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Abstract

Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-
wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-
wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple
systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using
the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA
network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated
burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the
evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the
parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This
increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For
instance, compared to a 30 M–30 M non-spinning circular binary, the chirp mass and sky-localization accuracy
can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial
pericenter distance of 20Mtot (10Mtot).
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1. Introduction

The Advanced Laser Interferometer Gravitational Wave
Observatory1 (aLIGO) detectors (Aasi et al. 2015) and
Advanced Virgo2 (AdV; Acernese et al. 2015) have made
the first six detections of gravitational waves (GWs) from
approximately circular inspiraling binaries (Abbott et al. 2016c,
2016d, 2017a, 2017b, 2017c, 2017d), and opened a new
window through which to observe the universe. These
advanced GW detectors, together with upcoming instruments
KAGRA3 (Somiya 2012) and LIGO-India4 (Iyer et al. 2011;
Abbott et al. 2016f), are expected to continue to detect GW
sources in the upcoming years (Abbott et al. 2016f). Orbital
eccentricity was ignored in the analysis of the detected GW
sources, but a preliminary upper limit was claimed to be e0.1
at 10 Hz (Abbott et al. 2016a, 2016e, 2017a, 2017e). In this paper
we estimate the future potential of the aLIGO–AdV–KAGRA
network of advanced GW detectors to measure the orbital
eccentricity and other physical parameters of initially highly
eccentric sources.

Initially highly eccentric black hole (BH) binaries are
inspiraling systems that have orbital eccentricities beyond
e 0.90  when their peak GW frequency (Wen 2003) enters the
sensitive frequency band of advanced Earth-based GW
detectors. The orbital eccentricity decreases in the inspiral
phase from this value until the last stable orbit (LSO;
Peters 1964). Such systems can form in multiple ways,
including single–single encounters due to GW emission
(Kocsis et al. 2006b; O’Leary et al. 2009; Gondán
et al. 2017) in dense, high-velocity-dispersion environments;
dynamical multibody interactions (Gültekin et al. 2006;

O’Leary et al. 2006; Kushnir et al. 2013; Amaro-Seoane &
Chen 2016; Antonini & Rasio 2016; Rodriguez et al. 2017);
and the secular Kozai–Lidov mechanism (Wen 2003; Thomp-
son 2011; Aarseth 2012; Antonini & Perets 2012; Antognini
et al. 2014; Antonini et al. 2014, 2016; Breivik et al. 2016;
Rodriguez et al. 2016a, 2016b; VanLandingham et al. 2016;
Hoang et al. 2017; Petrovich & Antonini 2017; Silsbee &
Tremaine 2017; Randall & Xianyu 2018) in hierarchical triples
or binary–single interaction (Samsing et al. 2014, 2017;
Samsing 2017; Samsing & Ramirez-Ruiz 2017). Eccentric
BH binaries offer promising new detection candidates.
Previous parameter estimation studies of stellar-mass

compact binaries have mostly focused on circular binaries
(see Finn 1992; Finn & Chernoff 1993; Marković 1993; Cutler
& Flanagan 1994; Jaranowski & Krolak 1994; Kokkotas
et al. 1994; Królak et al. 1995; Poisson & Will 1995 for the first
papers and Chatziioannou et al. 2014; Favata 2014; Mandel
et al. 2014; O’Shaughnessy et al. 2014; Rodriguez et al. 2014;
Berry et al. 2015; Canizares et al. 2015; Farr et al. 2016; Miller
et al. 2015; Moore et al. 2016; Veitch et al. 2015; Lange
et al. 2017; Vitale et al. 2017 for recent developments) due to
their predicted high detection rates. The current detections
constrain the merger rate density of BH–BH mergers in the
universe to 12 213 Gpc yr3 1- -– (Abbott et al. 2017a), which
corresponds to a detection rate between 400 and 7000 yr−1 for
a typical 2 Gpc detection range for aLIGO’s design sensitivity.
See Abadie et al. (2010) for a partial list of historical compact
binary coalescence rate predictions and Dominik et al. (2013),
Kinugawa et al. (2014), Abbott et al. (2016a, 2016b,
2016h, 2016i, 2016g), Belczynski et al. (2016), Rodriguez
et al. (2016a), Bartos et al. (2017), McKernan et al. (2017),
Hoang et al. (2017), Stone et al. (2017), and references therein
for recent rate estimates.
However, several theoretical studies have shown that

the detection rates of highly eccentric BH binaries may be
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non-negligible. For sources formed by GW emission in
galactic nuclei (GNs), the expected aLIGO detection rate at
design sensitivity may be higher than ≈100 yr−1 if the BH
mass function extends to masses above 25 M (O’Leary
et al. 2009; Kocsis & Levin 2012). Recently, such heavy BHs
have been observed in several LIGO/VIRGO detections
(Abbott et al. 2016b, 2017a, 2017c). In addition, the expected
merger rate densities in the Kozai–Lidov channel are
1 1.5 Gpc yr3 1- -– for BH binaries forming in nuclear star
clusters without supermassive BHs (SMBHs) through
multibody interactions (Antonini & Rasio 2016) and
0.14 6.1 Gpc yr3 1- -– in isolated triple systems (Silsbee
& Tremaine 2017). A merger rate density of order
1 5 Gpc yr3 1- -– is expected for BH binaries forming via the
Kozai–Lidov mechanism in globular clusters (Antonini
et al. 2014, 2016; Rodriguez et al. 2016a) and in GNs
(Antonini & Perets 2012; Hoang et al. 2017), and non-
spherical nuclear star clusters may produce BH binary merger
rates of up to 15 Gpc yr3 1- - (Petrovich & Antonini 2017).
Smaller size GNs with intermediate-mass BHs may produce
higher rates (VanLandingham et al. 2016). Binary–single
gravitational interactions may greatly increase the rates
(Samsing et al. 2014, 2017; Samsing & Ramirez-Ruiz 2017;
Samsing 2017). In a companion paper (Gondán et al. 2017),
we have shown that GW capture sources in GNs, which
appear to be circular to within e<0.2 near the LSO, may be
highly eccentric at the beginning of the detected waveform at
10 Hz, and that heavier BH binaries are expected to be
systematically more eccentric in this channel. The ongoing
development of detectors toward their design sensitivity at
low frequencies may open the possibility of detecting
eccentricity in such systems.

In this paper, we determine the expected accuracy with
which a network of ground-based interferometric GW detectors
may determine the physical parameters that describe highly
eccentric BH binaries in comparison to circular sources. We
investigate how signal-to-noise ratios (S/Ns) and parameter
measurement errors depend on the initial orbital parameters,
particularly the initial pericenter distance and eccentricity. We
examine if it is possible to measure the initial binary parameters
(initial eccentricity and pericenter distance) at formation for
sources that form in the GW frequency band of the instrument.

Previous GW parameter estimation accuracy studies for
eccentric waveforms were carried out for extreme mass ratio
(EMRI) sources around SMBHs for LISA (Barack & Cutler
2004; Cornish & Key 2010; Porter & Sesana 2010; Mikóczi
et al. 2012; Nishizawa et al. 2016) and for low-eccentricity
stellar-mass compact binaries for Earth-based GW detector
network (Sun et al. 2015). The premerger localization accuracy
of eccentric neutron star (NS) binary systems was determined
by Kyutoku & Seto (2014), and the source localization
accuracy was investigated for low-eccentricity binaries by Ma
et al. (2017).

The parameter space of an eccentric spinning binary
waveform is generally very large, with 17 dimensions
(Vecchio 2004; Cornish & Key 2010). Therefore, state-of-
the-art methods such as Monte Carlo Markov Chain calcula-
tions (see O’Shaughnessy et al. 2014 and references
therein) are numerically prohibitively expensive to explore
the full range of source parameters for a large set of binaries.
For Gaussian noise and a large S/N, the posterior distribution
function of the measured parameters is generally well

approximated by a multidimensional Gaussian, and the
parameter measurement errors can be estimated accurately
and very efficiently using the Fisher matrix method (Finn &
Chernoff 1993; Cutler & Flanagan 1994; Cutler & Vallisneri
2007). Using this technique, we determine the physical
parameters’ measurement accuracy.
We restrict this first study to waveforms introduced by

