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Abstract

Protein-Protein interactions can lead to disordered states such as precipitates or gels, or

to ordered states such as crystals or microtubules. In order to study the different natures

of protein-protein interactions we have developed statistical mechanics models in order to

interpret the varied behavior of different protein systems. The main point will be to develop

theoretical models that infer the time a length scales that characterize the dynamics of

the systems analyzed. This approach seek to facilitate a connection to simulations and

experiments, where a high resolution analysis in length and time is possible, since the theories

can provide insights about the relevant time and length scales, and also about issues that

can appear when studying these systems.

The first system studied is monoclonal antibodies in solution. Antibody solutions deviate

from the dynamical and rheological response expected for globular proteins, especially as

volume fraction is increased. Experimental evidence shows that antibodies can reversibly

bind to each other via Fab and Fc domains, and form larger structures (clusters) of several

antibodies. Here we present a microscopic equilibrium model to account for the distribution

of cluster sizes. Antibody clusters are modeled as polymers that can grow via reversible

bonds either between two Fab domains or between a Fab and a Fc. We propose that the

dynamical and rheological behavior is determined by molecular entanglements of the clusters.

This entanglement does not occur at low concentrations where antibody-antibody binding

contributes to the viscosity by increasing the effective size of the particles. The model

explains the observed shear-thinning behavior of antibody solutions.

The second system is protein condensates inside living cells. Biomolecule condensates ap-

pear throughout the cell serving a wide variety of functions, but it is not clear how functional

properties show in the concentrated network inside the condensate droplets. Here we model

disordered proteins as linear polymers formed by “stickers” evenly spaced by “spacers”.



The spacing between stickers gives rise to different network toplogies inside the condensate

droplet, determining distinguishing properties such us density and client binding.

The third system is protein-protein binding in a salt solutions. Biomolecular simulations

are typically performed in an aqueous environment where the number of ions remains fixed

for the duration of the simulation, generally with a number of salt pairs intended to match

the macroscopic salt concentration. In contrast, real biomolecules experience local ion en-

vironments where the salt concentration is dynamic and may differ from bulk. We develop

a statistical mechanics model to account for fluctuations of ions concentrations, and study

how it affects the free energy of protein-protein binding.



Statistical mechanics models in protein association problems

by

Nelson Javier Ramallo

Lic., University of Cordoba, Argentina, 2014

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Physics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2020

Approved by:

Major Professor
Jeremy Schmit



Copyright

© Nelson Javier Ramallo 2020.



Abstract

Protein-Protein interactions can lead to disordered states such as precipitates or gels, or

to ordered states such as crystals or microtubules. In order to study the different natures

of protein-protein interactions we have developed statistical mechanics models in order to

interpret the varied behavior of different protein systems. The main point will be to develop

theoretical models that infer the time a length scales that characterize the dynamics of

the systems analyzed. This approach seek to facilitate a connection to simulations and

experiments, where a high resolution analysis in length and time is possible, since the theories

can provide insights about the relevant time and length scales, and also about issues that

can appear when studying these systems.

The first system studied is monoclonal antibodies in solution. Antibody solutions deviate

from the dynamical and rheological response expected for globular proteins, especially as

volume fraction is increased. Experimental evidence shows that antibodies can reversibly

bind to each other via Fab and Fc domains, and form larger structures (clusters) of several

antibodies. Here we present a microscopic equilibrium model to account for the distribution

of cluster sizes. Antibody clusters are modeled as polymers that can grow via reversible

bonds either between two Fab domains or between a Fab and a Fc. We propose that the

dynamical and rheological behavior is determined by molecular entanglements of the clusters.

This entanglement does not occur at low concentrations where antibody-antibody binding

contributes to the viscosity by increasing the effective size of the particles. The model

explains the observed shear-thinning behavior of antibody solutions.

The second system is protein condensates inside living cells. Biomolecule condensates ap-

pear throughout the cell serving a wide variety of functions, but it is not clear how functional

properties show in the concentrated network inside the condensate droplets. Here we model

disordered proteins as linear polymers formed by “stickers” evenly spaced by “spacers”.



The spacing between stickers gives rise to different network toplogies inside the condensate

droplet, determining distinguishing properties such us density and client binding.

The third system is protein-protein binding in a salt solutions. Biomolecular simulations

are typically performed in an aqueous environment where the number of ions remains fixed

for the duration of the simulation, generally with a number of salt pairs intended to match

the macroscopic salt concentration. In contrast, real biomolecules experience local ion en-

vironments where the salt concentration is dynamic and may differ from bulk. We develop

a statistical mechanics model to account for fluctuations of ions concentrations, and study

how it affects the free energy of protein-protein binding.
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Chapter 1

Introduction

1.1 Introduction

Protein-protein interactions occur in many situations inside cells or any living organism.

Different systems can behave in a variety of ways depending the type of protein and the

environment in which it is immerse, and the outcomes can be ordered, such as in crystals, or

disordered, such as in gels or aggregates. Protein-protein interactions handle a wide range

of biological processes, including cell-to-cell interactions and metabolic and developmental

control [1]. Protein-protein interactions pose a challenge, and its study is of interest to many

fields in science and industry. Usually, when it comes to protein-protein interactions it is

meant to be thought as a two body problem, as in enzyme-substrate problems, however

we are interested in many-bodies systems, where it is not clear the connection to the two-

body case. We will study systems that have properties that arise inherently from them

being many-body systems, that can not be boil down to two-body problems. Our approach

implies the development of theoretical models that can tell us what is the important physics

within them, and seek connections to experiments and simulations, that are high-resolution

in nature.

The first challenge that protein-protein interaction presents is its spatial and time scales:

computer simulations offer high resolution details of the interactions between proteins, but
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it is limited to small systems and short time scales; on the other hand, analytic theories give

low resolution models, but they can handle longer time scales and give information regarding

the underneath principles governing the phenomenon.

In this work we show how analytic theories can prove a tool to better target the main

points of experiments and simulation for in order to understand the the interactions between

proteins. Analytic models can also gives information regarding the main time scales of the

process and help coarse-grain simulations to those time frames. Analytic theories can prove

to be general but can also target the specifics a particular biological system, making the

transition between general physical principles to the particulars a specific molecule. The

overall goal is to use statistical mechanics theories to help make better choices when going

to the high resolution methods of simulations.

1.2 Background

The next question is what the best representation of protein would be. We can represent

proteins as colloids or as polymers. Proteins behave like string polymers given the nature of

its backbone in multiple scales, so we will proceed to discuss polymer theory, and compare

the rheological behavior of proteins to that of colloids.

1.2.1 Basics in Polymer Theory

Polymers are long string-like molecules made of certain chemical units called monomers. The

monomers are connected sequentially as shown in Fig. 1.1. The number of monomers in a

polymer is typically several thousand, and can be as large as tens of millions. Polymers are

indispensable materials in modern technology; they are used as plastics, rubbers, films, and

textiles.
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(a)

(b)

Figure 1.1: (a) Monomers; (b) Polymer chain

Polymers are also the basic molecules of life. The machinery of life is realized by proteins

which are natural polymers made of amino acids. The genetic information of life is inscribed

in another important class of bio-polymer, DNA.

One commonly used model to represent polymers is the freely jointed chain model shown

in Fig. 1.2, where a polymer molecule is represented by N segments of constant length b.

The segments are connected by flexible joints and can point in any direction independently

of other segments.

bn

r

N1

Figure 1.2: Freely jointed chain model for a polymer.

If there is no external forces acting on the chain ends, the distribution of the vector r is

3



isotropic. Therefore the average 〈r〉 is equal to zero. Let us therefore consider the average

〈r2〉.
Let bn (n = 1, 2, . . . , N) be the end-to-end vector of the n-segment. Then r is written as

r =
N∑

n=1

bn (1.1)

Therefore the mean square of r is calculated as

〈r2〉 =
N∑

n=1

N∑

m=1

〈bn · bm〉 (1.2)

For a random distribution of segments, the bn are independent of each other. Thus

〈bn · bm〉 = δnmb
2 (1.3)

Therefore

〈r2〉 =
N∑

m=1

〈b2
n〉 = Nb2 (1.4)

The average size of a polymer in a force free state can be estimated by r =
√
〈r2〉, which

is equal to
√
Nb. This is the length of an ideal chain, since we are not considering the

excluded volume of each monomer. The next step is to to add this effect and compute the

length of a real chain.

The conformations of a real chain are determined by the balance of the effective repul-

sion energy between monomers that tends to swell the chain and the entropy loss due to

such deformation. One of the simplest models that captures the essence of this balance is

the Flory Theory, which makes rough estimates of both the energetic and the entropic

contributions to the free energy.

Consider again a polymer with N monomers, swollen to size R > R0 =
√
Nb. Flory

theory assumes that monomers are uniformly distributed within the volume R3 with no

correlations between them. The probability of a second monomer being within the excluded

4



volume v of a given monomer is the product of the excluded volume v and the number

density of monomers in the pervaded volume of the chain N/R3. The energetic cost of being

excluded from this volume (the energy of excluded volume interaction) is kT per exclusion

or kTvN/R3 per monomer. For all N monomers in the chain, this energy is N times larger,

then

Fint ∼ kTv
N2

R3
(1.5)

The Flory estimate of the entropic contribution to the free energy of a real chain is the

energy required to stretch an ideal chain to end-to-end distance R (see [2])

S ∼ kT
R2

Nb2
(1.6)

The total free energy of a real chain in the Flory approximation is the sum of both

contributions

F = Fint + S ∼ kT

(
v
N2

R3
+

R2

Nb2

)
(1.7)

The minimum free energy of the chain (obtained by setting ∂F/∂R = 0) gives the opti-

mum size of the real chain in the Flory approximation, R = RF

∂F

∂R
= 0 = kT

(
−3v

N2

R4
F

+ 2
RF

Nb2

)
,

R5
F ∼ vb2N3

RF ∼ v1/5b2/5N3/5

(1.8)

The size of long real chains is much longer than that of ideal chains with the same number

of monomers due to the 3/5 exponent.

It is important to realize that the Flory theory leads to a universal power law dependence

of polymer size R on the number of monomers N :

5



R ∼ N ν (1.9)

The excluded volume only enters as a prefactor, but does not change the value of the

scaling exponent ν for any v > 0. The Flory approximation of the scaling exponent is

ν = 3/5 for a swollen linear polymer. For the ideal linear chain the exponent is ν = 1/2.

More sophisticated theories lead to a more accurate estimate of the scaling exponent of the

swollen linear polymer in three dimensions [3]:

ν ∼= 0.588 (1.10)

which is very close to the Flory result 3/5 = 0.6.

1.2.2 Polymer Rheology

The mechanical behavior of a simple elastic material (Hookean elastic material) is represented

by the linear relation between strain and stress. This is represented by the linear relation

between the shear strain γ and the shear stress σ:

σ = Gγ (1.11)

where the coefficient G is the shear modulus of the material.

