
Relation between Zitterbewegung and the charge conductivity, Berry curvature, and the Chern
number of multiband systems

József Cserti1 and Gyula Dávid2

1Department of Physics of Complex Systems, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
2Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary

�Received 2 September 2010; revised manuscript received 23 October 2010; published 10 November 2010�

We show that the charge conductivity for impurity-free multiband electronic systems can be expressed in
terms of the nondiagonal elements of the Zitterbewegung amplitudes while the Berry curvature and the Chern
number is related only to the diagonal elements. Thus, the phenomenon of the Zitterbewegung can no longer
be viewed just as an interesting consequence of quantum physics but it has also an experimental relevance.
Moreover, through several examples we demonstrate how efficient our approach is in the analytical calculation
of the charge conductivity.
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Introduction. The Zitterbewegung predicted originally by
Schrödinger for Dirac electron is a “trembling” or in other
words a rapid oscillatory motion of the center of the free
wave packet for relativistic electron.1 Most recently, Schli-
emann et al.2 predicted the Zitterbewegung in spintronic sys-
tems, where the experimental observation of the effect is
more realistic due to the much smaller frequency of the os-
cillatory motion. Thus, the Zitterbewegung can, in principle,
be observed not only in the relativistic regime but for spin-
tronic systems2 and graphene3 as well. This seminal paper
has initiated many other works with an aim to demonstrate
the appearance of the Zitterbewegung not only for Dirac
electrons but for quasiparticles in condensed-matter physics
�see references in our recent work on the general theory of
Zitterbewegung,4 where alternative expressions for the
Zitterbewegung amplitudes and explicit forms of the position
operator for several systems are presented�.

In connection with graphene Katsnelson has already
pointed out that the Zitterbewegung resulting in an oscillat-
ing term in the current operator is responsible for the non-
trivial behavior of the conductivity at zero temperature and
zero chemical potential.5 In this Rapid Communication we
show generally that the charge conductivity for a impurity-
free multiband system is related to Zitterbewegung. Such a
relation is expected since in the Kubo formula for the charge
conductivity one needs to calculate the velocity operator in
Heisenberg picture which includes an oscillatory term due to
the Zitterbewegung in the case of multiband systems. More-
over, we clarify the relationship between Zitterbewegung and
the Hall conductivity of insulators with noninteracting Bloch
electrons.6,7

To show the subtle relation between the Zitterbewegung
and the charge conductivity we start with a multiband system
described by the most general matrix Hamiltonian in a Bloch
wave-function basis: Hab�k�, where a ,b=1,2 , . . . ,N are the
band indices �here N is the number of bands of the system�.
Here each matrix element Hab�k� is a differentiable function
of the wave number k corresponding to the Bloch states. In
Ref. 4 we calculated the time dependence of the position
operator x�t�=ei/�Htx�0�e−i/�Ht of the quasiparticle by decom-
posing the Hamiltonian into a sum of projection operators:
H=�aEa�k�Qa�k�, where Ea�k� are the distinct eigenvalues

of the Hamiltonian at a given wave number k, and Qa�k� are
projection operators �N�N matrix operator� satisfying the
usual relations: QaQb=�abQa and �aQa= IN, where IN is the
N�N unit matrix. Note that a=1,2 , . . . ,s, where s�N �for
degenerate case s�N�. We found that the time dependence
of the position operator x�t� in Heisenberg picture becomes

x�t� = x�0� + Wt + �
a,b

Zab�ei�abt − 1� , �1a�

W =
1

�
�

a

�Ea�k�
�k

Qa, Zab = iQa
�Qb

�k
, �1b�

and �ab=
Ea−Eb

� . Here W is the drift velocity and Zab are the
Zitterbewegung amplitudes. This is a general result for the
phenomenon of the Zitterbewegung �a simple derivation of
the above result and explicit examples are presented in our
recent work4�. In what follows, these Zitterbewegung ampli-
tudes Zab will play a crucial role in the charge conductivity
and the Chern number.

