

University of Pennsylvania ScholarlyCommons

Department of Chemical & Biomolecular Engineering

Senior Design Reports (CBE)

4-21-2020

Renewable Ammonia

Kolbein A. Finsnes

James P. Kwon

Dakota M. Wallach

Follow this and additional works at: https://repository.upenn.edu/cbe_sdr

Part of the Biochemical and Biomolecular Engineering Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/125 For more information, please contact repository@pobox.upenn.edu.

Renewable Ammonia

Abstract

Ammonia is one of the most widely used chemicals that is commercially produced today given the wide need for fertilizer to sustain the world's ever-growing populations. Given the high world demand for ammonia, which increases every day, one can see how beneficial to the environment that a zero emission large-scale ammonia plant would be. Through the use of energy from Norwegian wind farms, which produce an excess of energy during off-peak hours, our plant design seeks to turn this wasted energy into useful ammonia products at a production rate of 67.2 kmol/hr.

The design of this ammonia synthesis plant can be split conceptually into two distinct halves. The first is the refinement of the hydrogen and nitrogen that are required for the Haber-Bosch synthesis from the raw inputs of air and water. This is done through the usage of solid oxide electrolytic cells which electrolyze the water into constituent hydrogen and oxygen atoms and separate the oxygen out of the air. The second half of the plant design is a typical Haber-Bosch ammonia synthesis that many plants today are utilizing. This section consists mainly of a reaction vessel at the correct operating conditions for the ammonia synthesis reaction to occur, and a series of separators that recoup the liquid ammonia product at the right conditions for storage while recycling the gaseous hydrogen and nitrogen reactants.

While this plant design provides a layout to accomplish the task of producing ammonia in an environmentally friendly way, it is less friendly to the wallet of the plant owner. Selling the ammonia product at current market rates of \$853/ton, it would take roughly 15 years for the plant to overcome the capital investment of the venture and become a monetarily net positive design. Current utility prices are projected to cost the plant over \$1.7 million dollars per year, which is another significant consideration why it takes such a large amount of time for the plant to become profitable.

It is our hope that ongoing refinement of solid oxide electrolytic units will enable their purchase at cheaper rates, and that as the environment worsens, a higher premium will be placed on chemical products that have been sourced renewably, both factors that could easily make this plant design a more viable option in the future than it currently is today.

Disciplines

Biochemical and Biomolecular Engineering | Chemical Engineering | Engineering

Department of Chemical Engineering University of Pennsylvania 311A Towne Building 220 S. 33rd Street Philadelphia, PA 19104

21 April 2020

Dear Mr. Bruce Vrana, Mr. Leonard Fabiano, and Dr. Raymond Gorte,

Please find attached our final report for CBE 459: Senior Design. Our project, titled "Renewable Ammonia", was proposed by two of our group members, James Kwon and Dakota Wallach. This project design focuses on the utilization of excess wind energy produced in Norway to produce liquid ammonia, creating a useful chemical product with no carbon footprint.

In the body of the report you will find our preliminary design for this plant, including a full economic analysis and the projected future feasibility of this design. The size of this ammonia production is on the smaller scale of a full-size facility, producing 46 MT/day of liquid ammonia. The cost associated with construction of this plant is comparatively large, due to the high cost of the solid oxide electrolytic cells (SOECs) that are utilized. The calculated net present value (NPV) of this plant is USD -22M, and the return on investment (ROI) is -0.68%.

Based on the findings of our analysis, we found that it would require operation of the plant for a large number of years before plant operation would become profitable. A number of external considerations, such as SOECs becoming considerably cheaper over time, the price of green ammonia increasing, or an increased carbon tax on plants that are not operating renewably could shorten this time before profitability is reached. Unfortunately, as for now it appears that operation is not profitable enough to be pursued at this time, and we recommend that any interested parties carefully consider the following report before making a final decision on construction of this plant.

Sincerely,

Kolbein Finsnes

James Kwon

Dakota Wallach

Table of Contents

1. Abstract

2. Introduction

- 2.1 Project Background
- 2.2 Project Proposal
- 2.3 Project Timeline

3. Market and Competitive Assessment

- 3.1 Uses
- 3.2 Market Overview
- 3.3 Competitors

4. Preliminary Process Synthesis

- 4.1 Hydrogen Generation
- 4.2 Nitrogen Separation
- 4.3 Utilization of Excess Wind Energy

5. Assembly of Database

- 5.1 Cost of Chemicals
- 5.2 Catalyst Properties
- 5.3 Chemical Properties
- 5.4 Aspen Simulation Specifications

6. PFD and Material Balances

- 6.1.1 Overall Simplified Process Flow Diagram
- 6.1.2 Overall Material Balance
- 6.2.1 Process Flow Diagram of the Solid Oxide Electrolytic Cell Processes
- 6.2.2 Material Balance of the Solid Oxide Electrolytic Cell Process
- 6.3.1 Process Flow Diagram of the Ammonia Synthesis Process
- 6.3.2 Material Balance of the Haber Bosch Process

7. Process Descriptions

- 7.1.1 Feed Stream Sourcing and Preparation
- 7.1.2 Water Compression and Heating (UP-PM-01, UP-BO-01)
- 7.1.3 Air Filtration, Compression, and Heating (UP-CP-01, UP-CO-01, UP-CP-02,

UP-CO-02, UP-CP-03, UP-FH-01)

- 7.1.4 Heat Exchangers (UP-HX-01, UP-HX-02)
- 7.1.5 Oxyhydrogen Reaction
- 7.1.6 Solid Oxide Electrolyzer Network (SOEC)
- 7.1.7 Oxygen Cooler (UP-CO-03)
- 7.1.8 SOEC Product Condenser (UP-CD-01)
- 7.1.9 Recycle Stream Compressor (UP-CP-04)
- 7.2.1 Ammonia Synthesis Reaction Vessel (HB-RXN)
- 7.2.2 Separation Column (HB-S-01)
- 7.2.3 Let Down Vessel (HB-S-02)
- 7.2.4 Compression of Gaseous Reactants (HB-C-01, HB-C-02)
- 7.2.5 Heat Exchangers (HB-HX-01, HB-HX-02, HB-HX-03, HB-HX-04)
- 7.2.6 Storage

8. Energy Balance and Utility Requirements

- 8.1 Description of Partitioning
- 8.2.1 Electricity Requirements for Overall Process
- 8.2.2 Breakdown of Electricity Requirements for SOEC Processes
- 8.2.3 Breakdown of Electricity Requirements for Ammonia Synthesis Processes
- 8.3 Cooling Water Requirements for Overall Process

9. Equipment List and Unit Descriptions

- 9.1 Heuristics for Equipment Determination
- 9.2 Construction Materials
- 9.3 Specialized Equipment
- 9.4 Mixers and Splitters
- 9.5.1 Water Pump (UP-PM-01)
- 9.5.2 Water Boiler (UP-BO-01)
- 9.5.3 Compressors (UP-CP-01, UP-CP-02, UP-CP-03, UP-CP-04)
- 9.5.4 Coolers (UP-CO-01, UP-CO-02, UP-CO-03)
- 9.5.5 Air Heater (UP-FH-01)
- 9.5.6 Heat Exchangers (UP-HX-01, UP-HX-02)
- 9.5.7 500kW Solid Oxide Electrolyzer (SOEC)
- 9.5.8 Product Stream Condenser (UP-CD-01)
- 9.6.1 Ammonia Synthesis Compressor Units (HB-C-01, HB-C-02, HB-CP-03)
- 9.6.2 Heat Exchanger 1 (HB-HX-01, HB-HX-02, HB-HX-03, HB-HX-04)
- 9.6.3 Ammonia Synthesis Reaction Vessel (HB-RXN)
- 9.6.4 Separation Columns (HB-S-01, HB-S-02)
- 9.6.5 Storage Vessel

10. Specification Sheets

11. Equipment Cost Summary

- 11.1 Overview
- 11.2 Upstream Equipment Costs
- 11.3 Downstream Equipment Costs

12. Fixed Capital Investment Summary

- 12.1 Land
- 12.2 Royalties
- 12.3 Startup

13. Operating Cost- Cost of Manufacture

- 13.1 Raw Materials
- 13.2 Utilities
- 13.3 Variable Costs and Working Capital
- 13.4 Total Variable Cost Summary
- 13.5 Operations, Maintenance, and Overhead
- 13.6 Total Fixed Costs

14. Other Important Considerations

- 14.1 Plant Location
- 14.2 Environmental Impact
- 14.3 Global, Cultural, Social, and Ethical Factors
- 14.4 Safety
- 14.5 Transportation
- 14.6 Plant Startup

15. Profitability Analysis

16. Conclusions and Recommendations

17. Acknowledgements

18. Bibliography

Appendix

- A.1 Hydrogen Production Calculations
- A.2 Calculation of Water Input
- A.3 Calculation of Compressor Ratio
- A.4 Calculation of Storage Vessel Volume
- A.5 Calculation of Reactor, HB-S-01, and HB-S-02 Vessel Sizes
- B.1.1 SOEC System ASPEN Flow Diagram
- B.1.2 SOEC ASPEN Inputs
- B.1.3 SOEC Full Summary
- B.1.4 SOEC Block Summary
- B.1.5 SOEC Stream Summary
- B.2.1 Ammonia Synthesis ASPEN Flow Diagram
- B.2.2 Ammonia Synthesis ASPEN Inputs
- B.2.3 Ammonia Synthesis Full Summary
- B.2.4 Ammonia Synthesis Block Summary
- B.2.5 Ammonia Synthesis Stream Summary
- C Safety Data Sheets
- D Extended Financial Information
- E.1 Equipment Costing Data SOEC
- E.2 Equipment Costing Data Haber Bosch

1. Abstract

Ammonia is one of the most widely used chemicals that is commercially produced today given the wide need for fertilizer to sustain the world's ever-growing populations. Given the high world demand for ammonia, which increases every day, one can see how beneficial to the environment that a zero emission large-scale ammonia plant would be. Through the use of energy from Norwegian wind farms, which produce an excess of energy during off-peak hours, our plant design seeks to turn this wasted energy into useful ammonia products at a production rate of 67.2 kmol/hr.

The design of this ammonia synthesis plant can be split conceptually into two distinct halves. The first is the refinement of the hydrogen and nitrogen that are required for the Haber-Bosch synthesis from the raw inputs of air and water. This is done through the usage of solid oxide electrolytic cells which electrolyze the water into constituent hydrogen and oxygen atoms and separate the oxygen out of the air. The second half of the plant design is a typical Haber-Bosch ammonia synthesis that many plants today are utilizing. This section consists mainly of a reaction vessel at the correct operating conditions for the ammonia synthesis reaction to occur, and a series of separators that recoup the liquid ammonia product at the right conditions for storage while recycling the gaseous hydrogen and nitrogen reactants.

While this plant design provides a layout to accomplish the task of producing ammonia in an environmentally friendly way, it is less friendly to the wallet of the plant owner. Selling the ammonia product at current market rates of \$853/ton, it would take roughly 15 years for the plant to overcome the capital investment of the venture and become a monetarily net positive design. Current utility prices are projected to cost the plant over \$1.7 million dollars per year, which is another significant consideration why it takes such a large amount of time for the plant to become profitable.

It is our hope that ongoing refinement of solid oxide electrolytic units will enable their purchase at cheaper rates, and that as the environment worsens, a higher premium will be placed on chemical products that have been sourced renewably, both factors that could easily make this plant design a more viable option in the future than it currently is today.

2. Introduction

2.1 Project Background

The Haber Bosch process (1910) is a fundamental chemical process that has fueled both economic and population growth. The invention brought about the mass production of ammonia, and both Haber and Bosch were awarded the Nobel Prize in Chemistry in 1918 and 1931 respectively. The process was first commercialized in 1913, proving instrumental to the growth of agricultural yields and more broadly sustenance of the human population. The inputs to the Haber Bosch processes are simple since it uses gaseous hydrogen and nitrogen reacted at high pressures and moderately high temperatures to produce gaseous ammonia which can subsequently then be cooled and liquefied. Nitrogen comprises 79% of the atmosphere by volume, and is generally obtained from air by separating oxygen. This is accomplished through a number of different air separation processes such as fractional distillation and pressure swing adsorption among others. Hydrogen, however, does not occur naturally and must be synthesized from some other source. Currently, most of the world's Hydrogen is synthesized using steam reforming, a process that converts methane (sourced from natural gas) into hydrogen and carbon dioxide.¹ However, one of the major drawbacks to this process is that it depends on fossil fuels that are not only unsustainable but harmful for the environment.

In recent years, there has been a large movement both in and outside of the scientific community to shift away from the use of fossil fuels. Consequently, this shift is not met without problems since major renewable energy sources continue to face issues of volatility, cost, and

¹ Holladay, J.D., Hu, J., King, D.L., Wang, Y. (2009)

implementation. For example, renewable sources of energy such as wind or solar are often highly unreliable, with energy generation directly linked to uncontrollable factors such as wind speed, or daily hours of sunshine. As a result, an excess of energy is produced at times; at other times, there is a lack of electricity available. Excess energy is typically wasted or sold to other locations and can be a problem for energy producers. Rather than selling this excess, many firms have begun exploring ways to better maximize its utility by using the energy to drive processes such as producing hydrogen gas through the electrolysis of water.

A significant technological innovation that our process utilizes is in the method in which it produces hydrogen. Compared to the most popular form of hydrogen production (steam reformation) utilization of the solid oxide electrolyzer eliminates carbon emissions. Typically, this sort of system is run as a fuel cell where fuel is consumed in order to produce energy. Fuel in a gaseous form is run on the anode side where molecules will react with the yttria stabilized zirconia (YSZ) based Ni catalyst and oxygen ions from an oxygen input in the cathode migrate to the other side producing water and electricity. Typical materials include nickel mixed with Yttria Stabilized Zirconia (Ni-YSZ) for the anode and lanthanum strontium manganate (LSM) for the cathode. However, in our system, the cell is essentially run in reverse taking electricity as an input to split water molecules. Water in the form of steam is run on the cathode side where it is electrolyzed to H_2 and O^{2-} ions. These O^{2-} ions travel across the electrolyte and recombine on the anode side to produce oxygen. A diagram of this process versus standard fuel cells can be seen in the figure below.

Figure 2.1a: Visual depiction of how a solid oxide fuel cell (SOFC) and a solid oxide electrolyzer (SOEC) function.²

In addition, the system is able to achieve nitrogen separation with the oxygen as the potential at which the oxygen molecules react with the electrodes occur at a value close to 0V. The O_2 pressure difference between the two electrodes serves as a driving force for the separation of the oxygen from the nitrogen as well. Both electrolyzers and fuel cells are fabricated as smaller cells and combined to form giant stacks to permit larger amounts to be processed.

Following the generation of hydrogen and separation of nitrogen, these materials will be put into the Haber Bosch process. The initial feed to the ammonia synthesis reaction vessel is a mix of nitrogen and hydrogen, along with trace amounts of argon. The reactants are fed into the vessel at relatively high temperatures, slightly above 200 degrees Celsius, and at an incredibly

² Iora, P., Chiesa, P. (2009)

high pressure of over 80 atmospheres of pressure. The reaction by which ammonia is synthesized is given below as *Equation 2.1a*.

Equation 2.1a: Reaction of Hydrogen and Nitrogen to Form Ammonia $3H_2 + N_2 \rightleftharpoons 2NH_3 \ \Delta H = -91.8 \ kJ/mol$

As one may notice, this reaction is immensely exothermic, meaning that a large amount of heat energy is produced as a result of this reaction proceeding. This also explains why the reaction requires such extreme conditions in order to make the reaction proceed. In order to facilitate this reaction, an iron catalyst is added, which is usually made of magnetite or similar ore. In this process, an iron catalyst doped with sodium has been chosen, as this catalyst is sufficiently efficient for the needs of our process at a price point that is more reasonable than other catalysts made of precious minerals. The addition of a high surface area iron catalyst creates a surface to which the hydrogen and nitrogen can adsorb strongly to, which facilitates the slowest step of this reaction, the splitting of the diatomic nitrogen into singleton components. The largest concern regarding the catalyst is that care must be taken to ensure that no oxygen is allowed to enter the vessel where the catalyst is used. Oxygen reacts strongly with iron in order to form metal oxides, which effectively poisons the catalyst and renders it useless. In order to avoid this, precautions are taken to ensure that the air entering the process has been sufficiently separated into oxygen and nitrogen, with the oxygen being vented out and sold. It is important to note that it is possible to regenerate the iron catalyst under some circumstances, but would require shutting down plant operations, which comes at a significant cost.

2.2 Project Proposal

The goal of this project was to design an ammonia plant that would utilize excess wind energy to drive electrolyzers which would produce the necessary inputs to the Haber Bosch process. Electrolysis of steam would form hydrogen while the nitrogen from the air would be separated through the electrolyzer as well. A solid oxide electrolyzer (SOEC) was chosen due its ability to utilize thermal and electrical processes to increase the efficiency of the overall process. One thing to note is that the scale to which we plan to use our SOECs currently do not exist but are expected to reach those sizes in the foreseeable future. All costs and various calculations were taken with values available as of today. The Haber Bosch process is typically a very energy and carbon intensive process due to the production of its feed streams but utilization of electrolysis largely eliminates both of these issues. The plant was designed with the goal of being as environmentally friendly as possible and carbon neutral. Extensive profitability and market analyses were conducted to determine necessary pricing measures for this process to become economically viable.

2.3 Project Timeline

Activity	Jan	Feb	March	April
RESEARCH				-
Identifying key markets for profitability				
Green hydrogen production and storage				
Review of relevant literature				
Review commercial products and processes				
SCIENTIFIC MODELING AND ECONOMICS				
ASPEN modeling of reactor				
Preparing financial model				
Plant design				
DELIVERABLES				
Mid-semester check in			0	
Final presentation				
Final written report				
Final full profitability analysis				

Figure 2.3a: Graphical Depiction of Project Timeline

Our project timeline can be seen in the figure depicted above. The bulk of our research and preparation took place in January and February where a plan for producing such hydrogen and the information relevant to the Haber Bosch process was determined. During February and March, the majority of the modelling of the entire process was initiated as the specific variable of plant operation and its various components were determined. The work in April mostly consisted of profitability analysis, the preparation of the final presentation, and the synthesis of the relevant findings into a final written report.

3. Market and Competitive Assessment

3.1 Uses

Ammonia (NH3) is a colorless gas at standard temperature and pressure. In 2019, more than 80% of ammonia produced was used by the agriculture industry as fertilizer.³ This represents the largest industry use of ammonia by both mass and revenue.

Instead of only relying on farming techniques such as crop rotation and allowing land to lie fallow, fertilizer provides an alternative that drastically increases efficiency in farming. When crops grow in a field, nitrogen in the soil is depleted. Some plants, such as legumes, are nitrogen fixers, whose roots have bacteria that increase the amount of nitrogen present in the soil. Although nitrogen is highly present in the atmosphere (comprises 79% of air), it cannot be used in its elemental form. Ammonia as fertilizer has decreased the need for nitrogen fixers, and has drastically increased the efficiency of farms.

Ammonia can either be directly applied to soil or converted to a salt (such as ammonium nitrate) through a straightforward crystallization process and then applied. This report covers only the production of ammonia from raw materials. Although use of ammonia varies by farm and crop, a safe estimate is that 1 ton of anhydrous ammonia covers about 9.6 acres of farmland for standard application of fertilizers. Alternatively, 104kg of anhydrous ammonia is necessary per acre, per year.⁴

Ammonia is also used in cleaning products such as Windex and other glass cleaners.

³ Mordor Intelligence, Ammonia Market (2020), Retrieved April 9th, 2020 from <u>https://www.mordorintelligence.com/industry-reports/ammonia-market</u>

⁴ Schnitkey, Gary, "Nitrogen Fertilizer Prices and Costs Lower for 2018", November 2017, Accessed April 10th, 2020 from <u>https://farmdocdaily.illinois.edu/2017/11/nitrogen-fertilizer-prices-and-costs-lower-for-2018.html</u>

3.2 Market Overview

In 2020, the global ammonia market size is projected to be worth roughly USD 72.8 billion, with a CAGR of ~1.1%.⁵ The market is highly commodified and low growth (global GDP growth is projected to be ~3%). Nearly all hydrogen is currently sourced from natural gas via steam reforming. North America and Europe are classified as medium growth areas for demand of ammonia, for this industry.⁶ High growth regions include China, Russia, Brazil and sub-Saharan Africa. (Mordor Intelligence)⁷. More than half of ammonia is consumed in Asia. This market share is expected to grow, as regions in Asia have high population growth rates and strong agricultural industries that rely on fertilizers.

3.3 Competitors

Due to the massive size of the ammonia market and uniformity of ammonia, the market is highly fragmented, with many players and high levels of competition. This is typical of highly commoditized markets, business to business markets. Margins are generally very small, and supply chains are fully integrated to cut costs. The world's largest ammonia producer is Norway based Yara. Other major players include BASF (the "firm that tasked Carl Bosch with the commercialization of Fritz Haber's ammonia synthesis process in 1910" - AmmoniaEnergy.org), CF Industries, Qatar Fertilizer Company, SABIC and EuroChem. (Mordor Intelligence).

⁶ Mordor Intelligence, Ammonia Market (2020), Retrieved April 9th, 2020 from <u>https://www.mordorintelligence.com/industry-reports/ammonia-market</u>

⁵ MarketWatch, Ammonia Market 2020, March, 2020, Retrieved April 10th 2020, from <u>https://www.marketwatch.com/press-release/ammonia-market-size--industry-growth-analysis-2020-regional-outlook</u> -trends-opportunity-revenue-share-forecasts-by-2025-2020-03-02

⁷ Ibid.

The above firms produce ammonia from fossil fuels, which produce greenhouse emissions and rely on the oil and gas industry. There are currently very few firms operating in the green ammonia space, and there are no wind-power green ammonia plants currently built. Many large ammonia players (such as Yara) are attempting to innovate and move into green ammonia should costs lessen and commercial viability increase. Even though ammonia produced from fossil fuels and wind farms is identical, if carbon tax credits were to make green ammonia more viable, it could disrupt the ammonia industry and become a space for mass innovation.

4. Preliminary Process Synthesis

4.1 Hydrogen Generation

While there are many different methods for producing hydrogen, hydrocarbon reforming is responsible for producing the vast majority of hydrogen consumed today. Hydrocarbon reforming can be performed by steam reforming, partial oxidation, or a combination of the two, autothermal reforming. These processes are essentially similar but still contain enough nuances to warrant different For large-scale processes, steam reforming is the most practical since it does not require oxygen, has the lowest process temperatures and the best H_2/CO ratio for H_2 production. These advantages are partially offset in regards to the process as a whole since the air emissions are the highest of the three.¹ The goal of the project was to produce hydrogen utilizing a greener method to produce the feedstock for the Haber Bosch process. This led to water electrolysis since this is the next most efficient method for producing hydrogen.

There are a number of different ways to accomplish water electrolysis, with commercialization proceeding on electrolyzers based on alkaline, polymer membrane, and solid oxide membranes. Solid oxide electrolyzers were chosen due to their high efficiencies, associated in part with their high operating temperatures. High temperatures greatly reduce electrode overpotentials and allow overall system efficiencies by using the waste heat to assist in the overall production of hydrogen. For modelling purposes, we use solid oxide fuel cells (SOFC) as a guideline as they are essentially SOECs run in reverse.

4.2 Nitrogen Separation

The nitrogen that is to be used in the process will be sourced from air. However, since nitrogen is not the only component present in air, extra steps must be taken to remove the other components (mainly oxygen) from the air. There are a number of different methods that are used in industry to separate air: fractional distillation, pressure swing adsorption, and vacuum swing adsorption. Out of these methods, fractional distillation in the form of cryogenic air separation is the most common. This process requires a tight integration of heat exchangers and separation columns to obtain an overall good efficiency for the process. One of the advantages of utilizing the SOECs is that the process of removing oxygen from the air comes at close to no energic cost as the voltage at which this occurs is roughly around 0V. In our process, oxygen removal is accomplished partly due to the reaction between hydrogen and oxygen which generates water and the removal of the remaining oxygen across the electrolyzer. This eliminates the need for the purchase of the air separation and is integrated directly as a part of our process.

4.3 Utilization of Excess Wind Energy

To power the solid oxide electrolyzers, the standard approaches of utilizing traditional electricity sources were cast aside in favor of utilizing excess wind energy. Due to the intermittent nature of wind and solar energy, electricity generation varies depending on the position of the sun or the amount of wind that is blowing at any given moment. This leads to discrepancies in generation since there are times of the day (particularly at night when electricity

usage is low) when the electricity demand is less than the electricity generated by these sources. The excess electricity is typically sold off to other countries or stored in some form. As an alternative, it was decided that renewable excess energy should be used as the energy source for our electrolyzers. However, this by no means suggests that our process will be shut off when there is no wind available, the discrepancies will be supplied by electricity that is purchased and available on demand. Wind energy in particular was chosen as the source of energy as wind farms are typically located near bodies of water serving as a perfect location to source our water input to the process as well.

5. Assembly of Database

5.1 Cost of Chemicals

The raw materials utilized in this design are water and air. There is not an associated purchase price with either of these starting reagents, as they can both be sourced free of cost. The cost associated with separating these raw materials into the desired hydrogen and nitrogen inputs into the Haber-Bosch process are contained in the costs of the unit modules and electricity. Other costs, including water to be used as steam or for cooling throughout the process, are taken from standard pricing guidelines and included in Section 16.

The product that will be sold is liquid ammonia that will be stored at low temperatures and lightly pressurized. The market price for our ammonia will be \$500/ton, which is competitive in the current market. Considerations were made to theoretically include the price of ammonia sold per ton due to the fact that the ammonia produced by this process will be made exclusively using renewable energy, and, as such, could be worth the extra price to environmentally conscious purchasers. As of now, concerns over pricing our ammonia out of the market outweigh this potentially monetary benefit until it becomes clearer that there is enough demand for green ammonia to justify an increased price.

5.2 Catalyst Properties

Catalysts are frequently employed to increase the rate of reactions, typically by lowering some activation energy barrier without the catalyst being consumed in the process. For the Haber-Bosch reaction, a potassium-doped porous iron catalyst is the most common due to the significant increase in reaction rate, along with the cheaper price of iron compared to more expensive catalyst materials. For this reaction, the Haldor Topsoe KM 111 magnetite catalyst was chosen for its proven success and stability in ammonia synthesis processes. This catalyst works by providing a surface to which the hydrogen and nitrogen will both strongly adsorb to. The fact that the catalyst is porous is of note because the increase in surface area allows for more catalysis to occur on the surface, increasing the reaction rate significantly.

5.3 Chemical Properties

Material Safety Data Sheets (MSDS) for each of the components of this process can be found in *Appendix C*. Considerations based on the safety of the chemicals in this process were obtained from the MSDS's, and can be found in *Appendix C*. The property data for the components of our process can be found in **Table 5.3a** and **Table 5.3b** below.

Chemical Name	Molar Mass (lb/lbmol)	Density (lb/ft ³)	Boiling Point (°F)	Heat Capacity (BTU/lb°F)
Water	18.02	62.43	212.0	1.001
Oxygen	15.99	0.08	-297.4	0.212
Hydrogen	2.02	0.01	-423.2	3.42
Nitrogen	32.00	0.07	-320.4	0.25
Argon	39.95	0.11	-302.5	0.12
Ammonia	17.02	0.044	-28.0	0.52

Table 5.3a Properties of Chemicals in Process (at STP)

Material	Inlet Temperature (°F)	Heat Capacity (BTU/lb°F)
Cooling Water	80	1.001
Chilled Water	45	1.001
Chilled Brine	0	1.001*

Table 5.3b Properties of Utilities in Process

*In our simulation, chilled brine was approximated to have the heat capacity of water

5.4 Aspen Simulation Specifications

The overall design was simulated in ASPEN Plus V11. The SRK property method was used throughout the simulation except for the SOEC and autothermal reactions which occured in RSTOIC blocks which were manually input using calculations done in Excel and by hand.

The autothermal reaction was modelled in ASPEN using a mixer block to combine the streams and an RSTOIC block was used to show the extent of the reaction. The calculations regarding the amount of reactants formed and the temperature change that occurred was done by Excel using specific heats and enthalpy values at 800°C that were obtained from the NIST database.

The SOEC was modelled by taking the power and using a specified voltage and current to determine exactly how much hydrogen would be converted by the system. In ASPEN, these conversion values were input into an RSTOIC block and the molar flow rate of the reaction was used to convert the products. A SEP unit was used to split the stream into its two components because in a real system, the products of the reactions end up forming on the other side of the electrolyzer and never mixes with the cathode inputs to the process. Coolers, heat exchangers, and condensers in the system were modelled using the HX block in ASPEN. Both the coolers and condenser had cold water running as the cooling fluid in the system. For the condenser however, since the process leads to two different phases being formed, an additional SEP unit was added to ensure that there was separation of the two phases.

In the Haber Bosch process, the reaction vessel was modeled as an RSTOIC block as well with the reaction information input into the system to determine the conversion and the flow rates of the output. Both the primary separation vessel and the let-down vessel were modeled as SEP units.

6. Process Flow Diagram and Material Balances

6.1.1 Overall Simplified Process Flow Diagram

A simplified version of the overall process can be seen in **Figure 6.1.1** This diagram incorporates all of the major components of the process and contains the input and exit streams of the process as well.

Figure 6.1.1 Overall flow sheet which describes the major processes involved in ammonia synthesis, including reactants, intermediates, and ammonia product.

6.1.2 Overall Material Balance

Stream	Wate r In	N ₂ In	O ₂ In	Ar In	H ₂ Out	N ₂ Out	Ar Out	NH ₃ Out	O ₂ Out
Temp (°C)	25	25	25	25	20	20	20	20	35
Pressure (atm)	1	1	1	1	10.1	10.1	10.1	10.1	38.9
Mass Flow (kg/hr)	8858	1599	493	26	0.02	9.2	2.8	19448	2739
Mole flow (kmol/hr)	491.7	57.1	15.4	0.66	0.01	0.33	0.07	1144	84.4

Table 6.1.2a Overall Material Balance Descriptions

6.2.1 Process Flow Diagram of the Solid Oxide Electrolytic Cell Processes

The overall process flow diagram for the generation of the inputs (hydrogen and

nitrogen) to the Haber Bosch process is depicted in Figure 6.2.1a.

Figure 6.2.1a: Process flow diagram with all of the physical units involved in the process.

The process begins with water and air entering as streams 1 and 7 respectively. Both streams undergo a compression process to 40 bars and are heated then later mixed in the process. As this mixed temperature is moderately high, it undergoes the oxyhydrogen reaction and enters the SOEC system at 800°C. The remaining oxygen is separated out and the water is electrolyzed to hydrogen and oxygen. The stream entering the box with the dotted line will be split into 24 and enter 24 different SOEC stacks rated at 500kW. Streams 11 and 12 are the output of each of the 500kW SOEC units and combined to form streams 13 and 14. Effectively, the system will be run in parallel. Stream 14, which contains pure oxygen, will be cooled and sent for storage. Stream 17, which contains water, hydrogen, nitrogen, and argon will be condensed to eliminate the water and some of the gas will be used as inputs to the Haber Bosch process while the rest will be recycled in the process.

6.2.2 Material Balance of the Solid Oxide Electrolytic Cell Process

 Table 6.2.2a summarizes the basic stream properties and material flow rates of all the streams pictured in Figure 6.2.1a

Stream Number	1	2	3	4	5	6	7	7A
Temperature (°C)	25	26.2	420	379.9	590	610	25	197.9
Pressure (bar)	1	40	40	40	39.7	39.3	1	3.42
Mass Flow (kg/hr)	8858.1	8858.1	8858.1	9545.7	9545.7	9545.7	2118.7	2118.7
Molar Flow (kmol/hr)	491.7	491.7	491.7	563.1	563.1	563.1	73.2	73.2
Components (kmol/hr)							
H ₂ O	491.7	491.7	491.7	491.7	491.7	491.7	0	0
H ₂	0	0	0	50.6	50.6	50.6	0	0
N ₂	0	0	0	20.6	20.6	20.6	57.1	57.1
O ₂	0	0	0	0	0	0	15.4	15.4
Ar	0	0	0	0.24	0.24	0.24	0.66	0.66

Table 6.2.2a: Summary of the streams properties and flow rates drawn in the PFD

Stream Number	7B	7C	7D	8	9	10	11	12
Temperature (°C)	37.8	236.2	37.8	222.9	550	800	800	800
Pressure (bar)	3.1	11.7	11.4	40	40	39.3	39.3	39.3
Mass Flow (kg/hr)	2118.7	2118.7	2118.7	2118.7	2118.7	11664	486	114.1

Molar Flow (kmol/hr)	73.2	73.2	73.2	73.2	73.2	620.9	25.9	3.6		
Components (kmol/hr)										
H ₂ O	0	0	0	0	0	522.5	21.8	0		
H ₂	0	0	0	0	0	19.8	0.8	0		
N ₂	57.1	57.1	57.1	57.1	57.1	77.7	3.2	0		
O ₂	15.4	15.4	15.4	15.4	15.4	0.0	0	3.6		
Ar	0.66	0.66	0.66	0.66	0.66	0.90	0.04	0		

Stream Number	13	14	15	16	17	18	19	20
Temperature (°C)	800	800	649.6	35	800	598.2	35	35
Pressure (bar)	39.3	39.3	39.0	38.9	39.3	39.0	38.9	38.9
Mass Flow (kg/hr)	371.9	2739.1	2739.1	2739.1	8925.4	8925.4	6330.6	2594.8
Molar Flow (kmol/hr)	25.9	85.6	85.6	85.6	620.9	620.9	351.3	269.5
Components (kmol/h	r)							
H ₂ O	14.6	0	0	0	351.3	351.3	351.3	0
H ₂	8.0	0	0	0	191.0	191.0	0	191.0
N ₂	3.2	0	0	0	77.7	77.7	0	77.7
O ₂	0	85.6	85.6	85.6	0	0	0	0
Ar	0.4	0	0	0	0.90	0.90	0	0

Stream Number	21	22	23
Temperature (°C)	35	38.4	35
Pressure (bar)	38.9	40	38.9

Mass Flow (kg/hr)	687.6	687.6	1907.2
Molar Flow (kmol/hr)	71.4	71.4	198.1
Components (kmol/hr)			
H ₂ O	0	0	0
H ₂	50.6	50.6	140.4
N ₂	20.6	20.6	57.0
02	0	0	0
Ar	0.24	0.24	0.66

6.3.1 Process Flow Diagram of the Ammonia Synthesis Process

Figure 6.3.1 Process flow diagram which describes the unit operations and streams that are

involved in the Haber-Bosch portion of the overall plant design.

6.3.2 Material Balance of the Haber Bosch Process

Stream Number	INPUT	23	24	25	26	27	28	29
Temperature (°C)	35	36.7	232.5	30	90	192.6	225	400
Pressure (bar)	39.6	39.6	35.2	39.6	39.3	81	81	81
Mass Flow (kg/hr)	1,907	1,944	20,480	19,300	19,300	19,300	19,300	19,300
Molar Flow (kmol/hr)	198.1	200.2	1548	1479	1479	1479	1479	1393
Components (l	kmol/hr)							
H ₂ O	0	0	0	0	0	0	0	0
H ₂	140.4	140.5	641.7	641.7	641.7	641.7	641.7	513.2
N ₂	57	57.2	326.7	326.7	326.7	326.7	326.7	283.6
NH ₃	0	1.86	572.2	503.1	503.1	503.1	503.1	588.6
Ar	0.66	0.67	7.3	7.3	7.3	7.3	7.3	7.3

Table 6.3.2a: Haber Bosch Material Balance Descriptions

Table 6.3.2a: Haber Bosch Material Balance Descriptions

Stream Number	30	31	32	33	34	35	36	37
Temperature (°C)	368.1	364.6	303.8	256.1	30	20	170.8	170.8
Pressure (bar)	81	81	35.5	35.1	39.6	10.1	39.6	39.6
Mass Flow (kg/hr)	19,300	19,300	19,300	19,300	1,182	37.2	37.2	37.2
Molar Flow (kmol/hr)	1,393	1,393	1,393	1,393	69.4	2.2	2.2	2.2
Components (kmol/hr)								
H ₂ O	0	0	0	0	0	0	0	0

H ₂	513.2	513.2	513.2	513.2	0.2	0.2	0.2	0.2
N ₂	283.6	283.6	283.6	283.6	0.2	0.2	0.2	0.2
NH ₃	588.6	588.6	588.6	588.6	69	1.9	1.9	1.9
Ar	7.3	7.3	7.3	7.3	0.1	0	0	0

Table 6.3.2a: Haber Bosch Material Balance Descriptions

Stream Number	38	39	40	41	OUT	PURGE					
Temperature (°C)	7.2	7.2	32.2	32.2	20	171					
Pressure (bar)	1	1	1	1	10.1	39.6					
Mass Flow (kg/hr)	1754	23,010	1754	23,010	1,145	0.8					
Molar Flow (kmol/hr)	97.4	1277	97.4	1277	67.2	.02					
Components (kmol/hr)											
H ₂ O	97.4	1277	97.4	1277	0	0					
H ₂	0	0	0	0	.01	0.006					
N ₂	0	0	0	0	0.33	0.008					
NH ₃	0	0	0	0	1144	0.006					
Ar	0	0	0	0	0.07	0.006					

7. Process Descriptions

The overall process is broken down into two main sections: production of the reactants and the Haber Bosch process itself.

7.1.1 Feed Stream Sourcing and Preparation

Since the inputs to our process are simply air and water, we can source them directly from the environment. However, for the air, due to the presence of possible pollutants and solid particles present in the air, it will be run through a filtration system to avoid contamination and any possible issues to the system. The water does not necessarily need to go through such a process because the solids will fall out and instead remain in the boiler when the water is boiled. However, if clean water could be obtained that would be favorable as it would lower the frequency of required cleanings on the boilers. It will be assumed that the water has no solids. Both of the inputs will be heated and compressed prior to mixture with the H_2/N_2 mixture that is recycled from the process. Argon is present all throughout the process and accounted for in the calculations but will not be dealt with until the Haber Bosch process where it will be purged. **Figure 6.2.1a** is reprinted below for convenience.

Figure 6.2.1a: Process flow diagram with all of the physical units involved in the process.

7.1.2 Water Compression and Heating (UP-PM-01, UP-BO-01)

In order to produce hydrogen from water, the water must enter the SOEC system as compressed steam. To accomplish this, a pump with two stages (UP-PM-01) is used to first bring the input water at 25°C and 1bar to 40 bar. Following this process, the water is subsequently heated to 420°C by a boiler (UP-BO-01). This is in order to help achieve a reaction temperature that is able to support the reaction of hydrogen and oxygen in stream 6 and also ensures that the temperature at the end of the reaction will be at 800°C, the temperature at which our SOEC system is run. Prior to combination with the ar stream, the hydrogen + nitrogen is added from a recycle stream. This hydrogen + nitrogen stream is at a lower temperature (35°C) than the water stream and lowers the total stream temperature to about 380°C. The steam, hydrogen, and
nitrogen stream is elevated to higher temperatures by a series of two heat exchangers as well prior to the addition of the air stream.

7.1.3 Air Filtration, Compression, and Heating (UP-CP-01, UP-CO-01, UP-CP-02, UP-CO-02, UP-CP-03, UP-FH-01)

The input air sourced from the environment is assumed to enter the process having passed a filter used to remove undesirable particles at 25°C and 1 bar similar to the water. It undergoes a compression process as well but is slightly different to the water as the air requires the use of compressors rather than a pump due to its physical state. After the first compressor (UP-CP-01), the air achieves a pressure of 3.42 bar. However, the temperature of the stream increases to 197.91°C. As this is undesirable due to more work needing to be exerted by the compressor to achieve the same pressure, before entry into the second compressor (UP-CP-02), the air stream enters a cooler (UP-CO-01) which decreases the temperature of the system to 37.8°C. This stream is then fed again into another compressor (UP-CP-02) which raises the pressure and temperature of the stream to 11.7 bar and 236.22°C. This stream enters another cooler (UP-CO-02) which cools the stream to 37.8°C and enters the final compressor (UP-CP-03) which brings the stream up to 40bar. Cooling water at 80°F or 26.67°C was used as the cold streams for the coolers. After this step however, the stream is not cooled again as having a higher temperature is desirable in our process due to the combination with the water stream needing to achieve temperatures higher than the oxyhydrogen reaction temperature which can be achieved at temperatures as low as 560°C.⁸ The stream exits the final compressor at 40 bar and 222.91°C.

⁸ Airliquide Hydrogen Safety Data Sheet

This is not hot enough to maintain a temperature hot enough where the oxyhydrogen reaction or ignition of hydrogen will take place upon combination with the steam, hydrogen, and nitrogen stream. It will undergo an additional heating process in a fired heater (UP-FH-01) which heats the stream up to 550°C and afterwards gets combined with the other input stream.

7.1.4 Heat Exchangers (UP-HX-01, UP-HX-02)

Stream 4 passes through a series of heat exchangers in order to elevate the temperature of 610°C. This temperature is chosen so that when the air gets added to the process the change does not lower the temperature to a point where the oxyhydrogen reaction does not occur. Both heat exchangers utilize the products of the SOEC to heat up the reactants as they both leave the SOEC system at 800°C. These hot streams are both used to heat up the inputs and have a minimum approach temperature greater than 10°C. This was chosen to ensure that the driving force was large enough. A drop of 5 psi was assumed for each exit stream.

7.1.5 Oxyhydrogen Reaction

Hydrogen and oxygen will react when stream 6 combines with stream 9. The main components of this reaction involve oxygen from the air and the hydrogen from the recycle to undergo this process. Excess water is kept to ensure that the temperature increase caused by this reaction is not excessive as there are lower limits to which this reaction can get started. The water in addition is later hydrolyzed in the process to form more hydrogen and O_2 although from a strict stoichiometric perspective this seems intuitive but this process is crucial to the overall system for a number of reasons. First, it is an excellent way to separate the oxygen from the air so that we may obtain nitrogen as a part of the process. This allows all the energy of the solid oxide electrolyzers to be utilized in producing hydrogen. In addition, it reduces heating costs of the system as more energy does not need to be spent to increase the temperature of the inputs of the SOEC to the operating temperature of the electrolyzer and the electrolyzer itself. Lastly, this process is advantageous as the oxygen cannot be exposed to the cathode side as it would degrade cell and thereby incur greater costs, Considering that the SOEC system to date is the most expensive units of the system, it is prudent to ensure the longevity of these systems at over others. For the process, it is assumed that all the oxygen that is input from the air into the process is reacted in this manner.

7.1.6 Solid Oxide Electrolyzer Network (SOEC)

Each stack in our system was given a rating of 500kW in order to determine an appropriate price and current which would allow us to calculate the conversion of water to hydrogen within our system. 24 units each rated at 500kW would be put in parallel to process the hydrogen in the system. Taken at 1.285V, the thermoneutral voltage for the electrolysis of water at 800°C, this would lead to a current of 9.231*10^6 amps to be run throughout the whole system. ⁹ Given that the current is used to electrolyze water, this would produce 171.2kmol H₂/hr. Due to the system operating at the thermoneutral voltage, it will not experience a change in temperatures in the output and allows us to utilize the high temperature to heat up our inputs in UP-HX-01 and UP-HX-02. The calculations for the production of kmols H₂/hr can be found in

⁹ High temperature electrolysis cell. Retrieved April 1, 2020 from

http://www.helmeth.eu/index.php/technologies/high-temperature-electrolysis-cell-soec

Appendix A.1. The O_2 partial pressure difference between the two electrodes will help any possible unreacted oxygen to be separated from the input stream.

7.1.7 Oxygen Cooler (UP-CO-03)

One of the primary products of the SOEC is in the form of oxygen gas created from the electrolysis of water to produce hydrogen. The oxygen product is completely pure given that no air is run on the anode side of the SOEC to allow the oxygen to flow out of the electrolyte. This also allows there to be a greater O_2 partial pressure difference to exist between the electrodes of the fuel cell system. As a result of the process, 85.6 kmol O_2 /hr is produced and this stream leaves the anode side of the SOEC to be used as the hot fluid for UP-HX-02. The oxygen product leaves the heat exchanger at 649.6°C and enters a cooler that brings the temperature of the stream down to 35°C to permit the easier/safer storage of oxygen. The exact specifications of exactly how the oxygen was stored and sold were beyond the scope of the project. Cooling water at 26.7°C was used as the cold stream to this process.

7.1.8 SOEC Product Condenser (UP-CD-01)

The gaseous stream containing hydrogen, nitrogen, and the remaining water leaves the cathode side of the electrolyzer and enters a heat exchanger (UP-HX-01) to heat up the inputs entering the SOEC. After this process, this stream is sent to a condenser for the removal of the water. It is much easier to do so when it exists in liquid form. By decreasing the temperature significantly, during this operation, the hydrogen and nitrogen will remain as a gas while the water condenses and exits the process as a liquid. The temperature that the streams leave the

condenser is 35°C as it is undesirable to leave hydrogen at high temperatures for safety reasons. Cooling water was once again used as the cold stream to the unit entering at 26.67°C. More cold water was added than necessary to allow the exit cooling water to remain below 30°C which preserves a reasonable driving force for the heat to be transferred across the two streams.

7.1.9 Recycle Stream Compressor (UP-CP-04)

After condensing the water and eliminating it from the system, the gaseous stream consisting of primarily hydrogen and nitrogen is split with roughly 75% of the stream entering the next step of the process. The remaining 25% of the gas is sent to a compressor which raises the pressure back up to 40 bar for re-entry into the production of hydrogen and serves as the hydrogen component for the oxyhydrogen reaction.

7.2.1 Ammonia Synthesis Reaction Vessel (HB-RXN)

For the given catalyst, the mass of catalyst required was calculated as a function of the GHSV and reactor size. The mass of catalyst required was found to be 316 kg at a price of \$20/kg of catalyst. The total amount of capital dedicated to purchasing the catalyst is \$20,000 to account for the 6-month cycle that the catalyst is functional for over the duration of the plant life.

It is further worth noting that the reaction has a relatively low single-pass conversion, only nearing 15-20% per pass through the reactor. However, repeated cycles through the entirety of the process is easily achieved and brings the total reaction rate close to completion. Through this recycle stream, a large amount of otherwise unreacted reagents are converted into the useful ammonia product.

The physical design of the reactor is that of a very tall tower with a relatively low pressure drop. There will be three catalyst beds, where the mixture will be allowed to react in separate layers to increase process efficiency. This gaseous ammonia product will be constantly removed to increase the reaction rate of the product in accordance with Le Chatlier's principle. This product mix will then be cooled slightly using chilled water and the incoming gas to the reactor. From this point, the gas will be sent to the separation column to recover the product.

7.2.2 Separation Column (HB-S-01)

The separation column, labeled HB-S-01 in **Figure 6.3.1a**, is a column that serves to separate the liquid ammonia product to be stored and shipped off from the gaseous reagents that failed to react in a previous pass through the reactor. It has been approximated as a flash vessel in ASPEN. HB-S-01 operates at 30 degrees Celsius and a pressure of 40 bar, taking in 968 kmol/hr of reagents, and outputting 69 kmol/hr of liquid ammonia product. HB-S-01 is the first column in the process loop, and as such is responsible for the bulk of the separation of ammonia from other gases. The distillate from HB-S-01 is recycled back into the main process loop after being heated by the reactor products. This occurs in heat exchangers HB-HX-01 and HB-HX-02. The stream is then pressurized by compressor HB-CP-02 to 80 atmospheres of pressure. Some of the unreacted hydrogen and nitrogen will inevitably leave as bottoms products from this first separation tower and enter the next stage. After the liquid product is depressurized in the let-down vessel HB-S-02 (see **Section 7.2.3**), the unreacted reagents (and trace amounts of ammonia) will leave as distillate and be repressurized by the compressor HB-CP-01. The distillate is also partially purged to remove the buildup of inert argon in the system, and the rest

of the distillate rejoins the initial feed stream This rejoining of the two streams through a mixer completes the recycling process.

7.2.3 Let Down Vessel (HB-S-02)

The let down vessel, which has been approximated as a flash vessel in ASPEN, is primarily utilized to lower the high pressure of the bottoms product of the separation columns, over 40 atmospheres, into a more manageable pressure for storage and shipment, roughly 10 atmospheres. The majority of the mass that flows through the vessel stays liquified at these conditions, given that almost exclusively liquid ammonia will exit as bottoms products from the columns. A small fraction of the liquid entering will be gasified upon pressure reduction, and will be sent to be repressurized and recycled throughout the process once more.

7.2.4 Compression of Gaseous Reactants (HB-C-01, HB-C-02)

There are two separate compressors that are utilized in the ammonia synthesis portion of the process. In the first cycle through the reactor, there will be no ammonia to separate, and all the gas will flow through to the pre-reactor compressor HB-CP-02, where the gas is pressurized to the required 80 atmospheres of pressure that is required for the reaction to proceed at the desired rate. The second compressor, HB-CP-03, is used to compress the distillate of the let down vessel to return to the conditions needed to be reintroduced to the feed stream.

Due to the high pressures required for the reactants, centrifugal pumps were found to be appropriate. These compressors work through the use of an impeller that is shaped to force the gas to the rim of the impeller, which increases the velocity. This process is done through multiple stages. These compressors are ideal as they are sufficiently large for this process and have comparatively greater efficiencies. They also weigh significantly less and occupy less space than other compressors of similar function, such as reciprocating compressors.

7.2.5 Heat Exchangers (HB-HX-01, HB-HX-02, HB-HX-03, HB-HX-04)

In this process there are a number of situations where it is necessary to change the temperature of a given stream before the next process can be performed. Typically, in order to lower operation costs and purchases of utilities it is effective to exchange heat between a hotter stream that needs to be cooled, and a cooler stream that must be heated. Unfortunately, there are scenarios when no such heat integration opportunities are available, and in these cases a heater or cooler are used. An important note regarding the composition of the heat exchanger, along with the heaters and coolers, is that carbon steel is not an appropriate material choice. The hydrogen that is present all throughout the ammonia synthesis portion of the process is prone to reacting with the carbon in steel, causing hydrogen embrittlement to occur. This is a potential safety hazard because a pipe, or heat exchanger that has been made brittle could eventually burst. This result could be explosive and catastrophic. As such, the choice of material for these processes (and pipings) was chosen to be a Cr-Mo steel alloy that is far more resistant to this problem.

The most significant use of heat integration in this process are the usage of HB-HX-01 and HB-HX-02. The entry temperature of the reagents into the ammonia synthesis process from the SOEC section are high, but not enough to reach the desired reaction conditions. Preheating of these reagent streams is performed by heat exchangers HB-HX-01 and HB-HX-02, which utilize the high temperature of the reaction products to help reach the desired temperature for input into

the reaction vessel. The cold reagent stream enters HX-01 at 30 degrees Celsius, and exits at 90 degrees Celsius. After compression the temperature increases again, causing the stream to enter HX-02 at 193 degrees Celsius, and exiting at 225 degrees Celsius. The hot stream analogs to the aforementioned streams are the reaction products, which enter HX-02 at 400 degrees Celsius, and exit at 368 degrees Celsius. This stream is then cooled slightly by HX-03, which is cooled with cooling water, before entering HX-01, exiting at 300 degrees Celsius. Finally, the hot stream reaches HX-04, where it is once again cooled by cooling water until it reaches the final temperature of 250 degrees Celsius.

7.2.6 Storage

The liquid ammonia product, having met the quality criteria for proper sale, is stored in a very large-scale spherical tank. A spherical tank was chosen for the combination of volume, ability to minimize stress from the pressure in the storage vessel, and lack of heat transfer with the surroundings due to minimization of surface area. The tank will be pressurized at 10 atmospheres and held at a temperature of 20 degrees Celsius. The volume of the tank, roughly 47,000 gallons, was calculated to account for a three-day storage time, the longest amount of time that is expected for the tank to be emptied and for product to be shipped off by rail car. This calculation can be found in the *Appendix A.4*. For information regarding how transportation of product is expected to be undertaken can be found in **Section 14.5**.

8. Energy Balance and Utility Requirements

8.1 Description of Partitioning

In this section, the description of the energy balance and the energy requirements for utilities is split into discussions of the first and second "halves" of the process, similarly to what has been done in previous sections of this report, and will be continued in **Sections 9** and **10**. The first half involves the input of the air and water to the system and the utilization of the SOEC, culminating in the output of hydrogen and nitrogen into the Haber-Bosch ammonia synthesis portion, which is the second half of the process.

Overall, operation of this plant process involves a considerable amount of utilities and electricity, notably cooling water, high pressure steam, and electricity. There is also a fired heater that is operated in the first half of the process. While the utilities themselves are inexpensive, the volume that is required to achieve the desired output is considerable, and as such becomes a noticeable expense. Particularly, the incredible pressure requires significant investment in electricity, not to mention the large equipment cost for such a compressor. Yearly figures were calculated assuming that the plant operates for 350 days a year. It is assumed that the electricity will be obtained from renewable energy sources.

8.2.1 Electricity Requirements for Overall Process

It is clear from **Table 8.2.1a** that the large majority of the electricity requirements stem from the hydrogen/nitrogen generation process. The overall amount of energy that the system requires is around 26.7MW.

Process	Duty [cal/sec]	Usage Rate [kW]	Yearly Consumption [kW-hr]	Yearly Operation Cost [\$]
SOEC	4,952,066	20,719	174,043,374	0
НВ	1,430,000	5986	50,281,652	0
Total Process	6,382,066	26,705	224,325,026	0

Table 8.2.1a: Electricity Requirements for Overall Process

8.2.2 Breakdown of Electricity Requirements for SOEC Processes

A summary of the electricity requirements of the SOEC processes can be found in **Table 8.2.2a**. Some of the largest requirements of energy are the water boiler (UP-BO-01), the SOEC system (SOEC), and the condenser. Since it was assumed that the electricity to power these units and the water was essentially free, it was chosen to add excess water to provide ample quantities for reaction and also to absorb some of the heat released by the oxyhydrogen reaction. The SOEC has an especially high electricity requirement as it is the component directly responsible for producing the hydrogen to be fed into the next step of the overall process. Lastly, a large amount of energy is expended to cool and condense the cathode stream as to limit the dangers of working with hydrogen and eliminate the water.

Unit Operation	Duty [cal/sec]	Usage Rate [kW]	Yearly Consumption [kW-hr]	Yearly Operation Cost [\$]
UP-PM-01	5,839	24	205,212	0
UP-BO-01	1,948,510	8,153	68,481,553	0
UP-CP-01	24,642	103	866,040	0
UP-CP-02	28,418	119	998,760	0
UP-CP-03	26,625	111	935,760	0
UP-FH-01	49,497	207	1,739,602	0
SOEC	2,868,069	12,000	100,800,000	0
UP-CP-04	466	2	16447	0
Total	4,952,066	20,719	174,043,374	0

Table 8.2.2a: Electricity Requirements for SOEC Processes

8.2.3 Breakdown of Electricity Requirements for Ammonia Synthesis

Processes

Unit Operation	Duty [cal/sec]	Usage Rate [kW]	Yearly Consumption [kW-hr]	Yearly Operation Cost [\$]
HB-C-01	743	3.1	26,124	0
НВ-С-02	327,500	1,371	11,520,000	0
HB-S-01	788,900	3,303	27,745,200	0
HB-S-02	1,772	7.4	62,328	0
HB-RXN	310,740	1,301	10,928,000	0
Total	1,430,000	5986	50,281,652	0

Table 8.2.2: Electricity Requirements for Ammonia Processes

8.3 Cooling Water Requirements for Overall Process

Table 8.3a: Cooling Water Requirements for Overall Process

Process	Yearly Amount (MT/yr)	Yearly Cost (\$)
Cooling Water	280,534	8,000
Chilled Water	140,397	211,000
Chilled Brine	1,008,626	1,512,000
Total	1,429,557	1,731,000

9. Equipment List and Unit Descriptions

9.1 Heuristics for Equipment Determination

Generally, the equipment described and utilized here have had their costs determined through a number of common chemical engineering heuristics and equations. The specifics regarding each piece of equipment, including flow rates, energy usage, as well as temperature and pressure data can be found more clearly in **Section 10: Specification Sheets**.

9.2 Construction Materials

In general, the "cheapest first" heuristic was adhered to regarding our choice of materials for construction. This can be seen in our choice to use cheaper materials whenever possible in our design, such as in the pipes for the water input into the SOEC system where the complications regarding hydrogen are not a concern, stainless steel instead of Mo-Cr alloys can be used. Generally however, most of the processes in this operation involve hydrogen gas, meaning that embrittlement concerns dictate that allows such as Mo-Cr or Monel (nickel alloy) must be used instead.

9.3 Specialized Equipment

Costing heuristics are very useful, and are implemented in this report for the majority of the processes in this design. However, there are specific pieces of equipment in this design which are too specialized to have a heuristic that allows for a rule-of-thumb calculation to be performed. These non-standard pieces of equipment include the air filtration unit, and the solid oxide electrolytic cells. In order to find information and pricing, various online sources and quotes were found for these units, but should be considered to have significantly more variability in these estimations compared to the "actual" price of these units than the more conventional units will. In the ammonia synthesis reactor, information regarding retention time, sizing, and catalyst volume were found from literature.

9.4 Mixers and Splitters

Mixers and splitters must be used throughout the whole process to ensure the system is able to run continuously. In these cases, mixing and splitting can be accomplished by a tee in the pipeline and utilizing a series of analyzers, controllers, and valves. These considerations are expected to be covered by the bare module costs and as such no specific analysis was conducted on these units.

9.5.1 Water Pump (UP-PM-01)

UP-PM-01 will be used to bring liquid water at 25°C and 1 bar up to 40 bar so that it may be incorporated into the process. UP-PM-01 will be a pump with two stages operating at 3600rpm and has a horizontal split case. This pump will be constructed with cast iron. An electric motor that is able to provide 32.75hp will be used to drive these pumps. The cost of the pump itself and the electric motor are \$12,748 and \$1,733 respectively.

9.5.2 Water Boiler (UP-BO-01)

Following the compression of the water, the water must be transformed to steam and raised to 420°C. The change in temperature is accomplished in a water boiler. Stainless steel will be the material of construction for this unit. The costing of this unit was given the same treatment as the fired heater and determined to be \$891,249 dollars.

9.5.3 Compressors (UP-CP-01, UP-CP-02, UP-CP-03, and UP-CP-04)

In order to get the air to a suitable pressure, three different centrifugal compressors are used. The first compressor brings the air from1 bar to 3.42 bar, the second compressor from 3.08 bar to 11.7 bar, and the third compressor from 11.36 bar to 40 bar. This was done in three different steps to avoid having the compression ratio extend beyond 4. These compressors will be constructed out of cast iron. The required power of these compressors are 138.3 hp, 159.5 hp, and 149.4 hp respectively. The fourth compressor in the system (UP-CP-04) will take the stream from 38.93 bar to 40 bar for re-entry into the process. This compressor will also be a centrifugal compressor but will be made of Cr-Mo steel alloy to prevent the embrittlement of the device. The compressor has a shaft power of 2.63 hp. The cost of the compressors is as follows: \$223,248; \$244,570; \$234,696; and \$25,785. These prices are in number order of the compressors.

9.5.4 Coolers (UP-CO-01, UP-CO-02, UP-CO-03)

Throughout the SOEC system, streams must be cooled throughout to ensure optimal performance into the next unit or for convenience reasons. In each of these coolers which were

shell and tube heat exchangers, the hot stream is fed to the shell side while the coolant is fed through the pipes. UP-CO-01 and UP-CO-02 use cooling water as the coolant and UP-CO-03 uses chilled water. Each of the exchangers was designed with having a fixed head, tube lengths of 20ft, and made of carbon steel on both sides. UP-CO-01 and UP-CO-02 cool the air stream to 37.8°C following their respective compression processes. UP-CO-03 cools the oxygen stream to 35°C. The surface areas of the individual coolers in order are as follows: 2.01 m², 3.80 m², and 2.94 m². The costs of the coolers are as follows: \$14,337; \$12,328; \$14,564,

9.5.5Air Heater (UP-FH-01)

Following the last compressor, the air must be heated so as not to decrease the temperature too far upon mixing with the water, hydrogen, and nitrogen stream. The air stream is raised to a temperature of 550°C from 222.9°C. Stainless steel will be used to construct this air heater. The cost of this unit is \$49,920.

9.5.6 Heat Exchangers (UP-HX-01, UP-HX-02)

Heat exchangers are used in the system in order to maximize the extra energy remaining from the outputs from the SOEC systems. As they will exit the SOEC at 800°C and are to be cooled, this heat is used to heat up the water + recycle stream mixture to a temperature high enough (610°C) so that upon mixture with the air, the reaction of hydrogen will release enough heat to raise the temperature to 800°C. The exact nature of these calculations can be found in *Appendix A.2*. The first heat exchanger raises the temperature of the cool stream to 590°C and the second one raises the temperature to 610°C. Similar to the coolers, the heat exchangers are

fixed head and the hot stream is run along the shell side while the cold streams are fed through the tube side of the exchanger. The material of construction will be Cr-Mo steel to avoid hydrogen embrittlement problems. The tube length will be 20 ft. The surface areas of UP-HX-01 and UP-HX-02 are 7.06 m² and 1.31 m². The price of UP-HX-01 is \$34,228 and UP-HX-02 is \$46,708.

9.5.7 500kW Solid Oxide Electrolyzer (SOEC)

The solid oxide electrolyzers are one of the most important and most expensive units of the process. Each cell stack was given a rating of 500kW to guide calculations. Since technology has not yet advanced this far, systems of these sizes do not yet exist but this model was derived with the assumption that technology will reach these sizes within the near future. Each stack will be run at 1.285V and 384,615 amps. 1.285V was chosen since it is the thermoneutral voltage for the reaction at 800°C. 24 units of 500kW stacks are necessary in order to achieve the hydrogen production desired. Materials used to build these units are going to be assumed to be standard: Ni-YSZ anode with a LSM anode. It is important to note that one of the main technological innovations to drive down costs of these units will be in the material in itself. The estimated bare modular cost of this unit will be \$15,000,000. From using a bare modular cost of 2, a purchase cost of \$7,500,000 was determined. This was chosen as a rough estimate to two significant figures by using some older SOFC costs as a basis. The authors understand that this number is low for an estimate and will instead focus on a sensitivity analysis on the cost that these units need to be in order for this operation to be profitable in **Section 15**.

9.5.8 Product Stream Condenser (UP-CD-01)

The products exit the cathode side of the electrolyzer with steam needing to be eliminated from the stream prior input to the Haber Bosch process. This is accomplished in a condenser which removes the water as a liquid. The condenser will be made of Cr-Mo steel due to the hydrogen. The cooling fluid for the condenser is chilled brine. The hot stream temperature is lowered to 35°C from 598°C. Costing for this unit was assumed to be similar to a typical heat exchanger and was determined to be \$47,353.

9.6.1 Ammonia Synthesis Compressor Units (HB-C-01, HB-C-02, HB-CP-03)

Each of these compressors in the ammonia synthesis process serve to pressurize the nitrogen, hydrogen, and argon that is used in the synthesis operation. Compressor HB-C-01 increases the pressure of it's outgoing stream by 30 atmospheres, from 10 atm to 40 atm. HB-C-02 increases the pressure of it's outgoing stream by 40 atmospheres, from 40 atm to 80 atm. These compressors will each be similar in function, and HB-C-01 will be operating at 150 horsepower. HB-CP-02 is the compressor that must put in the most work, and as such will be larger in size as well, and will operate at 1500 horsepower. Each compressor will utilize 8000-hour synthetic oil, and motors made of cast iron. HB-CP-01 will cost \$14,021 and HB-CP-02 will cost \$1,405,174 to purchase.

9.6.2 Heat Exchanger 1 (HB-HX-01, HB-HX-02, HB-HX-03, HB-HX-04)

Heat exchangers and associated pumps are required to facilitate the function of the synthesis process. The ammonia synthesis reactor output products are too hot to be placed in the separation column, and as such are cooled by contacting the input streams, heating them in the process to reaction conditions, which is done by heat exchangers HB-HX-01 and HB-HX-02. HB-HX-01 is 25 m² in surface area, and HB-HX-02 is 79 m² in surface area. Both are fixed head, shell-and-tube heat exchangers, 20 meters in length, and with both being made of Cr-Mo steel. In both cases, the hot stream is in the tube side, and the cold stream is in the shell side. HB-HX-01 cost \$33,407 and HB-HX-02 cost \$40,114 to purchase. The other two heat exchangers, HB-HX-03 and HB-HX-04 are similar in function to the previous exchangers, cooling the product stream to the proper temperatures to enter the separation units. They differ however in using cooling water instead of the colder reactant stream as the cooling fluid, and as such have the hot fluid in the shell. HB-HX-03 and HB-HX-04 are both 20 meters in length, and made of Cr-Mo steel on the gaseous product side, and carbon steel on the cooling water side. HB-HX-03 has a surface area of 25 m², operates at 508 psig, and will cost \$37,992 to purchase. HB-HX-04 is identical to HB-HX-03 in terms of length and area, but operates at 1160 psig, and will cost \$48,292 to purchase.

9.6.3 Ammonia Synthesis Reaction Vessel (HB-RXN)

The ammonia synthesis reaction vessel is a packed bed reactor. The reaction that occurs is the conversion of gaseous nitrogen and hydrogen into ammonia, which is highly exothermic

and proceeds under pressure greater than 80 atmospheres. This reaction is catalyzed by the presence of a sodium-doped iron catalyst which facilitates the splitting of the diatomic hydrogen and nitrogen gas into constituent atoms. The reactor has a capacity of 2.63 m³ and produces 84 kmol of ammonia per hour. This value was determined using residence time information about the reaction. To determine the catalyst mass, GHSV data and volume of catalyst in the reactor were taken from literature, and the final mass was determined to be 316 kg. The reactor vessel is a vertical pressure vessel that is 14.35 feet in height and 2.87 feet in diameter, and the vessel is made of Monel to account for the problem of hydrogen embrittlement. The total cost of this reaction vessel is \$81,929.

9.6.4 Separation Columns (HB-S-01, HB-S-02)

The first separation vessel, HB-S-01, is used to take in the input stream along with the product of the reaction vessel and separate the liquid ammonia off from the gaseous reactants. The liquid ammonia product is sent directly to HB-S-02, which serves as a let-down vessel. This vessel depressurizes the ammonia product and allows it to be safely stored at sale conditions in a spherical storage tank. There will be a small amount of distillate from HB-S-02, but not very much, as little H_2 or N_2 will have been liquified and carried to the let-down vessel. This minute amount of gaseous reactants will be recompressed and recycled back with the input stream to begin the cycle anew. HB-S-01 will be operated at 25 degrees Celsius and at a pressure of 40 atmospheres. HB-S-01 is a vertical pressure vessel with a diameter of 0.87 ft, and a height of 10.37 feet. This vessel, along with HB-S-02, is made of Monel-400 to prevent hydrogen embrittlement. HB-S-02 is operated at a slightly higher temperature, at around 50 degrees

Celsius, and at a lower pressure of 10 atmospheres. This column has a diameter of 0.78 feet and a length of 12.16 feet. HB-S-01 costs \$15,871 to purchase, and HB-S-02 costs \$13,735 to purchase.

9.6.5 Storage Vessel

The ammonia storage vessel is a spherical vessel. The volume of the vessel was calculated by considering the retention time required to store the output of this process for a relatively long period of time, in case pickup and shipment of the product is halted for a few days. The calculations to determine this volume can be found in the *Appendix*. A spherical vessel was chosen due to the large volume of this storage vessel, but also the ability for a spherical vessel to withstand the pressure that the product is stored at, as well as to minimize heat transfer with the surroundings. The vessel is pressurized at 10 atmospheres, and is constructed of Monel to avoid hydrogen causing cracks in the storage vessel over time. The cost of this spherical storage vessel is \$235,000.

10. Specification Sheets

Input Water Pump (UP-PM-01)

Description and Function

Increases the pressure of the water input stream from 1 bar to 40 bar.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Water

Characteristics

Material: Cast Iron, Pump Type: Centrifugal pump, Number of Stages: 2 stages, Split Case Type:

Horizontal Split Case, Pump Specs: 3600 rpm, Power: 32.75 hp,

Operating Conditions/Design Data

Temperature: 25°C - 26.2°C

Pressure: 1 bar - 40 bar

Purchase Cost

\$ 12,748

<u>Utilities</u>

24.43 kW electricity

Water Pump Motor (UP-EM-01) **Description and Function** Electric motor used to drive the water pump. <u>Vendor</u> N/A **Operation** Continuous Output **Materials Handled** Water **Characteristics** Power: 32.75 hp **Operating Conditions/Design Data** N/A **Purchase Cost** \$1,733 <u>Utilities</u> 24.43 kW electricity

Input Water Boiler (UP-BO-01)

Description and Function

Following pressurization of the water, the water is transformed to steam and heated to 420°C.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Water

Characteristics

Material: Stainless Steel, Process Volume: 2964.8 gal/min

Operating Conditions/Design Data

Temperature: 26.2°C - 420°C

Purchase Cost

\$891,249

<u>Utilities</u>

1,9948,510 kW electricity

Air Filter

Description and Function Filters the air prior to entry into the system. Vendor N/A Operation Continuous Output Materials Handled Nitrogen, Oxygen, Argon Characteristics Process Volume: 3400 m³, Filter Media Material: Glass Fiber, Filter Class: M6, Media area: 8

m², Filter Type: Vbank filter Dimensions: 0.6 x 0.6 x 0.2 m, Air flow: 3,400 m3/hr Frame: ABS,

Weight: 3 kg

Operating Conditions/Design Data

Temperature: 25°C

Pressure: 1 bar

Purchase Cost

\$4,000

<u>Utilities</u>

N/A

Air Compressor 1 (UP-CP-01)

Description and Function

Compresses ambient air at 1 bar to 3.42 bar.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Nitrogen, Oxygen, Argon

Characteristics

Material: Cast Iron, Type: Centrifugal Compressor, Power: 138.3 hp

Operating Conditions/Design Data

Temperature: 25°C - 197.9°C

Pressure: 1 bar - 3.42 bar

Purchase Cost

\$223,248

<u>Utilities</u>

Air Compressor 2 (UP-CP-02)

Description and Function

Compresses the air from 3.08 bar to 11.7 bar following a decrease in temperature from a cooler.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Nitrogen, Oxygen, Argon

Characteristics

Material: Cast Iron, Type: Centrifugal Compressor, Power: 159.5 hp

Operating Conditions/Design Data

Temperature: 37.8°C - 236.2°C

Pressure: 3.08 bar - 11.7 bar

Purchase Cost

\$244,570

<u>Utilities</u>

Air Compressor 3 (UP-CP-03)

Description and Function

Compresses the air from 11.36 bar to 40 bar following a decrease in temperature from a cooler.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Nitrogen, Oxygen, Argon

Characteristics

Material: Cast Iron, Type: Centrifugal Compressor, Power: 149.4 hp

Operating Conditions/Design Data

Temperature: 37.8°C - 222.9°C

Pressure: 11.36 bar - 40 bar

Purchase Cost

\$234,696

<u>Utilities</u>

Recycle Stream Compressor (UP-CP-04)

Description and Function

Compresses the recycle stream back up to 40 bar following pressure drops throughout the

process.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Hydrogen, Nitrogen, Argon

Characteristics

Material: Cr-Mo Steel, Type: Centrifugal Compressor, Power: 2.63 hp

Operating Conditions/Design Data

Temperature: 35°C - 36.2°C

Pressure: 38.9 bar - 40 bar

Purchase Cost

\$25,785

<u>Utilities</u>

1.95 kW electricity

Air Cooler 1 (UP-CO-01)

Description and Function

Cools the air exiting Air Compressor 1 (UP-CP-01) to 37.8°C to reduce energy requirements on

subsequent compressor.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Nitrogen, Oxygen, Argon

Characteristics

Type: Shell in tube, fixed head. Effective Surface Area: 2 m² Tube Side Material: Carbon Steel,

Shell Side Material: Carbon Steel, Tube length: 20 m

Operating Conditions/Design Data

Hot Side Temperature: 197.9°C - 37.8°C

Hot Side Pressure: 3.42 bar - 3.08 bar

Purchase Cost

\$14,337

<u>Utilities</u>

63,601 MT/Year Cooling Water

Air Cooler 2 (UP-CO-02)

Description and Function

Cools the air exiting Air Compressor 2 (UP-CP-02) to 37.8°C to reduce energy requirements on

subsequent compressor.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Nitrogen, Oxygen, Argon

Characteristics

Type: Shell in tube, fixed head. Effective Surface Area: 3.8 m² Tube Side Material: Carbon

Steel, Shell Side Material: Carbon Steel, Tube length: 20 m

Operating Conditions/Design Data

Hot Side Temperature: 236.2°C - 37.8°C

Hot Side Pressure: 11.7 bar - 11.36 bar

Purchase Cost

\$12,328

<u>Utilities</u>

63,601 MT/Year Cooling Water

Oxygen Cooler (UP-CO-03)

Description and Function

Cools oxygen product stream from the SOEC for easy storage.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Oxygen

Characteristics

Type: Shell in tube, fixed head. Effective Surface Area: 2.9 m² Tube Side Material: Carbon

Steel, Shell Side Material: Carbon Steel, Tube length: 20 m

Operating Conditions/Design Data

Hot Side Temperature: 650°C - 35.0°C

Pressure: 39.0 bar - 38.9 bar

Purchase Cost

\$14,564

<u>Utilities</u>

140,397 MT/Year Chilled Water

Air Heater (UP-FH-01)

Description and Function

Heats up the air following the compression steps.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Nitrogen, Oxygen, Argon

Characteristics

Material: Stainless Steel, Volume Processed: 559.2 gal/min

Operating Conditions/Design Data

Temperature: 222.9°C - 550.0°C

Purchase Cost

\$49,920

<u>Utilities</u>

Heat Exchanger 1 (UP-HX-01)

Description and Function

Takes the compressed and heated water stream as the cold stream and the cathode product stream

as the hot stream. Most of the heat exchange is done here.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Hot Stream: Water, Hydrogen, Nitrogen, Argon

Cold Stream: Water, Hydrogen, Nitrogen, Argon

Characteristics

Type: Shell in tube, fixed head. Effective Surface Area: 7 m² Tube Side Material: Cr-Mo Steel,

Shell Side Material: Cr-Mo Steel, Tube length: 20 m

Operating Conditions/Design Data

Cold Stream Temperature: 379.9°C - 590.0°C

Cold Stream Pressure: 40.0 bar - 39.7 bar

Purchase Cost

\$34,228

<u>Utilities</u>

N/A

Heat Exchanger 2 (UP-HX-02)

Description and Function

Takes the compressed and heated water stream as the cold stream and the oxygen product stream

as the hot stream.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Hot Stream: Oxygen

Cold Stream: Water, Hydrogen, Nitrogen, Argon

Characteristics

Type: Shell in tube, fixed head. Effective Surface Area: 1.3 m² Tube Side Material: Cr-Mo Steel,

Shell Side Material: Carbon Steel, Tube length: 20 m

Operating Conditions/Design Data

Cold Stream Temperature: 590.0°C - 610°C

Cold Stream Pressure: 39.7 bar - 39.3 bar

Purchase Cost

\$ 46,708

<u>Utilities</u>

N/A
500kW Solid Oxide Electrolyzer (SOEC)

Description and Function

This unit electrolyzes water to produce hydrogen. Each stack is input with 25.87 kmol/hr (14.63 kmol H₂O/hr, 7.96 kmol H₂/hr, 3.24 kmol O₂/hr, 0.037 kmol Ar/hr). A total of 7.13 kmol H₂/hr and 3.56 kmol O₂/hr gets produced and within each stack. There are 24 stacks in the system.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Cathode Side: Water, Hydrogen, Nitrogen, Oxygen, Argon. Anode Side: Oxygen

Characteristics

Anode: Ni-YSZ, Cathode: LSM

Operating Conditions/Design Data

Temperature: 800°C

Voltage: 1.285V

Current: 384,615 Amps

Purchase Cost

\$7,500,000 (estimation) Bare Module Cost: \$15,000,000

<u>Utilities</u>

500 kW electricity per stack (12MW total)

Product Stream Condenser (UP-CD-01)

Description and Function

Condenses the product stream so the water can easily be separated and the hydrogen can be

handled easier.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Gaseous: Hydrogen, Nitrogen, Argon

Liquid: Water

Characteristics

Type: Shell in tube, fixed head. Effective Surface Area: 66 m² Tube Side Material: Carbon Steel,

Shell Side Material: Cr-Mo Steel, Tube length: 20 m

Operating Conditions/Design Data

Hot Stream Temperature: 598.2°C - 35.0°C

Hot Stream Pressure: 39.0 bar - 38.9 bar

Purchase Cost

\$ 47,353

<u>Utilities</u>

1,008,626 MT/year Chilled Brine

Pre-Reaction Vessel Compressor (HB-CP-02)

Description and Function

This compressor serves to increase the pressure of the distillate of the first separation column to

the required 80 atmospheres of pressure for the ammonia synthesis reaction to proceed.

<u>Vendor</u>

N/A

Operation

Continuous Output

<u>Materials Handled</u>

Hydrogen, Nitrogen, Argon, Ammonia

Characteristics

Material: Cr-Mo Steel, Weight: 2.5 MT, Compressor Type: Centrifugal Pump, Oil Type:

8000-hour synthetic, 1500 hp

Operating Conditions/Design Data

Temperature: 175°C

Pressure: 40 atm - 80 atm

Purchase Cost

\$1,405,174

<u>Utilities</u>

1371 kW electricity

Let-Down Vessel Distillate Compressor (HB-CP-01)

Description and Function

This compressor serves to increase the pressure of the distillate of the let down vessel to 10

atmospheres before entering the secondary separation unit.

<u>Vendor</u>

N/A

Operation

Continuous Output

<u>Materials Handled</u>

Hydrogen, Nitrogen, Argon, Ammonia

Characteristics

Material: Cr-Mo Steel, Weight: 1.5 MT, Compressor Type: Centrifugal Pump, Oil Type:

8000-hour synthetic, 150 hp

Operating Conditions/Design Data

Temperature: 50°C

Pressure: 10 atm - 40 atm

Purchase Cost

\$14,021

<u>Utilities</u>

3.1 kW electricity

Separation Column (HB-S-01)

Description and Function

The first separation column removes the bulk of the unreacted inputs from the liquid ammonia product. The distillate of this column is recycled back to the reactor after subsequent heatings and repressurization. The bottoms product is piped to the let down vessel for further purification and depressurization.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Hydrogen, Nitrogen, Argon, Ammonia

Characteristics

Material: Monel, Number of Trays: 8, Feed Stage: 4, Diameter: 0.87 ft, Height: 10.37 ft, Tray

Efficiency: 0.5, Reflux Ratio: 10.5, Condenser: Total

Operating Conditions/Design Data

Temperature: 25°C, Pressure: 40 atm, Mass Flow Rate: 8,653 kg/hr

Mole Flow Rate: 1,119 kmol/hr Mass Flow Hydrogen: 1,251 kg/hr, Mass Flow Nitrogen: 5,800

kg/hr,

Mass Flow Ammonia: 1,763 kg/hr. Mass flow Argon: 5 kg/hr

Purchase Cost

\$15,871

<u>Utilities</u>

3,303 kW electricity

Let Down Column (HB-S-02)

Description and Function

This column serves to depressurize the bottoms product of HB-S-01 to allow the liquid ammonia

to be removed for storage and later shipment

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Hydrogen, Nitrogen, Argon, Ammonia

Characteristics

Material: 304 Stainless Steel, Number of Trays: 6, Feed Stage: 3, Diameter: 0.78 ft, Height:

12.16 ft, Tray Efficiency: 0.5, Reflux Ratio: 7.5, Condenser: Total

Operating Conditions/Design Data

Temperature: 50°C, Pressure: 10 atm, Mass Flow Rate: 1873 kg/hr

Mole Flow Rate: 124 kmol/hr Mass Flow Hydrogen: 28 kg/hr, Mass Flow Nitrogen: 116 kg/hr,

Mass Flow Ammonia: 1729 kg/hr. Mass flow Argon: 0.05 kg/hr

Purchase Cost

\$13,735

Utilities

74 kW electricity

Heat Exchanger (HB-HX-01)

Description and Function

This first heat exchanger heats the distillate of the first separation column using heat energy from

the reaction products.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Hydrogen, Nitrogen, Argon, Ammonia

Characteristics

Type: Shell in tube, fixed head. Effective Surface Area: 24 m² Tube Side Material: Cr-Mo Steel,

Shell Side Material: Cr-Mo Steel, Tube length: 20 m, Tube Diameter: 4.54 cm,

Operating Conditions/Design Data

Cold Side Output Temperature: 125°C

Pressure: 490 psig

Purchase Cost

\$40,114

N/A

<u>Utilities</u>

Heat Exchanger (HB-HX-02)

Description and Function

This second heat exchanger further heats the distillate of the first separation column using heat energy from the reaction products after compression to prepare the cooler stream for entry to the

reaction vessel

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Hydrogen, Nitrogen, Argon, Ammonia

Characteristics

Type: Shell in tube, fixed head. Effective Surface Area: 79 m² Tube Side Material: Cr-Mo Steel,

Shell Side Material: Cr-Mo Steel, Tube length: 20 m, Tube Diameter: 4.88 cm,

Operating Conditions/Design Data

Cold Side Output Temperature: 225°C

Pressure: 1176 psig

Purchase Cost

\$33,407 per unit

<u>Utilities</u>

N/A

Heat Exchanger (HB-HX-03)

Description and Function

This heat exchanger serves as a cooler, further removing heat from the product stream after transferring some heat to the input to the reactor vessel, but before it must enter the separation

vessel.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Hydrogen, Nitrogen, Argon, Ammonia

Characteristics

Type: Shell in tube, fixed head. Effective Surface Area: 25 m² Tube Side Material: Cr-Mo Steel,

Shell Side Material: Carbon Steel, Tube length: 20 m, Tube Diameter: 4.73 cm,

Operating Conditions/Design Data

Cold Side Output Temperature: 300°C

Pressure: 490 psig

Purchase Cost

\$37,992 per unit

<u>Utilities</u>

120,272 MT/year of cooling water

Heat Exchanger (HB-FH-03)

Description and Function

This heat exchanger serves to even further cool the product of the reaction vessel, bringing the

components close to the temperature required for separation.

<u>Vendor</u>

N/A

Operation

Continuous Output

Materials Handled

Hydrogen, Nitrogen, Argon, Ammonia

Characteristics

Type: Shell in tube, fixed head. Effective Surface Area: 25 m² Tube Side Material: Cr-Mo Steel,

Shell Side Material: Carbon Steel, Tube length: 20 m, Tube Diameter: 5.31 cm,

Operating Conditions/Design Data

Cold Side Output Temperature: 150°C

Pressure: 490 psig

Purchase Cost

\$48,292 per unit

<u>Utilities</u>

160,262 MT/year of cooling water

Ammonia Storage Vessel

Description and Function

Spherical 47,000 gallon storage for anhydrous liquid ammonia product, held as a liquid under

pressure prior to transportation via rail cart.

