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Ordinary matter is described by six fundamental parameters: three couplings (gravitational, electromag-
netic and strong) and three masses: the electron’s (me) and those of the up (mu) and down (md) quarks.
An additional mass enters through quantum fluctuations: the strange quark mass (ms). The three cou-
plings and me are known with an accuracy of better than a few per mil. Despite their importance, mu ,
md (their average mud) and ms are far less accurately known. Here we determine them with a precision
below 2% by performing ab initio lattice quantum chromodynamics (QCD) calculations, in which all sys-
tematics are controlled. We use pion and quark masses down to (and even below) their physical values,
lattice sizes of up to 6 fm, and five lattice spacings to extrapolate to continuum spacetime. All necessary
renormalizations are performed nonperturbatively.

© 2011 Elsevier B.V. All rights reserved.
The masses of the up, down and strange quarks cannot be mea-
sured using standard experimental methods. The strong interaction
confines quarks within hadrons (e.g. protons) in such a way that a
single quark cannot be isolated. Moreover, the strength of the in-
teraction is such that the mass of a hadron is not the simple sum
of the masses of the quarks it contains. Rather it is provided by
complicated nonperturbative dynamics (e.g. [1]). This confinement
mechanism is the low energy counterpart of the strong interac-
tion’s asymptotic freedom [2,3], by which the interactions between
quarks and gluons weaken as their relative momenta are increased.

Interestingly enough, the experimental data for mu , md and ms

has been available for about sixty years (the pion and kaon were
discovered in the late 1940s and the proton already 30 years be-
fore). Even the theory of the strong interaction, QCD, which –
in principle – completely describes bound states of light quarks,
has been known for almost four decades [4]. The fact that such
a fundamental question has remained poorly answered despite
the available experimental and theoretical knowledge is related
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to the computational difficulties one encounters when trying to
solve the underlying equations in the domain of interest. The only
known systematic technique to solve them is lattice QCD [5,6]. Sev-
eral decades of theoretical, algorithmic and hardware development
have been necessary to reach the level at which the light quark
masses can be determined reliably. This determination is the goal
of the present Letter.

For many years calculations were done in the quenched approx-
imation. Although this approach omits the most computationally
demanding part of a full QCD calculation – the quark determinant
obtained after integrating over the fermion fields – a controlled de-
termination of the strange quark mass in this approximation (with
mu = md = ms equal to about half the physical ms) took about
20 years [7]. Moreover, the physics of the u and d quarks remained
inaccessible, because the quenched approximation, an uncontrolled
truncation of QCD, distorts the small quark mass behavior [8,9].

A very important step in the determination of light quark
masses was made with the inclusion of u and d sea quark ef-
fects (N f = 2) [10–14]. But even there, physical mud remained
elusive, this time for algorithmic reasons. A first breakthrough was
made by the MILC Collaboration [15], which used an N f = 2 + 1
staggered fermion formulation to include strange sea quark ef-
fects, pushing calculations to smaller light quark masses, finer lat-
tices and larger volumes. Updates from calculations with sea pion
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masses down to 258 MeV (given by the RMS average over taste
partners for a = 0.06 fm – their lightest valence pion is 177 MeV
at a = 0.09 fm) [17] and on even finer lattices are presented in
[16,17]. On a subset of the MILC configurations, the HPQCD Col-
laboration has obtained indirectly ms and mud via the mc/ms ra-
tio [18,19]. Due to their use of quenched and partially quenched
charmed and strange quarks with a non-unitary staggered formal-
ism and to their error estimates on the input quantities that they
use (mc and r1), this work does not fulfill our conditions for a
controlled ab initio calculation (see below). Recently, also ETMC
(N f = 2) [20] and RBC-UKQCD (N f = 2 + 1) [21] have presented
results with Mπ � 270 MeV and significantly larger error bars. All
N f = 2 + 1 results for ms and mud (except for those of the very re-
cent [21]) were combined into world averages in [22], which also
reviews N f = 2 and non-lattice results. Our results are in complete
agreement with these averages, albeit with uncertainties smaller
by more than a factor of 5.