Moreno-Garrido et al. (1994, 1995), which account for part of
the leading-order post-Newtonian (PN) correction, the GR
pericenter precession (hereafter simply precession), and ignore
other first-order PN and higher-order corrections including
those due to spins. Future extensions of this work should
include higher-order PN and merger waveforms (see Levin
et al. 2011; Csizmadia et al. 2012; East et al. 2013 for
waveform generators, Damour et al. 2004; Memmesheimer
et al. 2004; Königsdörffer & Gopakumar 2005, 2006; Yunes
et al. 2009; Tessmer & Schäfer 2010, 2011; Huerta et al. 2014;
Mikóczi et al. 2015; Moore et al. 2016; Tanay et al. 2016;
Boetzel et al. 2017; Cao & Han 2017; Hinderer & Babak
2017; Huerta et al. 2017a, 2017b; Loutrel & Yunes 2017 for
analytic waveform models, and Hinder et al. 2008; East
et al. 2012, 2015, 2016; Gold et al. 2012; Gold &
Brügmann 2013; Paschalidis et al. 2015; Lewis et al. 2017
for waveforms of numerical relativity simulations of eccentric
compact binary inspirals). In this paper, we focus on BH–BH
binaries, but the method is also applicable to NS–NS and NS–
BH binaries on highly eccentric orbits as long as tidal
interactions and matter exchange among the components are
negligible (see Gold et al. 2012; East et al. 2015, 2016; Radice
et al. 2016 and references therein).5

Once a large number of GW sources is detected, the
correlations between the orbital eccentricity, binary total mass,
reduced mass, and spins may be distinct among the different
astrophysical mechanisms leading to BH mergers (O’Leary
et al. 2009; Cholis et al. 2016; Rodriguez et al. 2016a, 2016b;
Chatterjee et al. 2017; Gondán et al. 2017; Samsing &
Ramirez-Ruiz 2017; Silsbee & Tremaine 2017; Kocsis et al.
2017). Therefore, detections of eccentric BH binaries have the
potential to constrain GW source populations.
However, detecting eccentric sources and recovering their

physical parameters are very challenging. So far, three search
methods have been developed to find the signals of stellar-mass
eccentric BH binaries in data streams of GW detectors (Tai
et al. 2014; Coughlin et al. 2015; Tiwari et al. 2016). All three
methods achieve substantially better sensitivity for eccentric
BH binary signals than existing localized burst searches or
chirp-like template-based search methods. Once a source is
detected, different algorithms are used to recover its physical
parameters. For compact binary coalescences, BAYESTAR
(Singer & Price 2016) is an online fast sky-localization
algorithm that produces probability sky maps, LALINFERENCE
(Veitch et al. 2015) is an offline full parameter estimation
algorithm, and GSTLAL (Cannon et al. 2012; Privitera
et al. 2014) is a low-latency binary BH parameter estimation
algorithm. All three algorithms use waveform models of
compact binaries on circular orbits. In addition, for short-
duration GW “bursts” with poorly modeled or unknown
waveforms, COHERENT WAVEBURST (Klimenko et al.
2016), BAYESWAVE (Cornish & Littenberg 2015), and

5 Eccentric NS binaries (NS–NS or NS–BH) will also benefit from additional
information if an electromagnetic counterpart is identified, which may lead to
smaller parameter errors (Radice et al. 2016).
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LALINFERENCEBURST (Veitch et al. 2015) pipelines produce
reconstructed waveforms with minimal assumptions on the
waveform morphology. The development of algorithms
recovering the parameters of compact binaries on eccentric
orbits are currently underway. These algorithms will play an
important role in the astrophysical interpretation of eccentric
sources.

This paper is organized as follows. In Section 2, we
summarize the basic formulae describing the time-domain and
frequency-domain eccentric waveform model. In Section 3, we
outline the properties of the advanced detectors we use in the
analysis. In Section 4, we describe the signal parameter
measurement estimation method. In Section 5, we discuss
which parameters of an eccentric binary can be measured
through the binary’s waveform. We present our main results in
Section 6, and compare or results with previous papers. Finally,
we summarize our conclusions in Section 7. Several details of
our methodology are included in the appendices. In
Appendix A, we consider the values of the source parameters
in the circular limit. Next, in Appendix B, we introduce the
geometric conventions we use to describe how the GWs
interact with ground-based detectors. In Appendix C, we
discuss the applicability of assumptions ignoring the Earth’s
rotation around its axis and the Earth’s motion around the Sun.
In Appendix D, we derive numerically effective formulae to
reduce the computational cost of numerical calculations of the
S/N and the Fisher matrix. In Appendix E, we present
numerical comparisons to validate our codes for both
precessing and non-precessing waveforms.

We use G=1=c units when referring to the initial orbital
parameters and when determining the phases of waveforms.
We work in the observer frame assuming a binary at
cosmological redshift z. In this frame, all of the formulae have
redshifted mass parameters m z m1z = +( ) .6

2. Eccentric Waveform Model

In this section, we summarize the basic formulae describing
the time-domain (Section 2.1) and frequency-domain
(Section 2.2) eccentric waveform models including precession
in the leading quadrupole-order radiation approximation using
the Fourier–Bessel decomposition. Note that we ignore the
radiation of higher multipole orders, which are typically
subdominant at least in cases where the initial pericenter
distance is not close to a grazing or zoom–whirl configuration
and the initial velocity is much less than the speed of light
(Davis et al. 1972; Berti et al. 2010; Healy et al. 2016).

2.1. The Waveform in the Time Domain

We adopt the waveform model of Moreno-Garrido et al.
(1994) and Moreno-Garrido et al. (1995), which describes the
quadrupole waveform emitted by a spinless binary on a
Keplerian orbit undergoing slow precession. For a fixed
semimajor axis a and orbital eccentricity e, the two polarization
states of a GW, h+ and h×, with component masses mA and mB,
and at luminosity distance DL, can be given in the observer’s

time domain as (Moreno-Garrido et al. 1995)

h t
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where Θ is the angle between the orbital plane and the line of
sight to the observer, nF describes the orbital phase given
below for the nth harmonic,

h
M

a D

4
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L
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where M m m z1z A Btot, = + +( )( ) is the redshifted total binary
mass at cosmological redshift z, and z m m1z A Bm = +( )
m mA B

1+ -( ) is the redshifted reduced mass. We can express
the luminosity distance for a flat ΛCDM cosmology as a
function of z as
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where H 68 km s Mpc0
1 1= - - is the Hubble constant, and

0.304MW = and ΩΛ=0.696 are the density parameters for
matter and dark energy, respectively (Planck Collaboration
et al. 2014a, 2014b).
The An and Bn

 prefactors in Equations (1) and (2) are the
linear combinations of the Bessel function of the first kind,
Jn(x),
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where e is the orbital eccentricity,
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and J nen¢( ) is the first derivative of Jn(ne) with respect to e,
which satisfies
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We will also need the second derivative of Jn(ne) with respect
to e when calculating the Fisher matrix, thus we introduce
J nen ( ) as

J
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The phase functions tnF ( ) and tnF( ) in Equations (1)
and (2) are

t n t dt2 , 11n c
t

tc

òp nF = F - ¢ ¢( ) ( ) ( )
6 Additional corrections are necessary if the binary has a peculiar velocity
(Kocsis et al. 2006a).
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t t t2 , 12n n gF = F ( ) ( ) ( ) ( )

where the second term on the right-hand side is n times the
mean anomaly expressed by the time integral of the redshifted
Keplerian mean orbital frequency ν, cF is the phase
extrapolated to coalescence time t tc= , and γ is the azimuthal
angle of the pericenter relative to the x-axis of the coordinate
system defined by the orbital plane. The redshifted Keplerian
mean orbital frequency may be expressed with the dimension-
less pericenter distance

a e
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(where a is the semimajor axis in the observer frame) as
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For an inspiraling binary, both the eccentricity and the
Keplerian orbital frequency evolve in time. Assuming quadru-
pole radiation and the adiabatic evolution of orbital parameters,
the equations of the time evolution of e and ν, as seen at some
cosmological redshift, can be given to leading order as
(Peters 1964)
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2 5 m= is the redshifted chirp mass, and the

overdot denotes a redshifted time derivative, x dx dtº˙ . The
fraction of the two equations
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may be integrated as (Peters 1964; Mikóczi et al. 2012)
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and c0 is an integration constant set by the initial condition
e ,0 p0 0n r n=( ) or the conditions at the LSO,
e ,LSO pLSO LSOn r n=( ) (see Equations (21) and (23) below).

