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Abstract 
Almost half of lowland tropical forests are at various stages of regeneration following deforestation or 

fragmentation. Changes in tree communities along successional gradients have predictable bottom‐up effects on 

consumers. Liana (woody vine) assemblages also change with succession, but their effects on animal succession 

remain unexplored. Here we used a large‐scale liana removal experiment across a forest successional 

chronosequence (7–31 years) to determine the importance of lianas to ant community structure. We conducted 

1,088 surveys of ants foraging on and living in trees using tree trunk baiting and hand‐collecting techniques at 34 

paired forest plots, half of which had all lianas removed. Ant species composition, β‐diversity, and species 

richness were not affected by liana removal; however, ant species co‐occurrence (the coexistence of two or 

more species in a single tree) was more frequent in control plots, where lianas were present, versus removal 

plots. Forest stand age had a larger effect on ant community structure than the presence of lianas. Mean ant 

species richness in a forest plot increased by ca. 10% with increasing forest age across the 31‐year 

chronosequence. Ant surveys from forest >20 years old included more canopy specialists and fewer ground‐

nesting ant species versus those from forests <20 years old. Consequently, lianas had a minimal effect on 

arboreal ant communities in this early successional forest, where rapidly changing tree community structure was 

more important to ant species richness and composition. 

1 INTRODUCTION 
Tropical forests contain more than half of all terrestrial biodiversity yet occupy a relatively small area of Earth 

(Raven, 1988). Deforestation and fragmentation remain major threats to tropical biodiversity, and ca. 30% of 

neotropical forests are in early stages of secondary succession (Chazdon et al., 2016). Although plant community 

succession is well characterized, and conspicuously shapes animal communities (Bihn, Verhaagh, Brändle, & 

Brandl, 2008; Dunn, 2004; Finegan, 1996; Pielou, 1966; Smith, 1928; Sousa, 1979), the mechanisms by which 

specific habitat characteristics change animal communities during succession are poorly understood. 

Tropical forest succession is characterized by changes in the relative abundance, size, and species composition 

of trees and vines (Huston & Smith, 1987; Letcher & Chazdon, 2009; Uhl, Buschbacher, & Serrao, 1988). 

Succession alters the physical structure of a forest via increased tree biomass, height, and crown complexity 

(Aide, Zimmerman, Herrera, Rosario, & Serrano, 1995; Guariguata & Ostertag, 2001). At the same time, tree and 

liana (woody vine) stem density typically decreases during later stages of forest succession (Chazdon 

et al., 2007). These changes affect habitat structure and species interactions (Purschke et al., 2013) with 

predictable effects on animal community structure (Bihn et al., 2008; Dunn, 2004; Smith, 1928). Whereas tree 

size and species composition have demonstrated bottom‐up effects on animal succession (Campos, Vasconcelos, 

Ribeiro, Neves, & Soares, 2006; Klimes et al., 2012; Ribas, Schoereder, Pic, & Soares, 2003), the role of lianas in 

this context is unclear. 

Lianas represent a substantial proportion of plant stem density, plant diversity, and physical complexity in 

lowland tropical forests (Gianoli, 2015; Ingwell, Wright, Becklund, Hubbell, & Schnitzer, 2010; Lai, Hall, Turner, & 



van Breugel, 2017; Putz, 1984; Schnitzer & Bongers, 2002; Yanoviak & Schnitzer, 2013). Lianas provide key 

resources to arboreal animals, including food and nest sites (Blüthgen et al., 2000; Tanaka & Itioka, 2011). Thus, 

changes in liana abundance and species composition during succession (Barry, Schnitzer, van Breugel, & 

Hall, 2015; Lai et al., 2017; Letcher & Chazdon, 2009) should have substantial bottom‐up effects on animal 

community structure via changes in liana‐based resources (Estrada‐Villegas & Schnitzer, 2018). Lianas also 

influence arboreal animal distributions by connecting neighboring treecrowns (Adams, Schnitzer, & 

Yanoviak, 2017, 2019; Chiarello et al., 2004; Yanoviak, 2015), which are otherwise commonly isolated in space 

due to “crown shyness” (the tendency for a physical gap to exist between neighboring trees within a forest 

canopy; Ng, 1977; Putz, Parker, & Archibald, 1984). However, the contribution of lianas to inter‐crown 

connectivity presumably is minimal during early succession due to the inherently small stature and dense 

packing of treecrowns in young forest (Aide et al., 1995; Montgomery & Chazdon, 2001). The importance of 

lianas for arboreal animals likely increases in later successional stages as trees become increasingly isolated due 

to crown shyness (Putz et al., 1984). 