On the other hand, the mechanical behavior of a simple fluid (Newtonian fluid) is rep-

resented by the linear relation between the shear rate γ̇ = dγ(t)/dt and the shear stress

σ

σ = η γ̇ (1.12)

where η is the viscosity of the material.

Soft matter generally has both viscosity and elasticity, an attribute that is referred to as

viscoelasticity.
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Suppose now that when a time-dependent strain γ1(t) is applied to a material, the stress

response is σ1(t), and that when γ2(t) is applied, the stress is σ2(t). The superposition

principle states that when the superposed strain γ(t) = γ1(t) + γ2(t) is applied, the stress

response is σ(t) = σ1(t) + σ2(t).

If the superposition principle holds, the stress response to any time-dependent strain γ(t)

can be expressed by the relaxation modulus G(t). This is because any time-dependent strain

γ(t) can be regarded as a superposition of step strains ∆γi = γ̇(ti)∆t applied at time ti , i.e.,

γ(t) =
∑

i

∆γiΘ(t− ti) (1.13)

The step strain ∆γ1 applied at time ti creates the stress G(t − ti)∆γi at a later time

t. Summing up all the stresses created by the step strains applied in the past, we have the

stress at time t:

σ(t) =
∑

i

G(t− ti)∆γi =
∑

i

G(t− ti)γ̇(ti)∆t (1.14)

In the limit ∆t→ 0, this gives

σ(t) =

∫ t

−∞
dt′G(t− t′)γ̇(t′) (1.15)

Viscoelasticity which satisfies the superposition principle is called linear viscoelasticity.

The linear viscoelasticity of incompressible materials is completely characterized by a single

function G(t). If G(t) is given, the stress response for arbitrary strain can be calculated. For

example, consider that a shear flow of constant shear rate γ̇ is started at t = 0. The stress

at time t is calculated as

σ =

∫ t

0

dt′G(t− t′)γ̇ = γ̇

∫ t

0

dt′G(t′) (1.16)

The shear stress increases monotonically, and approaches a constant value σ(∞). The

steady state viscosity η0 is defined by the ratio σ(∞)/γ̇ . According to Eq. 1.12, the steady

7



state viscosity is given by

η0 =

∫ ∞

0

dtG(t) (1.17)

The next step is to derive η0 for different systems and concentrations. We start with a

simple dilute colloidal system of hard spheres. Einstein [4] calculated the viscosity η0 to be

η0 = ηs

(
1 +

5

2
φ

)
(1.18)

where ηs is the viscosity of the solvent and φ is the volume fraction of spheres in the suspen-

sion.

We now continue by analyzing the case of a polymeric fluid. Polymeric fluids (polymer

solutions and polymer melts) are generally viscoelastic. Suppose that a step shear is applied

at time t = 0. When the shear strain is applied, polymer chains are distorted from their

equilibrium conformation, which creates a stress. The stress has the same origin as that in

rubbers and gels, i.e., it is due to the elasticity of the polymer chains. Unlike rubbers and

gels, the polymer chains in polymeric fluids can recover their equilibrium conformation while

the system is macroscopically deformed. As the polymer chains recover their equilibrium

conformation, the stress decreases in time, and finally vanishes completely even though the

material remains distorted. Therefore, the stress relaxation in polymeric fluids is a direct

consequence of the conformational relaxation of polymer chains.

How the relaxation of polymer conformation takes place depends on whether the polymers

are entangled or not. If the chains are not entangled, the problem is how a deformed

chain placed in a viscous medium recovers the equilibrium conformation. If the chains are

entangled, an entirely different thinking is needed.

We now discuss the viscoelasticity of polymer fluids for which the entanglement effect is

not important. This is the case of dilute polymer solutions. To discuss the conformational

dynamics, we consider the simple model shown in Fig. 1.3. Here a polymer molecule is

represented by a dumbbell consisting of two segments connected by a spring. The segment

represents half of the polymer molecule.
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r2

r1

r

Figure 1.3: The Dumbbell model.

We assume that the medium surrounding the segments is a Newtonian fluid. This as-

sumption is reasonable for dilute polymer solutions. Let r1 and r2 be the position vectors

of the segments. Then the potential energy of the dumbbell is written as

U(r1, r2) =
k

2
(r1 − r2)2 (1.19)

where k is the spring constant of the dumbbell.

Following Doi et. al. [5] we can obtain the relaxation modulus

G(t) = G0e
−t/τ (1.20)

where the initial shear modulus G0 is given by

G0 = c kBT (1.21)

and the relaxation time is

τ =
ζ

4k
(1.22)

where ζ is the fluid friction coefficient.

The next step is to represent the polymer by N beads. This is called the Rouse model.

The chain in the Rouse model is represented as N beads connected by springs of root-mean-

square size b. The beads in the Rouse model only interact through the connecting springs.

Each bead is characterized by its own independent friction with friction coefficient ζ. Solvent

is assumed to be draining through the chain as it moves.
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The total friction coefficient of the whole Rouse chain is the sum of the contributions of

each of the N beads:

ζR = Nζ (1.23)

The diffusion coefficient of the Rouse chain is obtained from the Einstein relation [6]

DR =
kBT

ζR
=
kBT

Nζ
(1.24)

The polymer diffuses a distance of the order of its size during a characteristic time, called

the Rouse time, τR

τR ≈
R2

DR

≈ ζ

kBT
NR2 (1.25)

On time scales shorter than the Rouse time, the chain exhibits viscoelastic modes that

will not be discussed here, but on time scales longer than the Rouse time, the motion of the

chain is simply diffusive.

For an ideal chain we have from Eq. 1.4 that

R2 = Nb2 (1.26)

hence

τR ≈
ζ

kBT
b2N2 (1.27)

It can be seen that the relaxation modulus is given by [5]

G(t) =

√
π

2
ckBT

(τR
t

)1/2

(1.28)

Then, the steady state viscosity of the Rouse model is calculated as
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η0 =

∫ ∞

0

dtG(t) ≈ ckBTζN
2 (1.29)

The steady state viscosity is proportional to cN2.

(a)

(b)

Figure 1.4: (a) Entanglements points, (b) Tube model

We now proceed to study the case in which entanglement points are present Fig. 1.4(a).

The topological constraints imposed by neighboring chains on a given chain restrict its

motion to a tube like region called the confining tube 1.4(b). The motion of the chain

along the contour of the tube (the primitive path) is unhindered by topological interactions.

Displacement of monomers in the direction perpendicular to the primitive path is restricted

by surrounding chains to an average distance a, called the tube diameter. The number of

monomers in a strand of size equal to the amplitude of transverse fluctuations (the tube

diameter) is Ne, the number of monomers in an entanglement strand. For dilute solutions,

excluded volume interactions are screened and the tube diameter is determined by ideal

chain statistics:

a ≈ b
√
Ne (1.30)

The tube can be thought of as being composed of N/Ne sections of size a, with each

section containing Ne monomers. The chain can be considered as either a random walk of

entanglement strands (N/Ne strands of size a) or a random walk of monomers (N monomers
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of size b).

R ≈ a

√
N

Ne

≈ b
√
N (1.31)

The average contour length 〈L〉 of the primitive path (the center of the confining tube,

see Fig. 1.4(b)) is the product of the entanglement strand length a and the average number

of entanglement strands per chain N/Ne

〈L〉 ≈ a
N

Ne

≈ b2N

a
≈ bN√

Ne

(1.32)

The average primitive path contour length 〈L〉 is shorter than the contour length of the

chain bN by the factor a/b ≈ √Ne.

In de Gennes’ reptation model [7], an entangled chain diffuses along its confining tube

in a way analogous to the motion of a snake or a worm. This motion of the chain consists

of diffusion of small loops, along the contour of the primitive path. This curvilinear motion

of a polymer along its tube satisfies the topological constraints imposed by surrounding

chains and is characterized by the Rouse friction coefficient Nζ. The curvilinear diffusion

coefficient Dc that describes the motion of the chain along its tube is simply the Rouse

diffusion coefficient of the chain

Dc =
kBT

Nζ
(1.33)

The time it takes for the chain to diffuse out of the original tube of average length 〈L〉 is

the reptation time

τrep ≈
〈L〉2
Dc

≈ ζb2

kBT

N3

Ne

=
ζb2

kBT
N2
e

(
N

Ne

)3

(1.34)

Here, Eq. 1.32 was used for the average contour length of the tube. The reptation time

is predicted to be proportional to the cube of the molar mass, compare this result to the

Rouse time that is proportional to the square of the molar mass (Eq. 1.27).

It can be seen that the relaxation modulus is given by [5]
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G(t) ≈ G0e
−t/τrep (1.35)

where the initial shear modulus is given by G0 = ckBT Then, the steady state viscosity will

be given by

η0 ≈ G0τrep (1.36)

Since G0 is independent of the molecular weight, the viscosity is also proportional to N3.

Following Doi et al [5] the steady state viscosity in the semidilute state can be found to

be given by

η0 = ηs

( c
c∗

)3/(3ν−1)

(1.37)

where ηs is the solvent viscosity, ν ' 3/5 is the Flory exponent, and c∗ ∼ 〈L〉1−3ν b−3 is the

overlap concentration. Then,

η ∼ c3/(3ν−1)N3 (1.38)

1.3 Systems of Interest

In this work we will be focusing in three different systems where statistical mechanics models

will prove to be a useful tool in the scales and order parameters that govern the structure

and dynamics the particular system.

In Chapter 2 we will study a system of monoclonal antibodies in a semidilute solution.

It will be shown that this antibodies can bind to each other and form elongated structures.

We use polymer theory in order to study the solution’s rheology and dynamics, and conclude

that the relevant time scale is given by the reptation time of the cluster chains. This shows

the time scale where experiments and simulation may be performed in order to observed the

critical aspects of the system’s behavior in high resolution. Experiments and simulations can
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next study the binding affinities between antibodies and extract the distribution of cluster

sizes and shapes, and how it affects the rheology and dynamics; and it also allows us to

extract the on and off rates in order to find the system’s relaxation modes.

In Chapter 3 we focus in systems of proteins experiencing liquid-liquid phase separation.

We apply polymer theory in order to obtain the phase diagrams and study the behavior

inside the condensate phase. In this type of systems we are dealing with disorder protein

where it is no clear what is the correct length scale that characterize the system; it may

be mesh size of the network inside the condensate, the thermal blob size, the entanglement

length. The main goal will be to extract the order parameter that governs the system’s

behavior. In previous works it was shown that for SPOP/DAXX [8] the order parameter

is given by the ratio of NSPOP to NDAXX; for SUMO-SIM [9] the order parameter is the

defect density in the network. The point is to choose an order parameter that describes

the condensate’s functionality. Once the order parameter is found, the length scale that

characterizes the system’s behavior emerges; this can then tell future simulations how to

coarse-grain the system.