<u>Vendor</u>

N/A

Operation

Batch Output, Continuous Input

Materials Handled

Ammonia

Characteristics

Material: Monel, Volume: 48,000 gallons, Working Capacity 66%,

Flow Capability: 3500 kg NH₃/hr

Operating Conditions/Design Data

Temperature: 20°C

Pressure: 10 atm

Maximum retention time: 72 hours

Purchase Cost

\$235,000 per unit

<u>Utilities</u>

N/A

11. Equipment Cost Summary

11.1 Overview

Overall, equipment for the construction of the full green ammonia plant will cost \$24.5 million. For simplifying purposes, the process can be broken up into an upstream and downstream portion. The upstream portion includes the part of the process which converts air and water into a hydrogen and nitrogen mixed stream. The downstream portion of the plant includes the conversion of elemental hydrogen and nitrogen into ammonia via the Haber Bosch process.

Equiptment Type	Purchase Cost	Bare Module Factor	Bare Module Cost
Reactors	\$81,929	4.16	\$340,823
SOEC	\$7,500,000	2.00	\$15,000,000
Compressors	\$2,147,494	2.15	\$4,617,113
Heaters	\$941,169	2.19	\$2,061,159
Heat Exchangers	\$329,325	3.17	\$1,043,959
Seperators	\$29,606	4.16	\$123,160
Filters	\$154,000	2.00	\$308,000
Pumps	\$14,481	3.30	\$47,789
Storage Tank	\$235,000	4.00	\$940,000
Total	\$11,433,003		\$24,482,003

As seen in Figure 11.1a, the reactor and the SOECs make up the bulk of the equipment

costs. As SOECs become cheaper, this process will become more economical.

11.2 Upstream Equipment Costs

Equipment Description	Туре	Purchase Cost	Bare Module Factor	Bare Module Cost
SOEC	Process Machinery	\$7,500,000	2.00	\$15,000,000
UP-EM-01	Process Machinery	\$1,733	3.30	\$5,720
UP-PM-01	Process Machinery	\$12,748	3.30	\$42,068
UP-CP-01	Process Machinery	\$223,248	2.15	\$479,984
UP-CP-02	Process Machinery	\$244,570	2.15	\$525,826
UP-CP-03	Process Machinery	\$234,696	2.15	\$504,596
UP-CP-04	Process Machinery	\$25,785	2.15	\$55,437
UP-HX-01	Process Machinery	\$34,228	3.17	\$108,504
UP-HX-02	Process Machinery	\$46,708	3.17	\$148,064
UP-CO-01	Process Machinery	\$14,337	3.17	\$45,449
UP-CO-02	Process Machinery	\$12,328	3.17	\$39,081
UP-CO-03	Process Machinery	\$14,564	3.17	\$46,168
UP-CD-01	Process Machinery	\$47,353	3.17	\$150,110
UP-BO-01	Process Machinery	\$891,249	2.19	\$1,951,834
UP-FH-01	Process Machinery	\$49,920	2.19	\$109,325
M6 Filter	Process Machinery	\$4,000	2.00	\$8,000
Ion Exchange Unit	Process Machinery	\$150,000	2.00	\$300,000
TOTAL				\$19,520,167

Table 11.2a: Overview of Upstream Equipment Costs

The upstream part of the process is dominated by the SOEC units, whose projected bare

module cost is \$15 million. All equipment sizing and bare module factors were consistent with

Dr. Warren Seider's textbook: "Product and Process Design Principles", 4th edition, 2016..

11.3 Downstream Equipment Costs

Equipment Description	Туре	Purchase Cost	Bare Module Factor	Bare Module Cost
Haber Bosch Reactor	Process Machinery	\$81,929	4.16	\$340,823
Sodium Doped Iron Catalyst	Catalysts	\$20,000	1.00	\$20,000
HB-CP-01	Process Machinery	\$14,021	2.15	\$30,146
HB-CP-02	Process Machinery	\$1,405,174	2.15	\$3,021,123
HB-HXA-01	Process Machinery	\$40,114	3.17	\$127,161
HB-HXA-02	Process Machinery	\$33,407	3.17	\$105,901
НВ-НХА-03	Process Machinery	\$48,292	3.17	\$153,087
HB-HXA-04	Process Machinery	\$37,992	3.17	\$120,435
HB-S-01	Process Machinery	\$15,871	4.16	\$66,024
HB-S-02	Process Machinery	\$13,735	4.16	\$57,136
Storage Tank	Storage	\$235,000	4.00	\$940,000
TOTAL				\$4,981,836

Table 11.3a: Overview of Downstream Equipment Costs

Equipment in the downstream vertical is less expensive. The reactor itself costs \$340k, and the process requires multiple compressors that cost in excess \$1 million. As mentioned, all machinery in contact with high pressure hydrogen needs to be manufactured from Cr-Mo steel, which is 40% more expensive than carbon steel, adding an additional cost. A spherical storage tank is necessary for storing liquid ammonia, and is particularly expensive as well.

12. Fixed Capital Investment Summary

In order to consider the total permanent investment of this proposal, the cost of land, royalties and startup must be considered as well as equipment and installation costs (Section 11).

12.1 Land

In theory, this proposal is meant to be built on the existing site of a coastal windfarm's port. For this reason, it is assumed that a firm undertaking this project would already own the land on which this is meant to be built. For this reason, land was assumed to be 0.5% of total depreciable capital, one-fourth of the default value. This allotment is meant to allow for the purchase of additional land, which should be marginal and significantly less than if this project were designed to be standalone.

12.2 Royalties

No proprietary technology will be used in the production of ammonia. For this reason, royalties were assumed to be zero in calculating total permanent investment, as is most common.

12.3 Startup

Due to the massive nature of a factor producing 16,000 metric tonnes of ammonia per year, start up costs are significant and must be considered. It was assumed that start up costs

would be equal to 10% of total depreciable capital, which should be more than sufficient for starting the plant.

In order to lessen startup costs, the plant will be run constantly, which will lessen effects of startup and reduce costs.

Table 12.3a: An overview of Fixed Capital Investment

Cost of Land:0.50% of Total Depreciable CapitalCost of Royalties:\$0Cost of Plant Start-Up:10.00% of Total Depreciable Capital

13. Operating Cost

13.1 Raw Materials

Green ammonia is produced only from water, air and wind power. Air and water must be purified before being fed into the process. An air filter and an ion exchange system have been included in our process to be sure the raw material fed will not degrade any equipment or the ultimate product. Raw material costs are therefore assumed to be zero.

Although it has been found that only an ion exchange system will be necessary for this process, a unit that deionizes water may be necessary based on the water quality at the chosen site. Water could be particularly saline (or perhaps even sea water). A cost of such a unit would be minimal in comparison to the rest of the equipment, and could be easily sourced and entered into the process.

13.2 Utilities

Total utility costs come to \$1.7M/yr. Electricity is assumed to be free of charge from a nearby wind farm with excess amounts of electricity. For this reason, only cooling water, chilled water and chilled brine are expenses. For the annual production of 16,000 metric tons of ammonia, utility requirements and prices are below.

Process	Yearly Amount (MT/yr)	Cost per MT	Yearly Cost (\$)
Cooling Water	280,534	\$0.027	8,000
Chilled Water	140,397	\$1.50	211,000
Chilled Brine	1,008,626	\$1.50	1,512,000
Total	1,429,557		1,731,000

Table 13.2a: Yearly utility amounts and costs

13.3 Variable Cost and Working Capital

Additional variable costs were accounted for as follows in **Table 13.3a** Typical values from Seider (2016) were used. Furthermore, working capital considerations and final figures are tabulated in 16.3.2 and 16.3.3. All working capital was expected to be wound down in the 15th and final year of production, 2036.

Table 13.3a: An overview of additional variable costs.

Other	Variable	Costs
-------	----------	-------

General Expenses								
Selling / Transfer Expenses:	3.00% of Sales							
Direct Research:	4.80% of Sales							
Allocated Research:	0.50% of Sales							
Administrative Expense:	2.00% of Sales							
Management Incentive Compensation:	1.25% of Sales							

Table 13.3b: An overview of working capital considerations.

Working Capital

Table 13.3c: Working capital figures.

Working Capital

		2021			2023	
	Accounts Receivable	\$ 329,109	\$	164,554	\$	164,554
	Cash Reserves	\$ 279,770	\$	139,885	\$	139,885
	Accounts Payable	\$ (64,029)	\$	(32,014)	\$	(32,014)
	Ammonia Inventory	\$ 32,911	\$	16,455	\$	16,455
	Raw Materials	\$ <u> </u>	\$	-	\$	<u> </u>
	Total	\$ 577,760	\$	288,880	\$	288,880
	Present Value at 10%	\$ 525,237	\$	238,744	\$	217,040
Total Capital Investment			\$	36,123,998		

13.4 Total Variable Cost Summary

Variable costs were calculated to be \$2M annually. These costs were predominantly comprised of cooling water, chilled water and chilled brine requirements. Oxygen production was calculated to be a byproduct of ammonia production. \$700k of oxygen would be produced annually, which counted as a credit against variable costs.

Table 13.4a: Summary of variable costs.

Variable Cost Summary

Variable Cost	Variable Costs at 100% Capacity:							
<u>General Expenses</u>								
	Selling / Transfer Expenses:	\$	266,944					
	Direct Research:	\$	427,110					
	Allocated Research:	\$	44,491					
	Administrative Expense:	\$	177,962					
	Management Incentive Compensation:	\$	111,227					
Total General Expenses			1,027,733					
Raw Material	\$0.00 per ton of Ammonia		\$0					
<u>Byproducts</u>	\$44.00 per ton of Ammonia		(\$711,850)					
<u>Utilities</u>	\$107.00 per ton of Ammonia		\$1,731,152					
Total Variable	e Costs	\$	2,047,035					

13.5 Operations, Maintenance and Overhead

Per shift, 5 operators are needed to run the plant. This was calculated to be 2 operators in both the upstream and downstream verticals and an additional operator monitoring the overall

process and deliveries. Technical assistance and the control lab costs were calculated to be

~\$200k and ~\$300k respectively, consisting of one engineer and a part time lab employee.

Default values from Seider (2016) were used in calculated maintenance and operating overhead

costs.

F¹ **I O I**

Fixed Costs	
Operations	
Operators	per Shift: 5 (assuming 🚩 5 shifts)
Direct Wages and	Benefits: \$40 /operator hour
Direct Salaries and	Benefits: 15% of Direct Wages and Benefits
Operating Supplies and	Services: 6% of Direct Wages and Benefits
Technical Assistance to Manuf	facturing: \$7,920.00 per year, for each Operator per Shift
Control La	boratory: \$11,700.00 per year, for each Operator per Shift
Maintenance	
Wages and	Benefits: 2.00% of Total Depreciable Capital
Salaries and	Benefits: 25.00% of Maintenance Wages and Benefits
Materials and	Services: 100.00% of Maintenance Wages and Benefits
Maintenance O	verhead: 5.00% of Maintenance Wages and Benefits
Operating Overhead	
General Plant O	verhead: 7.10% of Maintenance and Operations Wages and Benefits
Mechanical Department	Services: 2.40% of Maintenance and Operations Wages and Benefits
Employee Relations De	partment 5.90% of Maintenance and Operations Wages and Benefits
Business	Services 7.40% of Maintenance and Operations Wages and Benefits

Table 13.5a: Overview of operations, maintenance and overhead costs.

13.6 Total Fixed Costs

Final annual fixed costs resulting from operations maintenance and operating overhead are tabulated in table 13.6a. Due to the large amount of manpower to effectively run this plant, annual fixed costs are expensive at \$5.8M/yr. This is the second largest financial hurdle to this plant, after the cost of the SOECs. If the plant were to be scaled up, but was run with the same 25 weekly operators, margins would drastically improve, and the venture would be more profitable.

Table 13.6a: Overview of operations, maintenance and overhead costs.

Fixed Cost Summary

Operations		
Dire	ect Wages and Benefits	\$ 2,080,000
Dire	ect Salaries and Benefits	\$ 312,000
Ope	erating Supplies and Services	\$ 124,800
Teo	chnical Assistance to Manufacturing	\$ 198,000
Cor	ntrol Laboratory	\$ 292,500
Tot	al Operations	\$ 3,007,300
Maintenance		
Wa	ges and Benefits	\$ 636,072
Sal	aries and Benefits	\$ 159,018
Ma	terials and Services	\$ 636,072
Ма	intenance Overhead	\$ 31,804
Tot	al Maintenance	\$ 1,462,966
Operating Overhe	ead	
Gei	neral Plant Overhead:	\$ 226,283
Me	chanical Department Services:	\$ 76,490
Em	ployee Relations Department:	\$ 188,038
Bus	iness Services:	\$ 235,845
Tot	al Operating Overhead	\$ 726,657
Property Taxes a	nd Insurance	
Pro	perty Taxes and Insurance:	\$ 636,072
Other Annual Exp	benses	
Rei	ntal Fees (Office and Laboratory Space):	\$ -
Lice	ensing Fees:	\$ -
Mis	cellaneous:	\$ -
Tot	al Other Annual Expenses	\$ -
Total Fixed Costs	3	\$ 5,832,994

14. Other Important Considerations

14.1 Location

One of the earliest and most crucial decisions that was made when researching this project was the choice of plant location. It was immediately obvious that the ending metrics of economic feasibility, plant size, and production capacity are all factors that are directly affected and can be optimized through careful consideration of optimal plant locations. We chose to locate our plant on the coast of Norway, as their agricultural market has sufficient demand such that our capacity of ammonia production would be purchased in its entirety. Furthermore, Norway has a long history of taxing carbon-heavy chemical production facilities at a very high rate. As a "green" ammonia production facility, our plant would avoid these taxes, and would qualify for a number of monetary rewards as a result of our zero-carbon emission plant design. These additional advantages that our plant design has over conventional ammonia synthesis facilities allows us to close the monetary gap that is created by our more expensive production methods.

Norway also has a climate that is conducive to the main reaction being performed in our plant. The synthesis of ammonia from hydrogen and nitrogen is an extremely exothermic reaction, performed at high pressures. With an average temperature of just 5 degrees Celsius, the environment will be a useful asset to lower the amount of work that must be put in by the cooling towers in the process.

The choice of our location to be coastal is a result of the input to our process, as well as our energy needs. One of the inputs into our process is water, and as such the plant will be built coastally to lower transportation costs. Additionally, the coastal location allows for local utilization of the wind power that is stored on offshore, near coast windmills.

These windmills are perhaps the most important reason why Norway was chosen. Norway has massively invested in renewables energy sources, with wind energy at the forefront. The amount of wind energy produced is sufficiently large that it often exceeds energy demand in the country, and as such is simply wasted. Our process utilizes a tiny percentage of this excess wind energy and uses it to power our solid oxide electrolytic cell, which removes an incredible amount of energy that would otherwise need to be sourced through other, less environmentally friendly, means.

14.2 Environmental Impact

One of the key considerations that was made when designing this plant was to ensure environmental friendliness wherever possible, while still reaching the desired output of 46 metric tons of ammonia per day. The ammonia that is produced from our process design utilizes nitrogen from air that has been separated from oxygen, and hydrogen that has been produced through electrolysis of water. Neither of these processes involve the output of pollutants, which is a noticeable environmental improvement over the typical method used to produce hydrogen, which is through steam reformation. Steam reformation outputs carbon monoxide and dioxide, which are greenhouses gases, whereas electrolysis outputs pure oxygen, which in our plant design will be sold as an additional revenue stream. Additionally, the energy requirements being met through the excess wind power that is available in Norway allows for the plant to produce no pollution, a vast upgrade to other traditional plants. In order to facilitate the small environmental impact of this process, it is important to lower our energy costs as much as possible in order to diminish the need for energy outside of the excess wind power. This excess power would likely need to be produced in less environmentally agreeable ways such as through combustion of fuels like coal or natural gas. This was done by ensuring that the efficiencies of our processes were made as high as possible, through the addition of recycle streams and heat integration between disparate parts of the process. Most notably, the excess heat of the exothermic reaction was useful in lowering the energy required in the heater that powers the air and water coming into the SOEC. Furthermore, the heat of the reaction products were useful in getting the incoming reagents and recycled material up to the correct temperature in the reactor. The recycle stream was useful in increasing the conversion of our product from a single pass rate of ~15% to as high as 99% over extended periods of time. This benefit is mainly financial, as more product is undeniably best for the bottom line, but also environmental, as less energy would be going to waste in a higher conversion process.

14.3 Global, Social, and Cultural Factors

Generally, when designing a large-scale industrial process, it is important to consider how the construction and operation of said process will affect the world around you. In this process, the product that is output is ammonia, which is primarily used for fertilizer, but also as a refrigerant or as a reagent in polymer synthesis in fringe cases. This process has been utilized since the early 1900s, and is one of the earliest chemical synthesis processes. As a result, there is likely little to no concern regarding social and cultural clashes with this process, as there might be in the case of a new genetically modified food or product. Furthermore, there would potentially even be a positive cultural or social response given that a core value of our process is environmental safety. Many cultures and nations, like Norway, value respecting the environment, as can be seen by the investment of many nations in renewable energy sources. As such, it is reasonable to assume that this renewable ammonia synthesis process could be culturally and socially acceptable in most nations that we would be producing inside of, namely Norway.

The prime global factor that affects this process is the ammonia market. Due to the necessity of ammonia as a key component in fertilizer, it is incredibly unlikely that the demand for ammonia will decrease in the near future. In fact, unlike many markets, there are relatively few major European ammonia producers, meaning that a plant of the scale proposed here could reasonably expect to make a significant impact, especially if demand for cleanly produced ammonia increases, as it has for other products.

14.4 Safety

One of the defining characteristics of an ammonia processing plant is that great care must be taken to ensure that proper safety measures are taken into consideration- more so than many other plants of similar scale. This is due to the incredible pressures that the Haber-Bosch reaction is performed at. With pressures reaching upwards of 80 atmospheres, it is clear that if proper safety precautions are eschewed, then a catastrophe could potentially follow.

There are three most probable potential safety hazards that have been considered in this process design. The first is a fire or explosion caused by ignition of the hydrogen feed. The

second is an explosion as a result of uncontrolled buildup of temperature and pressure inside of the reaction vessel. Finally, there is a toxic hazard if any liquid ammonia is released from inside of the synthesis loop. There are also smaller potential hazards regarding the storing and handling of liquid ammonia.

Another significant safety concern is as a result of hydrogen embrittlement of carbon. This concern is largely mitigated by material choice regarding the piping and vessels, which are made of alloys that are resistant to reaction with the hydrogen, but due to the potential dangers associated with this embrittlement, it is worth frequently assessing the piping to ensure there are no imperfections or cracks.

To ensure that a disaster does not occur, this process will be following the guidelines set forth in the AIChE Safety in Ammonia Plants and Related Facilities Symposium. The plant will utilize a HAZOP (hazards and operability) study with a team of expert process engineers, contractors, and outside safety consultants. Trip systems and strategies for safe shut down in case of emergency will also be developed.

14.5 Transportation

Transportation of the liquid ammonia product will be predominantly by rail cars and by river barges. Due to our location in Scandinavia, we will have a market that is accessible through landlocked transportation methods, but by utilizing the nearby ocean, we will be able to reach the larger European market.

The rail cars utilized will be outfitted with pressure vessels for anhydrous ammonia, with capacities in the range of 100-150 cubic meters of storage space. With this capacity, rail cars

would need to come daily, with the latest possible delay in shipments being three days, as that is the capacity of the liquid ammonia storage vessels. This distribution method will be used mainly to provide our supply to smaller fertilizer processing facilities or other wholesale suppliers and merchants.

Transportation through larger ocean and river vessels will also be necessary to reach a larger market. Due to the large size of barges, which have larger capacities than even the most massive rail carts, much more liquid ammonia could be shipped. This solution would likely not be implemented in the first year that the plant is operational, as demand for the ammonia product would need to be sufficient to justify the extra storage vessels that would be required to make shipping the product by barge to be a profitable venture.

14.6 Plant Startup

The design for this plant assumes that the cost of the reagents for the startup of the process is negligible, given that the only two inputs into the process are air and water, which are both available free of cost. The values given below describe the amount of these incoming reagents that are involved in the first "loop" through the process. The input into the first steps of the process are 203 kmol/hr of air and 563 kmol/hr of water. The air and water are separated into the desired constituents, which are 140 kmol/hr of nitrogen and 57 kmol/hr of hydrogen. Upon startup, either addition or regeneration of the iron catalyst that facilitates the Haber-Bosch reaction must be performed. Regeneration can be performed by drying the catalyst and heating to 300-400 degrees Celsius. A lifetime of six months is assumed for the iron catalyst. The total bare module cost, including this payment for catalyst is included in **Section 12.**.

15. Profitability Analysis

In sum, this project does not represent a profitable venture. Once investment is complete, our product yields annual positive cash flows, but the total upfront investment as it currently stands is simply too large for commercial viability.

The NPV of this proposal was currently calculated as USD -22M (discount rate of 10%). The project lifetime was modeled as 15 years, after construction was complete in 2021. Investment in year one was roughly ~USD 35M, so only one third of capital outlays were recuperated. Net present value was calculated by project cash flows in 2021-2036. Terminal valuation beyond 2036 was not factored into profitability. Assuming a discount rate of 10% and a FCF growth rate of 3%, using the Gordon Growth Model and valuing further profits as a perpetuity, a discounted terminal value of <\$10M is attained. However, cashflows beyond this point would likely be hampered by additional capital expenditures.

Figure 15.1a: Cash Flows

Free Cash Flow By Year

Using free cash flows, an internal rate of return of -0.68% was calculated. Neglecting the time value of money, this venture roughly repays initial outlays over the course of a 15 year lifetime.

The biggest obstacle to profitability is the cost of the SOEC, which represents ~60% of total permanent investment. If this price were to decrease from \$15m to \$2m, the project would become profitable. The SOEC is the most expensive unit purchased. Furthermore, few firms manufacture SOECs, and pricing information is hard to come by.

Figure 15.1b: NPV of overall project as a function of SOEC Bare Module Cost.

An additional consideration is the cost of ammonia. Ammonia's price is highly correlated to the price of oil. If oil prices were to increase, this venture would likely benefit.

The below table shows ROI as a bivariate function of total permanent investment and price per metric ton of ammonia. The venture would become largely profitable should SOEC prices decrease and a bull market for oil emerge.

		\$17,571,489	\$21,085,787	\$24,600,085	\$28,114,382	\$31,628,680	\$35,142,978	\$38,657,276	\$42,171,574	\$45,685,871	\$49,200,169	\$52,714,467
	\$523	14.84%	9.92%	6.02%	2.82%	0.10%	-2.27%	-4.36%	-6.24%	-7.95%	-9.52%	-10.98%
	\$528	15.34%	10.35%	6.42%	3.18%	0.44%	-1.94%	-4.04%	-5.92%	-7.64%	-9.21%	-10.68%
	\$534	15.84%	10.78%	6.80%	3.53%	0.77%	-1.62%	-3.73%	-5.62%	-7.33%	-8.91%	-10.37%
e	\$539	16.33%	11.21%	7.18%	3.89%	1.10%	-1.30%	-3.42%	-5.32%	-7.04%	-8.62%	-10.08%
P	\$545	16.82%	11.63%	7.56%	4.23%	1.43%	-0.99%	-3.12%	-5.02%	-6.75%	-8.33%	-9.79%
nct	\$550	17.31%	12.05%	7.93%	4.57%	1.75%	-0.68%	-2.82%	-4.73%	-6.46%	-8.05%	-9.51%
po	\$556	17.79%	12.46%	8.30%	4.91%	2.07%	-0.38%	-2.53%	-4.45%	-6.18%	-7.77%	-9.24%
Ч	\$561	18.27%	12.87%	8.66%	5.24%	2.38%	-0.09%	-2.25%	-4.17%	-5.91%	-7.50%	-8.97%
	\$567	18.74%	13.27%	9.02%	5.57%	2.68%	0.21%	-1.97%	-3.90%	-5.64%	-7.24%	-8.70%
	\$572	19.21%	13.67%	9.37%	5.90%	2.99%	0.49%	-1.69%	-3.63%	-5.38%	-6.98%	-8.45%
	\$578	19.68%	14.07%	9.73%	6.22%	3.29%	0.78%	-1.42%	-3.37%	-5.12%	-6.72%	-8,19%

Total Permanent Investment

Figure 15.1c: ROI as a function of Ammonia price and TPI.

Another major factor preventing profitability are the large annual fixed costs. Because the plant is relatively small (annual revenue of ~\$10m) and has so many operators (25), margins are relatively small. If the plant were to be expanded and could maintain the same number of operators and total maintenance expenses, the venture could become profitable. There are ammonia plants that manufacture well in excess of 50 times what this plant does. These plants do not have 50 times the manpower. By making use of economies of scale, it is possible that a fully green ammonia plant could be profitable in the future.

Further detailed calculations relating to profitability can be found in *Appendix D*.

16. Conclusions and Recommendations

With the effects of climate change growing more and more severe every year, it is hard to deny that green alternatives to current carbon-heavy processes would be of great use to the world, but as of this time it is difficult to make such ventures profitable. Unfortunately, we can not recommend that a plant with the given design be built, given that the profitability is currently negative. While after years of sustained operation the plant would turn a profit, the initial investment is currently too prohibitive to make the venture worthwhile. The cost of the purchased equipment is quite high because each of the main components of the plant must be made of expensive alloys, and is one of the most significant factors why the plant is unprofitable. The primary concern that has caused the profitability estimations to be so pessimistic is the cost of the reactor vessel and the cost of leasing the solid oxide electrolytic cells. Although the "free" energy that we would be able to obtain from wind power is a great boon, it is not enough to offset the massive cost of the electrolytic cells. Furthermore, the market for green ammonia is simply not profitable enough to overcome this deficit until the plant has operated for 15 years.

Though the process is not currently viable, it is reasonable to envision a future in which this exact process methodology would be usable in the coming years. Certain circumstances, such as the price of oil drastically increasing, a stark increase in tax for emissions, or a more lucrative green ammonia market, would enable our process to compete monetarily. A sensitivity analysis was performed to determine the degree to which altering these factors would allow us to overcome this barrier and to reach profitability sooner, and can be found in **Section 15**.

Despite the current lack of economic viability, this green ammonia process remains an interesting prospect given the benefits to society that could potentially be achieved if this process

were a primary way that ammonia was produced and sold across the world. However, given the current landscape, further consideration should be made before action is undertaken to create a plant similar to the one outlined in this report.

17. Acknowledgements

We would like to thank Dr. Raymond Gorte, Professor Bruce Vrana, and Mr. Leonard Fabiano for their help throughout the project. In addition, we would like to thank the industrial consultants who met with us both in person and over Zoom. We would also like to thank the faculty in the University of Pennsylvania's Department of Chemical and Biomolecular Engineering.

18. Bibliography

(1) Holladay, J.D., Hu, J., King, D.L., Wang, Y. (2009) "An overview of hydrogen production technologies." *Catalysis Today* vol 139(4). 244-260. https://doi.org/10.1016/j.cattod.2008.08039

(2) Iora, P., Chiesa, P. (2009) "High efficiency process for the production of pure oxygen based on solid oxide fuel cell–solid oxide electrolyzer technology." *Journal of Power Sources* vol 190(2). 408-416. https://doi.org/10.1016/j.jpowsour.2009.01.045.

(3) Hydrogen Safety Data Sheet (2018) Retrieved April 19, 2020 from http://alsafetydatasheets.com/download/se/Hydrogen_compressed-SE_ENG.pdf

(4) High temperature electrolysis cell. Retrieved April 1, 2020 from <u>http://www.helmeth.eu/index.php/technologies/high-temperature-electrolysis-cell-soec</u>

(5) Mordor Intelligence, Ammonia Market (2020), Retrieved April 9th, 2020 from <u>https://www.mordorintelligence.com/industry-reports/ammonia-market</u>

(6) Schnitkey, Gary, "Nitrogen Fertilizer Prices and Costs Lower for 2018", November 2017, Accessed April 10th, 2020 from https://farmdocdaily.illinois.edu/2017/11/nitrogen-fertilizer-prices-and-costs-lower-for-2018.html

(7) Encyclopedia Britannica, "Ammonia", Retrieved April 3rd, 2020 from <u>https://www.britannica.com/science/ammonia</u>

(8) Grand View Research, Ammonia Market (2020), Retrieved April 9th, 2020 from <u>https://www.grandviewresearch.com/industry-analysis/ammonia-market</u>

(9) MarketWatch, Ammonia Market 2020, March, 2020, Retrieved April 10th 2020, from <u>https://www.marketwatch.com/press-release/ammonia-market-size--industry-growth-analysis-20</u> 20-regional-outlook-trends-opportunity-revenue-share-forecasts-by-2025-2020-03-02
Appendix A: Manual Calculations

A.1 Hydrogen Production Calculations

To determine the extent of hydrogen able to be processed within the electrolyzer, a couple of assumptions were made: all the current will be used to electrolyze water, there are minimal to no voltage losses, the system is operating at its thermoneutral voltage. With these factors in mind, the calculation is as follows. For calculation purposes 1.285V was rounded to 1.3V.

Determining Current of the System

- P = IV
- $I = \frac{P}{V}$

 $I = \frac{500,000W}{1.3V}$

I = 384,615 Amps per SOEC Stack

Determining moles of H₂ Produced

The reaction is as follows:

$$H_2 O_{(g)} + 2 e^- \rightarrow H_{2(g)} + O^{2-}$$

To determine mols of H₂ produced by the SOEC:

$$H_{2, produced} = \frac{I}{nF}$$

I = current (amps) n = mols of electrons F = Faraday's Constant

$$H_{2, produced} = \frac{384,615}{(2)(96485)} = 171200 \text{ mols } H_2 = 171.2 \text{ kmols } H_2$$

A.2 Calculation of Water Input

The removal of oxygen is primarily driven by its reaction with hydrogen. The reaction is as follows:

$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)} \quad \Delta H_{rxn} = -247.2 \ kJ/mol \ of \ rxn$$

As can be seen in the figure above, the oxyhydrogen reaction releases a significant amount of heat. Due to the operation of our SOEC stacks, the input must reach a temperature of 800°C prior to entry in order to maintain its thermoneutral operation at 1.285V. In addition, the temperature of the stream when it the hydrogen + air first mix must be high enough for this reaction to occur. The temperature at which this mixing occurs was taken to be about 600°C. Since water could be added to the process without raising the extent of the reaction, it was chosen to be the varying factor so that the process was able to absorb some of the excess heat produced by the reaction. This quantity was determined by the calculation detailed below.

Using coefficients from the NIST database, the specific heat values were determined using the Shomate Equation at 800°C for all of the components. It was assumed that the reaction took place at constant pressure.

Component	C _p at 800°C (kJ/mol*K)
H ₂ O	41.87
H ₂	30.84
N ₂	32.59
O ₂	34.60

Ar	20.79
	20.19

Assuming that all the oxygen reacted, the amount of heat released into the system was determined.

 $\Delta H_{rxn} = -247.2 \ kJ/mol \ of \ rxn$ $\Delta H_{tot} = \Delta H_{rxn} * n_{o_2 reacted}$ $\Delta H_{tot} = 3,806,172.97 \ kJ \ released/hr$

To determine the amount of water that needed to be flowed through the system, the heat released was set equal to the specific heat formula of all the components. It is assumed that no heat was lost to the environment.

$$Q = \Delta H_{tot} = 3,806,172.97 \ kJ/hr = \sum_{i=1}^{5} n_i C_{p,i} \Delta T$$

Since, all the other components had their molar flow rates set, we needed to solve for n_{H20} which was determined to be 522.5 kmol/hr. Since 30.8 kmol/hr was formed, it was determined that the amount of water that needed to be fed into the system was 491.7 kmol/hr.

A.3 Calculation of Compression Ratios

Equations are taken from Product and Process Design Principles Chapter 16, Section 5, pg.

459-460

Sample calculation shown below:

Net Work Required = *PC* (*Hp*) = 1500 (From Aspen Block Results)

Electric compressor FD = 1 (From pg. 460)

Carbon steel material FM = 1 (From pg. 460)

FBM= 2.15 (From Table 16.11 on pg. 441)

According to Heuristic 36 on pg. 150, the compression ratio must be calculated to determine the number of stages.

Compression Ratio =Outlet Pressure/Inlet Pressure =1160.3 (psia)/580.15 (psia) = 2,

2 < 3 : The number of gas compression stages is 1.

A.4 Calculation of Storage Vessel Size

Time Capacity is the amount of time the material will be stored.

Assuming a safety factor of 2, the volume of the tank must be double the volume of the material

stored throughout the specified amount of time.

```
Time Capacity = 3 days
```

235000

Volume of Tank = *Volumetric Flow Rate* * *Time Capacity* * *Safety Factor*

Tank volume = $(333 \text{ gal/hr})*(0.134 \text{ ft}^3/\text{gal})*(24 \text{ hr/day})*(3 \text{ days})*(2) = 6,426 \text{ ft}^3$

Diameter = $D = (Volume of Tank/1.25 * \pi)^{1/3} = (6,426/(1.25*\pi)^{1/3} = 11.8 f$

Height = L = 2.5*D = 29.5 ft

A.5 Calculation of Reactor, HB-S-01 and HB-S-02 Vessel Sizes

Reator Size				
Volumtric Flow Rate Out	15789	L/min		
Residence Time	10	s		
Volume	2.6315	m^3		
Diameter	0.87508014	m	2.87	ft
Height	4.37540072	m	14.35	ft
Pressure	80	bar	1160	psi
HB-S-01 Size				
Liquid Volumteric Flow Rate Out	34.92	L/min		
Liquid Holdup Half Full	5	min		
Volume	0.1746	m^3		
Gas Velocity	15	ft/s	274.39	m/s
Gas Flow Rate	15148	L/min		
Cross Sectional Area	0.05520604	m^2		
Diameter	0.26512359	m	0.87	ft
Height	3.16269716	m	10.37	ft
Pressure	39	bar	565.5	psi
HB-S-02 Size				
Liquid Volumteric Flow Rate Out	32.84	L/min		
Liquid Holdup Half Full	5	min		
Volume	0.1642	m^3		
Gas Velocity	0.1	ft/s	1.83	m/s
Gas Flow Rate	81	L/min		
Cross Sectional Area	0.04428	m^2		
Diameter	0.23744272	m	0.78	ft
Height	3.70822042	m	12.16	ft
Pressure	10	bar	145	psi

Appendix B: Aspen Flowsheet Information

B.1.1 SOEC System ASPEN Flow Diagram

B.2.1 Ammonia Synthesis ASPEN Flow Diagram

B.1.2 SOEC ASPEN Inputs ; Input Summary created by Aspen Plus Rel. 37.0 at 23:23:22 Sun Apr 19, 2020 ;Directory \\nestor\jamekwon\SeniorDesignSOECv2 6 Filename C:\Users\jamekwon\AppData\Local\Temp\~apcce4.txt ; DYNAMICS DYNAMICS RESULTS=ON IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar & INVERSE-PRES='1/bar' SHORT-LENGTH=mm DEF-STREAMS CONVEN ALL MODEL-OPTION DATABANKS 'APV110 PURE37' / 'APV110 AQUEOUS' / 'APV110 SOLIDS' & / 'APV110 INORGANIC' / 'APESV110 AP-EOS' / & 'NISTV110 NIST-TRC' / NOASPENPCD PROP-SOURCES 'APV110 PURE37' / 'APV110 AQUEOUS' / & 'APV110 SOLIDS' / 'APV110 INORGANIC' / 'APESV110 AP-EOS' & / 'NISTV110 NIST-TRC' COMPONENTS WATER H2O / HYDROGEN H2 / NITROGEN N2 / OXYGEN O2 / ARGON AR SOLVE RUN-MODE MODE=SIM FLOWSHEET BLOCK UP-PM-01 IN=1 OUT=2 BLOCK UP-BO-01 IN=2 OUT=3 BLOCK UP-FH-01 IN=8 OUT=9 BLOCK UP-HX-01 IN=11 4 OUT=15 5 BLOCK UP-HX-02 IN=12 5 OUT=13 6 BLOCK SOEC IN=10B OUT=SOEC1 BLOCK UP-MX-01 IN=3 20 OUT=4 BLOCK UP-SE-01 IN=16 OUT=18 17 BLOCK UP-SP-01 IN=18 OUT=19 21 BLOCK UP-CP-04 IN=19 OUT=20 BLOCK UP-MX-03 IN=10A OUT=10B BLOCK UP-MX-02 IN=6 9 OUT=10A BLOCK SOEC2 IN=SOEC1 OUT=11 12 BLOCK UP-CP-01 IN=7 OUT=7A

BLOCK UP-CO-01 IN=7A CW1 OUT=7B CW2

BLOCK UP-CO-02 IN=7C CW2 OUT=7D CW3 BLOCK UP-CP-02 IN=7B OUT=7C BLOCK UP-CP-03 IN=7D OUT=8 BLOCK UP-CD-01 IN=15 CW6 OUT=16 CW7 BLOCK UP-CO-03 IN=13 CW4 OUT=14 CW5 PROPERTIES SRK STREAM 1 SUBSTREAM MIXED TEMP=25. PRES=1. MOLE-FLOW=491.7 MOLE-FLOW WATER 491.7 STREAM 2 SUBSTREAM MIXED TEMP=25. PRES=40. MOLE-FLOW=522.5 MOLE-FLOW WATER 522.5 STREAM 7 SUBSTREAM MIXED TEMP=25. PRES=1. MOLE-FLOW=73.16 MOLE-FLOW NITROGEN 57.1 / OXYGEN 15.4 / ARGON 0.66 STREAM 9 SUBSTREAM MIXED TEMP=550. PRES=40. MOLE-FLOW=73.16 & FREE-WATER=NO NPHASE=2 PHASE=V MOLE-FLOW NITROGEN 57.1 / OXYGEN 15.4 / ARGON 0.66 STREAM 10B SUBSTREAM MIXED TEMP=800. PRES=39.3 FREE-WATER=NO NPHASE=1 & PHASE=V STREAM 11 SUBSTREAM MIXED TEMP=800. PRES=39.3 STREAM 12 SUBSTREAM MIXED TEMP=800. PRES=39.3 STREAM CW1 SUBSTREAM MIXED TEMP=80. <F> PRES=1. MOLE-FLOW=1000. MOLE-FLOW WATER 1000. STREAM CW4 SUBSTREAM MIXED TEMP=45. <F> PRES=1. MOLE-FLOW=1000. MOLE-FLOW WATER 1000. STREAM CW6 SUBSTREAM MIXED TEMP=0. <F> PRES=1. MOLE-FLOW=1000. MOLE-FLOW WATER 1000. BLOCK UP-MX-01 MIXER PARAM PRES=40. NPHASE=1 PHASE=V BLOCK-OPTION FREE-WATER=NO BLOCK UP-MX-02 MIXER PARAM

BLOCK UP-SP-01 FSPLIT FRAC 19 0.265 BLOCK SOEC2 SEP PARAM FRAC STREAM=12 SUBSTREAM=MIXED COMPS=WATER HYDROGEN & NITROGEN ARGON FRACS=0. 0. 0. 0. MOLE-FLOW STREAM=12 SUBSTREAM=MIXED COMPS=OXYGEN FLOWS= & 85.6 BLOCK UP-SE-01 SEP PARAM MOLE-FLOW STREAM=18 SUBSTREAM=MIXED COMPS=WATER HYDROGEN & NITROGEN OXYGEN ARGON FLOWS=0. 232.8 77.6 0. 0.9 FLASH-SPECS 18 PRES=38.9313 NPHASE=1 FREE-WATER=NO PHASE=V FLASH-SPECS 17 NPHASE=1 FREE-WATER=NO PHASE=L BLOCK UP-BO-01 HEATER PARAM TEMP=420. PRES=40. DPPARMOPT=NO BLOCK UP-FH-01 HEATER PARAM TEMP=550. PRES=40. NPHASE=1 PHASE=V DPPARMOPT=NO BLOCK-OPTION FREE-WATER=NO BLOCK UP-CD-01 HEATX PARAM T-HOT=35. PRES-HOT=-0.5 <psi> FEEDS HOT=15 COLD=CW6 OUTLETS-HOT 16 OUTLETS-COLD CW7 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TO-PARAM CURVE=YES BLOCK UP-CO-01 HEATX PARAM T-HOT=100. <F> PRES-HOT=-0.3447 FEEDS HOT=7A COLD=CW1 OUTLETS-HOT 7B OUTLETS-COLD CW2 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TO-PARAM CURVE=YES BLOCK UP-CO-02 HEATX PARAM T-HOT=100. <F> PRES-HOT=-0.3447 FEEDS HOT=7C COLD=CW2 OUTLETS-HOT 7D OUTLETS-COLD CW3 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TQ-PARAM CURVE=YES BLOCK UP-CO-03 HEATX PARAM T-HOT=35. PRES-HOT=-0.5 <psi> FEEDS HOT=13 COLD=CW4

OUTLETS-HOT 14 OUTLETS-COLD CW5 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TQ-PARAM CURVE=YES BLOCK UP-HX-01 HEATX PARAM T-COLD=590. PRES-HOT=-5. <psi> PRES-COLD=-5. <psi> FEEDS HOT=11 COLD=4 OUTLETS-HOT 15 OUTLETS-COLD 5 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TO-PARAM CURVE=YES BLOCK UP-HX-02 HEATX PARAM T-COLD=610. PRES-HOT=-5. <psi> PRES-COLD=-5. <psi> FEEDS HOT=12 COLD=5 OUTLETS-HOT 13 OUTLETS-COLD 6 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TQ-PARAM CURVE=YES BLOCK SOEC RSTOIC PARAM TEMP=800. PRES=39.3105 NPHASE=2 STOIC 1 MIXED WATER -1. / HYDROGEN 1. / OXYGEN 0.5 EXTENT 1 171.2 BLOCK-OPTION FREE-WATER=NO BLOCK UP-MX-03 RSTOIC PARAM TEMP=800. PRES=39.3105 NPHASE=1 PHASE=V STOIC 1 MIXED HYDROGEN -1. / OXYGEN -0.5 / WATER 1. EXTENT 1 30.8 BLOCK-OPTION FREE-WATER=NO BLOCK UP-PM-01 PUMP PARAM PRES=40. BLOCK UP-CP-01 COMPR PARAM TYPE=ISENTROPIC PRES=3.42 SB-MAXIT=30 SB-TOL=0.0001 BLOCK UP-CP-02 COMPR PARAM TYPE=ISENTROPIC PRES=11.7 SB-MAXIT=30 SB-TOL=0.0001 BLOCK UP-CP-03 COMPR PARAM TYPE=ISENTROPIC PRES=40. SB-MAXIT=30 SB-TOL=0.0001 BLOCK UP-CP-04 COMPR PARAM TYPE=ISENTROPIC PRES=40. SB-MAXIT=30 SB-TOL=0.0001 DESIGN-SPEC CWSYS1 DEFINE CW3T STREAM-VAR STREAM=CW3 SUBSTREAM=MIXED & VARIABLE=TEMP UOM="F"

```
SPEC "CW3T" TO "120"
    TOL-SPEC "0.0001"
    VARY MOLE-FLOW STREAM=CW1 SUBSTREAM=MIXED COMPONENT=WATER &
       UOM="kmol/hr"
    LIMITS "400" "1000"
DESIGN-SPEC CWSYS2
   DEFINE CW5T STREAM-VAR STREAM=CW5 SUBSTREAM=MIXED &
       VARIABLE=TEMP UOM="F"
    SPEC "CW5T" TO "85"
    TOL-SPEC "0.0001"
    VARY MOLE-FLOW STREAM=CW4 SUBSTREAM=MIXED COMPONENT=WATER &
       UOM="kmol/hr"
    LIMITS "400" "50000"
DESIGN-SPEC CWSYS3
    DEFINE CW07T STREAM-VAR STREAM=CW7 SUBSTREAM=MIXED &
        VARIABLE=TEMP UOM="F"
    SPEC "CW07T" TO "90"
    TOL-SPEC "0.001"
    VARY MOLE-FLOW STREAM=CW6 SUBSTREAM=MIXED COMPONENT=WATER &
       UOM="kmol/hr"
    LIMITS "50" "500000"
EO-CONV-OPTI
STREAM-REPOR MOLEFLOW
PROPERTY-REP PCES
;
```

;;;

;

B.1.3 SOEC Full Summary

+ + + + + + + + + + + + +	- + + +	- + + + +	- + + + + + + + +	+ + + + + + + +
+ + + +				
+ + + + + + + + + + + +	- + + +	- + + + +	- + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$
+ + + +				
+ +				
+ +				
+ +	ASPEN	PLUS CAI	LCULATION REPORT	
+ +				
+ +				
+ +				
+ + + + + + + + + + + +	- + + +	- + + + +	- + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$
+ + + +				
+ + + + + + + + + + + +	- + + +	- + + + +	- + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$
+ + + +				
ASPEN PLUS IS A TRADEMARK	(OF		HOTLINE:	
ASPEN TECHNOLOGY, INC.			U.S.A. 888/996-71	.00
781/221-6400			EUROPE (44) 1189-	226555
PLATFORM: WIN-X64				APRIL 19, 2020
VERSION: 37.0 Build 395	5			SUNDAY
INSTALLATION:				11:21:21 P.M.

ASPEN PLUS (R) IS A PROPRIETARY PRODUCT OF ASPEN TECHNOLOGY, INC. (ASPENTECH), AND MAY BE USED ONLY UNDER AGREEMENT WITH ASPENTECH. RESTRICTED RIGHTS LEGEND: USE, REPRODUCTION, OR DISCLOSURE BY THE U.S. GOVERNMENT IS SUBJECT TO RESTRICTIONS SET FORTH IN (i) FAR 52.227-14, Alt. III, (ii) FAR 52.227-19, (iii) DFARS 252.227-7013(c)(1)(ii), or (iv) THE ACCOMPANYING LICENSE AGREEMENT, AS APPLICABLE. FOR PURPOSES OF THE FAR, THIS SOFTWARE SHALL BE

DEEMED

TO BE "UNPUBLISHED" AND LICENSED WITH DISCLOSURE PROHIBITIONS. CONTRACTOR/SUBCONTRACTOR: ASPEN TECHNOLOGY, INC. 20 CROSBY DRIVE, BEDFORD, MA 01730.

TABLE OF CONTENTS

RUN CONTROL SECTION	1 1
FLOWSHEET SECTION. FLOWSHEET CONNECTIVITY BY STREAMS. FLOWSHEET CONNECTIVITY BY BLOCKS. CONVERGENCE STATUS SUMMARY. DESIGN-SPEC: CWSYS1. DESIGN-SPEC: CWSYS2. DESIGN-SPEC: CWSYS3. CONVERGENCE BLOCK: \$OLVER01. CONVERGENCE BLOCK: \$OLVER02. CONVERGENCE BLOCK: \$OLVER03. CONVERGENCE BLOCK: \$OLVER04. COMPUTATIONAL SEQUENCE. OVERALL FLOWSHEET BALANCE.	2 2 2 2 3 3 4 4 5 6 6 7 7
PHYSICAL PROPERTIES SECTION	9 9
U-O-S BLOCK SECTION. BLOCK: SOEC MODEL: RSTOIC. BLOCK: SOEC2 MODEL: SEP. BLOCK: UP-BO-01 MODEL: HEATER. BLOCK: UP-CD-01 MODEL: HEATX. HEATX COLD-TQCU UP-CD-01 TQCURV INLET. HEATX HOT-TQCUR UP-CD-01 TQCURV INLET. BLOCK: UP-CO-01 MODEL: HEATX. HEATX COLD-TQCU UP-CO-01 TQCURV INLET. HEATX HOT-TQCUR UP-CO-01 TQCURV INLET. HEATX HOT-TQCUR UP-CO-02 TQCURV INLET. HEATX COLD-TQCU UP-CO-02 TQCURV INLET. HEATX HOT-TQCUR UP-CO-02 TQCURV INLET.	10 11 13 14 17 18 22 23 23 23 27 28 28

HEATX	COLD-TQCU	UP-CO-03	3 TQCURV	INLET.	 	••	32
HEATX	HOT-TQCUR	UP-CO-03	B TQCURV	INLET.	 	••	33
BLOCK:	UP-CP-01	MODEL:	COMPR		 	••	33
BLOCK:	UP-CP-02	MODEL:	COMPR		 	••	35
BLOCK:	UP-CP-03	MODEL:	COMPR		 	••	36
BLOCK:	UP-CP-04	MODEL:	COMPR		 	••	37
BLOCK:	UP-FH-01	MODEL:	HEATER		 	••	39

TABLE OF CONTENTS

BLOCK: UP-HX-01 MODEL: HEATX	40
HEATX COLD-TQCU UP-HX-01 TQCURV INLET	43
HEATX HOT-TQCUR UP-HX-01 TQCURV INLET	44
BLOCK: UP-HX-02 MODEL: HEATX	44
HEATX COLD-TQCU UP-HX-02 TQCURV INLET	48
HEATX HOT-TQCUR UP-HX-02 TQCURV INLET	49
BLOCK: UP-MX-01 MODEL: MIXER	49
BLOCK: UP-MX-02 MODEL: MIXER	50
BLOCK: UP-MX-03 MODEL: RSTOIC	51
BLOCK: UP-PM-01 MODEL: PUMP	52
BLOCK: UP-SE-01 MODEL: SEP	52
BLOCK: UP-SP-01 MODEL: FSPLIT	54
STREAM SECTION	56
1 10A 10B 11 12	56
13 14 15 16 17	57
18 19 2 20 21	58
3 4 5 6 7	59
7A 7B 7C 7D 8	60
9 CW1 CW2 CW3 CW4	61
CW5 CW6 CW7 SOEC1	62
PROBLEM STATUS SECTION	63
BLOCK STATUS	63

TYPE OF RUN: EDIT

INPUT FILE NAME: _2402dax.inm

INPUT PROBLEM DATA FILE NAME : _2402dax OUTPUT PROBLEM DATA FILE NAME: _2000dhp LOCATED IN:

PDF SIZE USED FOR INPUT TRANSLATION: NUMBER OF FILE RECORDS (PSIZE) = 0 NUMBER OF IN-CORE RECORDS = 256 PSIZE NEEDED FOR SIMULATION = 1

CALLING PROGRAM NAME: apmain LOCATED IN: C:\Program Files\AspenTech\Aspen Plus V11.0\Engine\\xeq

SIMULATION REQUESTED FOR ENTIRE FLOWSHEET

FLOWSHEET SECTION

STREAM	SOURCE	DEST	STREAM	SOURCE	DEST
1		UP-PM-01	7		UP-CP-(
CW1		UP-CO-01	CW6		UP-CD-(
CW4		UP-CO-03	2	UP-PM-01	UP-BO-0
3	UP-BO-01	UP-MX-01	9	UP-FH-01	UP-MX-0
15	UP-HX-01	UP-CD-01	5	UP-HX-01	UP-HX-(
13	UP-HX-02	UP-CO-03	6	UP-HX-02	UP-MX-
SOEC1	SOEC	SOEC2	4	UP-MX-01	UP-HX-
18	UP-SE-01	UP-SP-01	17	UP-SE-01	
19	UP-SP-01	UP-CP-04	21	UP-SP-01	
20	UP-CP-04	UP-MX-01	10B	UP-MX-03	SOEC
10A	UP-MX-02	UP-MX-03	11	SOEC2	UP-HX-
12	SOEC2	UP-HX-02	7A	UP-CP-01	UP-CO-
7в	UP-CO-01	UP-CP-02	CW2	UP-CO-01	UP-CO-
7D	UP-CO-02	UP-CP-03	CW3	UP-CO-02	
7C	UP-CP-02	UP-CO-02	8	UP-CP-03	UP-FH-
16	UP-CD-01	UP-SE-01	CW7	UP-CD-01	
14	UP-CO-03		CW5	UP-CO-03	

BLOCK	INLETS	OUTLETS
UP-PM-01	1	2
UP-BO-01	2	3
UP-FH-01	8	9
UP-HX-01	11 4	15 5
UP-HX-02	12 5	13 6
SOEC	10B	SOEC1
UP-MX-01	3 20	4
UP-SE-01	16	18 17
UP-SP-01	18	19 21
UP-CP-04	19	20
UP-MX-03	10A	10B
UP-MX-02	69	10A
SOEC2	SOEC1	11 12
UP-CP-01	7	7A
UP-CO-01	7A CW1	7B CW2
UP-CO-02	7C CW2	7D CW3
UP-CP-02	7в	7C
UP-CP-03	7D	8
UP-CD-01	15 CW6	16 CW7
UP-CO-03	13 CW4	14 CW5

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 3

FLOWSHEET SECTION

CONV

CONVERGENCE STATUS SUMMARY

DESIGN-SPEC SUMMARY

DESIGN SPEC ERROR TOLERANCE ERR/TOL

VARIABLE STAT BLOCK _____ ____ _____ _____ _____ ____ ___ CWSYS1 -0.62375E-08 0.10000E-03 -0.62375E-04 403.02 # \$OLVER02 CWSYS2 -0.16906E-04 0.10000E-03 -0.16906 889.66 # \$OLVER03 CWSYS3 -0.23763E-06 0.10000E-02 -0.23763E-03 6392.4 # \$OLVER04

TEAR STREAM SUMMARY

STREAM	VARIABLE	MAXIMUM	MAX. ERR.	ABSOLUTE	
CONV					
ID	ID	ERR/TOL	RELATIVE	ERROR	STAT
BLOCK					
15	ARGON MOLEFLOW	0.47370E-01	0.47370E-05	0.11816E-08	#
\$OLVER01					
10B	WATER MOLEFLOW	0.0000	0.0000	0.0000	#
\$OLVER01					

= CONVERGED
* = NOT CONVERGED
LB = AT LOWER BOUNDS
UB = AT UPPER BOUNDS

DESIGN-SPEC: CWSYS1

SAMPLED VARIABLES: CW3T : TEMPERATURE IN STREAM CW3 SUBSTREAM MIXED

SPECIFICATION: MAKE CW3T APPROACH 120.000 WITHIN 0.000100000

MANIPULATED VARIAE	LES:	TN GUDENM	CW1	GIIDGTDEAN	M MIVED
LOWER LIMIT =	400	.000	CWI	SODSTICIA	KMOL/HR
UPPER LIMIT = FINAL VALUE =	1,000 403	.00 .018			KMOL/HR KMOL/HR
VALUES OF ACCESSEL VARIABLE VA	LUE AT STA	ARIABLES: ART F	INAL	VALUE	UNITS
	OF LOOP				
 CW3T	96.1141		120.0)00	 F

DESIGN-SPEC: CWSYS2

SAMPLED VARIABLES:

CW5T : TEMPERATURE IN STREAM CW5 SUBSTREAM MIXED

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 4 FLOWSHEET SECTION DESIGN-SPEC: CWSYS2 (CONTINUED) SPECIFICATION: MAKE CW5T APPROACH 85.0000 0.000100000 WITHIN MANIPULATED VARIABLES: VARY : WATER MOLEFLOW IN STREAM CW4 SUBSTREAM MIXED LOWER LIMIT = 400.000 KMOL/HR UPPER LIMIT = 50,000.0 KMOL/HR FINAL VALUE = 889.656 KMOL/HR VALUES OF ACCESSED FORTRAN VARIABLES: VARIABLE VALUE AT START FINAL VALUE UNITS OF LOOP _____ _____ _____ ____ 85.0000 85.0000 CW5T F DESIGN-SPEC: CWSYS3 _____ SAMPLED VARIABLES: CW07T : TEMPERATURE IN STREAM CW7 SUBSTREAM MIXED SPECIFICATION: MAKE CW07T APPROACH 90.0000 0.00100000 WITHIN MANIPULATED VARIABLES: VARY : WATER MOLEFLOW IN STREAM CW6 SUBSTREAM MIXED LOWER LIMIT = 50.0000 KMOL/HR UPPER LIMIT = 500,000. FINAL VALUE = 6,392.4 KMOL/HR 6,392.41 KMOL/HR VALUES OF ACCESSED FORTRAN VARIABLES: VARIABLE VALUE AT START FINAL VALUE UNITS OF LOOP _____ _____ _____ ____ CW07T 90.0149 90.0000 F CONVERGENCE BLOCK: \$OLVER01 _____ Tear Stream : 15 10B Tolerance used: 0.100D-03 0.100D-03 Trace molefrac: 0.100D-05 0.100D-05 MAXIT= 30 WAIT 1 ITERATIONS BEFORE ACCELERATING QMAX = 0.0 QMIN = -5.0

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 5

FLOWSHEET SECTION

CONVERGENCE BLOCK: \$OLVER01 (CONTINUED) METHOD: WEGSTEIN STATUS: CONVERGED TOTAL NUMBER OF ITERATIONS: 20 NUMBER OF ITERATIONS ON LAST OUTER LOOP: 1

*** FINAL VALUES ***

VAR# VALUE	TEAR STREAM VA PREV VALUE	AR STREAM ERR/TOL	SUBSTREA	COMPONEN	UNIT	
1	TOTAL MOLEFLO	W 15	MIXED		KMOL/HR	
620.8822	620.8819	5.7749-03				
2	TOTAL MOLEFLO	W 10B	MIXED		KMOL/HR	
620.8822	620.8822	0.0				
3	MOLE-FLOW	15	MIXED	WATER	KMOL/HR	
351.3000	351.3000	0.0				
4	MOLE-FLOW	15	MIXED	HYDROGEN	KMOL/HR	
191.0203	191.0199	1.8548-02				
5	MOLE-FLOW	15	MIXED	NITROGEN	KMOL/HR	
77.6640	77.6640	0.0				
6	MOLE-FLOW	15	MIXED	OXYGEN	KMOL/HR	
0.0	0.0	0.0				
7	MOLE-FLOW	15	MIXED	ARGON	KMOL/HR	
0.8980	0.8980 4	.7370-02				
8	PRESSURE	15	MIXED		BAR	
38.9658	38.9658	0.0				
9	MASS ENTHALPY	15	MIXED		CAL/GM	-
1958.3548	-1958.3552	2.1185-03				
10	MOLE-FLOW	10B	MIXED	WATER	KMOL/HR	
522.5000	522.5000	0.0				
11	MOLE-FLOW	10B	MIXED	HYDROGEN	KMOL/HR	
19.8203	19.8203	0.0				
12	MOLE-FLOW	10B	MIXED	NITROGEN	KMOL/HR	
77.6640	77.6640	0.0				
13	MOLE-FLOW	10B	MIXED	OXYGEN	KMOL/HR	
0.0	0.0	0.0				
14	MOLE-FLOW	10B	MIXED	ARGON	KMOL/HR	
0.8980	0.8980	0.0				
15	PRESSURE	10B	MIXED		BAR	
39.3105	39.3105	0.0				
16	MASS ENTHALPY	10B	MIXED		CAL/GM	-
2232.1863	-2232.1863	0.0				

*** ITERATION HISTORY ***

TEAR STREAMS AND TEAR VARIABLES:

ITERATION MAX-ERR/TOL VAR# STREAM ID VAR DESCRIPTION SUBSTREA COMPONEN ATTRIBUT ELEMENT _____ ____ _____ _____ 1 0.4737E-01 7 15 MOLE-FLO MIXED ARGON CONVERGENCE BLOCK: \$OLVER02 _____ SPECS: CWSYS1 MAXIT= 30 STEP-SIZE= 1.0000 % OF RANGE MAX-STEP= 100. % OF RANGE XTOL= 1.000000E-08 THE NEW ALGORITHM WAS USED WITH BRACKETING=NO METHOD: SECANT STATUS: CONVERGED TOTAL NUMBER OF ITERATIONS: 7 NUMBER OF ITERATIONS ON LAST OUTER LOOP: 0

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 6

FLOWSHEET SECTION

CONVERGENCE BLOCK: \$OLVER02 (CONTINUED)

*** FINAL VALUES ***

	DESIGN SP			
VAR NAME	CALCULATOR	VARIABLE	DESCRIPTION	UNIT
PREV	VALUE EF	RR/TOL		
VARY	CWSYS1	CW1.MIXEI	D.WATER.MOLEFLOW	KMOL/HR
403.0	-6.2	2375-05		
	VAR NAME PREV VARY 403.0	DESIGN SP VAR NAME CALCULATOR PREV VALUE EN VARY CWSYS1 403.0208 -6.2	DESIGN SP VAR NAME CALCULATOR VARIABLE PREV VALUE ERR/TOL VARY CWSYS1 CW1.MIXEN 403.0208 -6.2375-05	DESIGN SP VAR NAME CALCULATOR VARIABLE DESCRIPTION PREV VALUE ERR/TOL VARY CWSYS1 CW1.MIXED.WATER.MOLEFLOW 403.0208 -6.2375-05

*** ITERATION HISTORY ***

DESIGN-SPEC ID: CWSYS1 ITERATED: WATER MOLEFLOW IN STREAM CW1 SUBSTREAM MIXED

VARIABLE		ERROR	ERR/TOL
1000.	UB	-23.89	-0.2389E+06
994.0		-23.79	-0.2379E+06
400.0	LB	0.3019	3019.
697.0		-16.88	-0.1688E+06
404.0		-0.1003	-1003.
403.0		-0.3183E-03	-3.183
403.0		-0.6237E-08	-0.6237E-04
	VARIABLE 1000. 994.0 400.0 697.0 404.0 403.0 403.0	VARIABLE 1000. UB 994.0 400.0 LB 697.0 404.0 403.0 403.0	VARIABLEERROR1000.UB-23.89994.0-23.79400.0LB0.3019697.0-16.88404.0-0.1003403.0-0.3183E-03403.0-0.6237E-08

CONVERGENCE BLOCK: \$OLVER03

SPECS: CWSYS2 MAXIT= 30 STEP-SIZE= 1.0000 % OF RANGE MAX-STEP= 100. % OF RANGE XTOL= 1.000000E-08 THE NEW ALGORITHM WAS USED WITH BRACKETING=NO METHOD: SECANT STATUS: CONVERGED TOTAL NUMBER OF ITERATIONS: 25 NUMBER OF ITERATIONS ON LAST OUTER LOOP: 1

*** FINAL VALUES ***

		DESIGN SI	2		
VAR#	VAR NAME	CALCULAT	OR VARIABLE	DESCRIPTION	UNIT
VALUE	PREV	VALUE	ERR/TOL		
1	VARY	CWSYS2	CW4.MIXE	D.WATER.MOLEFLOW	KMOL/HR
889.6555	889.6	6555	-0.1691		

*** ITERATION HISTORY ***

DESIGN-SPEC ID: CWSYS2 ITERATED: WATER MOLEFLOW IN STREAM CW4 SUBSTREAM MIXED

ITERATION	VARIABLE	ERROR	ERR/TOL
1	889.7	-0.1691E-04	-0.1691

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 PAGE 7

FLOWSHEET SECTION

CONVERGENCE BLOCK: \$OLVER04 SPECS: CWSYS3 MAXIT= 30 STEP-SIZE= 1.0000 % OF RANGE MAX-STEP= 100. % OF RANGE XTOL= 1.000000E-08 THE NEW ALGORITHM WAS USED WITH BRACKETING=NO METHOD: SECANT STATUS: CONVERGED TOTAL NUMBER OF ITERATIONS: 71 NUMBER OF ITERATIONS ON LAST OUTER LOOP: 3

*** FINAL VALUES ***

		DESIGN	SP				
VAR#	VAR NAME	CALCULA	TOR	VARIABLE	DESCRIPTION	τ	UNIT
VALUE	PREV	VALUE	EF	RR/TOL			
						-	
1 6392.4052	VARY 6392	CWSYS3 .5064	-2.	CW6.MIXEI 3763-04	O.WATER.MOLEFLOW	I	KMOL/HR

*** ITERATION HISTORY ***

DESIGN-SPEC ID: CWSYS3 ITERATED: WATER MOLEFLOW IN STREAM CW6 SUBSTREAM MIXED

ITERATION	VARIABLE	ERROR	ERR/TOL
1	6391.	0.1494E-01	14.94
2	6393.	-0.1434E-02	-1.434
3	6392.	-0.2376E-06	-0.2376E-03

COMPUTATIONAL SEQUENCE

SEQUENCE USED WAS: UP-CP-01 \$OLVER02 UP-CO-01 UP-CP-02 UP-CO-02 (RETURN \$OLVER02) UP-CP-03 UP-FH-01 UP-PM-01 UP-BO-01 \$OLVER01 SOEC SOEC2 | \$OLVER04 UP-CD-01 | (RETURN \$OLVER04) | *UP-SE-01 UP-SP-01 UP-CP-04 UP-MX-01 UP-HX-01 UP-HX-02 UP-MX-02 | UP-MX-03 (RETURN \$OLVER01) \$OLVER03 UP-CO-03 (RETURN \$OLVER03) OVERALL FLOWSHEET BALANCE

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 8

FLOWSHEET SECTION

OVERALL FLOWSHEET BALANCE (CONTINUED)

	*** MASS	AND ENERGY BALAN	CE ***	
	IN	OUT	GENERATION	RELATIVE
DIFF.				
CONVENTIONAL COMPO	ONENTS			
(KMOL/HR)			
WATER	8176.7	8 8036.38	-140.400	
0.00000				
HYDROGEN	0.0000	0 140.400	140.400	
0.252349E-05				
NITROGEN	57.100	0 57.1000	0.00000	
0.248877E-15				
OXYGEN	15.400	0 85.6000	70.2000	
0.166015E-15				
ARGON	0.66000	0 0.659996	0.00000	
0.644485E-05				
TOTAL BALANCE				
MOLE(KMOL/HR)	8249.9	4 8320.14	70.2000	
0.430943E-07				
MASS(KG/HR)	149426	149426.		
0.591694E-08				
ENTHALPY (CAL/SEC	-0.15837	8E+09 -0.153646E	+09	-
0.298739E-01				
	*** CO2 F	OUTVALENT SUMMARY	Y ***	

	EQUIVALENI	SUMMARI ~~~
FEED STREAMS CO2E	0.00000	KG/HR
PRODUCT STREAMS CO2E	0.00000	KG/HR
NET STREAMS CO2E PRODUCTION	0.00000	KG/HR
UTILITIES CO2E PRODUCTION	0.00000	KG/HR
TOTAL CO2E PRODUCTION	0.00000	KG/HR

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 page 9

PHYSICAL PROPERTIES SECTION

COMPONENTS

ID	TYPE	ALIAS	NAME
WATER	С	Н2О	WATER
HYDROGEN	С	Н2	HYDROGEN
NITROGEN	С	N2	NITROGEN
OXYGEN	С	02	OXYGEN
ARGON	С	AR	ARGON

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 10 U-O-S BLOCK SECTION BLOCK: SOEC MODEL: RSTOIC _____ INLET STREAM: 10B OUTLET STREAM: SOEC1 INLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT GENERATION RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 620.882 706.482 85.6000 0.00000 MASS(KG/HR) 11664.4 11664.4 0.00000 ENTHALPY(CAL/SEC) -0.723256E+07 -0.440427E+07 0.391050 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR KG/HR NET STREAMS CO2E PRODUCTION 0.00000 UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** STOICHIOMETRY MATRIX: REACTION # 1: SUBSTREAM MIXED : WATER -1.00 HYDROGEN 1.00 OXYGEN 0.500 REACTION EXTENT SPECS: NUMBER= 1 REACTION # 1: EXTENT= 171.2 KMOL/HR TWO PHASE TP FLASH 800.000 SPECIFIED TEMPERATURE C SPECIFIED PRESSURE BAR 39.3105 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 SIMULTANEOUS REACTIONS GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 11

U-O-S BLOCK SECTION

BLOCK: SOEC MODEL: RSTOIC (CONTINUED)

	*** RESULTS ***	
OUTLET TEMPERATURE	С	800.00
OUTLET PRESSURE	BAR	39.311
HEAT DUTY	CAL/SEC	0.28283E+07
VAPOR FRACTION		1.0000

V-L PHASE EQUILIBRIUM :

COMP	F(I)	X(I)	Y(I)	K(I)
WATER	0.49725	0.49725	0.49725	
MISSING				
HYDROGEN	0.27038	0.27038	0.27038	
MISSING				
NITROGEN	0.10993	0.10993	0.10993	
MISSING				
OXYGEN	0.12116	0.12116	0.12116	
MISSING				
ARGON	0.12710E-02	0.12710E-02	0.12710E-02	
MISSING				

BLOCK: SOEC2 MODEL: SEP _____

INLET STREAM: SOEC1 OUTLET STREAMS: 11 12 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS	S AND ENERGY BA	LANCE ***	
	IN	OUT	RELATIVE
DIFF.			
TOTAL BALANCE			
MOLE (KMOL/HR)	706.482	706.482	0.00000
MASS (KG/HR)	11664.4	11664.4	0.00000
ENTHALPY (CAL/SEC)	-0.440427E+07	-0.440460E+07	
0.743308E-04			
*** CO2	EQUIVALENT SUM	MARY ***	
FEED STREAMS CO2E	0.0000	KG/HR	
PRODUCT STREAMS CO2E	0.0000	KG/HR	
NET STREAMS CO2E PRODUCTION	0.00000	KG/HR	
UTILITIES CO2E PRODUCTION	0.0000	KG/HR	
TOTAL CO2E PRODUCTION	0.0000	KG/HR	

ASPEN PLUS PLAT: WIN-X64 PAGE 12	VER: 37.0	04/19/2020
	U-O-S BLOCK SECTION	
BLOCK: SOEC2 MODEL: SEP	(CONTINUED)	
* * *	INPUT DATA ***	
FLASH SPECS FOR STREAM 11 TWO PHASE TP FLASH PRESSURE DROP BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE		0.0 30 0.000100000
FLASH SPECS FOR STREAM 12 TWO PHASE TP FLASH PRESSURE DROP BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE		0.0 30 0.000100000
FRACTION OF FEED SUBSTREAM= MIXED STREAM= 12 CPT=	WATER FRACTION= HYDROGEN NITROGEN ARGON	0.0 0.0 0.0 0.0
MOLE-FLOW (KMOL/HR) SUBSTREAM= MIXED STREAM= 12 CPT=	OXYGEN FLOW=	85.6000
* *	* RESULTS ***	
HEAT DUTY CAL/	SEC	-327.40
COMPONENT = WATER STREAM SUBSTREAM S 11 MIXED	PLIT FRACTION 1.00000	
COMPONENT = HYDROGEN STREAM SUBSTREAM S 11 MIXED	PLIT FRACTION 1.00000	
COMPONENT = NITROGEN STREAM SUBSTREAM S 11 MIXED	PLIT FRACTION 1.00000	
COMPONENT = OXYGEN STREAM SUBSTREAM S 12 MIXED	PLIT FRACTION 1.00000	

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 13 U-O-S BLOCK SECTION BLOCK: SOEC2 MODEL: SEP (CONTINUED) COMPONENT = ARGONSTREAM SUBSTREAM SPLIT FRACTION 11 MIXED 1.00000 BLOCK: UP-BO-01 MODEL: HEATER _____ INLET STREAM: 2 OUTLET STREAM: 3 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE MOLE(KMOL/HR)491.700491.700MASS(KG/HR)8858.118858.11 0.00000 0.00000 ENTHALPY(CAL/SEC) -0.941751E+07 -0.746901E+07 -0.206903 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR NET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR *** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE С 420.000 SPECIFIED PRESSURE 40.0000 BAR MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 *** RESULTS ***

OUTLET TEMPERATURE	С	420.00
OUTLET PRESSURE	BAR	40.000
HEAT DUTY	CAL/SEC	0.19485E+07
OUTLET VAPOR FRACTION		1.0000

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 14 U-O-S BLOCK SECTION BLOCK: UP-BO-01 MODEL: HEATER (CONTINUED) V-L PHASE EQUILIBRIUM : F(I) X(I) Y(I) COMP K(I) 1.0000 1.0000 WATER 1.0000 MISSING BLOCK: UP-CD-01 MODEL: HEATX _____ HOT SIDE: _____ 15 16 INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ INLET STREAM: CW6 OUTLET STREAM: CW7 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** ΙN OUT RELATIVE DIFF. TOTAL BALANCE 7013.29 124086. 7013.29 124086. MOLE(KMOL/HR) MASS(KG/HR) 0.00000 0.00000 ENTHALPY(CAL/SEC) -0.128948E+09 -0.128948E+09 0.231119E-15 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E0.00000NET STREAMS CO2E PRODUCTION0.00000 PRODUCT STREAMS CO2E KG/HR KG/HR UTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

ASPEN PLUS PLAT: WIN-X64 PAGE 15	VER: 37.0	04/19/2020
	U-O-S BLOCK SECTION	
BLOCK: UP-CD-01 MODEL: HEAT?	X (CONTINUED)	
FLOW DIRECTION AND SPECIFIC COUNTERCURRENT HEAT EXC SPECIFIED HOT OUTLET TEMM	CATION: CHANGER P	
SPECIFIED VALUE LMTD CORRECTION FACTOR	С	35.0000 1.00000
PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP COLD SIDE PRESSURE DROP	BAR BAR	0.0345 0.0000
HEAT TRANSFER COEFFICIENT S HOT LIQUID COLD LIQUIN HOT 2-PHASE COLD LIQUIN HOT VAPOR COLD LIQUIN HOT LIQUID COLD 2-PHAS HOT 2-PHASE COLD 2-PHAS HOT VAPOR COLD 2-PHAS HOT LIQUID COLD VAPOR HOT 2-PHASE COLD VAPOR HOT VAPOR COLD VAPOR	SPECIFICATION: CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K SE CAL/SEC-SQCM-K SE CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K	0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203
*** (OVERALL RESULTS ***	
STREAMS:		
 15> T= 5.9845D+02 3.5000D+01 P= 3.8966D+01 2.00012.01	HOT	 > 16 T= P=
3.8931D+01 V= 1.0000D+00 4.3473D-01		V=
CW7 < T= 3.2222D+01 1.7778D+01	COLD	 < CW6 T= -
P = 1.0000D + 00 $1.0000D + 00 $		P=
V= 0.0000D+00 0.0000D+00		V=
DUTY AND AREA:		
CALCULATED HEAT DUTY CALCULATED (REQUIRED) ARI ACTUAL EXCHANGER AREA	CAL/SEC EA SQM SQM	1849243.1706 65.9652 65.9652

PER CENT OVER-DESIGN		0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0203 13392.1917
LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	с	1.0000 138.0837 1
PRESSURE DROP:		
HOTSIDE, TOTAL	BAR	0.0345
COLDSIDE, TOTAL	BAR	0.0000

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 16

U-O-S BLOCK SECTION

BLOCK: UP-CD-01 MODEL: HEATX (CONTINUED)

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

		HOT		
HOT IN HOT OUT	 VAP		CON	D
>	Ι	I		
598.5 35.0		213.7		I
COLDOUT COLDIN	LIQ		LIQ	
<		I		<
32.2 17.8	I	17.0		-
		COLI)	

ZONE HEAT TRANSFER AND AREA:

ZONE	HEAT DUTY	AREA	LMTD	AVERAGE U	UA
	CAL/SEC	SQM	С	CAL/SEC-SQCM-K	
CAL/SEC-K					
1	559364.539	7.8838	349.4788	0.0203	
1600.5680					
2	1289878.632	58.0814	109.3894	0.0203	
11791.623	7				
HEATX COLD-TQCU UP-CD-01 TQCURV INLET

PRESSURE	PROFILE	Ξ:	CONSTANT2	
PRESSURE	DROP:		0.0	I
PROPERTY	OPTION	SET:	SRK	SOA

CONSTANT2

! DUTY !	PRES	 ! TEMP !	! VFRAC ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	BAR	2 2 2 2 2	
! 0.0 !	1.0000	32.2222	0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 !
! 8.8059+04 !	1.0000	29.8281	
! 1.7612+05 !	1.0000	27.4346	
! 2.6418+05 !	1.0000	25.0420	
! 3.5224+05 !	1.0000	22.6501	
! 4.4030+05 !	1.0000	20.2593	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 5.2836+05 !	1.0000	17.8695	
! 5.5935+05 !	1.0000	17.0286	
! 6.1641+05 !	1.0000	15.4810	
! 7.0447+05 !	1.0000	13.0937	
! 7.9253+05 !	1.0000	10.7078	0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 !
! 8.8059+05 !	1.0000	8.3234	
! 9.6865+05 !	1.0000	5.9405	
! 1.0567+06 !	1.0000	3.5594	
! 1.1448+06 !	1.0000	1.1801	
! 1.2328+06 !	1.0000	-1.1974	0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 !
! 1.3209+06 !	1.0000	-3.5728	
! 1.4089+06 !	1.0000	-5.9461	
! 1.4970+06 !	1.0000	-8.3173	
! 1.5851+06 !	1.0000	-10.6861	
! 1.6731+06 !	1.0000	-13.0525	0.0 !
! 1.7612+06 !	1.0000	-15.4165	0.0 !
! 1.8492+06 !	1.0000	-17.7778	0.0 !

04/19/2020

U-O-S BLOCK SECTION

HEATX HOT-TQCUR UP-CD-01 TQCURV INLET

PRESSURE	PROFILE	Ξ:	CONSTA	NT2
PRESSURE	DROP:		0.0	Η
PROPERTY	OPTION	SET:	SRK	SOA

CONSTANT2

!	DUTY	!	PRES	!	TEMP	!	VFRAC !	
!		!		!		!	!	
!		!		!		!	!	
!		!		!		!	!	
!	CAL/SEC	!	BAR	!	С	!	!	
!		!		!		!	!	
!=		=!=		= ! =		= ! =	!	
!	0.0	!	38.9658	!	598.4517	!	1.0000 !	
!	8.8059+04	!	38.9658	!	539.0362	!	1.0000 !	
!	1.7612+05	!	38.9658	!	478.9835	!	1.0000 !	
1	2 6418+05	1	38 9658	1	418 3820	1	1 0000 !	

! ! ! !	CAL/SEC	! ! ! BAR !	! ! ! C !	
! ! ! !	0.0 8.8059+04 1.7612+05 2.6418+05 3.5224+05	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	598.4517 539.0362 478.9835 418.3820 357.3703	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! ! ! !	4.4030+05 5.2836+05 5.5935+05 6.1641+05 7.0447+05	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	296.1613 235.0891 213.7170 212.1274 209.3752	1.0000 ! 1.0000 ! DEW>1.0000 ! 0.9619 ! 0.9040 !
! ! ! !	7.9253+05 8.8059+05 9.6865+05 1.0567+06 1.1448+06	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	206.1884 202.4636 198.0651 192.8126 186.4635	0.8472 ! 0.7919 ! 0.7382 ! 0.6865 ! 0.6375 !
! ! ! !	1.2328+06 1.3209+06 1.4089+06 1.4970+06 1.5851+06	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	! 178.6899 ! 169.0453 ! 156.9273 ! 141.5472 ! 121.9693	0.5917 ! 0.5499 ! 0.5131 ! 0.4825 ! 0.4594 !
! ! !	1.6731+06 1.7612+06 1.8492+06	! 38.9658 ! 38.9658 ! 38.9658	97.3929 67.8882 34.9997	0.4445 ! 0.4372 ! 0.4347 !

PAGE 19 U-O-S BLOCK SECTION BLOCK: UP-CO-01 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: 7A OUTLET STREAM: 7B PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ CW1 INLET STREAM: CW2 OUTLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE MOLE (KMOL/HR)476.178476.1780.00000MASS (KG/HR)9379.199379.190.00000 ENTHALPY(CAL/SEC) -0.769531E+07 -0.769531E+07 0.00000 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR NET STREAMS CO2E0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED HOT OUTLET TEMP С SPECIFIED VALUE 37.7778 1.00000 LMTD CORRECTION FACTOR

04/19/2020

ASPEN PLUS PLAT: WIN-X64 VER: 37.0

BLOCK: UP-CO-01 MODEL: HEATX (CONTINUED)

PRESSUE	RE SPE	ECIFICATIO	DN:		
HOT	SIDE	PRESSURE	DROP	BAR	0.3447
COLD	SIDE	PRESSURE	DROP	BAR	0.0000

HEAT	TRANSFER	COEFFI	CIENT SPECI	FICATION:	
HOT	LIQUID	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	LIQUID	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	LIQUID	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203

*** OVERALL RESULTS ***

STREAMS:

7A> T= 1.9791D+02 3.7778D+01	НОТ	 > 7B T=
P= 3.4200D+00		P=
3.0753D+00 V= 1.0000D+00 1.0000D+00		V=
CW2 < T= 3.6532D+01	COLD	 < CW1 T=
P= 1.0000D+00		P=
1.0000D+00 V= 0.0000D+00 0.0000D+00		
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	22875.9612 2.0065 2.0065 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0203 407.3491

LOG-MEAN TEMPERATURE DIFFERENCE:		
LMTD CORRECTION FACTOR		1.0000
LMTD (CORRECTED)	С	56.1581
NUMBER OF SHELLS IN SERIES		1
DRESSURE DROD.		
INESSONE DIOI.		
HOTSIDE, TOTAL	BAR	0.3447
COLDSIDE, TOTAL	BAR	0.0000

U-O-S BLOCK SECTION

BLOCK: UP-CO-01 MODEL: HEATX (CONTINUED)

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

407.3491

HEATX COLD-TQCU UP-CO-01 TQCURV INLET

PRESSURE	PROFILE:	CONSTANT2	2
PRESSURE	DROP:	0.0	E
PROPERTY	OPTION SET:	SRK	SOF

		TEMP	
! DUTY	! PRES		! VFRAC !
!	!		! !
! ! ! CAL/SEC !	! ! ! BAR !	C	! ! ! ! ! !
! 0.0 ! 1089.3315 ! 2178.6630 ! 3267.9945 ! 4357.3259	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	36.5319 36.0619 35.5919 35.1220 34.6521	0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 !
! 5446.6574	! 1.0000	34.1822	0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 !
! 6535.9889	! 1.0000	33.7123	
! 7625.3204	! 1.0000	33.2424	
! 8714.6519	! 1.0000	32.7725	
! 9803.9834	! 1.0000	32.3027	
! 1.0893+04	! 1.0000	31.8329	0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 !
! 1.1983+04	! 1.0000	31.3631	
! 1.3072+04	! 1.0000	30.8934	
! 1.4161+04	! 1.0000	30.4236	
! 1.5251+04	! 1.0000	29.9539	
! 1.6340+04	! 1.0000	29.4842	0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 !
! 1.7429+04	! 1.0000	29.0146	
! 1.8519+04	! 1.0000	28.5449	
! 1.9608+04	! 1.0000	28.0753	
! 2.0697+04	! 1.0000	27.6057	
! 2.1787+04	! 1.0000	27.1362	! 0.0 !
! 2.2876+04	! 1.0000	26.6667	! 0.0 !