Equation (18) shows that the product c e H e0 n= ( ) ( ) is
conserved during the evolution. Similarly, it is straightforward
to determine the evolution of the dimensionless pericenter

distance,
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(Peters 1964), where c c21 0
2 3p= -( ) , and in the second and

third lines we expressed the evolution with the initial condition

p0r and e0, or the “final condition” at the LSO, which satisfies

e
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in the leading-order approximation in the test-mass geodesic
zero-spin limit (Cutler et al. 1994). This shows that the
evolution may be parameterized with the single parameter
eLSO, or with the two parameters p0r and e0. Note that for any e,
the orbital frequency depends only on the single parameter c0,
which is set uniquely by eLSO and M ztot, as

c
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We restrict our interest to the repeated burst (O’Leary
et al. 2009; Kocsis & Levin 2012) and eccentric inspiral phases
of the waveform model between e e e0 1LSO 0  < and
ignore the merger and ringdown phases in this analysis. The
repeated burst phase starts when the binary is formed with
initial eccentricity e0>0.9 and initial dimensionless pericenter
distance p0r , and the eccentric inspiral phase ends when the
binary reaches the LSO with eccentricity eLSO. Note that during
the evolution, e and ρp both shrink strictly monotonically
in time.
Let us also note for further use that the Keplerian red-

shifted orbital frequency at the end of the assumed eccentric
inspiral waveform (i.e., at the LSO) is given by Equations (14)
and (21) as
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Precession leads to a time-dependent γ in Equation (12).
Using the analysis in Mikóczi et al. (2012), we adopt pericenter
precession from classical relativistic motion, and assume that
the adiabatic evolution of the orbital parameters is governed by
Equations (15) and (16). The angle of precession for a single
eccentric orbit in the test-particle geodesic approximation
around a Schwarzschild BH is
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Using an adiabatic approximation, we approximate the red-
shifted precession rate to be constant during the orbit with
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The phase functions given by Equations (11) and (12) can be
calculated from Equations (15) and (18) as7
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(Cutler & Flanagan 1994). The phase functions, which arise
due to precession, tnF+( ) and tnF

-( ), follow from Equations (12),
(18), (25), and (26),
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where cg is the angle of periapsis extrapolated to coalescence.
Note that p0r , tc, cg , Φc, and eLSO are free parameters of the
waveform. Alternatively, we may use the corresponding initial
values e0, t0, γ0, Φ0, and p0r .

2.2. The Waveform in the Frequency Domain

Since the expressions defining the S/N and the Fisher matrix
are both given in Fourier space (Section 4), we construct the
Fourier transforms of the waveform8

h f h t e dt, 28if
, ,

2ò= p
+ ´

-¥

¥

+ ´˜ ( ) ( ) ( )

where h t+( ) and h t(́ ) are given in Equations (1) and (2) as an
infinite sum over orbital harmonics n. In the stationary
phase approximation, each frequency harmonic splits into a
triplet due to precession (see Equation (25)), f f f,n nº ( )
(Moreno-Garrido et al. 1995; Mikóczi et al. 2012), where

f n , 29n n= ( )
f n , 30n n

g
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and the Fourier transform simplifies to
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ṅ and g̈ are given by Equations (16), (17), and (25), and
z1z = +( ) . The nY and nY phases and their first

( ,n nY Y˙ ˙ ) and second ( ¨ , ¨
n nY Y) derivatives with respect to

redshifted time t are (Mikóczi et al. 2012)

e f f t, 2 , 35n n n n npY = - F( ) ( )

e f f t, 2 . 36n n n n npY = - F    ( ) ( )

Here, the t t,n n
( ) parameters of the stationary phase approx-

imation specify the times at which the orbital frequency satisfies
Equations (29) and (30) for a given f f,n n

( ); see Appendices A
and B in Mikóczi et al. (2012) for details. In Equations (35)
and (36), ,n nF F( ) are to be substituted from Equations (26)
and (27). We eliminate tn ( ) and e(t) for f f,n n

( ) using
Equations (18), (22), and (25) together with Equations (29)
and (30) to obtain the frequency-domain waveform.9 The result
depends on constant parameters tc, Φc, γc, eLSO, z , and M ztot, .
Further, we note that if the precessing eccentric BH binary forms
with p0r and e0, then the frequency-domain waveform is
truncated at the corresponding minimum frequency fn,min( ,

f n n,n,min 0 0 0n n g p=  ) ( ˙ ). Furthermore, the waveform
model becomes invalid after reaching the LSO (with p LSOr and
eLSO), which corresponds to a maximum frequency for each
harmonic fn,max( , f n n,n,max LSO LSO LSOn n g p=  ) ( ˙ ), where
this model is applicable. If we truncate the waveform at these
maximum frequencies, this respectively introduces an explicit

e,p0 0r( ) and e,p LSO LSOr( ) parameter dependence in the
waveform model. This is shown in Equation (104) in
Appendix D. Examples of the frequency-domain waveforms
are shown in Kocsis & Levin (2012).
In principle, the number of spectral harmonics of an

eccentric binary system is infinite. Note, however, that a large
fraction of the signal power is accumulated in a finite number
of harmonics. Therefore, in order to reduce the necessary
computation time, we truncate n at n emax 0( ) (O’Leary
et al. 2009; Mikóczi et al. 2012),

n e
e

e
5

1

1
, 37max 0

0
1 2

0
3 2

=
+
-

⎧⎨⎩
⎫⎬⎭( ) ( )

( )
( )

which accounts for 99% of the signal power (Turner 1977).
Here, the bracket {} denotes the floor function. In Appendix D,
we discuss other technical details to optimize the calculation of
the S/N and the Fisher matrix.
To test our calculations, we examine the limiting cases of no

precession 0g ( ˙ ) and circular orbits (e 0 ), respectively.
In Appendix D, we discuss numerical and analytical tricks to
optimize the calculation and discuss the results for the

7 For circular orbits, the Fourier phase is conveniently parameterized by ν
(Cutler & Flanagan 1994). However, for eccentric inspirals, since en ( ), eṅ ( ),
and e e˙( ) are given analytically in the PN approximation, the phase is more
conveniently parameterized by e (O’Leary et al. 2009; Mikóczi et al. 2012).
8 We find that modulations due to the Earth’s rotation around its axis and the
Earth’s motion around the Sun can be ignored because the signal spends a
relatively short time in the advanced detectors’ sensitive frequency band (see
Appendix C).

9 In practice, there are closed analytic expressions for the e-dependence of ν,
ṅ , ġ , g̈ , nF , and nF, and hence also for fn and fn

. We must invert these
relations fn(e) and f en

 ( ) to obtain the waveform in the frequency domain.
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precessing (Prec) and precession-free (NoPrec) waveform
model (i.e., 0g º˙ ).

3. GW Detectors Used in the Analysis

Here we summarize the GW detectors and the assumed
properties of the detector noise in our analysis.

The aLIGO and AdV detectors completed their first two
observing runs and made the first six detections of GWs
(Abbott et al. 2016c, 2016d, 2017a, 2017b, 2017c, 2017d).
Two additional GW detectors are planned to join the network
of aLIGO and AdV: (i) the Japanese KAGRA is under
construction with baseline operations beginning in 2018
(Somiya 2012), while (ii) the proposed LIGO-India is expected
to become operational in 2022 (Iyer et al. 2011; Abbott
et al. 2016f). LIGO-India was approved by the government of
India and a study has already suggested the site location and
orientations of the arms of the detector based on scientific
figures of merit (Raffai et al. 2013). These parameters,
however, have not been finalized yet, and because of this we
omit LIGO-India from the analysis.

Due to the expected similarities in the design sensitivities of
the aLIGO, AdV, and KAGRA detectors within the frequency
range of BH inspiral waveforms, for simplicity we adopt the
design sensitivities of the two aLIGO (Abbott et al. 2016f) for
the AdV (Abbott et al. 2016f) and KAGRA (Somiya 2012)
detectors. Table 1 gives the locations and orientations of these
detectors, which we used to calculate the response functions.
For each detector, we define the detector’s orientation angle, ψ,
as the angle measured clockwise from north between the x-arm
of the detector (see Appendix B for the geometric convent-
ions of detectors) and the meridian that passes through the
position of the detector.

We assume that the noise in each detector is a stationary
colored Gaussian with zero mean, and that it is uncorrelated
between the different detectors. In reality, the detector noise
arises from a combination of instrumental, environmental, and
anthropomorphic sources that are difficult to characterize
precisely (Aasi et al. 2012, 2015; Aso et al. 2013), and non-
Gaussian noise transients (glitches) may arise as well (Black-
burn et al. 2008). However, there are existing techniques to
identify and remove glitches from GW strain channels and to
reduce the level of these artifacts (Littenberg & Cornish 2010;
Prestegard et al. 2012; Biswas et al. 2013; Powell et al. 2015;
Bose et al. 2016; Torres-Forné et al. 2016; George et al.
2017; Mukund et al. 2017; Powell et al. 2017; Shen et al.
2017). Furthermore, correlated noise between widely separated
detectors can arise from the so-called Schumann resonances
(predicted in Schumann 1952a, 1952b and observed soon
thereafter (Schumann & König 1954; Balser & Wagner 1960)),

as well as from other EM phenomena such as solar storms,
currents in the van Allen belt (Rycroft 2006), and anthro-
pogenic emission (see Shvets et al. 2010; Thrane et al. 2013,
and references therein). Note, however, that Schumann
resonances mostly affect the stochastic GW background
searches (Thrane et al. 2013), and a strategy against such a
noise artifact already exists (Thrane et al. 2014). Our
simplifying assumptions on uncorrelated Gaussian noise are
therefore partly justified.