Ants represent a significant portion of total animal biomass and insect abundance in forest canopies (Blüthgen & 

Stork, 2007; Davidson, Cook, Snelling, & Chua, 2003; Floren, Wetzel, & Staab, 2014), and are a good model taxon 

for studying arboreal communities across forest successional stages (Floren, Freking, Biehl, & Linsenmair, 2001; 

Klimes et al., 2012; Silva, Feitosa, & Eberhardt, 2007). Arboreal ant species richness and functional diversity 

typically increase during forest succession (Bihn et al., 2008; Dunn, 2004; Marques, Espírito‐Santo, Neves, & 

Schoereder, 2017; Silva et al., 2007), in part due to overall increases in tree size and diversity, and nest site 

availability (Campos et al., 2006; Klimes et al., 2012; Ribas et al., 2003). As individual trees age and grow taller, 

the resident ant community also changes to include fewer ground‐nesting species (Dejean, Djiéto‐Lordon, 

Céréghino, & Leponce, 2008; Tschinkel & Hess, 1999). In older forests, lianas physically connect isolated 

treecrowns and support higher local (i.e., per‐tree) ant species richness, specifically benefiting ant species with 

wide‐ranging foraging strategies (e.g., Neoponera spp., Paraponera clavata; Davidson, 1997; Yanoviak & 

Schnitzer, 2013; Adams, Schnitzer, et al., 2017, 2019). However, the ecological effects of lianas on ants are 

unknown for early stages of forest succession. 

We used a large‐scale liana removal experiment in 17 forest sites to determine the effects of lianas on arboreal 

ant community structure along a 31‐year chronosequence in a neotropical forest. Based on observations and 

liana removal experiments in older forests (Adams et al., 2017; Adams, Schnitzer, et al., 2019), we hypothesized 

that lianas positively influence ant community structure (e.g., species composition, species richness, β‐diversity, 

and species co‐occurrence) in early secondary tropical forests. Accordingly, we evaluated four associated 

predictions. First, trees with lianas will have higher ant species richness compared to trees without lianas. 

Second, ant species composition in trees with lianas will include more wide‐ranging foragers. Third, trees with 

lianas will have lower ant β‐diversity compared to trees without lianas. Finally, patterns of ant co‐occurrence will 

differ between trees with lianas versus trees without lianas, presumably due to increased interactions resulting 

from increased connectivity. Due to the low height of the canopy and lack of crown shyness in young forests 

(Aide et al., 1995), we expect lianas to have the greatest effect on ant communities in later stages of forest 

succession. 

2 METHODS 

2.1 Study site 
Fieldwork was conducted in central Panama at the Agua Salud Project (hereafter, Agua Salud; 09.210°N, 

79.745°W) administered by the Smithsonian Tropical Research Institute (Stallard, Ogden, Elsenbeer, & 

Hall, 2010). Agua Salud is a seasonally moist secondary forest that receives an average of 2,700 mm of rain each 

year, mostly from May to December, located on hilly terrain with steep slopes that were previously degraded 



agricultural lands (van Breugel et al., 2013; Ogden, Crouch, Stallard, & Hall, 2013). Croat (1978) and Leigh, Rand, 

and Windsor (1996) provide more information about the region. The liana removal experiment (described 

below) is part of the Agua Salud secondary forest dynamics network. Details about this network are provided in 

van Breugel et al. (2013), Van Breugel et al. (2019) and Craven, Hall, Berlyn, Ashton, and van Breugel 

(2015, 2018). 

Agua Salud includes 52 forest sites along a 31‐year chronosequence of forest succession following agricultural 

field abandonment (van Breugel et al., 2013). Thirty sites contain two non‐contiguous 20 × 50 m plots, each 

marked by a 5 × 5 m grid, located on the upper portion of a slope. One plot in each site had all lianas (woody 

vines) removed in 2013 and was maintained liana‐free throughout the project following the methods used in a 

nearby older secondary forest (van der Heijden, Powers, & Schnitzer, 2015). Total aboveground biomass, tree 

basal area, and individual stem counts were measured prior to liana removal and annually after the removal 

treatment in each subplot (van Breugel et al., 2013). We selected 34 paired plots for this study (i.e., 17 forest 

sites, each with one liana removal and one control plot) based on accessibility. 