HEATX HOT-TQCUR UP-CO-01 TQCURV INLET

PRESSURE	PROFILE	Ξ:	CONSTA	NT2
PRESSURE	DROP:		0.0	I
PROPERTY	OPTION	SET:	SRK	SOF

 ! DUTY !	 ! PRES !	 ! TEMP !	! VFRAC ! ! !
! ! CAL/SEC !	! ! BAR !	C	
! 0.0 ! 1089.3315 ! 2178.6630 ! 3267.9945 ! 4357.3259	! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200	197.9118 190.3568 182.7929 175.2203 167.6394	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 5446.6574 ! 6535.9889 ! 7625.3204 ! 8714.6519 ! 9803.9834	! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200	160.0505 152.4540 144.8500 137.2391 129.6216	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 1.0893+04 ! 1.1983+04 ! 1.3072+04 ! 1.4161+04 ! 1.5251+04	! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200	! 121.9979 ! 114.3684 ! 106.7334 ! 99.0935 ! 91.4489	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 1.6340+04 ! 1.7429+04 ! 1.8519+04 ! 1.9608+04 ! 2.0697+04	! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200	83.8003 76.1480 68.4925 60.8342 53.1737	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 2.1787+04 ! 2.2876+04	! 3.4200 ! 3.4200	45.5114 37.8479	1.0000 ! 1.0000 !

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 24 U-O-S BLOCK SECTION BLOCK: UP-CO-02 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: 7C OUTLET STREAM: 7D PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ CW2 INLET STREAM: INLET STREAM: CW2 OUTLET STREAM: CW3 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE MOLE(KMOL/HR) 476.178 476.178 MASS(KG/HR) 9379.19 9379.19 0.00000 0.00000 ENTHALPY(CAL/SEC) -0.766691E+07 -0.766691E+07 0.121473E-15 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR PRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HR UTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH 30 MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED HOT OUTLET TEMP 37.7778 SPECIFIED VALUE С LMTD CORRECTION FACTOR 1.00000

BLOCK: UP-CO-02 MODEL: HEATX (CONTINUED)

PRESSUE	RE SPE	ECIFICATIO	DN:		
HOT	SIDE	PRESSURE	DROP	BAR	0.3447
COLD	SIDE	PRESSURE	DROP	BAR	0.0000

HEAT	TRANSFER	COEFFI	CIENT SPECI	FICATION:	
НОТ	LIQUID	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
НОТ	2-PHASE	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
НОТ	VAPOR	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
НОТ	LIQUID	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
НОТ	2-PHASE	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
НОТ	VAPOR	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
НОТ	LIQUID	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
НОТ	2-PHASE	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
НОТ	VAPOR	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203

*** OVERALL RESULTS ***

STREAMS:

7C> T= 2.3622D+02 2.7770D+01	HOT	 > 7D T=
P= 1.1700D+01		P=
1.1355D+01 V= 1.0000D+00 1.0000D+00		V=
CW3 < T= 4.8889D+01 2.6532D+01	COLD	 < CW2 T=
P= 1.0000D+00		P=
1.0000D+00 V= 0.0000D+00 0.0000D+00		V=
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	28635.0522 3.7997 3.7997 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0203 771.4194

LOG-MEAN TEMPERATURE DIFFERENCE:		
LMTD CORRECTION FACTOR		1.0000
LMTD (CORRECTED)	С	37.1200
NUMBER OF SHELLS IN SERIES		1
PRESSURE DROP:		
HOTSIDE, TOTAL	BAR	0.3447
COLDSIDE, TOTAL	BAR	0.0000

U-O-S BLOCK SECTION

BLOCK: UP-CO-02 MODEL: HEATX (CONTINUED)

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

HEATX COLD-TQCU UP-CO-02 TQCURV INLET

PRESSURE	PROFILE	E:	CONSTA	NT2
PRESSURE	DROP:		0.0	I
PROPERTY	OPTION	SET:	SRK	SOF

0.0 BAR SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

! DUTY ! !	! PRES ! !	! TEMP ! !	! VFRAC ! ! ! ! !
! CAL/SEC !	! ! BAR !	! ! C !	! ! ! ! ! !
0.0 1363.5739 2727.1478 4090.7217 5454.2957	1.0000 1.0000 1.0000 1.0000 1.0000	! 48.8889 ! 48.3004 ! 47.7120 ! 47.1235 ! 46.5351	0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 !
! 6817.8696 ! 8181.4435 ! 9545.0174 ! 1.0909+04 ! 1.2272+04	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	! 45.9466 ! 45.3581 ! 44.7696 ! 44.1812 ! 43.5927	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 1.3636+04 ! 1.4999+04 ! 1.6363+04 ! 1.7726+04 ! 1.9090+04	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	! 43.0042 ! 42.4158 ! 41.8273 ! 41.2389 ! 40.6505	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 2.0454+04 ! 2.1817+04 ! 2.3181+04 ! 2.4544+04 ! 2.5908+04	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	! 40.0620 ! 39.4736 ! 38.8853 ! 38.2969 ! 37.7085	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
2.7271+04 2.8635+04	! 1.0000 ! 1.0000	! 37.1202 ! 36.5319	! 0.0 ! ! 0.0 !

HEATX HOT-TQCUR UP-CO-02 TQCURV INLET

PRESSURE	PROFILE	Ξ:	CONSTA	NT2
PRESSURE	DROP:		0.0	Η
PROPERTY	OPTION	SET:	SRK	SOZ

CONSTANT2

!	DUTY	!	PRES	!	TEMP	!	VFRAC	!

! ! ! CAL/SEC !	! ! ! BAR !	! ! ! C !	! ! ! ! ! ! ! ! ! ! ! !
0.0 1363.5739 2727.1478 4090.7217 5454.2957	11.7000 11.7000 11.7000 11.7000 11.7000 11.7000	236.2172 226.8587 217.4864 208.1009 198.7028	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 6817.8696 ! 8181.4435 ! 9545.0174 ! 1.0909+04 ! 1.2272+04	11.7000 11.7000 11.7000 11.7000 11.7000 11.7000	189.2927 179.8714 170.4396 160.9980 151.5476	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 1.3636+04 ! 1.4999+04 ! 1.6363+04 ! 1.7726+04 ! 1.9090+04	11.7000 11.7000 11.7000 11.7000 11.7000 11.7000	! 142.0893 ! 132.6240 ! 123.1527 ! 113.6767 ! 104.1968	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 2.0454+04 ! 2.1817+04 ! 2.3181+04 ! 2.4544+04 ! 2.5908+04	11.7000 11.7000 11.7000 11.7000 11.7000 11.7000	94.7145 85.2310 75.7476 66.2658 56.7871	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
2.7271+04 2.8635+04	11.7000 11.7000	47.3130 37.8454	! 1.0000 ! ! 1.0000 !

PAGE 29 U-O-S BLOCK SECTION BLOCK: UP-CO-03 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM:13OUTLET STREAM:14 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ CW4 INLET STREAM: CW5 OUTLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE MOLE (KMOL/HR)975.256975.256MASS (KG/HR)18766.518766.5 0.00000 0.00000 ENTHALPY(CAL/SEC) -0.170273E+08 -0.170273E+08 0.00000 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR PRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED HOT OUTLET TEMP С SPECIFIED VALUE 35.0000 1.00000 LMTD CORRECTION FACTOR

04/19/2020

ASPEN PLUS PLAT: WIN-X64 VER: 37.0

BLOCK: UP-CO-03 MODEL: HEATX (CONTINUED)

PRESSUE	RE SPE	ECIFICATIO	DN:		
HOT	SIDE	PRESSURE	DROP	BAR	0.0345
COLD	SIDE	PRESSURE	DROP	BAR	0.0000

HEAT	TRANSFER	COEFFIC	CIENT SPECIF	ICATION:	
HOT	LIQUID	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	LIQUID	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	LIQUID	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203

*** OVERALL RESULTS ***

STREAMS:

13> T= 6.4962D+02	HOT	 > 14 T=
P= 3.8966D+01		P=
3.8931D+01 V= 1.0000D+00 1.0000D+00		V=
CW5 < T= 2.9444D+01	COLD	 < CW4 T=
P= 1.0000D+00		P=
1.0000D+00 V= 0.0000D+00 0.0000D+00		V=
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	113997.9145 2.9438 2.9438 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0203 597.6554

LOG-MEAN TEMPERATURE DIFFERENCE:		
LMTD CORRECTION FACTOR		1.0000
LMTD (CORRECTED)	С	190.7419
NUMBER OF SHELLS IN SERIES		1
PRESSURE DROP:		
HOTSIDE, TOTAL	BAR	0.0345
COLDSIDE, TOTAL	BAR	0.000

U-O-S BLOCK SECTION

BLOCK: UP-CO-03 MODEL: HEATX (CONTINUED)

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

597.6554

HEATX COLD-TQCU UP-CO-03 TQCURV INLET

PRESSURE	PROFILE:	CONSTANT2	2
PRESSURE	DROP:	0.0	E
PROPERTY	OPTION SET:	SRK	SOF

! DUTY	! PRES	! TEMP	! VFRAC !
!	!	!	! !
! ! ! CAL/SEC !	! ! ! BAR !	2 2 2 2	! ! ! ! ! !
! 0.0	! 1.0000	29.4444	0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 !
! 5428.4721	! 1.0000	28.3842	
! 1.0857+04	! 1.0000	27.3242	
! 1.6285+04	! 1.0000	26.2643	
! 2.1714+04	! 1.0000	25.2045	
! 2.7142+04	! 1.0000	24.1450	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 3.2571+04	! 1.0000	23.0856	
! 3.7999+04	! 1.0000	22.0264	
! 4.3428+04	! 1.0000	20.9674	
! 4.8856+04	! 1.0000	19.9086	
! 5.4285+04	! 1.0000	18.8500	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 5.9713+04	! 1.0000	17.7916	
! 6.5142+04	! 1.0000	16.7335	
! 7.0570+04	! 1.0000	15.6756	
! 7.5999+04	! 1.0000	14.6179	
! 8.1427+04	! 1.0000	13.5606	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 8.6856+04	! 1.0000	12.5034	
! 9.2284+04	! 1.0000	11.4466	
! 9.7712+04	! 1.0000	10.3901	
! 1.0314+05	! 1.0000	9.3338	
! 1.0857+05	! 1.0000	8.2779	! 0.0 !
! 1.1400+05	! 1.0000	7.2222	! 0.0 !

04/19/2020

U-O-S BLOCK SECTION

HEATX HOT-TQCUR UP-CO-03 TQCURV INLET

PRESSURE	PROFILE	:	CONSTANT2	
PRESSURE	DROP:		0.0	I
PROPERTY	OPTION	SET:	SRK	SO

CONSTANT2 0.0 BAR

SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

 ! DUTY !	 ! PRES !	 ! TEMP !	 ! VFRAC ! ! !
! ! ! CAL/SEC !	! ! ! BAR !		! ! ! ! ! !
! 0.0 ! 5428.4721 ! 1.0857+04 ! 1.6285+04 ! 2.1714+04	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	649.6228 621.9434 594.1472 566.2272 538.1757	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 2.7142+04 ! 3.2571+04 ! 3.7999+04 ! 4.3428+04 ! 4.8856+04	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	509.9844 481.6443 453.1458 424.4788 395.6328	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 5.4285+04 ! 5.9713+04 ! 6.5142+04 ! 7.0570+04 ! 7.5999+04	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	366.5973 337.3621 307.9180 278.2580 248.3788	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 8.1427+04 ! 8.6856+04 ! 9.2284+04 ! 9.7712+04 ! 1.0314+05	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	218.2828 ! 187.9816 ! 157.4991 ! 126.8775 ! 96.1829 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 1.0857+05 ! 1.1400+05	! 38.9658 ! 38.9658	65.5132 35.0080	1.0000 ! 1.0000 !

BLOCK: UP-CP-01 MODEL: COMPR

INLET STREAM:	7
OUTLET STREAM:	7A
PROPERTY OPTION SET:	SRK

RK SOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

DIFF.

U-O-S BLOCK SECTION

BLOCK: UP-CP-01 MODEL: (COMPR (CONTINUED)		
TOTAL BALANCE			
MOLE(KMOL/HR)	73.1600	73.1600	0.0000
MASS(KG/HR)	2118.72	2118.72	0.0000
ENTHALPY (CAL/SEC)	-32.2948	24591.9	-1.00131

*** CO2 I	EQUIVALENT	SUMMARY ***
FEED STREAMS CO2E	0.00000	KG/HR
PRODUCT STREAMS CO2E	0.00000	KG/HR
NET STREAMS CO2E PRODUCTION	0.00000	KG/HR
UTILITIES CO2E PRODUCTION	0.00000	KG/HR
TOTAL CO2E PRODUCTION	0.00000	KG/HR

*** INPUT DATA ***

ISENTROPIC CENTRIFUGAL COMPRESSOR OUTLET PRESSURE BAR ISENTROPIC EFFICIENCY MECHANICAL EFFICIENCY	3.42000 0.72000 1.00000
*** RESULTS ***	
INDICATED HORSEPOWER REQUIREMENT KW	103.097
BRAKE HORSEPOWER REQUIREMENT KW	103.097
NET WORK REQUIRED KW	103.097
POWER LOSSES KW	0.0
ISENTROPIC HORSEPOWER REQUIREMENT KW	74.2295
CALCULATED OUTLET TEMP C	197.912
ISENTROPIC TEMPERATURE C	149.950
EFFICIENCY (POLYTR/ISENTR) USED	0.72000
OUTLET VAPOR FRACTION	1.00000
HEAD DEVELOPED, M-KGF/KG	12,861.3
MECHANICAL EFFICIENCY USED	1.00000
INLET HEAT CAPACITY RATIO	1.40242
INLET VOLUMETRIC FLOW RATE , L/MIN	30,221.5
OUTLET VOLUMETRIC FLOW RATE, L/MIN	13,983.5
INLET COMPRESSIBILITY FACTOR	0.99984
OUTLET COMPRESSIBILITY FACTOR	1.00141
AV. ISENT. VOL. EXPONENT	1.40015
AV. ISENT. TEMP EXPONENT	1.39791
AV. ACTUAL VOL. EXPONENT	1.59553
AV. ACTUAL TEMP EXPONENT	1.59229

ASPEN PLUS PLAT: WIN-X64 VE PAGE 35	CR: 37.0	(04/19/2020
U-	O-S BLOCK SH	ECTION	
BLOCK: UP-CP-02 MODEL: COMPR			
INLET STREAM: 7B			
OUTLET STREAM: 7C PROPERTY OPTION SET: SRK	SOAVE-RI	EDLICH-KWONG EQU	JATION OF STATE
*** MASS	AND ENERGY H	BALANCE ***	
	IN	OUT	RELATIVE
DIFF.			
TOTAL BALANCE			
MOLE(KMOL/HR)	73.1600	73.1600	0.00000
MASS (KG/HR)	2118.72	2118.72	0.00000
ENTHALPY(CAL/SEC)	1715.93	30114.2	-0.943019
*** CO2 E	QUIVALENT SU	JMMARY ***	
FEED STREAMS CO2E	0.00000	KG/HR	
PRODUCT STREAMS CO2E	0.00000	KG/HR	
NET STREAMS CO2E PRODUCTION	0.00000	KG/HR	
UTILITIES CO2E PRODUCTION	0.00000	KG/HR	
TOTAL CO2E PRODUCTION	0.00000	KG/HR	
***	INPUT DATA	* * *	
ISENTROPIC CENTRIFUGAL COMPRE	SSOR		
OUTLET PRESSURE BAR			11.7000
ISENTROPIC EFFICIENCY			0.72000
MECHANICAL EFFICIENCY			1.00000

U-O-S BLOCK SECTION

BLOCK: UP-CP-02 MODEL: COMPR (CONTINUED)

*** RESULTS ***

	REQUIREMENT	KW	118	.898
BRAKE HORSEPOWER	REQUIREMENT	KW	118	.898
NET WORK REQUIRED		KW	118	.898
POWER LOSSES		KW	0	.0
ISENTROPIC HORSEPOWER	REQUIREMENT	KW	85	.6064
CALCULATED OUTLET TEM	P C		236	.217
ISENTROPIC TEMPERATUR	E C		181	.461
EFFICIENCY (POLYTR/IS)	ENTR) USED		0	.72000
OUTLET VAPOR FRACTION			1	.00000
HEAD DEVELOPED,	M-KGF/KG		14,832	.5
MECHANICAL EFFICIENCY	USED		1	.00000
INLET HEAT CAPACITY R	ATIO		1	.40517
INLET VOLUMETRIC FLOW	RATE , L/MIN		10,248	.4
OUTLET VOLUMETRIC FLOW	W RATE, L/MIN		4,435	.97
INLET COMPRESSIBILITY	Y FACTOR		0	.99985
OUTLET COMPRESSIBILIT	Y FACTOR		1	.00506
AV. ISENT. VOL. EXPON	ENT		1	.40440
AV. ISENT. TEMP EXPON	ENT		1	.39724
AV. ACTUAL VOL. EXPON	ENT		1	.59568
AV. ACTUAL TEMP EXPON	ENT		1	.58583
BLOCK: UP-CP-03 MODEL: (COMPR			
INLET STREAM:	7D			
OUTLET STREAM:	8			
OUTLET STREAM: PROPERTY OPTION SET:	8 SRK SO	AVE-REDLICH-K	WONG EQUATI	ON OF STATE
OUTLET STREAM: PROPERTY OPTION SET: ***	8 SRK SO MASS AND EN	AVE-REDLICH-K ERGY BALANCE	WONG EQUATI *** OUT	ON OF STATE
OUTLET STREAM: PROPERTY OPTION SET: ***	8 SRK SO MASS AND EN IN	AVE-REDLICH-K ERGY BALANCE	WONG EQUATI *** OUT	ON OF STATE RELATIVE
OUTLET STREAM: PROPERTY OPTION SET: *** DIFF. TOTAL BALANCE	8 SRK SO MASS AND EN IN	AVE-REDLICH-K ERGY BALANCE	WONG EQUATI *** OUT	ON OF STATE RELATIVE
OUTLET STREAM: PROPERTY OPTION SET: *** DIFF. TOTAL BALANCE MOLE (KMOL/HR)	8 SRK SO MASS AND EN IN	AVE-REDLICH-K ERGY BALANCE	WONG EQUATI *** OUT 1600	ON OF STATE RELATIVE
OUTLET STREAM: PROPERTY OPTION SET: *** DIFF. TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR)	8 SRK SO MASS AND EN IN 73.16 2118	AVE-REDLICH-K ERGY BALANCE 00 73 72 21	WONG EQUATI *** OUT .1600 18 72	ON OF STATE RELATIVE 0.00000 0.00000
OUTLET STREAM: PROPERTY OPTION SET: *** DIFF. TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (CAL/SEC)	8 SRK SO MASS AND EN IN 73.16 2118. 1479.	AVE-REDLICH-K ERGY BALANCE 00 73 72 21 11 28	WONG EQUATI *** OUT .1600 18.72 087.9	ON OF STATE RELATIVE 0.00000 0.00000 -0.947340
OUTLET STREAM: PROPERTY OPTION SET: *** DIFF. TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (CAL/SEC)	8 SRK SO MASS AND EN IN 73.16 2118. 1479.	AVE-REDLICH-K ERGY BALANCE 00 73 72 21 11 28	WONG EQUATI *** OUT .1600 18.72 087.9	ON OF STATE RELATIVE 0.00000 0.00000 -0.947340
OUTLET STREAM: PROPERTY OPTION SET: *** DIFF. TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (CAL/SEC) ***	8 SRK SO MASS AND EN IN 73.16 2118. 1479. CO2 EQUIVAL	AVE-REDLICH-K ERGY BALANCE 00 73 72 21 11 28 ENT SUMMARY *	WONG EQUATI *** OUT .1600 18.72 087.9 **	ON OF STATE RELATIVE 0.00000 0.00000 -0.947340
OUTLET STREAM: PROPERTY OPTION SET: *** DIFF. TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (CAL/SEC) *** FEED STREAMS CO2E	8 SRK SO MASS AND EN IN 73.16 2118. 1479. CO2 EQUIVAL 0.00	AVE-REDLICH-K ERGY BALANCE 00 73 72 21 11 28 ENT SUMMARY * 000 KG/H	WONG EQUATI *** OUT .1600 18.72 087.9 ** R	ON OF STATE RELATIVE 0.00000 0.00000 -0.947340
OUTLET STREAM: PROPERTY OPTION SET: *** DIFF. TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (CAL/SEC) *** FEED STREAMS CO2E PRODUCT STREAMS CO2E	8 SRK SO. MASS AND EN IN 73.16 2118. 1479. CO2 EQUIVAL 0.00 0.00	AVE-REDLICH-K ERGY BALANCE 00 73 72 21 11 28 ENT SUMMARY * 000 KG/H 000 KG/H	WONG EQUATI *** OUT .1600 18.72 087.9 ** R R	ON OF STATE RELATIVE 0.00000 0.00000 -0.947340
OUTLET STREAM: PROPERTY OPTION SET: *** DIFF. TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (CAL/SEC) *** FEED STREAMS CO2E PRODUCT STREAMS CO2E NET STREAMS CO2E PRODU	8 SRK SO. MASS AND EN IN 73.16 2118. 1479. CO2 EQUIVAL 0.00 0.00 UCTION 0.00	AVE-REDLICH-K ERGY BALANCE 00 73 72 21 11 28 ENT SUMMARY * 000 KG/H 000 KG/H 000 KG/H	WONG EQUATI *** OUT .1600 18.72 087.9 ** R R R	ON OF STATE RELATIVE 0.00000 0.00000 -0.947340
OUTLET STREAM: PROPERTY OPTION SET: *** DIFF. TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (CAL/SEC) *** FEED STREAMS CO2E PRODUCT STREAMS CO2E NET STREAMS CO2E PRODUCT UTILITIES CO2E PRODUCT	8 SRK SO. MASS AND EN IN 73.16 2118. 1479. CO2 EQUIVAL 0.00 0.00 UCTION 0.00 FION 0.00	AVE-REDLICH-K ERGY BALANCE 00 73 72 21 11 28 ENT SUMMARY * 000 KG/H 000 KG/H 000 KG/H	WONG EQUATI *** OUT .1600 18.72 087.9 ** R R R R R	ON OF STATE RELATIVE 0.00000 0.00000 -0.947340

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 PAGE 37	04/19/2020
U-O-S BLOCK SECTION	
BLOCK: UP-CP-03 MODEL: COMPR (CONTINUED)	
*** INPUT DATA ***	
ISENTROPIC CENTRIFUGAL COMPRESSOR OUTLET PRESSURE BAR ISENTROPIC EFFICIENCY MECHANICAL EFFICIENCY *** RESULTS ***	40.0000 0.72000 1.00000
INDICATED HORSEPOWER REQUIREMENT KW BRAKE HORSEPOWER REQUIREMENT KW NET WORK REQUIRED KW POWER LOSSES KW ISENTROPIC HORSEPOWER REQUIREMENT KW CALCULATED OUTLET TEMP C ISENTROPIC TEMPERATURE C EFFICIENCY (POLYTR/ISENTR) USED OUTLET VAPOR FRACTION HEAD DEVELOPED, M-KGF/KG MECHANICAL EFFICIENCY USED INLET HEAT CAPACITY RATIO INLET VOLUMETRIC FLOW RATE , L/MIN OUTLET VOLUMETRIC FLOW RATE, L/MIN INLET COMPRESSIBILITY FACTOR OUTLET COMPRESSIBILITY FACTOR AV. ISENT. VOL. EXPONENT AV. ISENT. TEMP EXPONENT AV. ACTUAL TEMP EXPONENT AV. ACTUAL TEMP EXPONENT INLET STREAM: 19 OUTLET STREAM: 20	111.405 111.405 111.405 0.0 80.2120 222.905 172.329 0.72000 1.00000 13,897.9 1.00000 1.41832 2,774.96 1,279.26 0.99965 1.01751 1.42616 1.39972 1.62612 1.58976
PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWON	G EQUATION OF STATE

U-O-S BLOCK SECTION

BLOCK: UP-CP-04 MODEL: COMPR (CONTINUED)

***	MASS AND	ENERGY IN	BALANCE	*** OUT	RELATIVE
DIFF.					
TOTAL BALANCE					
MOLE(KMOL/HR)	71.	4222	71	.4222	0.0000
MASS(KG/HR)	687	.620	68	7.620	-
0.165334E-15					
ENTHALPY (CAL/SEC)	137	2.66	18	40.32	-0.254120
* * *	CO2 EQUIV	ALENT S	SUMMARY *	* *	
FEED STREAMS CO2E	0.	00000	KG/HI	R	
PRODUCT STREAMS CO2E	0.	00000	KG/HI	R	
NET STREAMS CO2E PRODUC	TION 0.	00000	KG/HI	R	
UTILITIES CO2E PRODUCTI	ON 0.	00000	KG/H1	R	
TOTAL CO2E PRODUCTION	0.	00000	KG/HI	R	
	*** INPU	T DATA	* * *		
TOENEDODIC CENEDIEUCAI					
ISENTROPIC CENTRIFUGAL C	OMPRESSOR				40.0000
OUILEI PRESSURE BAR					40.0000
ISENTROPIC EFFICIENCY					0.72000
MECHANICAL EFFICIENCY					1.00000
	*** RESU	LTS *	* *		
	1.200				
INDICATED HORSEPOWER R	EQUIREMEN	T KW			1.95801
BRAKE HORSEPOWER B	EQUIREMEN	T KW			1.95801
NET WORK REQUIRED	~	KW			1.95801
POWER LOSSES		KW			0.0
ISENTROPIC HORSEPOWER B	EOUIREMEN	T KW			1.40977
CALCULATED OUTLET TEMP	ĉ				38.3557
ISENTROPIC TEMPERATURE	С				37.4150
EFFICIENCY (POLYTR/ISEN	TR) USED				0.72000
OUTLET VAPOR FRACTION	,				1.00000
HEAD DEVELOPED.	I-KGF/KG				752.630
MECHANICAL EFFICIENCY U	ISED				1.00000
INLET HEAT CAPACITY BAT					1 41657
INLET VOLUMETRIC FLOW R	atter t./M	ΤN			798 958
OUTLET VOLUMETRIC FLOW	RATE, I/M	TN			786 496
INLET COMPRESSIBILITY	FACTOR				1 01989
OUTLET COMPRESSIBILIT	FACTOR				1 02043
AV IGENT VOI EVDONEN					1 <u>1</u> <u>1</u> 1
AV. IGENT TEMD EVDANEN	۱ ۲				1 40503
AV. IGENI. LEMP EXPONEN	1 T				1 70061
AV. ACTUAL VUL. EXPONEN	11				1. / 2201
AV. ACTUAL TEMP EXPONEN	T.				1.00051

ASPEN PLUS PLAT: WIN-X6 PAGE 39	4 VER: 37.0	0.	4/19/2020
	U-O-S BLOCK SEC	CTION	
BLOCK: UP-CP-04 MODEL: C	COMPR (CONTINUED)		
BLOCK: UP-FH-01 MODEL: H	EATER		
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	8 9 SRK SOAVE-REI	DLICH-KWONG EQUA	ATION OF STATE
* * *	MASS AND ENERGY BA	ALANCE ***	
	IN	OUT	RELATIVE
DIFF.			
TOTAL BALANCE			
MOLE(KMOL/HR)	73.1600	73.1600	0.0000
MASS(KG/HR)	2118.72	2118.72	0.0000
ENTHALPY (CAL/SEC)	28087.9	77585.2	-0.637974
* * *	CO2 EOUIVALENT SUN	MARY ***	
FEED STREAMS CO2E	0.00000	KG/HR	
PRODUCT STREAMS CO2E	0.00000	KG/HR	
NET STREAMS CO2E PRODU	CTION 0.00000	KG/HR	
UTILITIES CO2E PRODUCT	'ION 0.00000	KG/HR	
TOTAL CO2E PRODUCTION	0.00000	KG/HR	
	*** INPUT DATA **	< *	
ONE PHASE TP FLASH	SPECIFIED PHASE	TS VAPOR	
SPECIFIED TEMPERATURE	С	10 111 011	550.000
SPECIFIED PRESSURE	BAR		40.0000
MAXIMUM NO. ITERATIONS			30
CONVERGENCE TOLERANCE			-
0.000100000			

	*** RESULTS ***	
OUTLET TEMPERATURE	С	550.00
OUTLET PRESSURE	BAR	40.000
HEAT DUTY	CAL/SEC	49497.

PAGE 40 U-O-S BLOCK SECTION BLOCK: UP-HX-01 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: 11 OUTLET STREAM: 15 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ INLET STREAM: 4 INLET STREAM: 4 OUTLET STREAM: 5 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE MOLE(KMOL/HR) 1184.00 1184.00 MASS(KG/HR) 18471.1 18471.1 0.00000 0.00000 ENTHALPY(CAL/SEC) -0.120156E+08 -0.120156E+08 -0.155019E-15 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR PRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HR UTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH 30 MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED COLD OUTLET TEMP 590.0000 SPECIFIED VALUE С LMTD CORRECTION FACTOR 1.00000

04/19/2020

ASPEN PLUS PLAT: WIN-X64 VER: 37.0

BLOCK: UP-HX-01 MODEL: HEATX (CONTINUED)

PRES	SURE SI	PECIFICATI	ON:		
HO	T SIDE	E PRESSURE	DROP	BAR	0.3447
CO	LD SIDE	E PRESSURE	DROP	BAR	0.3447

HEAT '	FRANSFER	COEFFIC	CIENT SPECIFI	ICATION:	
HOT	LIQUID	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	LIQUID	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	LIQUID	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203

*** OVERALL RESULTS ***

STREAMS:

UA (DIRTY)

11> T= 8.0000D+02	НОТ	 > 15 T=
P= 3.9311D+01		P=
3.8966D+01		
V= 1.0000D+00		V=
1.0000D+00		·
5 < T= 5.9000D+02 3.8012D+02 P= 3.9655D+01 4.0000D+01 V= 1.0000D+00 1.0000D+00	COLD	 < 4 T= P= V=
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	306825.9444 7.0577 7.0577 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY)) CAL/SEC-SQCM-K	0.0203

CAL/SEC-K 1432.8402

LOG-MEAN TEMPERATURE DIFFERENCE	:	
LMTD CORRECTION FACTOR		1.0000
LMTD (CORRECTED)	С	214.1383
NUMBER OF SHELLS IN SERIES		1
PRESSURE DROP:		
HOTSIDE, TOTAL	BAR	0.3447
COLDSIDE, TOTAL	BAR	0.3447

U-O-S BLOCK SECTION

BLOCK: UP-HX-01 MODEL: HEATX (CONTINUED)

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

1432.8402

HEATX COLD-TQCU UP-HX-01 TQCURV INLET

PRESSURE	PROFILE	E:	CONSTANT2	
PRESSURE	DROP:		-0.3447	E
PROPERTY	OPTION	SET:	SRK	SOF

CONSTANT2 -0.3447 BAR SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

! DUTY	! PRES	! TEMP	VFRAC !
! ! ! CAL/SEC !	! ! ! BAR !	! ! ! C !	! ! ! ! ! ! ! !
! 0.0 ! 1.4611+04 ! 2.9222+04 ! 4.3832+04 ! 5.8443+04	! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000	! 590.1092 ! 580.2449 ! 570.3627 ! 560.4629 ! 550.5461	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 7.3054+04 ! 8.7665+04 ! 1.0228+05 ! 1.1689+05 ! 1.3150+05	! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000	! 540.6128 ! 530.6636 ! 520.6992 ! 510.7202 ! 500.7274	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 1.4611+05 ! 1.6072+05 ! 1.7533+05 ! 1.8994+05 ! 2.0455+05	! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000	! 490.7216 ! 480.7038 ! 470.6749 ! 460.6359 ! 450.5880	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 2.1916+05 ! 2.3377+05 ! 2.4838+05 ! 2.6299+05 ! 2.7760+05	! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000	! 440.5325 ! 430.4705 ! 420.4037 ! 410.3336 ! 400.2619	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 2.9222+05 ! 3.0683+05	! 40.0000 ! 40.0000	! 390.1904 ! 380.1211	! 1.0000 ! ! 1.0000 !

HEATX HOT-TQCUR UP-HX-01 TQCURV INLET

PRESSURE	PROFILE	Ξ:
PRESSURE	DROP:	
PROPERTY	OPTION	SET:

EQUATION OF STATE

PRES PRES PROP	SURE PRC SURE DRC ERTY OPI	DFILE: (DP: (TION SET: S	CONS D.O SRK	TANT2	BAR SOAVE-	REDLICH-KW	VONG
! DUT ! ! ! ! CAL	Y ! ! ! /SEC !	PRES BAR	! ! ! !	TEMP C	! ! ! ! !	VFRAC	 ! ! ! !
!===== ! ! 1.4 ! 2.9 ! 4.3 ! 5.8	======! 0.0 ! 611+04 ! 222+04 ! 832+04 ! 443+04 !	39.3105 39.3105 39.3105 39.3105 39.3105 39.3105	- ! ! ! ! !	800.0 790.6 781.1 771.7 762.2	000 ! 004 ! 815 ! 432 ! 854 !	1.0000 1.0000 1.0000 1.0000 1.0000	
! 7.3 ! 8.7 ! 1.0 ! 1.1 ! 1.3	054+04 ! 665+04 ! 228+05 ! 689+05 ! 150+05 !	39.3105 39.3105 39.3105 39.3105 39.3105 39.3105	-+ ! ! !	752.8 743.3 733.7 724.2 714.7	081 ! 111 ! 945 ! 582 ! 021 !	1.0000 1.0000 1.0000 1.0000 1.0000	!)!)!)!)!
! 1.4 ! 1.6 ! 1.7 ! 1.8 ! 2.0	611+05 ! 072+05 ! 533+05 ! 994+05 ! 455+05 !	39.3105 39.3105 39.3105 39.3105 39.3105 39.3105	-+ ! ! !	705.1 695.5 685.9 676.2 666.6	263 ! 307 ! 153 ! 801 ! 253 !	1.0000 1.0000 1.0000 1.0000 1.0000	!)!)!)!)!
! 2.1 ! 2.3 ! 2.4 ! 2.6 ! 2.7	916+05 ! 377+05 ! 838+05 ! 299+05 ! 760+05 !	39.3105 39.3105 39.3105 39.3105 39.3105 39.3105	-+ ! ! ! !	656.9 647.2 637.5 627.8 618.0	507 ! 565 ! 427 ! 094 ! 567 !	1.0000 1.0000 1.0000 1.0000 1.0000	!)!)!)!)!
! ! 2.9 ! 3.0	+ 222+05 ! 683+05 ! 	39.3105 39.3105	-+ ! !	608.2 598.4	848 ! 937 !	1.0000	!)!)!

PAGE 45 U-O-S BLOCK SECTION BLOCK: UP-HX-02 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM:12OUTLET STREAM:13 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ 5 INLET STREAM: 5 OUTLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE MOLE (KMOL/HR)648.722648.7220.00000MASS (KG/HR)12284.80.00000 ENTHALPY(CAL/SEC) -0.701648E+07 -0.701648E+07 0.00000 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR PRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED COLD OUTLET TEMP SPECIFIED VALUE С 610.0000 1.00000 LMTD CORRECTION FACTOR

04/19/2020

ASPEN PLUS PLAT: WIN-X64 VER: 37.0

BLOCK: UP-HX-02 MODEL: HEATX (CONTINUED)

PRESSUE	RE SPE	ECIFICATIO	DN:		
HOT	SIDE	PRESSURE	DROP	BAR	0.3447
COLD	SIDE	PRESSURE	DROP	BAR	0.3447

HEAT	TRANSFER	COEFFI	CIENT SPECI	FICATION:	
НОТ	LIQUID	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
НОТ	2-PHASE	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
НОТ	VAPOR	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
НОТ	LIQUID	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
НОТ	2-PHASE	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
НОТ	VAPOR	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
НОТ	LIQUID	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
НОТ	2-PHASE	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
НОТ	VAPOR	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203

*** OVERALL RESULTS ***

STREAMS:

12> T= 8.0000D+02 6.4962D+02	НОТ	 > 13 T=
P= 3.9311D+01		P=
3.8966D+01 V= 1.0000D+00 1.0000D+00		V=
6 < T= 6.1000D+02 5 0000D+02	COLD	 < 5 T=
P= 3.9311D+01		I P=
3.9655D+01 V= 1.0000D+00 1.0000D+00		
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	29852.2398 1.3071 1.3071 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0203 265.3710

LOG-MEAN TEMPERATURE DIFFERENCE	:	
LMTD CORRECTION FACTOR		1.0000
LMTD (CORRECTED)	С	112.4925
NUMBER OF SHELLS IN SERIES		1
PRESSURE DROP:		
HOTSIDE, TOTAL	BAR	0.3447
COLDSIDE, TOTAL	BAR	0.3447
ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 47

U-O-S BLOCK SECTION

BLOCK: UP-HX-02 MODEL: HEATX (CONTINUED)

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

U-O-S BLOCK SECTION

HEATX COLD-TQCU UP-HX-02 TQCURV INLET

PRESSURE	PROFILE	E:	CONSTANT2	
PRESSURE	DROP:		-0.3447	E
PROPERTY	OPTION	SET:	SRK	SOF

CONSTANT2 -0.3447 BAR SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

! DUTY	! PRES	! TEMP	! VFRAC !
!	!	!	! ! !
!	!	!	! ! !
! CAL/SEC	! BAR	! C	! ! !
!	!	!	! !
! 0.0 ! 1421.5352 ! 2843.0705 ! 4264.6057 ! 5686.1409	! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553	. 610.1030 . 609.1475 . 608.1919 . 607.2360 . 606.2800	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 7107.6761	! 39.6553	. 605.3238	1.0000 !
! 8529.2114	! 39.6553	604.3674	1.0000 !
! 9950.7466	! 39.6553	603.4108	1.0000 !
! 1.1372+04	! 39.6553	602.4540	1.0000 !
! 1.2794+04	! 39.6553	601.4971	1.0000 !
! 1.4215+04 ! 1.5637+04 ! 1.7058+04 ! 1.8480+04 ! 1.9901+04	! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553	600.5400 599.5827 598.6252 597.6676 596.7097	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 2.1323+04	! 39.6553	95.7517	! 1.0000 !
! 2.2745+04	! 39.6553	594.7936	! 1.0000 !
! 2.4166+04	! 39.6553	593.8352	! 1.0000 !
! 2.5588+04	! 39.6553	592.8767	! 1.0000 !
! 2.7009+04	! 39.6553	591.9180	! 1.0000 !
! 2.8431+04	! 39.6553	590.9591	! 1.0000 !
! 2.9852+04	! 39.6553	590.0000	! 1.0000 !

04/19/2020

U-O-S BLOCK SECTION

HEATX HOT-TQCUR UP-HX-02 TQCURV INLET

PRESSURE	PROFILE	:	CONSTANT2	
PRESSURE	DROP:		0.0	I
PROPERTY	OPTION	SET:	SRK	SO

CONSTANT2 0.0 BAR

SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

 ! DUTY !	! PRES !	 ! TEMP ! ! !	VFRAC ! !
! ! ! CAL/SEC !	! ! ! BAR !	! ! ! C	
! 0.0 ! 1421.5352 ! 2843.0705 ! 4264.6057 ! 5686.1409	! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105	800.0000 ! 792.9010 ! 785.7962 ! 778.6856 ! 771.5692 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 7107.6761 ! 8529.2114 ! 9950.7466 ! 1.1372+04 ! 1.2794+04	! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105	! 764.4468 ! ! 757.3183 ! ! 750.1838 ! ! 743.0430 ! ! 735.8960 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 1.4215+04 ! 1.5637+04 ! 1.7058+04 ! 1.8480+04 ! 1.9901+04	! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105	228.7426 ! 721.5827 ! 714.4163 ! 707.2433 ! 700.0635 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 2.1323+04 ! 2.2745+04 ! 2.4166+04 ! 2.5588+04 ! 2.7009+04	! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105	. 692.8769 . 685.6834 . 678.4829 . 671.2753 . 664.0604 .	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 2.8431+04 ! 2.9852+04	! 39.3105 ! 39.3105	! 656.8382 ! ! 649.6086 !	1.0000 ! 1.0000 !

BLOCK: UP-MX-01 MODEL: MIXER

_____ INLET STREAMS: 3 OUTLET STREAM: 4

20

PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

DIFF.

04/19/2020 ASPEN PLUS PLAT: WIN-X64 VER: 37.0 PAGE 50 U-O-S BLOCK SECTION BLOCK: UP-MX-01 MODEL: MIXER (CONTINUED) TOTAL BALANCE MOLE(KMOL/HR)563.122563.122MASS(KG/HR)9545.739545.73 MOLE(KMOL/HR) 0.00000 0.190555E-15 ENTHALPY (CAL/SEC) -0.746717E+07 -0.746717E+07 0.124722E-15 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR KG/HR KG/HR KG/HR KG/HR NET STREAMS CO2E PRODUCTION 0.00000 UTILITIES CO2E PRODUCTION 0.00000 TOTAL CO2E PRODUCTION 0.00000 *** INPUT DATA *** ONE PHASE FLASH SPECIFIED PHASE IS VAPOR MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE BAR 40.0000 BLOCK: UP-MX-02 MODEL: MIXER _____ 9 INLET STREAMS: 6 10A OUTLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE 636.282 636.282 11664.4 MOLE (KMOL/HR) MASS (KG/HR) 0.00000 11664.4 0.311886E-15 ENTHALPY(CAL/SEC) -0.705290E+07 -0.705290E+07 -0.132048E-15 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E0.00000KG/HRNET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR *** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 51 U-O-S BLOCK SECTION BLOCK: UP-MX-03 MODEL: RSTOIC _____ 10A 10B INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT GENERATION RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 636.282 620.882 -15.4000 0.00000 MASS(KG/HR) 11664.4 11664.4 0.00000 ENTHALPY(CAL/SEC) -0.705290E+07 -0.723256E+07 0.248403E-01 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** STOICHIOMETRY MATRIX: REACTION # 1: SUBSTREAM MIXED : WATER 1.00 HYDROGEN -1.00 OXYGEN -0.500 REACTION EXTENT SPECS: NUMBER= 1 REACTION # 1: EXTENT= 30.80 KMOL/HR PHASE TP FLASH SPECIFIED PHASE IS VAPOR ONE SPECIFIED TEMPERATURE C 800.000 SPECIFIED PRESSURE BAR 39.3105 30 MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE 0.000100000 SIMULTANEOUS REACTIONS GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO *** RESULTS *** OUTLET TEMPERATURE C 800.00 OUTLET PRESSURE BAR 39.311

HEAT DUTY

CAL/SEC

-0.17966E+06

ASPEN PLUS PLAT: WIN-> PAGE 52	(64 VE)	R: 37.0	0.	4/19/2020
	U-(D-S BLOCK SEC	TION	
BLOCK: UP-PM-01 MODEL:	PUMP			
OUTLET STREAM:	1			
PROPERTY OPTION SET:	SRK	SOAVE-RED	LICH-KWONG EQU	ATION OF STATE
* * *	MASS A	AND ENERGY BA	LANCE ***	
		IN	OUT	RELATIVE
DIFF.				
TOTAL BALANCE		491 700	491 700	0 00000
MASS (KG/HR)		8858.11	8858.11	0.00000
ENTHALPY (CAL/SEC)	- (0.942335E+07	-0.941751E+0	7 -
0.619183E-03				
* * *	CO2 E	QUIVALENT SUM	MARY ***	
FEED STREAMS CO2E		0.00000	KG/HR	
PRODUCT STREAMS CO2E		0.0000	KG/HR	
NET STREAMS CO2E PROI	DUCTION	0.0000	KG/HR	
UTILITIES CO2E PRODUC	CTION	0.00000	KG/HR	
TOTAL CO2E PRODUCTION	1	0.00000	KG/HR	
	*** II	NPUT DATA **	*	
OUTLET PRESSURE BAR				40.0000
DRIVER EFFICIENCY				1.00000
FLASH SPECIFICATIONS:				
LIQUID PHASE CALCULAT	ION			
NO FLASH PERFORMED				
MAXIMUM NUMBER OF ITE	CRATIONS			30
TOLERANCE				0.000100000
	***]	RESULTS ***		
VOLUMETRIC FLOW RATE	L/MIN		1	53.615
PRESSURE CHANGE BAR				39.0000
NPSH AVAILABLE M-KG	GF/KG			10.3610
FLUID POWER KW				9.98495
ELECTRICITY KW				24.4291 27 7291
PUMP EFFICIENCY USED				0 40873
NET WORK REQUIRED KW	I			24.4291
HEAD DEVELOPED M-KGF/	′KG		4	13.796
BLOCK: UP-SE-01 MODEL:	SEP			
INLET STREAM:	16			
OUTLET STREAMS:	18	17		
PROPERTY OPTION SET:	SRK	SOAVE-RED	LICH-KWONG EQU	ATION OF STATE

ASPEN PLUS PLAT: WIN-X64 PAGE 53	VER: 37.0	(04/19/2020
	U-O-S BLOCK SEC	TION	
BLOCK: UP-SE-01 MODEL: SEP	(CONTINUED)		
* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * *
* SUM OF SPLITS SPEC * *	IFIED IS ILLEGAL		
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * *
*** MA	SS AND ENERGY BAI IN	LANCE *** OUT	RELATIVE
DIFF.			
TOTAL BALANCE MOLE (KMOL/HR)	620.882	620.882	
0.577485E-06	0005 25	0005 25	
MASS (KG/HK) 0 990596E-07	8925.55	8925.55	
ENTHALPY(CAL/SEC)	-0.670452E+07	-0.670542E+0	7
0.134093E 03			
*** CO.	2 EQUIVALENT SUMM	MARY ***	
FEED STREAMS CO2E	0.00000	KG/HR	
PRODUCT STREAMS CO2E	0.00000	KG/HR	
NET STREAMS CO2E PRODUCTION	O.00000	KG/HR	
UTILITIES CO2E PRODUCTION TOTAL CO2E PRODUCTION	0.00000 0.00000	KG/HR KG/HR	
***	INPUT DATA ** [,]	*	
FLASH SPECS FOR STREAM 18 ONE PHASE TP FLASH SPECIFIED PRESSURE BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	SPECIFIED PHASE I	IS VAPOR	38.9313 30 0.000100000
FLASH SPECS FOR STREAM 17 ONE PHASE TP FLASH PRESSURE DROP BAR MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	SPECIFIED PHASE I	IS LIQUID	0.0 30 0.000100000

ASPEN PLUS PLAT: WIN- PAGE 54	x64 VER: 37.0	04/19/2020
	U-O-S BLOCK SECTION	
BLOCK: UP-SE-01 MODEL:	SEP (CONTINUED)	
MOLE-FLOW (KMOL/HR) SUBSTREAM= MIXED STREAM= 18	CPT= WATER FLOW= HYDROGEN NITROGEN OXYGEN ARGON	0.0 232.800 77.6000 0.0 0.90000
	*** RESULTS ***	
HEAT DUTY	CAL/SEC	-899.15
COMPONENT = WATER STREAM SUBSTREAM 17 MIXED	SPLIT FRACTION 1.00000	
COMPONENT = HYDROGEN STREAM SUBSTREAM 18 MIXED	SPLIT FRACTION 1.00000	
COMPONENT = NITROGEN STREAM SUBSTREAM 18 MIXED 17 MIXED	SPLIT FRACTION 0.99918 0.00082406	
COMPONENT = ARGON STREAM SUBSTREAM 18 MIXED	SPLIT FRACTION 1.00000	
BLOCK: UP-SP-01 MODEL:	FSPLIT	
INLET STREAM: OUTLET STREAMS: PROPERTY OPTION SET:	18 19 21 SRK SOAVE-REDLICH	-KWONG EQUATION OF STATE
**	* MASS AND ENERGY BALANC	E ***
DIFF. TOTAL BALANCE MOLE (KMOL/HR)	LN 269 518	OUT RELATIVE
MASS (KG/HR) ENTHALPY (CAL/SEC	2594.79 5179.84	2594.790.000005179.840.00000

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 55

U-O-S BLOCK SECTION

BLOCK: UP-SP-01 MODEL: FSPLIT (CONTINUED)

* 7	** CO2	EQUIVALENT	SUMMARY	***
FEED STREAMS CO2E		0.00000	KG/	/HR
PRODUCT STREAMS CO2E	Ξ	0.0000	KG/	/HR
NET STREAMS CO2E PRO	DUCTIO	0.0000.0	KG/	/HR
UTILITIES CO2E PRODU	JCTION	0.0000	KG/	/HR
TOTAL CO2E PRODUCTIO	ON	0.0000	KG/	/HR

*** INPUT DATA ***

FRACTION OF FLOW	STRM=	19	FRAC=	0.26500
	*** RESULTS	* * *		
STREAM= 19 Order= 1	SPLIT=	0.26500	KEY=	0 STREAM-
21		0.73500		0

2

ASPEN PLUS PLAT: W PAGE 56	IN-X64 VEF	R: 37.0		04/19/20	20
		STREAM SECT	TION		
1 10A 10B 11 12					
STREAM ID	1	104	10B	11	12
FROM ·	± 	IIP-MX-02	P IIP-MX-0	3 SOEC2	12
SOEC2		01 1111 02	. 01 112 03	5 56162	
TO :	UP-PM-01	UP-MX-03	SOEC	UP-HX-01	UP-
НХ-02					• -
SUBSTREAM: MIXED					
PHASE:	LIQUID	VAPOR	VAPOR	VAPOR	
VAPOR					
COMPONENTS: KMOL/HR					
WATER	491.7000	491.7000	522.5000	351.3000	0.0
HYDROGEN	0.0	50.6203	19.8203	191.0203	0.0
NITROGEN	0.0	77.6640	77.6640	77.6640	0.0
OXYGEN	0.0	15.4000	0.0	0.0	
85.6000					
ARGON	0.0	0.8980	0.8980	0.8980	0.0
TOTAL FLOW:					
KMOL/HR	491.7000	636.2822	620.8822	620.8822	
85.6000	0050 1100	1 1	1 1	0005 0500	
KG/HR	8858.1132	1.1664+04	1.1664+04	8925.3523	
2/39.09/3	150 (14)	1 0520104	0 0404104	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
L/MIN	153.6146	1.9539+04	2.3484+04	2.3589+04	
TEMD C	25 0000	603 3524	800 0000	800 0000	
800 0000	23.0000	003.3324	000.0000	000.0000	
DRES BAR	1 0000	39 3105	39 3105	39 3105	
39 3105	1.0000	33.3103	33.3103	33.3103	
VFRAC	0.0	1.0000	1,0000	1 0000	
1.0000	0.0	2.0000	1.0000	2.0000	
LFRAC	1.0000	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
CAL/MOL	-6.8993+04	-3.9904+04	-4.1936+04	-2.6373+04	
6050.0777					
CAL/GM	-3829.7161	-2176.7382	-2232.1863	-1834.5980	
189.0720					
CAL/SEC	-9.4233+06	-7.0529+06	-7.2326+06	-4.5485+06	
1.4386+05					
ENTROPY:					
CAL/MOL-K	-38.9834	-5.1890	-4.3373	-1.1313	
2.4981					
CAL/GM-K	-2.1639	-0.2831	-0.2309	-7.8699-02	
7.8067-02					
DENSITY:					

MOL/CC	5.3348-02	5.4275-04	4.4064-04	4.3868-04
4.3640-04				
GM/CC	0.9611	9.9499-03	8.2783-03	6.3062-03
1.3964-02				
AVG MW	18.0153	18.3322	18.7869	14.3753
31.9988				

ASPEN PLUS PLAT: WI PAGE 57	N-X64 VER	: 37.0		04/19/20	020
	:	STREAM SECI	ION		
13 14 15 16 17					
STREAM ID FROM :	13 UP-HX-02	14 UP-CO-03	15 3 UP-HX-01	16 1 UP-CD-03	17 1 UP-
TO :	UP-CO-03		UP-CD-0	1 UP-SE-01	1
CONV. MAX. REL. ERR: SUBSTREAM: MIXED	0.0	0.0	4.7370-06	0.0	0.0
PHASE: LIQUID	VAPOR	VAPOR	VAPOR	MIXED	
COMPONENTS: KMOL/HR WATER 351.3000	0.0	0.0	351.3000	351.3000	
HYDROGEN NITROGEN	0.0 0.0	0.0	191.0203 77.6640	191.0203 77.6640	0.0
6.4000-02 OXYGEN ARGON	85.6000 0.0	85.6000 0.0	0.0 0.8980	0.0 0.8980	0.0
KMOL/HR 351.3640	85.6000	85.6000	620.8822	620.8822	
KG/HR 6330.5607	2739.0973	2739.0973	8925.3523	8925.3523	
L/MIN 110.7025 STATE VARIABLES:	2838.9851	924.69/1	1.9265+04	3129.5856	
TEMP C 35.0000	649.6228	35.0000	598.4517	35.0000	
PRES BAR 38.9313	38.9658	38.9313	38.9658	38.9313	
VFRAC LFRAC 1 0000	1.0000 0.0	1.0000 0.0	1.0000 0.0	0.4347 0.5653	0.0
SFRAC ENTHALPY:	0.0	0.0	0.0	0.0	0.0
CAL/MOL 6.8755+04	4794.6097	0.3049	-2.8152+04	-3.8874+04	-
CAL/GM 3816.1179	149.8372	9.5286-03	-1958.3548	-2704.2386	-
6.7106+06 ENTROPY:	1.1401+03	1.2499	-4.0003+06	-0./043+06	-
CAL/MOL-K 38.3942	1.2556	-7.2082	-2.9486	-24.2343	-
CAL/GM-K 2.1310	3.9239-02	-0.2253	-0.2051	-1.6858	-

DENSITY:				
MOL/CC	5.0253-04	1.5428-03	5.3715-04	3.3065-03
5.2899-02				
GM/CC	1.6080-02	4.9369-02	7.7216-03	4.7532-02
0.9531				
AVG MW	31.9988	31.9988	14.3753	14.3753
18.0171				

ASPEN PLUS PLAT: WI PAGE 58	IN-X64 VER	: 37.0		04/19/202	20
		STREAM SECT	FION		
18 19 2 20 21					
STREAM ID	18	19	2	20	21
FROM :	UP-SE-01	UP-SP-01	l UP-PM-01	UP-CP-04	UP-
SP-01					
то :	UP-SP-01	UP-CP-04	4 UP-BO-01	UP-MX-01	
SUBSTREAM: MIXED					
PHASE:	VAPOR	VAPOR	LIQUID	VAPOR	
VAPOR					
COMPONENTS: KMOL/HR					
WATER	0.0	0.0	491.7000	0.0	0.0
HYDROGEN	191.0199	50.6203	0.0	50.6203	
140.3996					
NITROGEN	77.6000	20.5640	0.0	20.5640	
57.0360					
OXYGEN	0.0	0.0	0.0	0.0	0.0
ARGON	0.8980	0.2380	0.0	0.2380	
0.6600					
TOTAL FLOW:					
KMOL/HR	269.5179	71.4222	491.7000	71.4222	
198.0956					
KG/HR	2594.7907	687.6195	8858.1132	687.6195	
1907.1712					
L/MIN	3014.9374	798.9584	153.6654	786.4963	
2215.9790					
STATE VARIABLES:					
TEMP C	35.0000	35.0000	26.2138	38.3557	
35.0000					
PRES BAR	38.9313	38.9313	40.0000	40.0000	
38.9313					
VFRAC	1.0000	1.0000	0.0	1.0000	
1.0000					
LFRAC	0.0	0.0	1.0000	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
CAL/MOL	69.1881	69.1881	-6.8951+04	92.7604	
69.1881					
CAL/GM	7.1865	7.1865	-3827.3448	9.6349	
7.1865					
CAL/SEC	5179.8437	1372.6586	-9.4175+06	1840.3216	
3807.1851	-			-	
ENTROPY:					
CAL/MOL-K	-5.8222	-5.8222	-38.9164	-5.8010	_
5.8222					
CAL/GM-K	-0.6047	-0.6047	-2.1602	-0.6025	_
0.6047	/		L		
DENSITY:					

MOL/CC	1.4899-03	1.4899-03	5.3330-02	1.5135-03
1.4899-03				
GM/CC	1.4344-02	1.4344-02	0.9608	1.4571-02
1.4344-02				
AVG MW	9.6275	9.6275	18.0153	9.6275
9.6275				

ASPEN PLUS PLAT: W PAGE 59	IN-X64 VEF	R: 37.0		04/19/20	20
		STREAM SECT	TION		
3 4 5 6 7					
STREAM ID FROM :	3 UP-BO-01	4 L UP-MX-01	5 UP-HX-01	6 02	7
TO : CP-01	UP-MX-01	UP-HX-01	UP-HX-02	2 UP-MX-02	UP-
CUDCEDDAM, MIVED					
PHASE: VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	
COMPONENTS: KMOL/HR WATER	491.7000	491.7000	491.7000	491.7000	0.0
NITROGEN 57 1000	0.0	20.5640	20.5640	20.5640	0.0
OXYGEN 15.4000	0.0	0.0	0.0	0.0	
ARGON 0.6600	0.0	0.2380	0.2380	0.2380	
TOTAL FLOW: KMOL/HR	491.7000	563.1222	563.1222	563.1222	
/3.1000 KG/HR	8858.1132	9545.7327	9545.7327	9545.7327	
L/MIN 3.0222+04	1.1223+04	1.2184+04	1.6781+04	1.7349+04	
STATE VARIABLES: TEMP C	420.0000	380.1211	590.0000	610.0000	
25.0000 PRES BAR	40.0000	40.0000	39.6553	39.3105	
VFRAC	1.0000	1.0000	1.0000	1.0000	
LFRAC SFRAC	0.0 0.0	0.0	0.0	0.0	0.0
CAL/MOL	-5.4685+04	-4.7737+04	-4.5776+04	-4.5585+04	-
CAL/GM	-3035.4576	-2816.1067	-2700.3928	-2689.1346	_
5.4873-02 CAL/SEC 32.2948	-7.4690+06	-7.4672+06	-7.1603+06	-7.1305+06	-
ENTROPY: CAL/MOL-K 1.1410	-11.1286	-9.5045	-6.8853	-6.6495	
CAL/GM-K 3.9399-02 DENSITY:	-0.6177	-0.5607	-0.4062	-0.3923	

MOL/CC	7.3021-04	7.7029-04	5.5928-04	5.4097-04
4.0347-05				
GM/CC	1.3155-02	1.3058-02	9.4805-03	9.1703-03
1.1684-03				
AVG MW	18.0153	16.9514	16.9514	16.9514
28.9600				

ASPEN PLUS PLAT: WI PAGE 60	IN-X64 VER	: 37.0		04/19/202	0
		STREAM SECT	ION		
7a 7b 7c 7d 8					
STREAM ID	7A	7B	7C	7D	8
FROM : CD-03	0P-CP-01	0P-CO-01	UP-CP-02	UP-CO-02	UP-
TO :	UP-CO-01	UP-CP-02	UP-CO-02	UP-CP-03	UP-
FH-01	01 00 01	01 01 02	01 00 02	01 01 00	01
SUBSTREAM: MIXED					
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	
VAPOR COMPONENTS · KMOL/HR					
WATED	0 0	0 0	0 0	0 0	0 0
WAIER	0.0	0.0	0.0	0.0	0.0
HIDROGEN	0.0		0.0	0.0	0.0
NITROGEN	57.1000	57.1000	57.1000	57.1000	
57.1000	1 - 4000	1 - 4000	1 - 4000	1 - 4000	
OXYGEN	15.4000	15.4000	15.4000	15.4000	
15.4000	0 6 6 0 0	0 6 6 0 0	0 6 6 0 0	0 6 6 0 0	
ARGON	0.6600	0.6600	0.6600	0.6600	
0.6600					
TOTAL FLOW:					
KMOL/HR	73.1600	73.1600	73.1600	73.1600	
73.1600					
KG/HR	2118.7169	2118.7169	2118.7169	2118.7169	
2118.7169					
L/MIN	1.3983+04	1.0248+04	4435.9706	2774.9582	
1279.2606					
STATE VARIABLES:					
TEMP C	197.9118	37.7778	236.2172	37.7778	
222.9051					
PRES BAR 40.0000	3.4200	3.0753	11.7000	11.3553	
VFRAC	1.0000	1.0000	1.0000	1.0000	
	0 0	0 0	0 0	0 0	0 0
SEDAC	0.0	0.0	0.0	0.0	0.0
SING ENTUALDY .	0.0	0.0	0.0	0.0	0.0
ENTRALET.	1210 0005	01 1261	1101 0210	000 07	
1202 1251	1210.0905	04.4301	1401.0340	12.1020	
1302.1251	41 70F1	0.0150	E1 1 CO O	0 5100	
CAL/GM	41./851	2.9156	51.1682	2.5132	
4/./202		1715 0005	0 0 1 1 4 + 0 4	1470 1004	
CAL/SEC	2.4592+04	1/15.9285	3.0114+04	14/9.1084	
ENTROPY:	1 0005	0 0070		0 4050	
CAL/MOL-K	1.9005	-0.8070	5.61/2-03	-3.4379	-
2.6584		0 0000 00	1 0000 5 5	o	
CAL/GM-K 9.1795-02	6.5626-02	-2.7865-02	1.9396-04	-0.1187 -	

DENSITY:				
MOL/CC	8.7198-05	1.1898-04	2.7487-04	4.3941-04
9.5315-04				
GM/CC	2.5253-03	3.4456-03	7.9604-03	1.2725-02
2.7603-02				
AVG MW	28.9600	28.9600	28.9600	28.9600
28.9600				

PAGE 61 STREAM SECTION 9 CW1 CW2 CW3 CW4 _____ 9 CW1 CW2 CW3 UP-FH-01 ---- UP-CO-01 UP-CO-02 STREAM ID CW3 CW4 ____ FROM : UP-MX-02 UP-CO-01 UP-CO-02 ---- UP-TO : CO-03 SUBSTREAM: MIXED VAPOR LIQUID LIQUID LIQUID PHASE: LIOUID COMPONENTS: KMOL/HR 0.0 403.0176 403.0176 403.0176 WATER 889.6555 0.0 0.0 0.0 0.0 HYDROGEN 0.0 57.1000 0.0 0.0 0.0 0.0 NITROGEN J.0 0.0 15.4000 0.0 0.0 0.0 0.0 OXYGEN 0.0 ARGON 0.6600 0.0 0.0 TOTAL FLOW: 73.1600 403.0176 403.0176 403.0176 KMOL/HR 889.6555 2118.7169 7260.4752 7260.4752 7260.4752 KG/HR 1.6027+04 2116.7436 126.0963 127.2374 128.7475 L/MIN 273.7279 STATE VARIABLES: TEMP C 550.0000 26.6667 36.5319 48.8889 7.2222 40.0000 1.0000 1.0000 1.0000 PRES BAR 1.0000 0.0 0.0 1.0000 0.0 0.0 VFRAC 1.0000 1.0000 LFRAC 0.0 1.0000 1.0000 SFRAC 0.0 0.0 0.0 0.0 0.0 ENTHALPY: 3817.7504 -6.8959+04 -6.8755+04 -6.8499+04 -CAL/MOL 6.9363+04 CAL/GM 131.8282 -3827.7985 -3816.4558 -3802.2575 -3850.2092 7.7585+04 -7.7199+06 -7.6970+06 -7.6684+06 -CAL/SEC 1.7141+07 ENTROPY: CAL/MOL-K 1.1037 -38.8832 -38.3020 -37.5995 -40.0894 3.8112-02 -2.1583 -2.1261 -2.0871 -CAL/GM-K 2.2253 DENSITY:

04/19/2020

ASPEN PLUS PLAT: WIN-X64 VER: 37.0

5.7604-04 5.3269-02 5.2791-02 5.2172-02

MOL/CC 5.4169-02

GM/CC	1.6682-02	0.9596	0.9510	0.9399
0.9759				
AVG MW	28.9600	18.0153	18.0153	18.0153
18.0153				

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 62

STREAM SECTION

CW5 CW6 CW7 SOEC1 _____

STREAM ID FROM :	CW5 UP-CO-03	CW6	CW7 UP-CD-01	SOEC1 SOEC
TO :		UP-CD-01		SOEC2
SUBSTREAM: MIXED				
PHASE:	LIQUID	LIQUID	LIQUID	VAPOR
COMPONENTS: KMOL/HR				
WATER	889.6555	6392.4052	6392.4052	351.3000
HYDROGEN	0.0	0.0	0.0	191.0203
NITROGEN	0.0	0.0	0.0	77.6640
OXYGEN	0.0	0.0	0.0	85.6000
ARGON	0.0	0.0	0.0	0.8980
TOTAL FLOW:				
KMOL/HR	889.6555	6392.4052	6392.4052	706.4822
KG/HR	1.6027+04	1.1516+05	1.1516+05	1.1664+04
L/MIN	279.0528	1928.2758	2010.1432	2.6866+04
STATE VARIABLES:				
TEMP C	29.4444	-17.7778	32.2222	800.0000
PRES BAR	1.0000	1.0000	1.0000	39.3105
VFRAC	0.0	0.0	0.0	1.0000
LFRAC	1.0000	1.0000	1.0000	0.0
SFRAC	0.0	0.0	0.0	0.0
ENTHALPY:				
CAL/MOL	-6.8901+04	-6.9885+04	-6.8844+04	-2.2443+04
CAL/GM	-3824.6035	-3879.2179	-3821.4095	-1359.2898
CAL/SEC	-1.7027+07	-1.2409+08	-1.2224+08	-4.4043+06
ENTROPY:				
CAL/MOL-K	-38.7176	-41.7323	-38.5536	4.2610-02
CAL/GM-K	-2.1492	-2.3165	-2.1400	2.5808-03
DENSITY:				
MOL/CC	5.3135-02	5.5251-02	5.3001-02	4.3827-04
GM/CC	0.9572	0.9954	0.9548	7.2361-03
AVG MW	18.0153	18.0153	18.0153	16.5106

ASPEN PLUS PLAT: WIN-X64 VER: 37.0 04/19/2020 PAGE 63 PROBLEM STATUS SECTION BLOCK STATUS _____ * * * * * * Calculations were completed with warnings * * * * The following Unit Operation blocks were * * completed with warnings: * * UP-SE-01 * * * * All streams were flashed normally * * * * All Convergence blocks were completed normally * * * * * *

B.1.4 SOEC Block Summary

BLOCK: SOEC MODEL: H	RSTOIC				
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	10B SOEC1 SRK	SOAVE-REDLICH-K	VONG EQI	UATION OF STATE	5
* * *	MASS AND IN	ENERGY BALANCE OUT	*** GENERA	TION RELATIVE	2
DIFF.					
TOTAL BALANCE					
MOLE (KMOL/HR)	620.882	706.482	85.60	000	
0.00000	11004 4	11004 4			
MASS(KG/HK)	11004.4	11004.4			
ENTHALPY (CAL/SEC) -() 723256E+(07 - 0 440427E + 07		_	
0.391050	.,202001	0, 0, 0, 10, 10, 10, 10, 10, 10, 10, 10,			
0.001000					
***	CO2 EQUI	VALENT SUMMARY **	* *		
FEED STREAMS CO2E	0	.00000 KG/H	ર		
PRODUCT STREAMS CO2E	0	.00000 KG/H	ર		
NET STREAMS CO2E PRODU	JCTION 0	.00000 KG/H	ર		
UTILITIES CO2E PRODUCT	CION 0	.00000 KG/H	R		
TOTAL COZE PRODUCTION	0	.00000 KG/H	X		
	*** TNDII	ד האשעם א איי			
STOICHIOMETRY MATRIX:	INCO.	I DAIA			
REACTION # 1: SUBSTREAM MIXED : WATER -1.00 HY	(DROGEN)	1.00 OXYGEN	0.500		
REACTION EXTENT SPECS: REACTION # 1: EXTEN	NUMBER= NT= 171.2	1 2 KMOL/HR			
	.				
TWO PHASE TP FLASS	1			800 000	
SPECIFIED DESSURE	- BAR			39 3105	
MAXIMUM NO ITERATIONS				30	
CONVERGENCE TOLERANCE				0.000100000	
SIMULTANEOUS REACTIONS					
GENERATE COMBUSTION REA	ACTIONS FOR	R FEED SPECIES		NO	
	*** RESI	ULTS ***			
OUTLET TEMPERATURE	2			800.00	
OUTLET PRESSURE	BAR			39.311	
HEAT DUTY	CAL/SEC			0.28283E+07	
VAPOR FRACTION				1.0000	

V-L PHASE EQUILIBRIUM :

COMP WATER	F(I) 0.49725	X(I) 0.4972	Y(25 0.4	I) K(I 9725)
MISSING	0 07020	0 0700		7020	
MISSING	0.27038	0.2703	0.2	/038	
NITROGEN	0.10993	0.1099	0.1	0993	
MISSING OXYGEN	0.12116	0.1211	6 0.1	2116	
MISSING					
ARGON MISSING	0.12710E-	-02 0.1271	.0E-02 0.1	2710E-02	
BLOCK: SOEC2 MOI	DEL: SEP				
INLET STREAM:	SOEC1				
OUTLET STREAMS:	11	12			
PROPERTY OPTION SE	ET: SRK	SOAVE-RE	DLICH-KWONG	EQUATION OF STAT	E
	*** MASS	AND ENERGY E	BALANCE ***		
		IN	OUT	RELATIVE	
DIFF. TOTAL BALANCE					
MOLE (RMOL/HB)		706 482	706 482	0 00000	
Mydd (rc /nd) Mole (rwoe) III()		11661 1	11661 A	0.00000	
	SFC) -	.0 440427 <u>F</u> +07		C.00000 F±07	
0.743308E-04		0.11012/110/	0.110100		
	*** CO2 E	QUIVALENT SU	IMMARY ***		
FEED STREAMS CO2E	2	0.00000	KG/HR		
PRODUCT STREAMS (CO2E	0.00000	KG/HR		
NET STREAMS CO2E	PRODUCTION	0.00000	KG/HR		
UTILITIES CO2E PH	RODUCTION	0.00000	KG/HR		
TOTAL CO2E PRODUC	CTION	0.00000	KG/HR		
	***]	NPUT DATA *	: * *		
FLASH SPECS FOR ST	FREAM II				
TWO PHASE TP	FLASH			0 0	
PRESSURE DROP	BAR			0.0	
MAXIMUM NO. L'I'E'RA'	LIONS			30	
CONVERGENCE TOLERA	ANCE			0.000100000	
FLASH SPECS FOR ST	TREAM 12				
TWO PHASE TP	FLASH				
PRESSURE DROP	BAR			0.0	
MAXIMUM NO. ITERAI	TIONS			30	
CONVERGENCE TOLERA	ANCE			0.000100000	
FRACTION OF FEED					

SUBSTREAM= MIXED STREAM= 12	CPT= WATER FRACTION HYDROGEN NITROGEN ARGON	ON= 0.0 0.0 0.0 0.0)))
MOLE-FLOW (KMOL/HR) SUBSTREAM= MIXED STREAM= 12	CPT= OXYGEN FLOW=	85.6	5000
	*** RESULTS ***		
HEAT DUTY	CAL/SEC	-	327.40
COMPONENT = WATER STREAM SUBSTREAM 11 MIXED	SPLIT FRACTION 1.00000		
COMPONENT = HYDROGEN STREAM SUBSTREAM 11 MIXED	SPLIT FRACTION 1.00000		
COMPONENT = NITROGEN STREAM SUBSTREAM 11 MIXED	SPLIT FRACTION 1.00000		
COMPONENT = OXYGEN STREAM SUBSTREAM 12 MIXED	SPLIT FRACTION 1.00000		
COMPONENT = ARGON STREAM SUBSTREAM 11 MIXED	SPLIT FRACTION 1.00000		
BLOCK: UP-BO-01 MODEL:	HEATER		
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	2 3 SRK SOAVE-REDL	ICH-KWONG EQUATI	ON OF STATE
* * *	MASS AND ENERGY BAL	ANCE *** OUT	RELATIVE
DIFF.			
MOLE (KMOL/HR)	491.700	491.700	0.00000
MASS (KG/HR)	8858.11	8858.11	0.00000
ENTHALPY (CAL/SEC)	-0.941751E+07	-0.746901E+07	-0.206903
*** FEED STREAMS CO2E	CO2 EQUIVALENT SUMM 0.00000	ARY *** KG/HR	
PRODUCT STREAMS CO2E	0.00000	KG/HR	
NET STREAMS CO2E PROI	DUCTION 0.00000	KG/HR	
UTILITIES COZE PRODUC	TTON 0.00000	KG/HK	

TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE С 420.000 SPECIFIED PRESSURE BAR 40.0000 30 MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE 0.000100000 *** RESULTS *** С OUTLET TEMPERATURE 420.00 40.000 OUTLET PRESSURE BAR HEAT DUTY CAL/SEC 0.19485E+07 OUTLET VAPOR FRACTION 1.0000 V-L PHASE EQUILIBRIUM : r(1) X(I) 1.0000 1.0000 COMP F(I) Y(I) K(I) X(1) Y(1) 1.0000 1.0000 WATER MISSING BLOCK: UP-CD-01 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: 15 OUTLET STREAM: 16 INLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ CW6 CW7 INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE 7013.297013.29124086.124086. MOLE(KMOL/HR) MASS(KG/HR) 0.00000 0.00000 ENTHALPY(CAL/SEC) -0.128948E+09 -0.128948E+09 -0.231119E-15 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR NET STREAMS CO2E PRODUCTION0.00000KG/HRUTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH		
MAXIMUM NO. ITERATIONS		30
CONVERGENCE TOLERANCE		0.000100000
FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH		
MAXIMUM NO. ITERATIONS		30
CONVERGENCE TOLERANCE		0.000100000
FLOW DIRECTION AND SPECIFICATION	N :	
COUNTERCURRENT HEAT EXCHANG	ER	
SPECIFIED HOT OUTLET TEMP		
SPECIFIED VALUE	С	35.0000
LMTD CORRECTION FACTOR		1.00000
PRESSURE SPECIFICATION:		0 0015
HOT SIDE PRESSURE DROP	BAR	0.0345
COLD SIDE PRESSURE DROP	BAR	0.0000
HEAT TRANSFER COEFFICIENT SPECI	FICATION:	
HOT LIQUID COLD LIQUID	CAL/SEC-SOCM-K	0.0203
HOT 2-PHASE COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT VAPOR COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT LIQUID COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT VAPOR COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT LIQUID COLD VAPOR	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE COLD VAPOR	CAL/SEC-SQCM-K	0.0203
HOT VAPOR COLD VAPOR	CAL/SEC-SQCM-K	0.0203

*** OVERALL RESULTS ***

STREAMS:			
15>	HOT	>	16
T= 5.9845D+02			T=
3.5000D+01			
P= 3.8966D+01			P=
3.8931D+01			
V= 1.0000D+00			V=
4.3473D-01			
CW7 <	COLD	<	CW6
T= 3.2222D+01			T= -
1.7778D+01			
P= 1.0000D+00			P=
1.0000D+00			
V= 0.0000D+00			V=
0.0000D+00			

DUTY AND AREA:		
CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	1849243.1706 65.9652 65.9652
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0203
LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	С	1.0000 138.0837 1
PRESSURE DROP: HOTSIDE, TOTAL COLDSIDE, TOTAL	BAR BAR	0.0345 0.0000

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

		НОТ		
HOT IN	 VAP		CON	 D
HOT OUT	1	I		
> 598.5 35.0	I	213.7		I
COLDOUT COLDIN	LIQ		LIQ	
32.2	1	17.0		-
1/.0				
		COLI)	

ZONE HEAT TRANSFER AND AREA:

ZONE	HEAT DUTY CAL/SEC	AREA SOM	LMTD C	AVERAGE U CAL/SEC-SOCM-K	UA
CAL/SEC-K		~			
1	559364.539	7.8838	349.4788	0.0203	
1600.5680					
2	1289878.632	58.0814	109.3894	0.0203	
11791.623	7				

HEATX COLD-TQCU UP-CD-01 TQCURV INLET

PRESSURE	PROFILE:	CONSTANT2					
PRESSURE	DROP:	0.0	BAR				
PROPERTY	OPTION SET:	SRK	SOAVE-	-REDLICH-KWONG	EQUATION	OF	STATE

! DUTY	! PRES	TEMP	VFRAC !
! ! CAL/SEC !	! ! ! BAR !	C	· · · · · · · · · · · · · · · · · · ·
! 0.0 ! 8.8059+04 ! 1.7612+05 ! 2.6418+05 ! 3.5224+05	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	32.2222 29.8281 27.4346 25.0420 22.6501	0.0 0.0 0.0 0.0 0.0 1 0.0 1 0.0
! 4.4030+05 ! 5.2836+05 ! 5.5935+05 ! 6.1641+05 ! 7.0447+05	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	20.2593 17.8695 17.0286 15.4810 13.0937	0.0 0.0 0.0 0.0 0.0 1 0.0 1 0.0
! 7.9253+05 ! 8.8059+05 ! 9.6865+05 ! 1.0567+06 ! 1.1448+06	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	10.7078 8.3234 5.9405 3.5594 1.1801	0.0 0.0 0.0 0.0 0.0 1 0.0 1 0.0
! 1.2328+06 ! 1.3209+06 ! 1.4089+06 ! 1.4970+06 ! 1.5851+06	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	-1.1974 -3.5728 -5.9461 -8.3173 -10.6861	0.0 0.0 0.0 0.0 0.0 1 0.0
! 1.6731+06 ! 1.7612+06 ! 1.8492+06	! 1.0000 ! 1.0000 ! 1.0000	-13.0525 -15.4165 -17.7778	0.0 ! 0.0 ! 0.0 !

HEATX HOT-TQCUR UP-CD-01 TQCURV INLET

PRESSURE	PROFILE:	CONSTANT2					
PRESSURE	DROP:	0.0	BAR				
PROPERTY	OPTION SET:	SRK	SOAVE	-REDLICH-KWONG	EQUATION	OF	STATE

								· —
!	DUTY	!	PRES	!	TEMP	!	VFRAC	!
!		!		!		!		!
!		!		!		!		!

! ! CAL/SEC	! ! BAR	! ! C	! ! ! !		
!======= ! 0.0 ! 8.8059+04 ! 1.7612+05 ! 2.6418+05 ! 3.5224+05	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	! 598.4517 ! 539.0362 ! 478.9835 ! 418.3820 ! 357.3703	!=====! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !		
! ! 4.4030+05 ! 5.2836+05 ! 5.5935+05 ! 6.1641+05 ! 7.0447+05	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	296.1613 235.0891 213.7170 212.1274 209.3752	! 1.0000 ! ! 1.0000 ! ! DEW>1.0000 ! ! 0.9619 ! ! 0.9040 !		
! 7.9253+05 ! 8.8059+05 ! 9.6865+05 ! 1.0567+06 ! 1.1448+06	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	206.1884 202.4636 198.0651 192.8126 186.4635			
! 1.2328+06 ! 1.3209+06 ! 1.4089+06 ! 1.4970+06 ! 1.5851+06	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	! 178.6899 ! 169.0453 ! 156.9273 ! 141.5472 ! 121.9693	! 0.5917 ! ! 0.5499 ! ! 0.5131 ! ! 0.4825 ! ! 0.4594 !		
! 1.6731+06 ! 1.7612+06 ! 1.8492+06	! 38.9658 ! 38.9658 ! 38.9658	97.3929 67.8882 34.9997	! 0.4445 ! ! 0.4372 ! ! 0.4347 !		
BLOCK: UP-CO HOT SIDE:	9-01 MODEL: HEA	ATX 			
INLET STREA OUTLET STRE PROPERTY OP COLD SIDE:	M: AM: TION SET: SI	7a 7b rk soavi	E-REDLICH-KWON	G EQUATION	OF STATE
INLET STREA OUTLET STRE PROPERTY OP	M: AM: TION SET: SI	CW1 CW2 RK SOAVI	E-REDLICH-KWON	G EQUATION	OF STATE
DIFF.	***]	MASS AND ENERG	GY BALANCE ** OU	* T RI	ELATIVE
TOTAL BALA MOLE (KM MASS (KG ENTHALP	NCE IOL/HR) I/HR) Y(CAL/SEC)	476.178 9379.19 -0.7695311	476.1 9379. E+07 -0.7695	78 19 31E+07	0.00000 0.00000 0.00000

FEED STREAMS C PRODUCT STREAM NET STREAMS CC UTILITIES CO2E TOTAL CO2E PRO	*** CO2 EQU CO2E IS CO2E D2E PRODUCTION PRODUCTION DUCTION	JIVALENT SUMMARY *** 0.00000 KG/HR 0.00000 KG/HR 0.00000 KG/HR 0.00000 KG/HR 0.00000 KG/HR	
	*** INI	PUT DATA ***	
FLASH SPECS FOF TWO PHASE MAXIMUM NO. ITE CONVERGENCE TOI	R HOT SIDE: FLASH CRATIONS LERANCE		30 0.000100000
FLASH SPECS FOF TWO PHASE MAXIMUM NO. ITE CONVERGENCE TOI	COLD SIDE: FLASH CRATIONS LERANCE		30 0.000100000
FLOW DIRECTION COUNTERCURREN SPECIFIED HOT SPECIFIED VAI LMTD CORRECTI	AND SPECIFICATION THEAT EXCHANC OUTLET TEMP JUE CON FACTOR	DN: GER C	37.7778 1.00000
PRESSURE SPECIE HOT SIDE PRE COLD SIDE PRE	TICATION: SSURE DROP SSURE DROP	BAR BAR	0.3447 0.0000
HEAT TRANSFER C HOT LIQUID HOT 2-PHASE HOT VAPOR HOT LIQUID HOT 2-PHASE HOT VAPOR HOT LIQUID HOT 2-PHASE HOT VAPOR	COEFFICIENT SPECT COLD LIQUID COLD LIQUID COLD LIQUID COLD 2-PHASE COLD 2-PHASE COLD 2-PHASE COLD 2-PHASE COLD VAPOR COLD VAPOR COLD VAPOR COLD VAPOR	IFICATION: CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K	0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203
STREAMS:			

7A>	НОТ	> 7B
T= 1.9791D+02		T=
3.7778D+01		
P= 3.4200D+00		P=
3.0753D+00		
V= 1.0000D+00		V=
1.0000D+00		
		1
CW2 <	COLD	< CW1

T= 3.6532D+01 2.6667D+01		I	T=
P= 1.0000D+00 1.0000D+00			P=
V= 0.0000D+00 0.0000D+00		I	V=
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	228	75.9612 2.0065 2.0065 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	4 (0.0203 07.3491
LOG-MEAN TEMPERATURE DIFFERENCE LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	: C	ļ	1.0000 56.1581 1
PRESSURE DROP: HOTSIDE, TOTAL COLDSIDE, TOTAL	BAR BAR		0.3447 0.0000

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

	CAL/SEC	SQM	С	CAL/SEC-SQCM-K
CAL/SEC-K				
1	22875.961	2.0065	56.1581	0.0203
407.3491				

HEATX COLD-TQCU UP-CO-01 TQCURV INLET

PRESSURE	PROFILE	Ξ:	CONSTANT2	
PRESSURE	DROP:		0.0	I
PROPERTY	OPTION	SET:	SRK	SO

0.0 BAR SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

! DUTY	 ! PRES !	 ! TEMP !	! VFRAC !
! ! ! CAL/SEC !	! ! ! BAR !	! ! ! C !	· ! ! ! ! ! ! ! !
! 0.0 ! 1089.3315 ! 2178.6630 ! 3267.9945 ! 4357.3259	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	36.5319 36.0619 35.5919 35.1220 34.6521	0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0 !
! 5446.6574 ! 6535.9889 ! 7625.3204 ! 8714.6519 ! 9803.9834	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	34.1822 33.7123 33.2424 32.7725 32.3027	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 1.0893+04 ! 1.1983+04 ! 1.3072+04 ! 1.4161+04 ! 1.5251+04	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	1.8329 1.3631 2.30.8934 2.30.4236 29.9539	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 1.6340+04 ! 1.7429+04 ! 1.8519+04 ! 1.9608+04 ! 2.0697+04	! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000	29.4842 29.0146 28.5449 28.0753 27.6057	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 2.1787+04 ! 2.2876+04	! 1.0000 ! 1.0000	27.1362 26.6667	! 0.0 ! ! 0.0 !