In Chapter 4 we study the protein-protein binding process, and how the addition of

ions fluctuations affects it. The main point of this analytic model is to show the problems

that may appear in high resolution approaches such as explicit ions simulations where the

macroscopic salt concentration is fixed. This seems like a two-body problem at a first glance,

however the solvent and ions give a many-body effect. The question we are trying to answer

is when this pose a local problem or a general one.
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Chapter 2

Cluster formation and entanglement

in the rheology of antibody solutions

2.1 Introduction

Efficient dosing of therapeutic antibodies often requires concentrations in excess of 100 or

even 200 mg/ml [1–3]. However, many antibodies have a sharp rise in the viscosity that

renders production and delivery prohibitive at these concentrations [2, 4–6]. Unfortunately,

this problem is only apparent late in the development pipeline when it is not feasible to

alter the sequence to reduce viscosity. A better approach would be to choose low viscosity

target molecules early in the pipeline so that the problem can be avoided altogether. To

achieve this goal it is necessary to understand how minor sequence perturbations within

the complementarity determining regions (CDR) contribute to the many-body interactions

responsible for the elevated viscosity.

The sharp rise in antibody viscosity has characteristics that are very different from solu-

tions of rigid bodies [4]. First, the onset of the nonlinear regime occurs at volume fractions on

the order of 5–10%, which is much less than the jamming transition for comparably shaped

rigid bodies (e.g. 58% for spheres). Secondly, the viscosity of a given molecule correlates

well with attractive intermolecular interactions [7–9]. While this is intuitively reasonable,
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the viscosity of a flocculated solution is primarily a function of the solute volume fraction.

But, the volume fraction does not change upon aggregation, although entrained water cavi-

ties could account for a factor of 2 or 3 increase. To explain these discrepancies, we proposed

an alternative model in which transient interactions between antigen binding domains result

in long, flexible antibody complexes [10]. These complexes entangle with each other giving

the solution viscosity characteristics of a semi-dilute polymer solution. In this paper we ex-

pand on this polymer model to explain shear thinning behavior, dilute solution viscosity, and

show how the ensemble of complexes depends on the affinity and location of intermolecular

interactions.

2.2 Antibody cluster morphology depends on the lo-

cation of binding sites

The large variation in the viscosity of different antibodies requires that the causative inter-

actions involve the variable region. Experiments have shown examples of antibodies where

the CDR self-associates or binds to the Fc domain [11, 12]. The type of interaction, and

hence the allowed structures, will depend on the specific antibody. The presence of Fab-Fc

interactions is expected to have a significant effect on the rheological behavior, as these in-

teractions can lead to branched structures, which cannot relax by the reptation mechanism

that dominates in semi-dilute polymer solutions [13]. For now, we ignore dynamical effects

and compute the equilibrium ensemble of complex structures as a function of the binding

location.

2.2.1 Head-to-Head binding results in linear aggregates

To begin, we review the simplest case of Fab-Fab interactions, as described in [10]. We refer

to this as “head to head” (HH) binding. HH binding results in the formation of linear

structures, as shown schematically in Fig. 2.1
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c1 k c2
1 k2 c3

1

Figure 2.1: Cartoon and concentration for the monomer, dimer, and trimer states in the

HH model.

The equilibrium constant for HH association is defined by

k =
cHH

2

c2
1

(2.1)

where cHH
2 is the concentration of dimers formed by HH binding and c1 is the monomer

concentration. The dimer equilibrium constant provides a valuable connection between dilute

solution properties, which can obtained early in the development pipeline, and the viscosity

of concentrated solutions. This connection can also be made using numerical methods or

MD simulations [14–17]. Here we present calculations to make this connection analytically.

It follows from Eq. 2.1 that the concentrations ci of complexes containing i molecules

will be given by

ci = c1 (k c1)i−1 (2.2)

where we are assuming that the equilibrium constant k is independent of the number of

molecules in the i-mer.

Summing over all HH complexes, the grand partition function is given by

qHH = c1

(
1 + (k c1) + (k c1)2 + · · ·+ (k c1)i + · · ·

)
(2.3)

where the monomer concentration plays the role of the fugacity c1 = eµ/kBT . We can rewrite
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the partition function as the following recursion relation

qHH = c1 (1 + k qHH) (2.4)

This equation can be physically interpreted as follows: the two terms on the right hand

side of Eq. 2.4 correspond to the two possible states for an antibody head, i.e., one of the Fab

domains. The head can be unbound, which terminates the complex and results in the factor

of 1, or the head can be bound to another molecule which, in turn, can be bound to another,

and so on. In the grand canonical formalism, the number of molecules in this aggregate can

range from one to infinity. It follows that the sum of all possible outcomes can be replaced

by the factor qHH on the right hand side of Eq. 2.4. This is depicted schematically as

Q = + + + · · ·

= × (1 + + + · · · )

= × (1 +Q)

Rearranging Eq. 2.4 we get the following expression for the partition function

qHH =
c1

1− k c1

(2.5)

which can also be obtained by summing the power series in Eq. 2.3.

2.2.2 Head-to-Tail binding permits the formation of branched clus-

ters

We now consider the self association of antibodies that form bonds between an Fab domain

and a Fc, which we refer to as �head to tail�(HT) binding.

Defining s as the association constant for the HT binding, the grand partition function
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for complexes formed entirely by HT associations can be written as the following recursion

relation

qHT = c1

(
1 + 2 s qHT + s2 q2

HT

)
(2.6)

As with Eq. 2.4, this equation has a physical interpretation: the three terms correspond

to the available states for the heads of a single molecule. The first term corresponds to the

state where both heads are unbound, the second term corresponds to the case where only

one of the heads binds to a tail, and the third term corresponds to the state where each head

binds to another molecule. Since each bound molecule can initiate a cluster of any number

of molecules, the factor qHT is introduced. Solving the quadratic Eq. 2.6, and keeping the

root with the correct low concentration limit (qHT → c1), we obtain an expression for the

grand partition function

qHT =
1− 2sc1 −

√
1− 4sc1

2 s2c1

(2.7)

Fig. 2.2 shows schematically some of the complexes that can be expected from HT

association. As in the HH case, we can associate each cluster to a term in the grand partition

function (Eq. 2.8). This can be seen by Taylor expanding Eq. 2.7

qHT = c1

(
1 + 2 (s c1) + 5 (s c1)2 + · · ·

)
(2.8)

The coefficients in Eq. 2.8 indicate the degeneracy of the relevant i-mer states. For example,

the term 5 (s c1)2 corresponds to the five dimer states in Fig. 2.2. Note that several of these

structures are related by rotational symmetry. Therefore, these states should be considered

“undistinguished” particles in the sense used in [18, 19] for classical particles. This over-

counting can be corrected in an approximate way by dividing the final partition function by

two

q̃HT '
c1 + qHT

2
(2.9)

where q̃HT is the corrected partition function and the extra factor of c1 ensures that the

monomer term is accurate. In the Supporting Information we present a more accurate
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correction and discuss the accuracy of the simple approximation made in Eq. 2.9.

Comparing HH and HT cases (Eqs. 2.3 and 2.8) we notice that in the HH model there

is only one possible cluster structure for a given number of monomers, but the HT model

allows for many structures for each cluster size. Therefore, for equivalent binding energies,

there is an additional entropic factor promoting HT binding.

c1

s c2
1 s2 c3

1

Figure 2.2: Cartoon of the monomer, dimers, and trimers described by the HT model (Eq.

2.8). As discussed in the Supporting Information, several of these structures are related by

rotational symmetry and, therefore, are over-represented in the partition function qHT. The

corrected partition function q̃HT removes this over-counting.

2.2.3 The average cluster size increases with binding affinity and

protein concentration

The cluster concentrations obtained in the previous sections are functions of the monomer

concentration c1. This quantity is less experimentally accessible than the total protein con-

centration c. The relationship between c1 and c can be obtained from the mass conservation

law, which requires that the total concentration c must satisfy

c =
∞∑

i=1

i ci = c1
dq

dc1

(2.10)
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The average size of the aggregates can be written as

〈n〉
HT

= c1
d (lnq)

dc1

(2.11)

Both equations are valid for both the HH and HT models. Now, the monomer concentration

c1 can be obtained by solving Eq. 2.10 in terms of the total concentration. This result can

be used in Eq. 2.11 to find the average size. For the HH model the result is [10]

〈n〉
HH

=
2kc√

1 + 4kc− 1
(2.12)

and for the HT model we have

〈n〉
HT

=

√
2 s c√

1 + 4sc+ s2c2 − (1 + sc)
√

1 + 6sc+ s2c2

(2.13)

We focus now on computing the distribution of aggregates. To do this, we need to

compute the concentration, ci, of all clusters of size i. This can be done by Taylor expanding

the partition function and selecting the term proportional to ci1. This procedure is formally

given by

ci =
ci1
i!

di−1q

dci−1
1

∣∣∣∣
c1=0

(2.14)

In order to analyze the results, we take the approach in [10] and express the binding

affinities in terms of the free energy of the binding interaction

k =
1

m
eεHH (2.15)

s =
1

m
eεHT (2.16)

where m is the molecular mass, and εHH and εHT are the free energies for HH and HT binding

association at the standard concentration of 1M, respectively, in units of kBT .

Fig. 2.3 compares the average size of cluster 〈n〉 for both HH and HT models at the same

binding energy ε. It is clear that increasing concentration or increasing binding energy allows
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for a larger number of monomers per cluster. Also, at the same ε the HT model gives larger

structures. This comes from the fact that the HT model allows a larger number of different

clusters with the same number of monomers, increasing the probability of populating those

states. Finally, we see that the onset of aggregation occurs for binding free energies around

5-6 kBT in the range of concentrations 100-200 mg/ml.

0

2

4

6

8

10

12

14

〈n
〉

4 5 6 7 8 9

ǫ (kBT )

HT 200 mg/ml
HT 100 mg/ml
HH 200 mg/ml
HH 100 mg/ml

Figure 2.3: Average number of monomers per cluster for the HH model (blue) and the HT

model (red) at two different concentrations: 100mg/mL (solid lines) and 200mg/mL (dotted

lines) at the same binding energy εHH = εHT = ε.

We now focus on the population of different cluster sizes. Fig. 2.4 shows the concentration

of clusters from monomers to heptamers as a function of the binding free energy for both

HH and HT models. The monomer concentration decreases monotonically as a function

of binding energy as the monomer pool is depleted to form larger structures. In contrast,

the concentration of larger structures shows a non-monotonic dependence. This is because

initial increases in the binding energy permit the formation of larger structures, while much

larger values shift the weight of the distribution to larger aggregates which deplete the pool

of smaller structures.
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Figure 2.4: Behavior of the relative concentrations for HH model (A) and HT model (B) as

a function of binding energy εHH = εHT = ε at different concentrations: 50mg/mL (solid lines),

150mg/mL (dotted lines). At low binding energies monomers dominate, but as the binding

energy increases the monomer concentration decreases monotonically as larger structures

start to form. Clusters larger than the monomer have a non-monotonic concentration because

the large clusters formed at high binding energies consume the pool of smaller clusters.

2.3 The viscosity of dilute solutions is determined by

the volume occupied by antibody clusters

The equilibrium distribution of antibody cluster sizes can be applied to obtain expressions

for the viscosity at low concentrations. For a dilute solution of hard spheres immersed in a

solvent, the viscosity is given by the Einstein relation [20]:

η

η0

= 1 +
5

2
φ (2.17)

where η0 is the solvent viscosity and φ is the volume fraction occupied by the spheres.