2.2 Ant surveys 
We censused the arboreal ant communities using baiting and hand collecting during the wet seasons (May–

September) in each plot prior to liana removal in 2012 and 2 years after liana removal in 2015. Collections were 

made on the largest tree (determined as diameter at breast height; DBH) nearest to each of 16 predetermined 

locations within each plot. The first four locations were at the four corners of the plot, and the remaining 12 

locations equidistantly spaced among the internal points of the 5 × 5 m grid (Figure S1). The sampled trees 

averaged ca. 10 cm DBH; only 6% were ≥20 cm DBH and 23% of trees were ≤5 cm DBH during the time span of 

this study. Due to the low canopy height (<5 m), and small tree sizes in most plots (van Breugel et al., 2013), it 

was not feasible to sample ants via tree climbing. Instead, we standardized the survey method by baiting and 

hand collecting from the ground. We placed baits (a mixture of canned tuna in water and honey; roughly 140 g 

tuna to 30 ml honey) on each tree at a height of ca. 2 m. We recorded the presence of different ant species on a 

tree by collecting representative ant workers both at the baits and elsewhere on the tree (all accessible 

locations on the tree or associated lianas, including any branches, all liana stems, and all sides of the trunk) ca. 

30 min. after bait placement. We stored collected ants in 95% ethanol and identified all specimens to species or 

morphospecies using published keys (e.g., Longino, 2007; Ward, 1989, 1999; Ward, Brady, Fisher, & 

Schultz, 2010). Ant species nesting preferences (ground vs. canopy, if known) were determined from natural 

history descriptions provided in the taxonomic literature and online resources (AntWeb, 2019). Reference 

specimens were confirmed by taxonomists, and vouchers were deposited at the University of Louisville; the 

United States National Museum, Washington DC; the Smithsonian Tropical Research Institute, Panama; and the 

Fairchild Museum at the University of Panama. 

2.3 Analysis 
We used the plot as our experimental unit for analyses because liana removal treatments were applied at the 

plot level, and because the number of ant species on individual trees within a plot was highly variable 

(mean ± SE: 1.3 ± 1.1 species, range: 0–6). We used species accumulation curves to estimate the fraction of the 

total arboreal ant species richness of Agua Salud that was sampled in this study (EstimateS version 9.1.0; 

Colwell, 2009). We subsequently used a mixed‐effect linear model to test for differences in species richness 

(lme4 package; Bates, Mächler, Bolker, & Walker, 2015; R Core Team, 2018; R version 3.5.0), and a mixed‐effect 

PERMANOVA and PERMDISP with 9,999 iterations (Anderson, Gorley, & Clarke, 2008; Anderson et al., 2011; 

PRIMER version 6.1.18 with PERMANOVA+ package 1.0.8) to test for differences in species composition and β‐

diversity, respectively. 



All models originally included collection year, stand age, and treatment (liana removal vs. control) as fixed 

effects, along with all interaction terms, and site as a random factor. We performed nested model reduction 

using differences in AIC values and likelihood ratio tests. None of the interaction terms was significant, and the 

model with the lowest AIC value did not include the random site effects. We used indicator species analysis to 

identify ant species that were strongly associated with significant terms from the PERMANOVA (de Cáceres & 

Legendre, 2009; Dufrêne & Legendre, 1997). Following results of the indicator species analyses, we ran two post 

hoc ANOVAs exploring how the proportion of strictly arboreal ants and strictly plus facultatively arboreal ants 

(species reported to nest both on the ground and in trees) in each plot changed both across collection years and 

the continuous chronosequence. Finally, we created NMS ordinations (200 runs, 500 iterations, and random 

starting configuration) to visualize differences in species composition among ant communities associated with 

significant terms from the PERMANOVA. 

We log‐transformed species richness data, confirmed normality using the Shapiro–Wilk test on the residuals, 

and examined residuals to confirm model fit. We calculated similarity matrices for species composition analyses 

using the Jaccard index to accommodate the presence/absence data structure (i.e., each ant species was treated 

as either present or absent because abundance values for social insects require direct nest counts). The resulting 

distance matrix was used to perform PERMANOVA, PERMDISP, and the NMS ordination. PERMANOVA and 

PERMDISP require categorical variables; therefore, we transformed stand age into a categorical variable 

representing three successional stages (<10 years old, 10–20 years old, and >20 years old) based on differences 

in biomass (F2,14 = 8.16, p = .004) and basal area (F2,14 = 10.38, p = .002) among age groups. 

