stiffness and reflex 

activity but also modulations of joint torque (Loram & Lakie, 2002; Suminski et al., 

2007).  

While this study focused on increased impedance of the arm through the co-

contraction of antagonistic muscles (Franklin et al., 2004), spinal or supraspinal reflex 

circuits to provide corrective muscle activity (Kurtzer et al., 2008) and intermittent 

voluntary corrections to errors in position (Hasan, 2005) other potential stabilization 

mechanisms are possible. For example, fractional power damping, in which ongoing joint 

movements are braked by stretch reflexes in the antagonistic muscle, could also be used 

to stabilize the limb (Houk et al., 2000). In fractional power damping, motor commands 

are used to tune the stretch reflex thresholds, which sets a new equilibrium point of the 

joint. This model of antagonistic reflex activation around an equilibrium point results in a 

damped system with no oscillations. The fractional power damping model is limited in 

that it only describes an open loop process with respect to setting the equilibrium point. A 

complete model would also need to include visual feedback to generate accurate motor 

commands in the presence of error.  

 

2.4.4 Bilateral Hemispheric Activation with Lateralization 

 

 

EEG beta band power revealed extensive bilateral desynchronization during the 

stabilization phase of movement (Figure 2-3). Active areas of the cortex included but 

were not limited to the Superior Frontal, Caudal Middle Frontal, Pre-Central, Post-

Central, Superior Parietal, Inferior Parietal and Lateral Occipital Gyrus. Previous EEG 
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studies examining voluntary thumb, finger, hand, and foot movements have reported 

event related desynchronization that is localized bilaterally near sensorimotor homunculi 

associated with the active muscle groups (Pfurtscheller et al., 1997, 1999; Pfurtscheller & 

Lopes da Silva, 1999). During movements of the entire arm, a larger portion of the cortex 

undergoes event related desynchronization suggesting that the number of muscle groups 

activated affects event related desynchronization (Pfurtscheller et al., 1999). In addition, 

Pfurtscheller and colleagues (Pfurtscheller et al., 1994) have shown that visual and 

parietal areas exhibit event related desynchronization during a visual processing task. In 

this study, muscle groups of the entire arm were active during a more complicated 

endpoint visuomotor stabilization task which may have contributed to the extensive 

cortical activation.  

In addition to the extensive bilateral activation during visuomotor control of arm 

posture, the contralateral hemisphere was significantly more active than the ipsilateral 

hemisphere (Figure 2-4). This observation supports previous EEG and fMRI studies 

examining hand movements, which consistently show bilateral cortical activity to be 

more pronounced on the contralateral hemisphere (Formaggio et al., 2013; McFarland et 

al., 2000; Yuan et al., 2010). Even though the lateralization of cortical activity to the 

contralateral hemisphere is expected, there was little interaction between task and 

hemisphere associated with a “dynamic dominance” mechanism (Sainburg, 2002; 

Sainburg, 2005), in which the dominant limb/hemisphere is specialized for coordination 

and the non-dominant limb/hemisphere is specialized for stabilization. The “dynamic 

dominance” hypothesis would predict that the cortical activity in the PtP, CoC, and PER 

task (end point stabilization processes) to be lateralized to the ipsilateral (nondominant) 
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hemisphere while the cortical activity in the VOL task (trajectory control processes) 

would be lateralized the contralateral (dominant) hemisphere. While cortical activity was 

lateralized to the contralateral hemisphere, both trajectory control (VOL) and end point 

stabilization (PtP, CoC and PER) tasks also showed ipsilateral activation. 

 

2.4.5 Decrease of Cortical Activity During Co-contraction 

 

 

An interesting finding was the lack of a sustained beta band desynchronization 

during the stabilization period of the CoC task (Figures 2-3 and 2-4B). The lack of 

cortical activity occurred despite EMG activity at similar levels as the PER task (Figure 

2-2A). The only notable differences in the CoC and PER tasks during the stabilization 

period were that the hand was moving during the PER task (hand speed: 8.96cm/s (SD 

2.61)) with the target still visible while the hand was stationary (hand speed: 0.38cm/s 

(SD 0.17)) with no visual feedback of the target in the CoC task. The lack of cortical 

activity during the sustained contraction is not unique to this study and has been 

documented in sustained wrist contractions and isometric contractions of the lower limb 

(Alegre et al., 2003; Gwin & Ferris, 2012). 

One possible explanation for the reduction in cortical activity is that activity 

associated with sensory feedback is large compared to the actual generation of motor 

commands (Weiller et al., 1996). Muscle and skin afferents provide feedback of 

proprioception at the cortical level, evidenced by EEG evoked responses from imposed 

joint movements (Kornhuber & Deecke, 2016) or nerve stimulation (Dawson, 1947; 

Giblin, 2006). Although the static proprioceptive feedback was similar across all tasks, 

movements of the limb during PER and VOL tasks could have triggered sensory EEG 
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signals that differentiated the EEG patterns from CoC and PtP tasks. EEG and fMRI 

studies report similar areas of the cortical activation with slightly lower activation in 

passive versus active movements (Formaggio et al., 2013; Guzzetta et al., 2007; Weiller 

et al., 1996).  Beta desynchronization associated with joint movement is reduced in stroke 

survivors with pure somatosensory deficits (Platz et al., 2000) or when sensory feedback 

is muted by prolonged vibration (Lee & Schmit, 2018). While sensory 

feedback/processing does seem to play a large role in cortical activation associated with 

the control of movement,  imagined hand movements (Formaggio et al., 2013; McFarland 

et al., 2000), attempted movements in people with spinal cord injury (Gourab & Schmit, 

2010), isometric force generation of the lower extremity (Gwin & Ferris, 2012) and 

voluntary movements under ischemic nerve block conditions (Christensen et al., 2007) 

produce cortical activation, suggesting that proprioceptive feedback is only one driver of 

cortical activity in motor tasks.  

Another possible explanation for the lack of cortical activity during CoC arises 

from the concept that beta band activity corresponds to an idling rhythm in the motor 

system that maintains the current state (Engel & Fries, 2010; Pfurtscheller & Lopes da 

Silva, 1999). Evidence for the maintenance of the current motor state comes observations 

of impaired motor performance during naturally or artificially enhanced levels of beta 

band activity, suggesting that the increased beta band activity prevents the motor system 

from making dynamic changes (Gilbertson, 2005; Pogosyan et al., 2009). This is 

supported by Swan and colleagues (Swann et al., 2009), who showed that successful stop 

trial performance in a Go/NoGo task is associated with enhanced beta band activity.  
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Lastly, the lack of cortical activity seen during sustained co-contraction may be 

because co-contraction mechanisms are relegated to the spinal level. After a spinal cord 

injury, humans have been shown to have altered upper extremity reaching movements 

(Wierzbicka & Wiegner, 1996; Wierzbicka & Wiegner, 1992). In connection with this, 

Cremoux and colleagues have shown that co-contraction increases after a spinal cord 

injury; possibly due to reduced cortical influence on spinal mechanisms that inhibit 

antagonist muscle activity (Cremoux et al., 2017). These studies suggest that the 

observed lack of cortical activity witnessed during sustained isometric contraction may 

be a combination of reduced afferent input, maintenance of the current motor state and 

co-contraction mechanisms being located at the spinal level.  

 

2.4.6 Study Limitations 

 

 

The current experimental design controlled for several confounding factors, such 

as ordering effects and movement kinematics, that may have influenced the results; 

however, other factors may have impacted the observed changes in beta band 

desynchronization across tasks including stabilization via trunk muscles, EEG 

contamination by muscle activity, exclusion of true EEG signals and separation of 

spinal/supraspinal activity from cortically driven activity. During the study, participants 

were seated in a chair but were not otherwise restrained. Although participants were 

monitored throughout the experimental sessions for trunk movements, with none being 

noted, the setup may have allowed participants to engage stabilizing trunk muscles 

differently across conditions, eliciting task-specific changes in cortical activity not 

specifically tied to the arm movement.  
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Other potential confounding factors arose in the EEG data processing pipeline. 

During analysis of the EEG data, AMICA was performed to separate the recorded EEG 

data into signal and artefact components. It is possible that the AMICA algorithm did not 

fully separate signal and artefacts, resulting in the removal of some cortical signals and/or 

the inclusion of some artefactual components in the subsequent source imaging and 

analysis. This could explain the increase in beta band power in the Lateral Occipital 

region during the CoC task (Figure 2-4B). During the CoC task, participants displayed 

increased muscle tension in the arm and neck that may have propagated to posterior EEG 

recording sites and presented as an increase in beta band power that was task-related and 

not fully separable using AMICA. In an independent component analysis study 

examining artefact removal, experts label about 17% of independent components as 

muscle artefact which makes up about 68% of all artefactual components (Winkler et al., 

2011). This equates to around 25% of independent components being artefactual. In our 

case, we removed an average of 14 independent components from each participant which 

is approximately 22% of all components.  

Providing visual feedback of the hand during the PER task may have biased the 

cortical mediated error networks towards visual display errors and resulted in a cortical 

network utilizing volitional corrections. Behavioral studies where participants have true 

or shifted visual feedback of their reaching finger towards visual or proprioceptive targets 

have shown that the false visual feedback has no effect on movements directed toward 

proprioceptive targets (Sarlegna & Sainburg, 2007; Sober & Sabes, 2005). This 

contrasted with the large reaching errors that result from the visual shift when 

participants reach for visual targets, suggesting that somatosensory input has a greater 
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influence when planning movements toward proprioceptive targets while visual feedback 

prevails when reaching for visual targets. (Sarlegna & Sainburg, 2007; Sober & Sabes, 

2005). If we had done an arm stabilization task without visual feedback, we believe the 

patterns of cortical network activity would have differed with respect to the primary 

sensory areas involved in the corrective movement. Specifically, we would have expected 

the cortical mediated visual error network to shift to a proprioceptive-based error network 

located in the somatosensory region (Filimon et al., 2009; Mann et al., 1996), but still 

including sensory parietal areas (Suminski et al., 2007).  

A limitation of this study is the small sample size of only 10 participants. A power 

analysis conducted prior to running the experiment using pilot data found that a sample 

size of 10 participants provided experimental power for Type II error greater than 80% 

for the variables tested. A post hoc analysis of experimental power for Type II error was 

done and confirmed that the assumed level of variability was consistent with that 

observed. 

Another possible limitation to the study centers around the choice of reference 

electrode and volume conduction effects associated with the coherence analysis used to 

characterize functional connectivity. Previous studies (Essl & Rappelsberger, 1998; 

Nunez et al., 1999; Rappelsberger, 1989) examining the effect of reference electrode 

choice have shown that coherence is dependent on the reference electrode or referencing 

scheme (common average, linked mastoids, etc.). The use of a single electrode as the 

reference can inflate or deflate coherence values depending on the level of activity at the 

reference electrode; with higher values at the reference electrode being detrimental to 

coherence (Zaveri et al., 2000). Rappelsberger (Rappelsberger, 1989) suggested using a 
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reference averaging technique, such as linked earlobes, to better approximate a zero-

potential reference, which could to help mitigate this issue. While the common average 

reference provides an alternative averaging technique, the tendency for EEG signals to be 

synchronized over large areas of the scalp can result in a common average reference 

remaining high. Coherence is also impacted by volume conduction effects that result in 

spatial blurring of cortical point sources measured at the scalp due to the spatial filtering 

properties of the cerebrospinal fluid, skull, and scalp. Volume conduction results in 

significant coherence between EEG electrodes that can extend over distances larger than 

8cm (Nunez et al., 1997) even if the cortical regions immediately below the electrodes 

are not functionally connected. Imaginary coherence (Nolte et al., 2004) and 

orthogonalization techniques (Brookes et al., 2012; Hipp et al., 2012) can be used to 

mitigate this issue.  In the current study, we chose to examine task-based coherence 

(Rappelsberger et al., 1994) which effectively subtracts out the baseline level of 

coherence, along with the volume conduction effect, from the task period coherence 

(Chen et al., 2003). While the subtraction approach significantly reduced the impact of 

the volume conduction artefact on the coherence measure, it rendered near zero task-

based coherence values for adjacent electrodes due to the dominant effect volume 

conduction has on nearby electrodes (Figure 2-5). The impact was minimized, however, 

by comparing the same connections across tasks rather than different connections within 

tasks. 

During the CoC task, co-contraction during the stabilization period was not 

sustained at the targeted 10-20% but was instead found to hover around 5%. Throughout 

the feedback period of the CoC task (0-2s), it was noted that participants tended to 
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fluctuate their level of co-contraction around the lower threshold of 10%. Once feedback 

was removed, participants maintained high levels of co-contraction that slowly reduced in 

magnitude over time. This slow drift continued through the stabilization period (4-6s). 

The reduction is consistent with participants’ self-reports following testing that sustaining 

a 10-20% co-contraction was difficult. This indicates a higher than expected effort during 

the CoC task, which may result from the fact that the levels of co-contraction were 

normalized by MVC and that people asked to maximally co-contract only produce about 

50% of the EMG produced during muscle maximal contraction (Milner et al., 1995; Tyler 

& Hutton, 1986). Another possible explanation may be that the arm was in a different 

orientation when the co-contraction was being produced during the tasks than when the 

MVCs were collected. Collecting MVCs in different limb positions has been shown to 

alter the amount of EMG being produced in the muscle (Boettcher et al., 2008; Buchanan 

et al., 1989; Singh & Karpovich, 1966). Although the level of co-contraction was not 

sustained at the requested level during the CoC task, the increased levels of co-

contraction in the CoC task compared to the PtP task in Figure 2-2B, together with the 

participant feedback indicate that they were actively co-contracting at higher levels than 

normal throughout the task. 

 

2.5 Conclusion 

 

 

Cortical activity during stabilization of the arm was similar to that during 

volitional movement of the arm suggesting the brain might generate volitional movement 

commands to stabilize the arm. Cortical connectivity during stabilization of the arm was 

increased between sensorimotor and visual regions which might be attributed to a 



70 
 

 
 

visuomotor error network that utilizes visual error information to update the motor 

commands of the arm. Cortical activity and connectivity during stabilization of the arm 

indicate the involvement of cortical networks that contribute to visuomotor control of arm 

posture. This chapter has been published previously in the Journal of Neurophysiology 

(Snyder et al., 2019).  



71 
 

 
 

CHAPTER 3: ELECTROENCEPHALOGRAPHY RESTING STATE NETWORKS    

IN PEOPLE WITH STROKE 

 

 

3.1 Introduction 

 

 

The purpose of this study was to characterize reorganization of resting state 

cortical networks after stroke using electroencephalography (EEG). Functional magnetic 

resonance imaging (fMRI), magnetoencephalography (MEG) and EEG all reveal regions 

of the brain that have common activation patterns, which are thought to be representative 

of functionally connected networks (Aoki et al., 2015; Biswal et al., 1995; Brookes et al., 

2011; Rosazza & Minati, 2011). Some of the more common cortical networks obtained 

during resting state include the default mode, sensorimotor, executive control, visual, 

lateralized fronto-parietal, auditory and temporo-parietal networks (Aoki et al., 2015; 

Biswal et al., 1995; Brookes et al., 2011; Rosazza & Minati, 2011). The brain utilizes 

these cortical networks in different ways including memory consolidation, cognition, 

vision, and movement (Bressler, 1995; Corbetta, 1998; Mazoyer et al., 2001; Sukerkar, 

2010). An improved understanding of the changes in cortical networks after stroke would 

provide insight into the mechanisms underlying functional loss and recovery. 

Based on fMRI, there is generally an increased activity in both hemispheres 

(excluding the lesioned region) and decreased connectivity within and between 

hemispheres during motor tasks (Carey et al., 2002; Grefkes et al., 2008; Mintzopoulos et 

al., 2009; Rossini et al., 1998; Ward et al., 2003). While fMRI offers excellent spatial 

resolution (~1mm) of the cortex, it lacks temporal resolution (~1s) which prevents the 

study of underlying brain processes that act at the millisecond time scale (Koenig et al., 

2005; Lopes da Silva, 2013). EEG and MEG imaging modalities, with better temporal 
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resolution (~1ms) (although poorer spatial resolution (~5cm)), have been employed to 

overcome this issue. EEG and MEG sensorimotor task-based studies in people with 

stroke show impairment-specific changes in activity, with a decrease in activity near the 

lesion, increased asymmetries, and connectivity increases within the lesioned motor 

networks (Bönstrup et al., 2018; Platz et al., 2000; Rossiter et al., 2014; Stępień et al., 

2011; Strens et al., 2004). Although fMRI and EEG/MEG measurements yield differing 

results after stroke (likely due to the differing spatial/temporal scales, metrics examined 

and/or the stroke group’s impairment level), both imaging modalities have identified 

similar networks, demonstrate that activity/connectivity relates to functional/behavioral 

outcomes and indicate that patterns normalize with recovery (Bönstrup et al., 2018; 

Grefkes et al., 2008; Grefkes & Fink, 2014; Strens et al., 2004; Ward et al., 2003). 

Despite task-based studies being useful, they tend to be limited to stroke participants who 

can perform the tasks and can result in mirror movements that confound interpretation of 

the results (Calautti et al., 2007; Dong et al., 2006; Ward et al., 2007; Weiller et al., 1993; 

Wittenberg et al., 2000).  

Resting state paradigms, where participants remain still and relaxed, have the 

advantage of including participants of all functional abilities and are easier and quicker to 

administer. After stroke, resting state EEG demonstrates increased bilateral power in the 

delta and theta bands, increased power asymmetries and decreased connectivity in the 

alpha and beta bands within the lesioned area (Assenza et al., 2013; Dubovik et al., 2012, 

2013; Köpruner & Pfurtscheller, 1984; Wang et al., 2012; Wu et al., 2015). While resting 

state networks in people with stroke indicate changes in cortical activity and connectivity, 
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there are elements of the analysis that confound the identification of the networks and 

hamper interpretation of the resulting data. 

The analysis of resting state EEG is influenced by electrode impedance, neuronal 

density under each electrode and volume conduction. The power of resting state EEG is 

affected by electrode impedance such that electrodes with lower impedance display 

higher signal power. In addition, larger synchronous neuronal populations beneath an 

electrode produce greater signal power, which may influence interpretation of the signal 

size, especially in people with loss of brain tissue after stroke. EEG estimates of 

functional connectivity are also affected by volume conduction. Volume conduction 

results in significant connectivity between EEG electrodes that can extend over distances 

as large or larger than 8cm (Nunez et al., 1997) even if the cortical regions immediately 

below the electrodes are not functionally connected. Imaginary coherence (Nolte et al., 

2004), orthogonalization techniques (Brookes et al., 2012; Hipp et al., 2012) and other 

phase metrics that exclude zero lag connectivity (Nolte et al., 2008) can be used to 

mitigate this issue.   

The frequency characteristics of resting state EEG can provide valuable insight 

into the functional networks of the brain after stroke. Brain networks with a large 

neuronal population or spatial extent oscillate at lower frequencies (Bullock et al., 1995; 

Eckhorn, 1994; Kopell et al., 2000; von Stein & Sarnthein, 2000). This observation led 

Nunez to develop a theoretical framework for the inverse relationship between frequency 

of activity and spatial scale of a network (Nunez, 2000). Further, local sensory integration 

invokes gamma band activity, multisensory integration produces upper alpha and lower 

beta band activity, while long range interactions invoke theta and alpha band activity 
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(von Stein & Sarnthein, 2000). Gamma band synchronization decreases with distance, 

with lower frequency oscillations associated with longer range interactions (Bullock et 

al., 1995; Eckhorn, 1994; Kopell et al., 2000). These cortical network frequency 

dependencies arise from the physical architecture of the networks, speed of 

communication due to axon conduction/synaptic delays and the number of synapses 

involved in the network path (Nunez, 1995; von Stein et al., 2000). Thus, it is important 

to consider spectral information in the interpretation of EEG activity and connectivity 

data. 

In this study, we set out to quantify the changes in resting state cortical network 

power and connectivity in people with chronic stroke. We collected EEG data while 

participants were in a relaxed, resting state. EEG power was normalized to reduce bias 

and used as an indicator of network activity. Correlations of orthogonalized EEG activity 

were used to measure of functional connectivity between cortical areas. We hypothesized 

that cortical networks are more asymmetric after stroke and that there is a shift in the 

frequency due to changes in cortical communication after stroke. Specifically, we 

expected cortical networks to have a higher reliance on local network activity with less 

efficient pathways connecting distant regions, resulting in a shift to higher frequency. 