Approximating the antibody complexes as spheres of radius equivalent to radius of gyration

24



Rg and mass 〈n〉 times that of a monomer, we can approximate the volume fraction as

φ =
4

3
πR3

g

c

〈n〉m (2.18)

where m is the molecular mass.

The radius of gyration can now be computed by considering the antibody complex as a

polymer chain of 3n segments of length b [21]

Rg = b 〈3n〉ν (2.19)

where 〈n〉 is the average number of monomers per cluster, ν is the Flory exponent, and the

factor of three comes from the number of statistically independent segments (domains) per

molecule. Plugging Eq. 2.19 into Eq. 2.18, we get an expression for the volume fraction

that only depends on the binding energy of a particular molecule,

φ =
4

3
π
c

m
b̃3 〈n〉3ν−1 (2.20)

where b̃ ∼ 3νb is the effective molecular radius. Plugging Eq. 2.20 into Eq. 2.17, we obtain

an expression for the viscosity of antibodies in dilute solutions

η

η0

= 1 +
5

2

c

ρ
〈n〉3ν−1 (2.21)

where ρ = 3
4π

m
b̃3

is the domain density. Note that even though viscosity depends linearly on

volume fraction, it does not have a linear dependence on concentration, since 〈n〉 is non-linear

in c.

The HH and HT binding affinities determine the average number of monomers per cluster

〈n〉. While binding location is not known for most antibodies, we can exploit two systems

where Hydrogen-Deuterium exchange experiments have identified the intermolecular interac-

tions as predominantly HH and HT, respectively [11, 12]. In making the latter comparison,

we note that Eq. 2.19, which gives the radius of gyration, is valid only for linear poly-
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mers. Nevertheless, in the low concentration regime, small structures (without branching)

dominate, making Eq. 2.21 an adequate approximation for antibodies with HT interactions.

We can compare this expression to the results obtained in [10]. Using the concentration

dependence of 〈n〉 (Eq. 2.12) in Eq. 2.21 we see that viscosity scales like η ∼ c1.4 in the

dilute regime, which is a weaker dependence than the semi-dilute result, η ∼ c3.75, found

in [10].

0

5

10

15

η η
0

10 20 30 40

c
(
mg
mL

)

300 mM Na2SO4, 4
◦C

300 mM Na2SO4, 25
◦C

300 mM NaCl, 4◦C
300 mM NaCl, 25◦C

0

2

4

6

8

10

12

η η
0

10 20 30 40 50 60

c
(
mg
mL

)

0 mM NaCl
30 mM NaCl
60 mM NaCl
100 mM NaCl

A B

Figure 2.5: Comparison of Eq. 2.21 to the viscosities measured in [11] (left), and [12]

(right). Binding parameters are fit to the first three data points (c ≤ 20 mg/ml). The in-

creasing deviation at higher concentrations, especially in panel A, indicates that the antibodies

are exiting the dilute regime and becoming entangled.

The free parameters in the model are the segment length b and the association constants

k and s. Since Eq. 2.21 was developed for low antibody concentrations, we limit the fitting

algorithm to the first three data points for each data set (up to 20 mg/mL). We fit b by

minimizing the sum of square errors for all cases, and then fit the association constants for

each separate case for that value of b. Comparison between the model and the experimental

results are shown in Figs. 2.5A and 2.5B. Fitting yields an effective segment length b = 6.1

nm, or equivalently b̃ = 11.8 nm, which is consistent with the domain size and antibody
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dimension. The fitted association constants are displayed in Table 2.1.

ref. [11]

Fig. 2.5A k
(

L
g

)
c∗
(

g
L

) 〈n〉

c = 10 (g/L) c = 30 (g/L)

purple 0.021 27 1.18 1.44

blue 0.068 22 1.46 2.01

green 0.136 19 1.77 2.58

red 0.609 14 3.02 4.80

ref. [12]

Fig. 2.5B s
(

L
g

)
c∗
(

g
L

) 〈n〉

c = 10 (g/L) c = 30 (g/L)

purple 0.001 34 1.02 1.06

blue 0.007 28 1.13 1.36

green 0.07 16 2.04 3.67

red 0.11 14 2.53 4.96

Table 2.1: Fitted free energies for the dilute antibody solutions plotted in Fig. 2.5. Also

shown are the overlap concentration, at which Eq. 2.21 is expected to fail, and the average

cluster size at 10 and 10 mg/ml.

Eq. 2.21 gives the zero-shear viscosity of a solution in the dilute regime. This means that

it is expected that the model will fail around the overlap concentration c∗ that separates

the dilute regime from the semi-dilute. The overlap volume fraction is reached when the

molecules occupy all the space, i.e. φ∗ = 1. This condition is obtained from Eq. 2.20 and

tabulated in Table 2.1. Inspection of Fig. 2.5 shows that c∗ is predictive of when the dilute

model is a good description of the solution viscosity. For concentrations below c∗ the fits

do an excellent job of describing the measured viscosity. However, above c∗ entanglement

effects lead to marked deviation. The failure of the dilute model can occur at concentrations

as low as 10-20 mg/ml for antibodies with strong attraction.

Due the small complex sizes (〈n〉 < 5) formed under these conditions (Table 2.1), these
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systems are insensitive to the choice of HH or HT models. This is because the lack of branch-

ing and the small degeneracy factors make the HH and HT models nearly interchangeable.

Because of this, and the lack of experiments that identify the binding location, only the HH

model will be used when analyzing the rheological behavior of antibodies in the following

sections.

2.4 Equilibrium Dynamics of antibody solutions

Above the overlap concentration antibodies have a viscous response similar to that of a

semi-dilute polymer solution. This is described by the theory of Schmit et al. for zero-

shear viscosity, which we summarize below. In their theory, each antibody is modeled as

a featureless polymer with the polymer ends located at the antigen binding sites [10]. An

antibody is considered to have a “polymer” length of L = 3 segments (with size b each)

associated with the three domains of the antibody molecule. Schmit et al. focused on

the semidilute regime, since in the range of interest, concentrations above 100 mg/mL, the

center-to-center particle separation is comparable to the molecular size and the antibodies

occupy a solution volume on the order of 10%. The reptation mechanism of polymers with

entanglements yields a zero-shear viscosity proportional to the product of the shear modulus

G and the longest relaxation time τrep [22]

η0 ∝ Gτrep. (2.22)

In the semidilute regime, the reptation time is given by [23, 24]

τrep ∼
ηsL

3νb3

kBT

( c
c∗

) 3−3ν
3ν−1

(2.23)

and the shear modulus can be obtained from scaling calculations to give [22]

G ∼ c

L
kBT

( c
c∗

) 1
3ν−1

(2.24)
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where ηs is the viscosity of the solvent, ν ' 3/5 is the Flory exponent, c is the segment

concentration, and c∗ ∼ L1−3νb−3 is the overlap concentration [22]. The reptation model

for entangled polymers requires a clear separation of length scales between monomers and

polymer chains. However, even after considering self-association of antibodies, the range

of polymer lengths is 3 ≤ L . 20, which is still too short to satisfy the above mentioned

condition. Nevertheless, the analytic model provides useful qualitative insight and reasonable

agreement with measured viscosity.

Eqs. 2.22-2.24 yield a zero-shear viscosity of the form

η0 ∼ c
3

3ν−1L3 (2.25)

The average length is computed from Eq. 2.12 which can be included in Eq. 2.25 to yield

η0 = Ac
3

3ν−1

(
2kc√

1 + 4kc− 1

)3

(2.26)

where A is a constant of proportionality. Eq. 2.26 predicts that viscosity increases with

concentration as c3.75 for ν ' 0.6. Also, we can see from Eq. 2.25 that the viscosity depends

strongly on polymer length L. This increment in the zero-shear viscosity, proportional to the

cube of the length scale, is found for semidilute polymer suspensions, as well as for colloidal

suspensions [25].

Fitting the model to experiments, the constant was found to beA = 5.4×10−8 cP (mg/mL)3.75

[10]. Note that the constant A absorbs the factor of 3 difference between the aggregate num-

ber and the polymer length, 3 〈n〉 = L.

2.5 Shear thinning results from the release of entan-

glements

According to reptation theory [22, 24], the viscous response of a polymer solution under shear

is the result of two relaxation mechanisms. First, the shear will stretch out the polymers by
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deforming the entanglements that constrain them. Then the polymer shrinks along the tube

generated by the constraints to recover its equilibrium extension. This relaxation process

releases entanglements and, since it is not affected by the tube, the relaxation time is given

by the Rouse relaxation time τR. Second, the polymers undergo reptational diffusion to

establish a new conformation with the original number of entanglements points. Therefore,

these two processes oppose each other with the chain retraction releasing entanglements

and reptation restoring them. It can be checked that Rouse time is always much less than

reptation time for any entangled solution where the length of the tube is longer than its

diameter, therefore, in the following we treat chain retraction as instantaneous.

Returning to the simple shear case, the shear stress immediately following a step strain

is approximately σ(t = 0+) = G dγ, where G is the shear modulus. Following Milner, [26]

the shear flow with a constant strain rate γ̇ is approximated as a sequence of step strains dγ

separated in time by some convenient interval dt, in which the chain relaxes. After a Rouse

time, the chain retracts relaxing entanglements and reducing the stress by a factor h (dγ)

σ (t = τR) = h (dγ)G dγ (2.27)

where h (dγ) is the nonlinear damping function. Next, the chain relaxes by reptation, which

restores the entanglements. For the steady state case, entanglements are released as fast as

they are restored. Therefore, the appropriate step strain is dγ = γ̇τrep. Since the viscosity

is related to the shear stress by η = σ/γ̇ we have

η (γ̇) ≈ Gτrep h (γ̇τrep) (2.28)

where h (γ) can be estimated by computing the root-mean-squared tube length increment

immediately after the step strain [22], yielding

h (γ) =
(
1 + γ2/3

)−1/2
(2.29)

30



The functional form of h (γ) remains an open question and we refer the reader to [27] for

a discussion of the topic. However, Eq. 2.29 is sufficient for our purposes here.

We obtain our final expression for the shear rate dependence of viscosity plugging Eq.

2.29 into Eq. 2.28 and using Eq. 2.26 for the product Gτrep

η = Ac
15
4

(
2kc√

1 + 4kc− 1

)3
(

1 +
1

3
γ̇2B2

(
2kc√

1 + 4kc− 1

)6
)−1/2

(2.30)

In writing Eq. 2.30 we have introduced a proportionality constant into the expression for

the reptation time τrep = B〈L〉3.

The free parameters are A, which was obtained in [10], the equilibrium constant k, which

depends on both the molecule and the solution condition, and B which we obtain from a

global fit to all solution conditions.

2.6 The binding affinity predicts both the zero shear

viscosity and the onset of shear thinning

The model was tested against experimental data on viscosity shear-dependence for two dif-

ferent antibodies under a variety of conditions from Zarraga et al. [7] and Godfrin et al. [28].