2.4 Species co‐occurrence 
We calculated C‐scores to determine if arboreal ant communities followed non‐random patterns of species co‐

occurrence and if the removal of lianas changed these patterns (Blüthgen & Stork, 2007; Majer, 1976; Sanders, 

Crutsinger, Dunn, Majer, & Delabie, 2007). A C‐score index compares patterns of co‐occurrence in observed 

communities against a null model with a random distribution (Gotelli, 2000; Gotelli & Ulrich, 2012). We used 

EcoSimR 1.0 (Gotelli & Ellison, 2013) to examine co‐occurrence frequencies in individual trees, and for the entire 

plot, in liana removal and control plots from the 2012 and 2015 surveys. We generated 9,999 randomized 

matrices using a fixed–fixed algorithm for ant species and for individual trees or plots surveyed. We chose a 

fixed–fixed algorithm because ant species differed in their total collection frequencies and different individual 

trees or plots potentially provide different resources and conditions for ants (Gotelli, 2000; Tschinkel & 

Hess, 1999). 

3 RESULTS 
The 1,088 tree surveys yielded a total of 91 ant species (Table S1), which represented ca. 76% of the species 

predicted to occur at this site using hand and bait collection methods (Figure S2). We found an average (±SE) of 

11.1 ± 0.3 ant species per plot. 

Liana removal resulted in only minor changes in ant community structure during early stages of forest 

succession. Ant species richness (F1,64 = 0.03, p = .87; Figure 1), composition (Pseudo‐F1,29 = 1.03, p = .41), and β‐

diversity (F1,33 = 0.11, p = .75) were similar between the liana removal and control treatments, with no significant 

interactions among treatment, year, or stand age (F < 0.92, p > .34). However, there were differences in species 

co‐occurrence patterns among individual trees between removal and control treatments in the 2015 survey. 

Specifically, ant species distributions did not differ from random in trees of the liana removal treatment 

(observed ≤ simulated p = .87; observed ≥ simulated p = .13), but showed a high frequency of co‐occurrence in 

the control trees where lianas were present (observed ≤ simulated p < .0007). By contrast, ant species co‐

occurrence at the individual tree level in the 2012 pre‐treatment survey did not differ from random in either 

control or liana removal treatments (observed ≤ simulated p > .54; observed ≥ simulated p > .10). At the plot 



level, ant species co‐occurrence did not differ from random in control or removal treatments, nor during either 

collection year (observed ≤ simulated p > .41; observed ≥ simulated p > .07 for each test). 

 
Figure 1 Ant species richness (mean ± SE) in liana removal and control subplots in the 2012 (before treatment) 
and 2015 (after treatment) collections. Ant species richness did not differ between treatments within a year 
 

Stand age influenced ant community parameters regardless of collection year or the presence of lianas. Ant 

species richness increased ca. 10% from the youngest to oldest forest stands 

(Figure 2; F1,64 = 3.84, p = .05, R2 = 0.04), and ant species composition in the oldest plots (>20 years old) differed 

from plots that were <10 and 10–20 years old (Figure 3; Pseudo‐

F2,56 = 1.49, p = .012; t > 1.26, P < .025). Neoponera carinulata, an arboreal specialist of mature forest canopies 

(Mackay & Mackay, 2010), was common in the oldest age category of forest stands. By contrast, ant 

assemblages associated with earlier stand age categories included fewer strictly arboreal species and a larger 

fraction of ants that are commonly associated with early secondary forests (e.g., Solenopsis picea, Table 1). 