 

3.2 Methods 

 

 

3.2.1 Participants 

 

 

A sample of 14 chronic stroke participants and 11 age-matched neurologically-

intact controls participated in this study. Stroke participants (8 male, aged 36-79yr) were 

required to be at least 1-year poststroke. Exclusion criteria included the diagnosis of any 
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other neurological disorder or recent treatment that interfered with neuromuscular 

function, such as botulinum toxin injection. The impairment level of stroke participants 

was assessed using the upper extremity Fugl-Meyer Assessment (FMA), which consists 

of a motor portion (maximum score 66) and a sensory/proprioception portion (maximum 

score 12) (Fugl-Meyer et al., 1975), and the Semmes-Weinstein monofilament test 

(Semmes et al., 1960). The monofilament test was performed at seven locations on the 

palmar surface of the paretic hand and averaged (distal phalanx of the small finger, index 

finger and thumb; proximal phalanx of the small and index finger; thenar and 

hypothenar). Control participants (7 male, aged 34-77yr) reported no history of stroke or 

any other neuromuscular pathology. Detailed demographic data for all participants is 

shown in Table 3-1. All participants gave written informed consent, and all procedures 

were approved by the Marquette University Institutional Review Board in accordance 

with the Declaration of Helsinki.  
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Table 3-1: Participant Information. Demographic and clinical data for stroke (S) and 

control (C) participants. “Fugl-Meyer” indicates the Fugl-Meyer upper extremity score 

(Motor: maximum of 66; Sensory: maximum of 12). Monofilament values indicate the 

average force in grams (g) across the seven hand locations tested with the degree of 

sensation (N: normal (g<=0.07), ‘-’: diminished light tough (0.07>g<=0.4), ‘--’: 

diminished protective sensation (0.4>g<=2.0), ‘---’: loss of protective sensation 

(2.0>g<=180.0), ‘----’: deep pressure sensation only (g>180)). (F: female; M: male; ND: 

non-dominant). 

 

Participant 

Identifier 
Sex Age (yr) 

Time after 

Stroke (yr) 

Fugl-Meyer 

(Motor:66) 

Fugl-Meyer 

(Sensory:12) 

Monofilament 

(g,sensation) 

S1 F 60 23 63 12 0.08 (-) 

S2 F 79 7 62 11 0.15 (-) 

S3 F 67 30 29 12 0.05 (N) 

S4 M 57 2 28 6 134.29 (---) 

S5 M 64 16 61 8 0.19 (-) 

S6 F 66 26 51 4 60.00 (---) 

S7 M 61 11 31 12 0.35 (-) 

S8 F 65 13 38 8 94.29 (---) 

S9 M 64 14 34 12 50.28 (---) 

S10 M 59 14 23 8 60.00 (---) 

S11 M 73 7 21 8 100.00 (---) 

S12 M 36 8 21 8 71.43 (---) 

S13 F 71 4 30 12 0.01 (N) 

S14 M 55 15 27 12 37.43 (---) 

C1 F 68  -  -  -  - 

C2 M 64  -  -  -  - 

C3 M 61  -  -  -  - 

C4 M 51  -  -  -  - 

C5 F 77  -  -  -  - 

C6 F 57  -  -  -  - 

C7 M 67  -  -  -  - 

C8 M 65  -  -  -  - 

C9 F 63  -  -  -  - 

C10 M 34  -  -  -  - 

C11 M 64  -  -  -  - 

 

 

3.2.2 Experimental Protocol 
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During the study, participants were seated in a chair and asked to remain as still as 

possible, keep their eyes closed, refrain from making any eye movements and clear their 

mind. EEG data were collected for approximately 3 minutes in this relaxed, resting state. 

 

3.2.3 Physiological Measurements 

 

 

A 64-channel active electrode actiCAP (Brain Products GmbH, Munich, 

Germany) system was used to record EEG data. EEG electrodes were arranged in the 

conventional 10-20 system with the reference at FCz and the ground at AFz. The EEG 

cap was placed on the participant’s head such that the Cz electrode was in line with the 

prearticular points in the frontal plane and with the nasion and inion points in the sagittal 

plane. SuperVisc gel (Brain Products GmbH, Munich, Germany) was applied between 

the scalp and electrodes to lower the electrode impedances below 10kOhms prior to data 

collection. EEG data were amplified, sampled at 1kHz, filtered from 0.1 to 200Hz and 

notch filtered at 60Hz using a Synamps2 amplifier system (Neuroscan, Charlotte, North 

Carolina), and recorded using Neuroscan software, Scan 4.5. 

 

3.2.4 Data Analysis 

 

 

EEG data were post processed and analyzed using the EEGLAB toolbox (version 

v13.4.4b) (Delorme & Makeig, 2004) for storing and configuring the data, FieldTrip 

(version 2016-01-03) (Oostenveld et al., 2011) for removing bad epochs and electrodes, 

Brainstorm (version 3.4) (Tadel et al., 2011) for source localization, Network Based 

Statistic Toolbox (version 1.2) (Zalesky et al., 2010) for statistically comparing network 

connectivity, BrainNet Viewer (version 1.62) (Xia et al., 2013) for visualizing network 
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connectivity and custom MATLAB scripts (version 2014a, MathWorks, Natick, 

Massachusetts). All EEG data were bandpass filtered (1-50Hz) using a fourth order zero-

phase Butterworth filter. Trial epochs of the EEG data were then extracted by creating 2s, 

consecutive, non-overlapping windows starting at the beginning of the file and continuing 

until a complete 2s window could not be formed. This process resulted in approximately 

90 epochs per participant. EEG epochs were then zero-meaned and bad channels and 

epochs removed manually using FieldTrip’s visual inspection code (channel/epoch 

removed if variance/kurtosis >2 standard deviations from the mean, ‘ft_rejectvisual’, 

average number channels/epochs removed, 0.8/10.4). If a channel was rejected from the 

EEG data, its value was replaced with interpolated data from the surrounding electrode 

channels. Stroke participant EEG data were flipped so that the hemisphere associated 

with the lesion was always represented on the left. EEG data were then separated into 

signal and artefactual components using an Adaptive Mixture Independent Component 

Analysis (AMICA) (APPENDIX C: INDEPENDENT COMPONENT ANALYSIS) 

(Palmer et al., 2008), with 64 independent temporal components. Signal artifacts, 

including electromyography and movement artifacts, were identified by distinct 

artefactual characteristics (Delorme et al., 2012; Makeig et al., 2004; Mognon et al., 

2011; Puce & Hämäläinen, 2017) and removed from the EEG data (average number of 

artefact components removed, 6.6; minimum number: 3; maximum number: 15). The 

remaining components were then transformed back to the EEG channel space. Finally, 

EEG data were re-referenced to a common average reference for all data analyses. The 

re-reference technique reintroduced the FCz electrode to the data set. For the following 

analyses, EEG data were separated into ten non-overlapping 5Hz frequency bands 
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ranging from 1 to 50Hz (first band only ranged from 1-5Hz due to the 1Hz high pass 

filter applied during preprocessing) to determine if frequency shifts occurred in the stroke 

group relative to the controls. 

A power spectrum analysis was performed at the electrode level to examine the 

spatial characteristics of resting state EEG power across frequency bands. The power 

spectrum at every electrode was calculated using Welch’s method with epochs as the 

measure of consistency (Welch, 1967). The frequency bands were then extracted from the 

power spectrum and normalized at each electrode using equation 3.1, 

𝑁𝑃 = 100 ×
∑𝐹

∑𝑇𝑜𝑡𝑎𝑙
        (3.1) 

where 𝑁𝑃 represents the normalized power, ∑𝐹 represents the sum of power within a 

frequency band, and ∑𝑇𝑜𝑡𝑎𝑙 represents the sum of power across the frequency spectrum 

(1-50Hz). By normalizing power in this fashion, we can determine if the cortical area’s 

function (distribution of power across the spectrum) is changing while removing any 

dependence on electrode impedance or neuronal population size. To characterize any 

effects that stroke lesions may have on spatial distribution of frequency, the control and 

stroke groups were compared at every electrode within each frequency band using a two-

sample t-test with a false discovery rate (FDR) of  = 0.05 for multiple comparisons 

correction. To facilitate interpretation of normalized power, average absolute power 

within frequency bands was computed and plotted for each electrode to determine if 

normalized power differences between controls and stroke survivors were due to true 

absolute power changes within frequency bands or if a normalization bias was driving the 

normalized power differences. For instance, a loss of absolute power in one frequency 

band could result in normalized power increases in other frequency bands, even though 
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they are not changed on an absolute level. Similar to normalized power, absolute power 

for control and stroke groups were compared at every electrode within each frequency 

band using a two-sample t-test with a false discovery rate (FDR) of  = 0.05 for multiple 

comparisons correction. 

 To determine if frequency bands displayed power differences between 

hemispheres, an electrode directional asymmetry (EDA) metric was computed between 

analogous electrodes in the two hemispheres using equation 3.2, 

𝐸𝐷𝐴 = 100 ×
1

𝑛
∑

𝑁𝑃𝐿−𝑁𝑃𝑅

|𝑁𝑃𝐿|+|𝑁𝑃𝑅|
        (3.2) 

where 𝐸𝐷𝐴 is the whole head electrode directional asymmetry, 𝑁𝑃𝐿 is the normalized 

power of the homologous electrode in the left hemisphere, 𝑁𝑃𝑅 is the normalized power 

of the homologous electrode in the right hemisphere and 𝑛 is the total number of 

electrode pairs. Electrodes along the midline were ignored for calculation of the EDA. 

Volume source localization of EEG data was performed to enable volumetric 

connectivity analyses. Distributed current dipole volumes were computed in Brainstorm 

using the default MNI/ICBM152 anatomical brain template with the cerebellum included 

(Tadel et al., 2011). The standard actiCAP electrode locations were fit to the scalp 

surface so that the Cz electrode location was at the vertex as described in the 

physiological measurements section. A boundary element model (BEM) was used to 

estimate the forward model (OpenMEEG) (Gramfort et al., 2010; Kybic et al., 2005) with 

volumetric vertices (5x5x5 mm) placed on a regular grid spanning the entire brain. A 

depth-weighted minimum L2 norm estimator of current density (Hämäläinen & 

Ilmoniemi, 1994) was used to estimate the inverse model where each vertex consisted of 

three orthogonal dipoles (representing the x, y and z directions). The three-dimensional 
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dipole activity for every vertex was subsequently processed using a principle component 

analysis (PCA) to obtain a single activity time course that best represented the volumetric 

source.  

Following the projection of EEG data into volumetric source space, the functional 

connectivity between all brain regions was calculated within the defined frequency bands, 

Figure 3-1. First, the source localized data were bandpass filtered using a zero-phase 

fourth order Butterworth filter to extract the different frequency bands; the resulting data 

were then concatenated across epochs within frequency bands. A reduced version 

(described below) of the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer 

et al., 2002) from the MRIcron software package 

(https://people.cas.sc.edu/rorden/mricron/index.html) was used to define volumes of 

interest (VOI) for input into the connectivity analysis. Reductions to the original AAL 

atlas VOIs were necessary because we intended to orthogonalize the VOI time courses to 

reduce the effect of volume conduction on connectivity analyses. Orthogonalization by 

way of a symmetric multivariate correction (Colclough et al., 2015) is dependent on the 

rank of the data (which was limited to 61 due to one participant only having a maximum 

of 61 valid electrodes after preprocessing). Therefore, we reduced the original 116 AAL 

atlas VOIs to 61 VOIs, Figure 3-1. The 12 subcortical structures (left and right) were left 

unaltered, while the 9 cerebellar VOIs within each hemisphere and 8 vermis VOIs were 

merged, respectively. The 34 cortical VOIs in the left hemisphere were reduced to 23 

iteratively by finding the smallest VOI and merging it with the nearest VOI based on VOI 

centroid locations. The homologous VOIs merged in the left hemisphere were then 

merged in the right hemisphere in order to maintain a symmetrical VOI distribution.  

https://people.cas.sc.edu/rorden/mricron/index.html
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Once the reduced AAL atlas was defined, PCA was performed across the voxel 

time courses within each VOI with the largest component of the PCA retained, resulting 

in a single activity time course that best represented each VOI. All VOI time courses 

were then orthogonalized using a symmetric multivariate correction with twenty 

iterations (Colclough et al., 2015) to reduce the EEG volume conduction artefact and 

spatial leakage that results from source localization estimates. Power envelopes of the 

orthogonalized VOI time courses were then calculated by taking the absolute value of 

their Hilbert transform; a similar approach for calculating activity envelopes has been 

done in previous studies (Brookes et al., 2011; Hipp et al., 2012). VOI power envelopes 

were then correlated within frequency bands resulting in a connectivity matrix of 

correlation coefficients that was 61 (number of VOIs) by 61 (number of VOIs) by 10 

(number of frequency bands) for each participant. Connectivity correlation coefficients 

were Fisher z-transformed to normalize the sample distribution for statistical analysis. An 

additional normalization was performed across frequency bands to account for the 

inverse relationship between correlation and frequency band for a fixed time window. For 

the bias normalization, we performed a Monte Carlo simulation using 1000 iterations on 

the pipeline described above by randomizing the VOI time series phase information while 

retaining the magnitude information. This resulted in a random ‘noise’ correlation 

distribution for each participant, frequency band and VOI-to-VOI interaction. The true 

Fisher z-transformed connectivity data was then bias corrected by subtracting the mean 

and dividing by the standard deviation of the random ‘noise’ distributions converting the 

true connectivity data to a z-score relative to the null distribution.  
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Figure 3-1: Diagram of Connectivity Work-Flow. Diagram of connectivity work-flow 

and the 10-15Hz frequency band connectivity for a single stroke participant (S14) 

thresholded at a z-score of ±2. After preprocessing, EEG data were projected into a 

volumetric source space where a PCA was applied to each three-dimensional dipole to 

extract the time course that best represented the dipole’s activity. The brain was then 

segmented into 61 VOIs based on a reduced AAL atlas. All VOIs were filtered voxel-

wise to extract the frequency bands of interest and PCA was applied to reduce the dipole 

activity within the VOIs to a single time course. For each frequency band, VOI time 

series were orthogonalized after which the envelope of the VOI activity was obtained via 

the Hilbert transform. Correlations between the envelopes of VOI activity were 

performed within frequency bands to characterize connectivity between VOI’s. For the 

representative stroke participant shown (S14), the hemisphere associated with the stroke 

lesion is displayed on the left. Stronger connections between nodes are represented by 

larger z-scores and line widths. Node size indicates the number of connections a node 

makes with other nodes. 
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To determine if frequency bands displayed connectivity differences between 

hemispheres, a connectivity directional asymmetry (CDA) metric was computed between 

analogous connections in the two hemispheres using equation 3.3, 

𝐶𝐷𝐴 = 100 ×
1

𝑛
∑

𝐶𝐿−𝐶𝑅

|𝐶𝐿|+|𝐶𝑅|
        (3.3) 

where 𝐶𝐷𝐴 represents the whole brain connectivity directional asymmetry metric, 𝐶𝐿 

represents the connectivity of the homologous connections in the left hemisphere, 𝐶𝑅 

represents the connectivity of the homologous connections in the right hemisphere and 𝑛 

represents the total number of homologous connection pairs. Connectivity between 

homologous regions was ignored. 

To visualize frequency dependent shifts in the stroke group relative to the control 

group, connectivity spectra (connectivity versus frequency) were plotted for connections 

within the left (lesioned) and right (non-lesioned) hemispheres. To quantify deviations in 

the shape of the connectivity spectrum from the control group, the connectivity spectrum 

of each participant (control and stroke) was correlated with the average connectivity 

spectrum from the control group. Finally, connectivity spectrum correlation values were 

Fisher z-transformed to normalize the sample distribution for statistical testing. 

The Network Based Statistic Toolbox (Zalesky et al., 2010) was used at the group 

level to identify significantly connected networks in the control and stroke groups and 

networks that were significantly different between groups. The Network Based Statistic, 

a graph analogue of cluster-based statistical methods, used permutation testing to control 

the family-wise error rate (p<0.05) associated with multiple comparisons tests based on 

the extent (number of connections in a network) of the network above a predefined 

(defined by the user) threshold. For our analysis, we tested networks that were either 
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positively or negatively correlated between VOI’s. We modified the Network Based 

Statistic code (added the capability to perform one-sample t-tests) to compute the 

network statistics within the control (threshold: t-value = 3.169) and stroke (threshold: t-

value = 3.012) groups using a one-sample t-test (thresholds for both groups were 

equivalent to a two-tailed one-sample t-test p-value of 0.01). Significant differences 

between the networks of control and stroke groups (threshold: t-value = 2.5) were 

identified using a two-sample t-test applied to the Network Based Statistic (the threshold 

for differences between groups was equivalent to a two-tailed two-sample t-test p-value 

of 0.02).  

 

3.2.5 Statistical Analysis 

 

 

Changes in electrode and connectivity directional asymmetry were characterized 

across participants using a two-way mixed ANOVA with frequency as the within-

participant factor and group as the between-participant factor in the analysis. One-way 

ANOVAs and t-tests were applied post hoc to characterize specific interaction effects 

identified in the two-way ANOVAs. Changes in the connectivity spectra correlation 

between groups were characterized by using a two-sample t-test. If Mauchly’s Test of 

Sphericity indicated that the assumption of sphericity was violated, a Greenhouse-Geisser 

correction was used for the ANOVA results. The Holm-Sidak method for correcting for 

multiple comparisons was used at each level (between multiple ANOVAs and t-tests) of 

the analysis except for the pairwise comparisons where the Tukey post hoc test was 

applied. Raw p-values were reported and stated as significant if they survived the 

correction for multiple comparisons. A non-parametric bootstrap approach similar to the 
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Zhou and Wong method (Zhou & Wong, 2011) with 10000 iterations was used to 

generate the statistical distributions for the Tukey post hoc test. Statistical tests were 

performed with a Type I error rate of  = 0.05. If significant differences were identified 

between the control and stroke groups for the electrode normalized power distributions, 

electrode directional asymmetry, connectivity directional asymmetry, connectivity 

spectra or connectivity networks analysis, the variable was plotted against the upper 

extremity motor FMA for the stroke participants. Plots were displayed if the correlation 

was significant (t-test of correlation coefficient different than 0, p <= 0.05). 

 

3.3 Results 

 

 

3.3.1 Normalized Power: Control Group 

 

 

 Electrode level normalized power was examined to identify the spatial 

distribution of power across electrodes for each frequency band of interest and to 

determine if the power distribution was different between control and stroke groups 

(Figure 3-2A). In the controls, the lower half of the frequencies examined (1-25Hz) 

accounted for ~85% of the total power while the upper half of the frequencies (25-50Hz) 

contributed ~15%. The regions that contributed the most power in the 1-5Hz frequency 

band were located above the bilateral frontal cortices while for the 5-10Hz band, the 

power was largest above the medial frontal cortices and the medial/lateral parietal 

cortices. There was a posterior to anterior shift in the regions that contributed the most 

power for the frequency bands ranging from 10-50Hz, with regions located above the 

bilateral visual cortices for the 10-15Hz band, consisting of two nodes located above the 

bilateral parietal/sensory/motor cortices for the 15-20Hz band, located above the bilateral 
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motor/premotor cortices for the 20-25Hz band, located above the bilateral 

premotor/frontal cortices for the 25-30Hz band, and regions located over the bilateral 

frontal cortices for the remaining frequency bands (30-50Hz). 

 

3.3.2 Normalized Power Differences 

 

 

 The normalized power of the stroke group was similar to the controls, particularly 

for the distribution of power across frequency bands. However, within frequency bands 

the normalized power from 1-10Hz and 30-50Hz was larger in the stroke group while the 

normalized power from 10-25Hz was smaller in the stroke group when compared to the 

control group (Figure 3-2A). In general, absolute power within frequency bands 

displayed differences between the stroke and control groups similar to the normalized 

power. Absolute power from 1-10Hz and 30-50Hz was larger in the stroke group while 

the absolute power from 10-25Hz was smaller in the stroke group when compared to the 

control group (Figure 3-3). 

To assess significant changes in spatial power distribution, normalized power was 

compared between the control and stroke groups at every electrode within each frequency 

band. Even though there were changes in power across all frequency bands examined, 

only the 10-15Hz and 15-20Hz frequency bands resulted in significant differences 

(p<0.05) following FDR correction. In the stroke group, the 10-15Hz band contained 

significantly less power across the entire brain except above the right (non-lesioned) 

visual cortex while the 15-20Hz band contained significantly less power across electrodes 

located over the left (lesioned) sensory/parietal cortices (Figure 3-2A) compared to 

controls. Across significantly different electrodes, average normalized power was 
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correlated with motor function (upper extremity motor FMA) in both the 10-15Hz and 

15-20Hz bands (R2 = 0.47, p=0.006 and R2 = 0.48, p=0.006, respectively), (Figures 3-

2B,C). When assessing significant changes in spatial power distribution of absolute 

power between the control and stroke groups at every electrode within each frequency 

band, no frequency bands revealed electrodes with significant differences following FDR 

correction. 

 

 

Figure 3-2: Electrode Normalized Power and Correlations During Resting State. The 

hemisphere associated with the stroke lesion is displayed on the left. A) Topographic 

maps of the normalized electrode power averaged across participants are shown for each 

group and frequency band of interest. Black dots indicate electrodes whose power was 

significantly different between the control and stroke groups, using an FDR correction of 

 = 0.05. Values are interpolated between electrodes for visualization purposes. B&C) 

Correlation of the stroke group normalized power averaged across significantly different 

electrodes with upper extremity motor FMA scores for the 10-15Hz and 15-20Hz 
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frequency bands respectively. Normalized power for each frequency band was plotted 

against a perfect upper extremity motor FMA of 66 for controls. 