Using the Kubo formula we show that the frequency-
dependent charge conductivity �often called optical conduc-
tivity� of a multiband system can be expressed in terms of
the Zitterbewegung amplitudes Zab

�ij��� = −
e2

�2

1

�
lim
�→0

Im��ij��� + i��� , �2a�

�ij�i	m� = −
1

V
�
k

�
a,b

a�b

Kab�i	m��Ea − Eb�2Tr�Zi
abZj

ab†
� ,

�2b�

Kab�i	m� =
nF�Ea − 
� − nF�Eb − 
�

i	m + Ea − Eb
. �2c�

Here the Zitterbewegung amplitudes Zi
ab �i denotes the com-

ponents x ,y ,z� are given by Eq. �1b�, 	m=2�m /� �m is an
integer, �=1 / �kBT�� are the bosonic Matsubara’s frequen-
cies, nF�E�=1 / �e�E+1� is the usual Fermi distribution, 
 is
the Fermi energy, Im� · � is the imaginary part of the argu-
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ment, † stands for the conjugate transpose, and finally V is
the volume of the sample. The trace is taken over the band
indices. Note that Kab�z�=Kba�−z� and Kaa�z�=0 for z�0.
Equation �2� is one of our central results in this Rapid Com-
munication. Here we omit the calculation of the Drude peak,
and focus on the interband contribution. One can see clearly
from Eq. �2� that the Zitterbewegung amplitudes describing
the interband interference manifest in the interband contribu-
tion of the charge conductivity. The Zitterbewegung ampli-
tudes are indeed probed every time when one measures the
conductivity of a scattering-free multiband system.

Derivation of Eq. (2). First consider the response function
for operators A and B given by7–10

�̃AB�i	m� = −
1

V
�

0

�

	T̂A��B�0�
ei	md

=
1

V�
�
k,n

Tr�AG�k,i�n + i	m�BG�k,i�n�� , �3�

where G�k ,z�= �z+
−H�−1 is the one-particle Green’s func-

tion, T̂ is the time-ordering operator, and �n= �2n+1�� /�
are the fermionic Matsubara’s frequencies �n is an integer�.
Using the projector decomposition of the Hamiltonian
H=�aEaQa the Green’s function takes the following form:
G�k ,z�=�a

Qa

z+
−Ea�k� . Then substituting this Green’s function
into Eq. �3� one can find

�̃AB�i	m� =
1

V
�
k

�
a,b

Kba�i	m�Tr�AQaBQb� , �4a�

Kab�i	m� =
1

�
�

n

1

i�n + i	m + 
 − Eb

1

i�n + 
 − Ea

=
nF�Ea − 
� − nF�Eb − 
�

i	m + Ea − Eb
, �4b�

where in the last step of the calculation of the function
Kab�i	m� we have used the usual summation technics over
the Matsubara’s frequencies.8

Now using Eq. �4� the current-current correlation function
with current operator J= �H

�k �in units of e /�, which is taken
into account in the expression of the conductivity� reads

�ij�i	m� � �̃JiJj
�i	m� =

1

V
�
k

�
a,b

Kba Tr� �H

�ki
Qa

�H

�kj
Qb .

�5�

Applying the well-known relations Qa
�H
�k Qb=�ab

�Ea

�k Qa+ �Eb

−Ea�Qa
�Qb

�k and QaQb=�abQa, and the fact that Kaa�z�=0 for
z�0, it is easy to obtain the current-current response func-
tion �ij given by Eq. �2b�. Finally, the conductivity in

Eq. �2a� can be calculated by analytic continuation i	m
→��+ i�, where � is a positive infinitesimal.

Berry curvature and the first Chern number. Now, we
show that the first Chern number characterizing the Hall con-
ductivity of insulators with noninteracting Bloch electrons6,7

can also be expressed in terms of the Zitterbewegung ampli-
tudes in Eq. �1b�.

From Eqs. �2a� and �5� we find that the intrinsic Hall
conductivity �here we focus on two-dimensional systems� for
�→0 �dc conductivity, for j� l� is

� jl�� = 0� =
e2

h

1

A�
k

�
a

na� jl
�a��k� , �6a�

� jl
�a��k� = 2�i�

b�a

Tr� �H

�kj
Qa

�H

�kl
Qb − c.c.

�Ea − Eb�2 �6b�

=− 2�i Tr�Qa� �Qa

�kj
,
�Qa

�kl
� , �6c�

where na=nF�Ea�k�−
�, � jl
�a��k� is the Berry curvature �Eq.

�6b� can be casted to that derived by Thouless et al. in Ref.
11�, A is the area of the sample and c.c. and �· , ·� stand for the
complex conjugation and the commutator, respectively. To
get Eq. �6c� we used again Qa

�H
�k Qb=�ab

�Ea

�k Qa+ �Eb

−Ea�Qa
�Qb

�k and Qa+�b�aQb= IN. Now replacing Qa by Qa
=Qa

2 in Eq. �6c� we obtain a very simple expression for the
Berry curvature � jl

�a� in terms of the Zitterbewegung ampli-
tudes

� jl
�a��k� = 2�i Tr��Zj

aa,Zl
aa†�� . �7�

It is interesting to note that in contrast to the Zitterbewegung,
where only the nondiagonal elements Zab�a�b� appear in
Eq. �1b�, in the Hall effect only the diagonal ones Zaa play
the role. However, in the charge conductivity for finite fre-
quencies given by Eq. �2� the nondiagonal elements Zab are
present.

