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Plastic strain is a mixture of avalanches and quasireversible deformations: Study of various sizes
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The size dependence of plastic flow is studied by discrete dislocation dynamical simulations of systems with
various amounts of interacting dislocations while the stress is slowly increased. The regions between avalanches
in the individual stress curves as functions of the plastic strain were found to be nearly linear and reversible
where the plastic deformation obeys an effective equation of motion with a nearly linear force. For small
plastic deformation, the mean values of the stress-strain curves obey a power law over two decades. Here and
for somewhat larger plastic deformations, the mean stress-strain curves converge for larger sizes, while their
variances shrink, both indicating the existence of a thermodynamical limit. The converging averages decrease
with increasing size, in accordance with size effects from experiments. For large plastic deformations, where
steady flow sets in, the thermodynamical limit was not realized in this model system.
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I. INTRODUCTION AND OVERVIEW

Recent experiments reveal that the stress-strain curve of
micrometer-scale specimens contains random steps, where
the plateaus mark sudden strain bursts caused by dislocation
avalanches [1–6]. The corresponding microscopic mechanism
is as follows: as the stress increases, dislocations bow out from
their equilibrium positions. At a sufficiently high local stress,
a dislocation escapes (unpins) and quickly travels through
the crystal and produces plastic strain. This event leads to
the redistribution of internal stresses and may activate further
dislocations. The strain burst is this resulting collective motion
and it lasts until all participating dislocations settle in a new
equilibrium position. This mechanism is best observable in
the stress-strain response of micrometer-scale samples [7].
According to acoustic emission measurements, however, the
plastic deformation of macroscopic specimens is also accumu-
lated in numerous such local events [1,8]. Since as the system
size increases the plastic strain increment corresponding to
a local event tends to zero [4,6,9], the stress-strain curve
of macroscopic bodies is continuous without exhibiting any
apparent random steps.
Most of the plastic strain, therefore, is accumulated during

strain bursts, but not all of it. As mentioned above, dislocations
bow up already before unpinning, so some plasticity occurs
in the ramp up regime (that is, between strain bursts), too.
This process is reversible: if the applied stress was reduced,
dislocations would move back to their original positions,
and the corresponding plastic strain would disappear. From
a macroscopic viewpoint, this effect cannot be distinguished
from elasticity, and it manifests in the apparent change in
the elastic constants, like Young’s modulus. This phenomenon
was first identified by Lawson [10] for polycrystalline copper
in 1941, with an explanation later proposed by Eshelby [11].
The numerous investigations that followed on a wide range of
metals lead to the conclusion that during deformation Young’s
modulus drops around 10% at a strain of ε ≈ 10% and then
slowly increases [12,13]. Similar behavior is observed for the
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shear modulus with a maximum drop of ≈15%. This was
explained as follows: after the heat treatment, most of the
dislocations are pinned, so the bow out phenomenon is weak.
During stage I of deformation, a large number of moving
dislocations are generatedwith long unpinned segments, so the
amount of “elastic plasticity” increases and the elastic moduli
drop. In stage II and later, cross-slip introduces new pinning
points, leading to smaller amount of bow-out, and increasing
moduli. The phenomenon that dislocation motion occurs
below the flow stress was observed recently by Ispánovity
et al. [14,15] in terms of micropillar compression experiments
and discrete dislocation dynamics (DDD) simulations both in
2D and 3D.
Asmentioned above, the stress-stain curve changes dramat-

ically with system size: random steps appear for specimens
in the mircometer range and below. In addition, size effects
are observable already for larger samples: in most cases,
the smaller sample requires higher stresses to get the same
deformation [2,16]. The effect is traditionally modeled by
phenomenological “nonlocal continuum” theories in which
an appropriate gradient term is added to the stress-strain
relation [17,18], or by continuum theories of dislocations
[19–25]. It is obvious, however, since a continuum theory
is an average and deterministic description, it is unable to
account for the random steps on the stress-strain curves. To
study the random character of plastic response, therefore,
numerous large scale DDD [26–29] simulations were also
employed, many focusing on the statistics of avalanches and
its dependence on the sample size [6,30–32].
In this paper, we concentrate on the “elastic plastic”