A second breakthrough came recently when it was shown that
improvements in algorithms [23,24] allowed the use of Wilson and
domain wall fermions, which are free from the open questions
of the rooted staggered approach, for ab initio calculations (e.g.
[1,25]) and even for reaching physically light mud , albeit in small
volumes and at a single lattice spacing [26].

All previous lattice calculations of mud and ms have neglected
one or more of the six ingredients which we believe are most im-
portant for a full and controlled calculation:

1. The inclusion of the up (u), down (d) and strange (s) quarks in
the fermion determinant with an exact algorithm (i.e. with no integra-
tion error) and with an action whose universality class is QCD. Rooted
staggered fermions provide a numerically efficient way to investi-
gate nonperturbative QCD. However, this discretization is neither
local nor unitary for a > 0, making it difficult to show that it leads
to QCD in the continuum limit (please see [16] for another point
of view). Here we use, instead, N f = 2 + 1 Wilson fermions with
local improvement terms which do not affect the continuum limit.

2. Controlled interpolations and extrapolations of the results to phys-
ical quark masses. Practically it means reaching pion masses as
small as 200 MeV (clearly the value depends on the problem and
on the required accuracy) or most preferably simulating at the
physical mass point itself. At three of our lattice spacings we use
physical (or even smaller) light quark masses.

3. Large volumes to guarantee small finite-size effects. Our finite
volume corrections are tiny (we use volumes up to 6 fm). Nev-
ertheless we correct for them.

4. Controlled extrapolations to the continuum limit. This requires
that calculations be performed at no less than three values of the
lattice spacing, to check whether the scaling region is reached. We
use five lattice spacings between 0.116 and 0.054 fm, thereby gain-
ing full control on the continuum extrapolation.

5. Nonperturbative treatment in all steps. We obtain our primary
results (mud and ms in the RI scheme at 4 GeV) in a completely
nonperturbative manner. In particular, we eliminate all truncation
errors associated with the often used perturbative renormalization.

6. Input parameters. The parameters of the theory (scale and
quark masses) should be fixed with well measured observables
whose error bars are undisputed and whose connection to exper-
iment is transparent and contains no hidden assumptions. To that
end we use Mπ , MK and MΩ exclusively. The influence of their
error bars is negligible on our final uncertainties. Taking instead
derived quantities, like mc and r1 as is done in [18,19], while fine
in principle, can be problematic in practice. The error assigned to
the input quantity mc in [19] is smaller by a factor 13 than that of
the necessarily conservative Particle Data Group value [27]. Simi-
larly, due to the difficulties in estimating its systematic uncertainty,
Fig. 1. Summary of our simulation points. The pion masses and the spatial sizes of
the lattices are shown for our five lattice spacings. The percentage labels indicate
regions, in which the expected finite volume effect [31] on Mπ is larger than 1%,
0.3% and 0.1%, respectively. This effect is smaller than about 0.5% for all of our runs
and, as described, we corrected for it. Error bars are statistical.

the continuum value of r1 (and the related r0) obtained by differ-
ent groups shows significant differences (e.g. 2.3 combined sigma
between [16] and [21]).

In this Letter we determine mud and ms , while fulfilling all of
the above conditions. This determination requires two, apparently
straightforward, calculations. First we compute hadron masses for
tuning the quark masses to their physical values. Then we de-
termine the renormalization constant to convert the bare quark
masses to finite quantities in the continuum limit.

We now list the most important steps of our work:
(i) Production of the N f = 2 + 1 gauge field ensembles. We use a

Symanzik improved gauge action and 2-level HEX [28–30] smeared
clover fermions, with ms held close to its physical value. Gauge
field configurations for 47 different values of the parameters (β =
6/g2, amud and ams) were produced (cf. Fig. 1 for our Mπ <

400 MeV N f = 2 + 1 data).
We used five lattice spacings (a ≈ 0.116, 0.093, 0.077, 0.065 and

0.054 fm), which are the basis for the continuum extrapolation. As
we will see, the difference between the results obtained on the
finest lattice and those in the continuum limit is ∼3%, whereas
between those of the coarsest lattice and the continuum limit is
∼10%.