HEATX HOT-TQCUR UP-CO-01 TQCURV INLET

PRESSURE	PROFILE	:	CONSTANT2					
PRESSURE	DROP:		0.0	BAR				
PROPERTY	OPTION	SET:	SRK	SOAVE-	-REDLICH-KWONG	EQUATION	OF	STATE
! DUTY	! PRES	! TEMP	! VFRAC !					
---	---	--	--					
!	!	!	! !					
!	!	!	! !					
!	!	!	! !					
! CAL/SEC	! BAR	! C	! !					
!	!	!	! !					
! 0.0	! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200	! 197.9118	! 1.0000 !					
! 1089.3315		! 190.3568	! 1.0000 !					
! 2178.6630		! 182.7929	! 1.0000 !					
! 3267.9945		! 175.2203	! 1.0000 !					
! 4357.3259		! 167.6394	! 1.0000 !					
! 5446.6574 ! 6535.9889 ! 7625.3204 ! 8714.6519 ! 9803.9834	! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200	! 160.0505 ! 152.4540 ! 144.8500 ! 137.2391 ! 129.6216	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !					
! 1.0893+04 ! 1.1983+04 ! 1.3072+04 ! 1.4161+04 ! 1.5251+04	! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200	! 121.9979 ! 114.3684 ! 106.7334 ! 99.0935 ! 91.4489	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !					
! 1.6340+04 ! 1.7429+04 ! 1.8519+04 ! 1.9608+04 ! 2.0697+04	! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200 ! 3.4200	! 83.8003 ! 76.1480 ! 68.4925 ! 60.8342 ! 53.1737	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !					
2.1787+04	! 3.4200	45.5114	! 1.0000 !					
2.2876+04	! 3.4200	37.8479	! 1.0000 !					

BLOCK: UP-CO-02 MODEL: HEATX

_____ HOT SIDE: _____ INLET STREAM: 7C OUTLET STREAM: 7D INLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE COLD SIDE: _____ CW2 CW3 INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** ΙN OUT RELATIVE DIFF. TOTAL BALANCE 476.178476.1780.000009379.199379.190.00000 MOLE(KMOL/HR) MASS(KG/HR)

ENTHALPY (CAL 121473E-15	/SEC) - (0.766691E+07	-0.766691E+	07
	*** CO2 E	NIITVALENT SUM	MARY ***	
FFFD STDFAMS CO	2F		KC / ND	
DEODUCT STREAMS	25 CO2E	0.00000	KG/IIK	
NEW CODENIC CO2		0.00000	KG/ HK	
NET STREAMS CO2	E PRODUCTION	0.00000	KG/HR	
UTILITIES COZE	PRODUCTION	0.00000	KG/HR	
TOTAL COZE PROD	UCTION	0.00000	KG/HR	
	*** I]	NPUT DATA ***	*	
FLASH SPECS FOR	HOT SIDE:			
TWO PHASE	FLASH			
MAXIMUM NO. ITER	ATIONS			30
CONVERGENCE TOLE	RANCE			0.000100000
FLASH SPECS FOR	COLD SIDE:			
TWO PHASE	FLASH			
MAXIMUM NO. ITER	ATIONS			30
CONVERGENCE TOLE	RANCE			0.000100000
FLOW DIRECTION A	ND SPECIFICAT	ION:		
COUNTERCURRENT	HEAT EXCHAI	NGER		
SPECIFIED HOT	OUTLET TEMP			
SPECIFIED VALU	E	С		37.7778
LMTD CORRECTIO	N FACTOR	-		1.00000
PRESSURE SPECIFI	CATION:			
HOT SIDE PRES	SURE DROP	BAR		0.3447
COLD SIDE PRES	SURE DROP	BAR		0.0000
HEAT TRANSFER CO	COLD LIQUID	CALICATION:	OCM R	0 0 0 0 0 0 0
HOI LIQUID	COTD TIÕNID	CAL/SEC-S	2CM-K	0.0203
HOT Z-PHASE	COTD TIÕOID	CAL/SEC-SQ	JCM-K	0.0203
HOT VAPOR	COTD TIÕNID	CAL/SEC-SQ	ДСМ-К	0.0203
HOT LIQUID	COLD 2-PHASE	CAL/SEC-SQ	QCM-K	0.0203
HOT 2-PHASE	COLD 2-PHASE	CAL/SEC-SO	QCM-К	0.0203
HOT VAPOR	COLD 2-PHASE	CAL/SEC-SQ	QCM-K	0.0203
HOT LIQUID	COLD VAPOR	CAL/SEC-SQ	QCM-K	0.0203
HOT 2-PHASE	COLD VAPOR	CAL/SEC-SQ	QCM-K	0.0203
HOT VAPOR	COLD VAPOR	CAL/SEC-SO	QCM-K	0.0203
	*** OVE	RALL RESULTS	* * *	
STREAMS:				
70>		НОТ		> 7n
	1	1101	1	

T= 2.3622D+02 | T= 3.7778D+01 P= 1.1700D+01 | P= 1.1355D+01

V= 1.0000D+00 1.0000D+00			V=
CW3 < T= 4.8889D+01 3.6532D+01	COLD	 < 	CW2 T=
P = 1.0000D + 00 $1.0000D + 00 $			P=
V= 0.0000D+00 0.0000D+00			V=
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	28635.0 3.7 3.7 0.0)522 7997 7997)000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0 771.4)203 194
LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	С	1.(37.1 1)000 L200
PRESSURE DROP: HOTSIDE, TOTAL COLDSIDE, TOTAL	BAR BAR	0.3	3447)000

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

ZONE HEAT TRANSFER AND AREA:

ZONE	HEAT DUTY	AREA	LMTD	AVERAGE U	UA
	CAL/SEC	SQM	С	CAL/SEC-SQCM-K	
CAL/SEC-K					
1	28635.052	3.7997	37.1200	0.0203	
771.4194					

HEATX COLD-TQCU UP-CO-02 TQCURV INLET

PRESSURE	PROFILE:	CONSTANT2	
PRESSURE	DROP:	0.0	J
PROPERTY	OPTION SET:	SRK	SO

0 BAR RK SOAVE-REDLICH-KWONG EQUATION OF STATE

! DUTY ! !	! PRES ! !	! TEMP !	! VFRAC ! ! ! ! !
! ! CAL/SEC !	! BAR ! .	C	! ! ! ! !!
! 0.0	! 1.0000	48.8889	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 1363.5739	! 1.0000	48.3004	
! 2727.1478	! 1.0000	47.7120	
! 4090.7217	! 1.0000	47.1235	
! 5454.2957	! 1.0000	46.5351	
: 6817.8696	! 1.0000	45.9466	! 0.0 !
! 8181.4435	! 1.0000	45.3581	! 0.0 !
! 9545.0174	! 1.0000	44.7696	! 0.0 !
! 1.0909+04	! 1.0000	44.1812	! 0.0 !
! 1.2272+04	! 1.0000	43.5927	! 0.0 !
! 1.3636+04	! 1.0000	43.0042	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 1.4999+04	! 1.0000	42.4158	
! 1.6363+04	! 1.0000	41.8273	
! 1.7726+04	! 1.0000	41.2389	
! 1.9090+04	! 1.0000	40.6505	
! 2.0454+04	! 1.0000	40.0620	! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 ! ! 0.0 !
! 2.1817+04	! 1.0000	39.4736	
! 2.3181+04	! 1.0000	38.8853	
! 2.4544+04	! 1.0000	38.2969	
! 2.5908+04	! 1.0000	37.7085	
! 2.7271+04	! 1.0000	37.1202	! 0.0 !
! 2.8635+04	! 1.0000	36.5319	! 0.0 !

HEATX HOT-TQCUR UP-CO-02 TQCURV INLET -----

PRESSURE PROFILE: CONSTANT2

PRESSURE DROP: 0.0 BAR PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE

! ! !	DUTY	! PRES ! !	 ! TEMP ! !	! VFRAC ! ! !
! ! !	CAL/SEC	! ! BAR !	! ! C !	! ! ! !
! === ! ! ! !	0.0 1363.5739 2727.1478 4090.7217 5454.2957	! 11.7000 ! 11.7000 ! 11.7000 ! 11.7000 ! 11.7000 ! 11.7000	! 236.2172 ! 226.8587 ! 217.4864 ! 208.1009 ! 198.7028	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !
! ! ! ! !	6817.8696 8181.4435 9545.0174 1.0909+04 1.2272+04	! 11.7000 ! 11.7000 ! 11.7000 ! 11.7000 ! 11.7000	! 189.2927 ! 179.8714 ! 170.4396 ! 160.9980 ! 151.5476	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !
! ! ! ! !	1.3636+04 1.4999+04 1.6363+04 1.7726+04 1.9090+04	! 11.7000 ! 11.7000 ! 11.7000 ! 11.7000 ! 11.7000	! 142.0893 ! 132.6240 ! 123.1527 ! 113.6767 ! 104.1968	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !
! ! ! ! !	2.0454+04 2.1817+04 2.3181+04 2.4544+04 2.5908+04	! 11.7000 ! 11.7000 ! 11.7000 ! 11.7000 ! 11.7000	! 94.7145 ! 85.2310 ! 75.7476 ! 66.2658 ! 56.7871	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !
! ! !	2.7271+04 2.8635+04	! 11.7000 ! 11.7000	! 47.3130 ! 37.8454	! 1.0000 ! ! 1.0000 !

BLOCK: UP-CO-03 MODEL: HEATX

HOT SIDE:						
INLET STREAM: OUTLET STREAM: PROPERTY OPTION COLD SIDE:	SET:	13 14 SRK	SOAVE-REDLICH-KWONG	EQUATION	OF	STATE
INLET STREAM: OUTLET STREAM: PROPERTY OPTION	SET:	CW4 CW5 SRK	SOAVE-REDLICH-KWONG	EQUATION	OF	STATE

*** MASS AND ENERGY BALANCE ***

		IN	OUT	RELATIVE
FF.				
TOTAL BALANCE				
MOLE (KMOL/HF	R)	975.256	975.256	0.00000
MASS (KG/HR)	18766.5	18766.5	0.00000
ENTHALPY (CAI	J/SEC)	-0.170273E+08	-0.170273E+0	8 0.00000
	*** CO2	EQUIVALENT SUM	MARY ***	
FEED STREAMS CO)2E	0.0000	KG/HR	
PRODUCT STREAMS	S CO2E	0.0000	KG/HR	
NET STREAMS CO2	E PRODUCTIO	N 0.00000	KG/HR	
UTILITIES CO2E	PRODUCTION	0.00000	KG/HR	
TOTAL CO2E PROI	DUCTION	0.00000	KG/HR	
	***	INPUT DATA **	*	
FLASH SPECS FOR	HOT SIDE:			
TWO PHASE	FLASH			
MAXIMUM NO. ITER	RATIONS			30
CONVERGENCE TOLE	RANCE			0.000100000
FLASH SPECS FOR	COLD SIDE:			
CWO PHASE	FLASH			
MAXIMUM NO. ITEF	RATIONS			30
CONVERGENCE TOLE	CRANCE			0.000100000
FLOW DIRECTION A	ND SPECIFIC	ATION:		
COUNTERCURRENT	HEAT EXC	HANGER		
SPECIFIED HOT	OUTLET TEMP			
SPECIFIED VALU	JE	С		35.0000
LMTD CORRECTIO	N FACTOR			1.00000
PRESSURE SPECIFI	CATION:			
HOT SIDE PRES	SURE DROP	BAR		0.0345
COLD SIDE PRES	SURE DROP	BAR		0.0000
HEAT TRANSFER CO)EFFICIENT S	PECIFICATION·		
HOT LIOUID	COLD LIQUID	CAL/SEC-S	OCM-K	0.0203
HOT 2-PHASE	COLD LIQUID	CAL/SEC-S	OCM-K	0.0203
HOT VAPOR	COLD LIQUID	CAL/SEC-S	OCM-K	0.0203
HOT LIOUID	COLD 2-PHAS	E CAL/SEC-S	OCM-K	0.0203
HOT 2-PHASE	COLD 2-PHAS	E CAL/SEC-S	OCM-K	0.0203
HOT VAPOR	COLD 2-PHAS	E CAL/SEC-S	OCM-K	0.0203
HOT LIQUID	COLD VAPOR	CAL/SEC-S	ÕCM-K	0.0203
HOT 2-PHASE	COLD VAPOR	CAL/SEC-S	ÕCM-K	0.0203
HOT VAPOR	COLD VAPOR	CAL/SEC-S	QCM-К	0.0203
	*** 0	VERALL RESULTS	* * *	
CTDEAMC .				
SINEAMS.				

13 ----> I HOT I ----> 14

T= 6.4962D+02		I	T=
P = 3.8966D + 01		I	P=
3.8931D+01 V= 1.0000D+00 1.0000D+00		I	V=
CW5 < T= 2.9444D+01 7.2222D+00 P= 1.0000D+00	COLD	 < 	CW4 T= P=
1.0000D+00 V= 0.0000D+00 0.0000D+00			V=
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	113997. 2. 2. 0.	9145 9438 9438 0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0. 597.	0203 6554
LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	С	1. 190. 1	0000 7419
PRESSURE DROP: HOTSIDE, TOTAL COLDSIDE, TOTAL	BAR BAR	0. 0.	0345 0000
*** ZONE R	ESULTS ***		
TEMPERATURE LEAVING EACH ZONE:			

29.4 7.2					
		COL	D		
ZONE HEAT T	RANSFER AND AF	REA:			
ZONE	HEAT DUTY CAL/SEC	AREA SQM	LMTD C	AVERAGE U CAL/SEC-SQCM-K	UA
CAL/SEC-K 1 113 597.6554	997.915	2.9438	190.7419	0.0203	
HEATX COLD-TQ	CU UP-CO-03 TÇ	CURV INLET			
PRESSURE PR PRESSURE DR PROPERTY OP	OFILE: CC OP: 0. TION SET: SF	ONSTANT2 0 BA RK SOAV	R E-REDLICH-1	KWONG EQUATION OF	' STATE
! DUTY !	! PRES !	TEMP	! VFRAC	 ! !	
! ! ! CAL/SEC !	! ! ! ! BAR ! !	С	: ! !	: ! !	
! 0.0 ! 5428.4721 ! 1.0857+04 ! 1.6285+04 ! 2.1714+04	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !	29.4444 28.3842 27.3242 26.2643 25.2045	! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0	===! ! ! ! !	
! 2.7142+04 ! 3.2571+04 ! 3.7999+04 ! 4.3428+04 ! 4.8856+04	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !	24.1450 23.0856 22.0264 20.9674 19.9086	! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0	! ! ! ! !	
! 5.4285+04 ! 5.9713+04 ! 6.5142+04 ! 7.0570+04 ! 7.5999+04	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !	18.8500 17.7916 16.7335 15.6756 14.6179	! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0	! ! ! !	
! 8.1427+04 ! 8.6856+04 ! 9.2284+04 ! 9.7712+04 ! 1.0314+05	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !	13.5606 12.5034 11.4466 10.3901 9.3338	! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0	! ! ! !	
! 1.0857+05 ! 1.1400+05	! 1.0000 ! ! 1.0000 !	8.2779 7.2222	! 0.0 ! 0.0	! ! !	

HEATX HOT-TQCUR UP-CO-03 TQCURV INLET

PRESSURE	PROFILE:	CONSTANT2	
PRESSURE	DROP:	0.0]
PROPERTY	OPTION SET:	SRK	SO

.0 BAR RK SOAVE-REDLICH-KWONG EQUATION OF STATE

OUT RELATIVE

! DUTY !	 ! PRES !	 TEMP	! VFRAC !
! ! ! CAL/SEC !	! ! ! BAR !	C	! ! ! ! ! ! ! !
! 0.0 ! 5428.4721 ! 1.0857+04 ! 1.6285+04 ! 2.1714+04	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	649.6228 621.9434 594.1472 566.2272 538.1757	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 2.7142+04 ! 3.2571+04 ! 3.7999+04 ! 4.3428+04 ! 4.8856+04	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	509.9844 481.6443 453.1458 424.4788 395.6328	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 5.4285+04 ! 5.9713+04 ! 6.5142+04 ! 7.0570+04 ! 7.5999+04	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	366.5973 337.3621 307.9180 278.2580 248.3788	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! 8.1427+04 ! 8.6856+04 ! 9.2284+04 ! 9.7712+04 ! 1.0314+05	! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658 ! 38.9658	218.2828 187.9816 157.4991 126.8775 96.1829	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !
! 1.0857+05 ! 1.1400+05	! 38.9658 ! 38.9658	65.5132 35.0080	! 1.0000 ! ! 1.0000 !

BLOCK: UP-CP-01 MODEL: COMPR

INLET STREAM:		7		
OUTLET STREAM:		7A		
PROPERTY OPTION	SET:	SRK	SOAVE-REDLICH-KWONG EQUATION OF SI	'ATE
	* * *	MASS ANI	D ENERGY BALANCE ***	

IN

DIFF.

TOTAL BALANCE

MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (CAL/SEC)	73.160 2118.72 -32.294) 73.1 2 2118 8 2459	6000.000000.720.000001.9-1.00131
*** FEED STREAMS CO2E PRODUCT STREAMS CO2E NET STREAMS CO2E PRODUC UTILITIES CO2E PRODUCT TOTAL CO2E PRODUCTION	CO2 EQUIVALEN 0.0000 CTION 0.0000 ION 0.0000 0.0000	NT SUMMARY *** DO KG/HR DO KG/HR DO KG/HR DO KG/HR	
	*** INPUT DA	ATA ***	
ISENTROPIC CENTRIFUGAL OUTLET PRESSURE BAR ISENTROPIC EFFICIENCY MECHANICAL EFFICIENCY	COMPRESSOR *** RESULTS	***	3.42000 0.72000 1.00000
INDICATED HORSEPOWER I BRAKE HORSEPOWER I NET WORK REQUIRED POWER LOSSES ISENTROPIC HORSEPOWER I CALCULATED OUTLET TEMP ISENTROPIC TEMPERATURE EFFICIENCY (POLYTR/ISE OUTLET VAPOR FRACTION HEAD DEVELOPED, I MECHANICAL EFFICIENCY I INLET HEAT CAPACITY RAI INLET VOLUMETRIC FLOW I OUTLET VOLUMETRIC FLOW INLET OUTLET COMPRESSIBILITY OUTLET COMPRESSIBILITY AV. ISENT. VOL. EXPONEI AV. ACTUAL VOL. EXPONEI AV. ACTUAL TEMP EXPONEI	REQUIREMENT I REQUIREMENT I REQUIREMENT I C C NTR) USED M-KGF/KG USED FIO RATE, L/MIN FACTOR FACTOR FACTOR NT NT NT NT	<w <w <w <w< td=""><td>103.097 103.097 103.097 0.0 74.2295 197.912 149.950 0.72000 1.00000 12,861.3 1.00000 1.40242 30,221.5 13,983.5 0.99984 1.00141 1.40015 1.39791 1.59553 1.59229</td></w<></w </w </w 	103.097 103.097 103.097 0.0 74.2295 197.912 149.950 0.72000 1.00000 12,861.3 1.00000 1.40242 30,221.5 13,983.5 0.99984 1.00141 1.40015 1.39791 1.59553 1.59229
INLET STREAM:	 7B		
OUTLET STREAM: PROPERTY OPTION SET:	/C SRK SOAY	JE-REDLICH-KWC	NG EQUATION OF STATE
*** DIFF.	MASS AND ENE IN	RGY BALANCE * C	** DUT RELATIVE
MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (CAL/SEC)	73.160 2118.72 1715.93) 73.1 2 2118 3 3011	6000.000006.720.000004.2-0.943019

* * *	CO2 EQUIVALENT SU	MMARY ***	
FEED STREAMS CO2E	0.00000	KG/HR	
PRODUCT STREAMS CO2E	0.0000	KG/HR	
NET STREAMS CO2E PROD	UCTION 0.00000	KG/HR	
UTILITIES CO2E PRODUC	TION 0.00000	KG/HR	
TOTAL CO2E PRODUCTION	0.00000	KG/HR	
	*** INPUT DATA	* * *	
ISENTROPIC CENTRIFUGAL	COMPRESSOR		
OUTLET PRESSURE BAR	00111120001		11.7000
ISENTROPIC EFFICIENCY			0.72000
MECHANICAL EFFICIENCY			1.00000
	*** RESULTS ***		
INDICITED DOREDOWED	DEVITOEMENT RM	1	10 000
RDAKE HODGEDOMED	DECUIDEMENT KW	1	18 898
NET WORK DEVILLED	KW	1	18 898
POWER LOSSES	RM ICM	L	0 0
ISENTROPIC HORSEPOWER	REOUTREMENT KW		85 6064
CALCULATED OUTLET TEM		0	236 217
ISENTROPIC TEMPERATUR	E C	1	81.461
EFFICIENCY (POLYTR/IS	ENTR) USED	_	0.72000
OUTLET VAPOR FRACTION	,		1.00000
HEAD DEVELOPED,	M-KGF/KG	14,8	332.5
MECHANICAL EFFICIENCY	USED		1.00000
INLET HEAT CAPACITY R	ATIO		1.40517
INLET VOLUMETRIC FLOW	RATE , L/MIN	10,2	248.4
OUTLET VOLUMETRIC FLO	W RATE, L/MIN	4,4	135.97
INLET COMPRESSIBILIT	Y FACTOR		0.99985
OUTLET COMPRESSIBILIT	Y FACTOR		1.00506
AV. ISENT. VOL. EXPON	ENT		1.40440
AV. ISENT. TEMP EXPON	ENT		1.39724
AV. ACTUAL VOL. EXPON	ENT		1.59568
AV. ACTUAL TEMP EXPON	ENT		1.58583
BLOCK: UP-CP-03 MODEL:	COMPR		
TNLET STREAM:	 7D		
OUTLET STREAM:	8		
PROPERTY OPTION SET:	SRK SOAVE-RE	DLICH-KWONG EQUA	ATION OF STATE
***	MASS AND ENERGY B.	ALANCE ***	
	IN	OUT	RELATIVE
DIFF.			
TOTAL BALANCE			
MOLE(KMOL/HR)	73.1600	73.1600	0.0000
MASS(KG/HR)	2118.72	2118.72	0.0000
ENTHALPY(CAL/SEC)	1479.11	28087.9	-0.947340
***	CO2 EQUIVALENT SU	MMARY ***	
FEED STREAMS CO2E	0.00000	KG/HR	

PRODUCT STREAMS CO2E NET STREAMS CO2E PRODUC	0.00 CTION 0.00)000)000	KG/HR KG/HR	
UTILITIES CO2E PRODUCT TOTAL CO2E PRODUCTION	ION 0.00 0.00	0000	KG/HR KG/HR	
	*** INPUT	DATA '	* * *	
ISENTROPIC CENTRIFUGAL OUTLET PRESSURE BAR ISENTROPIC EFFICIENCY MECHANICAL EFFICIENCY	COMPRESSOR			40.0000 0.72000 1.00000
	*** RESULI	IS ***		
INDICATED HORSEPOWER I BRAKE HORSEPOWER I NET WORK REQUIRED POWER LOSSES ISENTROPIC HORSEPOWER I CALCULATED OUTLET TEMP ISENTROPIC TEMPERATURE EFFICIENCY (POLYTR/ISE) OUTLET VAPOR FRACTION HEAD DEVELOPED, I MECHANICAL EFFICIENCY I INLET HEAT CAPACITY RAY INLET VOLUMETRIC FLOW OUTLET VOLUMETRIC FLOW INLET COMPRESSIBILITY AV. ISENT. VOL. EXPONEN AV. ACTUAL VOL. EXPONEN AV. ACTUAL TEMP EXPONEN	REQUIREMENT REQUIREMENT C C VTR) USED 4-KGF/KG JSED FIO RATE, L/MIN FACTOR FACTOR FACTOR VT VT	KW KW KW	13	111.405 111.405 111.405 0.0 80.2120 222.905 172.329 0.72000 1.00000 3,897.9 1.00000 1.41832 2,774.96 1,279.26 0.99965 1.01751 1.42616 1.39972 1.62612 1.58976
BLOCK: UP-CP-U4 MODEL: CO				
OUTLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	20 SRK SC	DAVE-REI	DLICH-KWONG EQ	QUATION OF STATE
* * *	MASS AND EN IN	IERGY BA	ALANCE *** OUT	RELATIVE
DIFF.				
TOTAL BALANCE	71 42	>>>	71 4222	0 0000
MASS (KG/HR)	687.6	520	687.620	-
0.165334E-15 ENTHALPY(CAL/SEC)	1372.	.66	1840.32	-0.254120
FEED STREAMS CO2E	CUZ EQUIVAL	леил. 201 Геил. 201	KG/HR KG/HR	
PRODUCT STREAMS CO2E	0.00	0000	KG/HR	
NET STREAMS CO2E PRODU	CTION 0.00	0000	KG/HR	

UTILITIES CO2E PRODUCTION TOTAL CO2E PRODUCTION	0.00000 0.00000	KG/HR KG/HR	
***	INPUT DATA	* * *	
ISENTROPIC CENTRIFUGAL COMPR	ESSOR		
OUTLET PRESSURE BAR			40.0000
ISENTROPIC EFFICIENCY			0.72000
MECHANICAL EFFICIENCY			1.00000
***	RESULTS ***		
INDICATED HORSEPOWER REQUI	REMENT KW		1.95801
BRAKE HORSEPOWER REQUI	REMENT KW		1.95801
NET WORK REQUIRED	KW		1.95801
POWER LOSSES	KW		0.0
ISENTROPIC HORSEPOWER REQUI	REMENT KW		1.40977
CALCULATED OUTLET TEMP C			38.3557
ISENTROPIC TEMPERATURE C			37.4150
EFFICIENCY (POLYTR/ISENTR)	USED		0.72000
OUTLET VAPOR FRACTION	/	-	1.00000
HEAD DEVELOPED, M-KGE	/KG		/52.630
MECHANICAL EFFICIENCY USED			1.00000
INLET HEAT CAPACITY RATIO	T /NAT NI	-	1.41657
INLEI VOLUMEIRIC FLOW RAIE	, L/MIN	-	190.950
INTER COMPRESSIBILITY FACE	, L/MIN		1 01000
OUTTET COMPRESSIBILITI FACI			1 02042
AU ICENT VAL EVDANENT	UR		1 11510
AV. ISENI. VOL. EAFONENI AV. ISENIT TEMD EVDONENT			1 40503
AV. ISENI. IEMP EXPONENT			1 72261
AV. ACTUAL TEMP EXPONENT			1.66651
BLOCK: UP-FH-01 MODEL: HEATER			
INLET STREAM: 8			
PROPERTY OPTION SET: SRK	SOAVE-RE	DLICH-KWONG EQUA	ATION OF STATE
*** MASS	AND ENERGY B	ALANCE ***	
	IN	OUT	RELATIVE
DIFF.			
TOTAL BALANCE			
MOLE(KMOL/HR)	73.1600	73.1600	0.0000
MASS(KG/HR)	2118.72	2118.72	0.00000
ENTHALPY(CAL/SEC)	28087.9	77585.2	-0.637974
*** CO2	EQUIVALENT SU	MMARY ***	
FEED STREAMS CO2E	0.00000	KG/HR	
PRODUCT STREAMS CO2E	0.00000	KG/HR	
NET STREAMS CO2E PRODUCTION	0.00000	KG/HR	
UTILITIES CO2E PRODUCTION	0.00000	KG/HR	
TOTAL CO2E PRODUCTION	0.00000	KG/HR	

	*** I	NPUT DATA **	*	
ONE PHASE TP FLAS SPECIFIED TEMPERATURE SPECIFIED PRESSURE MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE 0.000100000	SH SPE	CIFIED PHASE C BAR	IS VAPOR	550.000 40.0000 30
OUTLET TEMPERATURE OUTLET PRESSURE HEAT DUTY	*** C BAR CAL/SEC	RESULTS ***		550.00 40.000 49497.
BLOCK: UP-HX-01 MODEL:	HEATX			
HOT SIDE:				
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET: COLD SIDE:	11 15 SRK	SOAVE-REI	DLICH-KWONG EQUA	ATION OF STATE
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	4 5 SRK	SOAVE-REI	DLICH-KWONG EQUA	ATION OF STATE
* * *	MASS	AND ENERGY BA	ALANCE *** OUT	RELATIVE
DIFF.				
TOTAL BALANCE MOLE(KMOL/HR) MASS(KG/HR) ENTHALPY(CAL/SEC) 0.155019E-15	-	1184.00 18471.1 0.120156E+08	1184.00 18471.1 -0.120156E+08	0.00000 0.00000
* * *	CO2 F	OUTVALENT SUN	IMARY ***	
FEED STREAMS CO2E PRODUCT STREAMS CO2E NET STREAMS CO2E PROI UTILITIES CO2E PRODUC TOTAL CO2E PRODUCTION	DUCTION CTION	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	KG/HR KG/HR KG/HR KG/HR KG/HR	
	*** T	NPUT DATA **	. *	
FLASH SPECS FOR HOT SI TWO PHASE FLAS MAXIMUM NO. ITERATIONS	IDE: SH			30

CONVERGENCE TOLERANCE		0.000100000
FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE		30 0.000100000
FLOW DIRECTION AND SPECIFICATIC COUNTERCURRENT HEAT EXCHANG SPECIFIED COLD OUTLET TEMP SPECIFIED VALUE	DN: GER C	590.0000
LMTD CORRECTION FACTOR		1.00000
PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP COLD SIDE PRESSURE DROP	BAR BAR	0.3447 0.3447
HEAT TRANSFER COEFFICIENT SPECI HOT LIQUID COLD LIQUID HOT 2-PHASE COLD LIQUID HOT VAPOR COLD LIQUID HOT LIQUID COLD 2-PHASE HOT 2-PHASE COLD 2-PHASE HOT VAPOR COLD 2-PHASE HOT LIQUID COLD VAPOR HOT 2-PHASE COLD VAPOR HOT VAPOR COLD VAPOR	FICATION: CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K CAL/SEC-SQCM-K	0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203
*** OVERA	ALL RESULTS ***	
STREAMS:		
 11> T= 8.0000D+02 5.9845D+02 P= 3.9311D+01 3.8966D+01 V= 1.0000D+00 1.0000D+00	НОТ	 > 15 T= P= V=
 5 < T= 5.9000D+02 3.8012D+02 P= 3.9655D+01 4.0000D+01 V= 1.0000D+00 1.0000D+00	COLD	 < 4 T= P= V=
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA	CAL/SEC SQM	306825.9444 7.0577

CA SQM 7.0577 SQM 7.0577

ACTUAL EXCHANGER AREA

PER CENT OVER-DESIGN		0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0203 1432.8402
LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	С	1.0000 214.1383 1
PRESSURE DROP: HOTSIDE, TOTAL COLDSIDE, TOTAL	BAR BAR	0.3447 0.3447

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

! DUTY !	! PRES !	! TEMP ! !	VFRAC ! ! !
			·
!	!	!	! !
! CAL/SEC	! BAR	! C	! !
!	!	!	!
! 0.0	! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000	! 590.1092	1.0000 !
! 1.4611+04		! 580.2449	1.0000 !
! 2.9222+04		! 570.3627	1.0000 !
! 4.3832+04		! 560.4629	1.0000 !
! 5.8443+04		! 550.5461	1.0000 !
! 7.3054+04	! 40.0000	! 540.6128	! 1.0000 !
! 8.7665+04	! 40.0000	! 530.6636	! 1.0000 !
! 1.0228+05	! 40.0000	! 520.6992	! 1.0000 !
! 1.1689+05	! 40.0000	! 510.7202	! 1.0000 !
! 1.3150+05	! 40.0000	! 500.7274	! 1.0000 !
! 1.4611+05	! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000 ! 40.0000	490.7216	! 1.0000 !
! 1.6072+05		480.7038	! 1.0000 !
! 1.7533+05		470.6749	! 1.0000 !
! 1.8994+05		460.6359	! 1.0000 !
! 2.0455+05		450.5880	! 1.0000 !
! 2.1916+05	! 40.0000	! 440.5325	! 1.0000 !
! 2.3377+05	! 40.0000	! 430.4705	! 1.0000 !
! 2.4838+05	! 40.0000	! 420.4037	! 1.0000 !
! 2.6299+05	! 40.0000	! 410.3336	! 1.0000 !
! 2.7760+05	! 40.0000	! 400.2619	! 1.0000 !
! 2.9222+05	! 40.0000	! 390.1904	! 1.0000 !
! 3.0683+05	! 40.0000	! 380.1211	! 1.0000 !

HEATX HOT-TQCUR UP-HX-01 TQCURV INLET

CONSTANT	Γ2
0.0	BAR
SRK	SOAVE-REDLICH-KWONG EQUATION OF STATE
	CONSTAN 0.0 SRK

								_
! !	DUTY	! !	PRES	! !	TEMP	! !	VFRAC	! !
!		!		!		!		!
!		!		!		!		!
!	CAL/SEC	!	BAR	!	С	!		!
!		!		!		!		!
! ==		=!==	============	=!=	=============	=!=		!
!	0.0	!	39.3105	!	800.0000	!	1.0000	!
!	1.4611+04	!	39.3105	!	790.6004	!	1.0000	!
!	2.9222+04	!	39.3105	!	781.1815	!	1.0000	!
!	4.3832+04	!	39.3105	!	771.7432	!	1.0000	!
!	5.8443+04	!	39.3105	!	762.2854	!	1.0000	!

	+	+	+'		
! 7.3054+04	! 39.3105	1 752.8081	! 1.0000 !		
! 8.7665+04	! 39.3105	! 743.3111	! 1.0000 !		
! 1.0228+05	! 39.3105	! 733.7945	! 1.0000 !		
! 1.1689+05	! 39.3105	! 724.2582	! 1.0000 !		
! 1.3150+05	! 39.3105	! 714.7021 +	! 1.0000 ! +!		
! 1.4611+05	! 39.3105	! 705.1263	! 1.0000 !		
! 1.6072+05	! 39.3105	! 695.5307	! 1.0000 !		
! 1.7533+05	! 39.3105	! 685.9153	! 1.0000 !		
! 1.8994+05	! 39.3105	! 676.2801	! 1.0000 !		
! 2.0455+05	! 39.3105	! 666.6253 +	! 1.0000 ! +!		
! 2.1916+05	! 39.3105	! 656.9507	! 1.0000 !		
! 2.3377+05	! 39.3105	! 647.2565	! 1.0000 !		
! 2.4838+05	! 39.3105	! 637.5427	! 1.0000 !		
! 2.6299+05	! 39.3105	927.8094	! 1.0000 !		
! 2.//60+05	! 39.3105	! 618.0567 +	! 1.0000 ! +!		
! 2.9222+05	! 39.3105	. 608.2848	! 1.0000 !		
! 3.0683+05	! 39.3105	! 598.4937	! 1.0000 !		
OUTLET STREA PROPERTY OF COLD SIDE:	CAM: PTION SET: SI	12 13 RK SOAVI	E-REDLICH-KWON	G EQUATION	OF STATE
INLET STREA	M:	5			
OUTLET STRE	LAM:	6			
PROPERTY OF	TION SET: SI	RK SOAVI	E-REDLICH-KWON	G EQUATION	OF STATE
	***]	MASS AND ENER	GY BALANCE **	*	
D T T D T D T D T D T D T D T D T D T D T D T D T D T D T D T D T D T D T D T D T D T D T T D T D T T D T T D T T D T T T 		IN	OU	T RE	LATIVE
DIFF. DODAT DATA	NCE				
TOTAL BALA MOLE (KM	NCE	618 722	618 7	22	0 00000
MASS (KC	IOL/IR)	12284 8	12284	22	0.00000
ENTHALF	PY(CAL/SEC)	-0 7016481	z+07 = -0 7016	.0 48E+07	0.00000
	1 (0112) 020)	0.,010101		101.07	
	*** (CO2 EQUIVALEN	I SUMMARY ***		
FEED STREA	MS CO2E	0.0000) KG/HR		
PRODUCT SI	REAMS CO2E	0.0000	J KG/HR		
NET STREAM	IS COZE PRODUC	TTON 0.0000	J KG/HR		
UTILITIES	UUZE PRODUCTI(J KG/HR		
TOTAL COZE	FRODUCTION	0.0000	J KG/HK		
	*	** INPUT DATA	A ***		

FLASH SPECS FOR HOT SIDE:

TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE		30 0.000100000
FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE		30 0.000100000
FLOW DIRECTION AND SPECIFICATI COUNTERCURRENT HEAT EXCHAN SPECIFIED COLD OUTLET TEMP SPECIFIED VALUE	CON: IGER C	610.0000
LMTD CORRECTION FACTOR		1.00000
PRESSURE SPECIFICATION:		0 2447
COLD SIDE PRESSURE DROP	BAR	0.3447
HEAT TRANSFER COEFFICIENT SPEC	CIFICATION:	
HOT LIQUID COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT VAPOR COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT LIQUID COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT VAPOR COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT LIQUID COLD VAPOR	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE COLD VAPOR	CAL/SEC-SQCM-K	0.0203
HOT VAPOR COLD VAPOR	CAL/SEC-SQCM-K	0.0203

*** OVERALL RESULTS ***

STREAMS:

DUTY AND AREA:

12 T= 8.0000D+	> 02	НОТ	 > 	13 T=
6.4962D+02				
P= 3.9311D+	01		I	P=
3.8966D+01				
V= 1.0000D+	00		I	V=
1.0000D+00				
	I		I	
6 <		COLD	<	5
T= 6.1000D+	02		I	T=
5.9000D+02				
P= 3.9311D+	01		I	P=
3.9655D+01				
V= 1.0000D+	00		I	V=
1.0000D+00				
			-	

29852.2398

CALCULATED HEAT DUTY CAL/SEC

CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	SQM SQM	1.3071 1.3071 0.0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0203 265.3710
LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	С	1.0000 112.4925 1
PRESSURE DROP: HOTSIDE, TOTAL COLDSIDE, TOTAL	BAR BAR	0.3447 0.3447

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

 ! !	DUTY	! PRES !	TEMP	VFRAC !
! ! !	CAL/SEC	! ! ! BAR !	C	
! === ! ! ! !	0.0 1421.5352 2843.0705 4264.6057 5686.1409	! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553	610.1030 609.1475 608.1919 607.2360 606.2800	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! ! ! ! !	7107.6761 8529.2114 9950.7466 1.1372+04 1.2794+04	! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553	605.3238 604.3674 603.4108 602.4540 601.4971	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! ! ! ! !	1.4215+04 1.5637+04 1.7058+04 1.8480+04 1.9901+04	! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553	600.5400 599.5827 598.6252 597.6676 596.7097	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! ! ! ! !	2.1323+04 2.2745+04 2.4166+04 2.5588+04 2.7009+04	! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553 ! 39.6553	595.7517 594.7936 593.8352 592.8767 591.9180	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! ! !	2.8431+04 2.9852+04	! 39.6553 ! ! 39.6553 !	590.9591 590.0000	1.0000 ! 1.0000 !

HEATX HOT-TQCUR UP-HX-02 TQCURV INLET

PRESSURE	PROFILE:	CONSTANT2					
PRESSURE	DROP:	0.0	BAR				
PROPERTY	OPTION SET:	SRK	SOAVE-REDLICH-K	KWONG	EQUATION	OF	STATE

!	DUTY	!	PRES	!	TEMP	!	VFRAC !
!		!		!		!	!
!		!		!		!	!
!		!		!		!	!
!	CAL/SEC	!	BAR	!	С	!	!
!		!		!		!	!
!==		=!==		=!==		= ! =	========!
!	0.0	!	39.3105	!	800.0000	!	1.0000 !
!	1421.5352	!	39.3105	!	792.9010	!	1.0000 !
!	2843.0705	!	39.3105	!	785.7962	!	1.0000 !

! 4264.6057 ! ! 5686.1409 !	39.3105 ! 39.3105 !	778.6856 ! 771.5692 !	1.0000 ! 1.0000 !	
! 7107.6761 ! ! 8529.2114 ! ! 9950.7466 ! ! 1.1372+04 ! ! 1.2794+04 !	39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 !	764.4468 ! 757.3183 ! 750.1838 ! 743.0430 ! 735.8960 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !	
! 1.4215+04 ! ! 1.5637+04 ! ! 1.7058+04 ! ! 1.8480+04 ! ! 1.9901+04 !	39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 !	728.7426 ! 721.5827 ! 714.4163 ! 707.2433 ! 700.0635 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !	
! 2.1323+04 ! ! 2.2745+04 ! ! 2.4166+04 ! ! 2.5588+04 ! ! 2.7009+04 !	39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 ! 39.3105 !	692.8769 ! 685.6834 ! 678.4829 ! 671.2753 ! 664.0604 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !	
! 2.8431+04 ! ! 2.9852+04 !	39.3105 ! 39.3105 !	656.8382 ! 649.6086 !	1.0000 ! 1.0000 !	
INLET STREAMS OUTLET STREAM PROPERTY OPTI	S: 3 4: 4 ION SET: SRK *** MA	20 SOAVE-R SS AND ENERGY IN	EDLICH-KWONG EQU BALANCE *** OUT	ATION OF STATE RELATIVE
DIFF. TOTAL BALANG MOLE(KMOI MASS(KG/H 0.190555E-15 ENTHALPY 0.124722E-15	CE L/HR) HR) (CAL/SEC)	563.122 9545.73 -0.746717E+0	563.122 9545.73 7 -0.746717E+0	0.00000 -
FEED STREAMS PRODUCT STRE NET STREAMS UTILITIES CO TOTAL CO2E E	*** CO S CO2E EAMS CO2E CO2E PRODUCTI D2E PRODUCTION PRODUCTION	2 EQUIVALENT S 0.00000 0.00000 ON 0.00000 0.00000 0.00000	UMMARY *** KG/HR KG/HR KG/HR KG/HR KG/HR	
ONE PHASE MAXIMUM NO. I CONVERGENCE I OUTLET PRESSU	*** FLASH ITERATIONS FOLERANCE JRE BAR	INPUT DATA SPECIFIED PHAS	*** E IS VAPOR	30 0.000100000 40.0000

BLOCK: UP-MX-02 MODEL: MIXER -----INLET STREAMS: 9 6 OUTLET STREAM: 10A PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE TN DIFF. TOTAL BALANCE 636.282 636.282 0.00000 MOLE(KMOL/HR) MASS(KG/HR) 11664.4 11664.4 0.311886E-15 -0.705290E+07 -0.705290E+07 ENTHALPY (CAL/SEC) 0.132048E-15 PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E 0.00000 *** CO2 EQUIVALENT SUMMARY *** NET STREAMS CO2E PRODUCTION 0.00000 KG/HR KG/HR KG/HR UTILITIES CO2E PRODUCTION 0.00000 TOTAL CO2E PRODUCTION 0.00000 *** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES BLOCK: UP-MX-03 MODEL: RSTOIC _____ INLET STREAM: 10A 10B OUTLET STREAM: SOAVE-REDLICH-KWONG EQUATION OF STATE PROPERTY OPTION SET: SRK *** MASS AND ENERGY BALANCE *** OUT GENERATION RELATIVE IN DIFF. TOTAL BALANCE MOLE(KMOL/HR) 636.282 620.882 -15.4000 0.00000 MASS(KG/HR) 11664.4 11664.4 0.00000 ENTHALPY(CAL/SEC) -0.705290E+07 -0.723256E+07 0.248403E-01 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR KG/HR NET STREAMS CO2E PRODUCTION 0.00000 UTILITIES CO2E PRODUCTION 0.00000 KG/HR TOTAL CO2E PRODUCTION 0.00000 KG/HR *** INPUT DATA ***

STOICHIOMETRY MATRIX: REACTION # 1: SUBSTREAM MIXED : WATER 1.00 HYDROGEN -1.00 OXYGEN -0.500 REACTION EXTENT SPECS: NUMBER= 1 REACTION # 1: EXTENT= 30.80 KMOL/HR ONE PHASE TP FLASH SPECIFIED PHASE IS VAPOR SPECIFIED TEMPERATURE C 800.000 SPECIFIED PRESSURE BAR 39.3105 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 SIMULTANEOUS REACTIONS GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO *** RESULTS *** OUTLET TEMPERATURE C 800.00 OUTLET PRESSURE BAR 39.311 HEAT DUTY CAL/SEC -0.17966E+06 BLOCK: UP-PM-01 MODEL: PUMP _____ INLET STREAM: 1 OUTLET STREAM: 2 INLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE MOLE(KMOL/HR)491.700491.7000.00000MASS(KG/HR)8858.118858.110.00000 ENTHALPY(CAL/SEC) -0.942335E+07 -0.941751E+07 -0.619183E-03 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR KG/HR KG/HR PRODUCT STREAMS CO2E0.00000NET STREAMS CO2E PRODUCTION0.00000 UTILITIES CO2E PRODUCTION0.00000KG/HRTOTAL CO2E PRODUCTION0.00000KG/HR *** INPUT DATA *** 40.0000 OUTLET PRESSURE BAR DRIVER EFFICIENCY 1.00000

FLASH SPECIFICATIONS: LIOUID PHASE CALCULATION NO FLASH PERFORMED MAXIMUM NUMBER OF ITERATIONS 30 0.000100000 TOLERANCE *** RESULTS *** VOLUMETRIC FLOW RATE L/MIN 153.615 PRESSURE CHANGE BAR 39.0000 NPSH AVAILABLE M-KGF/KG 10.3610 FLUID POWER KW 9.98495 BRAKE POWER KW 24.4291 ELECTRICITY KW 24.4291 PUMP EFFICIENCY USED 0.40873 NET WORK REQUIRED KW 24.4291 HEAD DEVELOPED M-KGF/KG 413.796 BLOCK: UP-SE-01 MODEL: SEP _____ INLET STREAM: 16 18 17 OUTLET STREAMS: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE * * * SUM OF SPLITS SPECIFIED IS ILLEGAL * * * *** MASS AND ENERGY BALANCE *** OUT IN RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 620.882 620.882 0.577485E-06 MASS(KG/HR) 8925.35 8925.35 0.990596E-07 -0.670452E+07 -0.670542E+07 ENTHALPY (CAL/SEC) 0.134095E-03*** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR KG/HR TOTAL CO2E PRODUCTION 0.00000

*** INPUT DATA ***

FLASH SPECS FOR STREA ONE PHASE TP FLA SPECIFIED PRESSURE MAXIMUM NO. ITERATION CONVERGENCE TOLERANCH	AM 18 ASH SPECIF BAR JS E	IED PHASE IS	VAPOR	38.9313 30 0.000100000
FLASH SPECS FOR STREA ONE PHASE TP FLA PRESSURE DROP MAXIMUM NO. ITERATION CONVERGENCE TOLERANCH	AM 17 ASH SPECIF BAR IS E	IED PHASE IS	LIQUID	0.0 30 0.000100000
MOLE-FLOW (KMOL/HR) SUBSTREAM= MIXED STREAM= 18	CPT= WATER HYDROO NITROO OXYGEI ARGON	FLOW= GEN GEN		0.0 232.800 77.6000 0.0 0.90000
	*** RES	ULTS ***		
HEAT DUTY	CAL/SEC			-899.15
COMPONENT = WATER STREAM SUBSTREAN 17 MIXED	4 SPLIT FI	RACTION 1.00000		
COMPONENT = HYDROGEN STREAM SUBSTREAN 18 MIXED	4 SPLIT FI	RACTION 1.00000		
COMPONENT = NITROGEN STREAM SUBSTREAN 18 MIXED 17 MIXED	4 SPLIT F1	RACTION 0.99918 0.00082406		
COMPONENT = ARGON STREAM SUBSTREAN 18 MIXED	4 SPLIT FI	RACTION 1.00000		
BLOCK: UP-SP-01 MODEL:	: FSPLIT			
INLET STREAM: OUTLET STREAMS: PROPERTY OPTION SET:	18 19 SRK	21 SOAVE-REDLIC	H-KWONG	EQUATION OF STATE
* ,	** MASS AND	ENERGY BALAN	CE *** OUT	RELATIVE

DIFF.

TOTAL BALANCE						
MOLE(KMOL/HR)		269.518		269.518		0.0000
MASS(KG/HR)		2594.79		2594.79		0.0000
ENTHALPY (CAL/S	SEC)	5179.84		5179.84		0.00000
	*** CO2 E	QUIVALENI	SUMMARY	· * * *		
FEED STREAMS CO2E	2	0.0000) KO	G/HR		
PRODUCT STREAMS (CO2E	0.0000) KG	G/HR		
NET STREAMS CO2E	PRODUCTION	0.0000) KG	G/HR		
UTILITIES CO2E PH	RODUCTION	0.0000) KG	G/HR		
TOTAL CO2E PRODUC	CTION	0.00000) KG	G/HR		
	*** I	NPUT DATA	***			
FRACTION OF FLOW		STRM=1	.9	FRAC=		0.26500
	* * *	RESULTS	* * *			
STREAM= 19	SPLIT=		0.26500	KEY=	0	STREAM-
2 21 21			0.73500		0	

B.1.5 SOEC Stream Summary

1 10A 10B 11 12

STREAM ID FROM :	1	10A UP-MX-02	10B 2 UP-MX-03	11 3 SOEC2	12
SOEC2					
TO :	UP-PM-01	UP-MX-03	SOEC	UP-HX-01	UP-
HX-02					
SUBSTREAM: MIXED					
PHASE:	LIQUID	VAPOR	VAPOR	VAPOR	
VAPOR					
COMPONENTS: KMOL/HR					
WATER	491.7000	491.7000	522.5000	351.3000	0.0
HYDROGEN	0.0	50.6203	19.8203	191.0203	0.0
NITROGEN	0.0	77.6640	77.6640	77.6640	0.0
OXYGEN	0.0	15.4000	0.0	0.0	
85.6000					
ARGON	0.0	0.8980	0.8980	0.8980	0.0
TOTAL FLOW:					
KMOL/HR	491.7000	636.2822	620.8822	620.8822	
85.6000					
KG/HR	8858.1132	1.1664+04	1.1664+04	8925.3523	
2739.0973					
L/MIN	153.6146	1.9539+04	2.3484+04	2.3589+04	
3269.1917					
STATE VARIABLES:					
TEMP C	25.0000	603.3524	800.0000	800.0000	
800.0000					
PRES BAR	1.0000	39.3105	39.3105	39.3105	
39.3105	0 0	1 0000	1 0000	1 0000	
VERAC	0.0	1.0000	1.0000	1.0000	
	1 0000	0 0	0 0	0 0	0 0
	1.0000	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
CAL /MOI	-6 8003+01	-3 0001+01	-1 1036+01	-2 6373+04	
CAL/MOL	-0.0993+04	-3.9904+04	-4.1930+04	-2.03/3+04	
	-3920 7161	-2176 7392	-2222 1963	-103/ 5000	
190 0720	-3029.7101	-21/0./302	-2232.1003	-1034.3900	
	-0 1233+06	-7 0529+06	-7 2326+06	-1 5195+06	
1 4396±05	-9.4233+00	-7.0329+00	-7.2320+00	-4.5405+00	
CAL /MOL-K	-30 0031	_5 1900	_1 3373	_1 1212	
2 4091	-30.9034	-3.1090	-4.5575	-1.1313	
CAL/CM K	2 1620	0 2021	0 2200	7 9600 02	
CAL/GII = K 7 8067-02	-2.1039	-0.2031	-0.2309	1.0099-02	
MOI /CC	5 3340 00	5 1275 01	1 1061 01	1 3060 01	
4 3640-04	J.JJ40-02	5.42/5-04	4.4004-04	4.3000-04	

GM/CC 1.3964-02	0.9611	9.9499-03	8.2783-03	6.3062-03	
AVG MW 31.9988	18.0153	18.3322	18.7869	14.3753	
13 14 15 16 17					
STREAM ID	13	14	15	16	17
FROM : SE-01	UP-HX-02	UP-CO-03	3 UP-HX-01	UP-CD-01	UP-
то :	UP-CO-03		UP-CD-01	UP-SE-01	
CONV. MAX. REL. ERR: SUBSTREAM: MIXED	0.0	0.0	4.7370-06	0.0	0.0
PHASE: LIQUID	VAPOR	VAPOR	VAPOR	MIXED	
COMPONENTS: KMOL/HR					
WATER	0.0	0.0	351.3000	351.3000	
351.3000					
HYDROGEN	0.0	0.0	191.0203	191.0203	0.0
NITROGEN	0.0	0.0	77.6640	77.6640	
6.4000-02					
OXYGEN	85.6000	85.6000	0.0	0.0	0.0
ARGON	0.0	0.0	0.8980	0.8980	0.0
TOTAL FLOW:					
KMOL/HR	85.6000	85.6000	620.8822	620.8822	
351.3640					
KG/HR	2739.0973	2739.0973	8925.3523	8925.3523	
6330.5607					
L/MIN	2838.9851	924.6971	1.9265+04	3129.5856	
110.7025					
STATE VARIABLES:					
TEMP C	649.6228	35.0000	598.4517	35.0000	
35.0000					
PRES BAR	38.9658	38.9313	38.9658	38.9313	
38.9313	1 0 0 0 0	1 0 0 0 0	1 0000	0 4045	0 0
VERAC	1.0000	1.0000	1.0000	0.4347	0.0
	0.0	0.0	0.0	0.5653	
1.0000	0 0	0 0	0 0	0 0	0 0
	0.0	0.0	0.0	0.0	0.0
ENITALFI:	1701 6007	0 2040	2 0152104	2 0071101	
CAL/MOL	4/94.009/	0.3049	-2.0132+04	-3.00/4+04	-
	1/0 0372	0 5296-03	-1050 35/0	-2701 2396	_
CAL/GM 3816 1179	149.0372	9.3200-03	-1930.3340	-2704.2300	-
CAL/SEC	1 1401+05	7 2199	-4 8553+06	-6 7045+06	_
6 7106+06	T.T.T.A.L.A.	,.21))	1.0000100	0.1010100	
ENTROPY:					
CAL/MOL-K	1.2556	-7.2082	-2.9486	-24 2343	_
38.3942	1.2000	,.2002	2.9100	21.2010	
CAL/GM-K	3.9239-02	-0,2253	-0.2051	-1.6858	-
2.1310					

DENSITY: MOL/CC	5.0253-04	1.5428-03	5.3715-04	3.3065-03	
5.2899-02 GM/CC	1.6080-02	4.9369-02	7.7216-03	4.7532-02	
AVG MW 18.0171	31.9988	31.9988	14.3753	14.3753	
18 19 2 20 21					
STREAM ID	18 UD-SE-01	19 UP-SP-01	2 11 0-0 M-01	20 11 0 -C 0 -04	21
SP-01	OI DE OI	01 51 01		01 01 04	01
TO :	UP-SP-01	UP-CP-04	UP-BO-01	UP-MX-01	
SUBSTREAM: MIXED PHASE: VAPOR	VAPOR	VAPOR	LIQUID	VAPOR	
COMPONENTS: KMOL/HR					
WATER	0.0	0.0	491.7000	0.0	0.0
140 3996	191.0199	JU.0203	0.0	50.0205	
NITROGEN	77 6000	20 5640	0 0	20 5640	
57.0360	11.0000	20.0010	0.0	20.0010	
OXYGEN	0.0	0.0	0.0	0.0	0.0
ARGON	0.8980	0.2380	0.0	0.2380	
0.6600					
TOTAL FLOW:					
KMOL/HR	269.5179	71.4222	491.7000	71.4222	
198.0956					
KG/HR	2594.7907	687.6195	8858.1132	687.6195	
1907.1712					
L/MIN	3014.9374	798.9584	153.6654	786.4963	
2215.9790					
STATE VARIABLES:					
TEMP C	35.0000	35.0000	26.2138	38.3557	
35.0000					
PRES BAR	38.9313	38.9313	40.0000	40.0000	
38.9313	1	1	0.0	1 0 0 0 0	
VERAC	1.0000	1.0000	0.0	1.0000	
1.0000	0 0	0 0	1 0000	0 0	0 0
LFRAC	0.0	0.0	1.0000	0.0	0.0
	0.0	0.0	0.0	0.0	0.0
CAI/MOI	69 1881	69 1881	-6 8951+0/	92 7601	
69 1881	09.1001	09.1001	0.0991104	92.7004	
CAL/GM	7.1865	7.1865	-3827-3448	9-6349	
7.1865	,.1000				
CAL/SEC	5179.8437	1372.6586	-9.4175+06	1840.3216	
3807.1851					
ENTROPY:					
CAL/MOL-K	-5.8222	-5.8222	-38.9164	-5.8010	-
5.8222					

CAL/GM-K	-0.6047	-0.6047	-2.1602	-0.6025	-
DENSITY:					
MOL/CC	1.4899-03	1.4899-03	5.3330-02	1.5135-03	
1.4899-03					
GM/CC	1.4344-02	1.4344-02	0.9608	1.4571-02	
1.4344-02					
AVG MW	9.6275	9.6275	18.0153	9.6275	
9.6275					
3 4 5 6 7					
STREAM ID	3	4	5	6	7
FROM :	UP-BO-01	UP-MX-01	UP-HX-01	L UP-HX-02	
TO :	UP-MX-01	.UP-HX-01	. UP-HX-02	2 UP-MX-02	UP-
CP-01					
SUBSTREAM: MIXED					
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	
VAPOR					
COMPONENTS: KMOL/HR					
WATER	491.7000	491.7000	491.7000	491.7000	0.0
HYDROGEN	0.0	50.6203	50.6203	50.6203	0.0
NITROGEN	0.0	20.5640	20.5640	20.5640	
57.1000					
OXYGEN	0.0	0.0	0.0	0.0	
15.4000					
ARGON	0.0	0.2380	0.2380	0.2380	
0.6600					
TOTAL FLOW:					
KMOL/HR	491.7000	563.1222	563.1222	563.1222	
73.1600					
KG/HR	8858.1132	9545.7327	9545.7327	9545.7327	
2118.7169					
L/MIN	1.1223+04	1.2184+04	1.6781+04	1.7349+04	
3.0222+04					
STATE VARIABLES:					
TEMP C	420.0000	380.1211	590.0000	610.0000	
25.0000					
PRES BAR	40.0000	40.0000	39.6553	39.3105	
1.0000					
VFRAC	1.0000	1.0000	1.0000	1.0000	
1.0000					
LFRAC	0.0	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
CAL/MOL	-5.4685+04	-4.7737+04	-4.5776+04	-4.5585+04	-
1.5891					
CAL/GM	-3035.4576	-2816.1067	-2700.3928	-2689.1346 -	-
5.4873-02					
CAL/SEC	-7.4690+06	-7.4672+06	-7.1603+06	-7.1305+06	-
32.2948					
ENTROPY:					

CAL/MOL-K	-11.1286	-9.5045	-6.8853	-6.6495	
1.1410					
CAL/GM-K	-0.6177	-0.5607	-0.4062	-0.3923	
3.9399-02					
DENSITY:	F 0001 01				
MOL/CC	7.3021-04	/./029-04	5.5928-04	5.409/-04	
4.034/-05	1 01 5 5 0 0	1 0050 00			
GM/CC	1.3155-02	1.3058-02	9.4805-03	9.1703-03	
1.1684-03					
AVG MW	18.0153	16.9514	16.9514	16.9514	
28.9600					
7a 7b 7c 7d 8					
STREAM ID	7A	7B	7C	7D	8
FROM :	UP-CP-01	UP-CO-01	UP-CP-02	UP-CO-02	UP-
CP-03					
TO :	UP-CO-01	UP-CP-02	UP-CO-02	UP-CP-03	UP-
FH-01					
CUDOMDEAN. MIVED					
SUBSTREAM: MIXED					
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	
COMPONENTS, KMOL/UD					
WATED	0 0	0 0	0 0	0 0	0 0
WAIER	0.0	0.0	0.0	0.0	0.0
HIDROGEN NITEROCEN	57 1000	0.0 57 1000	0.0 57 1000	57 1000	0.0
57 1000	57.1000	57.1000	57.1000	57.1000	
OVVCEN	15 4000	15 4000	15 4000	15 4000	
15 4000	13.4000	13.4000	13.4000	13.4000	
13.4000 ADCON	0 6600	0 6600	0 6600	0 6600	
ARGON	0.0000	0.0000	0.0000	0.0000	
IOTAL FLOW:	72 1600	72 1600	72 1600	72 1600	
73 1600	/3.1000	/3.1000	/3.1000	/3.1000	
/5.1000 KC/HD	2110 7160	2110 7160	2110 7160	2110 7160	
2118 7169	2110./109	2110.7109	2110./109	2110./109	
Z110./109	1 3983+07	1 0248+04	1135 9706	2771 9582	
1279 2606	1.3303104	1.0240104	1133.3700	2114.0002	
STATE VARIABLES.					
TEMP C	197 9118	37 7778	236 2172	37 7778	
222 9051	197.9110	37.7770	200.2172	57.7770	
PRES BAR	3 4200	3,0753	11 7000	11 3553	
40,0000	0.1200	0.0700	11.7000	11.0000	
VFRAC	1 0000	1,0000	1,0000	1,0000	
1.0000	1.0000	1.0000	1.0000	1.0000	
LFRAC	0.0	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
CAL/MOL	1210.0985	84.4361	1481.8340	72.7828	
1382.1251					
CAL/GM	41.7851	2.9156	51.1682	2.5132	
47.7252		-			

CAL/SEC 2.8088+04	2.4592+04	1715.9285	3.0114+04	1479.1084	
ENTROPY: CAL/MOL-K	1.9005	-0.8070	5.6172-03	-3.4379	-
CAL/GM-K 9.1795-02	6.5626-02	-2.7865-02	1.9396-04	-0.1187	-
MOL/CC	8.7198-05	1.1898-04	2.7487-04	4.3941-04	
9.3313-04 GM/CC	2.5253-03	3.4456-03	7.9604-03	1.2725-02	
AVG MW 28.9600	28.9600	28.9600	28.9600	28.9600	
9 CW1 CW2 CW3 CW4					
STREAM ID FROM : TO :	9 UP-FH-01 UP-MX-02	CW1 UP-CO-01	CW2 UP-CO-01 UP-CO-02	CW3 UP-CO-02 2	CW4 2 UP-
PHASE: LIOUID	VAPOR	LIQUID	LIQUID	LIQUID	
COMPONENTS: KMOL/HR WATER	0.0	403.0176	403.0176	403.0176	
HYDROGEN NITROGEN	0.0 57.1000	0.0	0.0	0.0	0.0
ARGON TOTAL FLOW:	0.6600	0.0	0.0	0.0	0.0
KMOL/HR 889.6555	73.1600	403.0176	403.0176	403.0176	
KG/HR 1.6027+04	2118.7169	7260.4752	7260.4752	7260.4752	
L/MIN 273.7279	2116.7436	126.0963	127.2374	128.7475	
TEMP C 7 2222	550.0000	26.6667	36.5319	48.8889	
PRES BAR 1.0000	40.0000	1.0000	1.0000	1.0000	
VFRAC LFRAC	1.0000 0.0	0.0 1.0000	0.0 1.0000	0.0 1.0000	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
CAL/MOL 6 9363+04	3817.7504	-6.8959+04	-6.8755+04	-6.8499+04	_
CAL/GM 3850.2092	131.8282	-3827.7985	-3816.4558	-3802.2575	-

CAL/SEC 1 7141+07	7.7585+04	-7.7199+06	-7.6970+06	-7.6684+06	-
ENTROPY ·					
CAL/MOL-K	1 1037	-38 8832	-38 3020	-37 5995	_
40 0894	1.1007	00.0002	00.0020	0,1,0,0,0	
CAL/GM-K	3.8112-02	-2.1583	-2.1261	-2.0871	_
2 2253	0.0112 02	2.1000	2.1201	2.0071	
DENSITY					
MOL/CC	5 7604-04	5 3269-02	5 2791-02	5 2172-02	
5 4169-02	0.,001 01	0.0209 02	0.2791 02	0.21/2 02	
GM/CC	1.6682-02	0.9596	0.9510	0.9399	
0.9759					
AVG MW	28,9600	18.0153	18.0153	18.0153	
18.0153	20.0000	10.0100	10.0100	10.0100	
CW5 CW6 CW7 SOEC1					
STREAM ID	CW5	CW6	CW7	SOEC1	
FROM :	UP-CO-03		UP-CD-01	SOEC	
TO :		UP-CD-01		SOEC2	
SUBSTREAM: MIXED					
PHASE:	LIQUID	LIQUID	LIQUID	VAPOR	
COMPONENTS: KMOL/HR					
WATER	889.6555	6392.4052	6392.4052	351.3000	
HYDROGEN	0.0	0.0	0.0	191.0203	
NITROGEN	0.0	0.0	0.0	77.6640	
OXYGEN	0.0	0.0	0.0	85.6000	
ARGON	0.0	0.0	0.0	0.8980	
TOTAL FLOW:					
KMOL/HR	889.6555	6392.4052	6392.4052	706.4822	
KG/HR	1.6027+04	1.1516+05	1.1516+05	1.1664+04	
L/MIN	279.0528	1928.2758	2010.1432	2.6866+04	
STATE VARIABLES:					
TEMP C	29.4444	-17.7778	32.2222	800.0000	
PRES BAR	1.0000	1.0000	1.0000	39.3105	
VFRAC	0.0	0.0	0.0	1.0000	
LFRAC	1.0000	1.0000	1.0000	0.0	
SFRAC	0.0	0.0	0.0	0.0	
ENTHALPY:					
CAL/MOL	-6.8901+04	-6.9885+04	-6.8844+04	-2.2443+04	
CAL/GM	-3824.6035	-3879.2179	-3821.4095	-1359.2898	
CAL/SEC	-1.7027+07	-1.2409+08	-1.2224+08	-4.4043+06	
ENTROPY:					
CAL/MOL-K	-38.7176	-41.7323	-38.5536	4.2610-02	
CAL/GM-K	-2.1492	-2.3165	-2.1400	2.5808-03	
DENSITY:					
MOL/CC	5.3135-02	5.5251-02	5.3001-02	4.3827-04	
GM/CC	0.9572	0.9954	0.9548	7.2361-03	
AVG MW	18.0153	18.0153	18.0153	16.5106	

```
B.2.2 Ammonia Synthesis ASPEN Inputs
;
; Input Summary created by Aspen Plus Rel. 37.0 at 03:40:05 Mon Apr 20,
2020
;Directory C:\Users\dakotaw\Downloads Filename
C:\Users\dakotaw\AppData\Local\Temp\~ap5ca7.txt
;
DYNAMICS
    DYNAMICS RESULTS=ON
IN-UNITS MET PRESSURE=bar TEMPERATURE=C DELTA-T=C PDROP=bar &
        INVERSE-PRES='1/bar' SHORT-LENGTH=mm
DEF-STREAMS CONVEN ALL
SIM-OPTIONS MASS-BAL-CHE=YES FREE-WATER=YES
MODEL-OPTION
DATABANKS 'APV110 PURE37' / 'APV110 AQUEOUS' / 'APV110 SOLIDS' &
        / 'APV110 INORGANIC' / 'APESV110 AP-EOS' / &
        'NISTV110 NIST-TRC' / NOASPENPCD
PROP-SOURCES 'APV110 PURE37' / 'APV110 AQUEOUS' / &
        'APV110 SOLIDS' / 'APV110 INORGANIC' / 'APESV110 AP-EOS' &
         / 'NISTV110 NIST-TRC'
COMPONENTS
    AMMONIA H3N /
    N2 N2 /
    H2 H2 /
    ARGON AR /
    WATER H2O
SOLVE
    RUN-MODE MODE=SIM
FLOWSHEET
    BLOCK B4 IN=33 23 OUT=24
    BLOCK HB-RXN IN=28 OUT=29
    BLOCK HB-HXA-1 IN=31 25 OUT=32 26
    BLOCK HB-HXA-2 IN=29 27 OUT=30 28
    BLOCK HB-S-01 IN=24 OUT=25 34
    BLOCK HB-CP-03 IN=26 OUT=27
    BLOCK HB-S-02 IN=34 OUT=35 OUT
    BLOCK HB-CP-02 IN=35 OUT=36
    BLOCK B20 IN=36 OUT=PURGE 37
    BLOCK B21 IN=37 INPUT OUT=23
    BLOCK HB-HXA-3 IN=30 38 OUT=31 40
    BLOCK HB-HXA-4 IN=32 39 OUT=33 41
```

PROPERTIES SRK STREAM 38 SUBSTREAM MIXED TEMP=45. <F> PRES=1. MASS-FLOW=1754. MASS-FRAC WATER 1. STREAM 39 SUBSTREAM MIXED TEMP=45. <F> PRES=1. MASS-FLOW=23010. MASS-FRAC WATER 1. STREAM 40 SUBSTREAM MIXED TEMP=90. <F> PRES=1. MASS-FLOW=1754. MASS-FRAC WATER 1. STREAM 41 SUBSTREAM MIXED TEMP=90. <F> PRES=1. MASS-FLOW=23010. MASS-FRAC WATER 1. STREAM INPUT SUBSTREAM MIXED TEMP=35. PRES=39.6 MOLE-FLOW=198.1 MOLE-FLOW AMMONIA 0.0 / N2 57.04 / H2 140.4 / ARGON & 0.66 / WATER 0. BLOCK B4 MIXER PARAM BLOCK B21 MIXER PARAM BLOCK B20 FSPLIT FRAC PURGE 0.02 BLOCK HB-S-01 FLASH2 PARAM TEMP=30. PRES=39.6 UTILITY UTILITY-ID=U-3 BLOCK HB-S-02 FLASH2 PARAM TEMP=20.0000000 PRES=10.13250000 UTILITY UTILITY-ID=U-3 BLOCK HB-HXA-1 HEATX PARAM INCR-COLD=60. CALC-TYPE=DESIGN PRES-HOT=35.46375000 & PRES-COLD=-5. <psi> MIN-TAPP=10.0000000 & CALC-METHOD=SHORTCUT FEEDS HOT=31 COLD=25 OUTLETS-HOT 32 OUTLETS-COLD 26 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TQ-PARAM CURVE=YES BLOCK HB-HXA-2 HEATX PARAM T-COLD=225. PRES-COLD=-5. <psi> FEEDS HOT=29 COLD=27
OUTLETS-HOT 30 OUTLETS-COLD 28 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TQ-PARAM CURVE=YES BLOCK HB-HXA-3 HEATX PARAM T-COLD=90. <F> TYPE=COUNTERCURRE PRES-HOT=-5. & CALC-METHOD=SHORTCUT FEEDS HOT=30 COLD=38 OUTLETS-HOT 31 OUTLETS-COLD 40 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TQ-PARAM CURVE=YES BLOCK HB-HXA-4 HEATX PARAM T-COLD=90. <F> PRES-HOT=-5. <psi> FEEDS HOT=32 COLD=39 OUTLETS-HOT 33 OUTLETS-COLD 41 HOT-SIDE DPPARMOPT=NO COLD-SIDE DPPARMOPT=NO TO-PARAM CURVE=YES BLOCK HB-RXN RSTOIC PARAM TEMP=400.0000000 PRES=81.06000000 STOIC 1 MIXED N2 -1. / H2 -3. / AMMONIA 2. CONV 1 MIXED H2 0.2 UTILITY UTILITY-ID=U-3 BLOCK HB-CP-02 COMPR PARAM TYPE=ISENTROPIC PRES=39.6 SB-MAXIT=30 SB-TOL=0.0001 UTILITY UTILITY-ID=U-3 BLOCK HB-CP-03 COMPR PARAM TYPE=ISENTROPIC PRES=81.06000000 SB-MAXIT=30 & SB-TOL=0.0001 UTILITY UTILITY-ID=U-3 UTILITY U-1 GENERAL COST PRICE=1.00000000 PARAM UTILITY-TYPE=WATER COOLING-VALU=1.00000000 UTILITY U-2 GENERAL DESCRIPTION & "High Pressure Steam, Inlet Temp=250 C, Outlet Temp=249 C, Pres=572 psia" COST ENERGY-PRICE=1.04670000E-8 PARAM UTILITY-TYPE=STEAM TIN=250.0000000 TOUT=249.0000000 & VFRAC=1. VFR-OUT=0. CALOPT=FLASH MIN-TAPP=10.00000000 & CALCCO2=YES FACTORSOURCE="US-EPA-Rule-E9-5711" FUELSOURCE= & "Natural gas" CO2FACTOR=2.34000000E-7 EFFICIENCY=0.85 & HTC=.1433075380

UTILITY U-3 GENERAL

DESCRIPTION "Electrical Utility" COST ELEC-PRICE=.0775000000 PARAM UTILITY-TYPE=ELECTRICITY CALCCO2=YES FACTORSOURCE= & "US-EPA-Rule-E9-5711" FUELSOURCE="Natural_gas" & CO2FACTOR=2.34000000E-7 EFFICIENCY=0.58

UTILITY U-4 GENERAL

DESCRIPTION "Cooling Water, Inlet Temp=20 C, Outlet Temp=25 C" COST ENERGY-PRICE=8.8760160E-10 PARAM UTILITY-TYPE=WATER PRES=1.013250000 & PRES-OUT=1.013250000 TIN=20.00000000 TOUT=25.00000000 & CALOPT=FLASH MIN-TAPP=5.000000000 HTC=.0895672112

EO-CONV-OPTI

CONV-OPTIONS PARAM TOL=0.005

STREAM-REPOR MOLEFLOW MASSFLOW

PROPERTY-REP PCES

B.2.3 Ammonia Synthesis Full Summary

+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ +	+ -	ł																																
+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ +	+ -	ł																																
+ +																																		
+ +																																		
+ +											7	ASE	PEN	11	PLU	JS	CZ	AL(CUI	LAI	ΓΙΟ	ΟN	RI	ΞPC	DR.	Г								
+ +																																		
+ +																																		
+ +																																		
+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ +	+ -	ł																																
+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ +	+ -	ł																																
ASP	ΕN	ΡI	LUS	5]	ΙS	А	ΤF	RAI	DEN	1AF	RΚ	OE	2					H	HO	ΓL]	ΙNΙ	Ξ:												
ASP	ΕN	ΤI	ECF	INC)TC	DGN	ζ,	ΙÌ	NC.									τ	J.S	5.2	Α.	88	38,	/99	96-	-71	100	C						
781	/22	21-	-64	100)													I	EUI	ROI	PΕ	(4	44)) [118	39-	-22	265	555	5				
PLA	TFC	DRI	4:	WI	EN-	-X6	54																				AI	PR.	ΓL	20),	20)20)
VER	SIC	ON :	: 3	37.	.0		Вι	ıi]	ld	39	95																M	DNI	DAY	ľ				
INS	TAI	LLZ	ΥT	101	1:																						3	:39	9:5	52	Α.	М.		

ASPEN PLUS (R) IS A PROPRIETARY PRODUCT OF ASPEN TECHNOLOGY, INC. (ASPENTECH), AND MAY BE USED ONLY UNDER AGREEMENT WITH ASPENTECH. RESTRICTED RIGHTS LEGEND: USE, REPRODUCTION, OR DISCLOSURE BY THE U.S. GOVERNMENT IS SUBJECT TO RESTRICTIONS SET FORTH IN (i) FAR 52.227-14, Alt. III, (ii) FAR 52.227-19, (iii) DFARS 252.227-7013(c)(1)(ii), or (iv) THE ACCOMPANYING LICENSE AGREEMENT, AS APPLICABLE. FOR PURPOSES OF THE FAR, THIS SOFTWARE SHALL BE

DEEMED

TO BE "UNPUBLISHED" AND LICENSED WITH DISCLOSURE PROHIBITIONS. CONTRACTOR/SUBCONTRACTOR: ASPEN TECHNOLOGY, INC. 20 CROSBY DRIVE, BEDFORD, MA 01730.