Fitting Eq. 2.30 to the data sets, we obtain the prefactor B for the reptation time by mini-

mizing the sum of square errors for both types of antibodies for all system conditions. Next,

we obtain the dimerization equilibrium constant k, which can be computed by fitting the

viscosity for each individual system condition. The values of B and k are shown in Table

2.2. Solid lines in Fig. 2.6 show the fits using the model in Eq. 2.30.

Eq. 2.12 shows that the average chain length is determined by k, 〈n〉 ∝ k1/2. Both the

zero-shear viscosity and the reptation time have a strong dependence on polymer length,

(Eq. 2.26). We have seen that the reptation time captures the onset of the shear-thinning

behavior, thus an increment in the polymer length means that η0 will increase and the onset

of shear-thinning behavior will occur for lower values of the shear rate. This correlation
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between η0 and the shear thinning is observed in the experimental data and captured by the

reptation model. According to the model, this correlation stems from the fact that systems

with shorter chains can re-form entanglements faster than systems with longer chains, due

to the shorter reptation times.

An inspection of Fig. 2.6 reveals that the drop in viscosity is noticeably steeper than the

γ̇−1 power law predicted by Eq. 2.30. This discrepancy is also seen in polymer systems, which

typically show shear thinning behavior in the range γ̇−1.2 to γ̇−1.4 [29, 30]. These exponents

are consistent with shear thinning behavior shown in Fig. 2.6, although the less viscous

conditions fall outside of this range, presumably because smaller antibody complexes are

less polymer-like. The literature contains many refinements to the reptation model intended

to improve the agreement with experiments [31, 32], however, these fall outside of the scope of

the present work which is to demonstrate the utility of the entanglement model in capturing

the key features of antibody rheology.
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Figure 2.6: Comparison of Eq. 2.30 to the shear dependent viscosity of an antibody at A) 200 mg/ml [7],

B) 150 mg/ml [7], and a different molecule at C) 120 mg/ml [28], and D) 146 mg/ml [28]. Solutions with

lower viscosity deviate more strongly from the theory due to the fact smaller complexes are less polymer-like.
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ref. [7]

Fig. 1 k
[

mL
mg

]
〈n〉 B [10−5 s]

red 0.094 4.86

1.83
black 0.074 4.40

blue 0.054 3.82

green 0.041 3.39

Fig. 2 k
[

mL
mg

]
〈n〉 B [10−5 s]

red 0.028 2.61

1.83blue 0.019 2.26

green 0.012 1.93

ref. [28]

Fig. 3 k
[

mL
mg

]
〈n〉 B [10−5 s]

green 0.214 5.60

0.97
red 0.091 3.84

black 0.067 3.39

blue 0.027 2.36

Fig. 4 k
[

mL
mg

]
〈n〉 B [10−5 s]

red 0.040 2.97
0.97

blue 0.011 1.84

Table 2.2: Parameters extracted from the fits in Fig. 2.6, including the dimerization equilibrium constant

and the global proportionality constant. Also shown is the average cluster size 〈n〉, which increases with the

equilibrium constant.

2.7 Summary

We have used in this work polymer theory of rheology of polymer chains in semidilute

solutions in order to obtain the viscosity in this regime and calculate the reptation time

associated to entangled polymer dynamics.

At the high concentrations used for pharmaceutical formulation, even weak intermolecular
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interactions result in the formation of antibody clusters. Due to the discrete binding sites on

the antibody arms, these clusters will tend to have an elongated morphology. This promotes

entanglements, which have a profound effect on the dynamics of the solution. We have

shown that a polymer model explains the viscosity, shear thinning behavior of antibody

solutions. This model shows that viscosity can be reduced by minimizing entanglements,

either by reducing intermolecular interactions or by using antibody constructs that lack the

multi-valency required to make extended structures.

It is shown that the main time governing the dynamics is the reptation time. This

gives information that allows simulations and experiments to look for resolutions where the

reptation time is captured. Then, binding energies can be extracted to characterize the

system and predict the rheological behavior.
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Chapter 3

Static properties in biological

condensates determined by topology

of the dense phase

3.1 Introduction

Inside living cells, in addition to vesicle-like organelles there are compartments that are not

membrane-bound. These structures are referred to as biomolecular condensates or mem-

braneless organelles, and can perform a variety of functions inside the cell, like signaling and

enzymatic properties [1, 2]. These structures are often responsive to changes in environmen-

tal conditions, cell cycle, or stress [3–6].

Examples of these biomolecular condensates include RNA-protein granules such as nu-

cleoli, Cajal Bodies and PML nuclear bodies in the nucleus [7], as well as stress granules

and germ granules in the cytoplasm [8, 9]. These micron-scale structures are all defined by

their ability to concentrate proteins and nucleic acids at discrete cellular sites. As these

condensates lack a physical barrier to separate their internal components from the surround-

ing medium, it remained elusive for a long time how they concentrate molecules, maintain

and regulate their structures, control their compositions and modulate internal biochemical
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activities.

The first membraneless compartment that was observed within the nucleus of neuronal

cells was the nucleolus [10]. Since then, many such compartments have been discovered in

the nucleus, cytoplasm and on membranes of essentially all eukaryotic cells. High-resolution

microscopy imaging and descriptions of their molecular components have revealed similarities

in their shape, dynamics and manner of assembly, despite differences in their composition,

location and function. Some of the common properties are high concentration of compo-

nents inside the condensate region with rapid exchange with the environment [11, 12], and

coalescence of two compartments upon contact [13, 14]. These results and others led to

the conclusion that the biomolecular condensates were liquid-like, and that they form by

liquid-liquid phase separation from surrounding cytoplasm. Principles of phase separation

can indeed explain the formation of such structures with diverse material properties as well

as the complex organization of such structures (organization into subcompartments, for ex-

ample). The presence of a phase boundary explains how molecules can be concentrated in

one place in a cell without a surrounding membrane but still provide an environment suitable

for cellular biochemistry that depends on rapid diffusion. Phase separation also provides a

unifying principle that explains the formation of membraneless compartments from different

types of molecules.

Biomolecular condensates are often formed by multivalent molecules that is, molecules

that contain multiple elements that govern intra- or inter-molecular interactions [15, 16].

This multivalency is important because concepts in polymer theory indicate that multivalent

molecules naturally assemble into large oligomers or polymers when mixed, which promotes

phase separation. This idea can be applied to understand the phase separation behaviour

of diverse multivalent molecules. Such molecules include proteins composed of multiple

interaction domains and proteins containing disordered regions that provide multiple weakly

adhesive sequence elements. RNA and DNA molecules, which can contain multiple regions

that bind to other nucleic acid molecules and proteins, can also undergo phase separation.

One central problem to be address is how properties of molecules contribute to the func-

tion of these condensates. In this paper we will address the following equilibrium functional
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characteristics: density, which influences the diffusion and relaxation properties in the fluid;

and client binding, which plays a role in the enzymes metabolism in the cell; where clients

are other condensate residents concentrated within the structure by direct interactions with

scaffolds, but are not required for condensate formation. It can be posed that these two

quantities are related: increasing density inside the condensates diminishes the number of

binding sites available to clients. Thus, it raises the question of whether this two can be

decoupled, and what are the variables that control this behavior.

In considering the variables that control the system we can distinguish two categories:

genetic control, i.e. variables that are fixed by evolution, and dynamic control, i.e. variables

that the cell can tune and can be result in a sensitive or robust response. In the first group

we can find the following variables: linker length, valence, binding affinity; and in the second

group: concentration, stoichiometry and affinity via post-translational modifications.

Multivalent-proteins have been shown to achieve phase transitions at low protein concen-

trations when compared to globular proteins [15]. In this work we will modeling disordered

proteins as linear polymers characterized by a sequence of attractive stickers “stickers” [17]

and flexible, inert “spacers” [18].

3.2 Free Energy

The system under consideration will be a solution with two different types of linear polymer

chains inside. Each type “A” and “B” of polymers has a number θA and θB of stickers

evenly spaced, making them θ-valent sticky polymers. The first step is to compute the

free energy. We notice that there are two main contributions: binding interactions and an

entropy term, that includes conformational and translational entropy. It is expected that the

binding interaction will promote a higher density inside the condensate and fewer sites for

clients to bind. On the other hand, it is expected that the conformational and translational

entropy will promote lower densities and more client sites available.

In this model we will consider two types of contributions to the system free energy. A

first contribution coming from an excluded volume term and a second contribution coming
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from the binding interactions between the two different types of chains:

F = Fexcluded + Fbind (3.1)

Fbind promotes higher density inside the condensate and fewer client sites available. On

the other hand Fexcluded promotes lower density inside the droplet and more client sites

available to bind. If the mesh size of the network inside the droplet is given by the spacing

between stickers RA, it would be expected that the density inside the condensate would scale

like cA ∼ R−3
A , in other words, density should decrease as linker length increases. However, it

is shown in this work that the opposite occurs and this is explained by the type of topology

that the network form inside the condensate. For the case of client binding it will be shown

that longer linker lengths promotes the binding of clients inside the droplet, meaning that

the conformational entropy overcomes the binding energy effect.

We need to first account for the excluded volume contribution to the free energy. We

consider the volume between two type A stickers, and the energy that comes from confining

lA + lB monomers (where lA and lB are the number of monomers between stickers of type

A and B respectively) inside this volume Vsticker ∼ c−1
A . The excluded volume contribution

comes from having real polymer chains in the solution trying to occupy all the volume

available. This confinement energy per sticker will be of the order

fexcluded ∼ kBT
la + lB
g

(3.2)

where lA + lB is the number of monomers of both types between two stickers and g is the

number of monomers per blob, where a blob describes a length scale below which the polymer

chain may be considered to be unperturbed by other forces or effects, in other words inside

the blob the polymer exhibits ideal behavior. After some mathematical steps explained in

the Methods section we obtain the following expression for the excluded volume contribution

per sticker
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fexcluded
kBT

∼ (lA + lB)
3ν

3ν−1 (a3 cA)
1

3ν−1 (3.3)

We now need to include the contributions coming from pairwise interactions and the

entropy of sticky chains A and B where both types of molecules have a valence θ, i.e., that

each chain has θ stickers evenly distributed with a distance R between each other. We can

now compute the free energy of a solution of M molecules of type A. We divide these into

θ + 1 groups. N0 molecules are unbound, N1 are bound to a molecule of type B that has

θ−1 free sites, 2N2 are bound to a type B molecule that binds to a second type A molecule,

and so for until having a type B molecule with all its sites bound to molecules of type A.