At two pion mass points we carried out detailed finite V analy-
ses, which give us a full understanding of the finite V corrections,
as well as their Mπ dependence [32]. In our calculations, we have
Mπ L � 4 and/or L � 5 fm, so that the limit V → ∞ can be taken
safely. The difference between the results obtained directly on our
large lattices and those in the V → ∞ limit is below the five
per mil level. Furthermore, for Mπ < 200 MeV, which is most rele-
vant for our final result, these corrections are even smaller, namely
on the one per mil level (see Fig. 1).

In our calculations Mπ ranges from ≈380 down to ≈120 MeV
(for three of the five lattice spacings we tuned Mπ to the vicinity
of 135 MeV and for the two finest lattices, the smallest Mπ are
around 180 and 220 MeV, respectively). Bracketing the physical
mass point allows us to circumvent potentially troublesome chi-
ral extrapolations. We perform calculations with ms values slightly
below and above the physical mass, allowing a straightforward in-
terpolation.

(ii) Hadron and bare quark mass calculations. The pion and kaon
masses are used to fix mud and ms respectively, with MΩ pro-
viding the overall scale. We take Mπ � 135 MeV, MK � 495 MeV
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Fig. 2. Continuum extrapolation of the average up/down quark mass, of the strange quark mass and of the ratio of the two. The errors of the individual points, which are
statistical only here, are smaller than the symbols in most of the cases. The only exceptions are the light quark mass and its ratio to the strange quark mass at the two finest
lattice spacings. These exceptions underline the importance of using physical quark masses to reach a high accuracy.
and MΩ � 1672 MeV as input parameters [32]. The calculation of
hadron masses and the “mass independent scale setting” follows
that of [1]. All three hadron masses receive finite volume correc-
tions, falling off exponentially with Mπ L [33]. Even though these
corrections are tiny, they are corrected for [32]. In addition to the
hadron masses, the unrenormalized partially conserved axial cur-
rent (PCAC) quark masses are determined.

(iii) Renormalization of the bare quark masses. In addition to the
PCAC masses discussed above, the bare mud and ms in the La-
grangian also provide a measure of the quark masses used in
our simulations. Once suitably renormalized, these two definitions
yield quark masses which must agree in the continuum limit.

While the PCAC masses renormalize multiplicatively, the bare
Lagrangian masses require an additional additive renormalization.
In the difference d ≡ mbare

s − mbare
ud , this additive renormalization

is eliminated. Moreover, the multiplicative renormalization factors
cancel in the ratio r ≡ mPCAC

s /mPCAC
ud . To obtain fully renormalized

quantities, we must still multiply d by 1/Z S , the inverse of the
scalar density renormalization factor. From the renormalized mass
difference d/Z S and the renormalization independent ratio r we
obtain mren

ud = (d/Z S )/(r − 1) and mren
s = (rd/Z S )/(r − 1) in the

unimproved case. Our final analysis is tree-level O(a) improved
with slightly more complicated formulae (see Section 11.2 of [32]).

To compute Z S nonperturbatively in the RI scheme, we apply
the Rome–Southampton (RS) method [34] with tree-level improve-
ment, augmented with nonperturbative running. Our procedure
eliminates the possible difficulties of the RS method on coarser
lattices. Since the RI scheme is defined in the N f = 3 (i.e. with
three degenerate quarks) chiral limit, we generate N f = 3 configu-
rations at our five lattice spacings and, for each β , at four or more
values of mq to allow an extrapolation to the massless limit. Thus
for each β we compute the renormalization constant Z RI

S (β,μ), at
renormalization scale μ, as described in [32]. The RS procedure de-
fines a valid renormalization scheme as long as μ 	 π/a. However,
only if μ 
 ΛQCD can the results be converted perturbatively to
other schemes (including intrinsically perturbative schemes such
as MS) or be used in a perturbative context. On coarser lattices, it
is difficult to simultaneously satisfy both constraints on μ. To solve
this difficulty we first determine the quark masses at μ = 1.3 and
2.1 GeV, then apply continuum nonperturbative running, as de-
fined in [35], up to μ′ = 4 GeV.