behavior described above in terms of DDD simulations in
2D and 3D. To this end, we perform quasistatic stress
loading of dislocation ensembles andmeasure the accumulated
deformation. Note that elastic deformations are not considered
in this model, so strain and deformation are understood as
purely plastic. Our main observations in this work are as
follows. Between avalanches the deformation grows almost
linearly with the stress. Tests of load cycles show that here
the deformation is approximately reversible, so plasticity
appears as a randomly alternating sequence of quasireversible
deformations and avalanches. The slope of the linear regimes
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λ varies randomly for different realizations of systems of
the same size. The system size dependence of our results is
demonstrated in 2D simulations with different total number of
dislocations N . We find a sharpening distribution for λ with
increasing N . The full individual staircaselike stress-strain
curves of the sameN also have amean that is a smooth function
but it also depends onN’. Up to a certain threshold deformation
γth, the mean stress-strain curve seems to converge for largeN ,
with variance going to zero with increasingN . So, for largeN ,
essentially the same continuous stress-strain curve emerges for
each realization, indicating the existence of a thermodynamic
limit. This refines the finding of Tsekenis et al. [31], where the
natural scaling by

√
N lets curves collapse even for smaller

N . Within the region of thermodynamical limit γ < γth, for
two decades in the strain, the mean stress-strain curve is a
power law, with an exponent decreasing from 1 for small N
to about 0.8 for large N . This is caused by the alternation
of linear, quasireversible segments and plateaus of avalanches
with random lengths in the stress-strain response function.
Furthermore, for the 2D model under study, there seems to be
no thermodynamical limit for large deformations.

II. SIMULATION METHOD

Plastic deformation is mainly due to the motion of dislo-
cations [33], interacting via a long-range stress field. Here,
we first apply one of the simplest 2D models of dislocation
systems that has been used extensively in the literature
[1,34–37]. In spite of its simplicity, the model described below
contains the following fundamental properties of dislocations:
(i) they interact via anisotropic long-range (1/r) stress fields,
(ii) their motion is dissipative due to phonon drag, and
(iii) they can only move in certain directions determined by
the crystallographic slip systems. An additional advantage of
the model lies in the fact that there are no fitting parameters
present in it. Since several dislocation mechanisms, like
interaction with forest dislocations, cross-slip, or dislocation
creation are neglected, the direct applicability of the model
should be constrained to study stage I deformation at low
temperatures. To date, however, the model has contributed to
the understanding and description of quite a few dislocation-
based phenomena, e.g., the shape of x-ray line profiles [38–40],
strain burst size distributions [1,6], Andrade creep [41–43],
and spatial dislocation correlations [44]. It also serves as
a basis for developing continuum theories of dislocation
dynamics [19,45].
In the model, straight and parallel edge dislocations with

parallel slip axes are considered, essentially a 2D cross section
of a 3D system. Periodic boundary conditions are used on a
square of side L, the slip axes are parallel to one edge of
the square (the x axis), and for each realization, dislocations
are initially randomly placed with a uniform distribution. In
the beginning, each realization contains a fixed number N

of dislocations, with equal number of positive and negative
Burgers vectors s(b,0), where b is the lattice constant and
s = ±1. Only dislocation glide along the x axis is taken
into account so the dislocations’ vertical (y) coordinates are
constant.

FIG. 1. (Color online) Typical configuration at (a) relaxed state
without external stress (γ = 0), (b) relaxed in the presence ofmedium
external stress (γ ≈ 1), and (c) with external stress just below the
steady flow (γ ≈ 1000). The ⊥ (red) and the � (blue) denote the
s = +/− signs, respectively.

One positive dislocation induces the shear stress field

τind(�r) = bDx(x2 − y2)/r4, (1)

where �r = (x,y) is the radius vector from that dislocation,
r = |�r|,D = μ/[2π (1− ν)], with μ being the shear modulus
and ν the Poisson number. The ith dislocation is exposed to the
shear stress field of all the others j �= i and to the external field,
taken to be the uniform τext, wherein it performs overdamped
motion with drag coefficient B. Thus the equation of motion
of the ith dislocation is [14,43]

ẋi = B−1bsi

⎡
⎢⎢⎢⎣

N∑
j = 1
j �= i

sj τind(�ri − �rj )+ τext

⎤
⎥⎥⎥⎦ , (2)

where the sk is the sign of the kth dislocation and �rk =
(xk,yk) its position. The plastic strain is calculated by γ =
b/L2

