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6Department of Physics of Complex Systems, Eötvös Loránd University, H-1053 Budapest, Hungary

(Received 1 August 2012; published 14 November 2012)

We analytically solve the core percolation problem for complex networks with arbitrary degree

distributions. We find that purely scale-free networks have no core for any degree exponents. We show

that for undirected networks if core percolation occurs then it is continuous while for directed networks

it is discontinuous (and hybrid) if the in- and out-degree distributions differ. We also find that core

percolations on undirected and directed networks have completely different critical exponents associated

with their critical singularities.
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In the last decade structural transitions in complex net-
works were extensively studied [1–12] and found to affect
many network properties, e.g., robustness and resilience
to breakdowns [4,13], cascading failure in interdependent
networks [14,15], and epidemic or information spreading
on sociotechnical systems [16,17]. Recent work on net-
work controllability reveals another interesting interplay
between the structural and dynamical properties of com-
plex networks [18,19]. It was found that the robustness of
network controllability is closely related to the presence of
the core in the network [18]. Historically, core percolation
has been related to a wide range of important problems in
random graphs, including combinatorial optimizations,
e.g., maximum matching (a maximum set of edges without
common vertices) [20–22], and minimum vertex cover (a
minimum set of vertices containing at least one ending
vertex of each edge of the graph) [23–28], and conductor-
insulator transitions, where the adjacency matrix of the
graph is used as a Hamiltonian describing the hopping of
electrons from one node to another via edges [29].

The core of an undirected network is the remainder of
the greedy leaf removal (GLR) procedure: leaves (nodes of
degree one) and their neighbors are removed iteratively
from the network. GLR was originally introduced to study
the size of maximum matchings in the classical Erdős-
Rényi (ER) random graphs [20]. Previous theoretical stud-
ies of core percolation also focused on ER random graphs
and found that the core emerges at the critical mean degree
c� ¼ e ¼ 2:7182818 . . . [20,30]. More interestingly, it was
suggested that for the minimum vertex cover problem,
which is one of the basic NP-complete problems [31], core
percolation coincides with the changes of the solution-
space structure and an ‘‘easy-hard transition’’ of the typical
computational complexity [23–26]. In the conductor-
insulator transition problem, it was found that core

percolation coincides with the spectral singularity of
the hopping Hamiltonian H of ER random graphs; i.e.,
the average height of the delta peak at zero energy in the
spectrum of H is nonanalytical at c ¼ e [29].
With a generalized GLR procedure, core percolation in

directed networks was numerically studied and found to
coincide with the sudden decrease of the fraction of redun-
dant edges, which can be safely removed without affecting
our ability to control the linear time-invariant dynamics
_xðtÞ ¼ AxðtÞ þBuðtÞ on a directed network G [18]. Here,
xðtÞ 2 RN captures the state of each node at time t. The
state matrix A 2 RN�N describes the weighted wiring
diagram of G. The input matrix B 2 RN�M identifies the
nodes that are controlled by the input vector uðtÞ 2 RM

(M � N). Finding the minimum set of driver nodes, whose
time-dependent control can guide the whole network G to
any desired final state in finite time, is equivalent to finding
the maximum matchings of G, which can be efficiently
calculated in G’s bipartite representation B [18]. After the
core develops, the number of maximum matchings starts
increasing exponentially [18,22], implying the fraction of
redundant edges decreases (because they do not belong to
any maximum matchings).
Despite the intriguing relation between core percolation

and other important problems, we lack a general theory of
core percolation. Previous theoretical studies of core perco-
lation have focused on ER random graphs with Poisson
degree distribution. Yet, many real-world networks have
scale-free or fat-tailed degree distributions. It is still unknown
how degree distributions will affect core percolation.
To systematically study core percolation on random