(iv) Combined analysis of mass and lattice spacing dependence. For
the masses, two strategies, called “Taylor fit” and “chiral fit” [1]
are applied. Clearly, the results of these fits are dominated by the
results at the physical point. In the analysis, two different pion
mass ranges are used, namely Mπ < 340,380 MeV.

The strange and average up-down quark masses renormalized
in the RI scheme at 4 GeV are extrapolated to the continuum and
interpolated to the physical mass point. In these fits, we include
Table 1
Renormalized quark masses in the RI scheme at 4 GeV, and after conversion to
RGI and the MS scheme at 2 GeV. The RI values are fully nonperturbative, so the
first column is our main result. The first two rows emerge directly from our lattice
calculation. The last two include additional dispersive information.

RI (4 GeV) RGI MS (2 GeV)

ms 96.4(1.1)(1.5) 127.3(1.5)(1.9) 95.5(1.1)(1.5)

mud 3.503(48)(49) 4.624(63)(64) 3.469(47)(48)

mu 2.17(04)(10) 2.86(05)(13) 2.15(03)(10)

md 4.84(07)(12) 6.39(09)(15) 4.79(07)(12)

terms to correct linear (αsa) or quadratic (a2) effects. A combined
mass and lattice spacing fit is carried out. We show the continuum
extrapolation for mud and ms in the RI scheme at 4 GeV, as well as
their ratio, in Fig. 2. In order to control the systematic uncertain-
ties we carry out 288 such analyses [32]. The figure depicts results
from one analysis with one of the best fit qualities.

Our procedure yields the RI quark masses mud and ms , with sta-
tistical and fully controlled systematic errors. These results do not
rely on perturbation theory and from them it is straightforward to
obtain the quark masses in other commonly used frameworks such
as renormalization group invariant (RGI) and MS [36] ones. More-
over in [32], we show that 4 GeV in the RI scheme is sufficiently
large that the perturbative running required to obtain RGI masses
and the matching to the MS scheme at 2 GeV both yield subdom-
inant uncertainties.

The determination of the individual up and down quark masses
at the physical point is in principle possible using exclusively lat-
tice simulations. To that end one may include the electromagnetic
U(1) gauge field into the lattice framework, as was done recently
in [37]. Such a project goes beyond the scope of the present Let-
ter, which deals with QCD only. Nevertheless our precise ms and
mud values can be combined [32] with model-independent results
based on dispersive studies of η → 3π decays to derive the indi-
vidual up and down quark masses (cf. Table 1). In this approach
the relationship between the input parameters and experiments is
not as transparent as for the determination of ms and mud (see
condition 6 above).

We have performed a lattice QCD determination of the light
quark masses which includes all of the ingredients that we be-
lieve are required to achieve full control over systematic errors.
In particular, we have eliminated the need for difficult chiral ex-
trapolations by performing simulations all the way down to the
physical pion mass (and even below); gained control over the nec-
essary continuum extrapolation by performing simulations at five
lattice spacings down to a = 0.054 fm; eliminated perturbative un-
certainties by performing the renormalization and running fully
nonperturbatively; and controlled the infinite volume extrapolation
by working with lattice sizes up to 6 fm.
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The precision reached for ms and mud is somewhat below
the 2% level and for ms/mud = 27.53(20)(08), which is scheme-
independent, it is better than 1%. For mu and md , which in-
clude additional dispersive information, it is about 5% and 3%,
respectively. Despite their use of significantly different methods,
MILC [17], RBC [21] and HPQCD [19], the three collaborations
which have performed the most extensive N f = 2 + 1 computa-
tions besides ours, obtain results for these masses which are at
most 1.5 combined standard deviations away from ours.

Our results provide precise and reliable input for phenomeno-
logical calculations which require light quark mass values. They
highlight the progress that has been achieved since the early days
of quark mass determinations [38] by showing that phenomeno-
logically relevant lattice QCD calculations can now be carried out
bracketing the physical values of the light quark masses.

The details of this work can be found in [32].
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