4. Overview of the Fisher Matrix Formalism

In this section, we provide a brief overview of the Fisher
matrix method to estimate the measurement errors of the
physical parameters characterizing a precessing eccentric BH
binary source, and refer the reader to Finn (1992) and Cutler &
Flanagan (1994) for further details.
The output of a GW detector, s(t), is a combination of a

signal, h(t), and a noise term, n t ,( ) i.e.,

s t h t n t . 38= +( ) ( ) ( ) ( )

We assume the noise of a detector to be stationary, zero mean,
and Gaussian, where the different Fourier components of the
noise are uncorrelated, i.e.,

n f n f f f S f
1

2
39n* dá ¢ ñ = - ¢˜( ) ˜ ( ) ( ) ( ) ( )

(Nissanke et al. 2010), where á ñ· denotes the average, Sn( f ) is
the one-sided noise power spectral density of the detector, and
the * superscript denotes complex conjugate. With these
assumptions, the probability for the noise to have some
realization n t0 ( ) is given as

p n n e 40n n
0

20 0º µ -( ) ( )( ∣ )

(Finn 1992), where p(n) is the probability distribution function
of the noise to assume a value n, and ¼ ¼( ∣ ) denotes the
following inner product between any two functions of
frequency, e.g., x( f ) and y( f ):

x y
x f y f

S f
df4 . 41

n0

*
òº

¥
( ∣ ) ˜( ) ˜ ( )

( )
( )

The optimal S/N is given by the standard expression

h h
h f

S f
dfS N 4 . 42

n0

2

ò= =
¥

( ∣ ) ∣ ˜( )∣
( )

( )/

Here, the signal waveform, h( f ), depends on the parameter
set p P1pl Î ¼{ ∣ { }}, which characterizes the source.
For a large S/N, the parameter estimation errors lD =

p P1, ,plD Î ¼{ ∣ { }}defined as the measured value minus
the true value have the Gaussian probability distribution for a
given signal

p exp
1

2
43ij i jl l lD = - G D D⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

(Finn 1992), where  is a normalization constant. In
Equation (43), we assume summation over repeated indices,
and Γij is the Fisher information matrix defined as

h h
h f h f

S f
df4 , 44ij i j

i j

n0

*
òG º ¶ ¶ =

¶ ¶¥
( ∣ )

( ˜ ( ) ˜( ))
( )

( )
R

Table 1
Locations and Orientations of the Considered GW Detectors in the Coordinate

System Defined in Appendix B

Detector East Long. North Lat. Orientation ψ

LIGO H −119°. 4 46°. 5 −36°
LIGO L −90°. 8 30°. 6 −108°
VIRGO 10°. 5 43°. 6 20°
KAGRA 137°. 3 36°. 4 65°

Note. LIGO H marks the advanced LIGO detector in Hanford, WA, and LIGO
L marks the advanced LIGO detector in Livingston, LA.
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where h hi il¶ = ¶ ¶ and R labels the real part.
Following Cutler & Flanagan (1994), we define the

combined S/N of a network of detectors (S Ntot) as an
uncorrelated superposition of individual S/Ns,

S N S N , 45
k

N

ktot
2

1

2
det

å=
=

( ) ( ) ( )/ /

where the number of detectors in the network is denoted by
Ndet, and S N k( ) denotes the S/N in the kth detector.

Similarly, for uncorrelated Gaussian noise, the Fisher matrix
of a network of detectors is the sum of the Fisher matrices of
individual detectors,

. 46ij
k

N

ij k,tot
1

,

det

åG = G
=

( )

The covariance matrix is defined with the inverse of the Fisher
matrix,

, 47ij ij i j,tot
1 l lS = G = áD D ñ-( ) ( )

where the angle brackets denote an average over the probability
distribution function in Equation (43). The root mean square
parameter measurement error σi in the parameters λi margin-
alized over all other parameters is

. 48i i ii
2 1 2s l= á D ñ = S( ) ( )

The off-diagonal elements of Σij give the cross-correlation
coefficients between the parameters λi and λj.

Parameters can be measured independently if the corresp-
onding Fisher matrix ij,totG is nonsingular. Otherwise, if the
Fisher matrix is singular, then the eigenvector(s) corresponding
to the zero eigenvalue(s) of the Fisher matrix represents the
linear combination(s) of the parameters, which cannot be
measured by the network.

We derive efficient formulae to compute the S/N and the
Fisher matrix in Appendix D.

5. Measuring the Parameters of Precessing Eccentric
BH Binaries

In this section, we identify the parameters of a precessing
eccentric binary that can be extracted from the detected
waveform for the signal model introduced in Section 2. We set
the parameters in our calculations and measure their errors as
follows:

1. D :L We set D 100 MpcL = , and measure its relative error
D D DlnL

2 1 2
L L

2 1 2áD ñ = á D ñ( ) . This choice is arbi-
trary, smaller than the nearest circular BH–BH merger
detection to date, 340±140Mpc (Abbott et al. 2017b).
The Fisher matrix method gives accurate results for the
parameter measurement errors for high S/N. For
moderately larger distances, the errors scale as DLµ .

2. Nq and fN: We generate an isotropic random sample of
the sky position angles θN and fN by drawing cos Nq and
fN from a uniform distribution between [−1, 1] and [0,
2π], and calculate the parameter estimation covariance for
each sample. The errors of the sky position is described
by a localization ellipse. We characterize the sky-
localization accuracy either by the corresponding proper
angular length of the semimajor and semiminor axes of
the sky-localization error ellipsoid given by Lang &

Hughes (2006), a b,N N( ), or its proper solid angle
a bN N NpDW = . The calculated results are valid if

a 1N  radian and b 1N  radian.
3. Lq and fL: We draw the angular momentum vector

direction angles from an isotropic distribution and
construct their error ellipsoids or solid angles similar to
that given for θN and fN.

4. mA and mB: We fix the fiducial component masses to
m m M30A B= = , consistent with the first discovered
source GW150914 (Abbott et al. 2016d). Such high-mass
sources are expected in GNs since mass segregation helps
to increase their numbers relative to the lower-mass
binaries, and the S/N is also higher for these binaries
(O’Leary et al. 2009). Since we ignore additional PN
corrections of the GW phase, we restrict the measurement
error estimation to z for calculations evaluated for
comparison in which we ignore precession. However,
generally, the assumed precessing eccentric waveform
model depends on two independent combinations of
component masses: z sets the inspiral rate, and M ztot,
sets both the apsidal precession rate and the final frequency
at the LSO. We calculate the relative errors for both of
these mass parameters and for the precessing eccentric
waveform model lnz z z

2 1 2 2 1 2  áD ñ = á D ñ( ) , and
similarly for M ztot, .

5. tc, Φc, and γ0: These parameters only enter in the complex
phase of the waveform through Ψn and nY (see
Equations (35) and (36)), but do not affect the S/N.
Since these parameters are responsible for an overall
phase shift of the waveform, we do not randomize their
values but assume the fiducial value t 0c c cg= F = = for
each binary in the Monte Carlo sample.

6. eLSO: The adopted eccentric inspiral waveform model
depends explicitly on the final eccentricity at the LSO;
see Equation (21). This quantity parameterizes the
evolutionary path of the binary during its eccentric
inspiral in the e,pr( ) plane as shown in Equations (20)
and (21); see also Figure 3 in Kocsis & Levin (2012) for
illustration. In fact, any segment of the evolutionary path

epr ( ) specifies the value of eLSO uniquely. Conversely,
eLSO specifies epr ( ), which sets a constraint on the
possible values of e,p0 0r( ), if the PN binary inspiral
model is extrapolated backwards in time. Indeed, in some
cases, this is the only indirect information we may have
on the formation parameters e,p0 0r( ). In particular,
e 10  puts an upper bound on p0r for a given eLSO.

10

7. e0: We choose several e0 values from the highly eccentric
(e0�0.9) limit when discussing the e0 dependence of the
measurement errors (see Section 6.2). However, we
restrict to e0=0.9 for calculations of a large survey of
binaries.11

8. p0r : We examine two values for the dimensionless initial
pericenter distance 10, 20p0r = { }, and the circular limit
corresponds to p0r  ¥ (O’Leary et al. 2009). These
values are likely for sources that form through the
GW capture mechanism in high-velocity dispersion

10 When studying the measurement errors for non-precessing eccentric
binaries, the waveform depends explicitly on a single combination of the
eLSO and M ztot, parameters, c0 (Section 2.1). Therefore, we use c0 for the
NoPrec model to avoid a singularity of the Fisher matrix.
11 We note that the e0 dependence of the waveform is due to the truncation of
the time-domain waveform for times when e<e0.
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environments such as in GN, as shown in O’Leary et al.
(2009) and Gondán et al. (2017), or the core-collapsed
regions of star clusters without a central massive BH
(Kocsis et al. 2006b; Antonini & Rasio 2016).