graphs with arbitrary degree distributions, we first catego-
rize the nodes into four distinct categories according
to how they can be removed during the GLR procedure:
(i) � removable: nodes that can become isolated without
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directly removing themselves [e.g., v1 and v2 in Fig. 1(b)];
(ii) � removable: nodes that can become a neighbor of a
leaf [e.g., v3 and v5 in Fig. 1(b)]; (iii) � removable: nodes
that can become leaves but are neither � nor � removable
[e.g., v4 in Fig. 1(b)]; (iv) nonremovable: nodes that cannot
be removed and hence belong to the core [e.g., v6, v7 and
v8 in Fig. 1(b)]. Note that the core is independent of the
order the leaves are removed [30]. Now we consider a
large uncorrelated random networkG with arbitrary degree
distribution PðkÞ [5,32]. Assuming that in each removable
category the removal of a random node can be made locally
(see Supplemental Material [33]), we can determine the
category of a node v inG by the categories of its neighbors
in G n v, i.e., the subgraph of G with node v and all its
edges removed, using the following rules: (i) � removable:
all neighbors are � removable; (ii) � removable: at least
one neighbor is � removable; (iii) nonremovable: no
neighbor is � removable, and at least two neighbors are
not � removable. (We omit the rule for � removable nodes
because it is not useful to determine the core’s size.) Let �
(or �) denote the probability that a random neighbor of a
random node v in a network G is � removable (or �
removable) in G n v. Rules (i) and (ii) enable us to derive
two self-consistent equations

� ¼ X1

k¼1

QðkÞ�k�1 ¼ Að1� �Þ; (1)

1� � ¼ X1

k¼1

QðkÞð1� �Þk�1 ¼ Að�Þ; (2)

where QðkÞ � kPðkÞ=c is the degree distribution for the
node at a random end of a randomly chosen edge,
c � P1

k¼0 kPðkÞ is the mean degree, and AðxÞ �P1
k¼0 Qðkþ 1Þð1� xÞk. Note that Qðkþ 1Þ is also called

the excess degree distribution [5,34] and Að1� xÞ is its
generating function. The derivations of Eqs. (1) and (2)
follow the generating function formalism developed in
the theory of random graphs with arbitrary degree distri-
butions [5]. Equations (1) and (2) indicate that � satisfies
x ¼ AðAðxÞÞ. It can be shown that � is the smallest fix
point of AðAðxÞÞ, i.e., the smallest root of the function
fðxÞ � AðAðxÞÞ� x [33]. By invoking rule (iii) we can
calculate the normalized core size (ncore � Ncore=N)

ncore ¼
X1

k¼0

PðkÞX
k

s¼2

k
s

� �
�k�sð1� �� �Þs; (3)

which can be simplied to ncore ¼ Gð1� �Þ �Gð�Þ �
cð1� �� �Þ�, where GðxÞ � P1

k¼0 PðkÞxk is the gener-

ating function of PðkÞ. The normalized number of edges in
the core (lcore � Lcore=N) can also be calculated: lcore ¼
c
2 ð1� �� �Þ2 [33]. Clearly, both ncore > 0 and lcore > 0 if

and only if 1� �� �> 0.
The above approach can be readily generalized for

directed networks with given in- and out-degree distribu-
tions [denoted by P�ðkÞ and PþðkÞ, respectively]. We first
generalize the GLR procedure for directed networks.
Motivated by the relation between maximum matchings
and controllability of directed networks [18], we transform
a directed networkG to its bipartite graph representationB
by splitting each node v into two nodes vþ (upper) and
v� (lower), and we connect vþ

1 to v�
2 in B if there is an

edge (v1 ! v2) in G. The core of G can then be defined as
the core of B obtained by applying GLR to B as if B is a
unipartite undirected graph and node vi belongs to the core
of G provided that either vþ

i or v�
i belongs to the core of

B. Let c denote the mean degree of each partition inB, i.e.,
the mean in-degree (or out-degree) of G. Define Q�ðkÞ �
kP�ðkÞ=c, which is the degree distribution of the upper or
lower partition of a random edge in B. Define A�ðxÞ �P1

k¼0 Q
�ðkþ 1Þð1� xÞk. Then the same argument as we

used in the undirected case yields

�� ¼ A�ð1� ��Þ; (4)