Therefore M = N0 +N1 + 2N2 + 3N3 + ...+ θNθ and the total number of type B molecules

is N1 +N2 + . . .+Nθ. The free energy of the system is

Fbind/kBT =−
[
N1ε+N2

(
ε+ ln(l)− ln

(
θ

2

))
+ . . .+Nθ

(
ε+ (θ − 1) ln(l)− ln

(
θ

θ

))]

− µB (N1 +N2 + . . .+Nθ)− ln Ω

(3.4)

where ε > 0 is the free energy of a type A molecule binding to a type B molecule site

and µB is the chemical potential of type B chains (both of them scaled by kBT to make

them dimensionless); l is the contour length between two stickers, and the term (i− 1) ln(l)

correspond to the entropic penalty of looping the chain to form a bond with the same

chain that already has a bond (neglecting variable length, since we are considering only the

logarithm of such a length); and the term ln
(
θ
i

)
corresponds to the number of choices that i

stickers can choose among θ available.

Figure 3.1: Looping entropy.
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For simplicity of notation we write

εj = ε+ (j − 1) ln(l)− ln

(
θ

j

)
+ µ (3.5)

Then Eq. 3.4 can be rewritten as

Fbind/kBT =−
θ∑

j=1

Njεj − ln Ω (3.6)

We now need to compute Ω, which is the number of ways to arrange type B molecules

on the binding sites. We will be following the Flory-Huggins theory to compute it [19, 20]

(see Methods).

Minimizing the free energy with respect to the sites occupancies (see Methods) yields

fbind = ln (n0) + n2 + 2n3 + . . .+ (θ − 1)nθ (3.7)

and the sites occupancies

n1 = n0 e
ε1+µB

n2 = n2
0 e

2ε2+µB+ln z

· · ·

nθ = nθ0 e
θεθ+µB+(θ−1) ln z

(3.8)

where ni = Ni/M and n0 is the only real and positive solution of the polynomial equation:

1 = (1 + c1B expε1)n0 +
(
2c1Bz exp2ε2

)
n2

0 + . . .+
(
θc1Bz

θ−1 expθεθ
)
nθ0 (3.9)

Eq. 3.9 can be solved analytically for low values of θ, but it must be solve numerically for

higher orders. We have developed an approximation to compute n0 in the Methods section

3.6 to obtain an approximate analytical solution to Eq. 3.9.

Summing both contribution we have the total free energy per sticker is given by
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f = fexcluded + fθ

∼ (lA + lB)
3ν

3ν−1 (a3 cA)
1

3ν−1 + ln (n0) + n2 + 2n3 + . . .+ (θ − 1)nθ

(3.10)

3.3 Concentration in condensate phase

We can now ask how the cell can tune the functional properties. At first glance, density

and client binding seem tightly connected. However, a comparison of SPOP/DAXX [21] and

SUMO/SIM [22] systems shows that network topology can decouple them. We now proceed

to compare the expected topologies that the system can present. One type of topology is the

zipper-like structure, characterized by long one dimensional structures, as in the SUMO/SIM

system [23]. We expect that this topology promote low density and intolerance of asymmetric

stoichiometry of species A and B. On the other hand, there is the random network present in

systems like SPOP/DAXX that is three dimensional. We expect that this topology promote

higher densities and to be tolerant of asymmetric stoichiometry.

The way topology is handled in our model comes from the z parameter that accounts for

the interaction among chains: z describes the number of type A molecules within reach of

a type B molecule bound with one site. This parameter has two types of contribution, one

coming from same chain interactions, meaning interaction with the same chain already bound

(zSC); and a second coming from a mean field type of interaction, coming from interactions

with other free chains (zMF ):

z = zSC + zMF

=
RA

RB

+ cAR
3
A

(3.11)

where RA and RB are the linker lengths of molecules of type A and type B respectively. We

can see that the first term stems from the possibility of binding to the free site of the already

bound chain, and the second term means a search in the volume within reach of a sticker

and depends on the concentration of type A molecules.

We now introduce the parameter PSC to account for the portion of same chain interaction
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in the system

PSC = PSC (ε, cA, cB, RA, RB)

=
zSC

zSC + zMF

(3.12)

When PSC ≈ 1 same chain interactions dominate and the topology present is 1D zipper-

like structures. On the other hand, when PSC << 1, mean field interactions dominate and

we are in presence of a random 3D network.

Before continuing we need to get the concentration of type “A” molecules in the conden-

sate phase, and its dependency on the concentration of free type “B” molecules and on the

linkers length. Given the fact that representative systems have usually low concentration in

the dilute phase, as a first approximation we will assume that the phase transition condition

is given by

∂f

∂cA

∣∣∣
cA dense

= 0 (3.13)

This results in a equation for the concentration of type “A” molecule inside the dense

phase of a droplet cA = cA (ε, c1B, RA, RB). Solving Eq. 3.13 numerically we can see the

concentration inside the droplet as a function of type “B” molecule concentration. The free

parameters that can be varied are the binding energy, and the linker lengths.

We now proceed to look at Eq. 3.12 and see the dependency of topology on the linker

length and binding energy. In Fig. 3.2 we see that linker length (R = RA = RB) determines

the type of topology and that the network is robust to changes in binding energy. We notice

that there is a region 3nm < R < 5nm where a mixed topology is present. The next step

would be to analyze the density of the condensates for the different types of topologies.
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Figure 3.2: PSC Eq. 3.12 behavior as a function of linker length for different binding

energies for bivalent case.

In Fig. 3.3 we see the behavior of the concentration of type A molecules as a function

of concentration of free type B molecules, for different linker lengths for the bivalent case.

We have already seen in Fig. 3.2 that linker length determines the type of topology that

will form inside the condensate, now we see how the density inside the droplet is affected by

the type of topology that the network adopts. We show three different cases of topologies:

zipper-like (R = 2nm), mixed topology, and 3D random network (R = 6nm). We can see

that there is a clear distinction between the behavior of each topology. The 3D random

network has a higher density, around two order of magnitude, than both the zipper-like and

the mixed network. This result shows the expected trends, since the zipper-like network

promotes lower densities due to its tendency to form long 1D structures disfavoring cross-

links; whereas the random network presents higher densities due to its propensity to form

cross-links.
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Figure 3.3: Concentration of type ”A” molecules cA behavior inside the droplet as a function

of concentration of free type ”B” molecules c1B for different symmetric linker lengths RA =

RB.

In Fig. 3.4 we can see a comparison between different valences in the density behavior

inside the droplet of RA = RB = 6nm and ε = 2kBT . We can see that in all cases,

concentrations are of the same order but the n-valent case shows a slightly higher value.

Another point is that as valence goes higher the peak in concentration occurs earlier, this

can be interpreted as the higher the valence the sooner it saturates the available binding sites.

One third point to look at is the behavior for large concentration, the higher the valence the

more random the network is, taking higher concentrations to dissolve the droplet.

Another point is the almost flat behavior of the n-valent case: this can be interpreted as

the excluded volume effect canceling the compression effect that the binding interaction is

exerting.
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Figure 3.4: Concentration of type ”A” molecules cA behavior inside the droplet as a function

of concentration of free type ”B” molecules c1B for different symmetric linker lengths RA =

RB.

We are now interested in how the system responds to changes in binding energy between

molecules. In Fig. 3.5 we can see the concentration of type A molecules behavior inside the

droplet as a function of concentration of free type B molecules for different binding energies

in the case we have symmetric linker lengths (RA = RB = 2 nm), same trends are present

for larger linker lengths. We can notice that the bivalent case behaves differently compared

to the other two cases: the peak in concentration in the bivalent case is the same for all

energies. This can be understood as the network formation is constrained by the fact that

once a chain forms a bond it is limited to a fixed distance for the next bond. In other

words, the network mesh size is given by the linker length. On the other hand, for the other

two cases higher energies show higher peaks: now the network mesh size is not limited by

one linker length and the chain can bind twice or more times with one chain and still form

a cross-link with a different one. In other words, higher energies favor a more condensed

network.

49



0 20 40 60 80 100

0

1

2

3

4

5

6

E=1.5 kT

E=2.0 kT

E=2.5 kT

0 20 40 60 80 100

0

2

4

6

8

10

E=1.5 kT

E=2.0 kT

E=2.5 kT

0 20 40 60 80 100

0

2

4

6

8

10

12

E=1.5 kT

E=2.0 kT

E=2.5 kT

c A
(µ
M

)

c1B (µM)

Figure 3.5: Concentration of type ”A” molecules cA behavior inside the droplet as a function

of concentration of free type ”B” molecules c1B for different binding energies.

3.4 Client Binding

We now shift attention to the effect of adding clients to type “A” molecules into the solution.

We are going to be interested in computing the ratio of bound clients to that of free client

molecules. As a first measure we need to write an entropy term that accounts for the

presence of free type “A” molecules bound to clients. We will call Nclient the number of type

“A” molecules bound to a client molecule and N00 the number of free type “A” molecules.

Therefore, the number of possibilities for having an already free type “A” molecule binding

to a client molecule is given by

Ωnew =
N0!

Nclient!N00!
(3.14)

We can now write the entropy term as follows

Ωclient = Ω× Ωnew

=
( z
M

)N2+2N3+(θ−1)Nθ M !

Nclient!N00!N1! . . . Nθ!

(3.15)

where now M = Nclient +N00 +N1 + 2N2 + . . .+ θNθ.

The free energy of the system is

FM/kBT =− (N1ε1 +N2ε2 + . . .+Nθεθ)− µB (N1 +N2 + . . .+Nθ)

− εclientNclient − µclientNclient − ln Ωclient

(3.16)
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The same method as before can be followed to obtain each occupation number ni. Min-

imizing the free energy with respect to the occupation numbers it gives the following occu-

pation numbers

nclient = n0 e
εcl+µcl

n1 = n0 e
ε1+µB

n2 = n2
0 e

2ε2+µB+ln z

· · ·

nθ = nθ0 e
θεθ+µB+(θ−1) ln z

(3.17)

where n0 can be obtained from the polynomial equation

1 = (1 + c1B e
ε1 + cqcl e

εcl)n0 +
(
2c1Bz e

2ε2
)
n2

0 + . . .+
(
θc1Bz

θ−1 eθεθ
)
nθ0 (3.18)

Giving the same expression for the free energy as before

f = ln (n0) + n2 + 2n3 + . . .+ (θ − 1)nθ (3.19)

We now want to compute the ratio of clients outside and inside the droplet as a function

of concentration of free type ”B” molecules for different linker lengths.

Pcl =
cclients inside
cclients outside

=
cbound cl + cfree cl

cfree cl + kclcfree clcscaffold

(3.20)

where kcl = eεcl . We will be using the same binding energy used for the binding interactions

between type ”A” and type ”B” for simplicity. We can obtain cbound cl using Eq. 3.17 as

cbound cl = cA × ncl (3.21)
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The concentration of scaffolds cscaffold is the concentration of type ”A” molecules outside

the droplet, which can be obtained from the equilibrium condition

µAout = µA in

ln (cscaffold) +N fM(zintra) ≈ ln(cA in) +N fM(zintra + zMF ) + fblob

(3.22)

where N is the number of stickers in a type ”A” chain, and fM(zintra) is the free energy

without considering the Mean Field interaction. Notice that we are using the same number

of stickers for both type ”A” and type ”B” molecules. plugging Eq. 3.22 in Eq. 3.20

we obtain the partition coefficient that gives the ratio of clients inside to clients inside the

droplet.