The Hall conductivity for band insulator in which the
Fermi energy 
 is located inside the energy gap between
conduction and valence subbands and at zero temperature
reads as �H= e2

h C1, where C1=1 / �2A��k�Ea�
� jl� jl
�a��k� is

the first Chern number �here � jl is the fully antisymmetric
tensor and the summation is assumed on indices j and l� and
it can also be expressed with the Zitterbewegung amplitudes
as

C1 = −
1

2�i
� d2k �

a

Ea�


� jl Tr�Zj
aaZl

aa†� . �8�

Note that for the first Chern number one can obtained the
same result starting from Eq. �3� given by Avron et al. in
Ref. 12.

Important mathematical theorem. Now, we recall a less
known mathematical theorem which enables us to calculate
the projector operators Qa= �a
	a� without calculating the
eigenvectors �a
 of the Hamiltonian H. Let H be an N�N
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Hermitian matrix with s�N distinct eigenvalues, Ea , . . . ,Es.
Then the matrix H can be decomposed in terms of projector
matrices as H=�aEaQa, where the projector matrix Qa for
a=1, . . . ,s �in the mathematical literature called Frobenius
covariant13� is given by

Qa = �
b=1

b�a

s
1

Ea − Eb
�H − EbIN� . �9�

The proof of this theorem is based on the Cayley-Hamilton
theorem.13,14

Applications. In the following we show a few examples
how the phenomenon of the Zitterbewegung is related to the
charge conductivity or the Chern number for specific multi-
band systems.

�i� Consider the most general noninteracting two-band
model7,9 with Hamiltonian

H = ��k�I2 + h�k�� , �10�

where I2 is the two by two unit matrix in spin or pseudospin
space, and the system is characterized by the one-particle
energy dispersion ��k� and an effective magnetic field h de-
pending on the wave number k while �= ��x ,�y ,�z� is a
vector formed from the Pauli matrices. The two eigenvalues
are E��k�=��k��h, where h=�h2, and the two correspond-

ing projectors obtained from Eq. �9� are Q�= 1
2 �I2� ĥ��,

where ĥ=h /h is a unit vector. The conductivity for impurity-
free samples can be obtained from Eq. �2� and after a little
algebra the response function becomes

�ij�i	m� = −
2

V
�
k

n+ − n−

�i	m�2 − �2h�2h2 � �	m����

� ĥ�

�ki

� ĥ�

�kj
ĥ�

+ 2h
� ĥ�

�ki

� ĥ�

�kj
 , �11�

where n�=nF�E�−
� and we sum on any repeated index.
For two-dimensional samples this result agrees with that ob-
tained by Bernevig.9

�ii� For a two-band model with Hamiltonian �10� using
Eq. �8� we easily find the first Chern number: C1=

− 1
4��d2k ĥ · � �ĥ

�kx
�

�ĥ
�ky

�, which is a well-known result.6,7

�iii� We now consider the Luttinger-type systems6,15 for
which the Hamiltonian is given by

H =
�2

2m
���1 +

5

2
�2k2 − 2�2�kS�2� , �12�

where k= �kx ,ky ,kz� is the wave number and S= �Sx ,Sy ,Sz�
represents the spin operator with spin 3/2 while �1,2 and m
are parameters of the model. The Hamiltonian can be ex-
pressed in terms of the projection operators Q+ and Q− as6

H = E−�k�Q−�k� + E+�k�Q+�k� , �13a�

Q+�k� =
9

8
I4 −

1

2k2 �kS�2, �13b�

Q−�k� = I4 − Q+�k� , �13c�

where I4 is the 4�4 unit matrix, and the double degenerate
eigenvalues are E��k�=

�1�2�2

2m ��k�2 corresponding to the
light-hole �+� and the heavy-hole �−� bands. The projection
operators Q� can be obtained from Eq. �9�. In earlier calcu-
lations of the response function �ij the SO�5� Clifford alge-
bra has been invoked.6,9 In our approach the response func-
tion can be obtained without using the Clifford algebra.
Indeed, it is easy to calculate the current-current response
function using Eqs. �1b� and �2b� or Eq. �5�, and the com-
mutation relations �Sj ,Sk�= i� jkl�Sl for the spin operator S.
The Zitterbewegung amplitudes have already been calculated
in Ref. 4. After some algebra we have

�ij�i	m� =
24�6�2

3

m3�2��3� d3k
�n+ − n−��k2�ij − kikj�

�2�2�2k2

m
2

− �i	m�2

, �14�

where i , j=x ,y ,z and we used �k→V� d3k
�2��3 . The integration

over the polar angles of k can be done analytically and at
zero temperature we have the same result as that, e.g., in Ref.
9.