 

 

 

Figure 3-3: Electrode Absolute Power During Resting State. The hemisphere associated 

with the stroke lesion is displayed on the left. Topographic maps of the absolute electrode 

power averaged across participants are shown for each group and frequency band of 

interest. Values are interpolated between electrodes for visualization purposes. 
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3.3.3 Normalized Power Asymmetry 

 

 

In addition to the differences in normalized power, the power topographies for the 

stroke group were more asymmetric when compared to those of the control group (Figure 

3-2A). In the stroke group, power in the 1-10Hz frequency bands showed larger power in 

the left (lesioned) hemisphere while the 10-50Hz frequency bands exhibited larger power 

in the right (non-lesioned) hemisphere. The two-way ANOVA for differences in 

electrode directional asymmetry indicated that there was a main effect of frequency 

(F(2.697,62.038)=6.466, p=0.001) and group (F(1,23)=16.207, p=0.001) with an 

interaction effect between frequency and group (F(2.697,62.038)=6.884, p=0.001). The 

post hoc two-sample t-tests for group differences within frequencies indicated that the 

frequency bands ranging from 15-50Hz (t(23)>=2.99, p<=0.01) were significantly more 

asymmetric in the stroke group with the power being larger in the right (non-lesioned) 

hemisphere, (Figure 3-4). The 5-10Hz (t(23)=2.02, p=0.055) frequency band approached 

significance with more power being found in the left (lesioned) hemisphere while the 

frequency bands 1-5Hz and 10-15Hz (t(23)<=1.47, p>=0.15) were not significantly 

different between the control and stroke groups. The post hoc one-way ANOVAs for 

frequency showed significant differences between frequencies for the stroke group 

(F(2.397,31.156)=9.827, p=0.0003) but not the control group (F(2.321,23.209)=0.759, 

p=0.498). The post hoc analysis (Tukey test) of frequency within the stroke group 

indicated that the electrode directional asymmetry was significantly different between the 

frequency bands in the 1-10Hz range and all other frequency bands (q(117)>=4.91, 

p<=0.0249) while no other frequency bands showed significant differences 

(q(117)<=3.56,p>=0.27). Correlations of directional asymmetry (for significantly 
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different frequency bands) with function (upper extremity motor FMA) indicated that 

directional asymmetry was not a good predictor of motor function (R2 < 0.2, p>=0.11). 

 

 

Figure 3-4: Directional Asymmetry in Electrode Power During Resting State. The 

directional asymmetry in electrode power averaged across participants is shown for each 

group and frequency band of interest. Positive asymmetry values indicate that the 

frequency band had larger normalized power in the left (lesioned) hemisphere while 

negative asymmetry values indicate the right (non-lesioned) hemisphere had larger 

normalized power. Error bars denote the 95% confidence interval about the mean. 

Significant differences determined via post hoc analysis (Tukey test) are indicated by 

stars (* indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001). 

 

 

3.3.4 Functional Connectivity: Networks 

 

 

Networks identified via functional connectivity analysis were examined to 

identify the spatial extent of connectivity for each frequency band of interest and to 

determine whether the connectivity spectra were different between stroke and control 

groups. No networks defined by negative correlations were found in the control 

(p>=0.9568) or stroke groups (p>=0.9999). All networks described below resulted from 
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positive correlations between VOIs in the control (p<=0.0008) and stroke (p<=0.0002) 

groups. In the control group, connectivity was stronger (i.e. higher correlations) and more 

extensive at lower frequencies (1-20Hz), which peaked in the 5-15Hz frequency range. In 

contrast, higher frequencies (25-50Hz), exhibited fewer connections that tended to be 

located in the anterior half of the brain (Figure 3-5A). Connectivity spectra for the control 

group in the left and right hemispheres (Figures 3-5B,C), mirrored the frequency 

dependences shown in the network plots (Figure 3-5A). The high connectivity in the 

lower frequencies (1-20Hz) sloped downwards until it reached a plateau in the higher 

frequencies (25-50Hz). 

The stroke group showed similarities to the control network patterns, however, 

there were also notable differences. Lower frequencies (1-20Hz) had more extensive 

functional connectivity throughout the brain while higher frequencies (25-50Hz) had 

fewer connections that tended to be located in the anterior half of the brain (Figure 3-5A). 

However, for the stroke group, connectivity in the 5-20Hz frequency bands tended to be 

more asymmetric with lower connection strength occurring in the left (lesioned) 

hemisphere. Conversely, stroke networks in the 25-50Hz frequency bands contained 

more (and larger) connections. The two-way ANOVA for differences in connectivity 

directional asymmetry indicated that there was a main effect of frequency 

(F(4.576,105.243)=2.889, p=0.003), no effect of group (F(1,23)=0.745, p=0.109), and a 

trend towards significance in the interaction effect between frequency and group 

(F(2.261,105.243)=4.576, p=0.06). The post hoc analysis (Tukey test) of frequency 

indicated that the connectivity directional asymmetry was significantly different between 

the 10-15Hz band and the 1-5Hz/40-45Hz bands (q(216)>=4.73, p<=.03), trended 
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towards a significant difference between the 1-5Hz and 15-20Hz bands (q(216)=4.27, 

p=0.08) and showed no differences for the remaining frequencies (q(216)<=4.07, 

p>=0.119). While there was no significant interaction effect between frequency and 

group for the connectivity asymmetry analysis (p=0.06), the stroke group data did seem 

to drive the results found in the main effect of frequency. In general, the stroke group had 

larger connectivity directional asymmetry in all bands with the 5-25Hz bands displaying 

larger connectivity in the right (non-lesioned) hemisphere and 1-5Hz/25-50Hz bands 

displaying larger connectivity in the left (lesioned) hemisphere.  

When comparing the connectivity spectra between groups, the left (lesioned) 

hemisphere was significantly different (t(23)=2.55, p=0.018) while the right (non-

lesioned) hemisphere showed no differences (t(23)=1.08, p=0.29) between stroke and 

controls. The only noticeable differences in the right (non-lesioned) hemisphere 

connectivity spectrum of the stroke group was that the it peaked in the 1-10Hz range 

instead of the 5-15Hz range while the connectivity in the 10-20Hz frequency was slightly 

lower. On the contrary, the left (lesioned) hemisphere of the stroke group displayed a 

different spectrum entirely, peaking in the 1-5Hz frequency band, sloping downwards 

until the 15-20Hz frequency band and gradually increasing throughout the 15-50Hz 

frequencies. The stroke group’s left (lesioned) hemisphere connectivity spectrum also 

showed a decrease in connectivity for the 5-25Hz frequency bands and an increase in 

connectivity for the 25-50Hz bands when compared to the control group. Correlations of 

the left connectivity spectrum with function (upper extremity motor FMA) showed a 

limited correspondence between measures (R2=0.18, p=0.13). 
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Figure 3-5: Functional Connectivity Networks and Connectivity Spectra During Resting 

State. The hemisphere associated with the stroke lesion is displayed on the left. A) 

Networks deemed significantly connected within control (p<=0.0008) and stroke 

(p<=0.0002) groups are shown for each frequency band of interest. Stronger connections 

between nodes are represented by larger z-scores (color) and line widths. Node size 

indicates the degree of connectivity (number of connections a node makes with other 

nodes) and is normalized by the maximum degree within each frequency band of interest 

for each group. B&C) Left (lesioned) and right (non-lesioned) hemisphere connectivity 

spectra, respectively. Average connectivity of all connections (not just the significantly 

connected networks) within the frequency band of interest. Shaded areas indicate the 

95% confidence interval about the mean. 

 

 

3.3.5 Functional Connectivity: Different Networks 

 

 

 To better visualize and quantify the changes between resting state connectivity in 

the control and stroke groups, we identified networks that were significantly different 

between groups within each frequency band of interest (Figure 3-6A). Note that here we 
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define ‘network’ as a group of connections within a frequency band. Networks with 

significantly larger connectivity in the control group occurred in the 10-15Hz (p=0.0492) 

and 15-20Hz (p =0.03) frequency bands. In the stroke group, one network showed 

significantly larger connectivity in the 35-40Hz (p=.031) frequency band while another 

network in the 30-35Hz frequency band approached significance (p=0.0662). No other 

frequency bands contained significantly different networks (p>=0.176). The 10-15Hz and 

15-20Hz networks with significantly larger connectivity in the control group included 

connections throughout the brain, however, there were more connections in the left 

(lesioned) hemisphere compared to the right (non-lesioned) hemisphere (Figures 3-

6A,B). The 10-15Hz network included nodes with high degree (degree>=4) located in the 

left inferior frontal, middle frontal, middle/inferior occipital, middle/superior temporal 

pole and right middle/superior temporal pole, and heschl/rolandic operculum/superior 

temporal regions with the highest degree occurring in the left cerebellum (degree=8). The 

15-20Hz network included nodes with high degree (degree>=4) located in the left inferior 

frontal, superior frontal, heschl/rolandic operculum/superior temporal, cerebellum and 

right lingual, middle temporal, inferior/middle occipital, cuneus/superior occipital regions 

with the highest degree occurring in the left angular/inferior parietal and left 

postcentral/supramarginal regions (degree=6). The 35-40Hz network present in the stroke 

group was localized toward the anterior portion of the brain with an equal number of 

connections in the left (lesioned) and right (non-lesioned) hemispheres (Figures 3-6A,B) 

The 35-40Hz network included nodes with high degree in the right superior frontal gyrus 

(degree=4) and right amygdala (degree=5). In all three networks with between-group 

differences, approximately 50% of the connections occurred between hemispheres 
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(Figures 3-6A,B). For the networks that were different between groups, no correlation 

was found between average connectivity and motor function (upper extremity motor 

FMA), (R2 <= 0.05, p>=0.43). 

 

 

Figure 3-6: Resting State Functional Connections. Resting state functional connections 

with statistically significant differences (p<=0.0492) between control and stroke groups. 

The hemisphere associated with the stroke lesion is displayed on the left. A) Networks 

with statistically significant differences across frequency bands. Z-values correspond to 

the differences between the control and stroke groups with a positive or negative z-value 

indicating stronger connections in the control or stroke group respectively. Larger 

differences in connectivity are also denoted by larger line widths between nodes. Node 

size indicates the degree (number of connections a node makes with other nodes) and is 

normalized by the maximum degree within each frequency band of interest. B) 

Comparison of the numbers of inter and intra-hemispheric connections within networks 

that were significantly different between groups. 
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3.4 Discussion 

 

 

3.4.1 Main Results 

 

 

In this study, we set out to identify the changes in resting state cortical signal 

power and connectivity in people with chronic stroke. We hypothesized that cortical 

activity and connectivity are more asymmetric after stroke and that there is a shift in the 

frequency of cortical communication. The results demonstrated that cortical activity 

patterns after stroke display asymmetric patterns and that shifts in the frequency of 

communication occur. Specifically, during resting state, stroke cortical network activity 

(EEG normalized power) in the upper frequency ranges (15-50Hz) becomes more 

asymmetric with less activity occurring in the lesioned hemisphere (Figures 3-2 and 3-4). 

The cortical network activity identified in stroke was lower in the alpha and lower beta 

bands (10-20Hz), suggesting a disruption of normal cortical activity (Figure 3-2). The 

level of connectivity in the stroke group (correlation of orthogonalized EEG band 

envelope activity) was reduced in the alpha and beta bands (10-20Hz) and increased in 

the gamma band (35-40Hz) when compared to controls (Figures 3-5 and 3-6).  

Differences in connectivity were driven by changes occurring within the lesioned 

hemisphere (Figures 3-5 and 3-6). The shift from typical alpha/beta band communication 

to increased gamma band communication suggests a reorganization to more local cortical 

networks after stroke. The presence of decreased cortical activity, increased cortical 

activity asymmetries and shifts in cortical communication indicate the disruption of 

typical cortical networks and a reorganization to more local networks after stroke. 
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3.4.2 Patterns of Resting State Power 

 

 

 In controls, lower frequencies contributed the most to the total power and 

different frequencies exhibited different spatial topographies (Figures 3-2). Areas with 

larger normalized power were located above the bilateral frontal cortices for the 1-5Hz 

band, above the medial frontal cortices and the medial/lateral parietal cortices for the 5-

10Hz band while there was a bilateral posterior to anterior shift for the frequency bands 

ranging from 10-50Hz. Previous EEG studies examining resting state have shown similar 

topography patterns for the delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), and gamma 

(>30Hz) bands with lower frequencies containing higher power; however, spatial 

topographies for the beta (13-30Hz) band in previous studies were found to be focused 

above the bilateral occipital regions (Barry et al., 2007; Chen et al., 2008; Qin et al., 

2010). The differences in beta band spatial topography between our results and previous 

literature was due to normalization of power in the current study. When examining the 

nonnormalized power of our data, all frequency bands resembled results seen in 

published literature, Figure 3-3.  

The different spatial patterns of EEG power suggest that certain cortical regions 

are associated with specific frequency bands. Theta/alpha (5-10Hz) band power had 

larger normalized power above the medial frontal cortices and the medial/lateral parietal 

cortices suggesting a relationship to the default mode network, Figure 3-2. Specifically, 

the regions with the highest power in the theta/alpha frequency band resided over the 

medial prefrontal gyrus, anterior cingulate, posterior cingulate, and the angular gyri, 

which are all nodes associated with the default mode network (Damoiseaux et al., 2006; 

Muldoon et al., 2016; Raichle et al., 2001). EEG theta power negatively correlates with 
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the fMRI blood oxygen level dependent (BOLD) signal within the default mode network 

(Scheeringa et al., 2008). The alpha/beta (10-15Hz) band displayed the largest 

normalized power above the bilateral visual cortices hinting at an association with the 

visual network, Figure 3-2. Alpha band activity is known to relate to visual 

stimulation/processing and shows decreased power during increased levels of visual 

stimuli (Barry et al., 2007; Chen et al., 2008; Gale et al., 1969, 1971). Further, the EEG 

alpha band power is correlated with the fMRI BOLD signal in the visual areas during 

resting state (Goldman et al., 2002; Scheeringa et al., 2012). The largest amount of beta 

(15-30Hz) band power was found to be localized over the bilateral parietal, sensory, 

motor and premotor cortices, which links the beta band to the sensorimotor network. 

These regions have all been shown to modulate beta band activity during the control of 

movement in EEG event related desynchronization studies (Pfurtscheller et al., 1997, 

1999; Pfurtscheller & Lopes da Silva, 1999). Although the current results support 

previous literature linking EEG resting state power to well defined cortical networks, 

EEG theta, alpha and beta frequency bands should not be interpreted as being associated 

with only one cortical network or process. When examining resting state under either 

eyes-open or eyes-closed conditions, all frequencies ranging from delta to gamma show 

decreased power during the eyes open condition possibly linking these bands to the 

arousal state of the cortex (Barry et al., 2007; Chen et al., 2008). In addition, resting state 

research involving fMRI, EEG and MEG have indicated that multiple frequency bands 

are associated with the default mode, sensorimotor, executive control, visual, lateralized 

fronto-parietal, auditory and temporo-parietal networks (Aoki et al., 2015; Brookes et al., 

2011; Mantini et al., 2007). 
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3.4.3 Power Changes After Stroke 

 

 

 The spatial topographies observed in the stroke group differed substantially from 

controls. The stroke group had significantly lower power in the alpha/beta (10-15Hz) 

band across the entire brain except for the right non-lesioned visual cortex. Interestingly, 

the changes in alpha/beta band power after stroke were not localized to areas above the 

visual cortices but were found globally across the scalp. While the alpha band has been 

related to the visual network (Barry et al., 2007; Chen et al., 2008; Gale et al., 1969, 

1971; Goldman et al., 2002; Scheeringa et al., 2012), stroke participants in our study did 

not report any stroke related visual deficits such as loss of visual field or visual neglect. 

However, the reported widespread decreases in the alpha/beta band could be related to 

changes in visual processing. Visual processing changes after stroke have been identified 

in studies examining visual memory performance and visual attention (Lange et al., 2000; 

Mazer et al., 2001). Alternatively, the widespread decreases in stroke alpha/beta (10-

15Hz) band power could be representative of an altered baseline arousal or activity state 

of the cortex after stroke. Alpha band activity has been shown to reduce power when the 

brain is more aroused in an eyes open versus eyes closed state (Barry et al., 2007; Chen et 

al., 2008). Further, alpha band resting state power shares an inverse relationship to 

cortical activity (Goldman et al., 2002; Scheeringa et al., 2012), suggesting the resting 

brain might be in a state of higher arousal or activity after stroke. 

Analysis of the stroke group’s spatial power distribution within the beta (15-

20Hz) band revealed significantly lower power localized to areas over the lesioned 

hemisphere’s sensory/parietal cortex indicative of dysfunction in the sensorimotor 

network. This result supports previous literature showing altered beta band activity above 
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the lesioned motor cortex after stroke (Platz et al., 2000; Rossiter et al., 2014). Both the 

10-15Hz and 15-20Hz levels of power in the stroke group correlated with impairment, 

supporting past research indicating that functional ability can be predicted from resting 

state information (Assenza et al., 2013; Kawano et al., 2017; J. Wu et al., 2015). While 

no electrodes showed significant differences within the delta (1-5Hz) and theta (5-10Hz) 

frequency bands in our study, both frequency bands did show increases in normalized 

power relative to the controls supporting previous findings from Assenza indicating that 

delta and theta band powers are increased after stroke (Assenza et al., 2013). 

When examining absolute power, it was found that absolute power differences 

between the stroke and control groups mimicked the differences seen in normalized 

power. This indicates that the observed differences in normalized power between the 

control and stroke groups were likely due to true absolute power changes within 

frequency bands as opposed to a bias arising from normalization. One may wonder why 

normalizing power is useful if normalized power reflects the same trends seen in absolute 

power. The main benefit of normalizing power is that it removes the influence of 

electrode impedance and underlying population size on absolute power measures and 

allows insight into the how cortical areas are functioning (relative weighting of frequency 

band powers). While we focused our analysis on normalized power in the present study, 

analyzing absolute power should not be neglected because it offers valuable insight into 

the interpretation of normalized power results. 

The stroke group had greater asymmetry in the upper (15-50Hz) frequency bands 

with less power in the lesioned hemisphere. Previous studies have shown that people with 

stroke tend to have more asymmetric EEG power distributions and can be classified into 
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either a stroke or control group based on their level of asymmetry (Köpruner & 

Pfurtscheller, 1984). Underlying networks, including the default mode network, are also 

more asymmetric after stroke (Tuladhar et al., 2013). The increased asymmetry is likely 

due to both a loss of neural substrate in the lesioned cortex as well as a shift in functional 

activity to the contralesional cortex due to cortical plasticity associated with recovery 

(James et al., 2009; Johansen-Berg et al., 2002; Liepert et al., 2000).  

 

3.4.4 Patterns of Resting State Connectivity 

 

 

 In controls, theta/alpha/beta (5-15Hz) frequency band connections were the most 

numerous, had the largest values of connectivity and were symmetrically distributed 

throughout the cortex, suggesting they may be the dominant frequencies for cortical 

communication during resting state (Figure 3-5). Similar connectivity profiles with peaks 

in connectivity in the alpha and beta bands have been observed in resting state MEG 

(Brookes et al., 2011; Hipp et al., 2012). The widespread distribution of connections 

found in the theta/alpha/beta frequency bands may be attributed to the fact that these 

frequencies are associated with multiple resting state cortical networks distributed 

throughout the brain (Aoki et al., 2015; Brookes et al., 2011; Mantini et al., 2007). 

Interestingly, networks were only revealed when examining positive connectivity 

correlations as opposed to negative connectivity correlations. This indicates, at least 

under the constraints of our connectivity pipeline, that the brain’s resting state 

connectivity between regions may be dominated by excitatory versus inhibitory 

interactions. 
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3.4.5 Connectivity Changes After Stroke 

 

 

In comparison to the connectivity patterns seen in controls, the stroke group’s 

connectivity displayed lower, more asymmetric connectivity values in the 

theta/alpha/beta (5-15Hz) frequency bands with larger connectivity values in the upper 

(25-50Hz) frequencies (Figure 3-5). When testing for significant differences in 

connectivity between the control and stroke groups, we found networks with decreased 

connectivity in the alpha/beta (10-20Hz) bands and increased connectivity in the gamma 

(35-40Hz) band for the stroke group (Figure 3-6). Around half the connections of the 

significantly different networks in the alpha, beta and gamma bands were identified to be 

interhemispheric connections, adding further evidence to the notion that stroke disrupts 

inter-hemispheric communication (Carter et al., 2009; Pellegrino et al., 2012). The 

decrease in connectivity observed in the alpha/beta band networks after stroke consisted 

of connections in both hemispheres, with most of the connections lateralized to the 

lesioned hemisphere, consistent with research showing deficits in functional connectivity 

throughout the brain but mainly in the lesioned hemisphere (Crofts et al., 2011; Crofts & 

Higham, 2009; De Vico Fallani et al., 2009; Tuladhar et al., 2013). Decreased 

connectivity of the alpha and beta bands in resting state paradigms has been reported 

using other EEG approaches (Dubovik et al., 2012, 2013; Wu et al., 2015). Decreased 

alpha (10-15Hz) connectivity within a prefrontal-cerebellar network in the stroke group is 

consistent with previous findings from our laboratory indicating decreased fMRI 

functional connectivity in a similar network after stroke (Kalinosky et al., 2017). The beta 

(15-20Hz) band network consisted of prominent nodes in the lesioned hemisphere’s 

sensory/parietal regions, indicating it may be a marker of sensorimotor disfunction after 



104 
 

 
 

stroke (Inman et al., 2012; Platz et al., 2000; Rossiter et al., 2014; Sharma et al., 2009; 

Wu et al., 2015). Although most connectivity research shows a reduction in functional 

connectivity after stroke, our finding of increased connectivity in the gamma (35-40Hz) 

band supports EEG and modeling results showing stroke lesions can increase 

connectivity and may do so as a compensatory mechanism (Alstott et al., 2009; Bönstrup 

et al., 2018). 