If the peak GW frequency of the initial orbit is large enough
to be in the detectors’ sensitive frequency band, then p0r and e0
are directly measurable due to the truncation of the time-
domain waveform for times when e<e0 and p p0r r> . In the
opposite case, only a lower limit may be given for p0r , which
corresponds to e 10  (Kocsis & Levin 2012).

In summary, we use the following free parameters in the
Fisher matrix analysis,

D M e

e t

ln , ln , ln , , , , , ,

, , , .
49

L z z N N L L

c c c

Prec tot, 0

LSO

l q f q f
g

=
F

{ ( ) ( ) ( )
}

( )

Given these parameters, the other parameters’ marginalized
measurement errors may be determined by linear combinations
of the covariance matrix based on Equation (48). For example,

p0r is given by e0 and eLSO using Equations (20) and (21). Its
measurement error is

e e

e
e

e e

e
e

e e

e

e e

e
e e

,

,

2
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.
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⎛
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The parameter estimation errors of individual component
masses or the mass ratio can be estimated similarly using

MtotD and D after inverting M m m,a btot ( ) and m m,a b( ).

6. Results

The measurement errors depend on the sky position of the
source with respect to the detectors and on the relative
orientation of the binary. We generate random Monte Carlo
samples of ∼4500 binaries by drawing from isotropic
distributions of the sky position and of the binary-orientation
normal vector. We present the results for the S Ntot for
detecting precessing highly eccentric BH binaries with the GW
detector network described in Table 1 and for the expected
parameter measurement errors.

6.1. S/N Distributions

Figure 1 displays the distribution of the S/Ntot for precessing
highly eccentric BH binaries detected with the detector network
described in Table 1, assuming binary parameters m mA B= =

M30 , e0=0.9, 10, 20p0r = { }, and similar binaries in the
circular limit (see Appendix A for details). Generally, similar to
the results of O’Leary et al. (2009; see Figure 11 therein, which
corresponds to a single aLIGO detector), the S/Ntot is system-
atically higher for binaries with 10p0r = than for binaries with

20p0r = . We find that increasing the initial eccentricity from
e0=0.9 to 0.97 for a fixed p0r does not change the S/Ntot

significantly (see Table 3 below), hence we expect that the
distribution of S/Ntot for fixed ρp0 converges in the e 10  limit.

This is expected since Figure 10 in O’Leary et al. (2009) shows
that a low value of the S/Ntot accumulates near e0≈1 for low to
moderately high BH masses.
Figure 2 shows that the S/Ntot increases rapidly with ρp0 for

low ρp0, has a maximum between ρp0∼9 and 20, and decreases
for higher ρp0 approaching the circular binary limit for p0r  ¥.
These findings may be understood qualitatively as follows.
Within M M40.9 20zp0 tot,

2 3r -
( ) , the binary forms with

a characteristic frequency above 10 Hz in the detector band

Figure 1. Smoothed probability density function of the total network signal-to-
noise ratio (S Ntot) of gravitational-wave detection from 30 M–30 M precessing
eccentric BH binaries with initial eccentricity e0=0.9 and dimensionless
pericenter distance ρp0=10 and 20 (green dashed and red dashed–dotted lines)
and similar binaries in the circular limit (blue solid) at luminosity distance
DL=100 Mpc with a random source direction and orientation. Distributions
correspond to a Monte Carlo sample of 4500 binaries. The parameters of the
assumed detector network are given in Table 1. The medians of the S/Ntot

distributions are 108.7, 202.7, and 137.3 in the circular limit and for binaries with
ρp0=10 and 20, respectively. Systematically higher S/Ntot values for precessing
highly eccentric BH binaries implies that they are detectable to a larger distance
compared to precessing eccentric BH binaries in the circular limit.

Figure 2. S/Ntot of precessing eccentric BH binaries as a function of their initial
dimensionless pericenter distance ρp0. Parameters of the assumed detector
network are given in Table 1. Here, the luminosity distance is DL=100 Mpc,
the initial eccentricity is e0=0.9, and the source direction and orientation
angular parameters are fixed at θN=π/2, fN=π/3, θL=π/4, and fL=π/5.
Depending on the binary mass, the S/Ntot has a maximum at ρp0 between 9 and
20, and converges asymptotically to the value of precessing eccentric binaries in
the circular limit for high ρp0. Note that we find similar trends with ρp0 for other
random choices of binary direction and orientation (not shown).
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(see Equation (59) in Gondán et al. 2017). The rapid decrease
of the S/Ntot for decreasing 9p0r < is due to the fact that we
ignore the GWs of the first hyperbolic encounter (Kocsis et al.
2006b). The decrease of the S/Ntot at high ρp0 is due to the fact
that part of the GW spectrum falls outside of the detectors’
sensitive frequency band. For very large ρp,0, the binary becomes
circular by the time it enters the detectors’ sensitive frequency
band, and a significant fraction of the S/Ntot accumulates only in
the n=2 harmonic (Figure 9), which explains the flat
asymptotics for high ρp0. As ρp0 decreases from high to moderate
values, higher harmonics start to contribute to the S/Ntot

(Figure 9), which explains the increase of the S/Ntot. A
combination of these arguments leads to the peak of the S/Ntot

at an intermediate ρp0 value seen in Figure 2. However, note that
in addition to ignoring the initial hyperbolic encounter and the
final coalescence/ringdown segments of the signal, our waveform
model also ignores contributions of spherical moments beyond the
quadrupole order and deviations from a precessing Keplerian orbit
(Davis et al. 1972; Berti et al. 2010; Healy et al. 2016). This
approximation may not be valid for low ρp0 (particularly for
ρp0�10). The S/N tot is expected to be underestimated in this
region in Figure 5.

6.2. Parameter Measurement Errors

We present the measurement accuracy for the final
eccentricity at the LSO for parameters grouped as

Dln , , , , , 51L N N L Lslowl q f q f= { ( ) } ( )
t M e, , ln , ln , , 52c c z z cfast tot, LSOl g= F{ ( ) ( ) } ( )

(Kocsis et al. 2007). The fastl fast parameters are related to the
high-frequency GW phase, while the slowl slow parameters
appear only in the slowly varying amplitude of the GW signal.
Slow parameters are mostly determined from a comparison of
the GW signals measured by the different detectors in the
network. For the polar angles ,N Nq f( ) describing the source
direction, we calculate the minor and major axes (a b,N N ) of the
corresponding 2D sky location error ellipse and its area
( a bN N NpW = ), and we do the same for the binary-orientation
error ellipse a b,L L( ) and its area ( a bN L LpW = ).

Figures 3 and 4 show the distribution of the measurement
errors for a randomly chosen source sky position and binary
orientation for 10p0r = and 20, and for the circular limit

p0r  ¥ (see Appendix A), while Table 2 shows the 10%,
50%, and 90% quantiles of the error distributions. Compared to
a ρp0=20 binary, a ρp0=10 binary is more eccentric
throughout its evolution, which leads to a higher S/Ntot, and
most of its measurement errors are smaller. There are, however,
exceptions to this finding: the fast parameters such as the mass
parameters and the eccentricity have higher errors for ρp0=10
than for ρp0=20 (see the discussion below).

Many of the binaries in GNs12 form with very high e0, close
to unity, in single–single encounters due to GW emissions
(O’Leary et al. 2009; Gondán et al. 2017). However, similar to
the finding that the S/Ntot does not increase significantly for
1>e0�0.9, we find that slowl parameter errors do not
improve due to the early very eccentric evolutionary period
beyond e>0.9 (repeated burst phase) compared to waveforms
with e0=0.9 as shown in Table 3. However, some fastl
parameters’ measurement errors improve more significantly

with e0>0.9. In particular, the measurement errors of the
mass parameters ( M,z ztot, ) improve by a factor of ∼2, and
the measurement error of eLSO improves by ∼50% if increasing
e0 from 0.9 for 0.97. This difference is due to the fact that
eccentricity modifies the GW phase significantly, which affects
the determination of the fastl parameters only.
We calculate the parameter measurement errors for precessing