 
Figure 2 Ant species richness per plot versus plot age at time of collection (i.e., collections from the same plot 
will have different stand ages in 2012 and 2015). Collections from both years are pooled as there was no 
significant year*plot age interaction. Ant species richness increases with stand age as described by the equation 
richness = 0.058*Age + 10.27 (F = 3.88, p = .05, R2 = .04) 
 

https://onlinelibrary.wiley.com/cms/asset/a1fb9025-69a7-4165-9f2f-ec5734abe031/btp12709-fig-0001-m.jpg
https://onlinelibrary.wiley.com/cms/asset/238303de-5e4a-481e-bbef-ef64596e4ba7/btp12709-fig-0002-m.jpg


 
Figure 3 NMS ordination of plot‐level ant species composition across the three forest stand age categories. The 
ellipses represent the 95% CI for location of the centroid in ordination space. Stress = 0.16 
 

Table 1. Indicator species of ants in the three forest age categories (Age range), with their preferred nesting 

location (Nest), indicator values (IndVal), and adjusted p‐values (p) 

Age range Ant species Nest IndVal p 

<10 Procryptocerus belti Arboreal 0.423 .0243 

10–19 Solenopsis picea Both 0.435 .0434 

≥20 Crematogaster brasiliensis Arboreal 0.614 .0036  
Neoponera carinulata Arboreal 0.495 .0172  
Pheidole flavens Ground 0.397 .0379 

 

Ant species composition also differed between the two collection years (Pseudo‐F1,56 = 3.18, p = .0001, Figure 4). 

Several understory ant species were common in the 2012 collections (e.g., Ectatomma spp., Pseudomyrmex 

boopis), whereas arboreal species were more common in the 2015 collection (e.g., Pseudomyrmex elongatus; 

Table 2). The percentage (i.e., the fraction of the total collection for each plot) of strictly arboreal‐nesting ants 

increased from 51% to 64% (F1,59 = 16.05, p = .0002) and strictly plus facultatively arboreal ants increased from 

80% to 86% (F1,56 = 8.42, p = .005) between 2012 and 2015. By contrast, ground‐nesting ants decreased from 

48% to 35% over this time frame (Figure S3). Along with these differences in composition, overall ant species 

richness was ca. 10% higher in 2012 than in 2015 (F1,63 = 5.54, p = .022). The time between surveys represents a 

33% increase in stand age in the youngest plots (7 years since abandonment in 2012 and 10 years in 2015) and 

a ca. 10% change in the oldest plots. 

https://onlinelibrary.wiley.com/cms/asset/fc2c6d53-23f4-4e92-9887-00b0e287b55e/btp12709-fig-0003-m.jpg


 
Figure 4 NMS ordination of plot‐level ant species composition split between the two collection years. The 
ellipses represent the 95% CI for location of the centroid in ordination space. Stress = 0.18 
 

Table 2. Indicator species of ants in each of the two collection years with their preferred nesting location (Nest), 

indicator values (IndVal), and adjusted p‐values (p) 

Year Ant species Nest IndVal p 

2012 Crematogaster carinata Arboreal 0.818 .0001  
Ectatomma tuberculatum Ground 0.764 .0049  
Ectatomma ruidum Ground 0.634 .0250  
Pseudomyrmex boopis Both 0.628 .0002  
Crematogaster brasiliensis Arboreal 0.614 .0051  
Camponotus canescens Arboreal 0.485 .0045  
Nylanderia guatemalensis Both 0.420 .0250 

2015 Camponotus brevis Arboreal 0.712 .0065  
Crematogaster curvispinosa Arboreal 0.526 .0486  
Solenopsis picea Both 0.425 .0274  
Pseudomyrmex elongatus Arboreal 0.420 .0250 

 

4 DISCUSSION 
Plant communities set the stage for animal community assembly in most terrestrial ecosystems. Within forest 

habitats, changes in tree communities over time affect animal community structure, especially for arboreal taxa 

(Dunn, 2004; Klimes et al., 2012). Liana assemblages also change over the course of forest succession (Barry 

et al., 2015; Letcher & Chazdon, 2009) and provide valuable resources for arboreal animals (Yanoviak & 

Schnitzer, 2013). However, here we show that lianas have a minimal effect on the structure of arboreal ant 

communities in early successional forests. Contrary to our predictions, liana removal did not reduce ant species 

richness, increase β‐diversity, or consistently alter ant species composition in trees. In other studies where 

arboreal ant species richness was higher in the presence of lianas (Adams, Schnitzer, et al., 2019), the forest was 

older, the canopy was higher, and individual trees were larger (Mascaro et al., 2011) than in Agua Salud (van 

Breugel et al., 2013). The results of this study suggest that a minimum threshold of forest age, canopy height, or 

https://onlinelibrary.wiley.com/cms/asset/d6bd098c-2ac7-4685-ae76-1b624706e898/btp12709-fig-0004-m.jpg


tree size is necessary before lianas affect arboreal ant community structure. The results also suggest that this 

threshold is not met in forest stands <30 years removed from intense agricultural use in central Panama. 