1� �� ¼ A�ð��Þ; (5)

and �� is the smallest fix point of A�ðA�ðxÞÞ. The nor-
malized core size for each partition in B is

n�core ¼
X1

k¼0

P�ðkÞX
k

s¼2

�
k
s

�
ð��Þk�sð1� �� � ��Þs (6)

and the normalized core size of G is ncore ¼
ðnþcore þ n�coreÞ=2. The normalized number of edges in the
core is given by lcore ¼ cð1� �þ � �þÞð1� �� � ��Þ.
We confirmed the above analytical results with extensive
numerical calculations [33].
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FIG. 1 (color online). The core of small networks. (a) The core
(highlighted in dark red) obtained after the GLR procedure is
fundamentally different from the two-core (highlighted in
light green) obtained by iteratively removing nodes of degree
less than 2. (b) Removal categories of nodes. Red nodes
are nonremovable; i.e., they belong to the core (with shaded
background). Green nodes are removable: nodes v1 and v2 are �
removable; nodes v3 and v5 are � removable; node v4 is �
removable.
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Except for some special cases (e.g., no cycles or no
leaves), no rules were proposed to predict the core’s
existence for general complex networks. Our framework,
established in this Letter, allows us to derive the condition
for core percolation. Since the core in an undirected net-
work with degree distribution PðkÞ is similar to a directed
network with the same out- and in-degree distributions,
i.e., PþðkÞ ¼ P�ðkÞ ¼ PðkÞ, we can deal with directed
networks without loss of generality. As ncore is a continu-
ous function of ��, we focus on ��, which is the smallest
root of the function f�ðxÞ � A�ðA�ðxÞÞ� x. There are
several interesting facts about f�ðxÞ. First, since A�ðxÞ is
a monotonically decreasing function for x 2 ½0; 1� and
A�ð0Þ ¼ 1 is the maximum (see Figs. 2 and 3), we have
f�ð0Þ> 0 and f�ð1Þ< 0 [see Figs. 3(c) and 3(d)].
Consequently, the number of roots of f�ðxÞ in [0, 1] is
odd (including multiplicity). Numerical calculations sug-
gest that the number of roots is 1 or 3 (see Figs. 2 and 3).
Second, if f�ðx0Þ ¼ 0 then f�ðA�ðx0ÞÞ ¼ 0, which means
A�ðxÞ transforms the roots of f�ðxÞ to the roots of f�ðxÞ.
This also suggests that f�ðxÞ always has a trivial root
�� ¼ A�ð��Þ ¼ 1� ��. A�ðxÞ is a monotonically
decreasing function and �� is the smallest root of f�ðxÞ,
A�ð��Þ ¼ 1� �� is therefore the largest root of f�ðxÞ.
Hence 1� �� � �� is the difference between the largest
and the smallest roots of f�ðxÞ (see Fig. 2). Consequently,
if f�ðxÞ has only one root (which must be the trivial
root �� ¼ A�ð��Þ ¼ 1� ��), then 1� �� � �� ¼ 0
and there is no core according to Eq. (6). If multiple

different roots coexist then 1� �� � �� > 0 and the core
emerges.
We apply the above condition to a series of random

undirected networks with specific degree distributions
[33]. Surprisingly, we find that for purely scale-free (SF)
networks with PðkÞ ¼ k��=�ð�Þ and �ð�Þ the Riemann �
function, the core does not exist for any � > 2. While for
asymptotically SF networks generated by the static model
with PðkÞ 	 k�� for large k [35,36], the core develops
when the mean degree c is larger than a threshold value c�.
Hereafter, we systematically study the net effect of