TABLE OF CONTENTS

RUN CONTROL SECTION	1 1
FLOWSHEET SECTION. FLOWSHEET CONNECTIVITY BY STREAMS	2 2 2 2 4 4
PHYSICAL PROPERTIES SECTION	6 6
U-O-S BLOCK SECTION. BLOCK: B20 MODEL: FSPLIT. BLOCK: B21 MODEL: MIXER. BLOCK: B4 MODEL: MIXER. BLOCK: HB-CP-02 MODEL: COMPR. BLOCK: HB-CP-03 MODEL: COMPR. BLOCK: HB-HXA-1 MODEL: HEATX. HEATX COLD-TQCU HB-HXA-1 TQCURV INLET. HEATX HOT-TQCUR HB-HXA-1 TQCURV INLET. HEATX COLD-TQCU HB-HXA-2 TQCURV INLET. HEATX COLD-TQCU HB-HXA-2 TQCURV INLET. HEATX HOT-TQCUR HB-HXA-3 TQCURV INLET. HEATX COLD-TQCU HB-HXA-3 TQCURV INLET. HEATX COLD-TQCU HB-HXA-3 TQCURV INLET. HEATX HOT-TQCUR HB-HXA-3 TQCURV INLET. HEATX COLD-TQCU HB-HXA-3 TQCURV INLET. HEATX COLD-TQCU HB-HXA-3 TQCURV INLET. HEATX HOT-TQCUR HB-HXA-3 TQCURV INLET. HEATX COLD-TQCU HB-HXA-4 TQCURV INLET. HEATX COLD-TQCU HB-HXA-4 TQCURV INLET. HEATX HOT-TQCUR HB-HXA-4 TQCURV INLET. HEATX HOT-TQC	77789025660115660113

TABLE OF CONTENTS

STREAM SECTION			 	36
23 24 25 26 27			 	36
28 29 30 31 32			 	37
33 34 35 36 37			 	38
38 39 40 41 INPU	Γ		 	39
OUT PURGE			 	40
UTILITY SECTION			 	41
UTILITY USAGE: (J-1	(WATER)	 	41
UTILITY USAGE: (J-2	(STEAM)	 	42
UTILITY USAGE: (J-3	(ELECTRICITY)	 	43
UTILITY USAGE: (J-4	(WATER)	 	44
PROBLEM STATUS SECTION	N 		 	45
BLOCK STATUS		•••••	 	45

RUN CONTROL SECTION

RUN CONTROL INFORMATION

THIS COPY OF ASPEN PLUS LICENSED TO UNIVERSITY OF PENNSYLVAN

TYPE OF RUN: NEW

INPUT FILE NAME: _3457zuo.inm

OUTPUT PROBLEM DATA FILE NAME: _3457zuo LOCATED IN:

PDF SIZE USED FOR INPUT TRANSLATION: NUMBER OF FILE RECORDS (PSIZE) = 0 NUMBER OF IN-CORE RECORDS = 256 PSIZE NEEDED FOR SIMULATION = 256

CALLING PROGRAM NAME: apmain LOCATED IN: C:\Program Files\AspenTech\Aspen Plus V11.0\Engine\\xeq

SIMULATION REQUESTED FOR ENTIRE FLOWSHEET

FLOWSHEET SECTION

FLOWSHEET CONNECTIVITY BY STREAMS

STREAM	SOURCE	DEST	STREAM	SOURCE	DEST
INPUT		B21	38		НВ-НХА-З
39		HB-HXA-4	24	B4	HB-S-01
29	HB-RXN	HB-HXA-2	32	HB-HXA-1	HB-HXA-4
26	HB-HXA-1	HB-CP-03	30	HB-HXA-2	НВ-НХА-З
28	HB-HXA-2	HB-RXN	25	HB-S-01	НВ-НХА-1
34	HB-S-01	HB-S-02	27	HB-CP-03	НВ-НХА-2
35	HB-S-02	HB-CP-02	OUT	HB-S-02	
36	HB-CP-02	В20	PURGE	В20	
37	В20	B21	23	B21	В4
31	НВ-НХА-З	HB-HXA-1	40	НВ-НХА-З	
33	HB-HXA-4	В4	41	HB-HXA-4	

FLOWSHEET CONNECTIVITY BY BLOCKS

BLOCK	INLETS	OUTLETS
В4	33 23	24
HB-RXN	28	29
HB-HXA-1	31 25	32 26
HB-HXA-2	29 27	30 28
HB-S-01	24	25 34
HB-CP-03	26	27
HB-S-02	34	35 OUT
HB-CP-02	35	36
B20	36	PURGE 37
B21	37 INPUT	23
HB-HXA-3	30 38	31 40
HB-HXA-4	32 39	33 41

CONVERGENCE STATUS SUMMARY

TEAR STREAM SUMMARY

STREAM	VARIABLE	MAXIMUM	MAX. ERR.	ABSOLUTE	
CONV ID BLOCK	ID	ERR/TOL	RELATIVE	ERROR	STAT
28 \$0LVER05	N2 MOLEFLOW	13.163	0.65813E-01	0.13621E-01	#

24 MASS ENTHALPY 0.68356 -0.34178E-02 0.19311E-04 # \$OLVER05 31 N2 MOLEFLOW 10.562 -0.52808E-01 0.10814E-01 # \$OLVER05

= CONVERGED

* = NOT CONVERGED

CONVERGENCE BLOCK: \$OLVER05

Tear Stream : 28 24 31 Tolerance used: 0.500D-02 0.500D-02 0.500D-02 Trace molefrac: 0.500D-04 0.500D-04 0.500D-04

FLOWSHEET SECTION

CONVERGENCE BLOCK: \$OLVER05 (CONTINUED) MAXIT= 30 WAIT 1 ITERATIONS BEFORE ACCELERATING QMAX = 0.0 QMIN = -5.0METHOD: WEGSTEIN STATUS: CONVERGED TOTAL NUMBER OF ITERATIONS: 30

*** FINAL VALUES ***

VAR# VALUE	TEAR STREAM V. PREV VALUE	AR STREAM ERR/TOL	SUBSTREA	COMPONEN	UNIT	
1	TOTAL MOLEFLO	W 28	MIXED		KMOL/HR	
2337.7977	2259.7175	6.9106-02				
2	TOTAL MOLEFLO	W 24	MIXED		KMOL/HR	
2428.9364	2428.7642	1.4184-02				
3	TOTAL MOLEFLO	W 31	MIXED		KMOL/HR	
2166.1259	2227.4499	-5.5062-02				
4	MOLE-FLOW	28	MIXED	AMMONIA	KMOL/HR	
807.8182	779.9406	7.1486-02				
5	MOLE-FLOW	28	MIXED	N2	KMOL/HR	
794.0931	745.0587	3.1626-02				
6	MOLE-FLOW	28	MIXED	Н2	KMOL/HR	
702.0008	701.9366	1.8281-02				
7	MOLE-FLOW	28	MIXED	ARGON	KMOL/HR	
33.8856	32.7816	6.7358				
8	MOLE-FLOW	28	MIXED	WATER	KMOL/HR	
0.0	0.0	0.0				
9	PRESSURE	28	MIXED		BAR	
80.7153	80.7153	0.0				
10	MASS ENTHALPY	28	MIXED		CAL/GM	-
139.3753	-141.3079	2.7353				
11	MOLE-FLOW	24	MIXED	AMMONIA	KMOL/HR	
898.3425	898.2631	1.7674-02				
12	MOLE-FLOW	24	MIXED	N2	KMOL/HR	
794.5430	794.4302	2.8409-02				
13	MOLE-FLOW	24	MIXED	H2	KMOL/HR	
702.1252	702.1462	-6.0011-03				
14	MOLE-FLOW	24	MIXED	ARGON	KMOL/HR	
33.9257	33.9247	6.4298-03				
15	MOLE-FLOW	24	MIXED	WATER	KMOL/HR	
0.0	0.0	0.0				
16	PRESSURE	24	MIXED		BAR	
35.1190	35.1190	0.0				
17	MASS ENTHALPY	24	MIXED		CAL/GM	-
135.4096	-134.9484	-0.6836				

18	MOLE-FLOW	31	MIXED	AMMONIA	KMOL/HR
873.5322	895.4369	-0.8925			
19	MOLE-FLOW	31	MIXED	N2	KMOL/HR
698.2629	737.1927	-0.5616			
20	MOLE-FLOW	31	MIXED	H2	KMOL/HR
561.5493	561.5867	-1.3303-02			
21	MOLE-FLOW	31	MIXED	ARGON	KMOL/HR
32.7816	33.2336	-0.7205			
22	MOLE-FLOW	31	MIXED	WATER	KMOL/HR
0.0	0.0	0.0			
23	PRESSURE	31	MIXED		BAR
80.7153	80.7153	0.0			
24	MASS ENTHALPY	31	MIXED		CAL/GM -
100.0722	-97.0018	-0.3307			

*** ITERATION HISTORY ***

FLOWSHEET SECTION

CONVERGENCE BLOCK: \$OLVER05 (CONTINUED)

TEAR STREAMS AND TEAR VARIABLES:

ITE COMPONEN	RATION MAX ATTRIBUT	X-ERR/TOL ELEMENT	VAR#	STREAM II	VAR DESCRIPTION	SUBSTREA	
	 1	 16 51	10	31	MOIE-FIO	MIVED	N12
	2	15 09	12	24	MOLE-FLO	MIXED	N2
	3	15.09	5	28	MOLE-FLO	MIXED	N2
	4	16 25	19	31	MOLE-FLO	MIXED	N2
	5	14.85	12	24	MOLE-FLO	MIXED	N2
	6	14.85		28	MOLE-FLO	MIXED	N2
	7	15.97	19	31	MOLE-FLO	MIXED	N2
	8	14.61	12	2.4		MIXED	N2
	9	14.61	5	28	MOLE-FLO	MIXED	N2
	10	15.70	19	31	MOLE-FLO	MIXED	N2
	11	14.38	12	24	MOLE-FLO	MIXED	N2
	12	14.39	5	28	MOLE-FLO	MIXED	N2
	13	15.44	19	31	MOLE-FLO	MIXED	N2
	14	14.16	12	24	MOLE-FLO	MIXED	N2
	15	14.17	5	28	MOLE-FLO	MIXED	N2
	16	15.19	19	31	MOLE-FLO	MIXED	N2
	17	13.95	12	24	MOLE-FLO	MIXED	N2
	18	13.95	5	28	MOLE-FLO	MIXED	N2
	19	14.95	19	31	MOLE-FLO	MIXED	N2
	20	13.74	12	24	MOLE-FLO	MIXED	N2
	21	13.75	5	28	MOLE-FLO	MIXED	N2
	22	14.71	19	31	MOLE-FLO	MIXED	N2
	23	13.54	12	24	MOLE-FLO	MIXED	N2
	24	13.55	5	28	MOLE-FLO	MIXED	N2
	25	14.48	19	31	MOLE-FLO	MIXED	N2
	26	13.35	12	24	MOLE-FLO	MIXED	N2
	27	13.35	5	28	MOLE-FLO	MIXED	N2
	28	14.26	19	31	MOLE-FLO	MIXED	N2
	29	13.16	12	24	MOLE-FLO	MIXED	N2
	30	13.16	5	28	MOLE-FLO	MIXED	N2

COMPUTATIONAL SEQUENCE

SEQUENCE USED WAS: U-3 *\$OLVER05 *HB-RXN HB-S-01 *HB-HXA-1 HB-HXA-4 HB-CP-03 HB-HXA-2 HB-HXA-3 | HB-S-02 HB-CP-02 B20 B21 *B4 (RETURN *\$OLVER05) U-1 U-2 U-4 OVERALL FLOWSHEET BALANCE

FLOWSHEET SECTION

OVERALL FLOWSHEET BALANCE (CONTINUED)

	* * *	MASS	AND	ENERGY BALANCE	* * *	
		II	J	OUT	GENERATION	RELATIVE
DIFF.						
CONVENTIONAL COMPO	ONENTS					
(KMOL/HR)	1					
AMMONIA	(0.000	00	87.5393	93.5916	
0.691371E-01						
N2	[57.040	0 0	0.267413E-01	-46.7958	
0.179128						
H2	-	40.40	0 0	0.693437E-02	-140.387	
0.408834E-04						
ARGON	0.	6600	00	0.692198E-02	0.00000	
0.989512						
WATER	-	.374.0	51	1374.61	0.00000	
0.00000						
TOTAL BALANCE						
MOLE(KMOL/HR)	-	572.	71	1462.19	-93.5916	
0.107639E-01						
MASS(KG/HR)	2	26671	. 3	26255.9		
0.155748E-01						
ENTHALPY (CAL/SEC	-0.	26185	57E+C	08 -0.264110E+08		
0.852834E-02						
	* * *	CO2 I	COUTV	ALENT SUMMARY *	* *	

002	DOT ANDRI I	DUNINAI
FEED STREAMS CO2E	0.00000	KG/HR
PRODUCT STREAMS CO2E	0.00000	KG/HR
NET STREAMS CO2E PRODUCTION	0.00000	KG/HR
UTILITIES CO2E PRODUCTION	3683.15	KG/HR
TOTAL CO2E PRODUCTION	3683.15	KG/HR

PHYSICAL PROPERTIES SECTION

COMPONENTS

ID	TYPE	ALIAS	NAME
AMMONIA	С	H3N	AMMONIA
N2	С	N2	NITROGEN
Н2	С	Н2	HYDROGEN
ARGON	С	AR	ARGON
WATER	С	H2O	WATER

UTILITY SECTION

UTILITY USAGE: U-1 (WATER) -----

INPUT DATA:

HEATING VALUE	1.0000	CAL/GM
PRICE	1.0000	\$/KG
INDEX TYPE	FUEL	

RESULT:

HEATING VALUE	1.0000	CAL/GM
INDEXED PRICE	MISSING	\$/KG

THIS UTILITY IS PURCHASED

THIS UTILITY IS NOT USED BY ANY COST OR UOS BLOCKS

UTILITY SECTION

UTILITY USAGE: U-2 (STEAM) -----

HIGH PRESSURE STEAM, INLET TEMP=250 C, OUTLET TEMP=249 C, PRES=572 PSIA INPUT DATA:

INLET TEMPERATURE 250.0000 C OUTLET TEMPERATURE 249.0000 C INLET VAPOR FRACTION 1.0000 OUTLET VAPOR FRACTION 0.0 HEAT TRANSFER COEFFICIENT 0.1433 CAL/SEC-SQCM-K CO2 DATA SOURCE US-EPA-RULE-E9-5711 NATURAL_GAS CO2 FUEL SOURCE 2.3400-07 KG/CAL CO2 EMISSION FACTOR THERMAL EFFICIENCY 0.8500 1.0467-08 \$/CAL PRICE INDEX TYPE FUEL

RESULT:

HEATING VALUE	410.6534	CAL/GM
INDEXED PRICE	MISSING	\$/KG
CO2 EMISSION FACTOR	2.3400-07	KG/CAL

THIS UTILITY IS PURCHASED

THIS UTILITY IS NOT USED BY ANY COST OR UOS BLOCKS

UTILITY SECTION UTILITY USAGE: U-3 (ELECTRICITY)	ASPEN PLUS PLAT: W PAGE 43	IN-X64 VER: 37	. 0	04/20/2020
UTILITY USAGE: U-3 (ELECTRICITY) 		UTILI	TY SECTION	
ELECTRICAL UTILITY INPUT DATA: CO2 DATA SOURCE US-EPA-RULE-E9-5711 CO2 FUEL SOURCE NATURAL GAS CO2 EMISSION FACTOR 2.3400-07 KG/CAL THERMAL EFFICIENCY 0.5800 PRICE 7.7500-02 \$/KWHR INDEX TYPE FUEL RESULT: INDEXED PRICE 7.7500-02 \$/KWHR CO2 EMISSION FACTOR 2.3400-07 KG/CAL TOTAL CO2 EMISSIONS 3683.1472 KG/HR THIS UTILITY IS PURCHASED USAGE: BLOCK ID MODEL DUTY USAGE RATE COST CO2 EMISSIONS CAL/SEC KW \$/HR	UTILITY USAGE: U-3	(ELECTRICI	ΓΥ)	
INDEXED PRICE 7.7500-02 \$/KWHR CO2 EMISSION FACTOR 2.3400-07 KG/CAL TOTAL CO2 EMISSIONS 3683.1472 KG/HR THIS UTILITY IS PURCHASED USAGE: BLOCK ID MODEL DUTY USAGE RATE COST CO2E EMISSIONS CAL/SEC KW \$/HR	ELECTRICAL UTILITY INPUT DATA: CO2 DATA SOURCE CO2 FUEL SOURCE CO2 EMISSION FACT THERMAL EFFICIENC PRICE INDEX TYPE RESULT:	DR Z	US-EPA-R NATURAL_ 2.3400-07 KG/ 0.5800 7.7500-02 \$/K FUEL	ULE-E9-5711 GAS CAL WHR
USAGE: BLOCK ID MODEL DUTY USAGE RATE COST CO2E EMISSIONS CAL/SEC KW \$/HR KG/HB	INDEXED PRICE CO2 EMISSION FACT TOTAL CO2 EMISSIO THIS UTILITY IS PUB)R NS CHASED	7.7500-02 \$/K 2.3400-07 KG/ 3683.1472 KG/	WHR CAL HR
BLOCK ID MODEL DUTY USAGE RATE COST CO2E EMISSIONS CAL/SEC KW \$/HR	USAGE:			
CAL/SEC KW \$/HR	BLOCK ID MODEL CO2E EMISSIONS	DUTY	USAGE RA	TE COST
	<g hr<="" td=""><td>CAL/SEC</td><td>KW</td><td>\$/HR</td></g>	CAL/SEC	KW	\$/HR
HB-S-01 FLASH2 1.4040+06 5878.4438 455.5794 2039.2502 1688.9115 7.0711 HB-S-02 FLASH2 1688.9115 7.0711 0.5480 2.4530 6.1354+05 2568.7607	HB-S-01 FLASH2 455.5794 2039 HB-S-02 FLASH2).5480 2.4 HB-RXN RSTOIC	 .2502 1688 530 6.13	40+06 5 .9115 54+05 2	878.4438 7.0711 568.7607
199.0790 891.1110 HB-CP-02 COMPR 1.6847 HB-CP-03 COMPR 5.1545+05 2158.0905 167.2520 748.6482	L99.0790 893 HB-CP-02 COMPR).3764 1.6 HB-CP-03 COMPR 167.2520 748	.1110 1159 347 5.154 .6482	.9468 45+05 2	4.8565 158.0905
TOTAL: 2.5359+06 1.0617+04 822.8348 3683.1472	TO 322.8348 3683	AL: 2.535 .1472	59+06 1 ===== ======	.0617+04

UTILITY SECTION

UTILITY USAGE: U-4 (WATER) _____

COOLING WATER, INLET TEMP=20 C, OUTLET TEMP=25 C INPUT DATA:

TNLET TEMPERATURE	20,0000	С
	25.0000	S C
OUTLET TEMPERATURE	25.0000	C
INLET PRESSURE	1.0133	BAR
OUTLET PRESSURE	1.0133	BAR
HEAT TRANSFER COEFFICIENT	8.9567-02	CAL/SEC-SQCM-K
PRICE	8.8760-10	\$/CAL
INDEX TYPE	FUEL	

RESULT:

COOLING	VALUE	4.9861	CAL/GM
INDEXED	PRICE	MISSING	\$/KG

THIS UTILITY IS PURCHASED

THIS UTILITY IS NOT USED BY ANY COST OR UOS BLOCKS

B.2.4 Ammonia Synthesis Block Summary

BLOCK: B4 MODEL: MIXER _____ 33 24 INLET STREAMS: 23 OUTLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). *** MASS AND ENERGY BALANCE *** OUT RELATIVE ΤN DIFF. TOTAL BALANCE MOLE(KMOL/HR) 2428.94 2428.76 0.709150E-04 MASS(KG/HR) 40327.9 40323.3 0.111937E-03 ENTHALPY(CAL/SEC) -0.151688E+07 -0.151155E+07 -0.351823E-02 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR KG/HR KG/HR KG/HR KG/HR NET STREAMS CO2E PRODUCTION 0.00000 UTILITIES CO2E PRODUCTION0.00000TOTAL CO2E PRODUCTION0.00000 *** INPUT DATA *** TWO PHASE FLASH FREE WATER CONSIDERED MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES BLOCK: B20 MODEL: FSPLIT -----INLET STREAM: 36 OUTLET STREAMS: PURGE OUTLET STREAMS:PURGE37PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE MOLE(KMOL/HR) 3.45561 3.45561 MASS(KG/HR) 60.9575 -0.00000 0.233127E-15 ENTHALPY (CAL/SEC) -8022.40 -8022.40 0.00000

*** CO2 EQUIVALENT SUMMARY ***

FEED STREAMS CO2E	0.00000	KG/HR	
PRODUCT STREAMS CO2E	0.00000	KG/HR	
NET STREAMS CO2E PRODUCTION	0.00000	KG/HR	
UTILITIES CO2E PRODUCTION	0.00000	KG/HR	
TOTAL CO2E PRODUCTION	0.00000	KG/HR	
*** Т	ארעם א**		
1	NIOI DAIA		
FRACTION OF FLOW	STRM=PURGE	FRAC=	0.020000
***	RESULTS ***		
	0.000	000 1757	
ORDER= 1 SPLIT=	0.020	000 KEY=	U STREAM-
37	0.980	00	0
2			
BLOCK, B21 MODEL, MIXER			
INLET STREAMS: 37	INPUT		
OUTLET STREAM: 23	CONVE DEDI	TOU RHONG FOR	
PROPERTY OPTION SET: SRK EREF WATER OPTION SET: SYSOP1	2 ASME STEAM	TCH-KWONG EQU TABLE	JATION OF STATE
SOLUBLE WATER OPTION: THE MA	IN PROPERTY OF	TION SET (SRE	<).
		·	
*** MASS	AND ENERGY BAL	ANCE ***	
NTTT	IN	OUT	RELATIVE
DIFF. Total balance			
MOLE (KMOL/HR)	201.486	201.486	0.00000
MASS (KG/HR)	1967.02	1967.02	-
0.115593E-15			
ENTHALPY (CAL/SEC)	-4053.81	-4053.81	
0.6/3066E-15			
*** CO2 E	QUIVALENT SUMM	ARY ***	
FEED STREAMS CO2E	0.00000	KG/HR	
PRODUCT STREAMS CO2E	0.00000	KG/HR	
NET STREAMS CO2E PRODUCTION	0.00000	KG/HR	
UTILITIES COZE PRODUCTION	0.00000	KG/HK KC/HP	
TOTAL COZE FRODUCTION	0.00000	NG/ III	
*** I	NPUT DATA ***		
TWO PHASE FLASH			
FREE WATER CONSIDERED			20
MAXIMUM NO. ITERATIONS Convergence Tolerance			0.00010000
OUTLET PRESSURE: MINIMUM OF	INLET STREAM P	RESSURES	0.000100000
BLOCK: HB-CP-02 MODEL: COMPR			
INLET STREAM: 35			
OUTLET STREAM: 36			
PROPERTY OPTION SET: SRK	SOAVE-REDL	ICH-KWONG EQU	JATION OF STATE

FREE WATER OPTION SET: SYSOP SOLUBLE WATER OPTION: THE M	12 AS AIN PRO	ME STEAM PERTY OP'	TABLE TION SET	(SRK).	
*** MASS	AND EN	ERGY BAL	ANCE ***		
	IN		OUT	RELAT	TIVE
DIFF.					
TOTAL BALANCE					
MOLE (KMOL/HR)	3.455	61	3.45561	L 0.(00000
MASS (KG/HR)	60.95	75	60.9575	-	
0.116564E-15	0100	2.4	0000 4/	0.1/	0 6 0 0 4
ENTHALPY (CAL/SEC)	-9182.	34	-8022.40	-0.12	26324
*** CO2	EQUIVAL	ENT SUMM	ARY ***		
FEED STREAMS CO2E	0.00	000	KG/HR		
PRODUCT STREAMS CO2E	0.00	000	KG/HR		
NET STREAMS CO2E PRODUCTION	0.00	000	KG/HR		
UTILITIES CO2E PRODUCTION	1.68	472	KG/HR		
TOTAL CO2E PRODUCTION	1.68	472	KG/HR		
* * *	INPUT	DATA **	*		
ISENTROPIC CENTRIFUCAL COMPR	FSSOR				
OUTLET PRESSURE BAR	100001			39 6000	
ISENTROPIC EFFICIENCY				0.7200	0
MECHANICAL EFFICIENCY				1.0000	0
					-
***	RESULT	S ***			
INDICATED HORSEPOWER REQUI	REMENT	KW		4.8564	7
BRAKE HORSEPOWER REQUI	REMENT	KW		4.8564	7
NET WORK REQUIRED		KW		4.8564	7
POWER LOSSES		KW		0.0	
ISENTROPIC HORSEPOWER REQUI	REMENT	KW		3.4966	6
CALCULATED OUTLET TEMP C				171.026	
ISENTROPIC TEMPERATURE C				138.310	-
EFFICIENCY (POLYTR/ISENTR)	USED			0.72000	0
OUTLET VAPOR FRACTION	/			1.00000	0
HEAD DEVELOPED, M-KGF	/KG			21,057.5	0
MECHANICAL EFFICIENCY USED				1.00000	
INLET HEAT CAPACITY RATIO	т /маты			1.4135	5
INLET VOLUMETRIC FLOW RATE	, L/MIN			128.997	
UNIET COMPRESENTITTY FACT	, L/MIN			0 03111	2
OUT THE COMPRESSIBILITY FACT	OR			0.93112	2 0
AA ISEMA AUI EADURINA AA ISEMA AUI EADURINA				1 2025	0 1
AV ISENT TEMD EXPONENT				1 2210	- 6
AV ACTUAL VOL EXPONENT				1 44430	9
AV. ACTUAL TEMP EXPONENT				1.4385	4
*** ASS	OCIATED	<u>IJ</u> ŢŢŢ,ŢŢ	IES ***		
			-		

UTILITY	ID FOR ELECTRICITY	U-3	
RATE OF	CONSUMPTION	4.8565	KW
COST		0.3764	\$/HR

CO2 EQUIVALENT EMISSIONS		1.6	347 KG/HR	
BLOCK: HB-CP-03 MODEL: CON	IPR			
INLET STREAM: 26 OUTLET STREAM: 27 PROPERTY OPTION SET: SP FREE WATER OPTION SET: SN	 5 7 RK SO 7 SOP12 AS	AVE-REDLI ME STEAM '	CH-KWONG EQUAT	TION OF STATE
SOLUBLE WATER OPTION: TH	HE MAIN PRO	PERTY OPT	ION SET (SRK).
*** I	ASS AND EN IN	ERGY BALAI	NCE *** OUT	RELATIVE
DIFF.				
TOTAL BALANCE				
MOLE(KMOL/HR)	2337.	80	2337.80	0.0000
MASS(KG/HR)	38771	.7	38771.7	0.00000
ENTHALPY (CAL/SEC)	-0.2195	47E+07 ·	-0.168002E+07	-0.234779
*** (CO2 EQUIVAL	ENT SUMMA	RY ***	
FEED STREAMS CO2E	0.00	000	KG/HR	
PRODUCT STREAMS CO2E	0.00	000	KG/HR	
NET STREAMS COZE PRODUCT	TION 0.00	000	KG/HR	
UTILITIES COZE PRODUCTION	DN 748.	648	KG/HR ZC/UD	
IOTAL COZE PRODUCTION	/40.	040	NG/ NK	
ډ	*** INPUT	DATA ***		
ISENTROPIC CENTRIFUGAL CO	MPRESSOR			
OUTLET PRESSURE BAR			6	0 72000
MECHANICAL EFFICIENCY				1.00000
×	*** RESULT	S ***		
INDICATED HORSEPOWER RE	EQUIREMENT	KW	2,15	58.09
BRAKE HORSEPOWER RE	EQUIREMENT	KW	2,15	58.09
NET WORK REQUIRED		KW	2,15	0.09
FOWER LOSSES		KW	1 55	0.0
CALCULATED OUTLET TEMP	C	17.00	1 , J ,)))))))))))))))))))
ISENTROPIC TEMPERATURE	C		16	56.431
EFFICIENCY (POLYTR/ISEN)	TR) USED		10	0.72000
OUTLET VAPOR FRACTION				1.00000
HEAD DEVELOPED, M-	-KGF/KG		14,71	1.9
MECHANICAL EFFICIENCY US	SED			1.00000
INLET HEAT CAPACITY RATI	0			1.41573
INLET VOLUMETRIC FLOW RA	ATE , L/MIN		29,47	74.6
OUTLET VOLUMETRIC FLOW F	RATE, L/MIN		18,73	36.7
INLET COMPRESSIBILITY F	TACTOR			U.98351
VUILLI COMPRESSIBILITI E	ACTOR			1 10300
AV. ISENI. VOL. EAPONENI AV. ISENI. VOL. EAPONENI	r			1 35763
AV ACTUAL VOL EXPONENT	- P			1.60051
AV. ACTUAL TEMP EXPONENT	- [1.52243
				-

*** ASSOCIATED UTILITIES *** UTILITY ID FOR ELECTRICITY U-3 RATE OF CONSUMPTION 2158.0905 KW 167.2520 \$/HR COST 748.6482 KG/HR CO2 EQUIVALENT EMISSIONS BLOCK: HB-HXA-1 MODEL: HEATX _____ HOT SIDE: _____ INLET STREAM: 31 OUTLET STREAM: 32 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). COLD SIDE: _____ INLET STREAM: 25 OUTLET STREAM: 26 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). *** MASS AND ENERGY BALANCE *** ΙN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR) 4503.92 4565.25 0.134328E-01 MASS(KG/HR) 75650.8 77132.6 -0.192104E-01 ENTHALPY(CAL/SEC) -0.354034E+07 -0.354881E+07 0.238712E-02 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR PRODUCT STREAMS CO2E 0.00000 KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR KG/HR TOTAL CO2E PRODUCTION 0.00000 *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH FREE WATER CONSIDERED MAXIMUM NO. ITERATIONS 30 0.000100000 CONVERGENCE TOLERANCE FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH

FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED COLD TEMP CHANGE SPECIFIED VALUE C MTD CORRECTION FACTOR 60.0000 PRESSURE SPECIFICATION: 1.00000 PRESSURE SPECIFICATION: 35.4638 COLD SIDE PRESSURE DROP BAR 0.3447 HEAT TRANSFER COEFFICIENT SPECIFICATION: 0.0002	FREE WATER CONSIDERED MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE		30 0.000100000
SPECIFIED VALUEC60.0000LMTD CORRECTION FACTOR1.00000PRESSURE SPECIFICATION:35.4638HOT SIDE OUTLET PRESSUREBARCOLD SIDE PRESSURE DROPBARHEAT TRANSFER COEFFICIENT SPECIFICATION:USE LIQUED2000 LIQUED	FLOW DIRECTION AND SPECIFICAT COUNTERCURRENT HEAT EXCHA SPECIFIED COLD TEMP CHANGE	FION: ANGER	
LMTD CORRECTION FACTOR1.00000PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE BAR35.4638 0.3447COLD SIDE PRESSURE DROPBAR0.3447HEAT TRANSFER COEFFICIENT SPECIFICATION: HOT LIQUEDCOLD SIDE PRESSURE DROP	SPECIFIED VALUE	С	60.0000
PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE BAR 35.4638 COLD SIDE PRESSURE DROP BAR 0.3447 HEAT TRANSFER COEFFICIENT SPECIFICATION:	LMTD CORRECTION FACTOR		1.00000
HEAT TRANSFER COEFFICIENT SPECIFICATION:	PRESSURE SPECIFICATION: HOT SIDE OUTLET PRESSURE COLD SIDE PRESSURE DROP	BAR BAR	35.4638 0.3447
	HEAT TRANSFER COEFFICIENT SPE	ECIFICATION:	
HOT LIQUID COLD LIQUID CAL/SEC-SQCM-K 0.0203	HOT LIQUID COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE COLD LIQUID CAL/SEC-SQCM-K 0.0203	HOT 2-PHASE COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT VAPOR COLD LIQUID CAL/SEC-SQCM-K 0.0203	HOT VAPOR COLD LIQUID	CAL/SEC-SQCM-K	0.0203
HOT LIQUID COLD 2-PHASE CAL/SEC-SQCM-K 0.0203	HOT LIQUID COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE COLD 2-PHASE CAL/SEC-SQCM-K 0.0203	HOT 2-PHASE COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT VAPOR COLD 2-PHASE CAL/SEC-SQCM-K 0.0203	HOT VAPOR COLD 2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT LIQUID COLD VAPOR CAL/SEC-SQCM-K 0.0203	HOT LIQUID COLD VAPOR	CAL/SEC-SQCM-K	0.0203
HOT 2-PHASE COLD VAPOR CAL/SEC-SQCM-K 0.0203	HOT 2-PHASE COLD VAPOR	CAL/SEC-SQCM-K	0.0203
HOT VAPOR COLD VAPOR CAL/SEC-SQCM-K 0.0203	HOT VAPOR COLD VAPOR	CAL/SEC-SQCM-K	0.0203

*** OVERALL RESULTS ***

STREAMS:

			1	
31 -	>	HOT	>	32
T= 3.6480I	D+02		1	T=
3.0560D+02				
P= 8.07151	D+01		1	P=
3.5464D+01				
V= 1.0000I)+00		1	V=
1.0000D+00				
			1	
26 <	<	COLD	<	25
T= 9.0000I	D+01		1	T=
3.0000D+01				
P= 3.9255I	D+01		1	P=
3.9600D+01				
V= 1.0000I)+00		1	V=
1.0000D+00				

DUTY AND AREA:		
CALCULATED HEAT DUTY	CAL/SEC	319717.4714
CALCULATED (REQUIRED) AREA	SQM	5.6991
ACTUAL EXCHANGER AREA	SQM	5.6991
PER CENT OVER-DESIGN		0.000

HEAT TRANSFER COEFFICIENT:

AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0203 1157.0230
LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	С	1.0000 276.3277 1
PRESSURE DROP: HOTSIDE, TOTAL COLDSIDE, TOTAL	BAR BAR	45.2515 0.3447

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

ZONE HEAT TRANSFER AND AREA:

ZONE	HEAT DUTY CAL/SEC	AREA SOM	LMTD C	AVERAGE U CAL/SEC-SOCM-K	UA
CAL/SEC-K 1 1157.0230	319717.471	5.6991	276.3277	0.0203	
HEATX COL	D-TQCU HB-HXA-1	TQCURV INLET			
PRESSUR PRESSUR PROPERT FREE WA SOLUBLE	E PROFILE: E DROP: Y OPTION SET: TER OPTION SET: WATER OPTION:	CONSTANT2 -0.3447 E SRK SOA SYSOP12 ASM THE MAIN PROE	BAR AVE-REDLICH- IE STEAM TAB PERTY OPTION	KWONG EQUATION OF LE SET (SRK).	STATE
 ! DUTY	 ! PRES	 ! TEMP	! VFRAC	!	

!	!	!	!
!	!	!	
! CAL/SEC	! BAR	! C	
!	!	!	
! 0.0	! 39.6000	90.0869	1.0000 !
! 1.5225+04	! 39.6000	87.2080	1.0000 !
! 3.0449+04	! 39.6000	84.3298	1.0000 !
! 4.5674+04	! 39.6000	81.4525	1.0000 !
! 6.0899+04	! 39.6000	78.5762	1.0000 !
<pre>! 7.6123+04</pre>	! 39.6000	! 75.7010	1.0000 !
! 9.1348+04	! 39.6000	! 72.8271	1.0000 !
! 1.0657+05	! 39.6000	! 69.9547	1.0000 !
! 1.2180+05	! 39.6000	! 67.0839	1.0000 !
! 1.3702+05	! 39.6000	! 64.2148	1.0000 !
! 1.5225+05	! 39.6000	! 61.3478	1.0000 !
! 1.6747+05	! 39.6000	! 58.4828	1.0000 !
! 1.8270+05	! 39.6000	! 55.6203	1.0000 !
! 1.9792+05	! 39.6000	! 52.7603	1.0000 !
! 2.1314+05	! 39.6000	! 49.9030	1.0000 !
! 2.2837+05	! 39.6000	47.0487	1.0000 !
! 2.4359+05	! 39.6000	44.1977	1.0000 !
! 2.5882+05	! 39.6000	41.3501	1.0000 !
! 2.7404+05	! 39.6000	38.5063	1.0000 !
! 2.8927+05	! 39.6000	5.6665	1.0000 !
! 3.0449+05	! 39.6000	! 32.8309	1.0000 !
! 3.1972+05	! 39.6000	! 30.0000	1.0000 !

HEATX HOT-TQCUR HB-HXA-1 TQCURV INLET

PRESSURE PROFILE:	CONSTANT2					
PRESSURE DROP:	0.0	BAR				
PROPERTY OPTION SET:	SRK	SOAVE-REDLICH-	KWONG	EQUATION	OF	STATE
FREE WATER OPTION SET:	SYSOP12	ASME STEAM TAB	LE			
SOLUBLE WATER OPTION:	THE MAIN P	ROPERTY OPTION	SET	(SRK).	

 ! !	DUTY	! ! !	PRES	! ! !	TEMP	! ! !	VFRAC	! ! !
!		!		!		!		!
!	CAL/SEC	!	BAR	!	С	!		!
!		!		!		!		!
!==		= ! ==		= ! =		= ! =		:!
!	0.0	!	80.7153	!	367.0603	!	1.0000	!
!	1.5225+04	!	80.7153	!	364.3226	!	1.0000	!
!	3.0449+04	!	80.7153	!	361.5829	!	1.0000	!
!	4.5674+04	!	80.7153	!	358.8415	!	1.0000	!

!	6.0899+04	!	80.7153	!	356.0981	!	1.0000 !
! ! ! !	7.6123+04 9.1348+04 1.0657+05 1.2180+05 1.3702+05	! ! ! !	80.7153 80.7153 80.7153 80.7153 80.7153	! ! ! !	353.3530 350.6060 347.8572 345.1067 342.3543	! ! ! !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! ! ! !	1.5225+05 1.6747+05 1.8270+05 1.9792+05 2.1314+05	! ! ! !	80.7153 80.7153 80.7153 80.7153 80.7153	! ! ! !	339.6002 336.8444 334.0868 331.3275 328.5665	' ! ! !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! ! ! !	2.2837+05 2.4359+05 2.5882+05 2.7404+05 2.8927+05	! ! ! !	80.7153 80.7153 80.7153 80.7153 80.7153	! ! ! !	325.8038 323.0395 320.2735 317.5058 314.7366	! ! ! !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! !	3.0449+05 3.1972+05	!	80.7153 80.7153	! !	311.9658 309.1934	!	1.0000 !

BLOCK: HB-HXA-2 MODEL: HEATX

_____ HOT SIDE: _____ INLET STREAM: 29 OUTLET STREAM: 30 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). COLD SIDE: _____ INLET STREAM: 27 28 OUTLET STREAM: PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN DIFF. TOTAL BALANCE MOLE (KMOL/HR) 4503.92 75650.8 4503.920.0000075650.80.00000 MASS(KG/HR) ENTHALPY(CAL/SEC) -0.251406E+07 -0.251406E+07 0.185223E-15

* * *	CO2 EQUIVALENT	SUMMARY ***
FEED STREAMS CO2E	0.00000	KG/HR
PRODUCT STREAMS CO2E	0.0000	KG/HR
NET STREAMS CO2E PRODUC	CTION 0.00000	KG/HR

UTILITIES CO2E PRODUCTION TOTAL CO2E PRODUCTION	0.00000 KG, 0.00000 KG,	/HR /HR
***	INPUT DATA ***	
FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH FREE WATER CONSIDERED MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE		30 0.000100000
FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH FREE WATER CONSIDERED MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE		30 0.000100000
FLOW DIRECTION AND SPECIFIC COUNTERCURRENT HEAT EXC SPECIFIED COLD OUTLET TEM SPECIFIED VALUE LMTD CORRECTION FACTOR	ATION: HANGER P C	225.0000 1.00000
PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP COLD SIDE PRESSURE DROP	BAR BAR	0.0000 0.3447
HEAT TRANSFER COEFFICIENT S HOT LIQUID COLD LIQUID HOT 2-PHASE COLD LIQUID HOT VAPOR COLD LIQUID HOT LIQUID COLD 2-PHAS HOT 2-PHASE COLD 2-PHAS HOT VAPOR COLD 2-PHAS HOT LIQUID COLD VAPOR HOT 2-PHASE COLD VAPOR HOT VAPOR COLD VAPOR	PECIFICATION: CAL/SEC-SQCM-1 CAL/SEC-SQCM-1 CAL/SEC-SQCM-1 E CAL/SEC-SQCM-1 E CAL/SEC-SQCM-1 E CAL/SEC-SQCM-1 CAL/SEC-SQCM-1 CAL/SEC-SQCM-1 CAL/SEC-SQCM-1	K 0.0203 K 0.0203 K 0.0203 K 0.0203 K 0.0203 K 0.0203 K 0.0203 K 0.0203 K 0.0203 K 0.0203
STREAMS:		
29> T= 4.0000D+02 3.6707D+02	НОТ	 > 30 T=

| P=

| V=

|<---- 27 | T=

3.07070702		
P= 8.1060D+01		
8.1060D+01		
V= 1.0000D+00		
1.0000D+00		
28 <	-	COLD

T= 2.2500D+02 | 1.9260D+02

P= 8.0715D+01 8.1060D+01			P=
V = 1.0000D+00 1.0000D+000D+00 1.0000D+0000D+000D+0000 1.0000D+0000D+0000D+0000 1.0000D+0000D+0000D+0000 1.0000D+0000D+0000D+0000 1.0000D+0000D+0000D+0000D+0000D+0000 1.0000D+000000		I	V=
		·	
DUTY AND AREA:			
CALCULATED HEAT DUTY	CAL/SEC	178955.	3759
CALCULATED (REQUIRED) AREA	SQM	5.	0446
ACTUAL EXCHANGER AREA	SQM	5.	0446
PER CENT OVER-DESIGN		Ο.	0000
HEAT TRANSFER COEFFICIENT:			
AVERAGE COEFFICIENT (DIRTY)	CAL/SEC-SQCM-K	0.	0203
UA (DIRTY)	CAL/SEC-K	1024.	1444
LOG-MEAN TEMPERATURE DIFFERENCE:			
LMTD CORRECTION FACTOR		1.	0000
LMTD (CORRECTED)	C	174.	7365
NUMBER OF SHELLS IN SERIES		1	
PRESSURE DROP:	תגם	0	0000
HOISIDE, IOIAL	BAR	0.	2447
COUDSIDE, IOIAL	DAIN	0.	5447
*** ZONE R.	ESULTS ***		

TEMPERATURE LEAVING EACH ZONE:

ZONE	HEAT DUTY	AREA	LM'I'D	AVERAGE U	UA
	CAL/SEC	SQM	С	CAL/SEC-SQCM-K	
CAL/SEC-K					

1 178955.376 5.0446 174.7365 0.0203 1024.1444

HEATX COLD-TQCU HB-HXA-2 TQCURV INLET

PRESSURE PROFILE:	CONSTANT2			
PRESSURE DROP:	-0.3447	BAR		
PROPERTY OPTION SET:	SRK	SOAVE-REDLICH-KWONG	EQUATION OF	STATE
FREE WATER OPTION SET:	SYSOP12	ASME STEAM TABLE		
SOLUBLE WATER OPTION:	THE MAIN	PROPERTY OPTION SET	(SRK).	

! DUTY !	! PRES !	TEMP	VFRAC	
! ! ! CAL/SEC !	! ! BAR !	C	:	
! 0.0 ! 8521.6846 ! 1.7043+04 ! 2.5565+04 ! 3.4087+04	! 81.0600 ! 81.0600 ! 81.0600 ! 81.0600 ! 81.0600	225.0326 223.4893 221.9457 220.4020 218.8581	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !	
! 4.2608+04 ! 5.1130+04 ! 5.9652+04 ! 6.8173+04 ! 7.6695+04	! 81.0600 ! 81.0600 ! 81.0600 ! 81.0600 ! 81.0600	217.3141 215.7699 214.2256 212.6812 211.1366	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !	
! 8.5217+04 ! 9.3739+04 ! 1.0226+05 ! 1.1078+05 ! 1.1930+05	! 81.0600 ! 81.0600 ! 81.0600 ! 81.0600 ! 81.0600	209.5919 208.0471 206.5022 204.9573 203.4122	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !	
! 1.2783+05 ! 1.3635+05 ! 1.4487+05 ! 1.5339+05 ! 1.6191+05	! 81.0600 ! 81.0600 ! 81.0600 ! 81.0600 ! 81.0600	201.8671 200.3219 198.7766 197.2314 195.6860	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !	
! 1.7043+05 ! 1.7896+05	! 81.0600 ! 81.0600	194.1407 192.5954	! 1.0000 ! ! 1.0000 !	

HEATX HOT-TQCUR HB-HXA-2 TQCURV INLET

PRESSURE PROFILE:	CONSTANT2			
PRESSURE DROP:	0.0	BAR		
PROPERTY OPTION SET:	SRK	SOAVE-REDLICH-KWONG	EQUATION O	F STATE
FREE WATER OPTION SET:	SYSOP12	ASME STEAM TABLE		
SOLUBLE WATER OPTION:	THE MAIN	PROPERTY OPTION SET	(SRK).	

DUTY ! !	PRES	 ! TEMP ! ! !	VFRAC ! !
! CAL/SEC ! !	BAR	! C !	! ! !
0.0 ! 8521.6846 ! 1.7043+04 ! 2.5565+04 ! 3.4087+04 !	81.0600 81.0600 81.0600 81.0600 81.0600 81.0600	400.0000 ! 398.4383 ! 396.8759 ! 395.3129 ! 393.7493 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
4.2608+04 ! 5.1130+04 ! 5.9652+04 ! 6.8173+04 ! 7.6695+04 !	81.0600 81.0600 81.0600 81.0600 81.0600	! 392.1850 ! ! 390.6200 ! ! 389.0544 ! ! 387.4881 ! ! 385.9212 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
8.5217+04 ! 9.3739+04 ! 1.0226+05 ! 1.1078+05 ! 1.1930+05 !	81.0600 81.0600 81.0600 81.0600 81.0600	! 384.3537 ! ! 382.7855 ! ! 381.2166 ! ! 379.6472 ! ! 378.0771 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
1.2783+05 ! 1.3635+05 ! 1.4487+05 ! 1.5339+05 ! 1.6191+05 !	81.0600 81.0600 81.0600 81.0600 81.0600	! 376.5063 ! ! 374.9349 ! ! 373.3629 ! ! 371.7903 ! ! 370.2170 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
1.7043+05 ! 1.7896+05 !	81.0600 81.0600	! 368.6431 ! ! 367.0686 !	1.0000 ! 1.0000 !
LOCK: HB-HXA	-3 MODEL: HEA	 ATX 	
HOT SIDE:			
INLET STREAM	•	30	

INCLUSION INLET STREAM: 30 OUTLET STREAM: 31 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). COLD SIDE: ------INLET STREAM: 38 OUTLET STREAM: 40 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK).

	*** MASS AN	ID ENERGY BALANCE	2 *** OUTT	RELATIVE
		±11	001	
TOTAL BALANCE				
MOLE (KMOL/H	R) 2	263.49 2	263.49	0.0000
MASS (KG/HR) 3	8633.1 3	8633.1	0.0000
ENTHALPY (CA	L/SEC) -0	286797E+07 -0	286797E+07	1
0 324732E - 15		2007971107 0.	2001911101	
0.021/021 10				
	*** CO2 EOI	ITVALENT SUMMARY	* * *	
FFFD STRFAMS C	02 LQC		ЧР.	
	S CO2E	0.00000 KC/	ир	
NET STREAMS CO	2 DDODUCTION	0.00000 KG/	'ud	
INEI SIREAMS CO		0.00000 KG/		
UIILIIES COZE	PRODUCTION	0.00000 KG/	IR UD	
IOTAL COZE PRO	DUCIION	0.00000 KG/	пк	
	*** INE	PUT DATA ***		
FLASH SPECS FOR	HOT SIDE:			
TWO PHASE	FLASH			
FREE WATER CONS	IDERED			
MAXIMUM NO. ITE	RATIONS			30
CONVERGENCE TOL	ERANCE			0.000100000
FLASH SPECS FOR	COLD SIDE:			
TWO PHASE	FLASH			
FREE WATER CONS	IDERED			
MAXIMUM NO. ITE	RATIONS			30
CONVERGENCE TOL	ERANCE			0.000100000
FLOW DIRECTION	AND SPECIFICATIO	DN:		
COUNTERCURREN	T HEAT EXCHANG	ER		
SPECIFIED COL	D OUTLET TEMP			
SPECIFIED VAL	UE	С		32.2222
LMTD CORRECTI	ON FACTOR			1.00000
PRESSURE SPECIF	ICATION:			
HOT SIDE PRE	SSURE DROP	BAR		0.3447
COLD SIDE PRE	SSURE DROP	BAR		0.0000
HEAT TRANSFER C	OEFFICIENT SPECI	FICATION:	_	
HOT LIQUID	COLD LIQUID	CAL/SEC-SQCM-K	-	0.0203
HOT 2-PHASE	COLD LIQUID	CAL/SEC-SQCM-K		0.0203
HOT VAPOR	COLD LIQUID	CAL/SEC-SQCM-K		0.0203
HOT LIQUID	COLD 2-PHASE	CAL/SEC-SQCM-K		0.0203
HOT 2-PHASE	COLD 2-PHASE	CAL/SEC-SQCM-K	C	0.0203
HOT VAPOR	COLD 2-PHASE	CAL/SEC-SQCM-K	C	0.0203
HOT LIQUID	COLD VAPOR	CAL/SEC-SQCM-K	C	0.0203
HOT 2-PHASE	COLD VAPOR	CAL/SEC-SQCM-K	C	0.0203
HOT VAPOR	COLD VAPOR	CAL/SEC-SQCM-K	C	0.0203

*** OVERALL RESULTS ***

STREAMS:

		-	
30> T= 3.6707D+02 2.6490D+02	НОТ	 > 	31 T=
P= 8.1060D+01			P=
V= 1.0000D+00 1.0000D+00		1	V=
40 < T= 3.2222D+01 7.2222D+00	COLD	 < 	38 T=
P = 1.0000D + 00			P=
V= 0.0000D+00 0.0000D+00			V=
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	12156.9 0.1 0.1 0.0	9779 1730 1730 0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0 35.1)203 L267
LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	С	1.0 346.0 1)000)898
PRESSURE DROP: HOTSIDE, TOTAL COLDSIDE, TOTAL	BAR BAR	0.3	3447)000
*** ZONE RI	TOUTLO VVV		

TEMPERATURE LEAVING EACH ZONE:

		НОТ	
HOT IN HOT OUT		VAP	
>			
367.1 364.8	I		
COLDOUT COLDIN		LIQ	

<-						<		
7.2	32.2 2					I		
			COL	D				
	ZONE HEAT T	RANSFER AND AF	REA:					
	ZONE	HEAT DUTY	AREA	LMTD	AVERAGE U	UA		
CA	L/SEC-K	CAL/SEC	SQM	С	CAL/SEC-SQCM-K			
35	1 12 .1267	156.978	0.1730	346.0898	0.0203			
HI	EATX COLD-TQ	СИ НВ-НХА-З ТС	QCURV INLET					
PRESSURE PROFILE: CONSTANT2 PRESSURE DROP: 0.0 BAR PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK).								
!	DUTY	! PRES	TEMP	! VFRAC	!			
: ! ! !	CAL/SEC	! ! ! BAR !	C	: ! ! !	: ! ! !			
!	0.0	! 1.0000	32.2222	. 0.0	!			
: !	1157.8074	! 1.0000	29.8377	! 0.0	: !			
! !	1736.7111 2315.6148	! 1.0000 ! ! 1.0000 !	28.6455 27.4534	! 0.0 ! 0.0	! !			
! ! ! ! !	2894.5185 3473.4223 4052.3260 4631.2297 5210.1334	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !	26.2614 25.0695 23.8778 22.6862 21.4947	+ ! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0	! ! ! ! !			
! · !	5789.0371	+ ! 1.0000 !	+ 20.3035	+ ! 0.0	! !			
!	6367.9408 6946 8445	! 1.0000	19.1125 17 9217	! 0.0	!			
· !	7525.7482	! 1.0000	16.7312	! 0.0	- !			
! ! ! !	8683.5556 9262.4593 9841.3630 1.0420+04	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !	13.5411 14.3512 13.1618 11.9728 10.7843	! 0.0 ! 0.0 ! 0.0 ! 0.0 ! 0.0	! ! ! !			
!	1.0999+04	!	1.0000	!	9.5964	!	0.0	!
---	-----------	---	--------	---	--------	---	-----	---
!	1.1578+04	!	1.0000	!	8.4090	!	0.0	!
!	1.2157+04	!	1.0000	!	7.2222	!	0.0	!

HEATX HOT-TQCUR HB-HXA-3 TQCURV INLET

PRESSURE PROFILE:	CONSTANT2		
PRESSURE DROP:	0.0	BAR	
PROPERTY OPTION SET:	SRK	SOAVE-REDLICH-KWONG EQUATION OF SI	ATE
FREE WATER OPTION SET:	SYSOP12	ASME STEAM TABLE	
SOLUBLE WATER OPTION:	THE MAIN I	PROPERTY OPTION SET (SRK).	

! DUTY	! PRES	! TEMP	VFRAC !	
! ! ! CAL/SEC !	! ! ! BAR !	! ! ! ! C !	! ! ! ! ! ! ! ! ! ! ! !	
! 0.0 ! 578.9037 ! 1157.8074 ! 1736.7111 ! 2315.6148	81.0600 81.0600 81.0600 81.0600 81.0600	367.0686 366.9616 366.8546 366.7476 366.6407	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !	
! 2894.5185 ! 3473.4223 ! 4052.3260 ! 4631.2297 ! 5210.1334	! 81.0600 ! 81.0600 ! 81.0600 ! 81.0600 ! 81.0600	! 366.5337 ! 366.4267 ! 366.3197 ! 366.2127 ! 366.1056	! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 ! ! 1.0000 !	
! 5789.0371 ! 6367.9408 ! 6946.8445 ! 7525.7482 ! 8104.6519	81.0600 81.0600 81.0600 81.0600 81.0600 81.0600	! 365.9986 ! 365.8916 ! 365.7846 ! 365.6776 ! 365.5706	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !	
! 8683.5556 ! 9262.4593 ! 9841.3630 ! 1.0420+04 ! 1.0999+04	81.0600 81.0600 81.0600 81.0600 81.0600 81.0600	365.4635 365.3565 365.2495 365.1425 365.0354	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !	
! 1.1578+04 ! 1.2157+04	! 81.0600 ! 81.0600	! 364.9284 ! 364.8213	! 1.0000 ! ! 1.0000 !	

BLOCK: HB-HXA-4 MODEL: HEATX

HOT SIDE:

INLET STREAM:32OUTLET STREAM:33 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). COLD SIDE: _____ INLET STREAM: 39 OUTLET STREAM: 41 PROPERTY OPTION SET:SRKSOAVE-REDLICH-KWONG EQUATION OF STATEFREE WATER OPTION SET:SYSOP12ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). *** MASS AND ENERGY BALANCE *** OUT RELATIVE IN TTTT TOTAL BALANCE 3504.703504.700.0000061370.861370.80.00000 MOLE(KMOL/HR) MASS(KG/HR) ENTHALPY(CAL/SEC) -0.256879E+08 -0.256879E+08 -0.145021E-15 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E0.00000KG/HRPRODUCT STREAMS CO2E0.00000KG/HR NET STREAMS CO2E PRODUCTION 0.00000 KG/HR UTILITIES CO2E PRODUCTION 0.00000 KG/HR 0.00000 KG/HR TOTAL CO2E PRODUCTION *** INPUT DATA *** FLASH SPECS FOR HOT SIDE: PHASE FLASH TWO FREE WATER CONSIDERED MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH FREE WATER CONSIDERED MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 FLOW DIRECTION AND SPECIFICATION: COUNTERCURRENT HEAT EXCHANGER SPECIFIED COLD OUTLET TEMP SPECIFIED VALUE С 32.2222 LMTD CORRECTION FACTOR 1.00000 PRESSURE SPECIFICATION: HOT SIDE PRESSURE DROP 0.3447 BAR COLD SIDE PRESSURE DROP BAR 0.0000

HEAT TRANSFER COEFFICIENT SPECIFICATION:

HOT	LIQUID	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	LIQUID	CAL/SEC-SQCM-K	0.0203
HOT	LIQUID	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	2-PHASE	CAL/SEC-SQCM-K	0.0203
HOT	LIQUID	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
HOT	2-PHASE	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203
HOT	VAPOR	COLD	VAPOR	CAL/SEC-SQCM-K	0.0203

*** OVERALL RESULTS ***

STREAMS:			
32> T= 3.0560D+02	НОТ	- > 	33 T=
2.7567D+02 P= 3.5464D+01			P=
3.5119D+01 V= 1.0000D+00 1.0000D+00		I	V=
41 < T= 3.2222D+01 7.2222D+00	COLD	 < 	39 T=
P= 1.0000D+00 1.0000D+00			P=
V= 0.0000D+00 0.0000D+00		-	V=
DUTY AND AREA: CALCULATED HEAT DUTY CALCULATED (REQUIRED) AREA ACTUAL EXCHANGER AREA PER CENT OVER-DESIGN	CAL/SEC SQM SQM	159482.3 2.8 2.8 0.0	3609 3997 3997 0000
HEAT TRANSFER COEFFICIENT: AVERAGE COEFFICIENT (DIRTY) UA (DIRTY)	CAL/SEC-SQCM-K CAL/SEC-K	0.0 588.7)203 /042
LOG-MEAN TEMPERATURE DIFFERENCE: LMTD CORRECTION FACTOR LMTD (CORRECTED) NUMBER OF SHELLS IN SERIES	С	1.0 270.9 1)000)040
PRESSURE DROP: HOTSIDE, TOTAL COLDSIDE, TOTAL	BAR BAR	0.3 0.0	3447)000

*** ZONE RESULTS ***

TEMPERATURE LEAVING EACH ZONE:

!	6.0755+04	!	1.0000	!	22.6862	!	0.0 !
!	6.8350+04	!	1.0000	!	21.4947	!	0.0 !
!		+		+		+	!
!	7.5944+04	!	1.0000	!	20.3035	!	0.0 !
!	8.3538+04	!	1.0000	!	19.1125	!	0.0 !
!	9.1133+04	!	1.0000	!	17.9217	!	0.0 !
!	9.8727+04	!	1.0000	!	16.7312	!	0.0 !
!	1.0632+05	!	1.0000	!	15.5411	!	0.0 !
!		+		+		+	!
!	1.1392+05	!	1.0000	!	14.3512	!	0.0 !
!	1.2151+05	!	1.0000	!	13.1618	!	0.0 !
!	1.2910+05	!	1.0000	!	11.9728	!	0.0 !
!	1.3670+05	!	1.0000	!	10.7843	!	0.0 !
!	1.4429+05	!	1.0000	!	9.5964	!	0.0 !
!		+		+		+	!
!	1.5189+05	!	1.0000	!	8.4090	!	0.0 !
!	1.5948+05	!	1.0000	!	7.2222	!	0.0 !

HEATX HOT-TQCUR HB-HXA-4 TQCURV INLET

PRESSURE PROFILE:	CONSTANT2
PRESSURE DROP:	0.0 BAR
PROPERTY OPTION SET:	SRK SOAVE-REDLICH-KWONG EQUATION OF STATE
FREE WATER OPTION SET:	SYSOP12 ASME STEAM TABLE
SOLUBLE WATER OPTION:	THE MAIN PROPERTY OPTION SET (SRK).

! ! !	DUTY	! PRES ! !	! TEMP ! ! !	VFRAC ! !
! ! !	CAL/SEC	! ! BAR !	! C ! ! C !	! ! 1
! ! ! !	0.0 7594.3981 1.5189+04 2.2783+04 3.0378+04	! 35.4637 ! 35.4637 ! 35.4637 ! 35.4637 ! 35.4637 ! 35.4637	305.5963 304.1792 302.7614 301.3430 299.9240	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! ! ! !	3.7972+04 4.5566+04 5.3161+04 6.0755+04 6.8350+04	! 35.4637 ! 35.4637 ! 35.4637 ! 35.4637 ! 35.4637 ! 35.4637	! 298.5043 ! ! 297.0841 ! ! 295.6632 ! ! 294.2417 ! ! 292.8196 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
: ! ! !	7.5944+04 8.3538+04 9.1133+04 9.8727+04 1.0632+05	! 35.4637 ! 35.4637 ! 35.4637 ! 35.4637 ! 35.4637 ! 35.4637	! 291.3969 ! ! 289.9736 ! ! 288.5497 ! ! 287.1251 ! ! 285.7000 !	1.0000 ! 1.0000 ! 1.0000 ! 1.0000 ! 1.0000 !
! !	1.1392+05	! 35.4637	! 284.2742 !	1.0000 !

!1.2151+05 !35.4637 !282.8478 !1.0000 !!1.2910+05 !35.4637 !281.4209 !1.0000 !!1.3670+05 !35.4637 !279.9933 !1.0000 !!1.4429+05 !35.4637 !278.5651 !1.0000 ! !_____! ! 1.5189+05 ! 35.4637 ! 277.1363 ! 1.0000 ! ! 1.5948+05 ! 35.4637 ! 275.7069 ! 1.0000 ! _____ BLOCK: HB-RXN MODEL: RSTOIC _____ INLET STREAM: 28 OUTLET STREAM: 29 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). *** MASS AND ENERGY BALANCE *** IN OUT GENERATION RELATIVE DIFF. TOTAL BALANCE 2337.80 2166.13 -93.5916 MOLE(KMOL/HR) 0.333991E-01 MASS(KG/HR) 38771.7 36879.1 0.488147E-01 ENTHALPY(CAL/SEC) -0.150106E+07 -834047. 0.444362 *** CO2 EQUIVALENT SUMMARY *** FEED STREAMS CO2E 0.00000 KG/HR KG/HR KG/HR PRODUCT STREAMS CO2E 0.00000 NET STREAMS CO2E PRODUCTION 0.00000 UTILITIES CO2E PRODUCTION 891.111 KG/HR 891.111 KG/HR TOTAL CO2E PRODUCTION *** INPUT DATA *** STOICHIOMETRY MATRIX: REACTION # 1: SUBSTREAM MIXED : AMMONIA 2.00 N2 -1.00 H2 -3.00 REACTION CONVERSION SPECS: NUMBER= 1 REACTION # 1: SUBSTREAM:MIXED KEY COMP:H2 CONV FRAC: 0.2000 TWO PHASE TP FLASH FREE WATER CONSIDERED SPECIFIED TEMPERATURE C 400.000

SPECIFIED PRESSURE BAR

81.0600

MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 SIMULTANEOUS REACTIONS GENERATE COMBUSTION REACTIONS FOR FEED SPECIES NO *** RESULTS *** OUTLET TEMPERATURE C 400.00 OUTLET PRESSURE 81.060 BAR CAL/SEC HEAT DUTY 0.61354E+06 VAPOR FRACTION 1.0000 1.0000 1ST LIQUID/TOTAL LIQUID REACTION EXTENTS: REACTION REACTION NUMBER EXTENT KMOL/HR 1 46.796 V-L1-L2 PHASE EQUILIBRIUM : F(I) X1(I) X2(I) Y(I) K1(I) COMP K2(I) 0.4030.4030.000.4030.3220.3220.000.3220.2590.2590.000.259 AMMONIA N2 H2 ARGON 0.151E-01 0.151E-01 0.00 0.151E-01 *** ASSOCIATED UTILITIES *** U-3 UTILITY ID FOR ELECTRICITY RATE OF CONSUMPTION 2568.7607 KW 199.0790 \$/HR COST CO2 EQUIVALENT EMISSIONS 891.1110 KG/HR BLOCK: HB-S-01 MODEL: FLASH2 _____ INLET STREAM: 24 OUTLET VAPOR STREAM: 25 OUTLET LIQUID STREAM: 34 PROPERTY OPTION SET: SRK SOAVE-REDLICH-KWONG EQUATION OF STATE FREE WATER OPTION SET: SYSOP12 ASME STEAM TABLE SOLUBLE WATER OPTION: THE MAIN PROPERTY OPTION SET (SRK). *** MASS AND ENERGY BALANCE *** OUT RELATIVE ΤN DIFF. TOTAL BALANCE MOLE(KMOL/HR) 2428.76 2428.76 0.187234E-15 MASS(KG/HR) 40323.3 -0.858535E-12 -0.151155E+07 -0.291559E+07 0.481564 ENTHALPY (CAL/SEC)

FEED STREAMS CO PRODUCT STREAMS NET STREAMS CO UTILITIES CO2E TOTAL CO2E PROD	*** CO D2E S CO2E 2E PRODUCTION PRODUCTION DUCTION	2 EQUIVALE 0.000 0.000 ON 0.000 2039. 2039.	NT SUMMAR 00 K 00 K 25 K 25 K	Y *** G/HR G/HR G/HR G/HR G/HR	
TWO PHASE T FREE WATER CONS SPECIFIED TEMPE SPECIFIED PRESS MAXIMUM NO. ITE CONVERGENCE TOL	P FLASH IDERED RATURE C URE BAR RATIONS ERANCE	INPUT DA	ΓΑ ***		30.0000 39.6000 30 0.000100000
OUTLET TEMPERATI OUTLET PRESSURE HEAT DUTY VAPOR FRACTION 1ST LIQUID/TOTA:	** URE C BAR CAL/ L LIQUID	* RESULTS SEC	* * *		30.000 39.600 -0.14040E+07 0.96255 1.0000
COMP	F(I)	: X1(I)	X2(I)	Y(I)	K1(I)
K2(I) AMMONIA N2 H2 ARGON	0.370 0.327 0.289 0.140E-01	0.994 0.370E-02 0.160E-02 0.429E-03	0.00 0.00 0.00 0.00	0.346 0.340 0.300 0.145E-01	0.348 91.7 188. 33.8
	*** A	SSOCIATED	UTILITIE	S ***	
UTILITY ID FOR E RATE OF CONSUMPT COST CO2 EQUIVALENT E BLOCK: HB-S-02	LECTRICITY ION MISSIONS MODEL: FLAS	H2	U 5878.44 455.57 2039.25	-3 38 KW 94 \$/HR 02 KG/HR	
INLET STREAM: OUTLET VAPOR ST OUTLET LIQUID S' PROPERTY OPTION FREE WATER OPTIC SOLUBLE WATER O	34 REAM: 35 IREAM: OUT SET: SRK ON SET: SYS PTION: THE	SOA OP12 ASM MAIN PROP	VE-REDLIC E STEAM T ERTY OPTI	H-KWONG EQU ABLE ON SET (SRK	ATION OF STATE).
	*** MA	SS AND ENE IN	RGY BALAN	CE *** OUT	RELATIVE
DIFF.					
TOTAL BALANCE MOLE (KMOL/H) MASS (KG/HR 0.735774E-12	R))	90.966 1551.6	4 2	90.9664 1551.62	0.00000

0.420	ENTHALPY(CAL) 028E-02	/sec)	-400406.	_	402095.	
FI PI NI U'	EED STREAMS CO RODUCT STREAMS ET STREAMS CO21 FILITIES CO2E T OTAL CO2E PROD	*** CO 2E CO2E E PRODUCTION PRODUCTION UCTION	2 EQUIVALEN 0.0000 0.0000 ON 0.0000 2.4530 2.4530	IT SUMMARY 00 KG 00 KG 00 KG 00 KG 00 KG	*** /HR /HR /HR /HR /HR	
		* * *	INPUT DAI	'A ***		
TW(FR) SP) SP) MAX CO)	D PHASE TP EE WATER CONSI ECIFIED TEMPER ECIFIED PRESSU XIMUM NO. ITER NVERGENCE TOLE	FLASH DERED ATURE C RE BAR ATIONS RANCE				20.0000 10.1325 30 0.000100000
OU OU HE VA 1S	ILET TEMPERATU ILET PRESSURE AT DUTY POR FRACTION I LIQUID/TOTAL	** RE C BAR CAL/ LIQUID	* RESULTS SEC	***		20.000 10.133 -1688.9 0.37988E-01 1.0000
V-1	L1-L2 PHASE EQ	UILIBRIUM	:			
K2(I)	COMP	F(I)	X1(I)	X2(I)	Y(I)	K1(I)
(-)	AMMONIA N2 H2 ARGON	0.994 0.370E-02 0.160E-02 0.429E-03	1.00 0.233E-03 0.469E-04 0.716E-04	0.00 0.00 0.00 0.00	0.858 0.916E-01 0.409E-01 0.948E-02	0.858 393. 871. 132.
		*** A	SSOCIATED	UTILITIES	* * *	
UTII RATI COS CO2	LITY ID FOR EL E OF CONSUMPTIO I EQUIVALENT EM	ECTRICITY ON ISSIONS		U- 7.071 0.548 2.453	3 1 KW 0 \$/HR 0 KG/HR	

B.2.5 Ammonia Synthesis Stream Summary

23 24 25 26 27

STREAM ID FROM :	23 B21	24 B4	25 HB-S-01	26 НВ-НХА-1	27 HB-
CP-03					
TO :	В4	HB-S-01	HB-HXA-1	HB-CP-03	HB-
HXA-2					
CONV. MAX. REL. ERR: SUBSTREAM: MIXED	0.0	-3.4178-03	0.0	0.0	0.0
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	
VAPOR					
COMPONENTS: KMOL/HR	0 0050	000 0001		005 0100	
AMMONIA	2.9056	898.2631	807.8182	807.8182	
8U/.8182	57 2502	701 1202	701 0021	701 0021	
NZ 701 0031	57.5505	194.4302	794.0931	794.0931	
H2	140 5385	702 1462	702 0008	702 0008	
702 0008	140.0000	102.1102	102.0000	102.0000	
ARGON	0.6921	33.9247	33.8856	33.8856	
33.8856					
WATER	0.0	0.0	0.0	0.0	0.0
COMPONENTS: KG/HR					
AMMONIA	49.4840	1.5298+04	1.3758+04	1.3758+04	
1.3758+04					
N2	1606.5811	2.2255+04	2.2245+04	2.2245+04	
2.2245+04					
Н2	283.3087	1415.4425	1415.1494	1415.1494	
1415.1494					
ARGON	27.6487	1355.2220	1353.6625	1353.6625	
1353.6625					
WATER	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:	0.01 40.65				
KMOL/HR	201.4865	2428./642	2337.7977	2337.7977	
2337.1977	1067 0005	4 0222104	2 0772104	2 0772+04	
NG/HK 3 8772±04	1967.0225	4.0323+04	5.8//2+04	3.8//2+04	
J./MTN	2233 1981	5 1244+04	2 3697+04	2 9475+04	
1 8737+04	2233.1901	3.1244104	2.3037104	2.94/3/04	
STATE VARIABLES.					
TEMP C	37.6133	258.8760	30.0000	90.0000	
192.5954					
PRES BAR	39.6000	35.1190	39.6000	39.2553	
81.0600					
VFRAC	1.0000	1.0000	1.0000	1.0000	
1.0000					
LFRAC	0.0	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					

CAL/MOL	-72.4303	-2240.4691	-3873.1588	-3380.8224	-
CAL/GM	-7.4192	-134.9484	-233.5378	-203.8516	_
155.9915	,.1192	101.0101	200.0070	200.0010	
CAL/SEC	-4053.8108	-1.5115+06	-2.5152+06	-2.1955+06	-
1.6800+06					
ENTROPY:					
CAL/MOL-K	-6.0069	-9.0337	-13.3370	-11.8379	-
11.3468 CDI/CM_K	_0 6153	_0 5441	_0 9042	_0 7139	_
0 6842	-0.0133	-0.3441	-0.0042	-0.7130	-
DENSITY:					
MOL/CC	1.5037-03	7.8994-04	1.6442-03	1.3219-03	
2.0795-03					
GM/CC	1.4680-02	1.3115-02	2.7269-02	2.1924-02	
3.4488-02					
AVG MW	9.7626	16.6024	16.5847	16.5847	
16.5847					
28 29 30 31 32					
				0.1	
STREAM ID	28	29 ND DVN	30	31	32
FROM :	нв-нха-2	HB-RXN	НВ-НХА-2	и нв-нха-з) HB-
TO ·	HB-RXN	НВ-НХА-2	ив-нуд-З	нв-нха-1	HR-
HXA-4				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
CONTA MAY DEL EDD.	6 6012 02	0 0	0 0		0 0
SUBSTREAM MIXED	6.3813-02	0.0	0.0	-3.2808-02	0.0
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	
VAPOR					
COMPONENTS: KMOL/HR					
AMMONIA	807.8182	873.5322	873.5322	873.5322	
895.4369					
N2	794.0931	698.2629	698.2629	698.2629	
/3/.192/ H2	702 0008	561 5/93	561 5/03	561 5/03	
561,5867	/02.0000	501.5495	501.5495	501.5495	
ARGON	33.8856	32.7816	32.7816	32.7816	
33.2336					
WATER	0.0	0.0	0.0	0.0	0.0
COMPONENTS: KG/HR					
AMMONIA	1.3758+04	1.4877+04	1.4877+04	1.4877+04	
1.5250+04	2 2245104	1 0561.04	1 0561+04	1 0561104	
NZ 2 0651+04	2.2245+04	1.9361+04	1.9561+04	1.9561+04	
H2	1415.1494	1132.0160	1132.0160	1132.0160	
1132.0913					
ARGON	1353.6625	1309.5581	1309.5581	1309.5581	
1327.6169					
WATER	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					

KMOL/HR	2337.7977	2166.1259	2166.1259	2166.1259	
2227.4499	0 0770.04	0 000000	0 000000	0 000000	
KG/HR	3.8//2+04	3.68/9+04	3.68/9+04	3.68/9+04	
3.8361+04		0 = 4 0 4 1 0 4			
L/MIN	2.0227+04	2.5421+04	2.4149+04	2.4162+04	
5.0674+04					
STATE VARIABLES:					
TEMP C	225.0000	400.0000	367.0686	364.8045	
305.5963					
PRES BAR	80.7153	81.0600	81.0600	80.7153	
35.4637					
VFRAC	1.0000	1.0000	1.0000	1.0000	
1.0000					
LFRAC	0.0	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
CAL/MOL	-2311.4996	-1386.1469	-1683.5624	-1703.7667	_
2187.2785					
CAL/GM	-139.3753	-81 4166	-98.8855	-100.0722	_
127 0059	100.0700	01.1100	20.0000	100.0722	
CAL /SEC	-1 5011+06	-8 3/05+05	-1 0130+06	-1 0252+06	_
1 3533±06	1.3011100	0.3403103	1.0130100	1.0252100	
ENTROPI:	10 7662	0 4560	0 0000	0 0220	
CAL/MOL-K	-10.7665	-9.4369	-9.9099	-9.9329	-
9.0742	0 6400	0 5555	0 5001	0 5 0 0 4	
CAL/GM-K	-0.6492	-0.5555	-0.5821	-0.5834	-
0.5269					
DENSITY:					
MOL/CC	1.9263-03	1.4202-03	1.4950-03	1.4942-03	
7.3260-04					
GM/CC	3.1947-02	2.4179-02	2.5453-02	2.5439-02	
1.2617-02					
AVG MW	16.5847	17.0254	17.0254	17.0254	
17.2219					
33 34 35 36 37					
STREAM ID	33	34	35	36	37
FROM :	HB-HXA-4	HB-S-01	HB-S-02	HB-CP-02	B20
ΤΟ .	R4	HB-S-02	HB-CP-02	P B20	B21
•		110 0 02	112 01 02		
CURCTDEAM. MIVED					
DUNCE.					
FRASE.	VAFOR	TIÕID	VAFOR	VAPOR	
VAPOR					
COMPONENTS: KMOL/HR		00 4440	0 0 0 0 0 0	0 0 6 4 0	
AMMONIA	895.4369	90.4449	2.9649	2.9649	
2.9056		0 0050	0 01 66	0 01 6 6	
N2	737.1927	0.3370	0.3166	0.3166	
0.3103					
H2	561.5867	0.1454	0.1413	0.1413	
0.1385					
ARGON	33.2336	3.9038-02	3.2772-02	3.2772-02	
3.2116-02					

WATER	0.0	0.0	0.0	0.0	0.0
COMPONENTS: KG/HR	1 5050.04	1 - 4 0 0 0 - 0	50 4000	50 4000	
AMMONIA	1.5250+04	1540.3279	50.4939	50.4939	
49.4840	0.0051.01				
N2	2.0651+04	9.4413	8.8696	8.8696	
8.6922	1100 0010		0 0040	0 0040	
H2	1132.0913	0.2932	0.2849	0.2849	
0.2792	1007 6160	1 5505	1 2000	1 2000	
ARGON	1327.6169	1.5595	1.3092	1.3092	
	0 0	0 0	0 0	0 0	0 0
WALER TOTAL FLOM.	0.0	0.0	0.0	0.0	0.0
EVAL FLOW.	2227 1100	90 9664	3 1556	3 1556	
1 3 3 8 6 5	2227.4499	90.9004	5.4550	5.4550	
RC/HB	3 8361+04	1551 6219	60 9575	60 9575	
59 7383	3.0301104	1001.0210	00.3373	00.3373	
1./MTN	4 8457+04	46 4395	128 9968	50 2032	
49 1991	1.010//01	10.1000	120.9900	50.2052	
STATE VARIABLES.					
TEMP C	275.6711	30,0000	20.0000	171.0260	
171.0259			20.0000	1,1,0100	
PRES BAR	35.1190	39.6000	10.1325	39.6000	
39.6000					
VFRAC	1.0000	0.0	1.0000	1.0000	
1.0000					
LFRAC	0.0	1.0000	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
CAL/MOL	-2445.0335	-1.5846+04	-9566.0182	-8357.6044	-
8357.6044					
CAL/GM	-141.9727	-929.0029	-542.2868	-473.7832	-
473.7832					
CAL/SEC	-1.5128+06	-4.0041+05	-9182.3445	-8022.3977	-
7861.9497					
ENTROPY:					
CAL/MOL-K	-9.5120	-44.5577	-24.2168	-23.4255	-
23.4255	0 5500	0 (100	1 0000	1 0000	
CAL/GM-K	-0.5523	-2.6123	-1.3/28	-1.3280	-
DENSITY:		2 2 4 7 0 2		1 1 4 7 0 0 0	
MOL/CC	/.0012-04	5.2647-02	4.464/-04	1.14/2-03	
1.1472-03	1 319/-02	0 5569	7 8758-03	2 0237-02	
2 0237-02	1.5194 02	0.5509	1.0150 05	2.0257 02	
AVC MW	17 2219	17 0571	17 6401	17 6401	
17 6401	17.2219	17.0071	17.0401	17.0401	
1,.0101					
38 39 40 41 INPUT					
STREAM ID	38	39	4.0	<i>A</i> 1	
TNDIIT	50	5	40	71	
FROM ·			HR-HYD-3	HR-HYD-A	
TO :	HB-HXA-3	НВ-НХА-4			B21
-					

SUBSTREAM: MIXED					
PHASE:	LIQUID	LIQUID	LIQUID	LIQUID	
VAPOR					
COMPONENTS: KMOL/HR					
AMMONIA	0.0	0.0	0.0	0.0	0.0
N2	0.0	0.0	0.0	0.0	
57.0400					
Н2	0.0	0.0	0.0	0.0	
140.4000					
ARGON	0.0	0.0	0.0	0.0	
0.6600					
WATER	97.3618	1277 2491	97.3618	1277 2491	0.0
COMPONENTS. KG/HB	0,00010	10,7,00101	57.0010	10,,,,010101	0.0
	0 0	0 0	0 0	0 0	0 0
N2	0.0	0.0	0.0	0 0	0.0
1507 8880	0.0	0.0	0.0	0.0	
цо цо	0 0	0 0	0 0	0 0	
293 0206	0.0	0.0	0.0	0.0	
	0 0	0 0	0 0	0 0	
ARGON	0.0	0.0	0.0	0.0	
	1754 0000	2 2010104	1754 0000	2 2010104	0 0
WATER	1/54.0000	2.3010+04	1/54.0000	2.3010+04	0.0
TOTAL FLOW:	07 0610	1077 0401	07 0610	1077 0401	
KMOL/HR	97.3618	12/7.2491	97.3618	1277.2491	
198.1000		0.0010.01	1	0.0010.01	
KG/HR	1754.0000	2.3010+04	1754.0000	2.3010+04	
1907.2841					
L/MIN	29.2341	383.5102	29.3784	385.4031	
2179.3562					
STATE VARIABLES:					
TEMP C	7.2222	7.2222	32.2222	32.2222	
35.0000					
PRES BAR	1.0000	1.0000	1.0000	1.0000	
39.6000					
VFRAC	0.0	0.0	0.0	0.0	
1.0000					
LFRAC	1.0000	1.0000	1.0000	1.0000	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
CAL/MOL	-6.8588+04	-6.8588+04	-6.8139+04	-6.8139+04	
69.2039					
CAL/GM	-3807.2336	-3807.2336	-3782.2820	-3782.2820	
7.1879	0007.2000		0,02,2020	0,01,1010	
CAL/SEC	-1.8550+06	-2 4335+07	-1 8428+06	-2 4175+07	
3808 1389	1.0000.00	2.1000107	1.0120100	2.11/0/0/	
ENTROPY.					
CAL/MOL-K	-40 0894	-40 0894	-38 5536	-38 5536	_
5 8566	40.0094	-0.0094	50.5550	50.5550	
CAL/GM-K	-2 2253	-2 2253	-2 1/00	-2 1/00	_
	2.2233	2.2233	2.1400	2.1400	
DENSITI:					
	5.5507-02	5.5507-02	5.5234-02	5.5234-02	
1.5150-03					