Control plots in 2015 exhibited statistically significant ant species associations (i.e., ant co‐occurrence patterns 

that differed from random). Increased connectivity among treecrowns provided by lianas could facilitate more 

frequent co‐occurrence of ant species in a tree; however, previous work indicated that lianas had no effect on 

species co‐occurrence in older forests (Adams et al., 2017). Many potentially important ecological variables 

change as a forest develops, and the specific mechanisms underlying these ant species associations remain 

unknown. All stands used in this study also increased in age by >10% between sampling years, and plant 

composition is in a state of transition at this site (Craven et al., 2018). Thus, understanding the specific 

mechanisms driving these differences in ant co‐occurrence will require further study of interspecific interactions 

(e.g., competition, parasitism, and mutualisms) among ants, ant associations with certain tree and liana species, 

and ant responses to the distribution and composition of trophobionts (Davidson et al., 2003; Fornoff, Klein, 

Blüthgen, & Staab, 2019). 

Lianas provide nest sites and reliable food resources for ants (Blüthgen et al., 2000; Philpott, 2010; Tanaka & 

Itioka, 2011), and these resources should be important for ants regardless of forest age. Lianas also provide 

physical connections among treecrowns that are consistently used as foraging corridors by arboreal ants 

(Adams, Schnitzer, et al., 2019; Yanoviak, 2015). However, the functional role of connectivity should be relatively 

more important in older forests, where ant communities include more canopy specialists (Dejean et al., 2008; 

Tschinkel & Hess, 1999), and treecrowns typically lack physical contact with each other (Ng, 1977; Putz 

et al., 1984). The absence of a clear effect of liana removal on ant species richness and composition in this study 

suggests that nest sites and food resources provided by lianas were not limiting ant distributions in this forest. 

Additionally, connectivity among treecrowns was also not important to the ant communities likely because of 

the high frequency of ground‐nesting ants, especially in the 2012 survey. Research on liana‐based resources in a 

nearby older forest (>60 years old) found that connectivity was particularly important to the maintenance of 

arboreal ant diversity (Adams, Schnitzer, et al., 2019). The increase in arboreal ant species in the 2015 survey 

suggests that lianas likely will become more important to the arboreal ant community as this forest continues to 

mature. 

Differences in the ant community between sampling years can be attributed to differences in forest age. During 

the project time period, the youngest forest stands increased in age by >30%. Overall, the forest has 

experienced rapid, landscape‐scale changes in tree species composition, species density, and functional 

diversity, as well as increases in overall stand basal area per plot (Craven et al., 2018). Changes in tropical forest 

structure during succession affect ant communities (Floren et al., 2001; Klimes et al., 2012; Ribas et al., 2003), 

typically with a shift in species composition toward more arboreal specialists (Dejean et al., 2008). We similarly 

detected a change in ant species composition from ground‐nesting to more arboreal ant species between the 

two sampling years. The loss of ground‐nesting ants also likely caused the decrease in ant species richness 

observed in 2015 collections. 

Finally, it is likely that our collection technique missed some arboreal ant species nesting in taller trees and 

disproportionately sampled ground‐nesting ants, especially in older plots. Missing some canopy specialists in the 

older plots could explain the greater effect of collection year versus stand age on ant species composition, 

although it did not ultimately affect the results (both of these factors contributed to differences in the ant 

community). Regardless, given the short stature of most plots (average canopy height <5 m), we are confident 

that baiting trunks and low branches at heights of up to 2.5 m effectively attracted all of the common resident 

species in the focal trees. 



In summary, arboreal ant communities appear to exhibit directional shifts in species composition and species 

richness during early forest succession, and the effects of lianas on ant community parameters are minimal 

during the earliest stages of forest regeneration. Given the importance of lianas in late‐secondary and mature 

forests (Adams et al., 2017; Powell, Costa, Lopes, & Vasconcelos, 2011), continued ant surveys at Agua Salud and 

in older forests are needed to understand the temporal dynamics of liana effects on the structure of arboreal 

ant communities. The results of this study concur with those of other studies showing that arboreal ant 

community structure changes during early succession, but it is unclear whether these patterns are driven by 

stand‐level changes or by ontological changes within individual trees. Focused sampling of ants on a wide range 

of tree sizes and tree species distributed across successional stages would clarify the mechanisms underlying this 

pattern. 
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