Interestingly, we found that connectivity patterns were not correlated with motor 

impairment when analyzed using our approach. This finding is at odds with observations 

that EEG resting state connectivity predicts functional and behavioral outcomes after 

stroke (Dubovik et al., 2012, 2013; Wu et al., 2015). This suggests that connectivity 

patterns are complex, with likely increases and decreases in different frequencies and 

regions of the brain that challenge functional interpretation. 

 

3.4.6 Functional Reorganization after Stroke 

 

 

 The stroke group’s loss of cortical activity and connectivity in the alpha/beta 

bands along with their increase of cortical activity and connectivity in the gamma band 

suggests a disruption of typical widespread cortical networks with a reorganization to 

more local cortical networks after stroke (Figures 3-2, 3-5, and 3-6). The shift to more 

local (higher frequency) networks is most prevalent within the lesioned hemisphere with 

the largest changes observed in the connectivity spectrum (Figures 3-5B,C). Cortical 

networks with smaller neuronal populations/spatial extent oscillate at higher frequencies 

than networks with larger neuronal populations/spatial extent (Bullock et al., 1995; 

Eckhorn, 1994; Kopell et al., 2000; von Stein & Sarnthein, 2000). The frequency of 
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network oscillations may not only depend on the distance or size of the two connected 

sites but also the number of synapses involved in an interaction (von Stein et al., 2000). 

Our interpretation of high frequency activity representing local network activity and low 

frequency activity representing large scale network activity is supported by Zhu and 

colleagues who examined different frequency bands of resting state fMRI in the stroke 

population (Zhu et al., 2015). Zhu and colleagues discovered that differences in neural 

activity between the stroke and control groups were frequency dependent with  slower 

oscillations identifying widespread cortical areas and faster oscillations identifying local 

areas (Zhu et al., 2015).       

After stroke, lesions to the cortex disconnect pathways linking disparate cortical 

regions resulting in smaller, isolated, more local (high frequency) networks. Although not 

significantly different, the lower (delta/theta) frequency bands showed a trend towards 

higher network activity and connectivity in the stroke group (Figures 3-2 and 3-5). This 

phenomenon could be the result of the brain being forced to rewire and use longer path 

lengths (more synaptic connections) between local regional nodes after stroke. In 

agreement with our results, Wang and colleagues showed that stroke causes a 

reorganization of cortical networks from a small world topology to more random, less 

optimized network architectures (Wang et al., 2010). In other words, less clustering 

within regions and/or longer path lengths connecting regions. It has been theorized that 

the random growth of new axonal connections after stroke may contribute to new 

randomized networks (Carmichael, 2006, 2008; Wang et al., 2010).  
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3.4.7 Study Limitations 

 

 

The current experimental design controlled for several confounding factors, such 

as the raw power bias in resting state EEG and volume conduction in EEG connectivity. 

However, other factors may have impacted the EEG power and connectivity, including 

brain signals associated with trunk stabilization, EEG contamination by muscle activity 

and removal of EEG signal in the signal processing pipeline. During the study, 

participants were seated in a chair but were not otherwise restrained. Although 

participants were monitored throughout the experimental sessions for trunk movement, 

with no movement noted, the control and stroke groups might have engaged stabilizing 

trunk muscles differently, eliciting group-specific changes in cortical activity not 

specifically related to EEG resting state. Other potential confounding factors arose in the 

EEG data processing pipeline. It is possible that the AMICA algorithm did not fully 

separate signals and artefacts, resulting in the removal of some cortical signals and/or the 

inclusion of some artefactual components in the subsequent source imaging and analysis. 

Another possible limitation centers around performing the connectivity analysis at 

the source level as opposed to the sensor level. When performing connectivity analysis at 

the source level, results depend on the choice of anatomical template, electrical model, 

inverse method and connectivity metric (Mahjoory et al., 2017). When estimating the 

forward model, we chose to use a MNI/ICBM152 anatomical brain template with the 

BEM, which has advantages over spherical-shell models (Vatta et al., 2010). We 

estimated cortical sources using the weighted minimum norm estimate as opposed to 

beamforming methods, which has been shown to be more accurate for cortical patch 

sources (Hincapié et al., 2017). Lastly, source level connectivity was performed using 
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orthogonalized amplitude correlations that show better test-retest reliability than other 

volume conduction independent connectivity measures such as imaginary coherence 

(Colclough et al., 2016). While performing connectivity analyses at the sensor level 

avoids these issues, sensor connectivity estimates have other complications. Coherence 

(connectivity) is dependent on the reference electrode or referencing scheme (common 

average, linked mastoids, etc.) (Essl & Rappelsberger, 1998; Nunez et al., 1999; 

Rappelsberger, 1989). The use of a single electrode as the reference can inflate or deflate 

coherence values depending on the level of activity at the reference electrode; with higher 

values at the reference electrode being detrimental to coherence (Zaveri et al., 2000). 

Rappelsberger (Rappelsberger, 1989) suggested using a reference averaging technique, 

such as linked earlobes, to better approximate a zero-potential reference and mitigate this 

issue. While the common average reference provides an alternative averaging technique, 

the tendency for EEG signals to be synchronized over large areas of the scalp can result 

in a common average reference remaining high. While both sensor level and source level 

connectivity analyses have their idiosyncrasies, we opted to use the source level approach 

to obtain a better approximation of how cortical regions of the brain are connected. 

 

3.5 Conclusion 

 

 

 After stroke, cortical activity and connectivity indicate a shift from dominant 

alpha/beta band (widespread) networks typically seen in controls towards higher 

frequency gamma (local) networks. Stroke related changes in cortical activity and 

connectivity showed the largest effect in the lesioned hemisphere resulting in 
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asymmetrical cortical networks. These findings suggest that stroke lesions cut pathways 

within the brain and cause network reorganization into more local, asymmetric networks.   
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CHAPTER 4: CORTICAL EFFECTS OF WRIST TENDON VIBRATION DURING 

ARM TRACKING IN CHRONIC STROKE SURVIVORS 

 

 

4.1 Introduction 

 

 

The purpose of this study was to determine the cortical mechanisms associated 

with improved tracking performance of the paretic arm when wrist tendon vibration is 

applied. Previously, Conrad and colleagues demonstrated that applying vibration to the 

forearm tendons of stroke survivors improves performance during a figure-8 tracking task 

(Conrad et al., 2011b). Tendon vibration has also been shown to improve hand end-point 

stability after targeted arm movements and within unstable workspaces (Conrad et al., 

2011a, 2015). While tendon vibration improves tracking performance and end-point 

stabilization in stroke survivors, the cortical mechanism/s underlying the improvements 

are unclear. A study examining the effect of wrist flexor tendon vibration on spinal cord 

stretch reflex activity following stroke found no modulation of the biceps or triceps 

stretch reflexes during vibration, suggesting that vibration-induced improvements in 

tracking performance and end-point stabilization may arise from nervous system changes 

at the supraspinal level (Gadhoke, 2011). A transcranial magnetic stimulation study 

found that vibration at the muscle can modulate the excitability of the motor cortical 

circuits and increase motor evoked potentials (Rosenkranz & Rothwell, 2003), furthering 

the idea that vibration induces supraspinal changes during motor control. Understanding 

the mechanism(s) behind these improvements might facilitate and enhance current stroke 

rehabilitation therapies. 

Supplemental sensory feedback can alter the control of movement of the limb in 

many ways. The application of extraneous vibration improves motor learning and motor 
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control (Conrad et al., 2011a, 2011b, 2015; Priplata et al., 2003; Rosenkranz & Rothwell, 

2012). In people with stroke, the application of extraneous vibration or somatosensory 

electrical stimulation to the limb improves spasticity, balance control, arm tracking, arm 

stabilization and hand function (Celnik et al., 2007; Conrad et al., 2011a, 2011b, 2015; 

Dewald et al., 1995; Levin & Hui-Chan, 1992; Priplata et al., 2006; Wu et al., 2006). The 

mechanisms underlying these changes in sensorimotor control are unclear. When 

vibration is applied to wrist flexor tendons during a motor task, improvements in  motor 

function are not isolated to the wrist, but are seen throughout the arm (Conrad et al., 

2011a, 2011b, 2015). This observation suggests that vibration enhances not only neural 

structures linked to the stimulated area, but also areas not directly associated with 

stimulation, possibly by way of altered cortical networks. This concept is further 

supported by transcranial magnetic stimulation and transcranial electric stimulation 

studies that show increased excitability of the cortex in regions distant from stimulation 

(Grefkes et al., 2010; Grefkes & Fink, 2011; Polanía et al., 2011). The possibility that an 

enhanced sensory signal may excite widespread cortical networks raises prospects for 

using these modalities for rehabilitation in people with stroke. 

In this study, we set out to identify cortical mechanisms of improved tracking 

performance of the paretic arm with the application of wrist tendon vibration. We 

collected electroencephalography (EEG) and arm kinematic data while chronic stroke and 

neurologically-intact participants tracked a target moving in a figure-8 pattern in the 

horizontal plane. Vibration was applied to the wrist forearm flexor tendons during a 

portion of the trials. EEG beta band (13-26Hz) power fluctuations were used as indicators 

of brain activity associated with motor function (Pfurtscheller & Lopes da Silva, 1999; 
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Pfurtscheller & Lopes da Silva, 1999; Steriade et al., 1990). Spatially correlated 

coherence (SCORCH) of EEG electrodes was introduced and used as a measure of 

functional connectivity between cortical areas. We hypothesized that application of 

tendon vibration to the wrist forearm flexor tendons causes tracking improvements in the 

paretic arm by increasing the cortical activity and connectivity in the regions displaying 

cortical deficits after stroke. 

 

4.2 Methods 

 

 

4.2.1 Participants 

 

 

A sample of 10 chronic stroke participants and 10 age-matched neurologically-

intact controls participated in this study. Stroke participants (5 female, aged 36-79yr) 

were required to be at least 1-year post stroke and experience upper extremity 

hemiparesis. Exclusion criteria included the diagnoses of any other neurological disorder 

or recent treatment that interfered with neuromuscular function, such as botulinum toxin 

injection. Stroke participants completed the experiment using their paretic arm, whereas 

controls used their non-dominant arm. The impairment level of stroke participants was 

assessed using the upper extremity Fugl-Meyer Assessment (FMA) which consists of a 

motor portion (maximum score 66) and sensory/proprioception portion (maximum score 

12) (Fugl-Meyer et al., 1975) and the Semmes-Weinstein monofilament test (Semmes et 

al., 1960). The monofilament test was performed at seven locations on the palmar surface 

of the paretic hand and averaged (distal phalanx of the small finger, index finger and 

thumb; proximal phalanx of the small and index finger; thenar and hypothenar). Control 

participants (4 female, aged 34-77yr) reported no history of stroke or any other upper 
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extremity pathology. Detailed demographic data for all participants is shown in Table 4-

1. All participants gave written informed consent, and all procedures were approved by 

the Marquette University Institutional Review Board in accordance with the Declaration 

of Helsinki. 

 

Table 4-1: Participant Information. Demographic and clinical data for stroke and control 

participants. Stroke (S) and control (C) participants. The “Arm Tested” corresponded to 

the paretic side for stroke participants and the non-dominant hand for control participants. 

“Fugl-Meyer” indicates the Fugl-Meyer upper extremity score (Motor: maximum of 66; 

Sensory: maximum of 12). Monofilament values indicate the average force in grams (g) 

across seven hand locations tested with the degree of sensation (N: normal (g<=0.07), ‘-’: 

diminished light tough (0.07>g<=0.4), ‘—’: diminished protective sensation 

(0.4>g<=2.0), ‘---’: loss of protective sensation (2.0>g<=180.0), ‘----’: deep pressure 

sensation only (g>180)). (F: female; M: male; R: right; L: left). 

 

Participant 

Identifier 
Sex 

Age 

(yr) 

Time after 

Stroke (yr) 

Arm 

Tested 

Fugl-Meyer 

(Motor:66) 

Fugl-Meyer 

(Sensory:12) 

Monofilament 

(g,sensation) 

S1 F 60 23 R 63 12 0.08 (-) 

S2 F 79 7 R 62 11 0.15 (-) 

S3 F 67 30 L 29 12 0.05 (N) 

S4 M 64 16 L 61 8 0.19 (-) 

S5 F 66 26 R 51 4 60.00 (---) 

S6 M 61 11 R 31 12 0.35 (-) 

S7 F 65 13 L 38 8 94.29 (---) 

S8 M 59 14 L 23 8 60.00 (---) 

S9 M 36 8 L 21 8 71.43 (---) 

S10 M 55 15 R 27 12 37.43 (---) 

C1 F 68  -  L  -  -  - 

C2 M 61  - L  -  -  - 

C3 M 51  - L  -  -  - 

C4 F 77  - L  -  -  - 

C5 F 57  - L  -  -  - 

C6 M 67  - L  -  -  - 

C7 M 65  - L  -  -  - 

C8 F 63  - L  -  -  - 

C9 M 34  - R  -  -  - 

C10 M 64  - L  -  -  - 
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4.2.2 Test Apparatus 

 

 

The study was conducted using a custom-built mechanical linkage (APPENDIX 

A: MANIPULANDUM) (Figure 4-1A). The linkage constrained movement to the 

horizontal plane and provided measurements of end-point trajectory using optical 

encoders (Celesco Transducer Products, Inc., Chatsworth, California; BEI Sensors, 

Goleta, California) located at each joint. The device frame was constructed using 

2.5x2.5cm extruded aluminum (80/20 Inc., Columbia City, Indiana) and contained three 

rotational joints to allow unrestricted movement in the horizontal plane. While seated at 

the device, the participant’s forearm was secured to an Ultra High Molecular Weight 

Polyethylene tray located at the end of the manipulandum. An overhead projector 

displayed hand position and target location on an opaque screen (80x60cm) directly 

above the plane of hand motion. The device was interfaced with LabVIEW (National 

Instruments Corporation, Austin, Texas) in order to control the projector display, record 

(1kHz sampling rate) kinematic data, and generate digital pulses used to synchronize the 

timing of movement and EEG data collection. 

A custom-made tendon vibrator was affixed to the skin adjacent to the forearm 

flexor tendons on the arm (APPENDIX B: TENDON VIBRATOR). The vibrator 

consisted of an offset mass that rotated about the shaft of a motor (Faulhaber Group, 

Clearwater, FL) and was enclosed in a Teflon casing. The vibrator was then encased by a 

thin aluminum foil sheet that was electrically grounded to minimize the effect of 

electromagnetic noise from the vibrator on the EEG recordings. Vibration was applied at 

70Hz to the wrist forearm flexor tendons of the arm being tested. The 70Hz vibration 
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frequency was selected because it lies within the range of frequencies shown to activate 

the most muscle spindles at the highest response rate (Roll et al., 1989).  

 

 

Figure 4-1: Experimental Setup. A) Illustration of the mechanical linkage and 

experimental setup from the side (inset in top right displays the scene from above). The 

white cursor projected onto a horizontal screen was linked to hand position. Participants 

were required to move the cursor from the home location (light gray annulus) to the 

target (dark gray annulus) and track the target while it moved in a figure-8 pattern. B) 

Experimental protocol: a single trial consisted of 3 repetitions of the figure-8 pattern. 

Participants performed three blocks of 16 trials each, where the middle block included 

tendon vibration applied to the wrist flexor tendons. 
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4.2.3 Experimental Protocol 

 

 

During the study, the mechanical linkage was used to characterize the 

participant’s performance on 16 trials of the target tracking task. Each trial consisted of a 

baseline period (11.5±1.5s before target presentation), reach period (0-1.75s after target 

presentation), figure-8 tracking period (1.75-43.75s after target presentation), and return 

period (~2s between the tracking and baseline periods). Prior to each trial, participants 

were required to bring a white cursor (r = 0.5cm), linked to horizontal hand position, to 

the home location (gray annulus, r = 4cm) located ~20cm in front of the participant. The 

home location then disappeared, and participants relaxed until the target (red annulus, r = 

0.75cm) was presented ~24cm away from the participant on an imaginary line orthogonal 

to the participant’s chest. Participants then moved their hand as quickly and accurately as 

possible to the target, at which point the figure-8 tracking period began. During the 

figure-8 tracking period, the target moved in a figure-8 pattern formed by 2 virtual side-

by-side circles (radius = 7cm) centered at the original point of target presentation. As the 

target moved (0.91rad/s), participants were instructed to follow the target, attempting to 

keep the cursor in the center of the target. The target moved through the figure-8 pattern 

three times in a row with the start direction of the figure-8 moving to the left (clockwise 

or counterclockwise) randomly chosen for each trial.  

Before testing, participants completed 8 trials of the tracking task in order to 

practice and minimize learning effects. During testing, the tracking task was completed 3 

times per trial with 16 trials in each block. Tendon vibration (TV) was applied to the 

middle block of trials allowing for comparisons before (Pre-TV), during (TV), and after 

(Post-TV) vibration. During the TV block, the vibrator was turned on at the presentation 
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of the target and turned off after the tracking period ended. The vibrator was not attached 

to the participants during the Pre-TV and Post-TV blocks. Participants were given breaks 

halfway through each block and between each block to minimize fatigue.  

All participants returned for a control (Sham) session on a separate day with at 

least 5 days between sessions. During the control session, the tracking experiment was 

repeated using the previously described protocol. However, during the session a “sham” 

vibration was applied in place of the true vibration during the TV block of trials. During 

the sham vibration trials, the vibrator was placed on the wrist tendon flexors, but the 

vibrator was not turned on. Vibrator placement was noted and controlled between 

sessions. The purpose of the control session was to assess whether changes in tracking 

performance and cortical activity were in fact due to wrist TV or other confounding 

factors such as motor learning or a placebo effect. The order of the sessions (Vibe vs. 

Sham) was counterbalanced across participants to prevent ordering effects. 

 

4.2.4 Physiological Measurements 

 

 

A 64-channel active electrode actiCAP (Brain Products GmbH, Munich, 

Germany) system was used to record EEG data. EEG electrodes were arranged in the 

conventional 10-20 system with the reference at FCz and the ground at AFz. The EEG 

cap was placed on the participant’s head such that the Cz electrode was in line with the 

prearticular points in the frontal plane and with the nasion and inion points in the sagittal 

plane. SuperVisc gel (Brain Products GmbH, Munich, Germany) was applied between 

the scalp and electrodes to lower the electrode impedances below 10kOhms prior to data 

collection. EEG data were amplified, sampled at 1kHz, filtered from 0.1 to 200Hz and 
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notch filtered at 60Hz using a Synamps2 amplifier system (Neuroscan, Charlotte, North 

Carolina), and recorded using the Neuroscan software, Scan 4.5. 

 

4.2.5 Data Analysis 

 

 

Trial epochs of the kinematic variables (defined below) and EEG data were 

extracted from the data (-5 to 42s relative to the movement cue, 16 trial epochs per block 

of trials). From these trial epochs, circle epochs (-0.5 to 6.905s), defined relative to target 

location, were extracted for each of the 6 circles (half of a figure-8) in the trial. Unique, 

non-overlapping baseline segments extracted from the -5 to -2s time period at the 

beginning of the trial epoch were inserted into the -0.5 to 0s time range of the circle 

epochs while the remaining 6.905s contained individual circle data. This process resulted 

in 96 circle epochs per block of trials used in the subsequent analysis. 

Hand path kinematic data were processed and analyzed using custom MATLAB 

scripts (version 2014a, MathWorks, Natick, Massachusetts). Absolute error was 

calculated as the Euclidean distance of the cursor (hand) from the target. Speed was 

calculated from the x and y cursor (hand) positions obtained from the optical encoders. 

Absolute error and speed were then epoched, resulting in 96 epochs per block. Bad 

epochs were removed manually by using FieldTrip’s visual inspection code (epochs were 

removed if the speed variance/kurtosis >2 standard deviations from the mean, 

ft_rejectvisual, average number removed, 22.2). Standard deviation (SD) of hand speed 

was calculated for each epoch’s tracking period (0–6.905s). The MATLAB ‘trapz’ 

function was used to find the area under the speed curve indicating the total path length 

of the hand during the tracking period of the epochs. To evaluate motor planning time, 
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the number of sub-movements made by the hand during the epoch tracking period were 

counted. Sub-movements were identified by local minima in the speed traces with a 

single sub-movement being considered the activity occurring between consecutive local 

minima. Hand absolute error and speed were each averaged during the tracking period. 

All kinematic variables (Hand absolute error, speed, SD of speed, total path length and 

number of sub-movements) were averaged across epochs for each participant and 

compared across conditions to determine if vibration improved behavioral performance. 