Again we are interested in comparing the behavior of the different topologies, now regard-

ing the partition coefficient behavior as a function of concentration of type B molecules. In

Fig. 3.6 we can see the partition coefficient for the following topologies: zipper-like network

(R = 2nm), mixed network (R = 4nm), and random network (R = 6nm) for the bivalent

case (similar behavior is shown for other valences). We notice that in all cases the random

network presents a higher partition coefficient, there are two plausible explanations: first,

the random network is more disorder and presents more space for the clients to bind; and

second, the zipper-like network inherently disfavors asymmetric stoichiometry, making that

the scaffolds compete for clients outside the droplet. It can be concluded that if a high

concentration of clients inside the droplet is what it is looked for, then a random network is

preferable. However, if a fine control of the clients in the condensate is required, a zipper-like

network should be considered.
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Figure 3.6: Concentration of type ”A” molecules cA behavior inside the droplet as a function

of concentration of free type ”B” molecules c1B for different symmetric linker lengths RA =

RB.

In Fig. 3.7 we can see the behavior of the partition coefficient Pcl as a function of con-

centration of free type B molecules for two different client binding energies εcl at conditions

ε = 2kBT , ccl = 50µM and RA = RB = 6nm, for the trivalent case (similar trends are

present for all other cases) . In all cases we see that increasing the client binding energy

results in a higher partition coefficients, meaning that a stronger affinity between client and

the scaffold promotes a higher concentration inside the droplet.
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Figure 3.7: Concentration of type ”A” molecules cA behavior inside the droplet as a function

of concentration of free type ”B” molecules c1B for different symmetric linker lengths RA =

RB.

In Fig. 3.8 we can see the behavior of the partition coefficient Pcl as a function of

concentration of free type B molecules for two different client concentrations ccl at conditions
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ε = 2kBT , εcl = 2kBT and RA = RB = 2nm, for the bivalent case (same behavior for all

other cases). It is worth mentioning that from Eq. 3.20 it may seem that ccl is factor out,

but from Eq. 3.18 n0 depends on ccl, hence cboundcl depends on ccl too. We can see that a

higher client concentration results in larger partition coefficients. The higher concentration

of scaffold inside the droplet means more spaces available for clients, hence higher client

concentrations will result in higher partition coefficients.
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Figure 3.8: Concentration of type ”A” molecules cA behavior inside the droplet as a function

of concentration of free type ”B” molecules c1B for different symmetric linker lengths RA =

RB.

From Figs. 3.7 and 3.8 we can conclude that both the client binding energy εcl and the

client concentration ccl can be used as parameters to control the concentration of clients

inside the droplet, since increasing or decreasing one has a similar effect on the partition

coefficient.

Now we will focus on varying the network parameters. In Fig. 3.9 we can see the behavior

of the partition coefficient Pcl as a function of concentration of free type B molecules for

two different network binding energies ε at conditions εcl = 2kBT , ccl = 50µM and RA =

RB = 2nm, for the bivalent, trivalent and n-valent cases. We see that increasing binding

energy lowers the partition coefficient. Stronger affinities favors a tighter network, meaning

less space for clients to bind to. Here we have a parameter that presents an interesting

behavior, we have seen in Fig. 3.5 that for the bivalent case, varying the binding energy

does not change the peak in concentration inside the droplet, but it does have an effect in
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the partition coefficient, so we have a network that is robust to changes in binding energy

but it is responsive to client binding.
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Figure 3.9: Partition coefficient of clients Pcl Eq. 3.20 behavior as a function of free type

”B” molecules c1B for different binding energies.

3.5 Conclusions

We have used in this work polymer theory of real chains in order to obtain the excluded

volume interactions among polymers and developed a model for the binding interaction

between sticky polymers.

We have seen in this work that the network formed by the sticky polymer can adopt dif-

ferent topologies inside the droplet depending on the polymer linker length, and a transition

from one to the other is found. These different topologies have different behavior when it

comes to density inside the droplet and client biding. We see in all cases a reentrant behav-

ior, marking the conditions in which the condensed phase is possible, for each topology. The

same reentrant behavior is seen for client binding.

It was expected that the mesh size of the network given by the linker length will determine

a behavior for the concentration inside the droplet of inverse proportionality, but the opposite

was found, and this was explained for the topologies that the network adopts. It was also

found that longer linker lengths promotes the binding of clients inside the droplet.

It is worth mentioning that we have obtained an order parameter, the length between

stickers, to determine the topology of the network and the values for this transition. This
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allows experiments and simulations to coarse-grain their search and analyze the systems for

each one of these topologies.

3.6 Methods

3.6.1 Excluded Volume Free Energy

The number of monomers per blob is given by

g

a3g3ν
=
la + lB
Vsticker

(3.23)

which result in

g =
1

(a3 cA(la + lB))
1

3ν−1

(3.24)

Plugging this into Eq. 3.2 we get

fexcluded
kBT

∼ lA + lB
g

∼ (lA + lB)(a3 cA(la + lB))
1

3ν−1

∼ (lA + lB)
3ν

3ν−1 (a cA)
1

3ν−1

(3.25)

and this is the expression in Eq. 3.3

3.6.2 Calculation of Entropy

The first step is to place the first site for each of the θ-bound type B molecules. The number

of ways to do this is M !/ (Nθ! (M −Nθ)!). Next, we place the second binding site for each

of these molecules. These sites are more restricted due to the fact they are constrained by

the first bond. The number of nearby sites, z, depends on whether the type A molecule is

in dilute phase or in a dense phase. However, we need to account for the probability that

these sites are already occupied, For the placement of the first double attachment, Nθ out
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of M sites are already occupied, so the probability that each of the z sites is available is

(M −Nθ) /M . For the placement of the second free tail the probability the neighbouring

sites are free is (M − (Nθ + 1)) /M . Therefore, the number of ways of placing the second

binding sites is

(
z
M −Nθ

M

)
×
(
z
M − (Nθ + 1)

M

)
× . . .×

(
z
M − (2Nθ − 1)

M

)

=
( z
M

)Nθ (M −Nθ)!

(M − 2Nθ)!

(3.26)

Now for the next bond there are (M − 2Nθ)/M sites available to attach to a type B

molecule. We can follow the exact same argument as before until we only have left the N1

single bound type B molecules among the remaining M − θNθ − . . .− 2N2 sites leaving N0

sites unbound. The number of ways to do this is (M − θNθ − . . .− 2N2)!/(N0!N1!). So the

total number of ways to arrange the type B molecules is

Ω =
( z
M

)N2+2N3+(θ−1)Nθ M !

N0!N1! . . . Nθ!
(3.27)

3.6.3 Free energy minimization

We now insert Ω into Eq. 3.4 and apply Stirling’s approximation on the factorials. The free

energy becomes

FM/kBT =− ε (N1 + 2N2 + . . .+ θNθ)− µB (N1 +N2 + . . .+Nθ)

+
θ∑

i=2

Ni ln

(
Ni

M

1

zi−1

)
+

θ∑

i=2

(i− 1)Ni +N1 ln
N1

M

+N0 ln
N0

M
+ λ (M −N0 −N1 − 2N2 − . . .− θNθ)

(3.28)

where λ is a Lagrange multiplier that will be used to constrain the total number of sites.

For convenience this can be re-written as

f = FM/KBT = (1 + λ) +
θ∑

i=0

ni(lnni − 1 + Ai) (3.29)
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where ni = Ni/M and

A0 = −λ

A1 = −ε− µB − λ

A2 = −2ε− µB − 2λ− ln z

. . .

Aθ = −θε− µB − θλ− (θ − 2) ln z

(3.30)

Minimizing the free energy with respect to the site occupancies yields ni = e−Ai , or

n0 = eλ

n1 = eε+µ+λ

n2 = e2ε+µB+2λ+ln z

. . .

nθ = eθε+µB+θλ+(θ−2) ln z

(3.31)

which can be expressed in terms of the concentration of unbound type B molecules using

the relation µB = ln c1B.

Inserting Eqs. 3.31 into Eq. 3.29 yields Eq.3.7. Using the condition 1 = n0 + n1 + 2n2 +

. . . + θnθ and the expressions in Eq. 3.31, gives the polynomial equation 3.9 for n0. We

choose the root that gives n0 → 1 as c1B → 0.

3.6.4 Large Valence

We are now interested in the case of polymers with large valence. Our starting point is going

to be Eq. 3.9, we will use the approximation in Eq. 3.5 fj = ε+ µ
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1 = (1 + c1B expε)n0 +
(
2c1Bz exp2ε

)
n2

0 + . . .+
(
θc1Bz

θ−1 expθε
)
nθ0

= n0 +
c1B

z

θ∑

i=1

i (z eεn0)i

= n0 +
c1B

z

θ∑

i=1

i xi

(3.32)

where x = z eεn0. For θ →∞ the last term in Eq. 3.32 looks like a power series that can be

solved as

θ∑

i=1

i xi =
x

(x− 1)2
(3.33)

for x < 1. Plugging Eq. 3.33 into Eq. 3.32 we obtain

1 = n0 + c1B
eεn0

(z eεn0 − 1)2
(3.34)

This is a cubic equation in n0 that can be re-written as

0 = z2 e2εn3
0 − (z2 e2ε + 2z eε)n2

0 + (2z eε + c1Be
ε + 1)n0 − 1 (3.35)

which can be solved analytically.

Next step is to re-write Eq. 3.7 for the case of large θ making use of Eq. 3.8:

fθ = ln (n0) + n2 + 2n3 + . . .+ (θ − 1)nθ

= ln(n0) +
θ∑

i=2

(i− 1)ni

= ln(n0) +
c1B

z

θ∑

i=1

(i− 1)(z eεn0)i

= ln(n0) +
c1B

z

θ∑

i=1

(i− 1)xi

(3.36)

where x = z eεn0. We need now to write an expression for the last sum for the case of large

θ but finite.
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θ∑

i=1

(i− 1)xi =
θ∑

i=1

i xi −
θ∑

i=1

xi

= 1 + x

(
1− (θ + 1)xθ + θxθ+1

(x− 1)2

)
+

1− xθ+1

x− 1

= x
x− θxθ + (θ + 1)xθ+1

(x− 1)2

(3.37)

We can now plug this expression into Eq. 3.36 to obtain

fθ = ln(n0) + c1B e
εn0

z eεn0 − θ(z eεn0)θ + (θ + 1)(z eεn0)θ+1

(z eεn0 − 1)2
(3.38)

and for θ →∞ we will have

fθ→∞ = ln(n0) + c1B z
( eεn0)2

(z eεn0 − 1)2
(3.39)

We can now numerically solve Eq. 3.13 to obtain the concentration of type ”A” molecules

inside the condensed phase.
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Chapter 4

Protein-Protein binding under

macroscopic salt conditions

4.1 Introduction

When studying biological macromolecules, the conformations, dynamics, function and bind-

ing process can be very sensitive to the salt concentration and composition of the local

environment. In the living cell, ion composition and concentrations can differ between in-

ter/intracellular environments [1] and organelles [2]. The local ionic concentration in the

environment around real biological macromolecules, however, can significantly deviate from

macroscopic concentrations.