∑
i si�xi , where �x is the change in the x coordinate

relative to the initial value. This equation is rendered periodic
numerically by including sufficiently many mirror images
of the j th dislocation. The resulting equation of motion is
solved with the 4.5th-order Runge-Kutta method. Adaptive
step size is used to better treat narrow dipoles. Since
very narrow dipoles would demand excessive computation
time, we annihilate (different sign) or merge (same sign)
dislocations if they are closer than 0.05L/

√
N . Whereas

annihilation decreases the dislocation number, in order to avoid
ambiguity, in the conversion formulas we use the original
dislocation number N .1 Note that dislocations are not created
in our model, corresponding to non-source-controlled plastic
deformations. Throughout the paper, simulations with N =
32,64,128,256,512,1024,2048 were considered with ensem-
bles numbering 104,3000,2000,800,300,100,80, respectively,
and for the largest sizes our computational power allowed the
scanning only of restricted regions of simulated strain. Typical
dislocation configurations are seen in Fig. 1.
Equation (2) is represented in the computer by Bcp =

Dcp = bcp = Lcp = 1, yielding the density ρcp = N/L2cp =
N . The mapping to different sample sizes, while the physical

1It was checked that decreasing the annihilation distance does
decrease the amount of annihilation events, but does not change the
results presented in this paper.
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dislocation density is kept constant, occurs by our introduced
natural quantities γ = γcp/

√
N , τ = τcp/

√
N , x = xcp

√
N ,

t = tcpN , used throughout this paper [35]. Then physical
quantities are obtained from the physical density ρph as
Lph = √

N/ρph, γph = γ bph
√

ρph, τph = τbphDph
√

ρph, tph =
tBph/(b2phDphρph). To give an example, if on the natural
scale γ = 0.35 then for the generic physical variables ρph =
2× 1014 m−2 and bph = 2 Å, we would obtain the physical
deformation γph = 0.1%.
In the scenario presented here (identical to that of

Refs. [30,31,46]), firstly, we let the system relax without
external stress to form the initial state with γ = 0. Then we
apply quasistatic stress loading, i.e., we increase the external
stress by a small rate. The stress rate was chosen as low as
possible yet computationally still affordable, τ̇ext = 5× 10−5.
The stress is increased so long as the mean absolute velocity
of the dislocations remains under the threshold 5× 10−4 (for a
detailed discussion on the stress rate and the velocity threshold
see Ref. [15]). If that threshold is surpassed (this is our
definition of an avalanche) then the external stress is kept
constant until the mean absolute velocity drops again below
the threshold. The end state is a steady flow, that is, an infinite
avalanche, because in the absence of dislocation creation no
work hardening takes place for large deformations.
To generalize our findings, we also employ 3D DDD

[47–51] to study the “elastic plastic” behavior caused by
dislocation bow out. The simulations are identical to that
of Ref. [15], so we summarize only some important details
hereafter. Tensile loading of a cuboid-shaped Cu single
crystal (micropillars) oriented for multiple slip (with [100]
orientation) is carried out. The pillars exhibit a 3:1:1 aspect
ratio and the loading direction is parallel to the longer edges
(see Fig. 2). The length of the basal edges is 0.36 μm.
The dislocation structure initially consists of Frank-Read

FIG. 2. (Color online) Typical configuration of 3D DDD simula-
tions at (a) zero applied stress (and, thus, strain) and (b) just before
the first avalanche sets on, where many dislocations are bowed out.
Dislocation colors denote different glide planes of the fcc crystal
structure.

sources of uniform length (0.2 μm) equally distributed among
the possible slip systems. Since cross-slip is allowed, this
configuration leads to a similar plastic response to those with
more realistic arrangements [49]. The dislocation density was
originally ρ ≈ 6× 1013 m−2, which slightly increased during
the tensile deformation. Quasistatic loading similar to the 2D
case described above was implemented [15]. Further details
on the algorithm can be found elsewhere [52]. Conducting
simulations in 3D demands much higher computational time
than in 2D, which even increases very sharply for larger
specimen sizes. The study presented in this paper requires
large ensembles of simulations with the same parameters,
consequently, 3D simulations had to be limited to only one
system size. It is noted that the results obtained by 3D DDD
will be presented using physical units for stress and strain.