EEG data were post processed and analyzed using the EEGLAB toolbox (version 

v13.4.4b) (Delorme & Makeig, 2004) for storing and manipulating the data, FieldTrip 

(version 2016-01-03) (Oostenveld et al., 2011) for removing bad trials and electrodes, 

Brainstorm (version 3.4) (Tadel et al., 2011) for source localizing the data, and custom 

MATLAB scripts (version 2014a, MathWorks, Natick, Massachusetts). All EEG data 

were bandpass filtered (1-50Hz) using a fourth order zero-phase Butterworth filter. All 

EEG data were then epoched resulting in 96 epochs per block. EEG epochs were then 

baseline corrected (-0.5 to 0s) and bad channels and epochs were removed manually 

using FieldTrip’s visual inspection code (channel/epoch removed if variance/kurtosis >2 

standard deviations from the mean, ft_rejectvisual, average number channels/epochs 

removed, 1.9/22.2). If a channel was rejected from the EEG data, its value was replaced 

with interpolated data from the surrounding electrodes. EEG data were flipped so that the 

hemisphere contralateral to the arm being tested (paretic/non-dominant) was always 

represented on the left hemisphere. EEG data were separated into signal and artifactual 

components using an Adaptive Mixture Independent Component Analysis (AMICA) 

(APPENDIX C: INDEPENDENT COMPONENT ANALYSIS) (Palmer et al., 2008). To 
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ensure consistent artifact removal across blocks, sessions, participants and groups, EEG 

data were standardized (z-scored across electrode, time and epoch relative to baseline), 

temporally concatenated across independent variables (block, session, participant and 

group) for each electrode channel and used as input to the AMICA algorithm, Figure 4-2. 

This process resulted in 64 independent temporal components. Signal artifacts, including 

eye blink, EMG, and movement artifacts, were identified by distinct artifactual 

characteristics (Delorme et al., 2012; Makeig et al., 2004; Mognon et al., 2011; Puce & 

Hämäläinen, 2017) and removed from the EEG data (on average, 25 components were 

removed). The remaining components were then transformed back to the EEG channel 

space where the individual block, session, participant and group data were extracted. 

Finally, EEG data were re-referenced to a common average reference for all data analyses 

excluding the functional connectivity analyses (below), which re-referenced the data to 

the average of the mastoids (Electrodes TP9 and TP10) (Rappelsberger, 1989). Each re-

reference technique reintroduced the FCz electrode to the data set. 
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Figure 4-2: Diagram of EEG Data Flow. Diagram of EEG data flow for artifact removal 

via ICA and the tracking period beta band ERD and tb-SCORCH analyses for a single 

stroke participant (S8). After preprocessing, EEG data were standardized (z-score) and 

temporally concatenated across block, session, participant and group. The resulting 

matrix was then input into an ICA, which output 64 independent temporal components. 

ICA components containing artifacts (eye blink, EMG and movement) were removed and 

the remaining components were transformed back to the EEG channel space where 

individual data were extracted. The tracking period beta band ERD averaged across 

epochs was thresholded at a z-score of two and tb-SCORCH topographic maps were 

displayed using the corresponding Fisher z-values. The hemisphere contralateral to the 

tested arm (paretic) was displayed on the left. 

 

 

Source localization of EEG data was performed to examine the spatial 

characteristics of cortical activity. Distributed current dipole maps were computed in 

Brainstorm using the default MNI/Colin27 anatomical brain template (Tadel et al., 2011). 
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The standard actiCAP electrode locations were fit to the scalp surface so that the Cz 

electrode location was at the vertex as described in the physiological measurements 

section. A boundary element model (BEM) was used to estimate of the forward model 

(OpenMEEG) (Gramfort et al., 2010; Kybic et al., 2005), and a depth-weighted minimum 

L2 norm estimator of cortical current density (Hämäläinen & Ilmoniemi, 1994) was used 

to estimate the inverse model. The source localized data were then bandpass filtered (beta 

band: 13-26Hz) using a zero-phase fourth order Butterworth filter, squared to obtain 

power, averaged across epochs, normalized (see below), and averaged across the tracking 

period (0 – 6.905s). For cortical activation, a z-score normalization process was used to 

display the data shown in Figure 4-2 (baseline period: -0.5 to 0s). For statistical analyses 

and difference calculations, the power was normalized using percent change from 

baseline (baseline period: -0.5 to 0s), 

%∆(𝑡) = 100 ×
𝑿(𝑡)−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
        (4.1) 

where %∆(𝑡) represents the percent change from baseline, 𝑿(𝑡) represents the power 

time series, 𝑡 represents time, and 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represents the average power in the baseline 

period. Beta band z-score and percent change from baseline values were characterized in 

terms of the associated event related desynchronization (ERD). ERD is a decrease in 

power relative to baseline, is thought to represent active cortical areas (Pfurtscheller & 

Lopes da Silva, 1999) and is defined here in terms of the average beta band event-related 

desynchronization during the tracking period. 

ERD from the EEG source localization data was obtained from a region of 

interest (ROI) corresponding to the region of deficit activity in the stroke group. The 

deficit ROI was identified by comparing ERD within the Pre-TV blocks of the stroke-
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Vibe and stroke-Sham sessions with the control-Vibe and control-Sham sessions using a 

two-sample t-test, resulting in four unique maps of t-values that were subsequently 

thresholded (t >= 2.262). Vertices on the cortical surface that survived the threshold in all 

four maps were identified as the deficit ROI. The mean ERD for the deficit ROI was then 

compared across blocks, sessions and groups. Correlations between the cortical activity 

(average of stroke-Vibe and stroke-Sham ERD in the Pre-TV block) of stroke participants 

and their functional ability (upper extremity motor FMA) were evaluated by calculating 

the correlation coefficient at each vertex on the cortical surface. Vertices on the cortical 

surface that resulted in significant correlations (t-test of correlation coefficient different 

than 0, p <= 0.05) were defined as the functional ROI. The mean ERD in the deficit ROI 

and functional ROI for the Pre-TV block (averaged across stroke-Vibe and stroke-Sham) 

were also plotted against the upper extremity motor FMA for stroke participants. 

To examine EEG connectivity, all-to-all (connectivity between all possible pairs 

of EEG electrodes) temporal connectivity profiles were generated using magnitude 

squared coherence (𝐶𝑜ℎ2) between electrodes 𝑋 and 𝑌,  

𝐶𝑜ℎ2(𝑓) =
|𝐶𝑋𝑌(𝑓) |

𝟐

𝐶𝑋𝑋(𝑓)·𝐶𝑌𝑌(𝑓)
        (4.2) 

where 𝐶𝑋𝑌 is the cross spectrum between electrodes 𝑋 and 𝑌, 𝐶𝑋𝑋 is the auto spectrum of 

electrode 𝑋, 𝐶𝑌𝑌 is the auto spectrum of electrode 𝑌, and 𝑓 denotes frequency. Every 

EEG epoch was divided into 29 nonoverlapping windows, each containing 0.25s of data 

(the last 0.155s of each epoch was ignored, epochs were divided up in this fashion to 

remove a comparable baseline coherence from tracking period coherence). Coherence 

was then calculated within each window using the epochs as the measure of consistency. 

For each participant, block, session and group, this resulted in a connectivity matrix that 
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was 4225 (65x65 electrodes) by 29 elements for each frequency. The resulting 

connectivity matrices were then averaged across the beta band (13-26Hz range), the 

connectivity during baseline was removed by masking first 2 time points (representing 

the 0.5s of baseline data before the tracking period) and the remaining connectivity 

measures averaged across the last 27 time points (tracking period) to calculate the 

tracking period beta band task-based coherence (tb-Coh, matrix size: 65x65) 

(Rappelsberger et al., 1993). To examine differences between control and stroke groups, 

we extracted hemispheric and single electrode connectivity information from the 

connectivity matrix. Hemispheric tb-Coh was defined as tb-Coh between analogous 

electrodes in the two hemispheres. Hemispheric coherence values for electrodes along the 

midline were calculated as the average tb-Coh between the midline electrode and the 

electrodes to the immediate left and right. Finally, single-electrode tb-Coh was also 

extracted from the connectivity matrix and represented the tb-Coh of a single electrode 

with every other electrode. 

To quantify spatial patterns of tb-Coh, we developed a spatially correlated 

coherence (SCORCH) metric (APPENDIX D: SPATIALLY CORRELATED 

COHERENCE). SCORCH quantifies how well a participant’s single-electrode 

connectivity map matches the ground truth connectivity map (see following). The first 

step in calculating SCORCH is to generate a ground truth data set. Our ground truth data 

set was calculated by averaging the control-Vibe and control-Sham Pre-TV block tb-Coh 

matrices (matrix size: 65x65). We then spatially correlated each single-electrode tb-Coh 

map (65x1 array for each electrode) from every participant, block, group and session with 

the respective single-electrode tb-Coh map from the ground truth coherence matrix 
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defined across controls. Correlation values for tb-SCORCH were Fisher z-transformed to 

normalize the population distribution for statistical testing. This resulted in a task-based 

SCORCH array (tb-SCORCH, 65x1) with a single correlation coefficient value for each 

single-electrode tb-Coh map in every participant, block, group and session. An electrode 

displaying a high value of tb-SCORCH indicates that its global coherence topography 

(i.e. network functional connectivity pattern) resembles that seen in the ground truth data 

set whereas a low value of tb-SCORCH would imply the opposite. 

Tb-SCORCH data were obtained from an electrode exemplifying the connectivity 

deficit in the stroke group. The deficit electrode was selected by comparing tb-SCORCH 

of the stroke-Vibe and stroke-Sham sessions with the control-Vibe and control-Sham 

sessions within the Pre-TV block using a two-sample t-test, resulting in four unique maps 

of t-values that were subsequently thresholded (t >= 2.262). If more than one electrode 

survived the threshold in all four maps, the electrode showing the largest reduction in tb-

SCORCH in the stroke group was deemed the deficit electrode. The tb-SCORCH for the 

deficit electrode was compared across blocks, sessions and groups. To visualize any 

effects of TV, the tb-SCORCH in TV and Post-TV blocks from the control and stroke 

groups were compared to control Pre-TV block using a paired-sample t-test (control 

group) and two-sample t-test (stroke group) with a false discovery rate (FDR) of  = 0.05 

for multiple comparisons correction. Correlations between cortical connectivity (average 

of stroke-Vibe and stroke-Sham tb-SCORCH in the Pre-TV block) for the stroke 

participants and motor impairment (upper extremity motor FMA) were evaluated by 

calculating the correlation coefficient at every electrode. The electrode that resulted in a 

significant correlation (t-test of correlation coefficient different than 0, p <=0.05) and had 
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the highest functional correlation was identified as the functional electrode. The tb-

SCORCH in the deficit and functional electrodes for the Pre-TV block (averaged across 

stroke-Vibe and stroke-Sham) were plotted against the upper extremity motor FMA for 

the stroke participants. 

 

4.2.6 Statistical Analysis 

 

 

Changes in hand absolute error, speed, SD of speed, total path length, number of 

sub-movements, deficit ROI ERD and deficit electrode tb-SCORCH data were 

characterized across participants using three-way mixed ANOVAs with block and session 

as within-participant factors and group as the between-participant factor in the analysis. 

Two-way ANOVAs, one-way ANOVAs and t-tests were applied post hoc to characterize 

specific interaction effects identified in the 3-way ANOVAs. If Mauchly’s Test of 

Sphericity indicated that the assumption of sphericity was violated, a Greenhouse-Geisser 

correction was used for the ANOVA tests. The Holm-Sidak method for correcting for 

multiple comparisons was used at each level (between multiple ANOVAs and t-tests) in 

the analysis except for multiple pairwise comparisons, where the Tukey post hoc test was 

applied. Raw p-values were reported and stated as significant if they survived the 

correction for multiple comparisons. A non-parametric bootstrap approach similar to the 

Zhou and Wong method (Zhou & Wong, 2011) with 10000 iterations was used to 

generate the statistical distributions for the Tukey post hoc test. Statistical tests were 

performed with a Type I error rate of  = 0.05. Hand absolute error data was found to be 

positively skewed and was transformed to a normal distribution using a base 10 

logarithmic function. 
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4.3 Results 

 

 

4.3.1 Movement Kinematics 

 

 

Analysis of the movement kinematics during the tracking period revealed 

differences between the control and stroke groups (for hand absolute error, SD of hand 

speed and number of sub-movements) and improvements over time or blocks (for hand 

speed, SD of hand speed and total path length) but did not indicate any improvements in 

movement kinematics due to the tendon vibration, Table 4-2. Hand absolute error and SD 

of hand speed were significantly higher in the stroke group (absolute error: 2.43±1.36cm; 

SD of hand speed: 3.48±1.05cm/s) when compared to the control group (absolute error: 

0.81±0.17cm; SD of hand speed: 2.06±0.44cm/s) (absolute error: F(1,18)=30.752, 

p<0.001; SD of hand speed: F(1,18)=15.46, p=0.001; 3-Way ANOVA), while the number 

of sub-movements during the tracking period was significantly lower in the stroke group 

(10.26±0.59) when compared to the control group (11.37±0.61) (F(1,18)=17.056, 

p=0.001, 3-Way ANOVA). Hand speed, SD of hand speed and total path length during 

the tracking period were significantly different between blocks (hand speed: 

F(1.153,20.754)=6.748, p=0.014; SD of hand speed: F(1.521,27.37)=22.172, p<0.001; 

total path length: F(1.153,20.754)=6.748, p=0.014, 3-Way ANOVAs). Post hoc analyses 

(Tukey test) of block differences for hand speed, SD of hand speed and total path length 

revealed that hand speed (Pre-TV: 6.95±0.55cm/s; TV: 6.77±0.47cm/s; Post-TV: 

6.80±0.48cm/s), SD of hand speed (Pre-TV: 2.94±1.13cm/s; TV: 2.71±1.04cm/s; Post-

TV: 2.66±1.06cm/s) and total path length (Pre-TV: 48.66±3.83cm; TV: 47.41±3.27cm; 

Post-TV: 47.60±3.37cm) were significantly lower in the TV (q(38)>=4.69, p<=0.005) 
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and Post-TV (q(38)>=3.97, p<=0.021) block when compared to the Pre-TV block while 

the TV and Post-TV blocks showed similar activity (q(38)<=1.68, p>=0.467). No other 

factors or interactions reached significance in the three-way ANOVA of the movement 

kinematic variables (absolute error: p>=0.118; hand speed: p>=0.16; SD of hand speed: 

p>=0.461; total path length: p>=0.16; number of sub-movements: p>=0.125). 

 

Table 4-2: Behavioral Performance Data. Tracking period behavioral performance data 

(hand absolute error, hand speed, SD of hand speed, total path length of the hand and 

number of hand sub-movements) during the vibration (Vibe) and sham (Sham) session. 

Data was averaged across participants with the standard deviation given in parentheses. 

 

    Vibe Session   Sham Session 

    Pre-TV TV Post-TV   Pre-TV TV Post-TV 

Absolute Error 

(cm) 
        

Control  0.84 (0.25) 0.80 (0.22) 0.79 (0.20)  0.84 (0.15) 0.80 (0.17) 0.77 (0.17) 

Stroke  2.39 (1.34) 2.30 (1.42) 2.49 (1.78)  2.34 (1.13) 2.56 (1.49) 2.51 (1.34) 

Speed 

(cm/s) 
        

Control  6.84 (0.26) 6.70 (0.17) 6.75 (0.15)  6.72 (0.13) 6.67 (0.14) 6.71 (0.13) 

Stroke  7.14 (0.98) 6.88 (0.62) 6.93 (0.68)  7.11 (0.98) 6.84 (0.62) 6.82 (0.68) 

SD of Speed 

(cm/s) 
        

Control  2.27 (0.70) 2.11 (0.58) 1.99 (0.54)  2.18 (0.34) 1.94 (0.37) 1.88 (0.38) 

Stroke  3.67 (1.22) 3.39 (0.99) 3.38 (0.98)  3.65 (1.13) 3.41 (1.07) 3.39 (1.06) 

Total Path Length 

(cm) 
        

Control  47.86 (1.80) 46.92 (1.18) 47.26 (1.06)  47.05 (0.88) 46.65 (0.95) 46.95 (0.89) 

Stroke  49.96 (6.89) 48.16 (4.31) 48.47 (4.76)  49.76 (4.94) 47.90 (5.63) 47.71 (5.57) 

Sub-movements 

(#) 
        

Control  11.14 (0.72) 11.42 (0.69) 11.29 (0.68)  11.40 (0.57) 11.50 (0.72) 11.46 (0.67) 

Stroke   10.24 (0.60) 10.27 (0.68) 10.22 (0.68)   10.32 (0.69) 10.30 (0.58) 10.23 (0.62) 

 

 

4.3.2 Initial Tracking ERD 

 

 

ERD was examined during the Pre-TV block to identify any initial differences in 

the movement related activity across the cortex between the control and stroke groups, 

Figure 4-3A. In the control group, ERD was identified in premotor, motor, sensory and 
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parietal cortices and was located bilaterally. The stroke group showed ERD in the 

premotor, motor, sensory and parietal cortices that was lateralized to the hemisphere 

ipsilateral to the paretic limb, with some ERD in the parietal cortex of the contralateral 

hemisphere. Along with the drastic decrease in spatial extent of cortical activation in the 

stroke group, the areas that did display ERD were lower in magnitude when compared to 

the controls.  

 

4.3.3 Deficit ROI ERD 

 

 

The deficit ROI was located above the lateral pre-motor, motor and sensory 

cortices in the hemisphere associated with arm (paretic/non-dominant) movement, 

Figures 4-3A,C. Stroke participant S9’s deficit ROI ERD data was excluded from the 

analysis because their data was found to be an extreme outlier (exceeded 3 standard 

deviations of the group mean). ERD in the deficit ROI was similar across blocks and 

sessions but different between groups, Figure 4-3B. ERD in the deficit ROI was 

significantly lower in the stroke group (13.71±23.66 % when compared to the control 

group (35.08±14.93 %) (F(1,17)=5.674, p=0.029, 3-Way ANOVA). No other factors or 

interactions reached significance (p>=0.061) although the two-way interaction of block 

and session (F(1.333,22.664)=3.06, p=0.084) and three-way interaction of block, session 

and group fell just below the threshold for significance (F(1.333,22.664)=3.573, 

p=0.061). Figure 4-3B shows the ERD in the deficit ROI; during the sham session, both 

the control (Pre-TV: 31.62±14.61 %; TV: 37.88±16.37 %; Post-TV: 39.86±18.04 %) 

and stroke (Pre-TV: 9.03±29.37 %; TV: 13.36±25.54 %; Post-TV: 20.19±21.61 %) 

groups’ deficit ROI ERD increased over time (blocks). The application of tendon 
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vibration increased the ERD in the deficit ROI for the stroke group (Pre-TV: 8.73±27.88 

%; TV: 27.29±22.40 %) to levels near those of the control group (C Pre-TV: 

33.08±16.22 %), but the increase in ERD did not persist in the Post-TV block 

(3.66±47.24 %). Tendon vibration did not alter the ERD in the control group (TV: 

32.27±14.49 %), however, it did disrupt the increase in ERD over time (blocks) seen in 

the control and stroke sham sessions. 

 

4.3.4 Differences in Spatial ERD 

 

 

Spatial maps of the differences between TV/Post-TV and Pre-TV ERD were 

examined to investigate whether the trends found in the deficit ROI were present more 

generally in the movement related activity across the cortex (Figure 4-3C). An increase in 

ERD over time (blocks) in the control-Sham session was present bilaterally in the 

premotor, motor, sensory and parietal cortices and grew in magnitude over time (see 

Figure 4-3C). Application of tendon vibration in the control group caused minimal 

changes in ERD across the cortex but disrupted the increases in ERD over time that were 

observed in the sham session. The increase in ERD over time in the stroke-Sham session 

was less pervasive than in the control-Sham session and was focused in the lateral 

premotor and frontal cortices contralateral to paretic arm movement (Figure 4-3C). 

Contrary to controls, when tendon vibration was applied to stroke participants, the ERD 

increased in the lateral frontal, premotor, motor and sensory cortices contralateral to 

paretic arm movement. The increase in ERD with tendon vibration in the stroke group 

did not persist into the Post-TV block and disrupted the lateralized increases in ERD seen 

over time in the sham session. 
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Figure 4-3: EEG Source Localization. EEG source localization of beta band ERD during 

the tracking period. The hemisphere contralateral to the tested arm (paretic/non-

dominant) is displayed on the left. A) Average ERD during the Pre-TV block. Z-scores 

averaged across participants and sessions are shown for each group. Only values above or 

below a z-score threshold of ±2 are displayed. Positive values indicate ERD while 

negative values indicate a resynchronization, relative to baseline. The dark translucent 

overlay denotes the deficit ROI. B) Average ERD in the deficit ROI expressed as the 

percent change from baseline averaged across participants (error bars denote the 95% 

confidence interval about the mean). C) Difference ERDs from Pre-TV (Control: C-Vibe 

and C-Sham, Stroke: S-Vibe and S-Sham). The percent change (%) values denotes the 

difference between the respective block and the Pre-TV block for each session with a 

positive/negative % indicating a larger/smaller ERD within the respective block. Only 

values above or below a % difference of ± 9 are displayed for clarity. The dark 

translucent overlay denotes the deficit ROI. 