�iv� Consider the spin-orbit interaction in two-
dimensional electron gas in a fully symmetric quantum well
investigated recently by Bernardes et al.16 The Hamiltonian
of this system is given by

H =�
�2k2

2m
+ �e − i�k− 0 0

i�k+
�2k2

2m
+ �o 0 0

0 0
�2k2

2m
+ �o − i�k−

0 0 i�k+
�2k2

2m
+ �e

� ,

�15�

where k�=kx� iky while �e,o, �, and m are parameters of the
model. The two double degenerate eigenvalues are E�

=�k� fk, where �k=�2k2 / �2m�+�+, fk=��−
2 +k2�2, ��

= ��e��o� /2. Again one can show that H=E+Q++E−Q−,
where the two projection operators obtained from Eq. �9� are

Q� =
1

2fk�
hk

� �i�k− 0 0

�i�k+ hk
� 0 0

0 0 hk
� �i�k−

0 0 �i�k+ hk
�
� �16�

and hk
�= ��−+ fk. To calculate the current-current response

function we again use Eqs. �1b� and �2�. After some algebra
we have
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�ij�i	m� = 2�2� d2k

�2��2

�n+ − n−��fk
2�ij − kikj�

2�

fk� fk
2 − � i	m

2
2� , �17�

where i , j=x ,y. Performing the integration over the polar
angle of k one can see that �ij�i	m� is a diagonal matrix. To
our best knowledge this result is distinct in the literature. The
charge conductivity can be obtained from Eq. �2a� and it will
be published elsewhere.

�v� For single-layer graphene the most general Hamil-
tonian in tight-binding approximation can be given by a 2
�2 matrix in which the diagonal elements HAA and HBB
include second, fourth, etc., neighbor hopping terms while
the off-diagonal elements HAB and HBA contain the first,
third, etc., hopping terms.17 Thus, the Hamiltonian can be
mapped to Eq. �10�. Note that the same is true even for a
strained graphene. The response function can be obtained
from Eq. �11�. In particular, taking into account only first-
nearest neighbors, we have HAA=HBB=�0 and HAB=HBA

�

= f�k�, where f�k�=�0�1+e−ika1 +e−ika2�, and �0 and �0 are
parameters of the model, and a1 and a2 are the unit vectors of
the unit cell in the honeycomb lattice.18 The two eigenvalues

of the Hamiltonian are E�=�0� �f�k�� and ĥ= �Re�f�k�� ,
−Im�f�k�� ,0� / �f�k��. Using Eq. �11� the current-current re-
sponse function is

�ij�i	m� = −
1

A
�
k

n+ − n−

�f�k��2 − � i	m

2
2Fij�k� , �18a�

Fij�k� =

Im� f�
� f

�ki
�Im� f�

� f

�kj
�

�f�k��
, �18b�

where the summation in k is over the entire Brillouin zone of
the honeycomb lattice, A is the area of the sample, Re� · � is

the real part of the argument, and � denotes the complex
conjugation. Note that Eq. �18� is valid not only in the usual
Dirac cone approximation. Our result agrees with that ob-
tained by Zhang et al.19 and by Yuan et al.20 However, ac-
cording to our numerical calculations it slightly differs from
that obtained by Stauber et al.21 for the high-frequency re-
gion.

�vi� Finally, we give at least one example in which the
projector decomposition of the Hamiltonian involves not
only two projector operators �as in the previous cases� but
four projector operators. Such a system is, e.g., the bilayer
graphene.22,23 Our general framework presented in this work
for calculating the charge conductivity can also be applied to
bilayer graphene. The Zitterbewegung amplitudes have al-
ready been given in Ref. 4 for bilayer graphene excluding
trigonal warping. Using this result we obtained the same ana-
lytical expression for the frequency-dependent optical con-
ductivity as that by Nicol and Carbotte in Ref. 24 using the
spectral-function representation of the Green’s function. We
would like to stress that our approach for calculating the
optical conductivity is a convenient and very efficient
method even for more complex systems. The study of
strained bilayer graphene with/without trigonal warping is in
progress.

Conclusions. In this Rapid Communication we derived an
explicit expression for the charge conductivity, the Berry cur-
vature, and the Chern number in terms of the Zitterbewegung
amplitudes. Our results show that the Zitterbewegung is not
just an interesting phenomenon in quantum physics but it is
closely related to measurable effect.
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