III. INDIVIDUAL STRESS-STRAIN CURVES AND
EFFECTIVE MOTION BETWEEN AVALANCHES

We first show typical dislocation configurations for various
plastic deformations γ along our scenario in Fig. 1. Firstly,
dislocations relax in the absence of external stress, forming a
random-looking configuration of numerous smaller clusters,
see Fig. 1(a). Due to the increasing external stress, the
deformation γ generically increases, while clusters grow
mainly in the y direction [Fig. 1(b)]. Beyond some threshold
steady flow emerges, marked usually by a single dipolar wall,
spanning across the whole simulation area [Fig. 1(c)], while
one or two dislocations are circling quickly along their slip
axes, in conformance to the periodic boundary conditions.
Hence we must conclude that in the steady flow boundary
effects are important, thus our model may not be realistic
in this region, and so we concentrate our study to smaller
deformations.
The plastic stress-strain curves τext(γ ) of individual real-

izations are like staircases, they exhibit a sequence of plateaus
of constant stress corresponding to avalanches, in accordance
with earlier results [1–4,15,30], see Fig. 3. A novel observation
here, to our knowledge not noted earlier, is that between
plateaus, where the stress increases, the τext(γ ) functions are

 0
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FIG. 3. (Color online) Stress-strain curves τext(γ ) of two realiza-
tions obtained by 2DDDDwithN = 512. Segments between plateaus
are found to be nearly linear, dashed lines are guide to the eye. Inset:
averages of increasing segments normalized as in Eq. (3) for fixed
N ’s all fall on the same curve, close to a linear function. The lower
arc is the standard deviation, again nearly independent on N .

054106-3
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FIG. 4. (Color online) Cumulative probability distribution func-
tion M(λ,N ) of the steepness λ of the quasilinear segments for the
2D DDD simulations with system sizes N = 32,64, . . . ,2048 for
γ � 0.2. The arrow points towards increasing N (colors distinguish
sizes). Inset: the mean 〈λ〉 as functions of the system size N .

nearly linear. For the sake of comparison we normalized each
increasing segment to a function g(x) starting and ending at
the opposite corners of the unit square as

g(x) = τext (x(γ1 − γ0)+ γ0)− τ0

τ1 − τ0
, x ∈ [0,1], (3)

where γ0, γ1 and τ0, τ1 mark the borders of the chosen segment.
Such normalized segments of individual runs with γ < 0.2
were separately averaged for fixed sizes N , and the resulting
curves fall onto each other and form 〈g(x)〉 in the inset of
Fig. 3. Here, also the standard deviation of the normalized
segments is plotted, which is again nearly the same for various
N ’s. So the segments between avalanches on the stress-strain
curves, normalized according to Eq. (3), follow on the average
a universal, nearly linear form, with a universal variance.
In order to test the properties of the close-to-linear seg-

ments, we ran a few loading cycles on individual realizations
with various stress rates. In most of the cases, apart from
a small, smooth, transient due to the finiteness of the stress
rate, and from tiny avalanches, reversibility was found.
Motivated by this “quasireversible” response, we surmise that
deformations obey an effective equation of motion:

γ̇ (t) ≈ −F (γ (t)− γ0)+ τext(t)− τ0, (4)

where (γ0,τ0) is the endpoint of the last avalanche, where
the system is assumed to be in equilibrium, and F is the
effective restoring force, depending only on the increment
γ − γ0. Similarly as Eq. (3) associates g(x) with the stress, we
normalize the forceF (γ − γ0) onto the unit square. Again, like

FIG. 5. (Color online) A dislocation dipole stretches when ex-
periencing an applied shear stress (smaller than its yield stress),
and meanwhile generates plastic strain. If the stress is released, the
dislocations move back to their original position and the plastic strain
disappears.

FIG. 6. (Color online) Equivalent to Fig. 3 for 3D DDD
simulations.

the external stress in the inset of Fig. 3, the mean normalized
force very weakly depends on N , and this universal function
is astonishingly close to g(x), which is the consequence of the
low stress rate resulting γ̇ (γ ) � τext(γ ). Thus even the force is
very close to linear. We emphasize that near the equilibrium of
a dislocation configuration, for small displacements, the elastic
energy of course grows quadratically, so there the response
should be linear. The remarkable feature in our case is that
linearity holds way up to near the onset of the next avalanche.
This instability is indeed marked by the slight curving of the
universal function close to one in Fig. 3. Note that its slope
there is not zero, whereas it would be zero in the case of a
force-activated escape from a 1D potential, because of rare
negative avalanches with γ̇ < 0.
To visualize the statistical nature of the quasireversible