Molecular Dynamics simulations are powerful tools in studying the structure, dynamics

and functions of biomolecular systems in the atomic scale. Current state-of-the-art ap-

proaches simulate a small volume around the biomolecule using explicit atomistic solvent to

model the local environment [3–6]. To emulate electrostatic screening effects in the local sol-

vent environment, explicit ions are added, to achieve net neutrality. Nevertheless, statistical

fluctuations in the total number of ions in the region around the biomolecule may result in

significant variance in the local salt concentration, where relative concentration fluctuations

diminish slowly with increasing simulation volume.
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In this work we develop a model to account for the statistical fluctuations in ions con-

centrations inside the volume where the biomolecule is immersed. We will study particularly

the phenomenon of protein binding and analyze how adding this statistical fluctuations in

ions concentration affects the free energy of binding.

4.2 Theory

We will consider a solute of charge Q immersed in a box with volume V . We assume the box

can exchange salt ions with a large solvent reservoir with a concentration c0 of symmetric,

monovalent salt. The grand canonical partition function for the system can be written as

Z =
∞∑

N+,N−

e
N+µ

kBT e
N−µ
kBT

V N+

N+!

V N−

N−!
e
E(Q,N+,N−)

kBT (4.1)

where N+ and N− are the number of positive and negative ions inside the box respectively,

and µ is the chemical potential for the exchange of ions. Since the box is in contact with a

bath of ions µ = kBT ln(c0).

We now need to write the energy term, in first approximation we can assume that the

charge is spread inside the box like a background charge. In this way, there will be an

electrostatic contribution to the energy like a Bohr term, in other words, we compute the

energy of bringing charges to the surface of a sphere of radius R:

E(Q,N+, N−) =
1

8πε0

1

R
e2 (q +N+ −N−)2 (4.2)

where R3 ∼ V , Q = e q and e is the electron charge.

plugging this result into Eq. 4.1 we obtain

Z =
∞∑

N+,N−

e
N+µ

kBT e
N−µ
kBT

V N+

N+!

V N−

N−!
e−

lB
2R

(q+N++N−)2 (4.3)

where lB = e2/(4πε0KBT ) is the Bjerrum length.

We can now write the grand canonical partition function as a function of the concentration
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of ions in the bath c0:

Z =
∞∑

N+,N−

c
N+

0 c
N−
0

V N+

N+!

V N−

N−!
e−

lB
2R

(q+N++N−)2

=
∞∑

N+,N−

(V c0)N++N−

N+!N−!
e−

lB
2R

(q+N+−N−)2

(4.4)

From this expression we can obtain the free energy

FZ = −kBT ln(Z) (4.5)

We want to compare this result to the case in which there is a fixed number of ions inside

the box and no fluctuations in its number. In order to compute the number of ions in the

box we follow Schmit et al [7] and compute the average number of ions inside a simulation

box in contact with a reservoir of ions of concentration c0.

The solute of charge Q and volume vp is immersed in a box with volume vt = vp + vw,

where vw is the volume occupied by solvent. Inside the box, the ion concentrations are

perturbed by interactions with the solute charges. The perturbed concentrations are related

to the electrostatic potential, φ, by

c+(x) = c0e−eφ(x)/kT

c−(x) = c0eeφ(x)/kT

(4.6)

The total number of ions in the box can be obtained by integrating over the solvent

volume:

N± =

∫

vw

c+(x) = c0e∓eφ(x)/kTd3x (4.7)

where e is the electron charge, kB is the Boltzmann constant, T is the absolute temperature,

and the integral is evaluated over the ion accessible volume. Next step is to replace the

spatially dependent potential φ(x) with an average potential φ that is uniform across the

simulation box. With this approximation, Eq. 4.7 becomes N± = vwc0e
∓eφ/kT . The value of
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the average potential can be determined from the charge neutrality condition Q/e = N++N−

which yields

eφ

kT
= ArcSinh

(
Q

2evwc0

)
(4.8)

The required ion numbers are then given by

N± = νwc0 exp

[
∓ArcSinh

(
Q

2eνwc0

)]
(4.9)

where νw is the volume occupied by the solvent. In our case νw = V since the solute is only

background charge.

We can now write the canonical partition function for this system

Q =
V N+

N+!

V N−

N−!
e−

lB
2R

(q+N+−N−)2 (4.10)

We want to compute the difference between allowing fluctuations and not allowing fluc-

tuations in the event of protein binding. We will model the protein binding event as having

two boxes of solute charge q each (separate proteins) and having the total charge 2q in one

box and the other box empty (bound proteins), as shown in the picture:

Figure 4.1: Modeling the protein binding process as having two separate events: 1. Two

boxes with charge q each represent the proteins separate by an infinite distance. 2. there is

one box with charge 2q and one empty box, representing having the two proteins bound to

each other.
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We will compute the free energy of each one of the events F1 and F2 and get the difference

in free energy of the process ∆F = F2−F1. We will do this for both cases, with and without

fluctuations.

In Fig. 4.2 we see the behavior of ∆F as a function of the solute charge Q for a fixed

box length R = 7nm and a bulk salt concentration c0 = 200mM , for both cases with

and without fluctuations. We first notice that in both cases the difference in free energy

increases monotonically as the solute charge increases: the barrier for binding gets larger as

the charge increases. We next notice that the difference between allowing and not allowing

ions fluctuations gets larger as we increase the solute charge.
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Figure 4.2: ∆F behavior as a function of the solute charge Q for the cases with and without

fluctuations. We see that as the charge gets larger the difference in energy also increases.

In Fig. 4.3 we see the behavior of ∆F as a function of the box length R for a fixed solute

charge Q = 6e and a bulk salt concentration c0 = 200mM , for both cases with and without

salt fluctuations. We first notice that in both cases ∆F present a non monotonic behavior.

Next we notice that there is region where there is no much difference between allowing and

not allowing salt fluctuations.
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Figure 4.3: ∆F behavior as a function of box length R for the cases with and without

fluctuations. We see a non monotonic behavior in both cases, and the case with fluctuations

is always larger than the case without them.

4.3 Conclusions

We have used in this work Statistical Mechanics tools, such as, canonical partition functions

and grand canonical partition functions in order to obtain the free energy of the protein

binding event.

We have shown in this work a calculation for the Free Energy of an event of two protein

binding, where fluctuations of ions was allowed and compare the result to the Free Energy

obtained when salt concentration is kept constant. We have pointed the regions where there

is a difference in Free Energy, which allows future simulations to consider whether adding

ions fluctuations may affect the the results.
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Appendix A

Corrections to the Partition Function

As mentioned in the main text, the partition function for the HT model overestimates the

number of states due to over-counting of cluster degeneracies. Here we correct the over-

counting of states and compare it to the approximate form previously obtained. Following

similar works, we neglect the formation of closed loops [1].

An inspection of the Taylor expansion of the partition function for the HT model shows

that starting at the dimer level (c2
1) there is already an over-counting of states:

qHT = c1

(
1 + 2 (s c1) + 5 (s c1)2 + · · ·

)
. (A.1)

The partition function shows two possible states, whereas it is clear that those states are

related by a rotation around the symmetry axis of the first molecule (see fig. A.1), and

should only be counted once in the partition function. While the partition function qHT

over-counts the number of clusters (fig 9A), the recursion formula does correctly count the

number of states branching off the arms of the base molecule. This is because the presence

of the starting molecule breaks the rotational symmetry (fig 9B).
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A

B

Figure A.1: (A) The partition function in the main text gives two possible structures for

dimers, but those are related to each other by a rotation around a symmetry axis. (B) The

same degenerate dimers, considered as part of a trimer, give two different trimer structures.

This idea will exploited to count the total number of states.

The first attempt is to assume that, neglecting the monomer term, it would be enough

to divide by two in order to get rid of the spurious rotation states (Eq. 2.9). Unfortunately

this approach does not solve the over-counting problem. A closer look reveals that some

states are not repeated twice in the partition function. Those states arise when considering

structures with the same number of antibodies in each arm (Fig. A.2 shows an example with

N = 5). Fig. A.2A shows two structures that are related by a rotation around the symmetry

axis, and this cluster is counted twice in the partition function. On the other hand figure

A.2B shows a structure that is only counted once.
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Figure A.2: (A) Structure with same amount of mAbs in each arm is counted twice in the

partition function, since a rotation around the symmetry axis is also included in the sum.

(B) A a structure with rotational symmetry.

The states that are single counted in the partition function are those that already posses

rotational symmetry. Therefore it is possible to compute the partition function by artificially

adding these symmetric states once more to the sum and then dividing qHT by two in order

to get the partition function corrected for symmetry over-counting.

q̃HT =
qHT + qsym

2
(A.2)

where the correction factor is given by

qsym = c1 + c1

∞∑

i=1

1

(i− 1)!

di−1q

dci−1
1

∣∣∣∣
c1=0

(sc1)2i (A.3)

To derive this expression we note that each term in the uncorrected partition function qHT

can be used to generate a symmetric structure. This is done by taking each structure of size

i, duplicating it, and add each copy to the heads of a base molecule to generate a structure

of size 2i+ 1. The statistical weight of these clusters is c1(sc1)2i times the degeneracy factor

given by Eq. 2.14. This product is summed over cluster sizes to give Eq. A.3. By Taylor
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expanding this expression we can see the number of rotationally symmetric clusters

qsym = c1 + 1 s2c3
1 + 2 s4c5

1 + 5 s6c7
1 + 14 s8c9

1 + · · · . (A.4)

The next step is to add Eq. A.3 to the partition function computed in the main text Eq.

2.8 and divide the resulting expression by two (neglecting the monomer state). The first few

terms of the corrected partition function for the HT model are given by

q̃HT = c1 + s c2
1 + 3s2 c3

1 + 7s3 c4
1 + 22s4 c5

1 + · · · . (A.5)

The clusters represented by these terms are shown in Fig. A.3.

c1 s c2
1

s2 c3
1 s3 c4

1

Figure A.3: sketches of allowed structures’ types in the HT model from monomer to trimers.

Now that we have the corrected for symmetry over-counting solution for the partition

function, we evaluate the quality of the approximate partition function derived from the

recursion relationships by comparing it to the corrected value. Given the fact most of the

physical quantities obtained in the text are functions of the number of monomers units in

the cluster, it is natural to take 〈n〉 as the quantity to compare to.
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Figure A.4: Comparison of the average cluster sizes for approximate and corrected solution

for different binding energies: 1 − 9 kBT as a function of concentration. As the interaction

energy gets stronger the difference is more noticeable, but even for the largest case it is around

20%.

Figure A.4 shows the comparison between the average size obtained with the approxima-

tion in the main text (〈n〉approx) and the one corrected for rotational symmetry (〈n〉corrected),

for different values of the binding energy εHT, where s = c−1eεHT/kBT . It can be seen that

the main text 〈n〉 gives a good approximation to the expected values. For stronger binding

energies the deviation is close to 20% for high concentrations.
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