 

 

4.3.5 Initial Tracking tb-Coh 

 

 

Electrode level tb-Coh was examined during the Pre-TV block to identify 

differences in functional connectivity of the cortex between the control and stroke 

groups. Maps for hemispheric, electrode C3 (electrode over the sensorimotor cortex 
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contralateral to the movement arm) and electrode C4 (electrode over the sensorimotor 

ipsilateral to the movement arm) tb-Coh are shown in Figure 4-4. In general, the control 

and stroke groups had similar patterns of tb-Coh for each metric with consistently higher 

levels of tb-Coh in the control group compared to the stroke group. Hemispheric tb-Coh 

indicated strong levels of connectivity between the homologous electrodes located above 

the premotor, motor, sensory and partial areas in controls while the stroke participants 

showed lower levels of connectivity between the homologous electrodes above the same 

areas. The tb-Coh for electrode C3 also showed greater connectivity in controls compared 

to the stroke group. Control participants had high values of tb-Coh occurring above the 

ipsilateral motor and sensory cortices extending up into the frontal areas of both 

hemispheres with low values of tb-Coh located around electrode C3 suggesting the 

importance of frontal/sensorimotor communication during a figure-8 tracking task. In 

stroke participants, the tb-Coh for electrode C3 showed minimal changes from baseline 

with small increases occurring above the ipsilateral parietal cortex and contralateral 

motor and sensory cortices. The tb-Coh for electrode C4 was comparable between control 

and stroke groups and was a mirror image of electrode C3’s tb-Coh map in controls, 

although with slightly smaller connectivity. 
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Figure 4-4: Electrode Coherence. Tracking period task-based coherence (tb-Coh) in the 

beta band during Pre-TV. The hemisphere contralateral to the tested arm (paretic/non-

dominant) is displayed on the left. The spatial variation in tb-Coh (coherence change 

from baseline period) averaged across participants and sessions is shown for each 

coherence measure. Values of tb-Coh were interpolated between electrodes. Negative 

values indicate a decrease in tb-Coh while positive values indicate an increase in tb-Coh 

relative to the baseline period. The black dot on the single electrode coherence maps 

indicates the location of the electrode. 

 

 

4.3.6 Initial Tracking tb-SCORCH 

 

 

The tb-SCORCH was examined during the Pre-TV block to identify differences 

in the global functional connectivity patterns between control and stroke groups (Figure 

4-5A). Two nodes with high levels of tb-SCORCH in the control group were identified 

bilaterally above motor, sensory and parietal areas. The node above the contralateral 

hemisphere (associated with arm movement) was spatially larger and contained higher tb-

SCORCH values than the node in the ipsilateral hemisphere. The tb-SCORCH pattern 

was similar in the stroke group but contained considerably lower tb-SCORCH values 

across the brain. The stroke group had the highest values of tb-SCORCH in the node 
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above the ipsilateral hemisphere while the node in the contralateral hemisphere was 

almost nonexistent. 

 

4.3.7 Deficit Electrode tb-SCORCH 

 

 

The deficit electrode, identified as C3, was located above the sensorimotor 

cortices located in the hemisphere associated with arm (paretic/non-dominant) movement 

(Figure 4-5A). The tb-SCORCH of the deficit electrode was significantly lower in the 

stroke group (0.37±0.54) compared to controls (1.18±0.50) (F(1,18)=11.739, p=0.003, 3-

Way ANOVA). The three-way mixed ANOVA of the deficit electrode’s tb-SCORCH 

also revealed a significant interaction between block and group (F(2,36)=3.416, p=0.044) 

and between block and session (F(2,36)=5.571, p=0.008). No other factors or interactions 

in the three-way ANOVA reached significance (p>=0.246).  

When examining the block by group interaction, the post-hoc analysis (1-Way 

ANOVA) for blocks revealed no significant results for the control (Pre-TV: 1.16±0.59; 

TV: 1.13±0.53; Post-TV: 1.24±0.44) (F(1.278,11.504)=0.992, p=0.362) or stroke groups 

(Pre-TV: 0.27±0.55; TV: 0.53±0.50; Post-TV: 0.32±0.67)  (F(2,18)=3.259, p=0.062) 

although there was a trend towards the TV block having a significantly higher value in 

the stroke participants. The post-hoc analysis (two-sample t-test) for groups indicated a 

significantly larger tb-SCORCH in the controls compared to the stroke group for each 

block (t(18)>=2.591, p<=0.019).  

When examining the block by session interaction, the post-hoc analysis (1-Way 

ANOVA) of blocks revealed significant results for the vibration session 

(F(1.505,28.595)=4.913, p=0.022) with a significantly lower tb-SCORCH in the Pre-TV 
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(0.69±0.83) and Post-TV (0.69±0.85) blocks compared to the TV (1.02±0.65) block 

(q(38)>=3.843, p<= 0.029) but no difference between the Pre-TV and Post-TV blocks 

(q(38)=0.009, p ~ 1). No significant results for the sham session were found (Pre-TV: 

0.74±0.71; TV: 0.64±0.69; Post-TV: 0.87±0.66) (F(2,38)=2.353, p=0.109; 1-Way 

ANOVA). The post-hoc analysis (paired-sample t-test) for sessions indicated a 

significantly higher tb-SCORCH in the vibration session when compared to the sham 

session for the TV block (t(19)=2.647, p<=0.016) and no differences between sessions 

for the Pre-TV or Post-TV blocks (t(19)<=1.708, p>=0.104).  

Figure 4-5B displays the tb-SCORCH in the deficit electrode and shows that the 

significant interactions of block/group and block/session found in the three-way ANOVA 

were most likely driven by the stroke group’s response to tendon vibration. The 

application of tendon vibration increased the amount of deficit electrode tb-SCORCH in 

the stroke group (Pre-TV: 0.22±0.74; TV: 0.80±0.59) closer to the level of tb-SCORCH 

in the controls (Pre-TV: 1.17±0.65), but this increase in tb-SCORCH did not persist in 

the stroke Post-TV block (0.16±0.82). The tendon vibration only slightly increased the 

tb-SCORCH in the control group (TV: 1.25±0.65). It was noted that there was not an 

increase in tb-SCORCH over time (blocks) during the control-Sham session (Pre-TV: 

1.16±0.63; TV: 1.01±0.52; Post-TV: 1.27±0.44) or stroke-Sham session (Pre-TV: 

0.32±0.52; TV: 0.27±0.67; Post-TV: 0.48±0.62) as was seen in the ERD of the sham 

session.  
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4.3.8 Differences in Spatial tb-SCORCH 

 

 

The differences in tb-SCORCH between TV/Post-TV and Pre-TV were examined 

at every electrode to see if the results found in the deficit electrode were present in the 

global functional connectivity patterns across the cortex (Figure 4-5C). Application of the 

tendon vibration in the controls caused minimal changes in tb-SCORCH across the 

cortex. Contrary to the controls, when the tendon vibration was applied in the stroke 

participants, an increase in tb-SCORCH was found throughout the brain nearly 

eradicating the large deficit in tb-SCORCH located above the sensorimotor areas in the 

hemisphere associated with arm movement. The increase in tb-SCORCH with application 

of tendon vibration in the stroke participants did not persist in the Post-TV block (see 

Figure 4-5C). 

 

 

Figure 4-5: Spatially Correlated Coherence. Beta band tb-SCORCH during the tracking 

period. The hemisphere contralateral to the tested arm (paretic/non-dominant) is 
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displayed on the left. A) tb-SCORCH in the Pre-TV block (Control: C-Vibe and C-Sham, 

Stroke: S-Vibe and S-Sham). The tb-SCORCH Fisher z-values averaged across 

participants and sessions are shown for each group. Larger Fisher z-values indicate a 

stronger correlation of connectivity patterns between the group and the ground truth 

connectivity pattern (average of control-Vibe and control-Sham Pre-TV) during tracking. 

The black dot indicates the deficit electrode (C3). Values of tb-SCORCH were 

interpolated between electrodes B) tb-SCORCH in the deficit electrode. The bar chart 

shows tb-SCORCH Fisher z-values averaged across participants. Error bars denote the 

95% confidence interval about the mean. C) Differences in beta band tb-SCORCH from 

Pre-TV for control participants. Black dots indicate the electrodes that were significantly 

different, using an FDR correction at  = 0.05. The Fisher z-values correspond to the 

differences between the respective block and the control Pre-TV block with a 

positive/negative Fisher z-value indicating an increase/decrease in the correlation of the 

connectivity maps within the respective block. Values of tb-SCORCH were interpolated 

between electrodes. 

 

 

4.3.9 Deficit Electrode tb-Coh 

 

 

To characterize the effect of tendon vibration on the connectivity maps of the 

stroke participants, the deficit electrode (C3) tb-Coh was examined during the Pre-TV, 

TV and Post-TV blocks for the stroke-Vibe and stroke-Sham sessions and compared to 

the control Pre-TV block (Figure 4-6). As noted previously, the deficit electrode’s tb-Coh 

for the stroke group displayed minimal changes from baseline connectivity with small 

increases occurring above the ipsilateral parietal cortex and contralateral motor and 

sensory cortices for all blocks except TV. During the TV block, the deficit electrode’s tb-

Coh resembled the control group (see inset of Figure 4-6); both displayed high values of 

tb-Coh above the ipsilateral motor and sensory cortices extending up into the frontal 

areas of both hemispheres with low values of tb-Coh located around the deficit electrode. 
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Figure 4-6: Deficit Electrode Coherence. Stroke beta band tb-Coh in the deficit electrode 

(C3) during the tracking period. The hemisphere contralateral to the tested arm 

(paretic/non-dominant) is displayed on the left. The tb-Coh (coherence change from 

baseline period) averaged across participants is shown for the deficit electrode (C3). The 

control reference inset shows electrode C3’s tb-Coh averaged across participants and 

sessions (control-Vibe and control-Sham) for the Pre-TV block. Values of tb-Coh were 

interpolated between electrodes for mapping. Positive/negative values indicate an 

increase/decrease in tb-Coh relative to the baseline period. The black dots indicate the 

location of the deficit electrode (C3). 

 

 

4.3.10 ERD and tb-SCORCH Correlations 

 

 

Deficit ROI ERD (cortical activity) and deficit electrode (C3) tb-SCORCH 

(cortical connectivity) were correlated with upper extremity motor FMA (function 

ability) to determine whether the level of cortical deficit predicted functional outcome in 

the stroke participants. Figures 4-7A,B show the whole brain correlations of ERD and tb-
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SCORCH with upper extremity motor FMA. Both images display similar patterns of 

correlation with the largest positive values of correlation occurring over the sensorimotor 

and parietal areas associated with paretic arm movement and the largest negative 

correlation values occurring over the sensorimotor areas associated the non-paretic limb 

movement. The correlation of function with activity and connectivity of the deficit 

ROI/electrode was poor, with values of R2 = 0.07 (p=0.45) and R2 = 0.09 (p=0.40), 

respectively (Figures 4-7C,D). However, the functional ROI for ERD was correlated with 

functional outcome in parts of the paracentral, precuneus and superior parietal gyri in the 

hemisphere associated with arm (paretic/non-dominant) movement (R2 = 0.46, p=0.03), 

while for tb-SCORCH the functional electrode (Cz), which is centrally located between 

motor cortices, was best correlated with functional outcome (R2 = 0.52, p=0.02), (Figures 

4-7C,D). 
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Figure 4-7: Correlations with Functional Ability. Correlations of upper extremity motor 

FMA scores with tracking period beta band ERD and tb-SCORCH during the Pre-TV 

block for stroke participants. The hemisphere contralateral to the tested arm (paretic/non-

dominant) is displayed on the left. A) Correlations of vertex-wise ERD within the Pre-TV 

block (averaged across sessions: stroke-Vibe and stroke-Sham) with upper extremity 

motor FMA scores. Black and white shaded overlays indicate the deficit and functional 

ROIs, respectively. B) Correlations of tb-SCORCH for each electrode, within the Pre-TV 

block (averaged across sessions: stroke-Vibe and stroke-Sham), with upper extremity 

motor FMA scores. Correlation values are interpolated between electrodes for display 

purposes. The black and white dots indicate the deficit (C3) and functional (Cz) 

electrodes, respectively. C) Correlation of the ERD within the Pre-TV block for the 

deficit and functional ROIs with upper extremity motor FMA scores. ERD was averaged 

across sessions (stroke-Vibe and stroke-Sham) before correlation with the motor FMA. 
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Control ERD during the Pre-TV block for the same ROIs was averaged across sessions 

(control-Vibe and control-Sham) and plotted against a perfect upper extremity motor 

FMA of 66. D) Correlation of stroke electrode tb-SCORCH within the Pre-TV block with 

upper extremity motor FMA scores. Tb-SCORCH was averaged across sessions (stroke-

Vibe and stroke-Sham) before correlation with the motor FMA. Control tb-SCORCH 

during the Pre-TV block for the same electrodes were averaged across sessions (control-

Vibe and control-Sham) and plotted against a perfect upper extremity motor FMA of 66. 

 

 

4.4 Discussion 

 

 

4.4.1 Main Results 

 

 

In this study, we set out to identify changes in cortical activity and connectivity 

associated with tendon vibration during visuomotor tracking in people with stroke. We 

tested the hypothesis that forearm tendon vibration increases cortical activity (ERD) and 

connectivity (tb-Coh and tb-SCORCH). The results demonstrated stroke-related deficits 

in cortical activity during a figure-8 tracking task when compared to controls. The level 

of functional connectivity in stroke participants was also decreased across the brain when 

compared to controls, with the largest deficits localized to the sensorimotor cortices 

associated with the paretic arm. When tendon vibration was applied to the stroke 

participants during the tracking task, sensorimotor cortical activity and connectivity 

contralateral to the paretic arm increased to levels near those of control participants. The 

increased cortical activity and functional connectivity in people with stroke suggests that 

tendon vibration during arm movement might improve cortical function. 

 

4.4.2 Kinematic Results 

 

 

The greater error in hand position and variability of hand speed in stroke 

participants indicated a reduction in tracking performance that is consistent with other 
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studies reporting reduced motor performance in people with stroke (Beer et al., 2000; 

Conrad et al., 2011a, 2011b, 2015; Dewald et al., 1995; Hyngstrom et al., 2010; Kamper 

et al., 2002; Trombly, 1992). The stroke participants also had fewer sub-movements 

during the tracking period, suggesting a prolonged motor planning period. Similar effects 

have been reported in a circle drawing task, in which a longer processing time in stroke 

survivors was related to an increase in perceived task difficulty (Fang et al., 2007).  

The kinematic improvements seen in this study were not statistically different 

across the vibration and sham experiments, suggesting that vibration did not significantly 

improve tracking performance. This contrasts previous results showing significant 

improvements in tracking performance with the application of tendon vibration (Conrad 

et al., 2011b). One explanation might lie in the differences between experimental 

protocols. In this study, the protocol consisted of practice trials (8 trials, ~8 min), Pre-TV 

block (16 trials, ~16 min), TV block (16 trials, ~16 min) and a Post-TV block (16 trials, 

~16 min) with a total of 56 trials taking about 56 minutes. The Conrad and colleagues 

study consisted of practice trials (~8 trials, ~8 min), Pre-TV block (4 trials, ~4  min), TV 

block (4 trials, ~4  min) and a Post-TV block (4 trials, ~4 min) with a total of about 20 

trials taking about 20 minutes, (Conrad et al., 2011b). The extended protocol in the 

current study was done to increase the number of trials for EEG data processing. The 

extended duration of our study might have allowed early consolidation of the task motor 

plan, making it less susceptible to the influence of tendon vibration. Motor plan 

consolidation can begin within 15 minutes after a task (Denny et al., 1955; Rachman & 

Grassi, 1965) and consolidation of a motor plan has been shown to provide resistance to 

interference (Krakauer & Shadmehr, 2006; Muellbacher et al., 2002). It also is possible 
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that participants in our study might have learned the task before the vibration was 

applied, leaving no room for further statistically detectable improvement. Considering the 

differing lengths between the two studies and the fact that motor learning rate follows a 

power law, a floor effect may be the cause of the varying levels of improvements in 

tracking performance due to tendon vibration, Figure 4-8A (Newell & Rosenbloom, 

1981; Snoddy, 1926; Stratton et al., 2007).  

To better understand the time course of motor learning and the effect of tendon 

vibration on tracking performance (SD of hand speed), control and stroke participants 

were separated into two groups, depending on which session they received tendon 

vibration, Figures 4-8B,C. For stroke participants, when tendon vibration is applied early 

in the motor learning process as in the Conrad and colleagues study (Conrad et al., 

2011b), tendon vibration produces a large, statistically detectable improvement in 

tracking performance, Figure 4-8A. While an improvement in tracking performance is 

observable in the stroke group who received tendon vibration during the first session, 

tendon vibration was applied much later in the motor learning process than the Conrad 

and colleagues study (Conrad et al., 2011b) resulting in a smaller improvement in 

tracking performance and a lack of statistical detection, Figures 4-8A,B. When the stroke 

group who received tendon vibration during session 2 was introduced to tendon vibration, 

the participants’ tracking performance was very close to the performance floor leaving 

little room for detectable tendon vibration influence, Figure 4-8B. 

Interestingly, for control participants, tendon vibration seemed to disrupt the 

typical power law curve associated with motor learning and reduce tracking performance 

improvements, Figure 4-8C (Newell & Rosenbloom, 1981; Snoddy, 1926; Stratton et al., 
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2007). Similar to stroke participants, the time at which tendon vibration is applied during 

the motor learning process is critical to the effect’s magnitude in control participants. 

While tracking performance improvements followed the traditional power law curve in 

the control group who received tendon vibration late in the motor learning process (TV 

during second session), tracking performance improvements decreased and displayed a 

linear relationship over time in the control group who received tendon vibration early in 

the motor learning process (TV during first session), Figure 4-8C. 

The opposite effect of tendon vibration on kinematic performance for the control 

and stroke groups may be due to the two groups interpreting and/or utilizing tendon 

vibration differently. In the control group, tendon vibration may be interpreted as noise 

causing a disruption of the motor learning process. This is supported by studies that show 

sensory signals are weighted proportionally to their reliability with larger sensory noise in 

any one modality resulting in poorer task performance (Burns & Blohm, 2010; Ernst & 

Banks, 2002; Faisal et al., 2008; van Beers et al., 1996, 1999). Alternatively, the stroke 

group may be utilizing the tendon vibration (noise) in a stochastic resonance fashion 

(Cordo et al., 1996) which may boost the poor somatosensory signals typically present in 

stroke participants and improve motor learning (Connell et al., 2008). 
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Figure 4-8: Tracking Performance. Tracking period standard deviation of hand speed 

adaptation over time with probable step increase in adaptation due to application of 

tendon vibration. A) Theoretical depiction of typical tracking period standard deviation of 

hand speed adaptation curve and hypothesized TV adaptation curve. When TV is applied 

near the beginning of the adaptation process (Conrad et al., 2011b) there is a larger 
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decrease in standard deviation of hand speed than when TV is applied later (current 

study). B) Stroke standard deviation of hand speed during tracking period. Data was 

averaged across the 5 stroke participants that received TV during session 1 (Vibe First) 

and the across the 5 stroke participants that received the sham TV during session 1 (Sham 

First). The curves above the bar plots display the theoretical tracking period standard 

deviation of hand speed adaptation curve with the point at which TV was applied. C) 

Control standard deviation of hand speed during tracking period. Data was averaged 

across the 5 control participants that received TV during session 1 (Vibe First) and the 

across the 5 control participants that received the sham TV during session 1 (Sham First). 

Data for B and C was normalized (for each participant) by calculating the ratio of each 

condition relative to session 1’s Pre-TV condition. Error bars were withheld for display 

purposes. 

 

 

4.4.3 Cortical Control during Figure-8 Tracking  

 

 

Measures of cortical activity and functional connectivity in controls suggest that 

widespread cortical networks contribute to controlling the arm during a figure-8 tracking 

task. EEG beta band ERD revealed extensive bilateral desynchronization during the 

tracking period, including premotor, motor, sensory and parietal cortices. Previous EEG 

studies examining voluntary thumb, finger, hand, and foot movements report bilateral 

ERDs for complex tasks and lateralized ERD for simpler movements (Pfurtscheller et al., 

1997, 1999; Pfurtscheller & Lopes da Silva, 1999; Pulvermüller et al., 1995). During 

movements of the entire arm, ERD is present in a large portion of the cortex suggesting 

that the number of active muscle groups affects ERD (Pfurtscheller et al., 1999). In 

addition, Pfurtscheller and colleagues (Pfurtscheller et al., 1994) showed ERDs in visual 

and parietal areas during a visual processing task. In the current study, muscle groups of 

the entire arm were active during a visuomotor tracking task which likely contributed to 

the extensive cortical activation.  