AVG MW 18.0153 18.0153 18.0153 18.0153 9.6279 OUT PURGE STREAM ID OUT PURGE FROM : HB-S-02 E20 TO : SUBSTREAM: MIXED PHASE: LIQUID VAPOR COMPONENTS: KMOL/HR AMMONIA 87.4800 5.9298-02 N2 2.0409-02 6.3324-03 H2 4.1079-03 2.28265-03 ARGON 6.2665-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN L/MIN 87.5108 6.9112-02 KG/HR 10.1325 39.6000 VFRAC 0.0 1.0000 VFRAC 0.0 1.0000	GM/CC	1.0000	1.0000	0.9951	0.9951
OUT FURGE STREAM ID OUT FURGE FROM : HB-S-02 B20 TO : SUBSTREAM: MIXED HB-S-02 B20 PHASE: LIQUID VAPOR COMPONENTS: KMOL/HR AMMONIA 87.4800 5.9298-02 N2 2.0409-02 6.3224-03 H2 4.1079-03 2.8265-03 ARGON 6.2665-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR AMMONIA 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 0.0 STATE VARIABLES: TEMP - C 20.0000	AVG MW 9.6279	18.0153	18.0153	18.0153	18.0153
STREAM ID OUT PURGE FROM : HB-5-02 B20 TO : SUBSTREAM: MIXED HIASE: LIQUID VAPOR COMPONENTS: KMOL/HR 87.4800 5.9298-02 N2 2.0409-02 6.3324-03 H2 4.1079-03 2.8265-03 ARGON 6.2665-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR AMMONIA 1489.8341 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP 2 0.0 VFRAC 0.0 1.0000 0.0 SFRAC 0.0 1.0000 SFRAC 0.0 CAL/MOL -1.6164404 -6357.6044 CAL/MOL CAL/MOL	OUT PURGE				
STREAM ID OUT PURGE FROM : HB-5-02 E20 TO : SUBSTREAM: MIXED HASE: LIQUID VAPOR COMPONENTS: KMOL/HR AMMONIA 87.4800 5.9298-02 N2 2.0409-02 6.3324-03 H2 4.1079-03 2.8265-03 ARGON 6.2655-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR AMMONIA 1489.8341 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN JARGON 0.2503 2.6183-02 WATER 0.0 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC CAL/MOL -1.6164+04 -8357.6044 CAL/MOL					
FROM : HB-S-02 B20 TO : SUBSTREAM: MIXED HASE: LIQUID VAPOR COMPONENTS: KMOL/HR ARMONIA 87.4800 5.9298-02 N2 2.0409-02 6.3324-03 H2 4.1079-03 2.8265-03 ARGON 6.2665-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR ARMONIA 1489.8341 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 0.0 LFRAC 1.0000 0.0 LFRAC 1.0000 0.0 ENTHALPY: -2.6996 -43.280 CAL/MOL -1.6164+04 -8357.6044 CAL/MOL-K -2.69696 <td>STREAM ID</td> <td>OUT</td> <td>PURGE</td> <td></td> <td></td>	STREAM ID	OUT	PURGE		
SUESTREAM: MIXED PHASE: LIQUID VAPOR COMPONENTS: KMOL/HR 87.4800 5.9298-02 N2 2.0409-02 6.3324-03 H2 4.1079-03 2.8265-03 ARGON 6.2665-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR AMMONIA 1489.8341 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN L/MIN 43.3357 1.00041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC VFRAC 0.0 1.0000 1 LFRAC 1.0000 0.0 0 STREXC 0.0 0.0 0 ENTROPY: CAL/MOL-K -45.4736 -23.4255 CAL/MOL-K	FROM : TO ·	HB-S-02	B20		
SUBSTREAM: MIXED PHASE: LIQUID VAPOR COMPONENTS: KMOL/HR 87.4800 5.9298-02 N2 2.0409-02 6.3324-03 H2 4.1079-03 2.8265-03 ARGON 6.2655-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR AMMONIA 1489.8341 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 0.0 UFRAC 1.0000 0.0 SFRAC 0.0 0.0 0 0 STREAC 0.0 0.0 0.0 0.0 0 0 0 0 CAL/MOL					
COMPONENTS: KMOL/HR 87.4800 5.9298-02 N2 2.0409-02 6.3324-03 H2 4.1079-03 2.8265-03 ARGON 6.2665-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR 1489.8341 1.0099 N2 0.5717 0.1774 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 VOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 0.0 SFRAC 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 ENTROFY: CAL/MOL	SUBSTREAM: MIXED PHASE:		VAPOR		
AMMONIA 87,4800 5.9298-02 N2 2.0409-02 6.3324-03 H2 4.1079-03 2.8265-03 ARGON 6.2665-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR 1489.8341 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 1./MIN L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC VFRAC 0.0 1.0000 0.0 SFRAC 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 ENTROPY: CAL/MOL -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/MOL CAL/MOL -1.6164+04 -8357.6044 CAL/MO	COMPONENTS: KMOL/HR	110010	VIII OIK		
N2 2.0409-02 6.3324-03 H2 4.1079-03 2.8265-03 ARGON 6.2665-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR 1489.8341 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 0.0 0 LFRAC 1.0000 0.0 0 ENTHALPY: CAL/MOL -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/SEC -3.9291+05 -160.4480 ENTROPY: CAL/SEC -3.9291+05 -160.4480 ENTROPY: CAL/SEC -3.9291+05 -160.4480 DENSITY: MOL/CC	AMMONIA	87.4800	5.9298-02		
Inc 1.1019 03 1.0109 03 ARGON 6.2665-03 6.5543-04 WATER 0.0 0.0 COMPONENTS: KG/HR 1489.8341 1.0099 NZ 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 0.0 SFRAC 0.0 0.0 0.0 ENTROPY: CAL/MOL -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/GM -948.8955 -473.7832 CAL/MOL -1.6164+04 -8357.6044 CAL/GM -23.4255 CAL/GM CAL/MOL-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02	N2 H2	2.0409-02	6.3324-03		
WATER 0.0 0.0 COMPONENTS: KG/HR 1489.8341 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 1./MIN L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 VFRAC 0.0 1.0000 0.0 VFRAC 0.0 0.0 0.0 VFRAC 0.0 0.0 0.0 VFRAC 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 ENTHALPY: -1.6164+04 -8357.6044 CAL/GM CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL-K -45.4736 -23.4255 CAL/GM-K CAL/GM-K	ARGON	6.2665-03	6.5543-04		
COMPONENTS: KG/HR 1489.8341 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 1./MIN L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 0.0 LFRAC 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 ENTHALPY: -1.6164+04 -8357.6044 CAL/MOL CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03<	WATER	0.0	0.0		
AMMONIA 1489.841 1.0099 N2 0.5717 0.1774 H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 1./MIN L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 VFRAC 0.0 1.0000 VFRAC 0.0 1.0000 SFRAC 0.0 0.0 CAL/MOL -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/GM -948.8955 -473.7832 CAL/GM -948.8955 -433.7832 CAL/GM -948.8955 -1.3280 DENSTTY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 <td>COMPONENTS: KG/HR</td> <td></td> <td>1</td> <td></td> <td></td>	COMPONENTS: KG/HR		1		
H2 8.2810-03 5.6979-03 ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 0.0 LFRAC 1.0000 0.0 SFRAC 0.0 0.0 SFRAC 0.0 0.0 ENTHALPY: -1.6164+04 -8357.6044 CAL/GM -948.8955 -473.7832 CAL/SEC -3.9291+05 -160.4480 ENTROPY: CAL/GM-K -2.6696 CAL/MOL-K -45.4736 -23.4255 CAL/MOL-K -45.4736 -23.4255 CAL/MOL-K -0.696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 B4	AMMONIA N2	1489.8341	1.0099		
ARGON 0.2503 2.6183-02 WATER 0.0 0.0 TOTAL FLOW: 87.5108 6.9112-02 KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 0.0 LFRAC 1.0000 0.0 SFRAC 0.0 0.0 STRTEAM C 0.0 0.0 0.0 SFRAC 0.0 0.0 CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/SEC -3.9291+05 -160.4480 ENTROPY: CAL/SEC -3.9291+05 -160.4480 ENTROPY: CAL/MOL-K -45.4736 -23.4255 CAL/MOL-K -45.4736 -23.4255 CAL/MOL 23.656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 - - 23 STREAM ID 23 <	H2	8.2810-03	5.6979-03		
WATER 0.0 0.0 TOTAL FLOW: KMOL/HR 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 0.0 LFRAC 1.0000 0.0 SFRAC 0.0 0.0 ENTHALPY: CAL/MOL -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL -3.9291+05 -160.4480 ENTROPY: CAL/MOL-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401	ARGON	0.2503	2.6183-02		
TOTAL FLOW: 87.5108 6.9112-02 KG/HR 1490.6644 1.2191 L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 0.0 LFRAC 1.0000 0.0 SFRAC 0.0 0.0 CAL/MOL -1.6164+04 -8357.6044 CAL/MOL-K -45.4736 -23.4255 CAL/GM-K -2.6696 -1.3280 DENSITY: MOL/CC 0.573	WATER	0.0	0.0		
KMOL/HK 01.5106 01.9112-02 KG/HR 1490.6644 1.2191 L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 1.0000 LFRAC 1.0000 0.0 SFRAC 0.0 0.0 ENTHALPY: CAL/MOL -1.6164+04 -8357.6044 CAL/MOL -45.4736 -23.4255 CAL/MOL-K -45.4736 -23.4255 CAL/MOL-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM :	TOTAL FLOW:	07 5100	6 0112 02		
L/MIN 43.3357 1.0041 STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 LFRAC 1.0000 0.0 SFRAC 0.0 0.0 ENTHALPY: CAL/MOL -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL -1.6164+04 -8357.6044 CAL/GM CAL/MOL -1.6164+04 -8357.6044 CAL/SEC CAL/MOL -1.6164+04 -8357.6044 CAL/SEC CAL/SEC -3.9291+05 -160.4480 ENTROPY: CAL/MOL-K -45.4736 -23.4255 CAL/MOL-K -26696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC QM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 EROM : B21 DO EN4 <td>KMOL/HR KG/HR</td> <td>1490.6644</td> <td>1.2191</td> <td></td> <td></td>	KMOL/HR KG/HR	1490.6644	1.2191		
STATE VARIABLES: TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 LFRAC 1.0000 0.0 SFRAC 0.0 0.0 ENTHALPY: -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/GM -948.8955 -473.7832 CAL/SEC -3.9291+05 -160.4480 ENTROPY: CAL/MOL-K -45.4736 -23.4255 CAL/MOL-K -45.4736 -23.4255 CAL/GM-K CAL/GM-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 E0 TO : B4 B4	L/MIN	43.3357	1.0041		
TEMP C 20.0000 171.0259 PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 LFRAC 1.0000 0.0 SFRAC 0.0 0.0 ENTHALPY: -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/GM -948.8955 -473.7832 CAL/SEC -3.9291+05 -160.4480 ENTROPY: - CAL/MOL-K -45.4736 -23.4255 CAL/GM-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO : B4	STATE VARIABLES:				
PRES BAR 10.1325 39.6000 VFRAC 0.0 1.0000 LFRAC 1.0000 0.0 SFRAC 0.0 0.0 ENTHALPY: -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/GM -948.8955 -473.7832 CAL/SEC -3.9291+05 -160.4480 ENTROPY: -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO B4	TEMP C	20.0000	171.0259		
LFRAC 1.0000 0.0 SFRAC 0.0 0.0 ENTHALPY: -1.6164+04 -8357.6044 CAL/MOL -1.6164+04 -8357.6044 CAL/GM -948.8955 -473.7832 CAL/SEC -3.9291+05 -160.4480 ENTROPY: -45.4736 -23.4255 CAL/MOL-K -45.4736 -23.4255 CAL/GM-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO : B4	VERAC	10.1325	39.6000		
SFRAC 0.0 0.0 ENTHALPY: -1.6164+04 -8357.6044 CAL/MOL -948.8955 -473.7832 CAL/SEC -3.9291+05 -160.4480 ENTROPY: -2.6696 -1.3280 DENSITY: MOL/CC MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO : B4	LFRAC	1.0000	0.0		
ENTHALPY: CAL/MOL -1.6164+04 -8357.6044 CAL/GM -948.8955 -473.7832 CAL/SEC -3.9291+05 -160.4480 ENTROPY: CAL/MOL-K -45.4736 -23.4255 CAL/GM-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO : B4	SFRAC	0.0	0.0		
CAL/MOL -1.6164+04 -8357.6044 CAL/GM -948.8955 -473.7832 CAL/SEC -3.9291+05 -160.4480 ENTROPY: -45.4736 -23.4255 CAL/GM-K -45.4736 -23.4255 CAL/GM-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO B4	ENTHALPY:	1 (1 (4) 0 4			
CAL/SEC -3.9291+05 -160.4480 ENTROPY: -45.4736 -23.4255 CAL/MOL-K -45.4736 -23.4255 CAL/GM-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO B4	CAL/MOL CAL/CM	-1.6164+04	-835/.6044		
ENTROPY: CAL/MOL-K -45.4736 -23.4255 CAL/GM-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO : B4	CAL/SEC	-3.9291+05	-160.4480		
CAL/MOL-K -45.4736 -23.4255 CAL/GM-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 B4	ENTROPY:				
CAL/GM-K -2.6696 -1.3280 DENSITY: MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO : B4	CAL/MOL-K	-45.4736	-23.4255		
MOL/CC 3.3656-02 1.1472-03 GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO : B4	CAL/GM-K DENSITY•	-2.6696	-1.3280		
GM/CC 0.5733 2.0237-02 AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO : B4	MOL/CC	3.3656-02	1.1472-03		
AVG MW 17.0341 17.6401 23 STREAM ID 23 FROM : B21 TO : B4	GM/CC	0.5733	2.0237-02		
23 STREAM ID 23 FROM : B21 TO : B4	AVG MW	17.0341	17.6401		
STREAM ID 23 FROM: B21 TO: B4	23				
STREAM ID23FROM :B21TO :B4					
rkom: B21 To: B4	STREAM ID	23			
	from: To:	B2⊥ B4			

SUBSTREAM: MIXED	
PHASE:	VAPOR
COMPONENTS: KMOL/HR	
AMMONIA	2.9056
N2	57.3503
Н2	140.5385
ARGON	0.6921
WATER	0.0
COMPONENTS: KG/HR	
AMMONIA	49.4840
N2	1606.5811
Н2	283.3087
ARGON	27.6487
WATER	0.0
TOTAL FLOW:	
KMOL/HR	201.4865
KG/HR	1967.0225
L/MIN	2233.1981
STATE VARIABLES:	
TEMP C	37.6133
PRES BAR	39.6000
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-72.4303
CAL/GM	-7.4192
CAL/SEC	-4053.8108
ENTROPY:	
CAL/MOL-K	-6.0069
CAL/GM-K	-0.6153
DENSITY:	
MOL/CC	1.5037-03
GM/CC	1.4680-02
AVG MW	9.7626
24	
STREAM ID	24
FROM :	В4
TO :	HB-S-01
CONV. MAX. REL. ERR:	-3.4178-03
SUBSTREAM: MIXED	
PHASE:	VAPOR
COMPONENTS: KMOL/HR	
AMMONIA	898.2631
N2	794.4302
Н2	702.1462
ARGON	33.9247
WATER	0.0

COMPONENTS: KG/HR	
AMMONIA	1.5298+04
N2	2.2255+04
Н2	1415.4425
ARGON	1355.2220
WATER	0.0
TOTAL FLOW.	0.0
KMOL/HB	2428 7642
	7 0333+04
	4.0323+04
L/MIN	5.1244+04
STATE VARIABLES:	
TEMP C	258.8/60
PRES BAR	35.1190
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-2240.4691
CAL/GM	-134.9484
CAL/SEC	-1.5115+06
ENTROPY:	
CAL/MOL-K	-9.0337
CAL/GM-K	-0.5441
DENSITY:	
MOL/CC	7 8994-04
	1 3115-02
	1.5115 02
TATIC MITAT	16 6024
avg MW	16.6024
AVG MW	16.6024
AVG MW 25	16.6024
AVG MW 25 	16.6024
AVG MW 25 	16.6024
AVG MW 25 STREAM ID	16.6024 25
AVG MW 25 STREAM ID FROM :	16.6024 25 HB-S-01
AVG MW 25 STREAM ID FROM : TO :	16.6024 25 НВ-S-01 НВ-НХА-1
AVG MW 25 STREAM ID FROM : TO :	16.6024 25 НВ-S-01 НВ-НХА-1
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED	16.6024 25 НВ-S-01 НВ-НХА-1
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE:	16.6024 25 HB-S-01 HB-HXA-1 VAPOR
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	16.6024 25 HB-S-01 HB-HXA-1 VAPOR
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0 1.3758+04
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0 1.3758+04 2.2245+04
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0 1.3758+04 2.2245+04 1415.1494
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON	25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0 1.3758+04 2.2245+04 1415.1494 1353 6625
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER	25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0 1.3758+04 2.2245+04 1415.1494 1353.6625 0.0
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW:	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0 1.3758+04 2.2245+04 1415.1494 1353.6625 0.0
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HP	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0 1.3758+04 2.2245+04 1415.1494 1353.6625 0.0 2337.7977
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KC/HP	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0 1.3758+04 2.2245+04 1415.1494 1353.6625 0.0 2337.7977 3.8772+04
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR I (MIN)	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0 1.3758+04 2.2245+04 1415.1494 1353.6625 0.0 2337.7977 3.8772+04 2.2697+04
AVG MW 25 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN STATE VAPLABLES.	16.6024 25 HB-S-01 HB-HXA-1 VAPOR 807.8182 794.0931 702.0008 33.8856 0.0 1.3758+04 2.2245+04 1415.1494 1353.6625 0.0 2337.7977 3.8772+04 2.3697+04

TEMP C	30.0000
PRES BAR	39.6000
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
CAL/MOL	-3873.1588
CAL/GM	-233.5378
CAL/SEC	-2.5152+06
CAL/MOL-K CAL/GM-K DENSITY:	-13.3370 -0.8042
MOL/CC	1.6442-03
GM/CC	2.7269-02
AVG MW	16.5847
26	
STREAM ID	26
FROM :	HB-HXA-1
TO :	HB-CP-03
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR
AMMONIA	807.8182
N2	794.0931
H2	702.0008
ARGON	33.8856
WATER	0.0
COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER	1.3758+04 2.2245+04 1415.1494 1353.6625 0.0
KMOL/HR	2337.7977
KG/HR	3.8772+04
L/MIN	2.9475+04
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	90.0000 39.2553 1.0000 0.0 0.0
CAL/MOL	-3380.8224
CAL/GM	-203.8516
CAL/SEC	-2.1955+06
ENTROPY: CAL/MOL-K	-11.8379

CAL/GM-K	-0.7138
DENSITY:	
MOL/CC	1.3219-03
GM/CC	2.1924-02
AVG MW	16.5847
27	
STREAM ID	27
FROM :	HB-CP-03
то :	HB-HXA-2
SUBSTREAM: MIXED	
PHASE:	VAPOR
COMPONENTS: KMOL/HR	
AMMONIA	807.8182
N2	794.0931
Н2	702.0008
ARGON	33.8856
WATER	0.0
COMPONENTS: KG/HR	
AMMONIA	1.3758+04
N2	2.2245+04
Н2	1415.1494
ARGON	1353.6625
WATER	0.0
TOTAL FLOW:	
KMOL/HR	2337.7977
KG/HR	3.8772+04
L/MIN	1.8737+04
STATE VARIABLES:	
TEMP C	192.5954
PRES BAR	81.0600
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-2587.0749
CAL/GM	-155.9915
CAL/SEC	-1.6800+06
ENTROPY:	
CAL/MOL-K	-11.3468
CAL/GM-K	-0.6842
DENSITY:	
MOL/CC	2.0795-03
GM/CC	3.4488-02
AVG MW	16.5847
28	
STREAM ID	28
FROM :	HB-HXA-2

CONV. MAX. REL. ERR:	6.5813-02
PHASE:	VAPOR
AMMONIA	807.8182
N2	794.0931
H2	702.0008
ARGON	33.8856
WATER	0.0
AMMONIA	1.3758+04
N2	2.2245+04
H2	1415.1494
ARGON	1353.6625
WATER	0.0
KMOL/HR	2337.7977
KG/HR	3.8772+04
L/MIN	2.0227+04
TEMP C	225.0000
PRES BAR	80.7153
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY: CAL/MOL CAL/GM CAL/SEC	-2311.4996 -139.3753 -1.5011+06
CAL/MOL-K	-10.7663
CAL/GM-K	-0.6492
MOL/CC	1.9263-03
GM/CC	3.1947-02
AVG MW	16.5847
29	
STREAM ID	29
FROM :	HB-RXN
TO :	HB-HXA-2
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR
AMMONIA	873.5322
N2	698.2629
H2	561.5493
ARGON	32.7816

TO :

HB-RXN

WATER	0.0
COMPONENTS: KG/HR	
AMMONIA	1.4877+04
N2	1.9561+04
Н2	1132.0160
ARGON	1309.5581
WATER	0.0
TOTAL FLOW:	
KMOL/HR	2166.1259
KG/HR	3.6879+04
L/MIN	2.5421+04
STATE VARIABLES:	
TEMP C	400.0000
PRES BAR	81.0600
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-1386.1469
CAL/GM	-81.4166
CAL/SEC	-8.3405+05
ENTROPY:	
CAL/MOL-K	-9.4569
CAL/GM-K	-0.5555
DENSITY:	
MOL/CC	1.4202-03
CM/CC	
GM/ CC	2.4179-02
AVG MW	2.4179-02 17.0254
AVG MW	2.4179-02 17.0254
AVG MW 30	2.4179-02 17.0254
AVG MW 30 	2.4179-02 17.0254
AVG MW 30 	2.4179-02 17.0254
AVG MW 30 STREAM ID FROM •	2.4179-02 17.0254 30 HB-HXA-2
AVG MW 30 STREAM ID FROM : TO	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3
AVG MW 30 STREAM ID FROM : TO :	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE:	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816 0.0
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816 0.0
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816 0.0 1.4877+04
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816 0.0 1.4877+04 1.9561+04
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 H2	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816 0.0 1.4877+04 1.9561+04 1132.0160
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816 0.0 1.4877+04 1.9561+04 1132.0160 1309.5581
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER	30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816 0.0 1.4877+04 1.9561+04 1132.0160 1309.5581 0.0
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW:	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816 0.0 1.4877+04 1.9561+04 1132.0160 1309.5581 0.0
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816 0.0 1.4877+04 1.9561+04 1132.0160 1309.5581 0.0 2166.1259
AVG MW 30 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR	2.4179-02 17.0254 30 HB-HXA-2 HB-HXA-3 VAPOR 873.5322 698.2629 561.5493 32.7816 0.0 1.4877+04 1.9561+04 1132.0160 1309.5581 0.0 2166.1259 3.6879+04

STATE VARIABLES:	
TEMP C	367.0686
PRES BAR	81.0600
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-1683.5624
CAL/GM	-98.8855
CAL/SEC	-1.0130+06
ENTROPY:	
CAL/MOL-K	-9,9099
CAL/GM-K	-0 5821
DENSITY ·	0.0021
MOL/CC	1 4950-03
	25453-02
	2.3433-02
AVG MW	17.0234
21	
51	
STREAM ID	31
FROM .	AD-AAV-3
	UD_UVA_1
	IID IIAA I
CONV MAX REL ERR.	-5 2808-02
CUNV. MAA. REL. ERR.	-3.2000-02
SUBSTREAM: MIXED	
PHASE:	VAPOR
COMPONENTS: KMOL/HR	
AMMONIA	8/3.5322
N2	698.2629
H2	561.5493
ARGON	32.7816
WATER	0.0
COMPONENTS: KG/HR	
AMMONIA	1.4877+04
N2	1.9561+04
Н2	1132.0160
ARGON	1309.5581
WATER	0.0
TOTAL FLOW:	
KMOL/HR	2166.1259
KG/HR	3.6879+04
L/MIN	2.4162+04
STATE VARIABLES:	
TEMP C	364.8045
PRES BAR	80.7153
VFRAC	1 0000
LEBAC	0 0
SFRAC	
FNTHALDY ·	0.0
	-1703 7667
CAL/MOL	_100.700/
CAL/ GM	-100.0722

CAL/SEC	-1.0252+06
ENTROPY:	
CAL/MOL-K	-9.9329
CAL/GM-K	-0.5834
DENSITY:	
MOL/CC	1.4942-03
GM/CC	2.5439-02
AVG MW	17.0254
2.2	
32	
STREAM ID	32
FROM ·	92 HB-HYA-1
	HB-HXA-4
	IID IIMA 4
SUBSTREAM: MIXED	
PHASE ·	VAPOR
COMPONENTS · KMOL/HR	VIII OIK
AMMONITA	895.4369
N2	737.1927
H2	561.5867
ARGON	33.2336
WATER	0.0
COMPONENTS: KG/HR	
AMMONIA	1.5250+04
N2	2.0651+04
Н2	1132.0913
ARGON	1327.6169
WATER	0.0
TOTAL FLOW:	
KMOL/HR	2227.4499
KG/HR	3.8361+04
L/MIN	5.0674+04
STATE VARIABLES:	
TEMP C	305.5963
PRES BAR	35.4637
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-2187.2785
CAL/GM	-127.0059
CAL/SEC	-1.3533+06
ENTROPY:	
CAL/MOL-K	-9.0742
CAL/GM-K	-0.5269
DENSITY:	
MOL/CC	7.3260-04
GM/CC	1.2617-02
AVG MW	17.2219

STREAM ID	33
FROM :	HB-HXA-4
TO :	В4
CUDCEDDEAM. MIVED	
SUBSIREAM: MIXED	
PHASE:	VAPOR
COMPONENTS: KMOL/HR	00E 12C0
AMMONIA N2	093.4309
NZ U2	561 5867
	33 2336
MATED	0 0
COMPONENTS. KC/HB	0.0
	1 5250+04
N2	2.0651+04
Н2	1132 0913
ARGON	1327 6169
WATER	0.0
TOTAL FLOW.	0.0
KMOL/HR	2227.4499
KG/HR	3.8361+04
L/MIN	4.8457+04
STATE VARIABLES:	
TEMP C	275.6711
PRES BAR	35.1190
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-2445.0335
CAL/GM	-141.9727
CAL/SEC	-1.5128+06
ENTROPY:	
CAL/MOL-K	-9.5120
CAL/GM-K	-0.5523
DENSITY:	
MOL/CC	7.6612-04
GM/CC	1.3194-02
AVG MW	17.2219
2.4	
J-	
STREAM ID	34
FROM :	HB-S-01
TO :	HB-S-02
SUBSTREAM: MIXED	
PHASE:	LIQUID
COMPONENTS: KMOL/HR	
AMMONIA	90.4449
N2	0.3370
Н2	0.1454

ARGON	3.9038-02
WATER	0.0
COMPONENTS: KG/HR	1 - 4 0 0 0 0 0
AMMONIA	1540.3279
N2	9.4413
H2	0.2932
ARGON	1.5595
WATER	0.0
TOTAL FLOW:	
KMOL/HR	90.9664
KG/HR	1551.6219
L/MIN	46.4395
STATE VARIABLES:	
TEMP C	30.0000
PRES BAR	39.6000
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
	-1.5846+04
CAL/GM	-929 0029
CAL/SEC	-4 0041+05
ENTRODY .	4.0041105
CAL/MOL-K	-11 5577
CAL/MOL K	2 6102
CAL/GM-R	-2.0123
DENSITY:	2 2647 02
MOL/CC	3.264/-02
GM/CC	0.5569
AVG MW	1/.05/1
35	
STREAM ID	35
FROM ·	HB-S-02
	HB-CP-02
· ·	
CURCTDEAM. MIVED	
DUACE.	
CONDONENES, KNOI (UD	VAPOR
COMPONENTS: KMOL/HR	0 0 0 0 1 0
AMMONIA	2.9649
N2	0.3166
H2	0.1413
ARGON	3.2772-02
WATER	0.0
COMPONENTS: KG/HR	
AMMONIA	50.4939
N2	8.8696
Н2	0.2849
ARGON	1.3092
WATER	0.0
TOTAL FLOW:	
KMOL/HR	3.4556
KG/HR	60.9575

L/MIN	128.9968
STATE VARIABLES:	
TEMP C	20.0000
PRES BAR	10.1325
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-9566.0182
CAL/GM	-542,2868
CAL/SEC	-9182.3445
ENTROPY ·	9102.0110
CAL/MOL-K	-24 2168
CAL/CM-K	_1 3728
CAL/GM-N DENCITY ·	-1.3720
DENSIII.	
MOL/CC	4.464/-04
GM/CC	1.8/58-03
AVG MW	1/.6401
36	
STREAM ID	36
FROM :	HB-CP-02
TO :	B20
SUBSTREAM: MIXED	
PHASE:	VAPOR
PHASE: COMPONENTS: KMOL/HR	VAPOR
PHASE: COMPONENTS: KMOL/HR AMMONIA	VAPOR 2.9649
PHASE: COMPONENTS: KMOL/HR AMMONIA N2	VAPOR 2.9649 0.3166
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2	VAPOR 2.9649 0.3166 0.1413
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON	VAPOR 2.9649 0.3166 0.1413 3.2772-02
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW:	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HP	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HP	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN STATE VARIABLES:	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN STATE VARIABLES: TEMP C	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032 171.0260 20.000
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN STATE VARIABLES: TEMP C PRES BAR	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032 171.0260 39.6000
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN STATE VARIABLES: TEMP C PRES BAR VFRAC	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032 171.0260 39.6000 1.0000
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032 171.0260 39.6000 1.0000 0.0
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032 171.0260 39.6000 1.0000 0.0
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY:	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032 171.0260 39.6000 1.0000 0.0
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY: CAL/MOL	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032 171.0260 39.6000 1.0000 0.0 -8357.6044
PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR L/MIN STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY: CAL/MOL CAL/GM	VAPOR 2.9649 0.3166 0.1413 3.2772-02 0.0 50.4939 8.8696 0.2849 1.3092 0.0 3.4556 60.9575 50.2032 171.0260 39.6000 1.0000 0.0 -8357.6044 -473.7832

ENTROPY:	
CAL/MOL-K	-23.4255
CAL/GM-K	-1.3280
DENSITY:	
MOL/CC	1.1472-03
GM/CC	2.0237-02
AVG MW	17.6401
37	
STREAM ID	37
FROM :	B20
TO :	B21
SUBSTREAM: MIXED	
PHASE:	VAPOR
COMPONENTS: KMOL/HR	
AMMONIA	2.9056
N2	0.3103
H2	0.1385
ARGON	3.2116-02
WATER	0.0
COMPONENTS: KG/HR	
AMMONIA	49.4840
N2	8.6922
H2	0.2792
ARGON	1.2830
WATER	0.0
TOTAL FLOW:	0 00.05
KMOL/HR	3.3865
KG/HR	59./383
L/MIN	49.1991
STATE VARIABLES:	1 7 1 00 5 0
TEMP C	1/1.0259
PRES BAR	39.6000
VERAC	1.0000
	0.0
SFRAC	0.0
ENTHALPI:	0257 6044
CAL/MOL	-0337.0044
CAL/GM CAL/SEC	-4/3./032
CAL/SEC FNTDODV.	/001.949/
CAL/MOL-K	-23 1255
CAL/MOL K	_1 3780
DENSITY.	1.3200
MOL/CC	1 1472-03
GM/CC	2 0237 - 02
AVG MW	17 6401
17 1 1.114	T1.0401

38

--

STREAM ID	38
FROM :	
TO :	HB-HXA-3
SUBSTREAM: MIXED PHASE:	LIQUID
COMPONENTS: KMOL/HR	
AMMONIA	0.0
N2	0.0
H2	0.0
ARGON	0.0
COMPONENTS, KC/HD	97.3010
AMMONITA	0 0
N2	0.0
H2	0.0
ARGON	0.0
WATER	1754.0000
TOTAL FLOW:	
KMOL/HR	97.3618
KG/HR	1754.0000
L/MIN	29.2341
STATE VARIABLES:	7 0000
TEMP C	1.2222
PRES BAR	1.0000
VERAC LEDAC	1 0000
SFRAC	1.0000
ENTHALPY:	0.0
CAL/MOL	-6.8588+04
CAL/GM	-3807.2336
CAL/SEC	-1.8550+06
ENTROPY:	
CAL/MOL-K	-40.0894
CAL/GM-K	-2.2253
DENSITY:	
MOL/CC	5.5507-02
GM/CC	10 0152
AVG MW	18.0155
39	
STREAM ID	39
FROM :	
TO :	НВ-НХА-4
SUBSTREAM. MIVED	
PHASE:	ΤΤΟΠΤΟ
COMPONENTS: KMOL/HR	
AMMONIA	0.0
N2	0.0
Н2	0.0
ARGON	0.0

WATER	1277.2491
COMPONENTS: KG/HR	
AMMONIA	0.0
N2	0.0
Н2	0.0
ARGON	0.0
WATER	2.3010+04
TOTAL FLOW:	
KMOL/HR	1277.2491
KG/HR	2.3010+04
L/MIN	383.5102
STATE VARIABLES:	
TEMP C	7.2222
PRES BAR	1.0000
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-6.8588+04
CAL/GM	-3807.2336
CAL/SEC	-2.4335+07
ENTROPY:	
CAL/MOL-K	-40.0894
CAL/GM-K	-2.2253
DENSITY:	
MOL/CC	5.5507-02
GM/CC	1.0000
GM/CC AVG MW	1.0000 18.0153
GM/CC AVG MW	1.0000 18.0153
GM/CC AVG MW 40	1.0000 18.0153
GM/CC AVG MW 40 	1.0000 18.0153
GM/CC AVG MW 40 	1.0000 18.0153
GM/CC AVG MW 40 STREAM ID	1.0000 18.0153 40
GM/CC AVG MW 40 STREAM ID FROM :	1.0000 18.0153 40 HB-HXA-3
GM/CC AVG MW 40 STREAM ID FROM : TO :	1.0000 18.0153 40 HB-HXA-3
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED	1.0000 18.0153 40 HB-HXA-3
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE:	1.0000 18.0153 40 HB-HXA-3
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	1.0000 18.0153 40 HB-HXA-3 LIQUID
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 0.0 0.0
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 0.0 0.0 97.3618
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 0.0 0.0 97.3618
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 0.0 97.3618 0.0
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 0.0 97.3618 0.0 0.0
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 0.0 97.3618 0.0 0.0 0.0 0.0
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 0.0 97.3618 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 0.0 97.3618 0.0 0.0 97.3618 0.0 0.0 0.0 0.0 1754.0000
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW:	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 97.3618 0.0 0.0 97.3618 0.0 0.0 0.0 0.0 1754.0000
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 0.0 97.3618 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
GM/CC AVG MW 40 STREAM ID FROM : TO : SUBSTREAM: MIXED PHASE: COMPONENTS: MOL/HR AMMONIA N2 H2 ARGON WATER COMPONENTS: KG/HR AMMONIA N2 H2 ARGON WATER TOTAL FLOW: KMOL/HR KG/HR	1.0000 18.0153 40 HB-HXA-3 LIQUID 0.0 0.0 0.0 0.0 97.3618 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

STATE VARIABLES:	
TEMP C	32.2222
PRES BAR	1.0000
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-6.8139+04
CAL/GM	-3782.2820
CAL/SEC	-1.8428+06
ENTROPY:	
CAL/MOL-K	-38.5536
CAL/GM-K	-2.1400
DENSITY ·	2.1100
MOL/CC	5 5234-02
	0 9951
	10.99JI
AVG MW	10.0133
11	
41	
SUDEAM ID	/ 1
EDOM	41 IID IIVA (
FROM :	НВ-НХА-4
10 :	
SUBSTREAM: MIXED	
PHASE:	LIQUID
COMPONENTS: KMOL/HR	0 0
AMMONIA	0.0
N2	0.0
H2	0.0
ARGON	0.0
WATER	1277.2491
COMPONENTS: KG/HR	
AMMONIA	0.0
N2	0.0
Н2	0.0
ARGON	0.0
WATER	2.3010+04
TOTAL FLOW:	
KMOL/HR	1277.2491
KG/HR	2.3010+04
L/MIN	385.4031
STATE VARIABLES:	
TEMP C	32.2222
PRES BAR	1.0000
VFRAC	0.0
LFRAC	1,0000
SFRAC	0.0
ENTHALPY ·	0.0
CAT./MOT.	-6 8139+04
CAL/MOL	-6.8139+04
CAL/MOL CAL/GM	-6.8139+04 -3782.2820 -2.4175+07
CAL/MOL CAL/GM CAL/SEC	-6.8139+04 -3782.2820 -2.4175+07

CAL/MOL-K	-38.5536
CAL/GM-K	-2.1400
DENSITY:	
MOL/CC	5.5234-02
GM/CC	0.9951
AVG MW	18.0153
	10.0100
INPUT	
STREAM ID	ΤΝΡΙΙΨ
FROM ·	
	B21
10 .	DZI
SUBSTDEAM. MIYED	
DUNCE.	
COMPONENTS, KNOL /UD	VAPOR
AMMONIA	0 0
AMMONIA	
NZ	57.0400
HZ	140.4000
ARGON	0.6600
WATER	0.0
COMPONENTS: KG/HR	
AMMONIA	0.0
N2	1597.8889
H2	283.0296
ARGON	26.3657
WATER	0.0
TOTAL FLOW:	
KMOL/HR	198.1000
KG/HR	1907.2841
L/MIN	2179.3562
STATE VARIABLES:	
TEMP C	35.0000
PRES BAR	39.6000
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	69.2039
CAL/GM	7.1879
CAL/SEC	3808.1389
ENTROPY:	
CAL/MOL-K	-5.8566
CAL/GM-K	-0.6083
DENSITY ·	0.0000
MOL/CC	1.5150-03
GM/CC	1 4586-02
AVG MW	9 6279
11 V J 1.1VV	J. UZ I J
OIIT	
STREAM ID	OUT
~	~ ~ -

FROM	:	HB-S-02
ТО	:	
SUBST	REAM: MIXED	
PHASE	:	LIQUID
COMPO	NENTS: KMOL/HR	
AMM	ONIA	87.4800
N2		2.0409-02
Н2		4.1079-03
ARG	ON	6.2665-03
WAT	ER	0.0
COMPO	NENTS: KG/HR	
AMM	ONIA	1489.8341
N2	-	0.5717
н2		8.2810-03
ARG	ON	0.2503
WAT	ER	0 0
TOTAL	FLOW	0.0
KWU	I LOW.	87 5108
KMO		1400 6644
T /M		12 2257
∟/М сплпп		43.3357
STATE	VARIABLES:	
TEM		20.0000
PRE	S BAR	10.1325
VF'R	AC	0.0
LF'R	AC	1.0000
SFR	AC	0.0
ENTHA	LPY:	
CAL	/MOL -	-1.6164+04
CAL	/GM	-948.8955
CAL	-/SEC -	-3.9291+05
ENTRO	PY:	
CAL	/MOL-K	-45.4736
CAL	/GM-K	-2.6696
DENSI	TY:	
MOL	/CC	3.3656-02
GM/	CC	0.5733
AVG M	W	17.0341
PURGE		
STREA	M ID	PURGE
FROM	•	В20
ТО	•	
SUBST	REAM: MIXED	
PHASE	:	VAPOR
COMPO	NENTS: KMOL/HR	
AMM	ONIA	5.9298-02
N2		6.3324-03
н2		2.8265-03
ARG	ON	6.5543-04
WAT	ER	0.0
		J • J

COMPONENTS: KG/HR	
AMMONIA	1.0099
N2	0.1774
Н2	5.6979-03
ARGON	2.6183-02
WATER	0.0
TOTAL FLOW:	
KMOL/HR	6.9112-02
KG/HR	1.2191
L/MIN	1.0041
STATE VARIABLES:	
TEMP C	171.0259
PRES BAR	39.6000
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
CAL/MOL	-8357.6044
CAL/GM	-473.7832
CAL/SEC	-160.4480
ENTROPY:	
CAL/MOL-K	-23.4255
CAL/GM-K	-1.3280
DENSITY:	
MOL/CC	1.1472-03
GM/CC	2.0237-02
AVG MW	17.6401

C.1.1: Compressed Air

Safety Data Sheet according to Regulation (EU) 2015/830

Air Liquide

Compressed Air Date of issue: 20/12/2010

Supersedes: 18/12/2015

```
Revision date: 10/07/2019
```

Version: 1.2

```
SDS reference: 2010492
```


Warning

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier	
Trade name	: Compressed Air, Alphahaz™Air, Smartop™Air, Purified Air, Medical Air
SDS no	: 2010492
1.2. Relevant identified uses of the subs	tance or mixture and uses advised against
Relevant identified uses	: Industrial and professional. Perform risk assessment prior to use.
	Contact supplier for more information on uses.
	Test gas/Calibration gas.
	Purging.
	Laboratory use.
Uses advised against	: None.
1.3. Details of the supplier of the safety	data sheet
Company identification	: AIR LIQUIDE SINGAPORE PTE LTD HEAD OFFICE : 2 VENTURE DRIVE, VISION EXCHANGE, #22-28, SINGAPORE 608526 SPECIALGASES OFFICE, NO 24 JALAN BUROH SINGAPORE 619480 T +65 6 265 3788 <u>https://industry.airliquide.sg/resources/safety-data-sheets-sds</u> Sg-info@airliquide.com
1.4. Emergency telephone number	
Emergency telephone number	: +65 6265 3788, +65 9619 9229 (After Office Hour)
SECTION 2: Hazards identificati	on
2.1. Classification of the substance or m	<u>iixture</u>

Classification according to Regulation (EC) No. 1272/2008 [CLP]		
Physical hazards	Gases under pressure : Compressed gas	

2.2. Label elements

Labelling according to Degulation (EC) No. 1272/2009								
Lapenniu accordinu lo Regulation (EC) NO. $12/2/2000$	2/2008 [C]	. 1272/200	;) No.	(EC)	to Regulation	ı to	according	Labelling

Hazard pictograms (CLP)

	GHS04
Signal word (CLP)	: Warning
Hazard statements (CLP)	: H280 - Contains gas under pressure; may explode if heated.

:

AIR LIQUIDE SINGAPORE PTE LTD HEAD OFFICE : 2 VENTURE DRIVE, VISION EXCHANGE, #22-28, SINGAPORE 608526 SPECIALGASES OFFICE, NO 24 JALAN BUROH SINGAPORE 619480 +65 6 265 3788

EN (English)

SDS Ref.: 2010492

H280

Precautionary statements (CLP)

- Storage : P403 - Store in a well-ventilated place.

2.3. Other hazards

: None.

SECTION 3: Composition/information on ingredients

3.1. Substances : Not applicable

3.2. Mixtures

Name	Product identifier	%	Classification according to Regulation (EC) No. 1272/2008 [CLP]
Nitrogen	(CAS-No.) 7727-37-9 (EC-No.) 231-783-9 (EC Index-No.) (REACH-no) *1	79	Press. Gas (Comp.), H280
Oxygen	(CAS-No.) 7782-44-7 (EC-No.) 231-956-9 (EC Index-No.) 008-001-00-8 (REACH-no) *1	21	Ox. Gas 1, H270 Press. Gas (Comp.), H280

Full text of H-statements: see section 16

Contains no other components or impurities which will influence the classification of the product.

*1: Listed in Annex IV / V REACH, exempted from registration.

*2: Registration deadline not expired.

*3: Registration not required: Substance manufactured or imported < 1t/y.

SECTION 4: First aid measures

4.1. Description of first aid measures

- Inhalation	: Remove victim to uncontaminated area wearing self contained breathing apparatus. Keep victim warm and rested. Call a doctor. Apply artificial respiration if breathing stopped.	
- Skin contact	: Adverse effects not expected from this product.	
- Eye contact	: Adverse effects not expected from this product.	
- Ingestion : Ingestion is not considered a potential route of exposure.		
4.2. Most important symptoms and effects, both acute and delayed		

- : No effect on living tissue.
 - Refer to section 11.

4.3. Indication of any immediate medical attention and special treatment needed

: None.

SECTION 5: Firefighting measures

5.1. Extinguishing media

Compressed Air

SDS Ref.: 2010492

- Suitable extinguishing media	:	Water spray or fog.
- Unsuitable extinguishing media	:	Do not use water jet to extinguish.
5.2. Special hazards arising from the substan	се	or mixture
Specific hazards	:	Exposure to fire may cause containers to rupture/explode. Supports combustion.
Hazardous combustion products	:	None.
5.3. Advice for firefighters		
Specific methods	:	Use fire control measures appropriate for the surrounding fire. Exposure to fire and heat radiation may cause gas receptacles to rupture. Cool endangered receptacles with water spray jet from a protected position. Prevent water used in emergency cases from entering sewers and drainage systems.
		If possible, stop flow of product.
		Use water spray or fog to knock down fire fumes if possible.
		Move containers away from the fire area if this can be done without risk.
		In confined space use self-contained breathing apparatus.
		Standard EN 137 - Self-contained open-circuit compressed air breathing apparatus with full face mask.
Special protective equipment for fire fighters	:	Standard protective clothing and equipment (Self Contained Breathing Apparatus) for fire fighters.
		Standard EN 469 - Protective clothing for firefighters. Standard - EN 659: Protective gloves for firefighters.
		Standard EN 137 - Self-contained open-circuit compressed air breathing apparatus with full face mask.
		In confined space use self-contained breathing apparatus.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

:	Ensure adequate air ventilation.		
	Act in accordance with local emergency plan.		
	Stay upwind.		
	Try to stop release.		
	Evacuate area.		
	Wear self-contained breathing apparatus when entering area unless atmosphere is proved to be safe.		
	Oxygen detectors should be used when asphyxiating gases may be released.		
6.2. Environmental precautions			
:	Try to stop release.		
	None.		
6.3. Methods and material for containment and cleaning up			
:	Ventilate area.		
	None.		
6.4. Reference to other sections			
:	See also sections 8 and 13.		

SECTION 7: Handling and storage

EN (English)

Compressed Air

7.1. Precautions for safe handling Safe use of the product : The product must be handled in accordance with good industrial hygiene and safety procedures. Only experienced and properly instructed persons should handle gases under pressure. Consider pressure relief device(s) in gas installations. Ensure the complete gas system was (or is regularily) checked for leaks before use. Do not smoke while handling product. Use only properly specified equipment which is suitable for this product, its supply pressure and temperature. Contact your gas supplier if in doubt. Use only oxygen approved lubricants and oxygen approved sealings. Avoid suck back of water, acid and alkalis. Do not breathe gas. Avoid release of product into work area. Safe handling of the gas receptacle Refer to supplier's container handling instructions. Do not allow backfeed into the container. Protect cylinders from physical damage; do not drag, roll, slide or drop. When moving cylinders, even for short distances, use a cart (trolley, hand truck, etc.) designed to transport cylinders. Leave valve protection caps in place until the container has been secured against either a wall or bench or placed in a container stand and is ready for use. If user experiences any difficulty operating cylinder valve discontinue use and contact supplier. Never attempt to repair or modify container valves or safety relief devices. Damaged valves should be reported immediately to the supplier. Keep container valve outlets clean and free from contaminants particularly oil and water. Replace valve outlet caps or plugs and container caps where supplied as soon as container is disconnected from equipment. Close container valve after each use and when empty, even if still connected to equipment. Never attempt to transfer gases from one cylinder/container to another. Never use direct flame or electrical heating devices to raise the pressure of a container. Do not remove or deface labels provided by the supplier for the identification of the cylinder contents. Suck back of water into the container must be prevented. Open valve slowly to avoid pressure shock. 7.2. Conditions for safe storage, including any incompatibilities : Observe all regulations and local requirements regarding storage of containers. Containers should not be stored in conditions likely to encourage corrosion. Container valve guards or caps should be in place. Containers should be stored in the vertical position and properly secured to prevent them from falling over. Stored containers should be periodically checked for general condition and leakage. Keep container below 50°C in a well ventilated place. Store containers in location free from fire risk and away from sources of heat and ignition. Keep away from combustible materials.

7.3. Specific end use(s)

: None.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

🖸 Air Liquid	е
--------------	---

Compressed Air

OEL (Occupational Exposure Limits)	:	None available.
DNEL (Derived-No Effect Level)	:	None available.
PNEC (Predicted No-Effect Concentration)	:	None available.
8.2. Exposure controls		
8.2.1. Appropriate engineering controls		
	:	Systems under pressure should be regularily checked for leakages.
		Consider the use of a work permit system e.g. for maintenance activities.
		Provide adequate general and local exhaust ventilation.
		Oxygen detectors should be used when asphyxiating gases may be released.
8.2.2. Individual protection measures, e.g. J	perso	nal protective equipment
	:	A risk assessment should be conducted and documented in each work area to assess the risks related to the use of the product and to select the PPE that matches the relevant risk. The following recommendations should be considered: PPE compliant to the recommended EN/ISO standards should be selected.
Eye/face protection	:	Wear safety glasses with side shields. Standard EN 166 - Personal eye-protection - specifications.
Skin protection		
- Hand protection	:	Wear working gloves when handling gas containers.
		Standard EN 388 - Protective gloves against mechanical risk.
- Other	:	Wear safety shoes while handling containers. Standard EN ISO 20345 - Personal protective equipment - Safety footwear.
Respiratory protection	:	Self contained breathing apparatus (SCBA) or positive pressure airline with mask are to be used in oxygen-deficient atmospheres. Standard EN 137 - Self-contained open-circuit compressed air breathing apparatus with full face mask. None necessary.
Thermal hazards	:	None in addition to the above sections.
8.2.3. Environmental exposure controls		Defende least resulting for restriction of emissions to the stress have 0 as section 10 for
		Rejecto local requiations for restriction of emissions to the atmosphere. See section 1.3 for

 Refer to local regulations for restriction of emissions to the atmosphere. See section 13 for specific methods for waste gas treatment. None necessary.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

• Physical state at 20°C / 101.3kPa	: Gas
• Colour	: Mixture contains one or more component(s) which have the following colour(s):
Odour	: Odourless.
Odour threshold	: Odour threshold is subjective and inadequate to warn of overexposure.
рН	: Not applicable for gases and gas mixtures.
Melting point / Freezing point	: Not known

Appearance

Compressed Air

SDS Ref.: 2010492

Boiling point	: Not known
Flash point	: Not applicable for gases and gas mixtures.
Evaporation rate	: Not applicable for gases and gas mixtures.
Flammability (solid, gas)	: Non flammable.
Explosive limits	· Non flammable.
Vapour pressure [20°C]	: Not applicable.
Vapour pressure [50°C]	: Not applicable.
Vapour density	: Not applicable.
Relative density, gas (air=1)	: 1
Partition coefficient n-octanol/water (Log Kow)	: Not applicable for inorganic products.
Auto-ignition temperature	: Non flammable.
Decomposition temperature	: Not applicable.
Viscosity, kinematic	: No reliable data available.
Explosive properties	: Not applicable.
Oxidising properties	: Not applicable.
9.2. Other information	
Molar mass	: 29 g/mol
Other data	: None.

SECTION 10: Stability and reactivity

10.1. Reactivity	
	: No reactivity hazard other than the effects described in sub-sections below.
10.2. Chemical stability	
	: Stable under normal conditions.
10.3. Possibility of hazardous reactions	
	: None.
10.4. Conditions to avoid	
	: Avoid moisture in installation systems.
10.5. Incompatible materials	
	: For additional information on compatibility refer to ISO 11114.
	None.
10.6. Hazardous decomposition products	
	: Under normal conditions of storage and use, hazardous decomposition products should not be produced.

SECTION 11: Toxicological information

11.1. Information on toxicological effects	
Acute toxicity	: No toxicological effects from this product.
Skin corrosion/irritation	: No known effects from this product.
Serious eye damage/irritation	: No known effects from this product.
Respiratory or skin sensitisation	: No known effects from this product.
Germ cell mutagenicity	: No known effects from this product.
Carcinogenicity	: No known effects from this product.

Compressed Air

SDS Ref.: 2010492

Toxic for reproduction : Fertility	:	No known effects from this product.
Toxic for reproduction : unborn child	:	No known effects from this product.
STOT-single exposure	:	No known effects from this product.
STOT-repeated exposure	:	No known effects from this product.
Aspiration hazard	:	Not applicable for gases and gas mixtures.

SECTION 12: Ecological information

12.1. Toxicity

Assessment	: No ecological damage caused by this product.
EC50 48h - Daphnia magna [mg/l]	: No data available.
EC50 72h - Algae [mg/l]	: No data available.
LC50 96 h - Fish [mg/l]	: No data available.
12.2. Persistence and degradability	
Assessment	: No ecological damage caused by this product.
12.3. Bioaccumulative potential	
Assessment	: No data available.
<u>12.4. Mobility in soil</u>	
Assessment	: Because of its high volatility, the product is unlikely to cause ground or water pollution. Partition into soil is unlikely.
12.5. Results of PBT and vPvB assessment	
Assessment	: No data available.
12.6. Other adverse effects	
Other adverse effects	: No known effects from this product.
Effect on the ozone layer	: None.
Effect on global warming	: No known effects from this product.

SECTION 13: Disposal considerations

<u>13.1. Waste treatment methods</u>	
	Contact supplier if guidance is required.
	Do not discharge into any place where its accumulation could be dangerous.
	Ensure that the emission levels from local regulations or operating permits are not exceeded.
	Refer to the EIGA code of practice Doc.30 "Disposal of Gases", downloadable at http://www.eiga.eu for more guidance on suitable disposal methods.
	Return unused product in original cylinder to supplier.
	May be vented to atmosphere in a well ventilated place.
	May be vented to atmosphere.
List of hazardous waste codes (from Commission Decision 2000/532/EC as amended)	: 16 05 05 : Gases in pressure containers other than those mentioned in 16 05 04.

Compressed Air

13.2. Additional information

: External treatment and disposal of waste should comply with applicable local and/or national regulations.

SECTION 14: Transport information	n	
<u>14.1. UN number</u>		
UN-No.	: 1002	
14.2. UN proper shipping name		
Transport by road/rail (ADR/RID)	[:] AIR, COMPRESSED	
Transport by air (ICAO-TI / IATA-DGR)	[:] Air, compressed	
Transport by sea (IMDG)	[:] AIR, COMPRESSED	
14.3. Transport hazard class(es)		
Labelling		
	2.2 : Non-flammable, non-toxic	gases.
Transport by road/rail (ADR/RID)		
Class Classification code	: 1A	
Hazard identification number	: 20	
Tunnel Restriction	: E - Passage forbidden through	tunnels of category E
Transport by air (ICAO-TI / IATA-DGR)		
Transport by sea (IMDG)	. 2.2	
Class / Div. (Sub. risk(s))	: 2.2	
Emergency Schedule (EmS) - Fire	: F-C	
Emergency Schedule (EmS) - Spillage	: S-V	
14.4. Packing group		
Transport by road/rail (ADR/RID)	: Not applicable	
Transport by air (ICAO-TI / IATA-DGR)	: Not applicable	
Transport by sea (IMDG)	: Not applicable	
14.5. Environmental hazards		
Transport by road/rail (ADR/RID)	: None.	
Transport by air (ICAO-TI / IATA-DGR)	: None.	
Transport by sea (IMDG)	: None.	
14.6. Special precautions for user		
Packing Instruction(s)		
Transport by road/rail (ADR/RID)	: P200	
Transport by all (ICAO-TI / IATA-DGK)		
AIR LIQUIDE SINGAPORE PTE LTD	EN (English)	SDS Ref.:

Air Liquide	Compressed Air	
	SDS Ref.: 2010)492
Passenger and Cargo Aircraft	: 200.	
Cargo Aircraft only	: 200.	
Transport by sea (IMDG)	: P200	
Special transport precautions	: Avoid transport on vehicles where the load space is not separated from the driver's compartment.	
	Ensure vehicle driver is aware of the potential hazards of the load and knows what to do in t event of an accident or an emergency.	he
	Before transporting product containers:	
	- Ensure there is adequate ventilation.	
	- Ensure that containers are firmly secured.	
	 Ensure cylinder valve is closed and not leaking. 	
	- Ensure valve outlet cap nut or plug (where provided) is correctly fitted.	
	 Ensure valve protection device (where provided) is correctly fitted. 	

14.7. Transport in bulk according to Annex II of Marpol and the IBC Code

: Not applicable.

:

SECTION 15: Regulatory information		
<u>15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture</u> EU-Regulations		
Restrictions on use	: None.	
Seveso Directive : 2012/18/EU (Seveso III)	: Not covered.	
National regulations		
National legislation	: Ensure all national/local regulations are observed.	
15.2. Chemical safety assessment		
	: A CSA does not need to be carried out for this product.	
SECTION 16: Other information		

Indication of changes

Revised safety data sheet in accordance with commission regulation (EU) No 2015/830.

Compressed Air

Abbreviations and acronyms :	ATE - Acute Toxicity Estimate
	CLP - Classification Labelling Packaging Regulation; Regulation (EC) No 1272/2008
	REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals Regulation (EC) No 1907/2006
	EINECS - European Inventory of Existing Commercial Chemical Substances
	CAS# - Chemical Abstract Service number
	PPE - Personal Protection Equipment
	LC50 - Lethal Concentration to 50 % of a test population
	RMM - Risk Management Measures
	PBT - Persistent, Bioaccumulative and Toxic
	vPvB - Very Persistent and Very Bioaccumulative
	STOT- SE : Specific Target Organ Toxicity - Single Exposure
	CSA - Chemical Safety Assessment
	EN - European Standard
	UN - United Nations
	ADR - European Agreement concerning the International Carriage of Dangerous Goods by Road
	IATA - International Air Transport Association
	IMDG code - International Maritime Dangerous Goods
	RID - Regulations concerning the International Carriage of Dangerous Goods by Rail
	WGK - Water Hazard Class
	STOT - RE : Specific Target Organ Toxicity - Repeated Exposure
Training advice :	The hazard of asphyxiation is often overlooked and must be stressed during operator training.
Further information :	Classification using data from databases maintained by the European Industrial Gases Association (EIGA).

Classification in accordance with the calculation methods of Regulation (EC) 1272/2008 CLP.

Full text of H- and EUH-statements

Ox. Gas 1	Oxidising Gases, Category 1
Press. Gas (Comp.)	Gases under pressure : Compressed gas
H270	May cause or intensify fire; oxidiser.
H280	Contains gas under pressure; may explode if heated.

DISCLAIMER OF LIABILITY

: Before using this product in any new process or experiment, a thorough material compatibility and safety study should be carried out.

Details given in this document are believed to be correct at the time of going to press. Whilst proper care has been taken in the preparation of this document, no liability for injury or damage resulting from its use can be accepted.

C.1.2: Hydrogen

SAFETY DATA SHEET

Air Liquide

Page : 1/11 Revised edition no : 1 Compilation date : 17 / 9 / 2018

Supersedes : 4 / 10 / 2017

Hydrogen

NOAL_0067A

Country : SE / Language : EN

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Trade name	:	Hydrogen, Alphagaz 1 Hydrogen, Alphagaz 2 Hydrogen, Hydrogen N35, Hydrogen N50, Hydrogen N56
SDS no	:	NOAL_0067A
Chemical description	:	Hydrogen
		CAS-No. : 1333-74-0
		EC-No. : 215-605-7
		EC Index-No. : 001-001-00-9
Registration-No.	:	Listed in Annex IV / V REACH, exempted from registration.
Chemical formula	:	H2
1.2. Relevant identified uses of the substance	or	mixture and uses advised against
Relevant identified uses		Industrial and professional. Perform risk assessment prior to use.
		Test gas/Calibration gas.
		Laboratory use.
		Chemical reaction / Synthesis.
		Use as a fuel.
		Shield gas for welding processes.
		Use for manufacture of electronic/photovoltaic components.
		Laser gas.
		Contact supplier for more information on uses.
Uses advised against	:	Do not inflate in party balloons because of the risk of explosion.
		Consumer use.

1.3. Details of the supplier of the safety data sheet

Company identification

AIR LIQUIDE GAS AB Lundavägen 151 21209 Malmö - SWEDEN T +46 40 38 10 00 eunordic-sds@airliquide.com

E-Mail address (competent person)

: eunordic-sds@airliquide.com

1.4. Emergency telephone number

Emergency telephone number : 112

Availability (24/7)

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

	SAFETY DATA SHFF	Page : 2/11
Airliquido		Revised edition no : 1
		Compilation date : 17 / 9 / 2018
		Supersedes : 4 / 10 / 2017
	Hydrogen	NOAL_0067A
		Country : SE / Language : EN
Classification according to R	Legulation (EC) No. 1272/2008 [CLP]	
Physical hazards	Flammable gases, Category 1	H220
	Gases under pressure : Compressed gas	H280
22 l abol olomonts		
Labelling according to Regul	lation (FC) No. 1272/2008 [CI P]	
Labeling according to Regul		
Hazard pictograms (CLP)		
Hazard pictograms (CLP)	The second se	
Hazard pictograms (CLP)		
Hazard pictograms (CLP)		
Hazard pictograms (CLP)	: GHS02 CHS02 GHS04	
Hazard pictograms (CLP) Signal word (CLP) Hazard statements (CLP)	: GHS02 GHS02 GHS04 : Danger : H220 - Extremely flammable gas	
Hazard pictograms (CLP) Signal word (CLP) Hazard statements (CLP)	: GHS02 GHS02 GHS04 : Danger : H220 - Extremely flammable gas H280 - Contains gas under pressure: m	nav evolode if heated
Hazard pictograms (CLP) Signal word (CLP) Hazard statements (CLP) Precautionary statements (CLF)	: GHS02 GHS02 GHS04 : Danger : H220 - Extremely flammable gas H280 - Contains gas under pressure; m	nay explode if heated
Hazard pictograms (CLP) Signal word (CLP) Hazard statements (CLP) Precautionary statements (CLF	: GHS02 GHS02 GHS04 : Danger : H220 - Extremely flammable gas H280 - Contains gas under pressure; m ?) - Prevention : P210 - Keep away from heat, hot surface smoking	nay explode if heated ces, sparks, open flames and other ignition sources. No
Hazard pictograms (CLP) Signal word (CLP) Hazard statements (CLP) Precautionary statements (CLF	: GHS02 GHS04 : Danger : H220 - Extremely flammable gas H280 - Contains gas under pressure; m) - Prevention : P210 - Keep away from heat, hot surface smoking - Response : P377 - Leaking gas fire: Do not extingu	nay explode if heated ces, sparks, open flames and other ignition sources. No ish, unless leak can be stopped safely
Hazard pictograms (CLP) Signal word (CLP) Hazard statements (CLP) Precautionary statements (CLF	: GHS02 GHS04 : Danger : H220 - Extremely flammable gas H280 - Contains gas under pressure; m) - Prevention : P210 - Keep away from heat, hot surface smoking - Response : P377 - Leaking gas fire: Do not extingu P381 - In case of leakage. eliminate all	nay explode if heated ces, sparks, open flames and other ignition sources. No ish, unless leak can be stopped safely ignition sources.

2.3. Other hazards

: None.

SECTION 3: Composition/information on ingredients

3.1. Substances

Name	Product identifier	Composition [V-%]:	Classification according to Regulation (EC) No. 1272/2008 [CLP]
Hydrogen	(CAS-No.) 1333-74-0	100	Flam. Gas 1, H220 Press. Gas (Comp.), H280
	(EC-No.) 215-605-7		
	(EC Index-No.) 001-001-00-9		
	(Registration-No.) *1		

Contains no other components or impurities which will influence the classification of the product.

*1: Listed in Annex IV / V REACH, exempted from registration.

*2: Registration deadline not expired.

*3: Registration not required: Substance manufactured or imported < 1t/y.

3.2. Mixtures

: Not established.

SECTION 4: First aid measures

Air Liquide	9
-------------	---

SAFETY DATA SHEET

Page : 3/11 Revised edition no : 1 Compilation date : 17 / 9 / 2018 Supersedes : 4 / 10 / 2017 **NOAL_0067A**

Hydrogen

Country : SE / Language : EN

4.1. Description of first aid measures

- Inhalation	: Remove victim to uncontaminated area wearing self contained breathing apparatus. Keep victim warm and rested. Call a doctor. Apply artificial respiration if breathing stopped.				
- Skin contact	: Adverse effects not expected from this product.				
- Eye contact	: Adverse effects not expected from this product.				
- Ingestion	: Ingestion is not considered a potential route of exposure.				
4.2. Most important symptoms and effects, bo	th acute and delayed				
	: Refer to section 11.				
4.3. Indication of any immediate medical atter	tion and special treatment needed				
•					
	· Nono				
	. None.				
SECTION 5: Firefighting measures					
5.1. Extinguishing media					
- Suitable extinguishing media	: Water spray or fog.				
	Dry powder.				
- Unsuitable extinguishing media	: Carbon dioxide.				
	Do not use water jet to extinguish.				
5.2. Special hazards arising from the substan	e or mixture				
Specific hazards	: Exposure to fire may cause containers to rupture/explode.				
Hazardous combustion products	: None.				
5.3 Advice for firefighters					
Crasilia restado					
Specific methods	radiation may cause gas receptacles to rupture. Cool endangered receptacles with water spray jet from a protected position. Prevent water used in emergency cases from entering sewers and drainage systems.				
	If possible, stop flow of product.				
	Use water spray or fog to knock down fire fumes if possible.				
	Do not extinguish a leaking gas flame unless absolutely necessary. Spontaneous/explosive re-ignition may occur. Extinguish any other fire.				
	Move containers away from the fire area if this can be done without risk.				
Special protective equipment for fire fighters	: In confined space use self-contained breathing apparatus.				
	Standard protective clothing and equipment (Self Contained Breathing Apparatus) for fire fighters.				
	Standard EN 137 - Self-contained open-circuit compressed air breathing apparatus with full face mask.				
	Standard EN 469 - Protective clothing for firefighters. Standard - EN 659: Protective gloves for firefighters.				

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

		Page : 4/11
	SAFEIT DATA SHEET	Revised edition no : 1
Hir Liquide		Compilation date : 17 / 9 / 2018
		Supersedes : 4 / 10 / 2017
	Hydrogon	
	пушоден	
		Country . SE / Language . EN
6.2. Environmental precautions	Evacuate area. Monitor concentration of released product. Consider the risk of potentially explosive atmosphere Wear self-contained breathing apparatus when enter be safe. Eliminate ignition sources. Ensure adequate air ventilation. Act in accordance with local emergency plan. Stay upwind.	es. ring area unless atmosphere is proved to
	: Try to stop release.	
6.3. Methods and material for contair	ment and cleaning up	
	: Ventilate area.	
6.4. Reference to other sections		
	: See also sections 8 and 13.	
SECTION 7: Handling and sto	rage	
7.1. Precautions for safe handling		
Safe use of the product	: The product must be handled in accordance with go procedures.	od industrial hygiene and safety
	Only experienced and properly instructed persons s	hould handle gases under pressure.
	Consider pressure relief device(s) in gas installation	S.
	Ensure the complete gas system was (or is regularil	y) checked for leaks before use.
	Do not smoke while handling product.	
	Use only properly specified equipment which is suita temperature. Contact your gas supplier if in doubt.	ble for this product, its supply pressure a
	Avoid suck back of water, acid and alkalis.	
	Assess the risk of potentially explosive atmospheres equipment.	and the need for explosion-proof
	Purge air from system before introducing gas.	
	Take precautionary measures against static dischar	ge.
	Keep away from ignition sources (including static dis	scharges).
	Consider the use of only non-sparking tools.	
	Do not breathe gas.	

Safe handling of the gas receptacle

: Refer to supplier's container handling instructions. Do not allow backfeed into the container.

Avoid release of product into atmosphere. Ensure equipment is adequately earthed.

Protect cylinders from physical damage; do not drag, roll, slide or drop.

When moving cylinders, even for short distances, use a cart (trolley, hand truck, etc.) designed to transport cylinders.

Leave valve protection caps in place until the container has been secured against either a wall or bench or placed in a container stand and is ready for use.

If user experiences any difficulty operating cylinder valve discontinue use and contact supplier. Never attempt to repair or modify container valves or safety relief devices.

SAFETY DATA SHEET

Page : 5/11 Revised edition no : 1 Compilation date : 17 / 9 / 2018 Supersedes : 4 / 10 / 2017

Hydrogen

NOAL_0067A Country : SE / Language : EN

Damaged valves should be reported immediately to the supplier.

Keep container valve outlets clean and free from contaminants particularly oil and water. Replace valve outlet caps or plugs and container caps where supplied as soon as container is disconnected from equipment.

Close container valve after each use and when empty, even if still connected to equipment. Never attempt to transfer gases from one cylinder/container to another.

Never use direct flame or electrical heating devices to raise the pressure of a container.

Do not remove or deface labels provided by the supplier for the identification of the cylinder contents.

Suck back of water into the container must be prevented.

Open valve slowly to avoid pressure shock.

7.2. Conditions for safe storage, including any incompatibilities

: Observe all regulations and local requirements regarding storage of containers.

Containers should not be stored in conditions likely to encourage corrosion.

Container valve guards or caps should be in place.

Containers should be stored in the vertical position and properly secured to prevent them from falling over.

Stored containers should be periodically checked for general condition and leakage.

Keep container below 50°C in a well ventilated place.

Store containers in location free from fire risk and away from sources of heat and ignition.

Keep away from combustible materials.

Segregate from oxidant gases and other oxidants in store.

All electrical equipment in the storage areas should be compatible with the risk of a potentially explosive atmosphere.

7.3. Specific end use(s)

: None.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

OEL (Occupational Exposure Limits) : No data available.

DNEL (Derived-No Effect Level) : No data available.

PNEC (Predicted No-Effect Concentration) : No data available.

8.2. Exposure controls

8.2.1. Appropriate engineering controls

- : Provide adequate general and local exhaust ventilation.
 - Product to be handled in a closed system.
 - Systems under pressure should be regularily checked for leakages.
 - Gas detectors should be used when flammable gases/vapours may be released.

Consider the use of a work permit system e.g. for maintenance activities.

8.2.2. Individual protection measures, e.g. personal protective equipment

: A risk assessment should be conducted and documented in each work area to assess the risks related to the use of the product and to select the PPE that matches the relevant risk. The following recommendations should be considered: PPE compliant to the recommended EN/ISO standards should be selected.

SAFETY DATA SHEET

Page : 6/11 Revised edition no : 1 Compilation date : 17 / 9 / 2018 Supersedes : 4 / 10 / 2017

NOAL_0067A Country : SE / Language : EN

Hydrogen

Eye/face protection	: Wear safety glasses with side shields. Standard EN 166 - Personal eye-protection - specifications.	
Skin protection		
- Hand protection	: Wear working gloves when handling gas containers. Standard EN 388 - Protective gloves against mechanical risk.	
- Other	 Consider the use of flame resistant anti-static safety clothing. Standard EN ISO 14116 - Limited flame spread materials. Standard EN ISO 1149-5 - Protective clothing: Electrostatic properties. Wear safety shoes while handling containers. Standard EN ISO 20345 - Personal protective equipment - Safety footwear. 	
Respiratory protection	: None necessary.	
Thermal hazards	: None in addition to the above sections.	
8.2.3. Environmental exposure controls	: Refer to local regulations for restriction of emissions to the atmosphere. See section 13	3 for

specific methods for waste gas treatment.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance

Appearance	
• Physical state at 20°C / 101.3kPa	: Gas.
Colour	: Colourless.
Odour	: Odourless.
Odour threshold	: Odour threshold is subjective and inadequate to warn of overexposure.
pH value	: Not applicable for gases and gas mixtures.
Molar mass	: 2 g/mol
Melting point	: -259 °C
Boiling point	: -253 °C
Flash point	: Not applicable for gases and gas mixtures.
Critical temperature [°C]	: -240 °C
Evaporation rate (ether=1)	: Not applicable for gases and gas mixtures.
Flammability range	: 4 - 77 vol %
Vapour pressure [20°C]	: Not applicable.
Vapour pressure [50°C]	: Not applicable.
Relative density, gas (air=1)	: 0.07
Relative density, liquid (water=1)	: 0.07
Solubility in water	: 1.6 mg/l
Partition coefficient n-octanol/water [log Kow]	: Not applicable for inorganic gases.
Auto-ignition temperature	: 560 °C
Decomposition point [°C]	: Not applicable.
Viscosity [20°C]	: No reliable data available.
Explosive Properties	: Not applicable.
Oxidising Properties	: Not applicable.
9.2. Other information	

0	Air	Liq	uid	de
				-

SAFETY DATA SHEET

Page : 7/11 Revised edition no : 1 Compilation date : 17 / 9 / 2018 Supersedes : 4 / 10 / 2017 **NOAL 0067A**

Country : SE / Language : EN

Hydrogen

Other data

: Burns with an invisible flame.

SECTION 10: Stability and reactivity

<u>10.1. Reactivity</u>	
	: No reactivity hazard other than the effects described in sub-sections below.
10.2. Chemical stability	
	: Stable under normal conditions.
10.3. Possibility of hazardous reactions	
	: Can form explosive mixture with air.
	May react violently with oxidants.
10.4. Conditions to avoid	
	: Keep away from heat/sparks/open flames/hot surfaces. – No smoking.
	Avoid moisture in installation systems.
10.5. Incompatible materials	
	: Air, Oxidisers.
	For additional information on compatibility refer to ISO 11114.
10.6. Hazardous decomposition products	
	: Under normal conditions of storage and use, hazardous decomposition products should not be produced.

SECTION 11: Toxicological information 11.1. Information on toxicological effects Acute toxicity : No known toxicological effects from this product. Skin corrosion/irritation : No known effects from this product. Serious eye damage/irritation : No known effects from this product. Respiratory or skin sensitisation : No known effects from this product. Germ cell mutagenicity : No known effects from this product. Carcinogenicity : No known effects from this product. **Reproductive toxicity** : No known effects from this product. No known effects from this product. STOT-single exposure : No known effects from this product. STOT-repeated exposure : No known effects from this product. Aspiration hazard : Not applicable for gases and gas mixtures.

SECTION 12: Ecological information

12.1. Toxicity

Assessment	: No ecological damage caused by this product.
EC50 48h - Daphnia magna [mg/l]	: No data available.
EC50 72h - Algae [mg/l]	: No data available.
LC50 96 h - Fish [mg/l]	: No data available.

12.2. Persistence and degradability

SAFETY DATA SHEET

Page : 8/11 Revised edition no : 1 Compilation date : 17 / 9 / 2018 Supersedes : 4 / 10 / 2017 **NOAL_0067A** Country : SE / Language : EN

Hydrogen

Assessment	: No ecological damage caused by this product.
12.3. Bioaccumulative potential	
Assessment	: No data available.
<u>12.4. Mobility in soil</u>	
Assessment	: Because of its high volatility, the product is unlikely to cause ground or water pollution.
	Partition into soil is unlikely.
12.5. Results of PBT and vPvB assessment	
Assessment	: No data available.
12.6. Other adverse effects	
Other adverse effects	: No known effects from this product.
Effect on the ozone layer	: None.
Global warming potential [CO2=1]	: 6
Effect on global warming	: Contains greenhouse gas(es).
	When discharged in large quantities may contribute to the greenhouse effect

SECTION 13: Disposal considerations

13.1. Waste treatment methods		
		Contact supplier if guidance is required.
		Do not discharge into areas where there is a risk of forming an explosive mixture with air. Waste gas should be flared through a suitable burner with flash back arrestor.
		Do not discharge into any place where its accumulation could be dangerous.
		Ensure that the emission levels from local regulations or operating permits are not exceeded.
		Refer to the EIGA code of practice Doc.30 "Disposal of Gases", downloadable at http://www.eiga.org for more guidance on suitable disposal methods.
		Return unused product in original cylinder to supplier.
List of hazardous waste codes (from Commission Decision 2001/118/EC)	:	16 05 04 *: Gases in pressure containers (including halons) containing dangerous substances.
13.2. Additional information		
	:	External treatment and disposal of waste should comply with applicable local and/or national regulations.

SECTION 14: Transport information

14.1. UN number

UN-No.

: 1049

14.2. UN proper shipping name

Transport by road/rail (ADR/RID)	: HYDROGEN, COMPRESSED
Transport by air (ICAO-TI / IATA-DGR)	: Hydrogen, compressed
Transport by sea (IMDG)	: HYDROGEN, COMPRESSED

SAFETY DATA SHEET

Page : 9/11 Revised edition no : 1 Compilation date : 17 / 9 / 2018

Supersedes : 4 / 10 / 2017

Hydrogen

NOAL_0067A Country : SE / Language : EN

14.3. Transport hazard class(es)

Transport by road/rail (ADR/RID)

Labelling

Class	: 2.
Classification code	: 1F.
Hazard identification number	: 23.
Tunnel Restriction	: B/D - Tank carriage : Passage forbidden through tunnels of category B, C, D and E. Other carriage : Passage forbidden through tunnels of category D and E.
Transport by air (ICAO-TI / IATA-DGR)	
Class / Div. (Sub. risk(s))	: 2.1
Transport by sea (IMDG)	
Class / Div. (Sub. risk(s))	: 2.1
Emergency Schedule (EmS) - Fire	: F-D.
Emergency Schedule (EmS) - Spillage	: S-U.
14.4. Packing group	

Transport by road/rail (ADR/RID)	:	Not established.
Transport by air (ICAO-TI / IATA-DGR)	:	Not established.
Transport by sea (IMDG)	:	Not established.

14.5. Environmental hazards

Transport by road/rail (ADR/RID)	:	None.
Transport by air (ICAO-TI / IATA-DGR)	:	None.
Transport by sea (IMDG)	:	None.

14.6. Special precautions for user

Packing Instruction(s)	
Transport by road/rail (ADR/RID)	: P200.
Transport by air (ICAO-TI / IATA-DGR)	
Passenger and Cargo Aircraft	: Forbidden.
Cargo Aircraft only	: 200.
Transport by sea (IMDG)	: P200.
Special transport precautions	: Avoid transport on vehicles where the load space is not separated from the driver's compartment.
	Ensure vehicle driver is aware of the potential hazards of the load and knows what to do in the event of an accident or an emergency.
	Before transporting product containers:
	- Ensure there is adequate ventilation.

- Ensure that containers are firmly secured.
- Ensure cylinder valve is closed and not leaking.

SAFETY DATA SHEET

Page : 10/11 Revised edition no : 1 Compilation date : 17 / 9 / 2018 Supersedes : 4 / 10 / 2017 **NOAL_0067A** Country : SE / Language : EN

Hydrogen

- Ensure valve outlet cap nut or plug (where provided) is correctly fitted.

- Ensure valve protection device (where provided) is correctly fitted.

14.7. Transport in bulk according to Annex II of Marpol and the IBC Code

: Not applicable.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

EU-Regulations

Restrictions on use Seveso Directive : 2012/18/EU (Seveso III)	:	None. Listed.
National regulations National legislation	:	Ensure all national/local regulations are observed.

15.2. Chemical safety assessment

A CSA does not need to be carried out for this product.

SECTION 16: Other information	
Indication of changes	: Revised safety data sheet in accordance with commission regulation (EU) No 453/2010.
Abbreviations and acronyms	: ATE - Acute Toxicity Estimate
	CLP - Classification Labelling Packaging Regulation; Regulation (EC) No 1272/2008
	REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals Regulation (EC) No 1907/2006
	EINECS - European Inventory of Existing Commercial Chemical Substances
	CAS# - Chemical Abstract Service number
	PPE - Personal Protection Equipment
	LC50 - Lethal Concentration to 50 % of a test population
	RMM - Risk Management Measures
	PBT - Persistent, Bioaccumulative and Toxic
	vPvB - Very Persistent and Very Bioaccumulative
	STOT- SE : Specific Target Organ Toxicity - Single Exposure
	CSA - Chemical Safety Assessment
	EN - European Standard
	UN - United Nations
	ADR - European Agreement concerning the International Carriage of Dangerous Goods by Road
	IATA - International Air Transport Association
	IMDG code - International Maritime Dangerous Goods
	RID - Regulations concerning the International Carriage of Dangerous Goods by Rail
	WGK - Water Hazard Class
Training advice	: Ensure operators understand the flammability hazard.

SAFETY DATA SHEET

Page : 11/11

Revised edition no : 1

Compilation date : 17 / 9 / 2018

Supersedes : 4 / 10 / 2017

Hydrogen

NOAL_0067A Country : SE / Language : EN

Flam. Gas 1	Flammable gases, Category 1
Press. Gas (Comp.)	Gases under pressure : Compressed gas
H220	Extremely flammable gas.
H280	Contains gas under pressure; may explode if heated.

DISCLAIMER OF LIABILITY

: Before using this product in any new process or experiment, a thorough material compatibility and safety study should be carried out.

Details given in this document are believed to be correct at the time of going to press.

Whilst proper care has been taken in the preparation of this document, no liability for injury or damage resulting from its use can be accepted.

C.1.3: Nitrogen

Air Liquide

SAFETY DATA SHEET

Nitrogen

Page : 1/10 Revised edition no : 1 Compilation date : 16 / 7 / 2018 Supersedes : 5 / 10 / 2017 NOAL_0089A

Country : DK / Language : EN

SECTION 1: Identification of the sub	stance/mixture and of the company/undertaking
1.1. Product identifier	
Trade name	 Nitrogen, Nitrogen compressed, Nitrogen N48, Nitrogen N52, Nitrogen HG, Lasal 1, Lasal 2001, Aligal 1, Alphagaz N2 1, Alphagaz N2 2, Alphagaz 1 Nitrogen, Alphagaz 2 Nitrogen, Lasal 1, Phargalis 1, Albee Cool N2
SDS no	: NOAL_0089A
Chemical description	: Nitrogen
	CAS-No. : 7727-37-9
	EC-No. : 231-783-9
	EC Index-No. :
Registration-No.	: Listed in Annex IV / V REACH, exempted from registration.
Chemical formula	: N2
1.2. Relevant identified uses of the substance	e or mixture and uses advised against
Relevant identified uses	: Industrial and professional. Perform risk assessment prior to use.
	Test gas/Calibration gas.
	Laboratory use.
	Purge gas, diluting gas, inerting gas.
	Shield gas for welding processes.
	Use for manufacture of electronic/photovoltaic components.
	Contact supplier for more information on uses.
Uses advised against	: Consumer use.
1.3. Details of the supplier of the safety data s	sheet
Company identification	
AIR LIQUIDE Denmark A/S	
Høje Taastrupvej 42	
2630 Taastrup - DENMARK	
eunordic-sds@airliquide.com	
E-Mail address (competent person)	: eunordic-sds@airliquide.com
1.4. Emergency telephone number	
Emergency telephone number	: 112 Availability (24 / 7)

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification according to Reg	gulation (EC) No. 1272/2008 [CLP]
Physical hazards	Gases under pressure : Compressed gas

SAFETY DATA SHEET

Page : 2/10 Revised edition no : 1 Compilation date : 16 / 7 / 2018 Supersedes : 5 / 10 / 2017 **NOAL 0089A**

Nitrogen

Country : DK / Language : EN

2.2. Label elements

Labelling according to Regulation (EC) No. 1272/2008 [CLP]

Hazard pictograms (CLP)

Signal word (CLP) Hazard statements (CLP) Precautionary statements (CLP) GHS04

: Warning

: H280 - Contains gas under pressure; may explode if heated..

- Storage : P403 - Store in a well-ventilated place..

2.3. Other hazards

: Asphyxiant in high concentrations.

SECTION 3: Composition/information on ingredients

3.1. Substances

Name	Product identifier	Composition [V-%]:	Classification according to Regulation (EC) No. 1272/2008 [CLP]
Nitrogen	(CAS-No.) 7727-37-9 (EC-No.) 231-783-9	100	Press. Gas (Comp.), H280
	(EC Index-No.) (Registration-No.) *1		

Contains no other components or impurities which will influence the classification of the product.

*1: Listed in Annex IV / V REACH, exempted from registration.

*2: Registration deadline not expired.

*3: Registration not required: Substance manufactured or imported < 1t/y.

3.2. Mixtures

: Not established.

SECTION 4: First aid measures

4.1. Description of first aid measures

- Inhalation

- Skin contact
- Eye contact
- Ingestion

- : Remove victim to uncontaminated area wearing self contained breathing apparatus. Keep victim warm and rested. Call a doctor. Apply artificial respiration if breathing stopped.
- : Adverse effects not expected from this product.
- : Adverse effects not expected from this product.
- : Ingestion is not considered a potential route of exposure.

SAFETY	DATA	SHEET
--------	------	-------

Page : 3/10 Revised edition no : 1 Compilation date : 16 / 7 / 2018 Supersedes : 5 / 10 / 2017 **NOAL 0089A**

Country : DK / Language : EN

Nitrogen

4.2. Most important symptoms and effects, both acute and delayed

 In high concentrations may cause asphyxiation. Symptoms may include loss of mobility/consciousness. Victim may not be aware of asphyxiation.
 Refer to section 11.

4.3. Indication of any immediate medical attention and special treatment needed

: None.

SECTION 5: Firefighting measures

5.1. Extinguishing media

Air Liquide

 Suitable extinguishing media 	: Water spray or fog.
- Unsuitable extinguishing media	: Do not use water jet to extinguish.
5.2. Special hazards arising from the substa	nce or mixture
Specific hazards	: Exposure to fire may cause containers to rupture/explode.
Hazardous combustion products	: None.
5.3. Advice for firefighters	
Specific methods	: Use fire control measures appropriate for the surrounding fire. Exposure to fire and heat radiation may cause gas receptacles to rupture. Cool endangered receptacles with water spray jet from a protected position. Prevent water used in emergency cases from entering sewers and drainage systems.
	If possible, stop flow of product.
	Use water spray or fog to knock down fire fumes if possible.
	Move containers away from the fire area if this can be done without risk.
Special protective equipment for fire fighters	: In confined space use self-contained breathing apparatus.
	Standard protective clothing and equipment (Self Contained Breathing Apparatus) for fire fighters.
	Standard EN 137 - Self-contained open-circuit compressed air breathing apparatus with full face mask.
	Standard EN 469 - Protective clothing for firefighters. Standard - EN 659: Protective gloves for firefighters.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Try to stop release.
Evacuate area.
Wear self-contained breathing apparatus when entering area unless atmosphere is proved to be safe.
Ensure adequate air ventilation.
Act in accordance with local emergency plan.
Stay upwind.
Oxygen detectors should be used when asphyxiating gases may be released.

		Page : 4/10		
	SAFELT DATA SHEET	Revised edition no : 1		
Hir Liquide		Compilation date : 16 / 7 / 2018		
		Supersedes : 5 / 10 / 2017		
	Nitrogen			
	Millogen			
	: I ry to stop release.			
6.3. Methods and material for con	<u>itainment and cleaning up</u>			
	: Ventilate area.			
6.4. Reference to other sections				
	· Soo also soctions 8 and 13			
SECTION 7: Handling and	storage			
7.1. Precautions for safe handling	a			
	-			
Safa use of the product	. The product must be bandled in accordance with good	industrial hygiana and asfaty		
Sale use of the product	procedures.			
	Only experienced and properly instructed persons should be a series of the series of t	uld handle gases under pressure.		
	Consider pressure relief device(s) in gas installations.			
	Ensure the complete gas system was (or is regularily) of	checked for leaks before use.		
	Do not smoke while handling product.	Do not smoke while handling product.		
	Use only properly specified equipment which is suitable temperature. Contact your gas supplier if in doubt.	Use only properly specified equipment which is suitable for this product, its supply pressure and temperature. Contact your gas supplier if in doubt.		
	Avoid suck back of water, acid and alkalis.			
	Do not breathe gas.	Do not breathe gas.		
	Avoid release of product into atmosphere.	Avoid release of product into atmosphere.		
Safe handling of the gas receptacle	: Refer to supplier's container handling instructions.	: Refer to supplier's container handling instructions.		
	Do not allow backfeed into the container.			
	Protect cylinders from physical damage; do not drag, ro	II, slide or drop.		
	to transport cylinders.	i cart (trolley, nand truck, etc.) designed		
	Leave valve protection caps in place until the container or bench or placed in a container stand and is ready for	has been secured against either a wall ruse.		
	If user experiences any difficulty operating cylinder valv	e discontinue use and contact supplier.		
	Never attempt to repair or modify container valves or sa	afety relief devices.		
	Damaged valves should be reported immediately to the	supplier.		
	Keep container valve outlets clean and free from contain	minants particularly oil and water.		
	disconnected from equipment.	where supplied as soon as container is		
	Close container valve after each use and when empty,	even if still connected to equipment.		
	Never attempt to transfer gases from one cylinder/conta	ainer to another.		
	Never use direct flame or electrical heating devices to r	alse the pressure of a container.		
	contents.			
	Suck back of water into the container must be prevente	:d.		
	Open valve slowly to avoid pressure shock.			
7.2. Conditions for safe storage, including any incompatibilities				

: Observe all regulations and local requirements regarding storage of containers.

Containers should not be stored in conditions likely to encourage corrosion.

Container valve guards or caps should be in place.

Containers should be stored in the vertical position and properly secured to prevent them from falling over.

SAFETY DATA SHEET

Page : 5/10 Revised edition no : 1 Compilation date : 16 / 7 / 2018 Supersedes : 5 / 10 / 2017 **NOAL_0089A**

Nitrogen

Country : DK / Language : EN

Stored containers should be periodically checked for general condition and leakage.

Keep container below 50°C in a well ventilated place.