increasing mean degree c on core percolation. ER net-
works and the asymptotically SF networks generated by
the static model naturally serve this purpose, since their
mean degree c is an independent and explicitly tunable
parameter. We observe that if the mean degree c is small,
then f�ðxÞ has one root, but if c is large, f�ðxÞ has three
roots [see Figs. 3(c) and 3(d)]. At the critical point c ¼ c�,
the number of roots jumps from 1 to 3; one new root with
multiplicity 2 appears. According to the transformation
from the roots of f�ðxÞ to the roots of f�ðxÞ through
A�ðxÞ, for either fþðxÞ or f�ðxÞ its new root at c ¼ c� is
smaller than its original root, and for either f�ðxÞ or fþðxÞ
the new root at c ¼ c� is larger than the original root, or
there is a degenerate case when this new root is the same
as the original root for both fþðxÞ and f�ðxÞ. For example,
for directed asymptotically SF networks generated by
the static model with �in ¼ 2:7, �out ¼ 3:0, the new root
(marked as green dot) of fþðxÞ at c ¼ c� is smaller than
the original root (green square) of fþðxÞ [see Fig. 3(c)], and
the new root (green solid square) of f�ðxÞ at c ¼ c� is
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FIG. 3 (color online). Analytical solution of core percolation.
(a–b) Undirected Erdős-Rényi (ER) random networks. (a) � is
the smallest root of the function fðxÞ. (b) �;�; ncore and lcore
as functions of c. (c–e) Directed asymptotically scale-free (SF)
random networks generated by the static model. Both the in-
degree and out-degree distributions are asymptotically scale-
free with degree exponents �in ¼ 2:7 and �out ¼ 3:0. (c–d) ��
is the smallest root of the function f�ðxÞ. Note that f�ðxÞ cannot
immediately intersect the x axis at two new points, but it touches
first. (e) ��; ��; ncore, and lcore as functions of c. The jumps in
�þ and �� result in the jumps in ncore and lcore.
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FIG. 2 (color online). Graphical solution of the self-consistent
equations. By plotting AþðxÞ vs x (red solid line) and y vs A�ðyÞ
(green dashed line) in the same coordinate system, the x or y
coordinate of the two curves’ intersection points give the solu-
tions of f�ðxÞ ¼ 0 or fþðxÞ ¼ 0, respectively. Plotting the
two curves as a function of c yields two surfaces and the
intersection curve gives the solutions of f�ðxÞ ¼ 0. For
c<c�, the intersection curve has one branch given by ð��;
1� �þ; cÞ ¼ ð1� ��; �þ; cÞ. For c > c�, it has three branches
with the top and bottom branches given by ð��; 1� �þ; cÞ and
ð1� ��; �þ; cÞ, respectively. The above description for directed
networks (e–g) can be similarly reproduced for undirected
networks (a–d).
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larger than the original root (green circle) of f�ðxÞ [see
Fig. 3(d)]. In other words, at the critical point, for either
fþðxÞ or f�ðxÞ, its smallest two roots are the same, and for
either f�ðxÞ or fþðxÞ its largest two roots are the same.
While for the degenerate case [PþðkÞ ¼ P�ðkÞ ¼ PðkÞ] we
have fþðxÞ ¼ f�ðxÞ ¼ fðxÞ and the new root of fðxÞ at
c ¼ c� has to be the same as the the original root of fðxÞ,
indicating all three roots must be the same [see Fig. 3(a)].
Therefore, at the critical point, except in the degenerate
case, �þ together with �� (or �� together with �þ)
decrease discontinuously. To sum up, in the degenerate
case ½PþðkÞ ¼ P�ðkÞ ¼ PðkÞ� core percolation is continu-
ous, but for the nondegenerate case ½PþðkÞ � P�ðkÞ�
we have a discontinuous transition in both ncore and lcore
[see Figs. 3(b) and 3(e)].

We can further show that in the nondegenerate case, core
percolation is actually a hybrid phase transition [7,37,38].
More specifically, ncore (or lcore) has a jump at the critical
point as a first-order phase transition but also has a critical
singularity as a continuous transition [33]. We find that in
the critical regime �¼c�c�!0þ, ncore��n	ðc�c�Þ�
and lcore � �l 	 ðc� c�Þ� with the critical exponents
� ¼ � ¼ 1

2 and �n (or �l) presents the discontinuity in

ncore (or lcore) at c
�. Interestingly, in the degenerate case,

one has a continuous phase transition (�n ¼ �l ¼ 0) but
with a completely different set of critical exponents [30]:
�0 ¼ �0 ¼ 1 (see Fig. 4).

The results presented here vividly illustrate that core
percolation is a fundamental structural transition in com-
plex networks. Its implication on other problems (e.g.,
combinatorial optimizations, conductor-insulator transi-
tion, and network controllability) deserves further explo-
ration. The analytical framework developed here also
raises a number of questions, answers to which would
further improve our understanding of core percolation on
complex networks. For example, we find directed real-
world networks usually have larger core sizes than our

theoretical predictions based on uncorrelated random net-
works [33]. We leave the systematic studies of the effects
of higher order correlations as future work.
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