highly eccentric BH binaries as a function of ρp0 for some
arbitrarily fixed binary direction and orientation. For one such
binary direction and orientation, Figure 5 shows the ρp0
dependence of D DL LD , z z D , e0D , p0rD , eLSOD ,
semimajor and semiminor axes of the sky position error ellipse
a b,N N( ), and semimajor and semiminor axes of the error ellipse
for the binary orbital plane normal vector direction a b,L L( ). Note
that we find similar trends with p0r for other random choices of
binary direction and orientation. We find that measurement errors
systematically decrease with decreasing ρp0 for precessing highly
eccentric binaries relative to similar binaries in the circular limit
(Appendix A), and the errors have a minimum in the range
8<ρp0<80 and deteriorate rapidly for ρp0<8. The latter is
due to the rapid decrease of the S/Ntot in that range. The ρp0
dependence of D DL LD and the principal axes of the sky-position
and binary-orientation error ellipses a b,N N( ) and a b,L L( ) (i.e., the
quantities derived from the slow parameters; see Section 5) are
qualitatively similar to that of 1/(S/Ntot) in the complete range of
ρp0 (i.e., they decrease rapidly with ρp0 for low ρp0, have a
minimum at moderate ρp0, and converge asymptotically to the
value of precessing highly eccentric binaries in the circular limit);
see Figure 6 for details. However, Figure 5 shows that the chirp
mass errors have a minimum at a much higher ρp0, i.e., between
50–60 and 20–40 for 10 M–10 M and 30 M–30 M preces-
sing highly eccentric BH binaries, respectively. The main reason
for the different behavior of the chirp mass from the distance and
angular errors is the chirp mass is a fast parameter, while the
distance and angular parameters are slow parameters. Slow para-
meters are insensitive to the GW phase perturbations and depend
on the GW amplitude, which is set by the S/Ntot. The S/N of the
early part of the waveform near the low-frequency noise wall of
the detector is small. However, fast parameters depend sensitively
on the GW phase, and the GW phase accumulates mostly at low
frequencies, since the residence time (i.e., n ṅ) is largest at low
orbital frequencies. Thus, the fast parameters’ errors are
minimized for binaries that form with e0∼1 with a ρp0 value
for which the GW characteristic frequency is near the detectors’
minimum frequency. The peak of the spectrum is initially at
fmin if M M f40.9 20 10 Hzp0 tot

2 3
min

2 3r = - -
[ ( )] ( ) (Gondán

et al. 2017). A slightly lower value of f 7 Hzmin ~ leads to values
that represent the minimum of the fast parameters. This also leads
to the result observed in Figure 3 that these parameters have
higher errors for ρp0=10 than for ρp0=20.
In Figure 5, note that the ΔeLSO errors are relatively small

for relatively high ρp0 up to ρp0∼200. At high ρp0, the
orbital eccentricity approaches zero when it enters the aLIGO
band, and ΔeLSO increases. We note that the posterior
probability distribution function of eLSO is well-defined even
in the circular limit p0r  ¥, and ΔeLSO is finite for a given
confidence region. However, the Fisher matrix algorithm
becomes invalid in this regime as the signal is not
approximated well by its linear Taylor expansion with respect
to the ΔeLSO parameter, since its first eLSO derivative vanishes
in the circular limit. Therefore, the true asymptotic value of
ΔeLSO for high ρp0 cannot be recovered with the Fisher matrix12 Particularly the heavy BHs therein (Gondán et al. 2017).
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technique used in this paper. Further, note that Δe0 and Δρp0
also increase rapidly with ρp0 for high ρp0. This is due to
the fact that for these parameters, the binary forms with
a pericenter frequency smaller than the minimum frequency of
the detector network, and the information on e0 and ρp0 is
limited to higher harmonics with small power. Thus, these
parameters indeed have a very high error and become
indeterminate in the circular limit. The fact that the relative
error of e0 and ρp0 can be less than ∼5% percent in the
range 5<ρp0<50 (6<ρp0<100) for 30 M–30 M
(10 M–10 M) precessing highly eccentric BH binaries

implies that the GW detections might have the potential to
constrain the formation environment of these systems (O’Leary
et al. 2009; Cholis et al. 2016; Rodriguez et al. 2016a, 2016b;
Chatterjee et al. 2017; Gondán et al. 2017; Kocsis et al. 2017;
Samsing & Ramirez-Ruiz 2017; Silsbee & Tremaine 2017).
Furthermore, we found from numerical investigations that Δe0

does not correlate significantly with other parameters’ errors, which
is due to the fact that e0 is measured from the truncation of the
signal for e>e0 at the start of the waveform, while other
parameters of a precessing eccentric binary are measured from the
inspiral rate (Section 5). However, Δρp0 behaves differently from

Figure 3. Smoothed distribution of the measurement errors of parameters measured for 30 M–30 M precessing eccentric BH binaries with initial eccentricity e0=0.9 and
dimensionless pericenter distance ρp0=10 and 20 (green dashed and red dashed–dotted lines) and for similar binaries in the circular limit (blue solid) at luminosity distance
DL=100 Mpc with a random source direction and binary orientation. We have assumed the detector network specified in Table 1. Top row: distribution of the relative
measurement error of luminosity distance, D D DlnL L LD = D( ), and redshifted chirp mass, lnz z z  D = D( ). Middle row: distribution of semimajor axis of the
sky position error ellipse, aN, and its semiminor axis, bN. Bottom row: distribution of the semimajor axis of the binary’s orbital plane orientation error ellipse, aL, and its
semiminor axis, bL.
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Δe0 in this regard, which is due to the fact that ρp0 is determined by
eLSO in Equation (50), and eLSO depends on the mass parameters.

6.3. Comparison with Previous Results

In this paper, we have determined the S/N and the expected
accuracy with which the aLIGO–AdV–KAGRA detector network
may determine the parameters that describe highly eccentric BH
binaries, and investigated how these quantities depend on the initial
pericenter distance ρp0 and initial eccentricity e0. There are some
previous studies that also made similar investigations for eccentric
compact binaries with significant differences (Yunes et al. 2009;
Kyutoku & Seto 2014; Sun et al. 2015; Ma et al. 2017). They
considered different detector networks, applied different waveform
models, and used different definitions for e0 and ρp0. As a
consequence, only a qualitative comparison is possible with those
results, which we discuss in this section. At the end of this section,
we compare our results for the measurement errors in the circular
limit with those presented in previous studies.

We first compare our results with a previous study for the ρp0
dependence of the S/Ntot. Our result for the ρp0 dependence of the
S/Ntot (Figure 2) is qualitatively in agreement with the result of
Figure 2 in Kyutoku & Seto (2014), i.e., the S/Ntot increases
rapidly with ρp0 for low ρp0, peaks at a moderate ρp0, and
converges asymptotically to the value of highly eccentric binaries
in the circular limit for high ρp0.

In order to compare our results for the e0 dependence of the
S/Ntot with Yunes et al. (2009) and Sun et al. (2015), we also set

the lower bound of the advanced GW detectors’ sensitive
frequency band to f 20 Hzmin = . We define e20 Hz to be the
eccentricity at which the peak GW frequency of the binary defined
in Wen (2003) is f 20 HzGW = , and evaluate ρp0 corresponding
to e e0 20 Hz= from Equation (37) in Wen (2003) as

e f M1 . 53z20 Hz 20 Hz
0.3046

GW tot,
2 3r p= + -[( ) ] ( )

We recalculate the distribution of the S/Ntot for 10 M–10 M
precessing eccentric compact binaries with e20 Hz =
0.1, 0.2, 0.3, 0.4( ). The top panel of Figure 7 shows that the
S/Ntot is roughly the same for different e20 Hz, which is consistent
with the results presented in Figure 2 in Sun et al. (2015) and in
the left panel of Figure 8 in Yunes et al. (2009). Moreover, we
find that the S/Ntot increases weakly with e20 Hz, which is in
agreement with the results in the left panel of Figure 8 in Yunes
et al. (2009). Note that this result disagrees with Table 5 in Sun
et al. (2015). The S/Ntot does not depend significantly on e20 Hz in
the range of [0.1,0.4] for 10 M–10 M for 28p0 20 Hzr r= ~ as
seen in the bottom panel of Figure 7.13 For 10 M–10 M binaries
with e0<0.4 and ρp0∼28, we find that 20 Hzr is high enough to
fall into the range of ρp0, where the S/Ntot depends on e0 at the

Figure 4. Smoothed distribution of the measurement errors of various parameters measured only for precessing eccentric binaries. Similar to Figure 3, these distributions
correspond to a Monte Carlo sample of 4500 binaries with random source direction and binary orientation for 30 M–30 M precessing eccentric BH binaries with initial
eccentricity e0=0.9 and dimensionless pericenter distance ρp0=10 and 20 (green dashed and red dashed–dotted lines). The source distance is also fixed at DL=100 Mpc,
and the detector network is specified in Table 1. Top left: distribution of the measurement error in the initial orbital eccentricity, e0. Top right: distribution of the measurement
error in the initial dimensionless pericenter distance, ρp0. Bottom: distribution of the measurement error in the eccentricity at the last stable orbits, eLSO.