The patterns of cortical functional connectivity identified with tb-SCORCH 

indicated that the control group had two nodes with consistent spatial network activity, 
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located bilaterally in sensorimotor and parietal areas (Figure 4-5A). While the cortical 

areas outside of the bilateral sensorimotor and parietal regions may have consistent 

functional connections (e.g. frontal-motor), a majority of the other connections (e.g. 

frontal-frontal, frontal-visual, etc.) varied across participants resulting in a low spatial 

correlation of functional connectivity (tb-SCORCH). This implies that the brain applies 

stronger spatial constraints to functional connectivity patterns of the bilateral 

sensorimotor and parietal areas’ networks than it does to other cortical areas, hinting at 

the integral role sensorimotor and parietal areas play in a visuomotor tracking task. When 

looking at the task-based connectivity of a single electrode (e.g., C3, C4) from within the 

bilateral nodes, connectivity to the opposite sensorimotor and frontal areas appeared to be 

important to the task. Similar sensorimotor/visual networks have been reported in other 

studies involving finger and wrist movements where the frontal lobe, sensory cortex, 

motor cortex, parietal cortex, and occipital lobe function together to control movement 

(Chen et al., 2003; Leocani et al., 1997; O’Neill et al., 2017; Sukerkar, 2010). 

 In contrast to the wide-spread cortical activity and connectivity seen in controls, 

the stroke participants’ cortical activity and connectivity were localized to the non-

lesioned hemisphere (ipsilateral to paretic arm) during tracking. ERD revealed activity 

during the tracking period localized to the premotor, motor, sensory and parietal areas of 

the hemisphere ipsilateral to arm movement. This result supports previous evidence 

indicating that the non-lesioned hemisphere tends to be more active after a stroke and 

possibly assumes the role of the damaged tissues (Cicinelli et al., 1997; Delvaux et al., 

2003; Johansen-Berg et al., 2002; Platz et al., 2000; Rossini et al., 1998; Wang et al., 
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2010). The differences highlighted in Figure 4-3A could indicate the overall effect that 

stroke lesions have on cortical activity.  

When examining patterns of cortical connectivity via tb-SCORCH, the stroke 

participants had lower values than the controls, except for one node located in the 

sensorimotor and parietal areas of the non-lesioned hemisphere (Figure 4-5A). The lower 

functional connectivity seen in stroke survivors may be due to utilization of unique 

cortical networks, arising from cortical reorganization (Cicinelli et al., 1997; Grefkes & 

Fink, 2014). When looking at the task-based connectivity of a single electrode (C3, C4) 

within the bilateral sensorimotor and parietal areas, the lesioned hemisphere’s 

connectivity was altered in stroke while the non-lesioned hemisphere retained a more 

normal connectivity pattern. These connectivity results are supported by studies that 

show decreases in functional connectivity throughout the brain, but mainly in the 

lesioned hemisphere (Crofts et al., 2011; Crofts & Higham, 2009; De Vico Fallani et al., 

2009; Tuladhar et al., 2013). Interhemispheric connectivity was also reduced after stroke, 

which has been reported previously using resting state fMRI and has been shown to 

correlate strongly with functional outcome (Carter et al., 2009). The patterns of cortical 

activity and functional connectivity in the stroke group during figure-8 tracking suggest 

that the non-lesioned hemisphere might contribute more strongly to control of the paretic 

arm.  

 

4.4.4 Increase in ERD Over Time 

 

 

 ERD increased over time in both the control and stroke groups during sham 

testing. In controls, increases in cortical activity were localized to bilateral sensory, motor 
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and parietal areas while in the stroke group, increases were seen mainly in the deficit ROI 

and frontal cortices of the lesioned hemisphere. These increases in activity over time 

might be attributed to motor learning. Previous studies examining cortical oscillations 

during motor tasks have reported increases in alpha and beta band desynchronization 

(cortical activity) over the sensorimotor cortices during and after learning (Boonstra et 

al., 2007; Houweling et al., 2008; Meissner et al., 2018; Pollok et al., 2014; Zhuang et al., 

1997). Further, cortical activity and size of excitable cortex increases up to the point that 

a motor task is explicitly learned, after which the activity and size of excitable cortex 

returns to, or below, baseline levels (Pascual-Leone et al., 1994; Zhuang et al., 1997). 

The absence of an ERD return to baseline in the current study is interesting given the 

long duration of the experiment and the fact that participants practiced the task for an 

extended period before the experiment began. Acquisition of explicit knowledge of the 

tracking task may have been limited by the fact that our tracking task varied on a trial to 

trial basis, varying by the start direction of the target (clockwise or counterclockwise). 

 During the vibration experiments, the increase in ERD over time was not seen in 

either the control or stroke groups, suggesting that tendon vibration affected the motor 

learning process. One explanation is that the increase in cortical activity over time is 

associated with motor memory formation. This idea is supported by studies that have 

applied transcranial magnetic stimulation above the sensorimotor cortices during and 

after learning a motor task and found that initial motor learning is not affected, but that 

memory consolidation of a motor task is lowered under retest conditions (Hadipour-

Niktarash et al., 2007; Richardson et al., 2006; Robertson, 2005; Vidoni et al., 2010). It is 

also possible that vibration facilitated motor learning and allowed the tracking task to be 
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explicitly learned which, would cause the ERD to return to baseline levels. Applying 

transcranial alternating current stimulation at 10 and 20Hz above the motor cortex during 

a serial reaction time task facilitates learning, suggesting that additional input to the 

cortex facilitates motor learning (Pollok et al., 2015). Motor learning also improves after 

a vibration sensory attention task, indicating increased learning rates can be obtained by 

selective modulation of proprioceptive input (Rosenkranz & Rothwell, 2012). While the 

ERD did return to baseline levels after the application of tendon vibration, the control and 

stroke groups had differing ERD responses (Figures 4-3B,C) as well as opposite 

behavioral responses (Figures 4-8B,C) during tendon vibration with tendon vibration 

disrupting the control group’s motor learning; this indicates that the ERD return to 

baseline was not associated with acquisition of explicit knowledge (at least in controls) 

and suggest that tendon vibration may be altering cortical activity via a different process. 

 

4.4.5 Effect of Vibration on Cortical Function 

 

 

 The application of tendon vibration during the figure-8 tracking task had different 

effects on the control and stroke participants. When tendon vibration was applied to 

controls, cortical activity and connectivity in the TV block did not change when 

compared to the Pre-TV block. In contrast, when tendon vibration was applied to the 

stroke participants, cortical activity and connectivity increased in the TV block when 

compared to the Pre-TV block.  

The different responses to tendon vibration between the two groups suggest that 

the sensory signal was processed differently in each group. The lack of activity change in 

the control group could result from the brain correctly interpreting the tendon vibration as 
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noise (i.e. task-irrelevant). Cortical networks are capable of facilitating relevant sensory 

information while inhibiting unrelated sensory inputs (Alain & Woods, 1994; Corbetta & 

Shulman, 2002; Desimone & Duncan, 1995; Everling et al., 2002). A consequence of 

increased sensory noise via tendon vibration during the figure-8 tracking task could be 

poorer behavioral performance (Burns & Blohm, 2010; Ernst & Banks, 2002; Faisal et 

al., 2008; van Beers et al., 1996, 1999) which is exactly what was observed in the control 

group, Figure 4-8C. In a similar way, the increased cortical activity observed in the stroke 

group in response to tendon vibration could reflect an inability to gate task-irrelevant 

sensory information (Alain & Woods, 1994; Corbetta & Shulman, 2002; Desimone & 

Duncan, 1995; Everling et al., 2002). Although people with stroke have deficits gating 

sensory stimuli (Staines et al., 2002), tracking performance was not disrupted by tendon 

vibration in the current study. In fact, tendon vibration normalized stroke cortical 

activity/connectivity and improved behavioral performance, Figures 4-8A,B.  

The flow of additional proprioceptive information via tendon vibration may help 

to boost task-relevant proprioceptive signals of the limb through stochastic resonance, 

and help the system overcome the sensory deficits typically seen in people with stroke 

(Connell et al., 2008). Increased cortical activity in the deficit ROI (Figure 4-3B) and to a 

lesser extent, throughout the lesioned hemisphere (Figure 4-3C) supports this 

interpretation and is consistent with other studies examining the effects of vibration on 

the feet, fingers and arm that have shown similar increases in cortical activity 

(Golaszewski et al., 2006; Radovanovic et al., 2002; Rosenkranz & Rothwell, 2003). 

Further, increased functional connectivity in the deficit electrode (Figure 4-5B) and 

throughout the brain (Figure 4-5C) in stroke participants suggests wrist tendon vibration 
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during a figure-8 tracking task has the capability of normalizing widespread cortical 

networks that span much farther than the focal site of somatosensory interpretation. This 

result supports previous findings showing external stimulation (e.g. transcranial direct 

current stimulation, transcranial magnetic stimulation) can elicit changes in cortical 

connectivity distant from the stimulation site and improve cortical connectivity in stroke 

patients (Bestmann et al., 2005; Grefkes et al., 2010; Grefkes & Fink, 2011; Polanía et 

al., 2011). 

 

4.4.6 Cortical Areas Correlated with Impairment 

 

 

 Whole brain cortical activity and connectivity was positively correlated with 

upper extremity motor FMA scores in the lesioned hemisphere and negatively correlated 

with FMA in the non-lesioned hemisphere. These trends suggest that outcomes of stroke 

improve as the lesioned/non-lesioned hemisphere becomes more/less active or 

functionally connected, and that more symmetric cortical activity/connectivity patterns 

result in higher functional outcomes. Shifts from asymmetrical to symmetrical 

hemispheric cortical organization with training are associated with clinical improvements 

(Cicinelli et al., 1997; Taub et al., 2011).  

 Interestingly, cortical activity/connectivity in medial regions of the cortex was 

most strongly associated with impairment after stroke. The paracentral, posterior 

cingulate, precuneus and superior parietal gyri are higher order association areas and 

have been associated with a variety of functions including visuo-spatial imagery, episodic 

memory, self-processing, consciousness, attention, visuo-motor integration, audio-visual 

integration and motor control (Cavanna & Trimble, 2006; Culham & Valyear, 2006; 



152 
 

 
 

Iacoboni & Zaidel, 2004; Leech & Sharp, 2014; Molholm et al., 2006; Pearson et al., 

2011; Wagner et al., 2005). These areas are highly connected and constitute a central hub 

in the brain’s integrative pathways (Hagmann et al., 2008). Functional outcomes after 

stroke are dependent on lesion location and connectedness of the lesioned area (Honey & 

Sporns, 2008; Kalinosky, 2016; Kalinosky et al., 2017). Integration areas are likely to be 

affected after stroke, regardless of lesion location due to their underlying connectedness 

and the connectedness after stroke appears to play a critical role in recovery of function. 

 

4.4.7 Study Limitations 

 

 

The current experimental design controlled for several confounding factors, such 

as motor learning, ordering effects, placebo effects, fatigue and consistent artifact 

removal. However, other factors may have impacted the observed changes in beta band 

activity and connectivity including stabilization via trunk muscles, fatigue in lower 

functioning stroke participants, EEG contamination by muscle activity and exclusion of 

true EEG signals. During the study, participants were seated in a chair but were not 

otherwise restrained. Although participants were monitored throughout the experimental 

sessions for trunk movements, with none noted, the setup may have allowed the control 

and stroke groups to engage stabilizing trunk muscles differently, eliciting changes in 

cortical activity not specifically tied to the arm movement. Physical fatigue has also been 

shown to alter cortical activity (Ng & Raveendran, 2007). While participants were given 

breaks throughout the experiment to minimize fatigue, a few of the lower functioning 

stroke participants reported being tired during the experiments. In spite of this, the stroke 

group’s movement kinematics still improved during the stroke-Sham session and there 
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were similar trends in cortical activity and connectivity between the control-Sham and 

stroke-Sham sessions, indicating that fatigue played a minimal role. Other potential 

confounding factors arose in the EEG data processing pipeline. During analysis of the 

EEG data, AMICA was performed across blocks, sessions, participants and groups to 

ensure consistent artifact removal. It is possible that the AMICA algorithm did not fully 

separate signals and artifacts, resulting in the removal of some cortical signals and/or the 

inclusion of some artifactual components in the subsequent source imaging and analysis. 

Another possible limitation centers around the choice of reference electrode and the 

impact of volume conduction on the coherence analysis used to characterize functional 

connectivity. Coherence is dependent on the reference electrode or referencing scheme 

(common average, linked mastoids, etc.) (Essl & Rappelsberger, 1998; Nunez et al., 

1999; Rappelsberger, 1989). The use of a single electrode as the reference can inflate or 

deflate coherence values depending on the level of activity at the reference electrode; 

with higher values at the reference electrode being detrimental to coherence (Zaveri et al., 

2000). Rappelsberger (Rappelsberger, 1989) suggests using a reference averaging 

technique, such as linked earlobes, to better approximate a zero-potential reference and 

mitigate this issue. While the common average reference provides an alternative 

averaging technique, the tendency for EEG signals to be synchronized over large areas of 

the scalp can result in a common average reference remaining high. Coherence is also 

impacted by volume conduction due to spatial blurring of cortical point sources measured 

at the scalp. Volume conduction produces significant coherence between EEG electrodes 

that can extend over distances larger than 8cm (Nunez et al., 1997) even if the cortical 

regions immediately below the electrodes are not functionally connected. Imaginary 
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coherence (Nolte et al., 2004) and orthogonalization techniques (Brookes et al., 2012; 

Hipp et al., 2012) can be used to mitigate this issue.  In the current study, we chose to 

examine task-based coherence (Rappelsberger et al., 1994) which effectively subtracts 

out the baseline level of coherence, along with the volume conduction effect, from the 

task period coherence (Chen et al., 2003). While the subtraction approach significantly 

reduced the impact of the volume conduction artifact on the coherence, it resulted in near 

zero task-based coherence values for adjacent electrodes due to the dominant effect of 

volume conduction on nearby electrodes (Figures 4-5 and 4-6). The impact was 

minimized, however, by comparing the same connections across tasks rather than 

different connections within tasks.  

Lastly, examining the short-term effects of tendon vibration in chronic stroke 

participants may have failed to illuminate the full repertoire of tendon vibration benefits 

during arm movements. While the present results suggest that tendon vibration improves 

cortical activity/connectivity and motor learning rate in chronic stroke participants, 

tendon vibration did not seem to alter the attainable motor performance level nor sustain 

cortical activity/connectivity improvements after removal. When long-term training 

studies apply pure sensory training or electrical stimulation before physical therapy 

functional outcomes improve when compared to physical therapy alone (Conforto et al., 

2007; Hillier & Dunsford, 2006); this suggests that prolonged exposure to tendon 

vibration in conjunction with therapy may be necessary to sustain cortical improvements 

as well as generate overall performance increases in the chronic stroke participants. 

Unlike chronic stroke patients, the central nervous system of acute stroke patients has 

been recently damaged and is in the process of relearning and reorganizing (Cicinelli et 
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al., 1997; Delvaux et al., 2003; Rossini et al., 1998; Saur et al., 2006; Wang et al., 2010). 

Applying tendon vibration during motor control throughout this critical phase may help 

cortical networks relearn more normal patterns of activity/connectivity and potentially 

improve attainable motor performance levels.  

 

4.5 Conclusion 

 

 

The application of vibration to the wrist flexor tendons during hand tracking 

increased cortical activity and connectivity of the deficit regions in people with stroke. 

The increases in cortical activity and connectivity with vibration normalized patterns of 

activity and connectivity. These findings suggest that reactivation of normal cortical 

networks via tendon vibration may be useful during physical rehabilitation of stroke 

patients.  
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CHAPTER 5: SUMMARY OF RESULTS AND FUTURE DIRECTIONS 

 

 

5.1 Summary 

 

 

Throughout this dissertation, we examined sensorimotor networks using EEG. 

Using EEG, with its high temporal resolution, along with source localization procedures 

and advanced connectivity analysis techniques, we were able to extensively probe the 

sensorimotor network in stroke survivors and controls. We have provided evidence that 

suggest sensorimotor networks are involved in the control of arm stability, cortical 

networks reorganize to more asymmetric, local networks after stroke, and tendon 

vibration enhances sensorimotor network activity and connectivity during motor control 

after stroke. This dissertation was among the first studies using EEG to characterize the 

high-speed temporal dynamics of sensorimotor networks following stroke. This new 

knowledge has led to a better understanding of how sensorimotor networks function 

under ordinary circumstances as well as extreme situations such as stroke and revealed 

previously unknown mechanisms by which tendon vibration improves motor control in 

stroke survivors, which will lead to better therapeutic approaches. This chapter 

summarizes the findings previously described throughout the dissertation and provides 

avenues of future research. 

 

5.1.1 Aim 1: Determine if Cortical Networks Are Involved in Visuomotor Control         

of Arm Stability 

 

 

The first objective of this dissertation was to understand how healthy 

sensorimotor networks function. To accomplish this, we examined sensorimotor 

networks in controls during upper extremity tasks designed to determine what degree the 
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sensorimotor network is involved in arm stabilization. The results showed that 

maintenance of arm position free of perturbations, co-contraction of the arm, volitional 

arm movements, and stabilization of the arm are associated with different patterns of 

brain activation and connectivity. Cortical activity in the sensory, motor and visual areas 

during arm stabilization was similar to that during volitional movement of the arm and 

was larger than the activity during co-contraction of the arm and an arm hold with no 

perturbations. Similar cortical activity between volitional arm movements and 

stabilization of the arm suggested the brain might be generating volitional movement 

commands to stabilize the arm. On the other hand, stabilization of the arm had a higher 

level of network connectivity between the sensorimotor and visual regions when 

compared an arm hold with no perturbations, co-contraction of the arm, and volitional 

arm movement. The difference in cortical connectivity between tasks might be attributed 

to an underlying visuomotor error network that utilizes visual error information to update 

the motor commands of the arm. The comparison of cortical activation and connectivity 

under different conditions indicates the involvement of cortical networks that contribute 

to visuomotor control of arm posture.  

 

5.1.2 Aim 2: Characterize the Reorganization of Resting State Cortical Networks      

After Stroke Using EEG 

 

 

After normal sensorimotor network function had been characterized in controls, 

we characterized the baseline (resting state) changes that occur in sensorimotor networks 

after stroke. The results indicated that the brain displays a shift from dominant alpha/beta 

band networks towards higher frequency gamma networks after a stroke. Decreases in 

stroke network cortical activity were found globally for the alpha band and locally above 
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the lesioned hemisphere for the beta band; both were correlated with functional ability. 

Asymmetries in stroke network power were also noted for the 15-50Hz frequencies with 

less power found in the lesioned hemisphere. Brain networks within the alpha and beta 

bands exhibited less connectivity after stroke while one network in the gamma band 

displayed increased connectivity after stroke. Stroke related changes in cortical activity 

and connectivity showed the largest effect in the lesioned hemisphere. These findings 

suggest that stroke lesions cut pathways within the brain and cause network 

reorganization into more local, asymmetric networks. 

 

5.1.3 Aim 3: Determine if Cortical Network Mechanisms Underlie Improved              

Arm Tracking Performance in Chronic Stroke Survivors                                       

Due to Wrist Tendon Vibration 

 

 

Once we had a good understanding of how sensorimotor networks function in 

controls and how stroke disrupts the baseline state of sensorimotor networks, we 

examined stroke survivors’ sensorimotor networks during a visuomotor tracking task 

(active state of control) with an emphasis on determining if improvements in motor 

performance of chronic stroke survivors associated with tendon vibration are due to 

sensorimotor network mechanisms. We found that the application of vibration to the 

wrist flexor tendons during hand tracking increased the cortical activity and connectivity 

of the deficit regions in the stroke group and do not appear to persist after vibration has 

ended. The increases in stroke cortical activity and connectivity with vibration trend 

towards normal patterns of activity seen in the neurologically intact group suggesting 

improved cortical function is associated with enhanced proprioceptive feedback. Even 

though cortical changes were associated with the application of tendon vibration during 
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tracking, no improvements in behavioral performance were found to be associated with 

tendon vibration. The disconnect between the cortical improvements and lack of 

performance improvements may be due to a motor learning floor effect. These findings 

suggest that reactivation of normal cortical networks via tendon vibration may be useful 

during physical rehabilitation of acute stroke patients and during long term physical 

rehabilitation of chronic stroke patients.  

 

5.2 Integration of Results 

 

 

 Taken separately, each of this dissertation’s aims offers a slightly different yet 

valuable window from which to view the sensorimotor network. However, when 

information gleaned from all three aims is combined, one appreciates how complex and 

adaptable the sensorimotor network is and how important the sensorimotor network is to 

everyday life. While its existence is rarely acknowledged in daily life, its presence is felt 

in nearly every activity we do throughout the day, including such simple tasks as 

maintenance of arm posture. Although its presence or lack thereof is often not recognized 

until something drastically alters functionality, such as stroke, its ability to reorganize 

after insult prevents a total loss of function. The remarkable ability of the sensorimotor 

network to reorganize is highlighted when an additional sensory stimulus, such as 

vibration, is introduced to damaged sensorimotor systems. Even after years of 

functioning in its adopted, reorganized state, the sensorimotor network quickly shifts 

back to a state that resembles what is seen before any disruption occurred when 

additional sensory stimuli are supplied. The ability or even tendency of the sensorimotor 

network to return to natural patterns with such a simple push suggests how engrained 
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such natural patterns are in cortical networks and offer a promising method of how to 

correct dysfunctional cortical network patterns. The ability of outside stimuli to alter or 

correct dysfunctional patterns of cortical networks lends rationale to cortical modeling 

studies such as brain controllability that suggests altering activity in certain nodes of the 

brain via some external stimulus may be able to shift the cortex into different cortical 

states (Gu et al., 2015; Muldoon et al., 2016). By generating brain controllability models 

based off large cortical datasets from databases such as the Human Connectome Project 

(Marcus et al., 2011), it may one day be possible to apply directed stimulation to correct 

irregular cortical network patterns and function. 