regions, in Fig. 4 we plot the cumulative probability distribu-
tion function M(λ) of the steepness λ = (τ1 − τ0)/(γ1 − γ0)
for γ � 0.2 (chosen as a practical value). The curves visibly
contract with increasing N , showing convergence to a finite
mean. A nearly linear response here means that due to the
interaction of dislocations, an effective shear modulus arises.
The latter can be interpreted as the plastic component of the
total empirical shear modulus in real crystals. Note that in the
present model elastic deformations are not included.
The basic mechanism responsible for the plastic shear

modulus λ is visualized in Fig. 5. A small enough applied
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 0  3000  6000
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FIG. 7. (Color online) Equivalent to Fig. 4 for 3D DDD simula-
tions. The dashed line is a rescaled version of the M(λ) distribution
from Fig. 4 for N = 32.
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stress stretches the dipole and generates some plastic strain
proportional to the dipole distance. If the stress is removed,
dislocations move back to their original positions. The dislo-
cation structure of Fig. 1 is of course more complex, but under
stress it behaves in a similar manner. The emerging plastic
shear modulus is related to the local structure or correlations
of the dislocations (the smaller the average dipole distance is,
the larger the modulus becomes).
The same analysis was performed for the 3D DDD

simulations, too. Two typical stress-strain curves obtained
are shown in Fig. 6. They also consist of horizontal plateaus
corresponding to strain bursts, and interconnecting close to
linear segments. During these ramp-up regimes, dislocations
bow out as seen in Fig. 2(b). Averaging the g(x) function [see
Eq. (3)] leads to a linear function, slightly bending just before
the onset of the next avalanche. This means that the general
shape of the g(x) function is the same either if it is due to
dislocation bow out or the dipole-type mechanism of Fig. 5.
The cumulative distribution of the linearity coefficientsM(λ) is
plotted in Fig. 7, exhibiting a very similar shape to the 2D case.

IV. MEAN AND FLUCTUATION OF THE STRESS AS
FUNCTION OF THE STRAIN

So far, we concentrated on the quasireversible segments
between avalanches, now we turn to the global statistical
behavior of stress-strain curves. Firstly, we plot the average
〈τext〉(γ,N ) over ensembles with fixed N in Fig. 8. A main
feature is the power law behavior over decades up to a strain
approximately 0.05 and stress around 0.1 (see inset), with an
exponent close to 1 for small sizes and decreasing with size
to about 0.8. We can interpret this feature such that the nearly
linear segments of the stress-strain curves are interrupted by
the avalanche plateaus just in the way that an effective power
function with a smaller-than-one exponent emerges. That is,
avalanches soften the linearity of quasireversible segments and
give rise statistically to a power law.
On physical scales, taking a lattice constant b = 2 Å, a

dislocation density ρ = 2× 1014 m−2, γ = 0.05 corresponds
to γph ≈ 0.015%. It is important to note that this value is
much smaller than the γph = 0.2% threshold value customarily
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FIG. 8. (Color online) Mean stress 〈τext〉 as a function of strain,
for system sizes N = 32,64, . . . ,2048, for large N only smaller γ ’s
were considered. Inset: log-log plot demonstrates the power law for
5× 10−4 � γ � 0.05. The arrows point towards increasingN (colors
distinguish sizes). The two dashed lines are guide to the eye.

considered to be the yield strain in engineering practice. The
fact that the power law arises way below the empirical yield
value indicates the determining role of avalanches for much
lower plastic strains than expected earlier. On the other hand,
this is in a convincing agreement with fatigue experiments on
single crystals that showed irreversibility already below the
physical range of γph = 0.01% [53].
Another important property seen in Fig. 8 is that for γ � 1

the stress-strain curves seem to converge for largeN , a criterion
for the existence of a thermodynamical limit. On the other
hand, for large strains, the N → ∞ tendency is inconclusive
from our simulation, the stress values may even diverge. For
intermediate strains 1 � γ � 100, the convergent bundle of the
curves switches order for the sizes we considered. Note that for
fixed strains γ � 1 the stresses decrease withN . As discussed
earlier in connection with physical units, increasing N here
can mean increasing size with constant dislocation density.
Therefore larger stresses for smaller N ’s as in Fig. 8 can be
interpreted as a version of the property “smaller is harder.” We
emphasize, however, that our model has periodic boundary
conditions, thus pileups, commonly held responsible for this
phenomenon [54], cannot develop. This tendency reverses for
large strains, where the stress increases withN . In this region,
however, where the configuration resembling a single wall
forms, as seen in Fig. 1(c), we do not suggest that the model
bears general relevance to real materials.
Given the fact that the stress-strain response for macro-