13 For binaries with relatively high ρp0, binaries are well-circularized by the
time their peak GW frequency enters the sensitive frequency band of advanced
ground-based GW detectors, thus the information about the initial eccentricity
vanishes from the detectable part of the waveform. This explains the very weak
e0 dependence of the S/Ntot and of the parameter measurement errors for high
ρp0 in the bottom panel of Figures 7 and 8.
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∼10% level for e 0.420 Hz < . The influence of e20 Hz on the
S/Ntot increases with Mtot since in this case 20 Hzr is lower as
shown by Equation (53). Thus, the influence of e20 Hz on the
distribution of S/Ntot is more significant for higher-mass low-
eccentricity binaries. Examples for this characteristic of the S/Ntot

are seen in Figure 8 in Yunes et al. (2009).
Finally, we compare our results with previous studies for the e0

dependence of the measurement errors of the parameters
describing eccentric binaries. Sun et al. (2015) and Ma et al.
(2017) set the initial orbital parameters to be e20 Hz (e10 Hz) and

20 Hzr ( 10 Hzr ). For various values of e20 Hz (e10 Hz) in the range
[0.1, 0.2, 0.3, 0.4] and the corresponding values of 20 Hzr ( 10 Hzr ),
they determined the measurement accuracies for various
parameters of eccentric binaries. Since they applied different
waveform models and different parameters describing the
eccentric binaries, we resort to a qualitative comparison. We
repeated the analysis of Figure 5 for e0=(0.1, 0.2, 0.3, 0.4) and
determined the measurement error of parameters as a function of
ρp0 as shown in Figure 8. We find qualitative agreement with Sun
et al. (2015) and Ma et al. (2017). The measurement accuracies of
the parameters increase strictly monotonically with e0.

Previous papers have investigated the Mtot dependency of the
measurement errors for t , , ln , lnc c z hF{ ( ) ( )} by using different
PN order waveform models for non-spinning inspiraling binaries
for a fixed S/N in a single aLIGO-type detector. Previous results
showed that the measurement accuracy of these parameters
decreases with increasing Mtot for 2.8 M�Mtot�20 M,
provided that the S/N accumulated in one GW detector is fixed;
see Table 1 in Arun et al. (2005) and references therein.
Therefore, we determined the measurement errors in the circular
limit for t , , ln , lnc c z hF{ ( ) ( )} for a qualitative comparison.14

To calculate the measurement error of the ln (η) parameter, we use
the fact that Mz ztot,

1 5 3h = -( ) and so
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In agreement with the 1PN-order case in Arun et al. (2005), we
find that Δtc, ΔΦc, z z D , and Δη/η increase with Mtot

for fixed S/Ntot (Table 4). Such a qualitative agreement is
expected since the adopted precessing eccentric waveform
approximates the full 1PN waveform in its most important
features, and the Mtot-dependent trends of error distributions do
not depend on the number of detectors or on the sky position or
angular momentum unit vectors of the source.

7. Summary and Conclusion

We carried out a Fisher-matrix-type study to determine the
accuracy with which the parameters of highly eccentric BH
binaries may be measured using the aLIGO–AdV–KAGRA
GW detector network. Eccentricity changes the GWs of
binaries compared to circular binaries in several ways. In the
time domain, the gravitational waveform of eccentric binaries
is quasiperiodic but not sinusoidal. Relativistic precession adds
a slow amplitude modulation to the waveform for each
polarization. Eccentricity also changes the inspiral rate at
which the binary separation and period shrink. We take all of
these effects into account using the stationary phase approx-
imation (Moreno-Garrido et al. 1994; Mikóczi et al. 2012). In
contrast to circular binaries, the waveform of eccentric binaries

Table 2
The 10%, 50%, and 90% Quantile of Measurement Errors for Parameters of 30 M–30 MPrecessing Eccentric BH Binaries with Initial Eccentricity e0=0.9 and

Dimensionless Pericenter Distance 10p0r = and 20, and Circular Binaries at Distance D 100 MpcL = , Random Source Sky Location,
and Orientation Using the Detector Network in Table 1

ρp0 10 10 10 20 20 20 Circular Circular Circular
Quantile 10% 50% 90% 10% 50% 90% 10% 50% 90%

Dln LD( ) 1.13(–2) 2.49(−2) 7.21(−2) 1.89(−2) 4.36(−2) 0.154 8.81(−3) 5.86(−2) 0.311
srNDW [ ] 1.13(−5) 1.46(−4) 7.23(−4) 2.21(−4) 7.28(−4) 2.89(−3) 5.65(−5) 1.58(−3) 6.67(−3)
srLDW [ ] 7.89(−5) 3.85(−3) 0.13 2.21(−5) 1.13(−2) 0.85 4.36(−4) 2.21(−2) 9.6

a degN [ ] 0.14 0.62 2.42 0.57 1.36 4.07 0.28 2.01 5.16
b degN [ ] 0.11 0.22 0.48 0.26 0.52 0.98 0.41 0.76 1.44
a degL [ ] 0.96 2.78 20.04 1.44 4.65 45.48 0.78 6.98 2.02(+2)
b degL [ ] 0.55 1.33 7.51 0.84 2.46 20.58 0.32 3.41 50.63

radcDF [ ] 9.27(−2) 0.23 0.71 0.29 0.66 2.44 0.36 0.72 57.91
t mscD [ ] 4.32(−2) 8.41(−2) 0.181 9.28(−2) 0.167 0.311 9.41(−2) 1.582 3.011
ln zD( ) 3.53(−5) 6.17(−5) 1.71(−4) 1.04(−5) 1.81(−5) 3.42(−5) 1.36(−3) 2.34(−3) 4.27(−3)

Mln ztot,D( ) 5.42(−4) 9.51(−4) 2.43(−3) 2.82(−4) 4.81(−4) 9.18(−4) 5.88(−3) 1.13(−2) 1.81(−2)
eLSOD 1.18(−4) 2.16(−4) 5.83(−4) 2.39(−5) 3.19(−5) 5.88(−5) L L L

Δ e0 1.44(−3) 2.16(−3) 3.95(−3) 1.72(−3) 2.91(−3) 5.79(−3) L L L

p0rD 6.64(−3) 1.08(−2) 2.28(−2) 1.33(−2) 2.29(−2) 4.58(−2) L L L

radcgD [ ] 0.04 0.11 0.47 0.14 0.34 1.51 L L L

Note. Here, a b, ,N N NW( ) are, respectively, the area, and the semimajor and semiminor axes of the 2D error ellipse corresponding to the source’s sky direction, and
similarly for a b, ,L L LW( ) describing the source’s orbital plane orientation (i.e., angular momentum vector direction). Note that e 0.187LSO = and 0.059 for 10p0r =
and 20, respectively, if e0=0.9 is assumed. In the circular limit, the binary forms outside of the sensitive frequency band of the detector network, and e0D  ¥ and

p0rD  ¥. We adopt the following notation in the table: 1.13 2 1.13 10 2- = ´ -( ) .

14 A quantitative agreement is not expected since our precessing waveform
model differs from the waveform models in those studies.
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includes several prominent orbital frequency harmonics,
general relativistic precession causes each harmonic to split into
three frequencies for both GW polarizations respectively, and the
eccentric inspiral creates a spectrum, which is different from the
h f 7 6µ -˜ waveform of circular inspiral sources for each
harmonic. These features in the waveform make it possible to
accurately determine the eccentricity and angle of periapsis, and
the modulated inspiral rate improves the measurement accuracy
of mass parameters for eccentric inspirals.

The main parameters that describe eccentric inspiraling
binaries are the initial pericenter distance ρp0 when the
eccentricity is close to unity and the final eccentricity at the
LSO eLSO. These parameters are systematically different for
different formation channels. Thus, their measurements may
have important implications on the astrophysical origin of the
sources (O’Leary et al. 2009; Cholis et al. 2016; Rodriguez
et al. 2016a, 2016b; Chatterjee et al. 2017; Gondán et al. 2017;
Samsing & Ramirez-Ruiz 2017; Silsbee & Tremaine 2017).
Based on a survey with 10 M–10 M and 30 M–30 M
precessing highly eccentric BH binaries at 100Mpc using the
planned aLIGO–AdV–KAGRA detector network, our results
can be summarized as follows:

1. The S/Ntot improves by a factor of ∼1–1.7 (depending
on ρp0, the component masses, and the sky-position and
binary-orientation angles; see Figure 1) for 30 M–30 M
precessing highly eccentric BH binaries compared to
similar binaries in the circular limit15 with the same
masses and distance. The volume in the universe for a
fixed maximum S/N is S N 5 23á ñ ~ ´ ´( ) ( ) larger for
eccentric inspiraling binaries with ρp0=10 (ρp0=20)
than for similar binaries in the circular limit.

2. We determined how the parameters’ measurement
accuracies depend on the initial dimensionless pericenter

distance (ρp0) for precessing highly eccentric BH
binaries. The smallest errors are obtained for small
ρp0<10 values for the sky position and angular
momentum and ρp0<20 for the luminosity distance and
ρp0. However, the errors for fast parameters, which are
sensitive to the GW phase, like the chirp mass, the initial
eccentricity, and the eccentricity at the LSO, improve
most significantly for a higher ρp0 between 10 and 80
(Figure 5).