Store containers in location free from fire risk and away from sources of heat and ignition. Keep away from combustible materials.

7.3. Specific end use(s)

: None.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

OEL (Occupational Exposure Limits) : No data available.

DNEL (Derived-No Effect Level) : No data available.

PNEC (Predicted No-Effect Concentration) : No data available.

8.2. Exposure controls

8.2.1. Appropriate engineering controls

	: Provide adequate general and local exhaust ventilation.
	Systems under pressure should be regularily checked for leakages.
	Oxygen detectors should be used when asphyxiating gases may be released.
	Consider the use of a work permit system e.g. for maintenance activities.
8.2.2. Individual protection measures, e.g. pers	onal protective equipment
	A risk assessment should be conducted and documented in each work area to assess the risks related to the use of the product and to select the PPE that matches the relevant risk. The following recommendations should be considered: PPE compliant to the recommended EN/ISO standards should be selected.
Eye/face protection	: Wear safety glasses with side shields. Standard EN 166 - Personal eye-protection - specifications.
Skin protection	
- Hand protection	: Wear working gloves when handling gas containers.
	Standard EN 388 - Protective gloves against mechanical risk.
- Other	: Wear safety shoes while handling containers. Standard EN ISO 20345 - Personal protective equipment - Safety footwear.
Respiratory protection	 Self contained breathing apparatus (SCBA) or positive pressure airline with mask are to be used in oxygen-deficient atmospheres. Standard EN 137 - Self-contained open-circuit compressed air breathing apparatus with full face mask.
Thermal hazards	: None in addition to the above sections.
8.2.3. Environmental exposure controls	
	: None necessary.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance

SAFETY DATA SHEET

Page : 6/10 Revised edition no : 1 Compilation date : 16 / 7 / 2018 Supersedes : 5 / 10 / 2017

Nitrogen

NOAL_0089A

Country : DK / Language : EN

 Physical state at 20°C / 101.3kPa 	: Gas.
Colour	: Colourless.
Odour	: No odour warning properties.
Odour threshold	: Odour threshold is subjective and inadequate to warn of overexposure.
pH value	: Not applicable for gases and gas mixtures.
Molar mass	: 28 g/mol
Melting point	: -210 °C
Boiling point	: -196 °C
Flash point	: Not applicable for gases and gas mixtures.
Critical temperature [°C]	: -147 °C
Evaporation rate (ether=1)	: Not applicable for gases and gas mixtures.
Flammability range	: Non flammable.
Vapour pressure [20°C]	: Not applicable.
Vapour pressure [50°C]	: Not applicable.
Relative density, gas (air=1)	: 0.97
Relative density, liquid (water=1)	: Not applicable.
Solubility in water	: 20 mg/l
Partition coefficient n-octanol/water [log Kow]	: Not applicable for inorganic gases.
Auto-ignition temperature	: Non flammable.
Decomposition point [°C]	: Not applicable.
Viscosity [20°C]	: No reliable data available.
Explosive Properties	: Not applicable.
Oxidising Properties	: Not applicable.
9.2. Other information	

Other data

: No additional information available

SECTION 10: Stability and reactivity

<u>10.1. Reactivity</u>	
	: No reactivity hazard other than the effects described in sub-sections below.
10.2. Chemical stability	
	: Stable under normal conditions.
10.3. Possibility of hazardous reactions	
	: None.
10.4. Conditions to avoid	
	: Avoid moisture in installation systems.
10.5. Incompatible materials	
	: None.
	For additional information on compatibility refer to ISO 11114.
10.6. Hazardous decomposition products	
	: None.

SECTION 11: Toxicological information

11.1. Information on toxicological effects Acute toxicity

: No known toxicological effects from this product.

	SAFETY DATA SHEET	Page : 7/10 Revised edition no : 1	
		Compilation date : 16 / 7 / 2018	
		Supersedes : 5 / 10 / 2017	
·	Nitrogen	NOAL_0089A	
	•	Country : DK / Language : EN	
Skin corrosion/irritation	: No known effects from this product.		
Serious eye damage/irritation	: No known effects from this product.		
Respiratory or skin sensitisation	: No known effects from this product.		
Germ cell mutagenicity	: No known effects from this product.		
Carcinogenicity	: No known effects from this product.		
Reproductive toxicity	: No known effects from this product. No known effects from this product.		
STOT-single exposure	: No known effects from this product.		
STOT-repeated exposure	: No known effects from this product.		
Aspiration hazard	: Not applicable for gases and gas mixtures.		

SECTION 12: Ecological information

12.1. Toxicity

Assessment	:	No ecological damage caused by this product.
EC50 48h - Daphnia magna [mg/l] EC50 72h - Algae [mg/l]	:	No data available. No data available.
LC50 96 h - Fish [mg/l]	:	No data available.
12.2. Persistence and degradability		
Assessment	:	No ecological damage caused by this product.
12.3. Bioaccumulative potential		
Assessment	:	No data available.
<u>12.4. Mobility in soil</u>		
Assessment	:	Because of its high volatility, the product is unlikely to cause ground or water pollution. Partition into soil is unlikely.
12.5. Results of PBT and vPvB assessment		
Assessment	:	No data available.
12.6. Other adverse effects		
Other adverse effects	:	No known effects from this product.
Effect on the ozone layer	:	None.
Effect on global warming	:	None.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

May be vented to atmosphere in a well ventilated place. Do not discharge into any place where its accumulation could be dangerous.

			D 0/40		
	5	SAFETY DATA SHEET	Page : 8/10		
🔍 Air Liquide					
•			Supercodes : 5 / 10 / 2017		
	Nit	rogen	NOAL_0089A		
			Country : DK / Language : EN		
List of hazardous waste codes (from Commission Decision 2001/118/EC)		Return unused product in original cylinder to supplier. : 16 05 05 : Gases in pressure containers other than those	mentioned in 16 05 04.		
	:	: External treatment and disposal of waste should comply with applicable local and/or national regulations.			
SECTION 14: Transport in	nformation				
14.1. UN number					
UN-No.	:	1066			
14.2. UN proper shipping name					
Transport by road/rail (ADR/RID) :	NITROGEN, COMPRESSED			
Transport by air (ICAO-TI / IATA	-DGR) :	Nitrogen, compressed			
Transport by sea (IMDG)	:	NITROGEN, COMPRESSED			
14.3. Transport hazard class(es)	l				
Labelling	:	2			
		2.2 : Non-flammable, non-toxic gases.			
Transport by road/rail (ADR/RID)				
Classification code		10			
Hazard identification number		· 20			
Tunnel Restriction		E - Passage forbidden through tunnels of category E.			
Transport by air (ICAO-TI / IATA	-DGR)				
Class / Div. (Sub. risk(s))	:	: 2.2			
Transport by sea (IMDG)					
Class / Div. (Sub. risk(s))	:	2.2			
Emergency Schedule (EmS) - Fire	• :	: F-C.			
Emergency Schedule (EmS) - Spil	llage :	: S-V.			
14.4. Packing group					
Transport by road/rail (ADR/RID)	:	Not established.			
Transport by air (ICAO-TI / IATA-E	DGR) :	Not established.			
Transport by sea (IMDG)	:	Not established.			
14.5. Environmental hazards					
Transport by road/rail (ADR/RID)	:	None.			
Transport by air (ICAO-TI / IATA-E)GR) :	None.			
Transport by sea (IMDG)	:	None.			

SAFETY DATA SHEET

Page : 9/10

Revised edition no : 1

Compilation date : 16 / 7 / 2018

Supersedes : 5 / 10 / 2017 **NOAL 0089A**

Nitrogen

Country : DK / Language : EN

14.6. Special precautions for user	
Packing Instruction(s)	
Transport by road/rail (ADR/RID)	: P200.
Transport by air (ICAO-TI / IATA-DGR)	
Passenger and Cargo Aircraft	: 200.
Cargo Aircraft only	: 200.
Transport by sea (IMDG)	: P200.
Special transport precautions	: Avoid transport on vehicles where the load space is not separated from the driver's compartment.
	Ensure vehicle driver is aware of the potential hazards of the load and knows what to do in the event of an accident or an emergency.
	Before transporting product containers:
	- Ensure there is adequate ventilation.
	- Ensure that containers are firmly secured.
	- Ensure cylinder valve is closed and not leaking.
	- Ensure valve outlet cap nut or plug (where provided) is correctly fitted.
	- Ensure valve protection device (where provided) is correctly fitted.

14.7. Transport in bulk according to Annex II of Marpol and the IBC Code

: Not applicable.

SECTION 15: Regulatory information

15.1. Safety. health and environmental regulations/legislation specific for the substance or mixture

EU-Regulations

Restrictions on use	:	None.
Seveso Directive : 2012/18/EU (Seveso III)	:	Not covered.
National regulations		
National legislation	:	Ensure all national/local regulations are observed

15.2. Chemical safety assessment

A CSA does not need to be carried out for this product.

Revised safety data sheet in accordance with commission regulation (EU) No 453/2010.
ATE - Acute Toxicity Estimate
CLP - Classification Labelling Packaging Regulation; Regulation (EC) No 1272/2008
REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals Regulation (EC) No 1907/2006
EINECS - European Inventory of Existing Commercial Chemical Substances
CAS# - Chemical Abstract Service number

SAFETY DATA SHEET

Page : 10/10

Revised edition no : 1

Compilation date : 16 / 7 / 2018

Supersedes : 5 / 10 / 2017 NOAL 0089A

Nitrogen

		Country : DK / Language : EN
	PPE - Personal Protection Equipment	-
	LC50 - Lethal Concentration to 50 % of a test population	
	RMM - Risk Management Measures	
	PBT - Persistent, Bioaccumulative and Toxic	
	vPvB - Very Persistent and Very Bioaccumulative	
	STOT- SE : Specific Target Organ Toxicity - Single Expos	ure
	CSA - Chemical Safety Assessment	
	EN - European Standard	
	UN - United Nations	
	ADR - European Agreement concerning the International (Road	Carriage of Dangerous Goods by
	IATA - International Air Transport Association	
	IMDG code - International Maritime Dangerous Goods	
	RID - Regulations concerning the International Carriage of	f Dangerous Goods by Rail
	WGK - Water Hazard Class	
Training advice	: The hazard of asphyxiation is often overlooked and must b	be stressed during operator training.

Full text of H- and EUH-statements

Press. Gas (Comp.)	Gases under pressure : Compressed gas
H280	Contains gas under pressure; may explode if heated.

DISCLAIMER OF LIABILITY

: Before using this product in any new process or experiment, a thorough material compatibility and safety study should be carried out.

Details given in this document are believed to be correct at the time of going to press. Whilst proper care has been taken in the preparation of this document, no liability for injury or damage resulting from its use can be accepted.

C.1.4: Oxygen

Safety Data Sheet according to Regulation (EU) 2015/830

Oxygen

Trade name	: Oxygen, Alphahaz™ Oxygen, Purified/ Compressed Oxygen, Medical Oxygen, PRESENCE™, TAKEO™, Breathing Oxygen.
SDS no	: 2010479
Chemical description	: Oxygen
	CAS-No. : 7782-44-7
	EC-No. : 231-956-9
	EC Index-No. : 008-001-00-8
Registration-No.	: Listed in Annex IV / V REACH, exempted from registration.
Chemical formula	: O2
1.2. Relevant identified uses of the subs	tance or mixture and uses advised against
Relevant identified uses	: Industrial and professional. Perform risk assessment prior to use.
	Test gas/Calibration gas.
	Welding, cutting, heating and brazing.
	Shield gas for welding processes.
	Use for manufacture of electronic/photovoltaic components.
	Water treatment.
	Laser gas.
	Laboratory use.
	Food applications.
	Contact supplier for more information on uses.
Uses advised against	: Consumer use.
1.3. Details of the supplier of the safety	data sheet
Company identification	: AIR LIQUIDE SINGAPORE PTE LTD HEAD OFFICE : 2 VENTURE DRIVE, VISION EXCHANGE, #22-28, SINGAPORE 608526 SPECIALGASES OFFICE, NO 24 JALAN BUROH SINGAPORE 619480 T +65 6 265 3788 https://industry.airliquide.sg/resources/safety-data-sheets-sds Sg-info@airliquide.com
1.4. Emergency telephone number	
Emergency telephone number	: +65 6265 3788, +65 9619 9229 (After Office Hour)
SECTION 2: Hazards identificati	on

2.1. Classification of the substance or mixture

AIR LIQUIDE SINGAPORE PTE LTD HEAD OFFICE : 2 VENTURE DRIVE, VISION EXCHANGE, #22-28, SINGAPORE 608526 SPECIALGASES OFFICE, NO 24 JALAN BUROH SINGAPORE 619480 +65 6 265 3788

EN (English)

SDS Ref.: 2010479

Air Liquid	e Oxygen	
		SDS Ref.: 2010479
Classification according to Re	egulation (EC) No. 1272/2008 [CLP]	
Physical hazards	Oxidising Gases, Category 1 H270	
	Gases under pressure : Compressed gas H280	
2.2. Label elements		
Labelling according to Regula	ation (EC) No. 1272/2008 [CLP]	
Hazard pictograms (CLP)		
Circle of the state of the stat	GHS03 GHS04	
Signal word (CLP)	: Danger	
Hazalu statements (CLF)	H280 - Contains gas under pressure; may explode if hea	ted.
Precautionary statements (CLP))	
	- Prevention : P220 - Keep away from combustible materials.	
	P244 - Keep valves and fittings free from oil and grease.	
	- Response : P370+P376 - In case of fire: stop leak if safe to do so.	
	- Storage : P403 - Store in a well-ventilated place.	

2.3. Other hazards

: None.

SECTION 3: Composition/information on ingredients

3.1. Substances

Name	Product identifier	%	Classification according to Regulation (EC) No. 1272/2008 [CLP]
Oxygen	(CAS-No.) 7782-44-7 (EC-No.) 231-956-9 (EC Index-No.) 008-001-00-8 (Registration-No.) *1	100	Ox. Gas 1, H270 Press. Gas (Comp.), H280

Contains no other components or impurities which will influence the classification of the product.

*1: Listed in Annex IV / V REACH, exempted from registration.

*2: Registration deadline not expired.

*3: Registration not required: Substance manufactured or imported < 1t/y.

3.2. Mixtures

: Not applicable

SECTION 4: First aid measures

4.1. Description of first aid measures

EN (English)

Air Liquide	Oxygen
	SDS Ref.: 2010479
- Inhalation	: Remove victim to uncontaminated area wearing self contained breathing apparatus. Keep victim warm and rested. Call a doctor. Perform cardiopulmonary resuscitation if breathing stopped.
	Remove victim to uncontaminated area.
- Skin contact	Adverse effects not expected from this product.
	. Adverse effects not expected from this product.
4.2. Most important symptoms and effects, b	oth acute and delayed
	: Continuous inhalation of concentrations higher than 75% may cause nausea, dizziness, respiratory difficulty and convulsion
	Refer to section 11.
4.3 Indication of any immediate medical atte	ntion and special treatment needed
4.5. Indication of any inmediate medical alle	
	: None.
SECTION 5: Eirofighting mossures	
SECTION 5. Threnghting measures	
5.1. Extinguishing media	
Suitable extinguishing modia	· Water spray or fog
- Unsuitable extinguishing media	: No not use water let to extinguish
E 2 Special beyond arising from the substar	
5.2. Special hazards arising from the substar	ice or mixture
Specific hazards	: Supports combustion.
	Exposure to fire may cause containers to rupture/explode.
Hazardous combustion products	: None.
5.3. Advice for firefighters	
Specific methods	: Use fire control measures appropriate for the surrounding fire. Exposure to fire and heat radiation may cause gas receptacles to rupture. Cool endangered receptacles with water spray jet from a protected position. Prevent water used in emergency cases from entering sewers and drainage systems.
	If possible, stop flow of product.
	Use water spray or fog to knock down fire fumes if possible.
	Move containers away from the fire area if this can be done without risk.
Special protective equipment for fire fighters	: Standard protective clothing and equipment (Self Contained Breathing Apparatus) for fire fighters.
	Standard EN 469 - Protective clothing for firefighters. Standard - EN 659: Protective gloves for firefighters

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Try to stop release.
Evacuate area.
Monitor concentration of released product.
Wear self-contained breathing apparatus when entering area unless atmosphere is proved to be safe.
Eliminate ignition sources.
Ensure adequate air ventilation.
Act in accordance with local emergency plan.
Stay upwind.

EN (English)

Oxygen

SDS Ref.: 2010479

6.2. Environmental precautions		
-	: Try to stop release.	
6.3. Methods and material for containment and cleaning up		
:	: Ventilate area.	
6.4. Reference to other sections		
:	: See also sections 8 and 13.	

SECTION 7: Handling and storage

7.1. Precautions for safe handling Safe use of the product : Do not breathe gas. The product must be handled in accordance with good industrial hygiene and safety procedures. Only experienced and properly instructed persons should handle gases under pressure. Consider pressure relief device(s) in gas installations. Ensure the complete gas system was (or is regularily) checked for leaks before use. Do not smoke while handling product. Keep equipment free from oil and grease. For more guidance, refer to the EIGA Doc. 33 -Cleaning of Equipment for Oxygen Service downloadable at http://www.eiga.eu. Use no oil or grease. Use only properly specified equipment which is suitable for this product, its supply pressure and temperature. Contact your gas supplier if in doubt. Use only oxygen approved lubricants and oxygen approved sealings. Use only with equipment cleaned for oxygen service and rated for cylinder pressure. Avoid suck back of water, acid and alkalis. Safe handling of the gas receptacle : Refer to supplier's container handling instructions. Do not allow backfeed into the container. Protect cylinders from physical damage; do not drag, roll, slide or drop. When moving cylinders, even for short distances, use a cart (trolley, hand truck, etc.) designed to transport cylinders. Leave valve protection caps in place until the container has been secured against either a wall or bench or placed in a container stand and is ready for use. If user experiences any difficulty operating cylinder valve discontinue use and contact supplier. Never attempt to repair or modify container valves or safety relief devices. Damaged valves should be reported immediately to the supplier. Keep container valve outlets clean and free from contaminants particularly oil and water. Replace valve outlet caps or plugs and container caps where supplied as soon as container is disconnected from equipment. Close container valve after each use and when empty, even if still connected to equipment. Never attempt to transfer gases from one cylinder/container to another. Never use direct flame or electrical heating devices to raise the pressure of a container. Do not remove or deface labels provided by the supplier for the identification of the cylinder contents. Suck back of water into the container must be prevented. Open valve slowly to avoid pressure shock.

7.2. Conditions for safe storage, including any incompatibilities

Air Liquide		Oxygen		
			SDS Ref.: 201	0479
	: Ob Co Co fall Sto Se Sto Ke	oserve all regulations and local requirement ontainers should not be stored in conditions ontainer valve guards or caps should be in ontainers should be stored in the vertical po- ling over. ored containers should be periodically che eep container below 50°C in a well ventilate egregate from flammable gases and other for ore containers in location free from fire risk eep away from combustible materials.	ts regarding storage of containers. s likely to encourage corrosion. place. osition and properly secured to prevent them fr cked for general condition and leakage. ed place. lammable materials in store.	om
7.3. Specific end use(s)				
	: No	one.		
SECTION 8: Exposure controls/pers	sonal	protection		
8.1. Control parameters				
OEL (Occupational Exposure Limits)	: N	None available.		
DNEL (Derived-No Effect Level)	: N	None available.		
PNEC (Predicted No-Effect Concentration)	: N	None available.		
8.2. Exposure controls				
8.2.1. Appropriate engineering controls				
	: Pro Sy Av Ga	ovide adequate general and local exhaust stems under pressure should be regularily oid oxygen rich (>23,5%) atmospheres. as detectors should be used when oxidising onsider the use of a work permit system e	ventilation. y checked for leakages. g gases may be released. g for maintenance activities	
8.2.2. Individual protection measures, e.g. p	ersonal	protective equipment		
	: A r rela foll PP	risk assessment should be conducted and lated to the use of the product and to selec lowing recommendations should be consic PE compliant to the recommended EN/ISO	documented in each work area to assess the t the PPE that matches the relevant risk. The lered: standards should be selected.	risks
Eye/face protection	: We Sta	ear safety glasses with side shields. andard EN 166 - Personal eye-protection -	specifications.	
Skin protection				
- Hand protection	: We	ear working gloves when handling gas con	tainers.	
0#54	Sta	andard EN 388 - Protective gloves against	mechanical risk.	
- Otner	Sta Sta Sta	andard EN ISO 14116 - Limited flame spre ear safety shoes while handling containers andard EN ISO 20345 - Personal protectiv	ad materials. e equipment - Safety footwear.	
Respiratory protection	: No	one necessary.		
Thermal hazards	: No	one in addition to the above sections.		
	EN	۱ (English)	SDS Ref.: 2010479	5/10

Oxygen

8.2.3. Environmental exposure controls

: Refer to local regulations for restriction of emissions to the atmosphere. See section 13 for specific methods for waste gas treatment.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance

• Physical state at 20°C / 101.3kPa	: Gas
Colour	: Colourless.
Odour	: No odour warning properties.
Odour threshold	: Odour threshold is subjective and inadequate to warn of overexposure.
pH	: Not applicable for gases and gas mixtures.
Melting point / Freezing point	: -219 °C
Boiling point	: -183 °C
Flash point	: Not applicable for gases and gas mixtures.
Evaporation rate	: Not applicable for gases and gas mixtures.
Flammability (solid, gas)	: Non flammable.
Explosive limits	[:] Non flammable.
Vapour pressure [20°C]	: Not applicable.
Vapour pressure [50°C]	: Not applicable.
Vapour density	: Not applicable.
Relative density, liquid (water=1)	: 1.1
Relative density, gas (air=1)	: 1.1
Water solubility	: 39 mg/l
Partition coefficient n-octanol/water (Log Kow)	: Not applicable for inorganic products.
Auto-ignition temperature	: Non flammable.
Decomposition temperature	: Not applicable.
Viscosity, kinematic	: No reliable data available.
Explosive properties	: Not applicable.
Oxidising properties	: Oxidiser.
9.2. Other information	
Molar mass	: 32 g/mol
Critical temperature [°C]	: -118 °C
 Coefficient of oxygen equivalency (Ci) 	: 1

SECTION 10: Stability and reactivity

10.1. Reactivity	
	: No reactivity hazard other than the effects described in sub-sections below.
10.2. Chemical stability	
	: Stable under normal conditions.
10.3. Possibility of hazardous reactions	
	: Violently oxidises organic material.

EN (English)

Air Liquide	Oxygen
	SDS Ref.: 2010479
10.4. Conditions to avoid	: Avoid moisture in installation systems.
10.5. Incompatible materials	
	: May react violently with combustible materials.
	May react violently with reducing agents.
	Keep equipment free from oil and grease. For more guidance, refer to the EIGA Doc. 33 - Cleaning of Equipment for Oxygen Service downloadable at http://www.eiga.eu.
	Consider the potential toxicity hazard due to the presence of chlorinated or fluorinated polymers in high pressure (> 30 bar) oxygen lines in case of combustion.
	For additional information on compatibility refer to ISO 11114.
10.6. Hazardous decomposition products	
	: None.

SECTION 11: Toxicological information

11.1. Information on toxicological effects	
Acute toxicity	: No known toxicological effects from this product.
Skin corrosion/irritation	: No known effects from this product.
Serious eye damage/irritation	: No known effects from this product.
Respiratory or skin sensitisation	: No known effects from this product.
Germ cell mutagenicity	: No known effects from this product.
Carcinogenicity	: No known effects from this product.
Toxic for reproduction : Fertility	: No known effects from this product.
Toxic for reproduction : unborn child	: No known effects from this product.
STOT-single exposure	: No known effects from this product.
STOT-repeated exposure	: No known effects from this product.
Aspiration hazard	: Not applicable for gases and gas mixtures.

SECTION 12: Ecological information

12.1. Toxicity

+65 6 265 3788

Assessment	: No ecological damage caused by this produ	ict.	
EC50 48h - Daphnia magna [mg/l] EC50 72h - Algae [mg/l] LC50 96 h - Fish [mg/l]	No data available.No data available.No data available.		
12.2. Persistence and degradability			
Assessment	: No ecological damage caused by this produ	ict.	
12.3. Bioaccumulative potential			
Assessment	: No data available.		
12.4. Mobility in soil			
Assessment	: Because of its high volatility, the product is Partition into soil is unlikely.	unlikely to cause ground or water pollution.	
AIR LIQUIDE SINGAPORE PTE LTD HEAD OFFICE : 2 VENTURE DRIVE, VISION EXCHANGE, #22-28, SINGAPORE 608526 SPECIALGASES OFFICE, NO 24 JALAN BUROH SINGAPORE 619480	EN (English)	SDS Ref.: 2010479	7/10

Oxygen

SDS Ref.: 2010479

12.5. Results of PBT and vPvB assessmen

Assessment :	No data available.
12.6. Other adverse effects	
Other adverse effects :	No known effects from this product.
Effect on the ozone layer :	None.
Effect on global warming :	None.

SECTION 13: Disposal considerations

13.1. Waste treatment methods	
	Contact supplier if guidance is required.
	May be vented to atmosphere in a well ventilated place.
	Do not discharge into any place where its accumulation could be dangerous.
	Ensure that the emission levels from local regulations or operating permits are not exceeded.
	Refer to the EIGA code of practice Doc.30 "Disposal of Gases", downloadable at http://www.eiga.eu for more guidance on suitable disposal methods.
	Return unused product in original cylinder to supplier.
List of hazardous waste codes (from Commission Decision 2000/532/EC as amended)	: 16 05 04 *: Gases in pressure containers (including halons) containing hazardous substances.
13.2. Additional information	
	: External treatment and disposal of waste should comply with applicable local and/or national regulations.

SECTION 14: Transport information

<u>14.1. UN number</u>	
UN-No.	: 1072
14.2. UN proper shipping name	
Transport by road/rail (ADR/RID)	[:] OXYGEN, COMPRESSED
Transport by air (ICAO-TI / IATA-DGR)	: Oxygen, compressed
Transport by sea (IMDG)	COXYGEN, COMPRESSED
14.3. Transport hazard class(es)	
Labelling	
	2.2 : Non-flammable, non-toxic gases.
	5.1 : Oxidizing substances.
Transport by road/rail (ADR/RID)	
Class	: 2
Classification code	: 10
Hazard identification number	: 25
Tunnel Restriction	: E - Passage forbidden through tunnels of category E
Oxygen

SDS Ref.: 2010479

Transport by air (ICAO-TI / IATA-DGR)	
Class / Div. (Sub. risk(s))	: 2.2 (5.1)
Transport by sea (IMDG)	
Class / Div. (Sub. risk(s))	: 2.2 (5.1)
Emergency Schedule (EmS) - Fire	: F-C
Emergency Schedule (EmS) - Spillage	: S-W
14.4. Packing group	
Transport by road/rail (ADR/RID)	: Not applicable
Transport by air (ICAO-TI / IATA-DGR)	: Not applicable
Transport by sea (IMDG)	: Not applicable
14.5. Environmental hazards	
Transport by road/rail (ADR/RID)	: None.
Transport by air (ICAO-TI / IATA-DGR)	: None.
Transport by sea (IMDG)	: None.
14.6. Special precautions for user	
Packing Instruction(s)	
Transport by road/rail (ADR/RID)	: P200
Transport by air (ICAO-TI / IATA-DGR)	
Passenger and Cargo Aircraft	: 200.
Cargo Aircraft only	: 200.
Transport by sea (IMDG)	: P200
Special transport precautions	: Avoid transport on vehicles where the load space is not separated from the driver's compartment.
	Ensure vehicle driver is aware of the potential hazards of the load and knows what to do in the event of an accident or an emergency.
	Before transporting product containers:
	- Ensure there is adequate ventilation.
	- Ensure that containers are firmly secured.
	- Ensure cylinder valve is closed and not leaking.
	- Ensure valve outlet cap nut or plug (where provided) is correctly fitted.
	 Ensure valve protection device (where provided) is correctly fitted.

14.7. Transport in bulk according to Annex II of Marpol and the IBC Code

+65 6 265 3788

: Not applicable.

SECTION 15: Regulatory information			
<u>15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture</u> EU-Regulations			
Restrictions on use	: None.		
Seveso Directive : 2012/18/EU (Seveso III)	: Listed.		
National regulations			
National legislation	: Ensure all national/local reg	ulations are observed.	
AIR LIQUIDE SINGAPORE PTE LTD HEAD OFFICE : 2 VENTURE DRIVE, VISION EXCHANGE, #22-28, SINGAPORE 608526 SPECIALGASES OFFICE, NO 24 JALAN BUROH SINGAPORE 619480	EN (English)	SDS Ref.: 2010479	9/10

Oxygen

15.2. Chemical safety assessment

: A CSA does not need to be carried out for this product.

SECTION 16: Other information	on
Indication of changes	. Revised safety data sheet in accordance with commission regulation (EU) No 2015/830.
Abbreviations and acronyms	: ATE - Acute Toxicity Estimate
,	CLP - Classification Labelling Packaging Regulation; Regulation (EC) No 1272/2008
	REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals Regulation (EC) No 1907/2006
	EINECS - European Inventory of Existing Commercial Chemical Substances
	CAS# - Chemical Abstract Service number
	PPE - Personal Protection Equipment
	LC50 - Lethal Concentration to 50 % of a test population
	RMM - Risk Management Measures
	PBT - Persistent, Bioaccumulative and Toxic
	vPvB - Very Persistent and Very Bioaccumulative
	STOT- SE : Specific Target Organ Toxicity - Single Exposure
	CSA - Chemical Safety Assessment
	EN - European Standard
	UN - United Nations
	ADR - European Agreement concerning the International Carriage of Dangerous Goods by Road
	IATA - International Air Transport Association
	IMDG code - International Maritime Dangerous Goods
	RID - Regulations concerning the International Carriage of Dangerous Goods by Rail
	WGK - Water Hazard Class
	STOT - RE : Specific Target Organ Toxicity - Repeated Exposure
Training advice	: Ensure operators understand the hazard of oxygen enrichment.
DISCLAIMER OF LIABILITY	 Before using this product in any new process or experiment, a thorough material compatibility and safety study should be carried out.
	Details given in this document are believed to be correct at the time of going to press.
	Whilst proper care has been taken in the preparation of this document, no liability for injury or damage resulting from its use can be accepted.

	SAFETY DATA SHEET	Revised edition no : 1			
HirLiquide		Date of issued :17 / 12 / 2015			
		Supersedes : 28 / 12 / 2010			
C.1.5: Argon	Argon	2010483			
	2.2 : Non-flammable, non- toxic gases				
Warning					
SECTION 1. Identification of	the substance/mixture and of the company/undertak	king			
1.1. Product identifier					
Trade name	: Argon, ALPHAGAZ ™ Argon, SMARTOP™ Argon, Pur	ified /Compressed Argon, Blueshield™			
	Argon, ARCAL™ 1, ARCAL™ Prime				
Chemical description	: Argon CAS No :7440-37-1 EC No :231-147-0 Index No :				
Chemical formula	Chemical formula : Ar				
1.2. Relevant identified uses	s of the substance or mixture and uses advised again	<u>nst</u>			
Relevant identified uses	: Industrial and professional. Perform risk assessment pr Test gas/Calibration gas. Laboratory use. Shield gas for welding processes. Contact supplier for r	ior to use. nore information on uses.			
1.3. Details of the supplier o	f the safety data sheet				
Company identification	: AIR LIQUIDE SINGAPORE PTE LTD HEAD OFFICE : 438B ALEXANDRA ROAD, BLOCK B, ALEXANDRA TECHNOPARK #07-01 119968 SINGAPORE SPECIAL GASES OFFICE : NO 24 JALAN BUROH SII	NGAPORE 619480			
1.4. Emergency telephone n	umber				
Emergency telephone numb	eer : +65 6265 3788, +65 9619 9229 (After Office Hour)				
SECTION 2. Hazards identified	cation				
2.1. Classification of the substance or mixture					
Hazard Class and Category Co	de Regulation EC 1272/2008 (CLP)				
Physical hazards	: Gases under pressure - Compressed gas - Warning - (CLP : Press. Gas) - H280			
Classification EC 67/548 or EC	2 1999/45				
	 Not classified as dangerous substance / mixture. Not included in Annex VI. No EC labelling required. 				

2.2. Label elements

_		Page : 2				
	SAFELY DATA SHEET	Revised edition no : 1				
HirLiquide		Date of issued : 17 / 12 / 2015				
		Supersedes : 28 / 12 / 2010				
	Argon 2010483					
SECTION 2. Hazards identification (continued)						
Labelling Regulation EC 1272/2008 (CLP)						
Hazard pictograms						
Hazard pictograms code	: GHS04					
 Signal word 	: Warning					
 Hazard statements 	: H280 - Contains gas under pressure; may explode if hea	ted.				

- Precautionary statements
 - Storage

2.3. Other hazards

: Asphyxiant in high concentrations.

: P403 - Store in a well-ventilated place.

SECTION 3. Composition/information on ingredients

3.1. Substance / 3.2. Mixture

Substance.

Substance name		Contents	CAS No EC No Index No Registration no	Classification(DSD)	Classification(CLP)
Argon	:	100 %	7440-37-1 231-147-0	Not classified (DSD)	Press. Gas Compressed (H280)
			* 1		

Contains no other components or impurities which will influence the classification of the product.

* 1: Listed in Annex IV / V REACH, exempted from registration.

* 2: Registration deadline not expired.

* 3: Registration not required: Substance manufactured or imported < 1t/y.

Full text of R-phrases see section 16. Full text of H-statements see section 16.

SECTION 4. First aid measures

4.1. Description of first aid measures

First aid measures - Inhalation	: Remove victim to uncontaminated area wearing self contained breathing apparatus. Keep victim warm and rested. Call a doctor. Apply artificial respiration if breathing stopped.	
- Skin contact	: Adverse effects not expected from this product.	
- Eye contact	: Adverse effects not expected from this product.	
- Ingestion	: Ingestion is not considered a potential route of exposure.	
4.2. Most important symptoms and effects, both acute and delayed		

: In high concentrations may cause asphyxiation. Symptoms may include loss of mobility/ consciousness. Victim may not be aware of asphyxiation. Refer to section 11.

4.3. Indication of any immediate medical attention and special treatment needed

: None.

Page : 3 Revised edition no : 1

Date of issued :17 / 12 / 2015

Supersedes : 28 / 12 / 2010

Argon

2010483

SECTION 4. First aid measures (continued)

SECTION 5. Firefighting measures

5.1. Extinguishing media

- 0	Extinguishing media - Suitable extinguishing media - Unsuitable extinguishing media	: Water spray or fog. : Do not use water jet to extinguish.
5.2.	Special nazards arising from the	e substance or mixture
	Specific hazards Hazardous combustion products	: Exposure to fire may cause containers to rupture/explode. : None.
<u>5.3.</u>	Advice for fire-fighters	
	Specific methods	 If possible, stop flow of product. Use fire control measures appropriate for the surrounding fire. Exposure to fire and heat radiation may cause gas receptacles to rupture. Cool endangered receptacles with water spray jet from a protected position. Move away from the container and cool with water from a protected position. Use water spray or fog to knock down fire fumes if possible.
	Special protective equipment for fire fighters	 Use self-contained breathing apparatus. Standard EN 137 - Self-contained open-circuit compressed air breathing apparatus with full face mask. Standard protective clothing and equipment (Self Contained Breathing Apparatus) for fire fighters. Standard EN 469 - Protective clothing for firefighters. Standard - EN 659: Protective gloves for firefighters.

SECTION 6. Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

 Evacuate area. Try to stop release. Wear self-contained breathing apparatus when entering area unless atmosphere is proved to be safe. Prevent from entering sewers, basements and workpits, or any place where its accumulation can be dangerous. Ensure adequate air ventilation.

6.2. Environmental precautions

: Try to stop release.

6.3. Methods and material for containment and cleaning up

: Ventilate area.

6.4. Reference to other sections

: See also sections 8 and 13.

7.1. Precautions for safe handling		
Safe use of the product	 Use only properly specified equipment which is suitable for this product, its supply pressure and temperature. Contact your gas supplier if in doubt. Only experienced and properly instructed persons should handle gases under pressure. The substance must be handled in accordance with good industrial hygiene and safety procedures. Do not smoke while handling product. Ensure the complete gas system was (or is regularily) checked for leaks before use. Consider pressure relief device(s) in gas installations. 	
Safe handling of the gas receptacle	 Refer to supplier's container handling instructions. Suck back of water into the container must be prevented. Do not allow backfeed into the container. Protect cylinders from physical damage; do not drag, roll, slide or drop. When moving cylinders, even for short distances, use a cart (trolley, hand truck, etc.) designed to transport cylinders. Leave valve protection caps in place until the container has been secured against either a wall or bench or placed in a container stand and is ready for use. If user experiences any difficulty operating cylinder valve discontinue use and contact supplier. Never attempt to repair or modify container valves or safety relief devices. Damaged valves should be reported immediately to the supplier. Keep container valve outlets clean and free from contaminants particularly oil and water. Replace valve outlet caps or plugs and container caps where supplied as soon as container is disconnected from equipment. Close container valve after each use and when empty, even if still connected to equipment. Never use direct flame or electrical heating devices to raise the pressure of a container. Do not remove or deface labels provided by the supplier for the identification of the cylinder contents. Containers should be stored in the vertical position and properly secured to prevent toppling. 	
7.2. Conditions for safe storage, including any incompatibilities		
	 Keep container below 50°C in a well ventilated place. Observe all regulations and local requirements regarding storage of containers. Containers should not be stored in conditions likely to encourage corrosion. Containers should be stored in the vertical position and properly secured to prevent toppling. 	

Container valve guards or caps should be in place.

Keep away from combustible materials.

Stored containers should be periodically checked for general condition and leakage.

Store containers in location free from fire risk and away from sources of heat and ignition.

7.3. Specific end use(s)

: None.

SECTION 8. Exposure controls/personal protection

8.1. Control parameters

DNEL: Derived no effect level (Workers)		
	:	No data available.
DMEL: Derived mimimum effect level (Workers)	(
	:	No data available.
PNEC: Predicted no effect concentration		

Page : 5 Revised edition no : 1

Date of issued : 17 / 12 / 2015

Supersedes : 28 / 12 / 2010

Argon

2010483

SECTION 8. Exposure controls/personal protection (continued)

		:	No data available.
<u>8.2.</u>	Exposure controls		
	8.2.1. Appropriate engineering controls	:	Oxygen detectors should be used when asphixiating gases may be released. Systems under pressure shoud be regularily checked for leakages. Provide adequate general and local exhaust ventilation. Consider work permit system e.g. for maintenance activities.
	8.2.2. Individual protection measures, e.g. personal protective equipment	:	A risk assessment should be conducted and documented in each work area to assess the risks related to the use of the product and to select the PPE that matches the relevant risk. The following recommendations should be considered: PPE compliant to the recommended EN/ISO standards should be selected.
	Eye/face protection	:	Wear safety glasses with side shields. Standard EN 166 - Personal eye-protection.
	Skin protection		
	- Hand protection	:	Wear working gloves when handling gas containers. Standard EN 388 - Protective gloves against mechanical risk.
	- Other	:	Wear safety shoes while handling containers. Standard EN ISO 20345 - Personal protective equipment - Safety footwear.
	 Respiratory protection 	:	None necessary.
	Thermal hazards	:	None necessary.
	8.2.3. Environmental exposure controls	:	Refer to local regulations for restriction of emissions to the atmosphere. See section 13 for specific methods for waste gas treatment.

SECTION 9. Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	
Physical state at 20°C / 101.3kPa	: Gas.
Colour	: Colourless.
Odour	: Odourless.
Odour threshold	: Odour threshold is subjective and inadequate to warn for overexposure.
pH value	: Not applicable.
Molar mass [g/mol]	: 40
Melting point [°C]	: -189
Boiling point [°C]	: -186
Critical temperature [°C]	: -122
Flash point [°C]	: Not applicable for gases and gas-mixtures.
Evaporation rate (ether=1)	: Not applicable for gases and gas-mixtures.
Flammability range [vol% in air]	: Non flammable.
Vapour pressure [20°C]	: Not applicable.
Relative density, gas (air=1)	: 1.38
Relative density, liquid (water=1)	: Not applicable.
Solubility in water [mg/l]	: Solubility in water of component(s) of the mixture : 67
Partition coefficient n-octanol/water log Kow]	: Not applicable for inorganic gases.
Viscosity at 20°C [mPa.s]	: Not applicable.
Explosive Properties	: Not applicable.

		Page : 6	
	SAFELY DATA SHEET	Revised edition no : 1	
HILIQUIDE		Date of issued : 17 / 12 / 2015	
		Supersedes : 28 / 12 / 2010	
Argon		2010483	
SECTION 9 Physical and ch	emical properties (continued)		
SECTION 9. Physical and ch			
Oxidising Properties	: None.	: None.	
9.2. Other information			
Other data	: Gas/vapour heavier than air. May accumulate in confined ground level.	spaces, particularly at or below	
SECTION 10. Stability and reactivity			
10.1 Reactivity			
TOTT MEdicitivity	: No reactivity hazard other than the effects described in su	b-sections below.	
10.2. Chemical stability			
	: Stable under normal conditions.		
10.3. Possibility of hazardous reactions			
	: None.		
10.4. Conditions to avoid			
	: None under recommended storage and handling condition	ns (see section 7).	
10.5. Incompatible materials	<u>8</u>		
	For additional information on compatibility refer to ISO 11 ²	114.	
10.6. Hazardous decompos	ition products		
	 Under normal conditions of storage and use, hazardous de be produced. 	ecomposition products should not	

SECTION 11. Toxicological information

Toxicity information	: No known toxicological effects from this product.
Acute toxicity	: No known toxicological effects from this product.
Rat inhalation LC50 [ppm/4h]	: No data available.
Skin corrosion/irritation	: No known effects from this product.
Serious eye damage/irritation	: No known effects from this product.
Respiratory or skin sensitisation	: No known effects from this product.
STOT-single exposure	: No known effects from this product.
STOT-repeated exposure	: No known effects from this product.
Aspiration hazard	: Not applicable for gases and gas-mixtures.

Page : 7 Revised edition no : 1

Date of issued : 17 / 12 / 2015

Supersedes : 28 / 12 / 2010

Argon

2010483

SECTION 12. Ecological information 12.1. Toxicity : No ecological damage caused by this product. EC50 48h - Daphnia magna [mg/l] : No data available. EC50 72h Algae [mg/l] : No data available. : No data available. LC50-96 h - fish [mg/l] 12.2. Persistence and degradability : No ecological damage caused by this product. 12.3. Bioaccumulative potential : No ecological damage caused by this product. 12.4. Mobility in soil : No ecological damage caused by this product. 12.5. Results of PBT and vPvB assessment : Not classified as PBT or vPvB. 12.6. Other adverse effects **Ecological effects information** : None. Effect on the global warming : None. SECTION 13. Disposal considerations 13.1. Waste treatment methods : May be vented to atmosphere in a well ventilated place. Do not discharge into any place where its accumulation could be dangerous. Refer to the EIGA code of practice Doc.30 "Disposal of Gases"", downloadable at http://www. eiga.org for more guidance on suitable disposal methods. Contact supplier if guidance is required. List of hazardous wastes : 16 05 05: Gases in pressure containers other than those mentioned in 16 05 04. 13.2. Additional information : None. SECTION 14. Transport information **UN number** : 1006 Labelling ADR, IMDG, IATA : 2.2 : Non-flammable, non-toxic gases Land transport (ADR/RID) HI nr · 20

. 20
: ARGON, COMPRESSED
: 2
: 1 A

Page : 8 Revised edition no : 1

Date of issued : 17 / 12 / 2015

Supersedes : 28 / 12 / 2010

Argon

2010483

SECTION 14. Transport information	(continued)
Packing group	: P200
Packing Instruction(s)	: P200
Tunnel Restriction	E : Passage forbidden through tunnels of category E.
Environmental hazards	: None.
<u>Sea transport (IMDG)</u>	
Proper shipping name	: ARGON, COMPRESSED
Class	: 2.2
Emergency Schedule (EmS) - Fire	: F-C
Emergency Schedule (EmS) - Spillage	: S-V
Packing instruction	: P200
IMDG-Marine pollutant	:-
<u> Air transport (ICAO-TI / IATA-DGR)</u>	
Proper shipping name (IATA)	: ARGON, COMPRESSED
Class	: 2.2
Passenger and Cargo Aircraft	: Allowed.
Packing instruction - Passenger and Cargo Aircraft	: 200
Cargo Aircraft only	: Allowed.
Packing instruction - Cargo Aircraft only	: 200
Special precautions for user	
14.7. Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code	 Avoid transport on vehicles where the load space is not separated from the driver's compartment. Ensure vehicle driver is aware of the potential hazards of the load and knows what to do in the event of an accident or an emergency. Before transporting product containers: Ensure there is adequate ventilation. Ensure that containers are firmly secured. Ensure cylinder valve is closed and not leaking. Ensure valve outlet cap nut or plug (where provided) is correctly fitted. Ensure valve protection device (where provided) is correctly fitted.
SECTION 15 Begulatory information	
Sconon 15. Regulatory information	

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

EU legislation	
Restrictions on use	: None.
Seveso directive 96/82/EC	: Not covered.
National legislation	
National legislation	: Ensure all national/local regulations are observed.
15.2. Chemical safety assessment	
	: A CSA does not need to be carried out for this product.

Page : 9 Revised edition no : 1

Date of issued : 17 / 12 / 2015

Supersedes : 28 / 12 / 2010

Argon

2010483

SECTION 15. Regulatory information (continued)

SECTION 16. Other information

Indication of changes	: Revised safety data sheet in accordance with commisssion regulation (EU) No 453/2010.
Training advice	: The hazard of asphyxiation is often overlooked and must be stressed during operator training.
List of full text of H-statements in section 3.	: H280 - Contains gas under pressure; may explode if heated.
Further information	: Classification in accordance with calculation methods of regulation (EC) 1272/2008 CLP / (EC) 1999/45 DPD. This Safety Data Sheet has been established in accordance with the applicable European
	Union legislation.
DISCLAIMER OF LIABILITY	 Before using this product in any new process or experiment, a thorough material compatibility and safety study should be carried out. Details given in this document are believed to be correct at the time of going to press. Whilst proper care has been taken in the preparation of this document, no liability for injury or damage resulting from its use can be accepted.

End of document

C.1.6: Water

Water

Date of issue: 11/15/2013

Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Revision date: 06/12/2018

Supersedes: 01/25/2017

Version: 1.3

SECTION 1: Identification				
1.1. Identification				
Product form	: Substance			
Substance name	: Water			
CAS-No.	: 7732-18-5			
Product code	: LC26750			
Formula	: H2O			
1.2. Recommended use and restrictions	on use			
Use of the substance/mixture	: For laboratory and manufac	turing use only.		
Recommended use	: Laboratory chemicals			
Restrictions on use	: Not for food, drug or house	hold use		
1.3. Supplier				
LabChem Inc Jackson's Pointe Commerce Park Building 1000, Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 <u>info@labchem.com</u> - <u>www.labchem.com</u>	1010 Jackson's Pointe Court			
1.4. Emergency telephone number				
Emergency number	: CHEMTREC: 1-800-424-93	00 or +1-703-741-5970		
SECTION 2: Hazard(s) identification				
2.1. Classification of the substance or m	ixture			
GHS-US classification				
Not classified				
2.2. GHS Label elements, including preca	autionary statements			
Not classified as a hazardous chemical.				
Other hazards not contributing to the classification	to the : None.			
2.4. Unknown acute toxicity (GHS US)				
Not applicable				
SECTION 3: Composition/Information	n on ingredients			
3.1. Substances				
Substance type	: Mono-constituent			
Name		Product identifier	%	GHS-US classification
Water (Main constituent)		(CAS-No.) 7732-18-5	100	Not classified
Full text of bazard classes and H-statements : se	e section 16	1	1	1
3.2 Mixtures				
Not applicable				
SECTION 4: First-aid measures				
4.1 Description of first aid measures				
First-aid measures general	· If you feel unwell seek mer	lical advice (show the lat	hel where r	oossible)
First-aid measures after inhalation	· Allow victim to breathe fresh	h air Allow the victim to	rest Adver	se effects not expected from this
	product.			
First-aid measures after skin contact	Adverse effects not expecte	ed from this product. Tak	e off contai	minated clothing.
First-aid measures after eye contact	ter eye contact : Adverse effects not expected from this product.			
First-aid measures after ingestion	: Do NOT induce vomiting. A	averse effects not expec	ted from th	lis product.
4.2. Most important symptoms and effect	ts (acute and delayed)			
Symptoms/effects	: Not expected to present a s	ignificant hazard under a	anticipated	conditions of normal use.

Water

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

4.3. Immediate n	4.3. Immediate medical attention and special treatment, if necessary			
Treat symptomatically.				
SECTION 5: Fire-	SECTION 5: Fire-fighting measures			
5.1. Suitable (an	unsuitable) extinguishing media			
Suitable extinguishing	edia : Foam. Dry powder. Carbon dioxide. Water spray. Sand.			
5.2. Specific haz	rds arising from the chemical			
No additional information	n available			
5.3. Special prot	ctive equipment and precautions for fire-fighters			
Firefighting instructions	: Use water spray or fog for cooling exposed containers. Exercise caution when fighting any chemical fire.			
Protection during firefig	ting : Do not enter fire area without proper protective equipment, including respiratory protection.			
SECTION 6: Acci	ental release measures			
6.1. Personal pro	cautions, protective equipment and emergency procedures			
6.1.1. For non-emo	rgency personnel			
Emergency procedures	: Evacuate unnecessary personnel.			
6.1.2. For emerger	cy responders			
Protective equipment	: Equip cleanup crew with proper protection.			
Emergency procedures	: Ventilate area.			
6.2. Environmen	al precautions			
Prevent entry to sewers	and public waters. Notify authorities if liquid enters sewers or public waters.			
6.3. Methods and	material for containment and cleaning up			
Methods for cleaning u	: Soak up spills with inert solids, such as clay or diatomaceous earth as soon as possible.			
6.4. Reference to	other sections			
See Heading 8. Exposi	re controls and personal protection.			
SECTION 7: Hand	ling and storage			
7.1. Precautions	for safe handling			
Precautions for safe ha	Idling : Wash hands and other exposed areas with mild soap and water before eating, drinking or smoking and when leaving work.			
7.2. Conditions	or safe storage, including any incompatibilities			
Storage conditions	: Keep container closed when not in use.			
Incompatible products	: Metallic sodium.			
Incompatible materials	: Sources of ignition. Direct sunlight.			
SECTION 8: Expo	sure controls/personal protection			
8.1. Control para	neters			
No additional information	n available			
8.2 Annronriate	angineering controls			
Appropriate engineerin	controls : Provide adequate general and local exhaust ventilation.			
8.3 Individual m	staction measures/Personal protective equipment			
o.o. Individual protection measures/Fersonal protective equipment				
Gioves. Salety glasses				

Water Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Wear protective gloves.

Eye protection:

Chemical goggles or safety glasses

Respiratory protection:

None necessary.

Other information:

Do not eat, drink or smoke during use.

SECTION 9: Physical and chemical properties			
9.1. Information on basic physical and ch	emical properties		
Physical state	: Liquid		
Color	: Colorless		
Odor	: None.		
Odor threshold	: No data available		
рН	: 7		
Melting point	: 0 °C		
Freezing point	: No data available		
Boiling point	: 100 °C		
Critical temperature	: 374.1 °C		
Critical pressure	: 218.3 atm		
Flash point	: No data available		
Relative evaporation rate (butyl acetate=1)	: No data available		
Flammability (solid, gas)	: Non flammable.		
Vapor pressure	: 17.535 mm Hg		
Vapor pressure at 50 °C	: 92.51 mm Hg		
Relative vapor density at 20 °C	: No data available		
Relative density	: 1		
Specific gravity / density	: 0.99823 g/ml		
Molecular mass	: 18 g/mol		
Solubility	: Soluble in acetic acid. Soluble in acetone. Soluble in ammonia. Soluble in ammonium chloride. Soluble in ethanol. Soluble in glycerol. Soluble in hydrochloric acid. Soluble in methanol. Soluble in nitric acid. Soluble in sulfuric acid. Soluble in sodium hydroxide solution. Soluble in propylene glycol.		
Log Pow	: No data available		
Auto-ignition temperature	: No data available		
Decomposition temperature	: No data available		
Viscosity, kinematic	: 1.004 cSt		
Viscosity, dynamic	: 1.002 cP		
Explosion limits	: No data available		
Explosive properties	: Not applicable.		
Oxidizing properties	: None.		
9.2. Other information			
VOC content	: 0%		
SECTION 10: Stability and reactivity			
10.1. Reactivity			
No additional information available			
10.2. Chemical stability			
Stable under normal conditions.			
10.3. Possibility of hazardous reactions			
Not established.			
06/12/2018	EN (English US) 3/5		

Water

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

10.4. Conditions to avoid			
Extremely high or low temperatures.			
10.5. Incompatible materials	.5. Incompatible materials		
Metallic sodium.			
10.6. Hazardous decomposition products	.6. Hazardous decomposition products		
Hydrogen. oxygen.			
SECTION 11: Toxicological information	on		
11.1. Information on toxicological effects			
Likely routes of exposure	: Skin and eye contact		
Acute toxicity	: Not classified		
Water (7732-18-5)			
LD50 oral rat	≥ 90000 mg/kg		
ATE US (oral)	90000 mg/kg body weight		
Skin corrosion/irritation	: Not classified		
	pH: 7		
Serious eye damage/irritation	: Not classified		
	pH: 7		
Respiratory or skin sensitization	: Not classified		
Germ cell mutagenicity	: Not classified		
Carcinogenicity	: Not classified		
	(Based on available data, the classification criteria are not met)		
Reproductive toxicity	: Not classified		
Specific target organ toxicity – single exposure	: Not classified		
Specific target organ toxicity – repeated exposure	: Not classified		
Aspiration hazard	: Not classified		
Potential Adverse human health effects and symptoms	: Based on available data, the classification criteria are not met.		

SECTI	ON 12: Ecological information			
12.1.	Toxicity			
No addit	No additional information available			
12.2.	Persistence and degradability			
Water	(7732-18-5)			
Persist	ence and degradability	Not established.		
12.3.	Bioaccumulative potential			
Water	(7732-18-5)			
Bioacc	umulative potential	Not established.		
12.4.	Mobility in soil			
No additional information available				
12.5.	Other adverse effects			

Other information

: No other effects known.

SECTION 13: Disposal co	nsiderations
13.1. Disposal methods	
Waste disposal recommendations	: Dispose in a safe manner in accordance with local/national regulations.

Water

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

SECTION 14: Transport information

Department of Transportation (DOT)

In accordance with DOT Not regulated

SECTION 15: Regulatory information

15.1. US Federal regulations

Water (7732-18-5)

Listed on the United States TSCA (Toxic Substances Control Act) inventory

All components of this product are listed, or excluded from listing, on the United States Environmental Protection Agency Toxic Substances Control Act (TSCA) inventory

15.2. International regulations

CANADA No additional information available

EU-Regulations No additional information available

National regulations

No additional information available

15.3. US State regulations

California Proposition 65 - This product does not contain any substances known to the state of California to cause cancer, developmental and/or reproductive harm

SECTION 16: Other information		
Revision date	: 06/12/2018	
Other information	: None.	
NFPA health hazard	: 0 - Materials that, under emergency conditions, would offer no hazard beyond that of ordinary combustible materials.	
NFPA fire hazard	: 0 - Materials that will not burn under typical fire conditions, including intrinsically noncombustible materials such as concrete, stone, and sand.	
NFPA reactivity	: 0 - Material that in themselves are normally stable, even under fire conditions.	
Hazard Rating		
Health	: 0 Minimal Hazard - No significant risk to health	
Flammability	: 0 Minimal Hazard - Materials that will not burn	
Physical	: 0 Minimal Hazard - Materials that are normally stable, even under fire conditions, and will NOT react with water, polymerize, decompose, condense, or self-react. Non-Explosives.	
Personal protection	: A	
	A - Safety glasses	

SDS US LabChem

Information in this SDS is from available published sources and is believed to be accurate. No warranty, express or implied, is made and LabChem Inc assumes no liability resulting from the use of this SDS. The user must determine suitability of this information for his application.

C.1.7: Ammonia

Air Liquide

SAFETY DATA SHEET

Page : 1/23 Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002

Country : SE / Language : EN

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Trade name SDS no Chemical description Registration-No. Chemical formula	 Ammonia, Anhydrous ammonia, Ammonia N38, Ammonia HG, Ammonia LGC NOAL_0002 Anhydrous ammonia CAS-No. : 7664-41-7 EC-No. : 231-635-3 EC Index-No. : 007-001-00-5 01-2119488876-14 NH3
1.2. Relevant identified uses of the substance	or mixture and uses advised against
Relevant identified uses	 Industrial and professional. Perform risk assessment prior to use. See the list of identified uses and exposure scenarios in the annex of the safety data sheet. Contact supplier for more information on uses.
Uses advised against	: Consumer use.
1.3. Details of the supplier of the safety data s	heet
Company identification	
AIR LIQUIDE GAS AB Lundavägen 151 21209 Malmö - SWEDEN T +46 40 38 10 00 eunordic-sds@airliquide.com	
E-Mail address (competent person)	: eunordic-sds@airliquide.com
1.4. Emergency telephone number	
Emergency telephone number	: 112 Availability

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification according to Regulation (EC) No. 1272/2008 [CLP]

Physical hazards	Flammable gases, Category 2	H221
	Gases under pressure : Liquefied gas	H280
Health hazards	Acute toxicity (inhalation:gas) Category 3	H331
	Skin corrosion/irritation, Category 1B	H314
	Serious eye damage/eye irritation, Category 1	H318
Environmental hazards	Hazardous to the aquatic environment — Acute Hazard, Category 1	H400

(24/7)

SAFETY DATA SHEET

Page : 2/23 Revised edition no : 1 Compilation date : 5 / 7 / 2018 Supersedes : 26 / 9 / 2017 **NOAL_0002** Country : SE / Language : EN

Ammonia

Hazardous to the aquatic environment — Chronic H411 Hazard, Category 2

2.2. Label elements

Labelling according to Regulation (EC) No. 1272/2008 [CLP]

Hazard pictograms (CLP)	:	
		GHS04 GHS05 GHS06 GHS09
Signal word (CLP)	:	Danger
Hazard statements (CLP)	:	H221 - Flammable gas
		H280 - Contains gas under pressure; may explode if heated
		H314 - Causes severe skin burns and eye damage
		H331 - Toxic if inhaled
		H410 - Very toxic to aquatic life with long lasting effects
		EUH071 - Corrosive to the respiratory tract
Precautionary statements (CLP)		
	- Prevention :	P210 - Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking
		P260 - Do not breathe gas, vapours.
		P273 - Avoid release to the environment
		P280 - Wear protective gloves, protective clothing, eye protection, face protection
	- Response :	P303+P361+P353+P315 - IF ON SKIN : (or hair) Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. Get immediate medical advice / attention
		P304+P340+P315 - IF INHALED : Remove person to fresh air and keep comfortable for breathing. Get immediate medical advice / attention.
		P305+P351+P338+P315 - IF IN EYES : Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical advice / attention.
		P377 - Leaking gas fire: Do not extinguish, unless leak can be stopped safely
		P381 - In case of leakage, eliminate all ignition sources
	- Storage :	P403 - Store in a well-ventilated place
		P405 - Store locked up

2.3. Other hazards

: None.

SECTION 3: Composition/information on ingredients

3.1. Substances

Name	Product identifier	Composition [V-%]:	Classification according to Regulation (EC) No. 1272/2008 [CLP]
Anhydrous ammonia	(CAS-No.) 7664-41-7 (EC-No.) 231-635-3	100	Flam. Gas 2, H221 Press. Gas (Liq.), H280 Acute Tox. 3 (Inhalation:gas), H331 Skin Corr. 1B. H314
	(EC Index-No.) 007-001-00-5		Eye Dam. 1, H318 Aquatic Acute 1, H400 Aquatic Chronic 2, H411
	(Registration-No.) 01-2119488876-14		

SAFETY DATA SHEET

Page : 3/23 Revised edition no : 1 Compilation date : 5 / 7 / 2018 Supersedes : 26 / 9 / 2017 **NOAL 0002**

Country : SE / Language : EN

Ammonia

Contains no other components or impurities which will influence the classification of the product.

3.2. Mixtures

: Not established.

SECTION 4: First aid measures

4.1. Description of first aid measures

- Inhalation	:	Remove victim to uncontaminated area wearing self contained breathing apparatus. Keep victim warm and rested. Call a doctor. Apply artificial respiration if breathing stopped.
- Skin contact	:	Remove contaminated clothing. Drench affected area with water for at least 15 minutes.
		In case of frostbite spray with water for at least 15 minutes. Apply a sterile dressing. Obtain medical assistance.
- Eye contact	:	Immediately flush eyes thoroughly with water for at least 15 minutes.
- Ingestion	:	Ingestion is not considered a potential route of exposure.
4.2. Most important symptoms and effects, bo	th	acute and delayed
	:	May cause severe chemical burns to skin and cornea. Suitable first-aid treatment should be immediately available. Seek medical advice before using product.
		Prolonged exposure to small concentrations may result in pulmonary oedema.
		Material is destructive to tissue of the mucuous membranes and upper respiratory tract. Cough, shortness of breath, headache, nausea.
		Refer to section 11.
4.2 Indication of any immediate medical atten	+i ~	n and apacial treatment peoded

4.3. Indication of any immediate medical attention and special treatment needed

- : Obtain medical assistance.
 - Treat with corticosteroid spray as soon as possible after inhalation.

SECTION 5: Firefighting measures

5.1. Extinguishing media

- Suitable extinguishing media
 Water spray or fog.
 Foam.
 Unsuitable extinguishing media
 Carbon dioxide.
 - Do not use water jet to extinguish.

5.2. Special hazards arising from the substance or mixture

Specific hazards:Hazardous combustion products:	Exposure to fire may cause containers to rupture/explode. Nitric oxide/nitrogen dioxide.
5.3. Advice for firefighters	
Specific methods :	Use fire control measures appropriate for the surrounding fire. Exposure to fire and heat radiation may cause gas receptacles to rupture. Cool endangered receptacles with water spray jet from a protected position. Prevent water used in emergency cases from entering sewers and drainage systems.

If possible, stop flow of product.

Use water spray or fog to knock down fire fumes if possible.

	SAFETY DATA SHEET		Page : 4/23	
Airliquido			Revised edition no : 1	
			Compilation date : 5 / 7 / 2018	
			Supersedes : 26 / 9 / 2017	
	Am	imonia	NOAL_0002	
			Country : SE / Language : EN	
		Do not extinguish a leaking gas flame unless absolutely ne re-ignition may occur. Extinguish any other fire.	ecessary. Spontaneous/explosive	
Special protective equipment for fire fighters		Move containers away from the fire area if this can be done without risk.		
		: Wear gas tight chemically protective clothing in combination with self contained breathing apparatus.		
		Standard EN 943-2: Protective clothing against liquid and gaseous chemicals, aerosols and solid particles. Gas-tight chemical protective suits for emergency teams.		
		Standard EN 137 - Self-contained open-circuit compresse face mask.	d air breathing apparatus with full	

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

	: Try to stop release.
	Evacuate area.
	Monitor concentration of released product.
	Consider the risk of potentially explosive atmospheres.
	Wear self-contained breathing apparatus when entering area unless atmosphere is proved to be safe.
	Eliminate ignition sources.
	Use chemically protective clothing.
	Ensure adequate air ventilation.
	Act in accordance with local emergency plan.
	Stay upwind.
6.2. Environmental precautions	
	: Reduce vapour with fog or fine water spray.
	Try to stop release.
6.3. Methods and material for containment and	cleaning up
	: Hose down area with water.
	Ventilate area.
	Keep area evacuated and free from ignition sources until any spilled liquid has evaporated (ground free from frost).
	Wash contaminated equipment or sites of leaks with copious quantities of water.
6.4. Reference to other sections	
	: See also sections 8 and 13.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Safe use of the product	: The product must be handled in accordance with good industrial hygiene and safety procedures.
	Only experienced and properly instructed persons should handle gases under pressure.
	Consider pressure relief device(s) in gas installations.
	Ensure the complete gas system was (or is regularily) checked for leaks before use.
	Do not smoke while handling product.

0	Air	Liq	uid	е
---	-----	-----	-----	---

Page : 5/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002 Country : SE / Language : EN

	Avoid exposure, obtain special instructions before use.
	Use only properly specified equipment which is suitable for this product, its supply pressure and temperature. Contact your gas supplier if in doubt.
	Installation of a cross purge assembly between the cylinder and the regulator is recommended.
	Purge system with dry inert gas (e.g. helium or nitrogen) before gas is introduced and when system is placed out of service.
	Avoid suck back of water, acid and alkalis.
	Assess the risk of potentially explosive atmospheres and the need for explosion-proof equipment.
	Purge air from system before introducing gas.
	Take precautionary measures against static discharge.
	Keep away from ignition sources (including static discharges).
	Consider the use of only non-sparking tools.
	Do not breathe gas.
	Avoid release of product into atmosphere.
	Ensure equipment is adequately earthed.
Safe handling of the gas receptacle :	Refer to supplier's container handling instructions.
	Do not allow backfeed into the container.
	Protect cylinders from physical damage; do not drag, roll, slide or drop.
	When moving cylinders, even for short distances, use a cart (trolley, hand truck, etc.) designed to transport cylinders.
	Leave valve protection caps in place until the container has been secured against either a wall or bench or placed in a container stand and is ready for use.
	If user experiences any difficulty operating cylinder valve discontinue use and contact supplier.
	Never attempt to repair or modify container valves or safety relief devices.
	Damaged valves should be reported immediately to the supplier.
	Keep container valve outlets clean and free from contaminants particularly oil and water.
	Replace valve outlet caps or plugs and container caps where supplied as soon as container is disconnected from equipment.
	Close container valve after each use and when empty, even if still connected to equipment.
	Never attempt to transfer gases from one cylinder/container to another.
	Never use direct flame or electrical heating devices to raise the pressure of a container.
	Do not remove or deface labels provided by the supplier for the identification of the cylinder contents.
	Suck back of water into the container must be prevented.
	Open valve slowly to avoid pressure shock.
7.2. Conditions for safe storage, including any i	ncompatibilities

: Observe all regulations and local requirements regarding storage of containers. Containers should not be stored in conditions likely to encourage corrosion.

Container valve guards or caps should be in place.

Containers should be stored in the vertical position and properly secured to prevent them from falling over.

Stored containers should be periodically checked for general condition and leakage.

Keep container below 50°C in a well ventilated place.

Store containers in location free from fire risk and away from sources of heat and ignition. Keep away from combustible materials.

Segregate from oxidant gases and other oxidants in store.

All electrical equipment in the storage areas should be compatible with the risk of a potentially explosive atmosphere.

SAFETY DATA SHEET

Page : 6/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017 NOAL_0002

Country : SE / Language : EN

Ammonia

: None.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Anhydrous ammonia (7664-41-7)				
OEL : Occupational Exposure Limits				
EU	TWA IOELV (EU) 8 h [mg/m ³]	14 mg/m ³		
	TWA IOELV (EU) 8 h [ppm]	20 ppm		
	STEL IOELV (EU) 15 min [mg/m ³]	36 mg/m ³		
	STEL IOELV (EU) 15 min [ppm]	50 ppm		
Sweden	TWA (SV) OEL 8h [mg/m³]	14 mg/m³		
	TWA (SV) OEL 8h [ppm]	20 ppm		
	STEL (SV) OEL 15min [mg/m ³]	36 mg/m³		
	STEL (SV) OEL 15min [ppm]	50 ppm		
	Anmärkning (SE)	4 (Korttidsgränsvärdet avser en 5-minutersperiod. Detta gäller för ammoniak, diisocyanater, 2,6-diisopropylfenylisocyanat, fenylisocyanat, isocyansyra och metylisocyanat)		

Anhydrous ammonia (7664-41-7)		
DNEL: Derived no effect level (Workers)		
Acute - local effects, inhalation	36 mg/m ³	
Acute - systemic effects, inhalation	47.6 mg/m ³	
Long-term - local effects, inhalation	14 mg/m³	
Long-term - systemic effects, inhalation	47.6 mg/m ³	
Acute - systemic effects, dermal	6.8 mg/kg bw/day	
Long-term - systemic effects, dermal	6.8 mg/kg bw/day	
Anhydrous ammonia (7664 44 7)		
Annydrous ammonia (7664-41-7)		
PNEC: Predicted no effect concentration		

0.0011 mg/l 0.0011 mg/l

Aqua (marine water) 8.2. Exposure controls

Aqua (freshwater)

8.2.1. Appropriate engineering controls

:	Provide adequate general and local exhaust ventilation.
	Product to be handled in a closed system.
	Systems under pressure should be regularily checked for leakages.
	Ensure exposure is below occupational exposure limits (where available).
	Gas detectors should be used when toxic gases may be released.
	Consider the use of a work permit system e.g. for maintenance activities.
8.2.2. Individual protection measures, e.g. perso	nal protective equipment
:	A risk assessment should be conducted and documented in each work area to assess the risks related to the use of the product and to select the PPE that matches the relevant risk. The following recommendations should be considered: PPE compliant to the recommended EN/ISO standards should be selected.
• Eye/face protection :	Wear goggles and a face shield when transfilling or breaking transfer connections. Standard EN 166 - Personal eye-protection - specifications. Provide readily accessible eye wash stations and safety showers.
Skin protection	
- Hand protection :	Wear working gloves when handling gas containers.

0	Air	Liqu	uide
---	-----	------	------

Page : 7/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017 NOAL 0002

Ammonia

			Country : SE / Language : EN
		Standard EN 388 - Protective gloves against mechanical ri	sk.
	Wear cold insulating gloves when transfilling or breaking transfer connections		ansfer connections.
		Standard EN 511 - Cold insulating gloves.	
		Wear chemically resistant protective gloves.	
		Standard EN 374 - Protective gloves against chemicals.	
		Permeation time: minimum >30min short term exposure: m rubber (CR) / 0.5 [mm] .	aterial / thickness Chloroprene
		Permeation time: minimum >480min long term exposure : / 0.7 [mm].	material / thickness Butyl rubber (IIR)
		Consult glove manufacturer's product information on mate	rial suitability and material thickness.
		The breakthrough time of the selected gloves must be great	ater than the intended use period.
- Other	:	Keep suitable chemically resistant protective clothing readi Standard EN943-1 - Full protective suits against liquid, soli Wear safety shoes while handling containers. Standard EN ISO 20345 - Personal protective equipment -	ly available for emergency use. d and gaseous chemicals. Safety footwear.
 Respiratory protection 	:	Gas filters may be used if all surrounding conditions e.g. ty contaminant(s) and duration of use are known. Use gas filters with full face mask, where exposure limits n period, e.g. connecting or disconnecting containers. Recommended: Filter K (green). Gas filters do not protect against oxygen deficiency. Standard EN 14387 - Gas filter(s), combined filter(s) and fu Keep self contained breathing apparatus readily available to Self contained breathing apparatus is recommended, where expected, e.g. during maintenance activities on installation Standard EN 137 - Self-contained open-circuit compressed face mask.	pe and concentration of the nay be exceeded for a short-term ull face mask - EN 136. for emergency use. 'e unknown exposure may be systems. d air breathing apparatus with full
Thermal hazards	:	None in addition to the above sections.	
8.2.3. Environmental exposure controls			

specific methods for waste gas treatment.

: Refer to local regulations for restriction of emissions to the atmosphere. See section 13 for

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance

•	Physical state at 20°C / 101.3kPa	:	Gas.
•	Colour	:	Colourless.
Odour		:	Ammoniacal.
Odour thre	eshold	:	Odour threshold is subjective and inadequate to warn of overexposure.
pH value		:	If dissolved in water pH-value will be affected.
Molar mas	S	:	17 g/mol
Melting po	int	:	-77.7 °C
Boiling poi	int	:	-33 °C
Flash poin	t	:	Not applicable for gases and gas mixtures.
Critical ten	nperature [°C]	:	132 °C
Evaporatio	on rate (ether=1)	:	Not applicable for gases and gas mixtures.
Flammabil	lity range	:	15.4 - 33.6 vol %
Vapour pre	essure [20°C]	:	8.6 bar(a)
Vapour pre	essure [50°C]	:	20 bar(a)
Relative de	ensity, gas (air=1)	:	0.6

SAFETY DATA SHEET

Page : 8/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002 Country : SE / Language : EN

Relative density, liquid (water=1)	: 0.7
Solubility in water	: 517 g/l
Partition coefficient n-octanol/water [log Kow]	: Not applicable for inorganic gases.
Auto-ignition temperature	: 630 °C
Decomposition point [°C]	: Not applicable.
Viscosity [20°C]	: No reliable data available.
Explosive Properties	: Not applicable.
Oxidising Properties	: Not applicable.
9.2. Other information	
Other data	: No additional information available
SECTION 10: Stability and reactivity	
10.1. Reactivity	
	: No reactivity hazard other than the effects described in sub-sections below.
10.2. Chemical stability	· Stable under normal conditions
	. Stable under normal conditions.
<u>10.3. Possibility of hazardous reactions</u>	
	: Can form explosive mixture with air.
	way react violently with oxidants.
10.4. Conditions to avoid	· Kaan away from heat/anarka/anan flamaa/hat ay faasa . Na amakina
	Avoid moisture in installation systems
10 5 Incompatible materials	
10.5. Incompatible materials	· Air Ovidisers
	Reacts with water to form corrosive alkalis.
	May react violently with acids.
	For additional information on compatibility refer to ISO 11114.
10.6. Hazardous decomposition products	
	: Under normal conditions of storage and use, hazardous decomposition products should not be produced.

SECTION 11: Toxicological information

11.1. Information on toxicological effects	
Acute toxicity	 Toxic if inhaled. Inhalation of large amounts leads to bronchospasm, laryngeal oedema and pseudomembrane formation.
LC50 inhalation rat (ppm)	2000 ppm/4h

Skin corrosion/irritation: Causes severe skin burns and eye damage.Serious eye damage/irritation: Causes serious eye damage.Respiratory or skin sensitisation: No known effects from this product.Germ cell mutagenicity: No known effects from this product.Carcinogenicity: No known effects from this product.Reproductive toxicity: No known effects from this product.STOT-single exposure: Severe corrosion to the respiratory tract at high concentrations.

SAFETY DATA SHEET

Page : 9/23 Revised edition no : 1 Compilation date : 5 / 7 / 2018 Supersedes : 26 / 9 / 2017 **NOAL 0002**

Country : SE / Language : EN

Ammonia

	May cause inflammation of the respiratory system.
Target organ(s)	Respiratory tract.
STOT-repeated exposure	No known effects from this product.
Aspiration hazard	Not applicable for gases and gas mixtures.

SECTION 12: Ecological information

12.1. Toxicity

Assessment	: Very toxic to aquatic life. Toxic to aquatic life with long lasting effects.
EC50 48h - Daphnia magna [mg/l] EC50 72h - Algae [mg/l] LC50 96 h - Fish [mg/l]	 101 mg/l No data available. 0.89 mg/l
12.2. Persistence and degradability	
Assessment	: The substance is biodegradable. Unlikely to persist.
12.3. Bioaccumulative potential	
Assessment	: No data available.
<u>12.4. Mobility in soil</u>	
Assessment	: Because of its high volatility, the product is unlikely to cause ground or water pollution. Partition into soil is unlikely.
12.5. Results of PBT and vPvB assessment	
Assessment	: Not classified as PBT or vPvB.
12.6. Other adverse effects Other adverse effects	: May cause pH changes in aqueous ecological systems.
Effect on the ozone layer Effect on global warming	None.No known effects from this product.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Contact supplier if guidance is required.

Must not be discharged to atmosphere.

Toxic and corrosive gases formed during combustion should be scrubbed before discharge to atmosphere.

Gas may be scrubbed in sulphuric acid solution.

Gas may be scrubbed in water.

Ensure that the emission levels from local regulations or operating permits are not exceeded.

	SAFETY DATA SHEET	Page : 10/23
Air Liquide		Revised edition no : 1
		Compilation date : 5 / 7 / 2018
		Supersedes : 26 / 9 / 2017
	Ammonia	NOAL_0002
		Country : SE / Language : EN
List of hazardous waste codes (fro Commission Decision 2001/118/E0 <u>13.2. Additional information</u>	Refer to the EIGA code of practice Doc.30 "Disposal of http://www.eiga.org for more guidance on suitable dispo Return unused product in original cylinder to supplier. The off off off off off off off off off of	Gases", downloadable at osal methods. ons) containing dangerous substances. y with applicable local and/or national
SECTION 14 [.] Transport in	formation	
	normation	
<u>14.1. UN number</u>		
UN-No.	: 1005	
14.2. UN proper shipping name		
Transport by road/rail (ADR/RID Transport by air (ICAO-TI / IATA Transport by sea (IMDG)) : AMMONIA, ANHYDROUS -DGR) : Ammonia, anhydrous : AMMONIA, ANHYDROUS	
14.3. Transport hazard class(es)	1	
Labelling	2.3 : Toxic gases. 8 : Corrosive substances.	
	Environmentally hazardous substances	
Class	1 · 2.	
Classification code	: 2TC.	
Hazard identification number	: 268.	
Tunnel Restriction	: C/D - Tank carriage : Passage forbidden through tunne	Is of category C, D and E. Other
Transport by sea (IMDG)		
Class / Div. (Sub. risk(s))	: 2.3 (8)	
Emergency Schedule (EmS) - Fire	e : F-C.	
Emergency Schedule (EmS) - Spil	llage : S-U.	
14.4. Packing group		
Transport by road/rail (ADR/RID)	: Not established.	
Transport by air (ICAO-TI / IATA-D	DGR) : Not established.	
Transport by sea (IMDG)	: Not established.	
14.5. Environmental hazards		
Transport by road/rail (ADR/RID)	: Environmentally hazardous substance / mixture.	
Transport by air (ICAO-TI / IATA-D	OGR) : Environmentally hazardous substance / mixture.	

Page : 11/23 Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002
Country : SE / Language : EN

Transport by sea (IMDG)	: Marine pollutant
14.6. Special precautions for user	
Packing Instruction(s)	
Transport by road/rail (ADR/RID)	: P200.
Transport by air (ICAO-TI / IATA-DGR)	
Passenger and Cargo Aircraft	: Forbidden.
Cargo Aircraft only	: Forbidden.
Transport by sea (IMDG)	: P200.
Special transport precautions	: Avoid transport on vehicles where the load space is not separated from the driver's compartment.
	Ensure vehicle driver is aware of the potential hazards of the load and knows what to do in the event of an accident or an emergency.
	Before transporting product containers:
	- Ensure there is adequate ventilation.
	- Ensure that containers are firmly secured.
	- Ensure cylinder valve is closed and not leaking.
	- Ensure valve outlet cap nut or plug (where provided) is correctly fitted.
	- Ensure valve protection device (where provided) is correctly fitted.

14.7. Transport in bulk according to Annex II of Marpol and the IBC Code

: Not applicable.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

EU-Regulations

Restrictions on use Seveso Directive : 2012/18/EU (Seveso III)	:	None. Listed.
National regulations National legislation	:	Ensure all national/local regulations are observed.

15.2. Chemical safety assessment

A CSA has been carried out.

SECTION 16: Other information	
Indication of changes	: Revised safety data sheet in accordance with commission regulation (EU) No 453/2010.
Abbreviations and acronyms	: ATE - Acute Toxicity Estimate CLP - Classification Labelling Packaging Regulation; Regulation (EC) No 1272/2008 REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals Regulation (EC) No 1907/2006

SAFETY DATA SHEET

Page : 12/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002

Country : SE / Language : EN	
------------------------------	--

	EINECS - European Inventory of Existing Commercial Chemical Substances
	CAS# - Chemical Abstract Service number
	PPE - Personal Protection Equipment
	LC50 - Lethal Concentration to 50 % of a test population
	RMM - Risk Management Measures
	PBT - Persistent, Bioaccumulative and Toxic
	vPvB - Very Persistent and Very Bioaccumulative
	STOT- SE : Specific Target Organ Toxicity - Single Exposure
	CSA - Chemical Safety Assessment
	EN - European Standard
	UN - United Nations
	ADR - European Agreement concerning the International Carriage of Dangerous Goods by Road
	IATA - International Air Transport Association
	IMDG code - International Maritime Dangerous Goods
	RID - Regulations concerning the International Carriage of Dangerous Goods by Rail
	WGK - Water Hazard Class
	STOT - RE : Specific Target Organ Toxicity - Repeated Exposure
Training advice :	Users of breathing apparatus must be trained.
	Ensure operators understand the flammability hazard.
	Ensure operators understand the toxicity hazard.

Full text of H- and EUH-statements

Acute Tox. 3 (Inhalation:gas)	Acute toxicity (inhalation:gas) Category 3	
Aquatic Acute 1	Hazardous to the aquatic environment — Acute Hazard, Category 1	
Aquatic Chronic 2	Hazardous to the aquatic environment — Chronic Hazard, Category 2	
Eye Dam. 1	Serious eye damage/eye irritation, Category 1	
Flam. Gas 2	Flammable gases, Category 2	
Press. Gas (Liq.)	Gases under pressure : Liquefied gas	
Skin Corr. 1B	Skin corrosion/irritation, Category 1B	
H221	Flammable gas.	
H280	Contains gas under pressure; may explode if heated.	
H314	Causes severe skin burns and eye damage.	
H318	Causes serious eye damage.	
H331	Toxic if inhaled.	
H400	Very toxic to aquatic life.	
H411	Toxic to aquatic life with long lasting effects.	
EUH071	Corrosive to the respiratory tract.	

DISCLAIMER OF LIABILITY

: Before using this product in any new process or experiment, a thorough material compatibility and safety study should be carried out.

Details given in this document are believed to be correct at the time of going to press.

Whilst proper care has been taken in the preparation of this document, no liability for injury or damage resulting from its use can be accepted.