scopic crystals with a fixed orientation is a well-defined, sharp
curve, it is expected that the variance vanishes with increasing
size. Accordingly, a decreasing variance was observed in
micropillar experiments byUchic et al. [2]. To study this effect,
we plotted in Fig. 9 the standard deviation �τext(γ,N ) of the
stress for ensembles with fixed N for different strains. In the
region γ � 1, where the mean stress converged with N (see
Fig. 8), the standard deviation decreases. We tested a power
law convergence by plotting �τext(γ,N )N0.4 in the inset of
Fig. 9, and indeed the collapse demonstrates that the deviation
vanishes like 1/N0.4. Thus, recalling that we found a sharp
limit for the average stress when γ � 1, we can conclude
that in this region there is a thermodynamical limit. On the

 0

 0.1
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FIG. 9. (Color online) Standard deviation �τext of the stress as
function of the strain γ , for system sizes N = 32,64, . . . ,2048,
for large N only smaller γ ’s were considered. The arrows point
towards increasing N (colors distinguish sizes). Inset: log-log plot of
�τext N

0.4 shows collapse, the dashed line with power unity is a guide
to the eye.
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FIG. 10. (Color online) Mean stress 〈σext〉 and standard deviation
of the stress �σext as a function of strain for 3D DDD simulations.

contrary, for large strains, Fig. 9 does not show convergence
of the standard deviation, like therewas no visible convergence
of the mean in Fig. 8 either, so here the thermodynamical limit
is absent. In the 3D DDD simulations, only one system size
was studied but the shape of the average stress-strain curve
and the stress fluctuations are very similar to the 2D case (see
Fig. 10) [15].

V. CONCLUSION AND OUTLOOK

In this paper, our aim was twofold. On the one hand, we
uncovered quasireversible behaviorwith nearly linear response
between avalanches in models of simulated dislocations. For
large sizes, the effective plastic modulus appears to converge
in average. In the following, the obtained values are compared
to the experimental observations. In case of shear modulus,
the total reversible strain is

γrev = γel + γpl,rev = μ−1τ + λ−1τ = (μ−1 + λ−1)τ, (5)

so the effective shear modulus isμeff = (μ−1 + λ−1)−1. In 2D,
the limiting value is 〈λ2D〉 ≈ 1 in the natural units introduced
previously. It follows that in physical units, the plastic shear
modulus is 〈λph〉 = Dph〈λ〉, that is, the resulting change in

the elastic constants is ∼50%. In 3D, the plastic Young
modulus is around 20 times higher than the elastic one, so
Eeff ≈ 0.95Eel. This result is in a remarkably good agreement
with the experimentally observed drop in the elastic constants
(see Introduction).
As to the full stress-strain curves, the quasireversible

segments conspire with the avalanche plateaus to yield on the
average a power response curve. The secondmain questionwas
about the thermodynamical limit in the 2D system, which is
achieved by both a convergent mean and a vanishing variance
of the stress for γ � 1. In this region, we observed also the
analog of the size-effect, as found in micropillars [2]. For the
largest strains, the thermodynamical limit is not reached and
we do not consider our simulations as conclusive there.
Our study opens a series of questions. The results on the

quasireversible behavior between avalanches call for more
detailed investigations. In particular, a study of the size effect
with 3D DDD simulations, although computationally highly
demanding, should be considered, because in that case not
only the dislocation configurations, but also the boundary
conditions are more realistic. Furthermore, the statistical
properties of the finite-size behavior are best characterized by
distribution functions, among which here we only described
that of the local effective plastic shear modulus, characterizing
quasireversible regions. The distribution of the stresses is of
obvious interest, and at avalanches are expected to be related
to extreme statistics. A longstanding problem in this area
is the transition to steady flow, wherein the absence of a
single critical point, rather critical behavior for all strains, has
been shown before [43], but a detailed study is still overdue.
Carrying forth experiments on micropillars [15] with various
sizes and their comparison to the prediction from simulations
would be of immediate interest.
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