 

5.3 Future Directions 

 

 

While this dissertation has introduced new important knowledge to the field of 

neural/neurorehabilitation engineering, there is still an enormous amount of research to 

be done in order to fully understand the functioning of sensorimotor networks, how 

stroke alters sensorimotor networks and what therapeutic techniques should be applied to 

correct the deficits to sensorimotor networks seen post stroke. The following sections 

highlight avenues of research that have stemmed from this dissertation and seek to 

answer some of these unanswered questions. 

 

5.3.1 Arm Stabilization 

 

 

Stabilization of the arm during visuomotor control of arm posture engages cortical 

control mechanisms that operate in concert with co-contraction of antagonistic muscles 

and possibly spinal/supraspinal reflex activity to ensure arm stabilization. We 
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hypothesize that the intermittent voluntary corrections generated by the cortex are the last 

mechanism recruited to stabilize the arm and are only engaged after co-contraction of 

antagonistic muscles and spinal/supraspinal reflex activity mechanisms prove insufficient 

to adequately stabilize the arm. Future studies could test this hypothesis by utilizing 

multiple tasks with varying degrees of stabilization difficulty to determine the level of 

stabilization challenge at which cortical activity and connectivity occurs. We expect a 

graded increase in co-contraction as well as spinal/supraspinal reflex activity up to a 

critical point, after which cortical networks would be recruited to ensure stability. 

In future studies, it would also be interesting to examine how stabilization of the 

arm changes in various disease populations such multiple sclerosis, myelopathy and 

stroke. Within these populations, the central and/or peripheral nervous system is damaged 

resulting in poor motor coordination and stabilization (Conrad et al., 2011a, 2011b, 

2015). The mechanism to ensure end point stabilization in these populations may still be 

intermittent voluntary corrections mediated by a sensorimotor error network, although it 

may be dysfunctional. Alternatively, control may be relegated to lower level, but 

functionally intact mechanisms associated with spinal/supraspinal reflexes or co-

contraction of antagonistic muscles that may not adequately prevent instability. Previous 

studies (Conrad et al., 2011a, 2011b, 2015) in people with stroke have shown that the 

application of tendon vibration improves motor control and endpoint stabilization while 

not altering spinal reflex activity (Gadhoke, 2011) suggesting that sensory input at the 

cortical level may be a key factor in arm end point stabilization. 
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5.3.2 Tendon Vibration 

 

 

Resting state cortical networks are disrupted after stroke and show a 

reorganization to more asymmetric, local networks. Understanding the changes that occur 

to cortical networks after stroke is only the first step in providing effective therapies for 

stroke rehabilitation. Previous studies in people with stroke have shown that the 

application of tendon vibration and electrical stimulation improves spasticity, balance 

control, arm tracking, arm stabilization and hand function (Celnik et al., 2007; Conrad et 

al., 2011a, 2011b, 2015; Levin & Hui-Chan, 1992; Priplata et al., 2006; Wu et al., 2006). 

In Aim 3 of this dissertation, we demonstrated how tendon vibration can cause a return to 

near normal levels of cortical activity and connectivity in stroke survivors during a motor 

control task. It would be interesting to examine the effect of tendon vibrations in the 

resting state of stroke survivors to determine if its effect is state dependent (task-based 

only) or ubiquitous. If the effect of tendon vibration is ubiquitous, it may act to shift the 

high frequency gamma band resting state networks seen in stroke survivors back to the 

typical alpha/beta band resting state networks found in controls. 

Application of tendon vibration to the wrist forearm flexor tendons during a motor 

control (figure-8 tracking) task normalizes cortical activity and connectivity in chronic 

stroke survivors. We hypothesize that applying tendon vibration to stroke survivors 

during training sessions over an extended period, weeks to months, may result in larger 

functional improvements compared to training without tendon vibration. The 

normalization of cortical activity/connectivity with application of tendon vibration would 

continuously drive the body in a more appropriate fashion, ultimately resulting in better 

functional performance. Previous studies lend evidence for this hypothesis, showing that 
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pure sensory training and electrical stimulation before physical therapy sessions can lead 

to improved functional output after multiple weeks of training (Conforto et al., 2007; 

Hillier & Dunsford, 2006). 

While tendon vibration during motor control normalizes cortical activity and 

connectivity in chronic stroke survivors during application, normalization of cortical 

activity and connectivity do not persist after vibration is terminated. Applying tendon 

vibration to stroke survivors in the acute phase may circumvent this issue. Within the 

acute stroke group, the central nervous system has been recently damaged and is in the 

process of relearning and reorganizing (Cicinelli et al., 1997; Delvaux et al., 2003; 

Rossini et al., 1998; Saur et al., 2006; Wang et al., 2010). Applying tendon vibration 

during motor control throughout this critical phase of relearning and reorganization may 

help push cortical networks towards more normal patterns of activation and connectivity. 

If cortical networks controlling the body after stroke can be normalized in the acute 

phase, there would be less of a need for cortical reorganization; this could lead to a 

reduced computational load on extraneous cortical areas used during cortical 

reorganization and potentially result in faster, better recovery.  

It is yet to be seen whether tendon vibration training studies in the chronic stroke 

population or the application of tendon vibration in the acute stroke phase will lead to 

long-term improvements in functional outcomes. If improvements in performance cannot 

be maintained outside of training, a simple wearable vibration device could be designed 

and fixed to the patient’s arm allowing for improved functional outcomes when 

performing activities of daily living.  
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APPENDIX A: MANIPULANDUM 

 

Design 

 

 

The specific hypotheses to be addressed in this study required a method of 

measuring hand position in space while being able to apply perturbations to the hand. 

Since EEG is highly susceptible to electromagnetic noise and was to be recorded while 

performing the experiments, a system had to be designed and built that would minimize 

electrical interference. To achieve this, a passive manipulandum system was developed to 

track hand position in three-dimensional space, Figure A-1. The device was constructed 

using 2.5x2.5cm extruded aluminum (80/20 Inc., Columbia City, Indiana) and contained 

a manipulandum with three rotational joints to allow unrestricted movement in the 

horizontal plane and one translational joint to allow movement in the vertical direction. 

Each joint was equipped with an optical encoder to capture the three-dimensional 

location of the hand (Rotational Joint 1: CS15-2500, Celesco Transducer Products, Inc., 

Chatsworth, CA; Rotational Joint 2: CS15-2500, Celesco Transducer Products, Inc., 

Chatsworth, CA; Rotational Joint 3: HS35-5000, BEI Sensors, Goleta, CA; Translational 

Joint: SE1-50, Celesco Transducer Products Inc., Chatsworth, CA). While seated at the 

device, the participant’s forearm was secured to an Ultra High Molecular Weight 

Polyethylene tray (43cm x 11cm) located at the end of the manipulandum. A load cell 

(not depicted) was located under the tray and used to measure force (Force Transducer: 

LC203-500, OMEGA Engineering Inc., Norwalk, CT). The device has the option to 

provide variable arm support to the participant via a weight stack that can be attached to a 

pulley system located at the translational joint. However, for the experiments described in 
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this dissertation, the translational joint was fixed preventing movements in the vertical 

direction. Perturbations to the position of the arm can be generated by mounting magnets 

on the arm support tray and base of the passive manipulandum frame; perturbation 

strength can be altered by adjusting the distance between the two magnets. An opaque 

screen (86.5cm x 68.5cm) was mounted above the device’s manipulandum onto which 

experimental information was displayed using a projector. The device was integrated 

with LabVIEW 2010 SP1 (National Instruments Corporation, Austin, Texas) to record 

sensor output and generate the experimental display.  

 

 

Figure A-1: Diagram of Manipulandum. Illustration of the passive manipulandum system 

as seen from the side (A) and from above (B) with a detailed description of the 

manipulandum (C). The projector is used to display experimental information generated 

with LabVIEW on the opaque screen located above the participants arm. The rotational 

joints and translational joint are equipped with optical encoders to allow for calculation 

of hand position in three-dimensional space. Magnets can be mounted on the passive 

manipulandum to generate force fields. Varying levels of arm support can be supplied by 

way of the weight stack. 
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Recording Device Output 

 

 

In order to read the sensor output into LabVIEW, a National Instruments USB-

6229 DAQ board (National Instruments Corporation, Austin, Texas) was used. The 

encoder data from rotational joints 1 and 2 were read into LabVIEW as angular encoder 

data using the 2 counter channels available on the DAQ. The encoder data from rotational 

joint 3 was converted into a 16-bit binary count using a counting circuit and read into 

LabVIEW as 16 lines of digital input. The encoder data from the translational joint was 

converted into a voltage (using a binary counting circuit, digital to analog converter 

circuit, and amplifier circuit) and read into LabVIEW as a single line of analog input. The 

load cell data was amplified and then read into LabVIEW using a single line of analog 

input. Data was read into LabVIEW in this fashion due to the limitations of the DAQ 

board (only 2 angular encoder counter channels) and the inability for LabVIEW to 

simultaneously record data from multiple DAQ boards. As well as recording sensor 

output from the device the DAQ board also has the capability of recording other analog 

signals (e.g. EMG). Calibration curves for the translational joint linear encoder data and 

load cell data are shown in Figure A-2. 

 

 

 



199 
 

 
 

 

Figure A-2: Calibration Curves. Calibration curves for the translational joint linear 

encoder data (A) and load cell data (B). The translational joint was moved through its 

entire range of motion with 0cm and 50cm representing the lowest and highest points 

along its path, respectively. The load cell was tested within its compression range by 

adding weights to the arm tray. The load cell’s tension range was not calibrated; however, 

the load cell does have a linear relationship between voltage and force which can be 

extended into this range. 

 

 

LabVIEW 

 

 

Along with reading in the device’s sensor data and various other analog data 

required during an experiment, LabVIEW was also used to generate the experimental 

scenes/instructions displayed to the participant using the projector, synchronize multiple 

systems (e.g. EEG) throughout the experiment and save any experimental data for later 

processing. The LabVIEW code used in conjunction with the device was broken up into 

two programs. The first LabVIEW program, ‘main’ program, was located on the 

experimenter’s computer, accepted experimenter input (e.g. number of trials, condition 

type, etc.) and displayed experimental information (e.g. current trial, device sensor 

information, etc.) to the experimenter. The ‘main’ program was broken up into three 

sections: 1) continuously reads data acquired by the DAQ board, converts all rotational 

joint data to angles, calculates three-dimensional hand position based off of joint angles 
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and translational joint displacement and generates any dynamic task requirements (e.g. 

visual perturbations to hand position, moving target locations, feedback of EMG data, 

etc.) 2) determines the order of the experimental conditions to display (e.g. baseline, 

stabilization period, tracing period, vibration on/off, etc.), the timing between conditions 

and generates a synchronization pulse sent to one of the DAQ board’s digital output 

channels 3) saves experimental data (hand position, target location, experimental 

condition, etc.) to a text file at the end of an experimental run. The second LabVIEW 

program was a sub VI that accepted experimental information from the ‘main’ program 

(e.g. hand location, condition, etc.) and generated the scenes that were displayed to the 

participant through the projector.  
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APPENDIX B: TENDON VIBRATOR 

 

  In order to apply vibrations to the forearm flexor tendons during experiments, a 

custom-made tendon vibrator was constructed similar to the design illustrated in Aman’s 

masters thesis (Amans, 2009). The vibrator consisted of 5g offset mass (cold-finished 

CA360 brass) that rotated about the shaft of a DC-micromotor (1319T012SR, Faulhaber 

Group, Clearwater, FL) and was enclosed in a hollow Teflon rod (3cm x 1.9cm). To 

minimize the effect of electromagnetic noise from the vibrator on EEG data, the vibrator 

and was encased by a thin aluminum sheet that was electrically grounded and concealed 

in electrical tape, Figure B-1A. The weight of the electrically grounded vibrator was 

approximately 23g. The frequency of vibration was adjusted by altering the voltage sent 

to the device using a motion controller (MCDC3006S, Faulhaber Group, Clearwater, FL) 

interfaced with LabVIEW through a serial port. After adding the 5g offset mass to the 

shaft of the motor, a calibration curve was computed to determine the true frequency of 

motor operation depending on the motion controller commands, Figure B-1B.  

 

 

Figure B-1: Tendon Vibrator. A) Tendon vibrator encased by a thin aluminum sheet that 

was electrically grounded and concealed in electrical tape. B) Calibration curve for the 

motion controller and tendon vibrator setup. Revolutions per minute of the DC-

micromotor with the 5g offset mass was recorded using a tachometer.   
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APPENDIX C: INDEPENDENT COMPONENT ANALYSIS 

 

Independent component analysis (ICA) is blind source separation technique that 

attempts to decompose data into statistically independent components (Puce & 

Hämäläinen, 2017). When boiled down, ICA is basically solving for a mixing matrix, 𝑨, 

in equation C.1, 

𝒙 = 𝑨𝒔        (C.1) 

where 𝒙 is a matrix of observations and 𝒔 is a matrix of independent components. Once 𝑨 

is known, it can be inverted to create an unmixing matrix, 𝑾, and used to calculate the 

independent sources, 𝒔,  using equation C.2. 

𝒔 = 𝑾𝒙        (C.2) 

To solve ICA equations C.1 and C.2, ICA algorithms try to maximize the 

independence of the underlying components (sources) by examining the kurtosis, 

negentropy, mutual information or likelihood estimation of sources with two main 

assumptions: underlying sources are independent and sources have non-gaussian 

distributions (Hyvärinen & Oja, 2000). The type of data and the way in which the data is 

introduced to the ICA algorithm has implications on the resulting properties of 

independent components (e.g. temporally independent, spatially independent, 

spatiotemporally independent, etc.) and how they are interpreted (Brookes et al., 2011; 

Eichele et al., 2008; Hyvärinen & Oja, 2000; O’Neill et al., 2017).  

In the case of this dissertation, EEG data were separated into signal and 

artefactual temporally independent components using an Adaptive Mixture Independent 

Component Analysis (Palmer et al., 2008). Representative examples of EEG source 

components (Figure C-1), eye related components (Figure C-2), EMG components 
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(Figure C-3) and electrical noise components (Figure C-4) were identified by distinct 

characteristics and shown below (Delorme et al., 2012; Makeig et al., 2004; Mognon et 

al., 2011; Puce & Hämäläinen, 2017). Figures C-1, C-2, C-3, and C-4 were generated 

using ICA component data from Aim 1. Aim 1 examined young healthy adults and 

consisted of point-to-point reach/stabilization tasks with 40 trials. Each trial was epoched 

so that it consisted of a baseline period (-3 to 0s before target presentation) and target 

acquisition/stabilization period (0-6s after target presentation. When the target was 

presented, participants moved their hand as quickly and accurately as possible from the 

home position to the target location. For a more detailed description of the task, please 

refer to methods section in Aim 1. 

 

 

Figure C-1: Typical EEG Source Components. A) ICA component most likely related to 

the EEG evoked response. An ERP can be seen in the average of the component activity 

over trials.  B) ICA component most likely related to the EEG induced response. Source 

power is larger in the baseline period (-3s to 0s) than after the cue to move (0s to 6s). ICA 

components representing EEG sources typically have smooth spatial topographies (can be 

dipolar in nature) with larger activity over central regions of the scalp. Activity across 

trials is usually distributed equally with no single trial dominating the component. Peaks 

in the frequency spectrums are seen in the Alpha (8-12Hz) and Beta (12-30Hz) bands. 

Top Left: Topography plot of the components, represents the column of the mixing 

matrix associated with the component; Top Right: Trial wise component voltage with 

component ERP underneath; Bottom: power spectrum of component. 
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Figure C-2: Typical Eye Related Components. A) ICA component most likely related to 

eye blinks. Spatial activity located in the frontal region with large spikes in component 

activity seen at various times across trials.  B) ICA component most likely related to 

lateral EOG. Dipolar spatial activity located in the frontal region with only a few trials 

dominating the activity in the component. ICA components representing eye artefacts 

typically have smooth spatial topographies (can be dipolar in nature) with large activity 

located near the frontal regions. Activity across trials is usually sporadic and only a few 

trials may dominate the component activity. Frequency spectrums tend to show an 

exponential decrease in power from the lower frequencies to the higher frequencies. Top 

Left: Topography plot of the components, represents the column of the mixing matrix 

associated with the component; Top Right: Trial wise component voltage with 

component ERP underneath; Bottom: power spectrum of component. 

 

 

 

Figure C-3: Typical EMG Source Components. ICA components most likely related to 

left (A) and right (B) EMG. Frequency band power is unusually large in the higher 

frequency bands. ICA components representing EMG artefacts typically have smooth 

spatial topographies (can be dipolar in nature) with larger activity over the periphery. 

Activity can be distributed equally across trials if the component represents a muscle 

consistently activated during the task, but activity can also be large in only a few trials 

indicating a stray movement during the experiment. The frequency spectrums tend to 
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have high power in the higher frequency bands breaking the traditional 1/f curve seen in 

EEG data. Top Left: Topography plot of the components, represents the column of the 

mixing matrix associated with the component; Top Right: Trial wise component voltage 

with component ERP underneath; Bottom: power spectrum of component. 

 

 

 

Figure C-4: Typical Electrode Noise Components. A) ICA component most likely related 

to electrode movement. The spatial topography indicates the component is localized to 

one electrode with component activity being dominated by only a few trials. B) ICA 

component most likely related to a noisy electrode. The spatial topography indicates the 

component is localized to one electrode with the frequency spectrum indicating no clear 

pattern of EEG activity. ICA components representing electrode artefacts typically have 

spatial topographies localized to one electrode. Activity across trials can either be 

dominated by a few trials if movement is the culprit or distributed across trials if the 

electrode impedance is high. The frequency spectrums can seem random and meaningless 

or show an exponential decrease depending on the resulting type of electrode artefact. 

Top Left: Topography plot of the components, represents the column of the mixing 

matrix associated with the component; Top Right: Trial wise component voltage with 

component ERP underneath; Bottom: power spectrum of component.  
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APPENDIX D: SPATIALLY CORRELATED COHERENCE 

 

Spatially correlated coherence (SCORCH) is a metric we developed to quantify 

spatial patterns of coherence. Although coherence is listed in the name, other measures of 

connectivity could be used in place of coherence. The need for a new metric arose when 

we realized that examining the connectivity (coherence) between numerous regions 

(matrix: number of regions by number of regions) was difficult to display and interpret at 

face value with each region consisting of a unique connectivity profile (map). When 

SCORCH is applied to a data set, it reduces the connectivity matrix (number of regions 

by number of regions) to a vector (number of regions by 1) summarizing how each 

region’s connectivity profile relates (correlates) to some predefined gold standard 

connectivity profile. 

For this dissertation, specifically Aim 3 data, task-based coherence (connectivity) 

of 65 channel EEG data were analyzed. In this case, SCORCH quantified how well a 

participant’s single-electrode connectivity map matched the ground truth connectivity 

map for that electrode (see following). Aim 3 data was used in the following example 

calculation of a single control participant’s SCORCH, Figure D-1. Aim 3 examined 

stroke survivors and an age matched control group as they performed figure-8 tracking 

tasks. During the figure-8 tracking tasks, a target moved in a figure-8 pattern formed by 2 

virtual side-by-side circles. As the target moved, participants were instructed to follow 

the target, attempting to keep the cursor in the center of the target. For a more detailed 

description of the task, please refer to methods section in Aim 2. 

The first step in calculating SCORCH was to generate a ground truth data set. The 

ground truth data set was calculated by averaging the connectivity across control 
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participants (matrix size: 65x65). We then spatially correlated each single-electrode 

connectivity map (65x1 array for each electrode) with the respective single-electrode 

connectivity map from the ground truth connectivity matrix defined across control 

participants. This resulted in a SCORCH array (65x1) with a single correlation 

coefficient value for each single-electrode connectivity map. An electrode displaying a 

high value of SCORCH indicates that its global connectivity topography (i.e. network 

connectivity pattern) resembles that seen in the ground truth data set whereas a low value 

of SCORCH would imply the opposite. 

 

 

Figure D-1: Spatially Correlated Coherence Work-Flow. Diagram of spatially correlated 

coherence (SCORCH) calculation for a representative control participant from Aim 2. 

Coherence maps for a control participant (C2) and control group average (gold standard) 

display the EEG electrode cap layout with electrode coherence topographies located at 

each electrode location. The top of the electrode cap layouts and electrode coherence 

topographies represent the frontal regions of the scalp whereas the left side represents the 

left side of the scalp. Single electrode coherence topography maps were extracted from 

the control participant and the gold standard electrode layouts and correlated. The 

resulting correlation coefficient was stored, and the process was repeated for all electrode 

locations. 
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