SAFETY DATA SHEET

Page : 13/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002

Country : SE / Language : EN

1. Exposure scenario EIGA002-1

Industrial uses, closed contained conditions

ES Ref.: EIGA002-1 ES Type: Worker - EIGA Revision date: 25/04/2017

Use descriptors	SU3	
	PROC1, PROC2, PROC3, PROC4, PROC8b, PROC9	
	ERC1, ERC2, ERC4, ERC6a, ERC6b, ERC7	
Processes, tasks, activities covered	Industrial uses, including product transfers and associated laboratory activities within different closed or contained systems	
Assessment method	ECETOC TRA 2.0	
	EUSES	

2. Operational conditions and risk management measures

1.2.1 Contributing scenario controlling environmental exposure (ERC1)

Manufacture of substances				
ERC1	Manufacture of substances			
Assessment method	EUSES			
Product characteristics				
Physical form of product		See section 9 of the SDS, No additional information		
Concentration of substance i	n product	<= 100 %		
Operational conditions				
Amounts used		Annual site tonnage:	950000 t/yr	
		Regional use tonnage:	6500000 t/yr	
Frequency and duration of us	se .	Emission Days (days/year)	330	
Environmental factors not inf	uenced by risk	Flow rate of receiving water at least:	18000 m³/d	
management		Dilution of STP emissions at least:	10	
Other given operational cond environmental exposure	itions affecting	Closed systems are used in order to prevent unintended emissions		
Risk Management Measure	s			
Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil		Use appropriate air emissions abatement systems (e.g. wet or dry scrubber or local STP) to ensure that the emission levels defined by local regulations are not exceeded Soil emission controls are not applicable as there is no direct release to soil		
Organisation measures to prevent/limit release from site		Ensure operatives are trained to minimise releases		
Conditions and measures related to sewage treatment plant		Direct emissions to the municipal STP should not be made.		
Conditions and measures related to external treatment of waste for disposal		See section 13 of the SDS		
1.2.2 Contributing scenario controlling environmental exposure (ERC2)				
Formulation of preparations				
ERC2	Formulation of preparations			
Assessment method	sessment method EUSES			
Product characteristics				
Physical form of product		See section 9 of the SDS, No additional information		
Concentration of substance in product		<= 100 %		
Operational conditions				
Amounts used		Annual site tonnage:	1000000 t/yr	
		Regional use tonnage:	3800000 t/vr	

SAFETY DATA SHEET

Page : 14/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002

Frequency and duration of use		Emission Days (days/year)	330
Environmental factors not influenced by risk management		Flow rate of receiving water at least:	18000 m³/d
		Dilution of STP emissions at least:	10
Other given operational conditions affecting environmental exposure		Closed systems are used in order to prevent unintended emissions	
Risk Management Measures	3		
Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil		Use appropriate air emissions abatement systems (e.g. wet or dry scrubber or local STP) to ensure that the emission levels defined by local regulations are not exceeded Soil emission controls are not applicable as there is	
		no direct release to soil	
organisation measures to pre	vent/limit release from	Ensure operatives are trained to minimise releases	
Conditions and measures rela plant	ated to sewage treatment	Direct emissions to the municipal STP should not be made.	
Conditions and measures rela of waste for disposal	ated to external treatment	See section 13 of the SDS	
1.2.3 Contributing scena	rio controlling environme	ntal exposure (ERC4)	
Industrial use of processing a	ids in processes and produc	cts, not becoming part of articles	
ERC4	Industrial use of processing	g aids in processes and products, not becoming part of a	articles
Product characteristics			
Physical form of product		See section 9 of the SDS, No additional information	
Concentration of substance in	product	<= 100 %	
Operational conditions			
Amounts used		Annual site tonnage:	25000 t/yr
Erequency and duration of us	9	Regional use tonnage:	354000 t/yr
Environmental factors not influ	enced by risk	Elow rate of receiving water at least	18000 m ³ /d
management		Dilution of STP emissions at least:	10
Other given operational condi	tions affecting	Closed systems are used in order to prevent	
environmental exposure		unintended emissions	
Risk Management Measures	3		
Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil		Use appropriate air emissions abatement systems (e.g. wet or dry scrubber or local STP) to ensure that the emission levels defined by local regulations are not exceeded Soil emission controls are not applicable as there is no direct release to goil	
Organisation measures to prevent/limit release from		Ensure operatives are trained to minimise releases	
Site Conditions and measures related to sewage treatment		Direct emissions to the municipal STP should not be	
Conditions and measures related to external treatment		See section 13 of the SDS	
124 Contributing scena	rio controlling environme	ntal exposure (EPC6a)	
Industrial use resulting in man	ufacture of another substar	ace (use of intermediates)	
FRC6a	Industrial use resulting in r	nanufacture of another substance (use of intermediates)	
Assessment method FUSES			
Product characteristics			
Physical form of product		See section 9 of the SDS. No additional information	
Concentration of substance in	product	<= 100 %	
Operational conditions	. p. 54400		
Operational conditions			

SAFETY DATA SHEET

Page : 15/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002

Amounts used	Annual site tonnage:	800000 t/yr		
-	Regional use tonnage:	3800000 t/yr		
Frequency and duration of use	Emission Days (days/year)	330		
Environmental factors not influenced by risk	Flow rate of receiving water at least:	18000 m³/d		
	Dilution of STP emissions at least:	10		
Other given operational conditions affecting environmental exposure	Closed systems are used in order to prevent unintended emissions			
Risk Management Measures				
Technical onsite conditions and measures to reduce or	Use appropriate air emissions abatement systems			
limit discharges, air emissions and releases to soil	(e.g. wet or dry scrubber or local STP) to ensure that the emission levels defined by local regulations are not exceeded			
	Soil emission controls are not applicable as there is no direct release to soil			
Organisation measures to prevent/limit release from site	Ensure operatives are trained to minimise releases			
Conditions and measures related to sewage treatment plant	Direct emissions to the municipal STP should not be made.			
Conditions and measures related to external treatment of waste for disposal	See section 13 of the SDS			
.2.5 Contributing scenario controlling environmental exposure (ERC6b)				
Industrial use of reactive processing aids				
ERC6b Industrial use of reactive processing aids				
Product characteristics				
Physical form of product	See section 9 of the SDS, No additional information			
Concentration of substance in product	<= 100 %	<= 100 %		
Operational conditions				
Amounts used	Annual site tonnage:	25000 t/yr		
	Regional use tonnage:	354000 t/yr		
Frequency and duration of use	Emission Days (days/year)	330		
Environmental factors not influenced by risk	Flow rate of receiving water at least:	18000 m³/d		
management	Dilution of STP emissions at least:	10		
Other given operational conditions affecting environmental exposure	Closed systems are used in order to prevent unintended emissions			
Risk Management Measures				
Technical onsite conditions and measures to reduce or limit discharges, air emissions and releases to soil	Use appropriate air emissions abatement systems (e.g. wet or dry scrubber or local STP) to ensure that the emission levels defined by local regulations are not exceeded Soil omission controls are not applicable as there is			
	no direct release to soil			
Organisation measures to prevent/limit release from site	Ensure operatives are trained to minimise releases			
Conditions and measures related to sewage treatment plant	Direct emissions to the municipal STP should not be made.			
Conditions and measures related to external treatment of waste for disposal	See section 13 of the SDS			
1.2.6 Contributing scenario controlling environme	ental exposure (ERC7)			
Industrial use of substances in closed systems				
ERC7 Industrial use of substances in closed systems				
Product characteristics				
Physical form of product	Can protion 0 of the CDC. No additional information			
	See section 9 of the SDS, No additional information			
Concentration of substance in product	<pre><= 100 %</pre>			

SAFETY DATA SHEET

Page : 16/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002

Amounts used	Annual site tonnage:	25000 t/yr
	Regional use tonnage:	354000 t/yr
Frequency and duration of use	Emission Days (days/year)	330
Environmental factors not influenced by risk	Flow rate of receiving water at least:	18000 m³/d
	Dilution of STP emissions at least:	10
Other given operational conditions affecting environmental exposure	Closed systems are used in order to prevent unintended emissions	
Risk Management Measures		
Technical onsite conditions and measures to reduce or	Use appropriate air emissions abatement systems	
limit discharges, air emissions and releases to soil	(e.g. wet or dry scrubber or local STP) to ensure that the emission levels defined by local regulations are not exceeded	
	Soil emission controls are not applicable as there is no direct release to soil	
Organisation measures to prevent/limit release from site	Ensure operatives are trained to minimise releases	
Conditions and measures related to sewage treatment plant	Direct emissions to the municipal STP should not be made.	
Conditions and measures related to external treatment of waste for disposal	See section 13 of the SDS	
1.2.7 Contributing scenario controlling worker ex	posure (PROC1)	
Use in closed process, no likelihood of exposure		
PROC1 Use in closed process, no	likelihood of exposure	
Product characteristics		
Physical form of product	See section 9 of the SDS, No additional information	
Concentration of substance in product	<= 100 %	
Operational conditions	-	
Amounts used	The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROCs and technical conditions) is the main determinant of the process-intrinsic emission potential	
Frequency and duration of use	Exposure duration	<= 8 h/day
	Covers frequency up to:	5 days/week
Other given operational conditions affecting workers	Indoor or outdoor use	
Pisk Management Measures		
Technical conditions and measures at process level		
(source) to prevent release	Apply a good standard of general or controlled ventilation when maintenance activities are carried out.	
Organisational measures to prevent /limit releases,	Ensure operatives are trained to minimise exposure	
dispersion and exposure	Ensure supervision is in place to check that the RMMs are in place and are being used correctly and that the OCs are being followed	
Conditions and measures related to personal protection, hygiene and health evaluation	See section 8 of the SDS.	
1.2.8 Contributing scenario controlling worker ex	posure (PROC2)	
Use in closed, continuous process with occasional controlled exposure		
PROC2 Use in closed, continuous process with occasional controlled exposure		
Product characteristics		
Physical form of product	See section 9 of the SDS, No additional information	
Concentration of substance in product	<= 100 %	

SAFETY DATA SHEET

Page : 17/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002

Operational conditions			
Amounts used		The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROCs and technical conditions) is the main determinant of the process-intrinsic emission potential.	
Frequency and duration of us	se	Exposure duration	<= 8 h/day
		Covers frequency up to:	5 days/week
Other given operational cond exposure	litions affecting workers	Indoor or outdoor use	
Risk Management Measure	s		
Technical conditions and measures at process level (source) to prevent release		Handle product within a closed system	
		During indoor processes or in cases where natural ventilation is not sufficient, LEV should be in place at points were emissions could occur. Outdoor, LEV is not generally required.	
		Ensure samples are obtained under containment or extract ventilation.	
		Drain down and flush system prior to equipment break-in or maintenance.	
		Apply a good standard of general or controlled ventilation when maintenance activities are carried out.	
Organisational measures to prevent /limit releases, dispersion and exposure		Ensure operatives are trained to minimise exposure	
		Ensure supervision is in place to check that the RMMs are in place and are being used correctly and that the OCs are being followed	
Conditions and measures related to personal protection, hygiene and health evaluation		Use suitable eye protection. Wear suitable face shield. Wear suitable coveralls to prevent exposure to the skin	Personal protection measures have to be applied in case of potential exposure only.
		Wear gloves providing a minimum efficiency of (%):	90
		Wear a respirator providing a minimum efficiency of (%):	95 Mandatory if activities take place outdoors or indoors with no local exhaust ventilation
		See section 8 of the SDS.	
1.2.9 Contributing scena	ario controlling worker exp	oosure (PROC3)	
Use in closed batch process	(synthesis or formulation)		
PROC3	Use in closed batch proces	ss (synthesis or formulation)	
Product characteristics			
Physical form of product		See section 9 of the SDS, No additional information	
Concentration of substance in product		<= 100 %	
Operational conditions			_
Amounts used		The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROCs and technical conditions) is the main determinant of the process-intrinsic emission potential.	
Frequency and duration of use		Exposure duration	<= 8 h/day
		Covers frequency up to:	5 days/week
Other given operational conditions affecting workers exposure		Indoor or outdoor use	
Risk Management Measure	IS		

Page : 18/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

Air Liquide

NOAL_0002

Country : SE / Language : EN	1
------------------------------	---

Technical conditions and measures at process level		Handle product within a closed system	
(source) to prevent release		During indoor processes or in cases where natural	
		ventilation is not sufficient, LEV should be in place at	
		not generally required	
		Ensure samples are obtained under containment or extract ventilation.	
		Drain down and flush system prior to equipment	
		break-in or maintenance.	
		Apply a good standard of general or controlled ventilation when maintenance activities are carried out	
Organisational measures to	prevent /limit releases,	Ensure operatives are trained to minimise exposure	
dispersion and exposure		Ensure supervision is in place to check that the RMMs are in place and are being used correctly and that the OCs are being followed	
Conditions and measures r	elated to personal	Use suitable eye protection. Wear suitable face	Personal protection measures
protection, hygiene and hea	alth evaluation	shield. Wear suitable coveralls to prevent exposure	have to be applied in case of
		to the skin	potential exposure only.
		Wear a respirator providing a minimum efficiency of (%).	90
		(%):	Mandatory if activities take
			place outdoors or indoors with
		See eastion 9 of the SDS	no local exhaust ventilation
	and a second second second second		
1.2.10 Contributing scenario controlling worker exposure (PROC4)			
Use in batch and other proc	cess (synthesis) where oppor	tunity for exposure arises	
PROC4	Use in batch and other pro	ocess (synthesis) where opportunity for exposure arises	
Product characteristics			
Physical form of product		See section 9 of the SDS, No additional information	
Concentration of substance	e in product	<= 100 %	
Operational conditions			
Amounts used		The actual tonnage handled per shift is not	
		considered to influence the exposure as such for this	
		scenario. Instead, the combination of the scale of	
		containment/automation (as reflected in the PROCs	
		and technical conditions) is the main determinant of	
		the process-intrinsic emission potential.	
Frequency and duration of	use		<= 8 n/day
		Covers trequency up to:	5 days/week
Other given operational cor exposure	nditions affecting workers	Indoor or outdoor use	
Risk Management Measures			
Technical conditions and m	easures at process level	Handle product within a closed system	
(source) to prevent release		During indoor processes or in cases where natural	
		ventilation is not sufficient, LEV should be in place at	
		points were emissions could occur. Outdoor, LEV is	
		Ensure samples are obtained under containment or	
		extract ventilation.	
		Drain down and flush system prior to equipment break-in or maintenance.	
		Apply a good standard of general or controlled	
		supply a good standard of gonoral of controlled	
Organisational measures to		ventilation when maintenance activities are carried	
dispersion and exposure		ventilation when maintenance activities are carried out.	
dispersion and exposure	o prevent /limit releases,	ventilation when maintenance activities are carried out. Ensure operatives are trained to minimise exposure	
dispersion and exposure	o prevent /limit releases,	ventilation when maintenance activities are carried out. Ensure operatives are trained to minimise exposure Ensure supervision is in place to check that the RMMs are in place and are being used correctly and	

			Page : 19/23
	JAF		Revised edition no : 1
HILIQUIAE			Compilation date : 5 / 7 / 2018
			Supersedes : 26 / 9 / 2017
	Ammo	nia	NOAL_0002
			Country : SE / Language : EN
Conditions and measures related protection, hygiene and health ex	d to personal valuation	Use suitable eye protection. Wear suitable face shield. Wear suitable coveralls to prevent exposure to the skin Wear gloves providing a minimum efficiency of (%): Wear a respirator providing a minimum efficiency of (%):	Personal protection measures have to be applied in case of potential exposure only. 90 95 Mandatory if activities take place outdoors or indoors with
		See section 8 of the SDS.	no local exhaust ventilation
1.2.11 Contributing scenario	controlling worker exp	posure (PROC8b)	
Transfer of substance or prepara	ition (charging/dischargi	ng) from/to vessels/large containers at dedicated facili	ties
PROC8b Tra	ansfer of substance or p	preparation (charging/discharging) from/to vessels/larg	e containers at dedicated facilities
Product characteristics			
Physical form of product		See section 9 of the SDS, No additional information	
Concentration of substance in pre-	oduct	<= 100 %	
Operational conditions			
Amounts used		The actual tonnage handled per shift is not considered to influence the exposure as such for thi scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROCs and technical conditions) is the main determinant of the process-intrinsic emission potential	S
Frequency and duration of use		Exposure duration	<= 8 h/day
		Covers frequency up to:	5 days/week
Other given operational condition exposure	ns affecting workers	Indoor or outdoor use	
Risk Management Measures			
Technical conditions and measur (source) to prevent release	res at process level	 Handle product within a closed system During indoor processes or in cases where natural ventilation is not sufficient, LEV should be in place a points were emissions could occur. Outdoor, LEV is not generally required. Fill containers at dedicated fill points supplied with local extract ventilation. Drain down and flush system prior to equipment break-in or maintenance. Apply a good standard of general or controlled ventilation when maintenance activities are carried out. 	t
Organisational measures to prev dispersion and exposure	ent /limit releases,	Ensure operatives are trained to minimise exposure Ensure supervision is in place to check that the RMMs are in place and are being used correctly and that the QCs are being followed	4
Conditions and measures related to personal protection, hygiene and health evaluation		Use suitable eye protection. Wear suitable face shield. Wear suitable coveralls to prevent exposure to the skin Wear gloves providing a minimum efficiency of (%):	Personal protection measures have to be applied in case of potential exposure only. 90
		Wear a respirator providing a minimum efficiency of (%): See section 8 of the SDS.	95 Mandatory if activities take place outdoors or indoors with no local exhaust ventilation
1.2.12 Contributing scenario	controlling worker ex	posure (PROC9)	
Transfer of substance or prepara	tion into small container	s (dedicated filling line, including weighing)	
PROC9 Tra	ansfer of substance or n	nixture into small containers (dedicated filling line, incl	uding weighing)
Product characteristics			
Physical form of product		See section 9 of the SDS, No additional information	

SAFETY DATA SHEET

Page : 20/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002

Country : SE / Language : EN

Concentration of substance in product	<= 100 %		
Operational conditions			
Amounts used	The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROCs and technical conditions) is the main determinant of the process-intrinsic emission potential.		
Frequency and duration of use	Exposure duration	<= 8 h/day	
	Covers frequency up to:	5 days/week	
Other given operational conditions affecting workers exposure	Indoor or outdoor use		
Risk Management Measures			
Technical conditions and measures at process level	Handle product within a closed system		
(source) to prevent release	During indoor processes or in cases where natural ventilation is not sufficient, LEV should be in place at points were emissions could occur. Outdoor, LEV is not generally required.		
	Fill containers at dedicated fill points supplied with local extract ventilation.		
	Drain down and flush system prior to equipment break-in or maintenance.		
	Apply a good standard of general or controlled ventilation when maintenance activities are carried out.		
Organisational measures to prevent /limit releases, dispersion and exposure	Ensure operatives are trained to minimise exposure		
	Ensure supervision is in place to check that the RMMs are in place and are being used correctly and that the OCs are being followed		
Conditions and measures related to personal protection, hygiene and health evaluation	Use suitable eye protection. Wear suitable face shield. Wear suitable coveralls to prevent exposure to the skin	Personal protection measures have to be applied in case of potential exposure only.	
	Wear a respirator providing a minimum efficiency of (%):	95 Mandatory if activities take place outdoors or indoors with no local exhaust ventilation	
	See section 8 of the SDS.		
3. Exposure estimation and reference to its	source		

3.1. Health

3.2. Environment

4. Guidance to Downstream User to evaluate whether he works inside the boundaries set by the ES

4.1. Health	
Guidance - Health	Guidance is based on assumed operating conditions which may not be applicable to all sites; thus, scaling may be necessary to define appropriate site-specific risk management measures. For scaling see : . http://www.ecetoc.org/tra
4.2. Environment	
Guidance - Environment	Guidance is based on assumed operating conditions which may not be applicable to all sites; thus, scaling may be necessary to define appropriate site-specific risk management measures. For scaling see : . https://ec.europa.eu/jrc/en/scientific-tool/european-union-system-evaluation-substances
Air Liquide

SAFETY DATA SHEET

Page : 21/23

Revised edition no : 1

Compilation date : 5 / 7 / 2018

Supersedes : 26 / 9 / 2017

Ammonia

NOAL_0002

Country : SE / Language : EN

1. Exposure scenario ElGA002-2

Professional uses

(source) to prevent release

ES Ref.: EIGA002-2
ES Type: Worker - EIGA
Revision date: 25/04/2017

Use descriptors						
P		CC4, PROC8a				
	ERC	9a, ERC9b				
Processes, tasks, activities cov	vered Profe	ssional uses, including transfer of product in non-industri	al settings			
Assessment method	ECET	FOC TRA 2.0				
2. Operational condition	s and risk manage	ment measures				
1.2.1 Contributing scenari	o controlling environme	ental exposure (ERC9a, ERC9b)				
Wide dispersive indoor use of s	substances in closed system	ems. Wide dispersive outdoor use of substances in close	d systems			
ERC9a V	Wide dispersive indoor use of substances in closed systems					
ERC9b V	Wide dispersive outdoor u	ise of substances in closed systems				
Product characteristics						
Physical form of product		See section 9 of the SDS, No additional information				
Concentration of substance in p	product	<= 100 %				
Operational conditions						
Amounts used		No additional information				
Other given operational conditional	ons affecting	Closed systems are used in order to prevent				
environmental exposure		unintended emissions				
Risk Management Measures						
Organisation measures to previsite	ent/limit release from	Ensure operatives are trained to minimise exposure				
Conditions and measures relate plant	ed to sewage treatment	No additional information				
Conditions and measures relate of waste for disposal	ed to external treatment	See section 13 of the SDS				
1.2.2 Contributing scenari	io controlling worker ex	posure (PROC4)				
Use in batch and other process	s (synthesis) where oppor	tunity for exposure arises				
PROC4 L	Use in batch and other pro	ocess (synthesis) where opportunity for exposure arises				
Product characteristics						
Physical form of product		See section 9 of the SDS, No additional information				
Concentration of substance in p	product	<= 100 %				
Operational conditions		•				
Amounts used		The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROCs and technical conditions) is the main determinant of the process-intrinsic emission potential.				
Frequency and duration of use		Exposure duration	<= 8 h/day			
		Covers frequency up to:	5 days/week			
Other given operational condition exposure	ons affecting workers	Indoor or outdoor use				
Risk Management Measures						
Technical conditions and meas	sures at process level	Handle product within a closed system				

			Revised edition no : 1
HILIQUIDE		F	Compilation date : 5 / 7 / 2018
			Supersedes : 26 / 9 / 2017
	Ammo	onia	NOAL_0002
			Country : SE / Language : EN
		During indoor processes or in cases where natural ventilation is not sufficient, LEV should be in place a points were emissions could occur. Outdoor, LEV is not generally required.	t
		Drain down and flush system prior to equipment break-in or maintenance.	
		Apply a good standard of general or controlled ventilation when maintenance activities are carried out.	
Organisational measures to prev	ent /limit releases,	Ensure operatives are trained to minimise exposure	
dispersion and exposure		Ensure supervision is in place to check that the RMMs are in place and are being used correctly and that the OCs are being followed	1
Conditions and measures related protection, hygiene and health ev	l to personal valuation	Use suitable eye protection. Wear suitable face shield. Wear suitable coveralls to prevent exposure to the skin	Personal protection measures have to be applied in case of potential exposure only.
		Wear gloves providing a minimum efficiency of (%): Wear a respirator providing a minimum efficiency of	90 95 Mandatory if activities take place outdoors or indoors with no local exhaust ventilation
		See section 8 of the SDS.	
1.2.3 Contributing scenario	controlling worker ex	posure (PROC8a)	
Transfer of substance or prepara	tion (charging/discharg	ing) from/to vessels/large containers at non dedicated	facilities
PROC8a Tra fac	ansfer of substance or cilities	preparation (charging/discharging) from/to vessels/larg	e containers at non dedicated
Product characteristics			
Physical form of product		See section 9 of the SDS, No additional information	
Concentration of substance in pro-	oduct	<= 100 %	
Operational conditions			
Amounts used		The actual tonnage handled per shift is not considered to influence the exposure as such for this scenario. Instead, the combination of the scale of operation (industrial vs. professional) and level of containment/automation (as reflected in the PROCs and technical conditions) is the main determinant of the process-intrinsic emission potential.	5
Frequency and duration of use		Exposure duration	<= 8 h/day
		Covers frequency up to:	5 days/week
Other given operational condition exposure	is affecting workers	Indoor or outdoor use	
Risk Management Measures			
Technical conditions and measur	es at process level	Handle product within a closed system	
(source) to prevent release		During indoor processes or in cases where natural ventilation is not sufficient, LEV should be in place a points were emissions could occur. Outdoor, LEV is not generally required. Drain down and flush system prior to equipment break-in or maintenance	t
		Apply a good standard of general or controlled ventilation when maintenance activities are carried out.	
Organisational measures to prev	ent /limit releases,	Ensure operatives are trained to minimise exposure	
dispersion and exposure		Ensure supervision is in place to check that the RMMs are in place and are being used correctly and that the OCs are being followed	1
Conditions and measures related	to personal	Use suitable eye protection. Wear suitable face	Personal protection measures

shield. Wear suitable coveralls to prevent exposure

Wear gloves providing a minimum efficiency of (%):

to the skin

protection, hygiene and health evaluation

SAFETY DATA SHEET

Page : 22/23

have to be applied in case of

potential exposure only.

90

	SAFETY DATA SHEET	Page : 23/23
O Air Liquide		Revised edition no : 1
		Compilation date : 5 / 7 / 2018
		Supersedes : 26 / 9 / 2017
	NOAL_0002	
		Country : SE / Language : EN
	Wear a respirator providing a minimum efficiency of	f 95 Mandatory if activities take place outdoors or indoors with no local exhaust ventilation
3. Exposure estimation ar	nd reference to its source	

3.1. Health

3.2. Environment

4. Guidance to Downstream User to evaluate whether he works inside the boundaries set by the ES

4.1. Health	
Guidance - Health	Guidance is based on assumed operating conditions which may not be applicable to all sites; thus, scaling may be necessary to define appropriate site-specific risk management measures. For scaling see : . http://www.ecetoc.org/tra
4.2 Environment	
Guidance - Environment	Check that RMMs and OCs are as described above or of equivalent efficiency

Appendix D: Extended Financial Information

Process Title: Green Ammonia Product: Ammonia Plant Site Location: SW Norway Site Factor: 1.00 Operating Hours per Year: 8400 Operating Days Per Year: 350 Operating Factor: 0.9589

Product Information

This Process will Yield

Price

2 ton of Ammonia per hour46 ton of Ammonia per day16,178 ton of Ammonia per year

\$550.00 /ton

Chronology					
		Distribution of	Production	Depreciation	Product Price
Year	Action	Permanent Investment	Capacity	20 year MACRS	
2020	Design		0.0%		
2021	Construction	100%	0.0%		
2022	Production	0%	45.0%	3.75%	\$550.00
2023	Production	0%	67.5%	7.22%	\$569.25
2024	Production	0%	90.0%	6.68%	\$589.17
2025	Production		90.0%	6.18%	\$609.79
2026	Production		90.0%	5.71%	\$631.14
2027	Production		90.0%	5.29%	\$653.23
2028	Production		90.0%	4.89%	\$676.09
2029	Production		90.0%	4.52%	\$699.75
2030	Production		90.0%	4.46%	\$724.24
2031	Production		90.0%	4.46%	\$749.59
2032	Production		90.0%	4.46%	\$775.83
2033	Production		90.0%	4.46%	\$802.98
2034	Production		90.0%	4.46%	\$831.09
2035	Production		90.0%	4.46%	\$860.18
2036	Production		90.0%	4.46%	\$890.28

Equipment Costs

Equipment Description		Bare Module Cost
Haber Bosch Reactor	Process Machinery	\$340,823
Sodium Doped Iron Catalyst	Catalysts	\$20,000
HB-CP-01	Process Machinery	\$30,146
HB-CP-02	Process Machinery	\$3,021,123
HB-HXA-01	Process Machinery	\$127,161
HB-HXA-02	Process Machinery	\$105,901
HB-HXA-03	Process Machinery	\$153,087
HB-HXA-04	Process Machinery	\$120,435
#REF!	#REF!	#REF!
HB-S-01	Process Machinery	\$66,024
HB-S-02	Process Machinery	\$57,136
Storage Tank	Storage	\$940,000
SOEC	Process Machinery	\$15,000,000
UP-EM-01	Process Machinery	\$5,720
UP-PM-01	Process Machinery	\$42,068
#REF!	#REF!	#REF!
#REF!	#REF!	#REF!
UP-CP-01	Process Machinery	\$479,984
UP-CP-02	Process Machinery	\$525,826
UP-CP-03	Process Machinery	\$504,596
UP-CP-04	Process Machinery	\$55,437
UP-HX-01	Process Machinery	\$108,504
UP-HX-02	Process Machinery	\$148,064
UP-CO-01	Process Machinery	\$45,449
UP-CO-02	Process Machinery	\$39,081
UP-CO-03	Process Machinery	\$46,168
UP-CD-01	Process Machinery	\$150,110
M6 Filter	Process Machinery	\$8,000
lon Exchange Unit	Process Machinery	\$300,000

Total

<u> #REF!</u>

	ls							
	Raw Material:	Unit:	Required Ra	tio:			Cost of Raw Ma	terial:
	1 Water	ton	1.5	ton per ton of A	mmonia	-	\$0.000E+00	per ton
	2 Air	ton	1	ton per ton of A	mmonia		\$0.00	per ton
							,	P
	Total Weighted Average:						\$0.000E+00	perton of Ammonia
	Total Weighted Average.						φ0.000E+00	per ton of Animonia
Bunraduata								
Byproducts	Dunnaduati	11	Datia ta Dra	luct			Dunnaduat Callin	a Drie e
	Byproduct:	<u>Unit:</u>	Ratio to Proc	<u>luct</u>			Byproduct Sellin	ig Price
	1 Oxygen	kg	220	kg per ton of Ar	nmonia		\$0.200	per kg
	Total Weighted Average:						\$44,000	per ton of Ammonia
	retal freightet / terage.							por ton on uniteria
Utilities								
	<u>Utility:</u>	<u>Unit:</u>	Required Ra	tio			Utility Cost	
	1 High Pressure Steam	MT	0	MT per ton of A	mmonia		\$0.000E+00	per MT
	2 Low Pressure Steam	MT	0	MT per ton of A	mmonia		\$0.000E+00	per MT
	3 Process Water	gal	0	gal per ton of A	mmonia		\$0.000E+00	pergal
	4 Cooling Water	MT	17,340462	MT per ton of A	mmonia		\$0.027	per MT
	5 Chilled Water	MT	71 023798	MT per ton of A	mmonia		\$1,500	per MT
			11.020100				φ1.000	por int
	Total Weighted Average:						\$107.004	ner ton of Ammonia
	rotar weighted / weilage.						φ107.004	per ton on annonia
Variable Cos	sts							
Variable Cos	sts General Expenses:							
Variable Cos	sts <u>General Expenses:</u>	Selling / Trans	fer Expenses:	3.0	0% of Sales	;		
Variable Cos	sts <u>General Expenses:</u>	Selling / Trans Dir	fer Expenses:	3.0 4 R	0% of Sales	;		
Variable Cos	sts <u>General Expenses:</u>	Selling / Trans Dir Allocat	fer Expenses: ect Research: ted Research	3.0 4.8 0.5	0% of Sales 0% of Sales 0% of Sales	; ;		
Variable Cos	sts <u>General Expenses:</u>	Selling / Trans Dir Alloca Administra	fer Expenses: ect Research: ted Research:	3.0 4.8 0.5	0% of Sales 0% of Sales 0% of Sales 0% of Sales	; ;		
Variable Cos	sts <u>General Expenses:</u> Manag	Selling / Trans Dir Alloca Administra	fer Expenses: ect Research: ted Research: tive Expense: ompensation:	3.0 4.8 0.5 2.0	0% of Sales 0% of Sales 0% of Sales 0% of Sales 5% of Sales	; ; ;		
Variable Cos	sts General Expenses: Manag	Selling / Trans Dir Alloca Administra ement Incentive C	fer Expenses: ect Research: ted Research: tive Expense: ompensation:	3.0 4.8 0.5 2.0 1.2	0% of Sales 0% of Sales 0% of Sales 0% of Sales 5% of Sales	5 5 5		
Variable Cos	sts <u>General Expenses:</u> Manag Dital	Selling / Trans Dir Alloca Administra ement Incentive C	ifer Expenses: ect Research: ted Research: tive Expense: ompensation:	3.0 4.8 0.5 2.0 1.2	0% of Sales 0% of Sales 0% of Sales 0% of Sales 5% of Sales	5		
Variable Cos	sts <u>General Expenses:</u> Manag pital	Selling / Trans Dir Alloca Administra ement Incentive C	ifer Expenses: ect Research: ted Research: tive Expense: ompensation:	3.0 4.8 0.5 2.0 1.2	0% of Sales 0% of Sales 0% of Sales 0% of Sales 5% of Sales	5 5 5		
Variable Cos	sts General Expenses: Manag pital	Selling / Trans Dir Alloca Administra ement Incentive C	ifer Expenses: ect Research: ted Research: tive Expense: ompensation:	3.0 4.8 0.5 2.0 1.2	0% of Sales 0% of Sales 0% of Sales 0% of Sales 5% of Sales 30	; ; ; Dave		
Variable Cos	Sts General Expenses: Manag pital Accounts Receivable Cash Reserves (avolution	Selling / Trans Dir Allocai Administra ement Incentive C	fer Expenses: ect Research: ted Research: tive Expense: ompensation: ☆	3.0 4.8 0.5 2.0 1.2	0% of Sales 0% of Sales 0% of Sales 0% of Sales 5% of Sales 30	Days		
Variable Cos	sts <u>General Expenses:</u> Manag pital Accounts Receivable Cash Reserves (excluding Accounts Receivable	Selling / Trans Dir Alloca Administra ement Incentive C g Raw Materials)	fer Expenses: ect Research: ted Research: tive Expense: ompensation: ⇔ ⇔	3.0 4.8 0.5 2.0 1.2	0% of Sales 0% of Sales 0% of Sales 0% of Sales 5% of Sales 30 30	Days Days		
Variable Cos	sts <u>General Expenses:</u> Manag pital Accounts Receivable Cash Reserves (excluding Accounts Payable	Selling / Trans Dir Alloca Administra ement Incentive C g Raw Materials)	fer Expenses: ect Research: ted Research: ative Expense: ompensation: ⇔ ⇔	3.0 4.8 0.5 2.0 1.2	0% of Sales 0% of Sales 0% of Sales 0% of Sales 5% of Sales 30 30 30	Days Days Days		
Variable Cos	sts <u>General Expenses:</u> Manag pital Accounts Receivable Cash Reserves (excluding Accounts Payable Ammonia Inventory	Selling / Trans Dir Alloca Administra ement Incentive C	fer Expenses: ect Research: ted Research: ative Expense: ompensation:	3.0 4.8 0.5 2.0 1.2	0% of Sales 0% of Sales 0% of Sales 0% of Sales 5% of Sales 30 30 30	Days Days Days Days		
Variable Cos	sts <u>General Expenses:</u> Manag pital Accounts Receivable Cash Reserves (excluding Accounts Payable Ammonia Inventory Raw Materials	Selling / Trans Dir Allocai ement Incentive C g Raw Materials)	fer Expenses: ect Research: ted Research: ative Expense: ompensation:	3.0 4.8 0.5 2.0 1.2	0% of Sales 0% of Sales 0% of Sales 0% of Sales 5% of Sales 30 30 30 30 3	Days Days Days Days Days Days		

	Cost of Site Preparations:	5.00%	of Total Bare Module Costs
	Cost of Service Facilities:	5.00%	of Total Bare Module Costs
	Allocated Costs for utility plants and related facilities:	\$0	
	Cost of Contingencies and Contractor Fees	18 00%	of Direct Permanent Investment
	Cost of Contingencies and Contractor rees.	0.50%	of Total Doprosiable Capital
	Cost of Develtion	0.00/0	
		۵ ۵	a fits (all Decouver labels Occution)
	Cost of Plant Start-Up:	10.00%	of Total Depreciable Capital
Fixed Costs			
Fixeu Costs	Operations		
	Operations Operators per Shift	5	(assuming 5 shifts)
	Direct Wages and Deposite	¢40	(assuming 5 sinits)
	Direct wages and Benefits.	\$40 4 50	/operator nour
	Direct Salaries and Benefits:	15%	of Direct Wages and Benefits
	Operating Supplies and Services:	6%	of Direct Wages and Benefits
	Technical Assistance to Manufacturing:	\$7,920.00	per year, for each Operator per Shift
	Control Laboratory:	\$11,700.00	per year, for each Operator per Shift
			
	Maintenance	0.000/	
	wages and Benefits:	2.00%	of Total Depreciable Capital
	Salaries and Benefits:	25%	of Maintenance Wages and Benefits
	Materials and Services:	100%	of Maintenance Wages and Benefits
	Maintenance Overhead:	5%	of Maintenance Wages and Benefits
	Operating Overhead		
	General Plant Overhead:	7.10%	of Maintenance and Operations Wages and Benefits
	Mechanical Department Services:	2.40%	of Maintenance and Operations Wages and Benefits
	Employee Relations Department:	5.90%	of Maintenance and Operations Wages and Benefits
	Business Services:	7.40%	of Maintenance and Operations Wages and Benefits
	Property Taxes and Insurance	20/	of Total Donrociable Conital
	Property raxes and insurance.	∠ 70	or rotal Depreciable Capital
	Straight Line Depreciation		
	Direct Plant: 8.00% of Total Depres	ciable Capital. le	ss 1.18 times the Allocated Costs
		olubic Cupitul, ic	for Utility Plants and Related Facilities
	Allocated Plant: 6.00% of 1.18 times the	he Allocated Cos	sts for Utility Plants and Related Facilities
	Other Arinual Expenses	¢0.	
	Remai rees (Onice and Laboratory Space).	φU ¢0	
	Licensing Fees:	\$0	
	Miscellaneous:	\$0	
	Depletion Allowance		
	Annual Depletion Allowance	02	
		ψυ	

Variable Cost Summary Variable Costs at 100% Capacity:

Genera	Expenses

Selling / Tran Direct Resea Allocated Res Administrative Managemeni	sfer Expenses: rch: search: e Expense: t Incentive Compensation:	\$ \$ \$ \$	266,944 427,110 44,491 177,962 111,227
Total General Expenses		\$	1,027,733
Raw Materials	\$0.00 per ton of Ammonia		\$0
Byproducts	\$44.00 per ton of Ammonia		(\$711,850)
<u>Utilities</u>	\$107.00 per ton of Ammonia		\$1,731,152
Total Variable Costs		\$	2,047,035

Fixed Cost Summary

Operations

Direct Wages and Benefits	\$	2 080 000
Direct Salaries and Benefits	ŝ	312 000
Operating Supplies and Services	ŝ	124 800
Technical Assistance to Manufacturing	¢	198,000
Control Laboratory	¢ ¢	202 500
Control Laboratory	φ	292,500
Total Operations	\$	3,007,300
Maintenance		
Wages and Benefits	\$	636.072
Salaries and Benefits	\$	159,018
Materials and Services	ŝ	636.072
Maintenance Overhead	\$	31,804
Total Maintenance	\$	1,462,966
		, ,
Operating Overhead		
General Plant Overhead:	\$	226,283
Mechanical Department Services	\$	76 490
Employee Relations Department	ŝ	188 038
Business Services:	\$	235,845
Total Operating Overhead	\$	726,657
Property Taxes and Insurance		
Property Taxes and Insurances	¢	636.072
Fiopeny raxes and insurance.	φ	030,072
Other Annual Expenses		
Rental Fees (Office and Laboratory Space):	\$	-
Licensing Fees	\$	-
Miscellaneous:	\$	-
Total Other Annual Expenses	\$	
·····		
Total Fixed Costs	\$	5,832,994

Investmen	tSummary					
<u>Total Bare N</u>	Iodule Costs: Fabricated Equipment Process Machinery Spares Storage Other Equipment Catalysts Computers, Software, Etc.	\$ \$ \$ \$ \$ \$ \$	23,542,003 940,000 20,000			
	<u>Total Bare Module Costs:</u>			\$	24,502,003	
Direct Perma	anent Investment					
	Cost of Site Preparations: Cost of Service Facilities: Allocated Costs for utility plants and related facilities: <u>Direct Permanent Investment</u>	\$ \$ \$	1,225,100 1,225,100 -	<u>\$</u>	26,952,203	
Total Depred	siable Capital					
	Cost of Contingencies & Contractor Fees	\$	4,851,397			
	Total Depreciable Capital			\$	31,803,600	
Total Perma	nent Investment					
	Cost of Land: Cost of Royalties: Cost of Plant Start-Up:	\$ \$ \$	159,018 - 3,180,360			
	Total Permanent Investment - Unadjusted Site Factor			\$	35,142,978 1 00	
	Total Permanent Investment			<u>\$</u>	35,142,978	
Working C	apital					
	Accounts Receivable Cash Reserves Accounts Payable Ammonia Inventory Raw Materials Total	% % % % %	2021 329,109 279,770 (64,029) 32,911 - 577,760	\$ \$ \$ \$ \$	2022 164,554 \$ 139,885 \$ (32,014) \$ 16,455 \$ - \$ 288,880 \$	2023 164,554 139,885 (32,014) 16,455 - 288,880

\$

Total Capital Investment

Present Value at 10%

<u>\$ 36,123,998</u>

525,237 \$

238,744 \$

217,040

Cash Flow Summary

	Percentage of	Product Unit									Depletion					Cumulative Net Present
Year	Design Capacity	Price	Sales	Capital Costs	Working Capital	Var Costs	Total Costs	20 year MACRS	Fixed Costs	Depreciation	Allowance	Taxible Income	Taxes	Net Earnings	Cash Flow	Value at 10%
2020	0%		-	-	-	-	-	0.00%	-	-		-			-	-
2021	0%		-	(35,143,000)	(577,800)	-	-	0.00%	-	-		-			(35,720,700)	(32,473,400)
2022	45%	\$550.00	4,004,200	-	(288,900)	(921,200)	(6,754,160)	3.75%	(5,833,000)	(1,192,600)		(3,942,600)	828,000	(3,114,700)	(2,210,900)	(34,300,600)
2023	68%	\$569.25	6,216,400	-	(288,900)	(1,381,700)	(7,214,743)	7.22%	(5,833,000)	(2,295,900)	-	(3,294,200)	691,800	(2,602,400)	(595,400)	(34,747,900)
2024	90%	\$589.17	8,578,700	-		(1,842,300)	(7,675,326)	6.68%	(5,833,000)	(2,123,500)	-	(1,220,200)	256,200	(963,900)	1,159,600	(33,955,900)
2025	90%	\$609.79	8,879,000	-	-	(1,842,300)	(7,675,326)	6.18%	(5,833,000)	(1,964,500)		(760,900)	159,800	(601,100)	1,363,400	(33,109,300)
2026	90%	\$631.14	9,189,700	-	-	(1,842,300)	(7,675,326)	5.71%	(5,833,000)	(1,816,900)	-	(302,500)	63,500	(239,000)	1,577,900	(32,218,600)
2027	90%	\$653.23	9,511,400	-	-	(1,842,300)	(7,675,326)	5.29%	(5,833,000)	(1,680,800)		155,200	(32,600)	122,600	1,803,400	(31,293,200)
2028	90%	\$676.09	9,844,300	-	-	(1,842,300)	(7,675,326)	4.89%	(5,833,000)	(1,554,600)		614,400	(129,000)	485,400	2,039,900	(30,341,600)
2029	90%	\$699.75	10,188,800	-	-	(1,842,300)	(7,675,326)	4.52%	(5,833,000)	(1,438,200)		1,075,300	(225,800)	849,500	2,287,700	(29,371,400)
2030	90%	\$724.24	10,545,400	-	-	(1,842,300)	(7,675,326)	4.46%	(5,833,000)	(1,419,100)	-	1,451,000	(304,700)	1,146,300	2,565,400	(28,382,300)
2031	90%	\$749.59	10,914,500	-	-	(1,842,300)	(7,675,326)	4.46%	(5,833,000)	(1,418,800)		1,820,400	(382,300)	1,438,100	2,856,900	(27,381,000)
2032	90%	\$775.83	11,296,500	-	-	(1,842,300)	(7,675,326)	4.46%	(5,833,000)	(1,419,100)		2,202,100	(462,400)	1,739,700	3,158,700	(26,374,500)
2033	90%	\$802.98	11,691,900	-	-	(1,842,300)	(7,675,326)	4.46%	(5,833,000)	(1,418,800)	-	2,597,800	(545,500)	2,052,300	3,471,000	(25,369,100)
2034	90%	\$831.09	12,101,100	-	-	(1,842,300)	(7,675,326)	4.46%	(5,833,000)	(1,419,100)	-	3,006,700	(631,400)	2,375,300	3,794,400	(24,369,900)
2035	90%	\$860.18	12,524,600	-	-	(1,842,300)	(7,675,326)	4.46%	(5,833,000)	(1,418,800)	-	3,430,600	(720,400)	2,710,100	4,128,900	(23,381,500)
2036	90%	\$890.28	12,963,000	-	1,155,500	(1,842,300)	(7,675,326)	4.46%	(5,833,000)	(1,419,100)	-	3,868,600	(812,400)	3,056,200	5,630,800	(22,156,100)

Profitability Measures

The Internal Rate of Return (IRR) for this project is	-0.68%
The Net Present Value (NPV) of this project in 2020 is	\$ (22,156,100)

ROI Analysis (Third Production Year)

Annual Sales	8,578,700
Annual Costs	(7,675,326)
Depreciation	(2,811,438)
Income Tax	400,693
Net Earnings	(1,507,371)
Total Capital Investment	36,298,499
ROI	-4.15%

Sensitivity Analyses

Note: The Sensitivity Analyses section below takes quite a bit of memory to update each time a cell is changed; therefore, automatic calculations are turned off. After making your axis selections, press "F9" to recalculate the IRR values. (These two lines may be deleted before printing.)

	Vary Initial Value by +/-
x-axis	50%
y-axis	5%

	Total Permanent Investment									
	\$17,571,489	\$21,085,787	\$24,600,085	\$28,114,382	\$31,628,680	\$35,142,978	\$38,657,276	\$42,171,574	\$45,685,871	\$49,200,169
\$523	14.84%	9.92%	6.02%	2.82%	0.10%	-2.27%	-4.36%	-6.24%	-7.95%	-9.52%
\$528	15.34%	10.35%	6.42%	3.18%	0.44%	-1.94%	-4.04%	-5.92%	-7.64%	-9.21%
\$534	15.84%	10.78%	6.80%	3.53%	0.77%	-1.62%	-3.73%	-5.62%	-7.33%	-8.91%
\$539	16.33%	11.21%	7.18%	3.89%	1.10%	-1.30%	-3.42%	-5.32%	-7.04%	-8.62%
\$545	16.82%	11.63%	7.56%	4.23%	1.43%	-0.99%	-3.12%	-5.02%	-6.75%	-8.33%
\$550	17.31%	12.05%	7.93%	4.57%	1.75%	-0.68%	-2.82%	-4.73%	-6.46%	-8.05%
\$556	17.79%	12.46%	8.30%	4.91%	2.07%	-0.38%	-2.53%	-4.45%	-6.18%	-7.77%
\$561	18.27%	12.87%	8.66%	5.24%	2.38%	-0.09%	-2.25%	-4.17%	-5.91%	-7.50%
\$567	18.74%	13.27%	9.02%	5.57%	2.68%	0.21%	-1.97%	-3.90%	-5.64%	-7.24%
\$572	19.21%	13.67%	9.37%	5.90%	2.99%	0.49%	-1.69%	-3.63%	-5.38%	-6.98%
\$578	19.68%	14.07%	9.73%	6.22%	3.29%	0.78%	-1.42%	-3.37%	-5.12%	-6.72%

Process Title: Green Ammonia Product: Ammonia Plant Site Location: SW Norway

<u>Timeline:</u> Number of Years for Design Number of Years for Construction Number of Years for Production Total Number of Years for Project Start Year Site Factor	1 15 17 2020 1.00	(must be whole number) (must be whole number)
<u>Continuous Operation:</u> Days per Year OR	350	
OR Operating Factor	0	(if multiple entries, "Operating Factor" is used)
Discrete Operation: Hours per Day	0	(cannot use Continuous AND Discrete. If both entered, D
AND Days per Year	0	
Production Capacity Start production at Years to achieve full capacity	90% 50% 2	of Design Capacity of Production Capacity
Number of Shifts	5	
Depreciation Schedule	20 year	
Income Tax Rate Cost of Capital (for the NPV Calculation) General Inflation Rate Product Inflation Rate Variable Cost Inflation Rate Fixed Cost Inflation Rate	21% 10% 0% 0% 0%	(discount rate)
Product Information: Enter Product Units (i.e. lb, gram, gal, etc)	ton	
Price Per Unit	\$550.00	/ton
Number of units per: Year OR	(Specify ONE of the -	three. If multiple entries, "Year" is used.) ton per Year
Day OR	-	ton per Day
Hour	2	ton per Hour

Raw	Materials			
	Raw Material:	Unit:	Required Ratio:	Cost of Raw Ma
1	Water	ton	1.5 ton per ton of Ammonia	\$0.000E+00
2	Air	ton	1 ton per ton of Ammonia	\$0.000E+00
3				
4				
5				
6				
7				
8				
9				
10				
	Total Weighted Avera	age:		\$0.000E+00

Byproducts

Byproduct:	Unit:	Ratio to Product	Byproduct Selli
1 Oxygen	kg	220 kg per ton of Ammonia	\$0.200
2	•		
3			
4			
5			
6			
7			
8			
9			
10			
Total Weighted /	Average:		\$44.000

Total Weighted Average:

Utilit	ies				
	Utility:	Unit:	Required Ratio		Utility Cost
1	High Pressure Steam	MT	0	MT per ton of Ammonia	
2	Low Pressure Steam	MT	0	MT per ton of Ammonia	
3	Process Water	gal	0	gal per ton of Ammonia	
4	Cooling Water	MT	17.34046236	MT per ton of Ammonia	\$0.027
5	Chilled Water	MT	71.02379775	MT per ton of Ammonia	\$1.500
6					
7					
8					

9

10

Total Weighted Average:

\$107.004

iscrete used by default)

terial:

per ton per ton

per ton of Ammonia

n**g Price** per kg

per ton of Ammonia

per MT per MT per gal per MT per MT

per ton of Ammonia

Selling Price Worksheet

This worksheet is optional. It may be used to adjust the product selling prices each year. Your inputs for the product prices, adjusted using the inflation rates, are entered as default values. To change, enter a price into the "Manual Input Price" column.

Year	Calculated Unit Price	Manual Input Price	Price to Be Used
2022	\$550.00	\$550.00	\$550.00
2023	\$550.00	\$569.25	\$569.25
2024	\$550.00	\$589.17	\$589.17
2025	\$550.00	\$609.79	\$609.79
2026	\$550.00	\$631.14	\$631.14
2027	\$550.00	\$653.23	\$653.23
2028	\$550.00	\$676.09	\$676.09
2029	\$550.00	\$699.75	\$699.75
2030	\$550.00	\$724.24	\$724.24
2031	\$550.00	\$749.59	\$749.59
2032	\$550.00	\$775.83	\$775.83
2033	\$550.00	\$802.98	\$802.98
2034	\$550.00	\$831.09	\$831.09
2035	\$550.00	\$860.18	\$860.18
2036	\$550.00	\$890.28	\$890.28

Other Variable Costs

General Expenses

3.00% of Sales
4.80% of Sales
0.50% of Sales
2.00% of Sales
1.25% of Sales

Working Capital

Accounts Receivable	ц>	30 Days
Cash Reserves (excluding Raw Materials)	₽	30 Days
Accounts Payable	₽	30 Days
Ammonia Inventory	₽	3 Days
Raw Materials	□ >	2 Days

Total Permanent Investment

	% of Total Permanent Investr	nent
<u>Year:</u> 2021	100%	(default is first year of Construction, otherwi:
2022	0%	
2023	0%	
2024	0%	
	Cost of Site Preparations:	5.00% of Total Bare Module Costs
	Cost of Service Facilities:	5.00% of Total Bare Module Costs
Allocated Costs for utilit	y plants and related facilities:	\$0

ed Costs for utility plants and related facilities:	\$0	
Cost of Contingencies and Contractor Fees:	18.00%	(
Cost of Land:	0.50%	(
Cost of Royalties:	\$0	
Cost of Plant Start-Up:	10.00%	(

\$0 18.00% of Direct Permanent Investme 0.50% of Total Depreciable Capital

10.00% of Total Depreciable Capital

Equipment Costs

Equipment Description Name	<u>Type</u> (must be filled-in!)	Purchase Cost	Bare Module Factor (default 3.21 if blank)	Bare Module Cost
Haber Bosch Reactor	Process Machinery	\$81.929	4.16	\$340.823
Sodium Doped Iron Catalyst	Catalysts	\$20.000	1.00	\$20.000
HB-CP-01	Process Machinery	\$14.021	2.15	\$30.146
HB-CP-02	Process Machinery	\$1,405,174	2.15	\$3,021,123
HB-HXA-01	Process Machinery	\$40,114	3.17	\$127,161
HB-HXA-02	Process Machinery	\$33,407	3.17	\$105,901
HB-HXA-03	Process Machinery	\$48,292	3.17	\$153,087
HB-HXA-04	Process Machinery	\$37,992	3.17	\$120,435
HB-S-01	Process Machinery	\$15,871	4.16	\$66,024
HB-S-02	Process Machinery	\$13,735	4.16	\$57,136
Storage Tank	Storage	\$235,000	4.00	\$940,000
SOFC	Process Machinery	\$7 500 000	2 በበ	\$15,000,000
LIP-EM-01	Process Machinery	\$1 733	3 30	\$5 720
LIP-PM-01	Process Machinery	\$12 748	3.30	\$42,068
LIP-CP-01	Process Machinery	\$223 248	2 15	\$479 984
UP-CP-02	Process Machinery	\$244 570	2 15	\$525.826
UP-CP-03	Process Machinery	\$234 696	2 15	\$504 596
UP-CP-04	Process Machinery	\$25,785	2 15	\$55 437
UP-HX-01	Process Machinery	\$34,228	3.17	\$108.504
UP-HX-02	Process Machinery	\$46,708	3.17	\$148.064
UP-CO-01	Process Machinery	\$14,337	3.17	\$45.449
UP-CO-02	Process Machinery	\$12,328	3.17	\$39.081
UP-CO-03	Process Machinery	\$14,564	3.17	\$46,168
UP-CD-01	Process Machinery	\$47.353	3.17	\$150.110
UP-BO-01	Process Machinery	\$891,249	2.19	\$1.951.834
UP-FH-01	Process Machinery	\$49.920	2.19	\$109.325
M6 Filter	Process Machinery	\$4.000	2.00	\$8.000
lon Exchange Unit	Process Machinery	\$150.000	2.00	\$300,000
3	,			\$0
				\$0
				\$0
				\$0
				\$0
				\$0
				\$0
				\$0
				\$0

Fixed Costs

<u>Operations</u>					
Operators per Shift:	5	(assuming 5 shifts)			
Direct Wages and Benefits:	\$40	/operator hour			
Direct Salaries and Benefits:	15%	of Direct Wages and Benefits			
Operating Supplies and Services:	6%	of Direct Wages and Benefits			
Technical Assistance to Manufacturing:	\$7,920.00	per year, for each Operator per Shift			
Control Laboratory:	\$11,700.00	per year, for each Operator per Shift			
<u>Maintenance</u>					
Wages and Benefits:	2.00%	of Total Depreciable Capital			
Salaries and Benefits:	25.00%	of Maintenance Wages and Benefits			
Materials and Services:	100.00%	of Maintenance Wages and Benefits			
Maintenance Overhead:	5.00%	of Maintenance Wages and Benefits			
Operating Overhead					
General Plant Overhead:	7.10%	of Maintenance and Operations Wages and Benefits			
Mechanical Department Services:	2.40%	6 of Maintenance and Operations Wages and Benefits			
Employee Relations Department	5.90%	o of Maintenance and Operations Wages and Benefits			
Business Services	7.40%	of Maintenance and Operations Wages and Benefits			
Property Taxes and Insurance					
Property Taxes and Insurance:	2.00%	of Total Depreciable Capital			
Straight Line Depreciation					
Direct Plant: 8.00% of Total	Depreciable Ca	bital, less 1.18 times the Allocated Costs for Utility Plants and Related Facilities			
Allocated Plant: 6.00% of	1.18	times the Allocated Costs for Utility Plants and Related Facilities			
Other Annual Expenses					
Rental Fees (Office and Laboratory Space):	\$0				
Licensing Fees:	\$0				
Miscellaneous:	\$0				
Depletion Allowance					
Annual Depletion Allowance:	\$0				

Appendix E.1: Equipment Costing SOEC

Bare Module Cost Analysis Worksheet

Instructions (Read Carefully Before Using!!!)

- 1. Input the CE cost index below that corresponds to the date when you want the cost estimate (e.g. a 2018 CE will provide 2018 costs for equipment). The CE index will automatically update each page accordingly. 2. Select the link below for the appropriate unit operation. Links provided at the top of each worksheet will return back to this title page.
- 3. Enter all data into the yellow boxes ONLY. For a process involving multiple sizes of the same type unit operations, use a different line to input the specs (up to 5 provided) Input
- 4. The Bare Module Cost of the Unit Operation is calculated and shown in red.

- S. If you are extrapolating the cost correlations, the spreadsheet will warn you. Consult the textbook for valid ranges of the equations, and use outside those ranges very carefully.
- 6. Below are the individual unit bare module costs and compiled tables of each type of unit operation, summarizing the different properties.
- 7. Total Bare Module Cost for all types of all equipment is also displayed below.

All costing from:

UP-CP-03 UP-CP-04

Product and Process Design Principles

4th Edition © Seider, Lewin, Seader, Widagdo, Gani, Ng, 2017

Worksheet prepared by Prof. Russell Durin, Department of Chemical and Biomolecular Engineering, Vanderbilt University Revised by Prof. Bruce Vrana, Department of Chemical and Biomolecular Engineering, University of Pennsylvania 600

CE Cost Index for this Estimate

Equipment	Total Cbm For each Unit Op	Total Bare module Cost= \$ 4,062,057
Electric Motors	\$ 5,720	
Centrifugal Pumps	\$ 42,068	
External Gear Pumps	\$ -	
Reciprocating Plunger Pumps	\$ -	
Fans	\$ -	
Centrifugal (turbo) Blower	\$ -	
Rotary Straight Lobe Blower	\$ -	
Compressors	\$ 1,565,844	Warning - extrapolation in cost estimate, refer to textbook for valid range
Shell and Tube Heat Exchanger	\$ 387,265	Warning - extrapolation in cost estimate, refer to textbook for valid range
Double Pipe Heat Exchanger	\$ -	
Fired Heaters	\$ 2,061,159	Warning - extrapolation in cost estimate, refer to textbook for valid range
Pressure Vessel	\$ -	
Packed Column	\$ -	
Tray Column	\$ -	
Storage Tanks	\$ -	

Electric Motors	Q (gal/min)	H (ft)		FT	Pb (hp)	Cbm	1
UP-EM-01	40.5	8	1357.6	1.00	33.52	5720	1
	1015	0	0	0.00	0.00	0	1
		0	0	0.00	0.00	0	
		0	0	0.00	0.00	0	
		0	0	0.00	0.00	0	
		0	0	0.00	0.00	0	1
Centrifugal Pumps	O (gal/min)	H (ft)		Ft	Fm	Chm	1
UP-PM-01	40 5	8	1357.6	27	1	42068	
	1015	0	0	0	- 0	0	
		0	0	0	0	0	
		0	0	0	0	0	
		0	0	0	0	0	
		0	0	0	0	0	1
External Gear Pumps	O (gal/min)	Em		Chm	1		
	~ 10-11	0	0	0	1		
		0	0	0	1		
		0	0	0	1		
		0	0	0	1		
		0	0	0	1		
	1	~	0	0	1		
Reciprocating Plunger Pumps	O (gal/min)	H (ft)		Fm	Pb (hp)	Cbm	1
and a second stander s amps	- 10-17	0	٥	0.00	0.00	0	1
		0	0	0.00	0.00	0	
		0	0	0.00	0.00	0	
		0	0	0.00	0.00	0	•
		0	0	0.00	0.00	0	
		0	0	0.00	0.00	0	1
Fans	Type of Fan		M)	CBM	1		
dib	Type of Fail	0	0	0			
		0	0	0			
		0	0	0			
		0	0	0			
		0	0	0			
				0	1		
Centrifugal Blower	Oi (cuft/min)	Pi (lbf/	(in2)	Po (lbf/in2)	Pc	Cbm	1
		0	, 0	0	0.00	0	
		0	0	0	0.00	0	
		0	0	0	0.00	0	1
		0	0	0	0.00	0	1
		0	0	0	0.00	0	
	•						1
Rotary Straight-Lobe Blowers	Qi (ft^3/min)	Pi (lbf/	'in^2)	Po(lbf/in^2)	Pc (hp)	Cbm	
,	(2 (),	0	0	0.00	0	1
		0	0	0	0.00	0	1
		0	0	0	0.00	0	1
		0	0	0	0.00	0	1
		0	0	0	0.00	0	1
	1	-	0	. 0	0.00	. 0	1
Compressor	Type	Pc (hp)	1	CBM	1		
UP-CP-01	Centrifugal Compressor	(.19)	138	479984	Warning - ex	tranolation in cost	estimate refer to textbook for val
UP-CP-02	Centrifugal Compressor	1	159 5	525826	Warning - ex	trapolation in cost	estimate, refer to textbook for val
UP-CP-03	Centrifugal Compressor		149.4	504596	Warning - ex	trapolation in cost	estimate, refer to textbook for val
UP-CP-04	Centrifugal Compressor	1	2 63	55/127	Warning - ex	tranolation in cost	estimate, refer to textbook for val
/· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	compressor	1	2.00	55457		a applation in COSt	communicy refer to textbook for var

Warning - extrapolation in cost estimate, refer to textbook for valid range

Centrifugal Compressor

	1			1		
	0	0	0	J		
Shell and Tube Heat Exchanger	Hoat Exchanger Design	Surface Area (f	Prossure (psig)	CBM	1	
UP-HX-01	Fixed Head	75 97	561 15	108504	Warning -	extranolation in cost estimate refer to textbook for valid range
UP-HX-02	Fixed Head	13 9326	555 35	148064	Warning -	extrapolation in cost estimate, refer to textbook for valid range
UP-CO-01	Eixed Head	21.6	30.16	45449	Warning -	extrapolation in cost estimate, refer to textbook for valid range
UP-CO-02	Fixed Head	40.9	150.22	39081	Warning -	extrapolation in cost estimate, refer to textbook for valid range
UP-CO-03	Fixed Head	31.7	549.55	46168	Warning -	extrapolation in cost estimate, refer to textbook for valid range
						• • • • • • • • • • • • • • • • • • •
Double Pipe Heat Exchanger	Surface Area (ft^2)	Pressure (psig)	CBM	1		
· · ·	0	0	0	1		
	0	0	0			
	0	0	0			
	0	0	0			
	0	0	0			
Fired Heaters	Q (BTU/hr)	Pressure (psig)	Fm	Cbm		
UP-BO-01	2.78E+07	565.5	1.4	1951834		
UP-FH-01	7.07E+05	565.5	1.4	109325	Warning -	extrapolation in cost estimate, refer to textbook for valid range
	0.00E+00	0	0	0		
	0.00E+00	0	0	0		
	0.00E+00	0	0	0	J	
Deserves second	Turne	D:	1	Deserves	\	Ch
Pressure vesser	Туре		L0	Plessure	weight	
	0	0	0	0		0 0
	0	0	0	0		
	0	0	0	0		
	0	0	0	0		
Į	, , , , , , , , , , , , , , , , , , ,					
Packed Column	Di (ft)	L (ft)	Pressure (psig)	Vp (ft^3)	Cbm	
		0	0	0		0
-	0	0	0	0		0
	0	0	0	0		0
	0	0	0	0		0
	0	0	0	0		0
Tray Column	Di (ft)	L(ft)	Pressure (psig)	Nt	Ftt	Cbm
	0	0	0	0		0 0
	0	0	0	0		0 0
	0	0	0	0		0 0
	0	0	0	0		0 0
	0	0	0	0		0 0
<u></u>	N/ D	ci	1			
Storage Tanks	v (gai)	LDM				
	0	0				
	0	0				
<u> </u>	0	0				
<u> </u>	0	0				
1						

Electric Motors FBM	3.	3	(CE =	600			<u>2</u>
Given Q, Η, ρ								
Name	Q	Н		ρ	ηρ	PB	ηm	Рс
	(gal/min)	(ft)		(lb/gal)		(hp)		(hp)
UP-EM-01	40.5	8	1357.6	8.21	0.41	33.52	0.89	37.68

jummary page

CB	FT	CP	СР	CBM
\$ (CE=567)	Table 22.22	\$ (CE=567)	\$ (Given CE)	\$ (Given CE)
1638	1.00	1638	1733	5720

Table 16.20Typical Types of Radial Centrifugal Pumps and $F_{\rm T}$ Factors

No. of Stages	Shaft rpm	Case-Split Orientation	Flow Rate Range (gpm)	Pump Head Range(ft)	Maximum Motor Hp	Type Factor [<i>F</i> Eq. (16.15)]
1	3,600	VSC	50-900	50-400	75	1.00
1	1,800	VSC	50-3,500	50-200	200	1.50
1	3,600	HSC	100-1,500	100-450	150	1.70
1	1,800	HSC	250-5,000	50-500	250	2.00
2	3,600	HSC	50-1,100	300-1,100	250	2.70
2+	3,600	HSC	100–1,500	650–3,200	1,450	8.90

Material of Construction	Material Factor $[F_{\rm M}, \text{ in Eq. (16.15)}]$
Cast iron	1.00
Ductile iron	1.15
Cast steel	1.35
Bronze	1.90
Stainless steel	2.00
Hastelloy C	2.95
Monel	3.30
Nickel	3.50
Titanium	9.70

Table 16.21 Materials of Construction Factors, F_M , for CentrifugalPumps

	FBM =	2.15		CE =	600			
			Aspen					
	Name	Compressor Type	Рс	Cb	FD	FM	Ср	Ср
	((screw, centrifugal, reciprocating)	hp	\$(CE=567)	see below	see below	\$ (CE=567)	\$ (Given CE)
	UP-CP-01	Centrifugal Compressor	138	210970	1	1	210970	223248
	UP-CP-02	Centrifugal Compressor	159.5	231119	1	1	231119	244570
	UP-CP-03	Centrifugal Compressor	149.4	221788	1	1	221788	234696
	UP-CP-04	Centrifugal Compressor	2.63	17405	1	1.4	24367	25785
				0			0	0
ł	Possible FD val	ues	Рс	ossible FM valu	les			
	Electric	1		Cast iron	1			
	Steam	1.15		Carbon Steel	1			

Stainless Steel

Nickel Alloy

2.5

5

1.25

S

Compressors

Gas

Summary page

CBM

\$ (Given CE)

479984	Warning - extrapolation in cost estimate, refer to textbook for valid range

- **525826** Warning extrapolation in cost estimate, refer to textbook for valid range
- **504596** Warning extrapolation in cost estimate, refer to textbook for valid range
- **55437** Warning extrapolation in cost estimate, refer to textbook for valid range

0

Tube Heat E	xchangers							Summary page
FBM =	3.17		CE =	600				
News		C	C D	_	Ŀ	F N A	D	Γ.
Name	Heat Exchanger Design	Surface Area	CB	а	D	FIVI	Pressure	⊦р
		ft^2	\$ (CE=567)	Table 22.25	Table 22.25		psig	
UP-HX-01	Fixed Head	75.97	10632	1.7	0.07	2.68094566	561.15	1.13483818
UP-HX-02	Fixed Head	13.9326	15866	1.55	0.05	2.45615316	555.35	1.13269332
UP-CO-01	Fixed Head	21.6	13549	0	0	1	30.16	1
UP-CO-02	Fixed Head	40.9	11522	0	0	1	150.22	1.01117583
UP-CO-03	Fixed Head	31.7	12174	0	0	1	549.55	1.13055988

Table 16.25	Materials of Construction Factors,	$F_{\rm M}$, for
Shell-and-Tu	be Heat Exchangers	

Materials of Construction Shell/Tube	<i>a</i> in Eq. (16.44)	<i>b</i> in Eq. (16.44)
Carbon steel/carbon steel	0.00	0.00
Carbon steel/brass	1.08	0.05
Carbon steel/stainless steel	1.75	0.13
Carbon steel/Monel	2.1	0.13
Carbon steel/titanium	5.2	0.16
Carbon steel/Cr-Mo steel	1.55	0.05
Cr-Mo steel/Cr-Mo steel	1.70	0.07
Stainless steel/stainless steel	2.70	0.07
Monel/Monel	3.3	0.08
Titanium/titanium	9.6	0.06

Tube L

2	
Ξ.	
_	

FL See below	Cp \$ (CE-567)	Cp \$/Given (E)	CBM \$ (Given CE)	
1	32346	34228	108504	Warning - extrapolation in cost estimate, refer to textbook for valid range
1	44139	46708	148064	Warning - extrapolation in cost estimate, refer to textbook for valid range
1	13549	14337	45449	Warning - extrapolation in cost estimate, refer to textbook for valid range
1	11650	12328	39081	Warning - extrapolation in cost estimate, refer to textbook for valid range
1	13763	14564	46168	Warning - extrapolation in cost estimate, refer to textbook for valid range

ength (ft)	F_L
8	1.25
12	1.12
16	1.05
20	1.00

Table 16.25 Materials of Construction Factors, $F_{\rm M}$, forShell-and-Tube Heat Exchangers

Materials of Construction Shell/Tube	<i>a</i> in Eq. (16.44)	<i>b</i> in Eq. (16.44)
Carbon steel/carbon steel	0.00	0.00
Carbon steel/brass	1.08	0.05
Carbon steel/stainless steel	1.75	0.13
Carbon steel/Monel	2.1	0.13
Carbon steel/titanium	5.2	0.16
Carbon steel/Cr-Mo steel	1.55	0.05
Cr-Mo steel/Cr-Mo steel	1.70	0.07
Stainless steel/stainless steel	2.70	0.07
Monel/Monel	3.3	0.08
Titanium/titanium	9.6	0.06

Tube L

<u>e</u>

FL	Ср	Ср	CBM
See below	\$ (CE=567)	\$(Given CE)	\$ (Given CE)
1	44749	47353	150110
	0	0	0
	U	U	U
	0	0	0
	0	0	0
	0	0	0

ength (ft)	F_L
8	1.25
12	1.12
16	1.05
20	1.00

Summary page

Fired Heaters

	FBM = see below	2.19		CE =	600			
Name	Q BTU/hr	P psig	CB \$ (CE=567)	FM see below	Fp	CP \$ (CE=567)	CP \$ (Given CE)	CBM \$ (Given CE)
UP-BO-01	2.78E+07	565.5	598941	1.4	1.00442682	842230	891249	1951834
UP-FH-01	7.07E+05	565.5	33547	1.4	1.00442682	47174	49920	109325
			0		1	0	0	0
			0		1	0	0	0
			0		1	0	0	0

Possible FBIVI Values		POSSIBLE FIVE VALUES			
2.19	shop fabricated	1.4	Cr-Mo alloy steel		
1.86	field fabricated	1.7	stainless steel		

Appendix E.2: Equipment Costing Haber Bosch

Bare Module Cost Analysis Worksheet

Instructions (Read Carefully Before Using!!!)

- 1. Input the CE cost index below that corresponds to the date when you want the cost estimate (e.g. a 2018 CE will provide 2018 costs for equipment). The CE index will automatically update each page accordingly. 2. Select the link below for the appropriate unit operation. Links provided at the top of each worksheet will return back to this title page.
- 3. Enter all data into the yellow boxes ONLY. For a process involving multiple sizes of the same type unit operations, use a different line to input the specs (up to 5 provided) Input
- 4. The Bare Module Cost of the Unit Operation is calculated and shown in red.

- Bare Module Cost of the optimised of the optimised of the second of the
- 6. Below are the individual unit bare module costs and compiled tables of each type of unit operation, summarizing the different properties.
- 7. Total Bare Module Cost for all types of all equipment is also displayed below.

All costing from:

Product and Process Design Principles

4th Edition © Seider, Lewin, Seader, Widagdo, Gani, Ng, 2017

- Worksheet prepared by Prof. Russell Dunn, Department of Chemical and Biomolecular Engineering, Vanderbilt University Revised by Prof. Bruce Vrana, Department of Chemical and Biomolecular Engineering, University of Pennsylvania CE Cost Index for this Estimate 600
 - 600

-E	COST	index for	this	Estimate	

Equipment	Total Cbm For each Unit Op	Total Bare module Cost= \$ 4,021,836
Electric Motors	\$ -	
Centrifugal Pumps	\$ -	
External Gear Pumps	\$ -	
Reciprocating Plunger Pumps	\$ -	
Fans	\$ -	
Centrifugal (turbo) Blower	\$ -	
Rotary Straight Lobe Blower	\$ -	
Compressors	\$ 3,051,269	Warning - extrapolation in cost estimate, refer to textbook for valid range
Shell and Tube Heat Exchanger	\$ 506,584	Warning - extrapolation in cost estimate, refer to textbook for valid range
Double Pipe Heat Exchanger	\$ -	
Fired Heaters	\$ -	
Pressure Vessel	\$ 463,983	Warning - extrapolation in cost estimate, refer to textbook for valid range
Packed Column	\$ -	
Tray Column	\$ -	
Storage Tanks	\$ -	1

Electric Motors	Q (gal/min)	Н	(ft)	FT	Pb (hp)	Cbm							
		0	0	0.00	0.00	0							
		0	0	0.00	0.00	0							
		0	0	0.00	0.00	0							
		0	0	0.00	0.00	0							
		0	0	0.00	0.00	0							
	a	- I	(6)	-	-	ei							
Centrifugal Pumps	Q (gal/min)	н	(ft)	Ft	Fm	Cbm							
		0	0	0	0	0							
		0	0	0	0	0							
		0	0	0	0	0							
		0	0	0	0	0							
		U	0	0	0	U							
External Gear Pumps	O (gal/min)	E	m	Cbm	1								
	- (8=1,)	0	0	0									
		0	0	0									
		0	0	0									
		0	0	0									
		0	0	0									
	•				•								
Reciprocating Plunger Pumps	Q (gal/min)	Н	(ft)	Fm	Pb (hp)	Cbm							
		0	0	0.00	0.00	0							
		0	0	0.00	0.00	0							
		0	0	0.00	0.00	0							
		0	0	0.00	0.00	0							
		0	0	0.00	0.00	0							
-			(1								
Fans	Type of Fan	Q	(ACFM)	СВМ									
		0	0	0									
		0	0	0									
		0	0	0									
		0	0	0									
		U	0	0	1								
Centrifugal Blower	Oi (cuft/min)	Pi	i (lbf/in2)	Po (lbf/in2)	Pc	Cbm							
		0	0	0	0.00	0							
		0	0	0	0.00	0							
		0	0	0	0.00	0							
		0	0	0	0.00	0							
		0	0	0	0.00	0							
	•												
Rotary Straight-Lobe Blowers	Qi (ft^3/min)	Pi	i (lbf/in^2)	Po(lbf/in^2)	Pc (hp)	Cbm							
		0	0	0	0.00	0							
		0	0	0	0.00	0							
		0	0	0	0.00	0							
		0	0	0	0.00	0							
		0	0	0	0.00	0							
Comprossor	Turno	P	c (hn)	CRM	ì								
compressor	Type	0	c (np)										
HB-CP-01	Centrifugal Compressor	0	1	30146	Warning	tranolation in cost o	stimate, refer to textbook for valid range						
HB-CP-02	Centrifugal Compressor		1500	30140	warning - ex	a apolation in cost e	stimate, refer to textbook for Vallu lang						
110-01-02	continugal compressor	0	1300	3021123									
		~	0										
	0	0	0]									
--------------------------------	---------------------------------	-----------------	-----------------	-----------	--------------	--------	---------------	----------	-------------------------------------	---------------	-------------------	---------------	------------
				-									
Shell and Tube Heat Exchangers	Heat Exchanger Design	Surface Area (f	Pressure (psig)	CBM									
HB-HXA-02	Fixed Head	79	490	105901	Warning - ex	trapol	ation in cost	estimate	, refer to textboo	k for valid r	ange		
HB-HXA-01	Fixed Head	24	490	127161	Warning - ex	trapol	ation in cost	estimate	, refer to textboo	k for valid r	ange		
	0	0	0	0	-						-		
HB-HXA-04	Fixed Head	25	507.5	120435	Warning - ex	trapol	ation in cost	estimate	, refer to textboo	k for valid r	ange		
HB-HXA-03	Fixed Head	25	1160	153087	Warning - ex	trapol	ation in cost	estimate	, refer to textboo	k for valid r	ange		
	•				-								
Double Pipe Heat Exchanger	Surface Area (ft ²)	Pressure (psig)	CBM]									
	0	0	0	1									
	0	0	0										
	0	0	0										
	0	0	0										
	0	0	0										
Fired Heaters	Q (BTU/hr)	Pressure (psig)	Fm	Cbm									
	0.00E+00	0	0	0									
	0.00E+00	0	0	0									
	0.00E+00	0	0	0									
	0.00E+00	0	0	0									
	0.00E+00	0	0	0									
Pressure vessel	Туре	Di	L	Pressure	Weight	(Cbm						
HB-S-01	Vertical	0.87	10.37	565.5	479.768	7074	66024	Warning	- extrapolation i	n cost estim	iate, refer to te	extbook for v	alid range
HB-S-02	Vertical	0.78	12.16	145	328.332	3075	57136	Warning	 extrapolation i 	n cost estim	ate, refer to te	extbook for v	alid range
	0	0	0	0		0	0						
Haber Bosch Reactor	Vertical	2.87	14.35	1160	11269.8	9793	340823						
	0	0	0	0		0	0						
			C										
Packed Column	Di (ft)	L (ft)	Pressure (psig)	Vp (ft^3)	Cbm								
	0	0	0	0		0							
	0	0	0	0		0							
	0	0	0	0		0							
	0	0	0	0		0							
	0	0	0	0		0							
	et (6)					Т.							
Tray Column	Di (ft)	L(ft)	Pressure (psig)	Nt	⊦tt	0	Cbm						
	0	0	0	0		0	0						
	0	0	0	0		0	0						
	0	0	0	0		0	0						
	0	0	0	0		0	0						
	0	0	0	0		U	0	1					
Storage Tanks	V (gal)	Chm											
Storage Talks	v (gai)												
	0	0											
	0	0											
	0	0											
	0	0											
	0	0											

FBM =	2.15		CE =	600			
Name	Compressor Type	Рс	Cb	FD	FM	Ср	Ср
	(screw, centrifugal, reciprocating)	hp	\$(CE=567)	see below	see below	\$ (CE=567)	\$ (Given CE)
			0	1	1.4	0	0
HB-CP-01	Centrifugal Compressor	1	9464	1	1.4	13250	14021
HB-CP-02	Centrifugal Compressor	1500	948492	1	1.4	1327889	1405174
			0			0	0
			_			_	_
			0			0	0
		-					
Possible FD va	llues	PC	ossible FIVI valu	es			
Electric	1		Cast iron	1			
Steam	1.15		Carbon Steel	1			
Gas	1.25		Stainless Steel	2.5			
			Nickel Alloy	5			

ŝ

Compressors

Summary page

CBM \$ (Given CE) <mark>0</mark>	
30146	Warning - extrapolation in cost estimate, refer to textbook for valid range
3021123	
0	
0	

Tube Heat Ex	kchangers							Summary page
FBM =	3.17		CE =	600				
Name	Heat Exchanger Design	Surface Area	CB	а	b	FM	Pressure	Fp
		ft^2	\$ (CE=567)	Table 22.25	Table 22.25		psig	
HB-HXA-02	Fixed Head	79	10605	1.7	0.07	2.68363483	490	1.109317
HB-HXA-01	Fixed Head	24	13118	1.7	0.07	2.60492959	490	1.109317
			0			0		1
HB-HXA-04	Fixed Head	25	12963	1.55	0.05	2.48303299	507.5	1.11543456
HB-HXA-03	Fixed Head	25	12963	1.55	0.05	2.48303299	1160	1.417852

Table 16.25Materials of Construction Factors, $F_{\rm M}$, for
Shell-and-Tube Heat Exchangers

Materials of Construction Shell/Tube	<i>a</i> in Eq. (16.44)	<i>b</i> in Eq. (16.44)
Carbon steel/carbon steel	0.00	0.00
Carbon steel/brass	1.08	0.05
Carbon steel/stainless steel	1.75	0.13
Carbon steel/Monel	2.1	0.13
Carbon steel/titanium	5.2	0.16
Carbon steel/Cr-Mo steel	1.55	0.05
Cr-Mo steel/Cr-Mo steel	1.70	0.07
Stainless steel/stainless steel	2.70	0.07
Monel/Monel	3.3	0.08
Titanium/titanium	9.6	0.06

Tube L

FL See below	Ср \$ (CE=567)	Cp Ś(Given CE)	CBM Ś (Given CE)	
1	31570	33407	105901	Warning - extrapolation in cost estimate, refer to textbook for valid range
1	37908	40114	127161	Warning - extrapolation in cost estimate, refer to textbook for valid range
1	0	0	0	
1	35902	37992	120435	Warning - extrapolation in cost estimate, refer to textbook for valid range
1	45636	48292	153087	Warning - extrapolation in cost estimate, refer to textbook for valid range

ength (ft)	F_L
8	1.25
12	1.12
16	1.05
20	1.00

Pressure Vessels						
FBM =	4.16		CE =	600		
Name	Туре	Di	L	Pressure	Pd	E
		ft	ft	psig	psig	
HB-S-01	Vertical	0.87	10.37	565.5	649	1
HB-S-02	Vertical	0.78	12.16	145	182	1
					0	
Haber Bosch Reactor	Vertical	2.87	14.35	1160	1272	1

0

Note: see text for vacuum vessels

Note: if carbon steel, S = 13750 For 304 Stainless, S = 11200 Potential Values for S (low alloy steel):

Temperature (°F) Maximum Allowable Stress (psi)

-20 to 650	15,000
700	15,000
750	15,000
800	14,750
850	14,200
900	13,100

Table 16.26MVessels

Material of Con

Carbon steel Low-alloy steel Stainless steel 3 Stainless steel 3 Carpenter 20CE

Nickel-200 Monel-400

Incoloy-825

Titanium

Summary page

Iaterials-of-Construction Factors, $F_{\rm M}$, for Pressure

istruction	Material Factor [F_M in Eq. (16.52)					
	1.0					
	1.2					
304	1.7					
316	2.1					
3-3	3.2					
	5.4					
	3.6					
	3.9					
	3.7					
	7.7					

tsrounded	Density	Weight	Cv	Cpl	Fm	Ср	CP	Cbm	
ft	lb/ft^3	Ib	\$ (CE=567)	\$ (CE=567)	Table 22.26	\$(CE=567)	\$ (Given CE)	\$ (Given CE)	
0.0313	490	480	9333	1932	1.4	14998	15871	66024	Warning - extrapolation in
0.0208	490	328	7846	1994	1.4	12979	13735	57136	Warning - extrapolation in
0.0208	490	0	0	0	1.4	0	0	0	
0.1458	490	11270	51105	5875	1.4	77423	81929	340823	
0.0208	490	0	0	0	1	0	0	0	