3. The parameter estimation errors can improve significantly
for highly eccentric precessing BH binaries compared to
similar binaries in the circular limit by a factor of
(depending on ρp0, the component masses, and the sky-
position and binary-orientation angles; see Figures 3
and 5)
i. ∼1–200 for the mass errors,
ii. ∼1–4.5 for the semimajor and semiminor axes of the

sky-localization ellipse,
iii. ∼1–2 for the distance errors,
iv. ∼1–3 for the semimajor and semiminor axes of the

error ellipse for the binary orientation.
4. For initially highly eccentric BH binaries at DL=100Mpc,

the measurement errors for the parameters specific to
precessing highly eccentric BH binary sources may be as
low as of order (depending on ρp0, the component masses,
and the sky-position and binary-orientation angles; see
Figures 4 and 5)
i. 10−5 for the final eccentricity errors at LSO,
ii. 10−4 for the initial eccentricity errors,
iii. 10−3 for the initial pericenter distance.

For initially moderately eccentric to low-eccentricity bin-
aries, the parameter measurement errors and S/Ns improve by
a smaller amount for low to intermediate ρp0 (Figure 8).
Note that the eccentricity errors are remarkably low, which is

not surprising given that eccentricity is encoded in several
measurable features of the waveform, including the orbital

Table 3
Measurement Errors for Parameters of 30 M–30 M Precessing Eccentric BH Binaries with Initial Eccentricities e0=0.9, 0.95, and 0.97 for Initial Dimensionless

Pericenter 10p0r = and 20, Luminosity Distance DL=100 Mpc, and Arbitrarily Fixed Source Direction , 2, 3N Nq f p p=( ) ( ) and Orientation
, 4, 5L Lq f p p=( ) ( ) for the Detector Network Specified in Table 1

p0r 10 10 10 20 20 20
e0 0.9 0.95 0.97 0.9 0.95 0.97
eLSO 0.1872 0.1932 0.1956 5.89(−2) 6.07(−2) 6.15(−2)
S Ntot 251.1 257.7 260.4 179.4 182.1 182.9

Dln LD( ) 3.92(−2) 3.79(−2) 3.76(−2) 6.41(−2) 6.31(−2) 6.27(−2)
srNDW [ ] 8.37(−5) 7.78(−5) 7.53(−5) 4.06(−4) 3.91(−4) 3.85(−4)
srLDW [ ] 9.68(−3) 9.07(−3) 8.84(−3) 2.74(−2) 2.65(−2) 2.61(−2)

a degN [ ] 0.501 0.484 0.477 0.994 0.977 0.970
b degN [ ] 0.174 0.168 0.165 0.427 0.418 0.415
a degL [ ] 4.31 4.18 4.13 6.96 6.85 6.81
b degL [ ] 2.35 2.26 2.23 4.12 4.04 4.01

radcDF [ ] 0.331 0.313 0.308 1.102 1.049 1.031
t mscD [ ] 9.68(−2) 9.08(−2) 8.88(−2) 0.198 0.192 0.189
ln zD( ) 4.61(−5) 1.89(−5) 1.39(−5) 1.38(−5) 6.03(−6) 4.33(−6)

Mln ztot,D( ) 7.09(−4) 5.62(−4) 4.85(−4) 3.67(−4) 2.87(−4) 2.38(−4)
eLSOD 1.61(−4) 1.28(−4) 1.11(−4) 2.43(−5) 1.93(−5) 1.62(−5)

Δ e0 1.95(−3) 1.74(−3) 1.69(−3) 2.25(−3) 2.17(−3) 2.14(−3)

p0rD 8.33(−3) 7.45(−3) 7.11(−3) 1.71(−2) 1.61(−2) 1.56(−2)

radcgD [ ] 0.169 0.162 0.159 0.556 0.529 0.520

15 We adopted the leading-order stationary phase approximation waveform for
circular sources.
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Figure 5. Measurement error of source parameters as a function of initial dimensionless pericenter distance with all other binary parameters fixed as in Figure 2. First
row, left: luminosity distance D D DlnL L LD = D( ). First row, right: redshifted chirp mass, lnz z z  D = D( ). Second row, left: semimajor and semiminor axes
of the sky position error ellipse aN and bN. Second row, right: semimajor and semiminor axes of the error ellipse for the binary orbital plane normal vector direction, aL
and bL. Third row, left: initial orbital eccentricity, e0D . Third row, right: initial dimensionless pericenter distance, p0rD . Fourth row: eccentricity at the last stable orbit,

eLSOD . The measurement error of the parameters ( D a b a bln , ln , , , ,L z N N L L( ) ( ) ) converge asymptotically to the value for precessing eccentric binaries in the
circular limit for high p0r , and the measurement error of parameters ( e e, ,0 p0 LSOrD D D ) increase rapidly with p0r for high p0r . We find similar trends with p0r for
other random choices of binary direction and orientation (not shown). Note that the measurement error of eLSOD is undetermined for high p0r because the Fisher
matrix algorithm becomes invalid for this parameter in this regime; see Section 6.2 for details.
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harmonics, the splitting of each frequency harmonic into triplets,
the frequency evolution of harmonics (the “chirp”), the frequency
evolution of the distance between the spectral triplets, the low-
frequency cutoff of the signal at the initial pericenter frequency,
and the eccentricity dependence of the LSO where the inspiral
transitions into a rapid coalescence.

However, there are several factors that may significantly
increase the measurement errors in more typical cases. First, more
typical sources are expected to be at much larger distances than
100Mpc. Assuming crudely that the eccentricity errors scale with
DL, the median measurement errors for a 30 M–30 M precessing
highly eccentric BH binary at ∼410Mpc (similar to GW150914)
are expected to be e 8.8 10LSO

4D ~ ´ - (1.3 10 4´ - ) for the
final eccentricity at the LSO if 10p0r = (20) for the design
sensitivity of the aLIGO/AdV/KAGRA instruments. In these
cases, the expected median initial eccentricity error is

e 8.9 100
3D ~ ´ - (1.2×10−2), and the median initial pericen-

ter distance is 4.4 10p0
2rD ~ ´ - (9.4×10−2; see Table 2).

Another important simplifying assumption, which may have
skewed the errors to lower values, was to ignore higher-order
PN corrections that depend on the spin of the merging objects.
The spins of the two binary components introduce six
additional parameters, which may become partially degenerate
with all other parameters, thereby increasing their errors. On
the other hand, spin precession breaks degeneracies between
the binary orientation and other slow parameters (Lang &
Hughes 2006; Kocsis et al. 2007; Chatziioannou et al. 2014).
However, the eccentricity-induced orbital harmonics enter at
the Newtonian order, and the frequency triplets due to GR
precession enter at the low 1PN order. Therefore, the
eccentricity-related spectral features are already dominant at
the early stages of the inspiral when higher-order PN
corrections are negligible. For this reason, the estimated Δe0
and Δρp0 errors are expected to be robust. On the other hand,
most of the S/N accumulates at late times for stellar-mass BH
binaries, where the high-order PN corrections are significant.

We leave an estimate of the parameter estimation errors for
spinning binaries to future work.
Finally, an important simplification is the Fisher matrix

method itself, which is valid only if the waveform model is a
faithful representation of the GW signal and the noise is
Gaussian and sufficiently small that the S/N is sufficiently
large that the parameter error region is an ellipsoid in parameter
space and when the parameter derivate of the waveform is non-
vanishing. For smaller S/N, the parameter error region
geometry is more complex and the uncertainties are generally
higher (see Cornish & Littenberg 2015 and references therein).
The parameter estimation errors may also be affected by
theoretical uncertainties of the waveform model (Cutler &
Vallisneri 2007), which may be especially important for highly

Figure 6. Initial dimensionless pericenter distance dependence of D DL LD , the
principal axes of the sky-localization and binary-orientation error ellipses
a b,N N( ) and a b,L L( ), and 1 S Ntot( )/ / for 30 M–30 M precessing highly
eccentric BH binaries with all other binary parameters fixed as in Figure 2. The
values are with respect to those of circular binaries and match those in Figure 5.
Note that we find similar trends with p0r and e0 for other random choices of
binary direction and orientation (not shown).

Figure 7. Top panel: smoothed probability density function of the S Ntot for
10 M–10 M precessing eccentric BH binaries. In these calculations, we set
the lower bound of the detectors’ sensitive frequency band to 20 Hz. Here,
e20 Hz and 20 Hzr represent the initial orbital eccentricity and initial dimension-
less pericenter distance at which the peak GW frequency (Wen 2003) of the
binary is f 20 HzGW = . Other details of the calculations are the same as in
Figure 1. Bottom panel: the same as in Figure 2 but for 10 M–10 M
precessing eccentric BH binaries with initial eccentricities e0=(0.1, 0.2, 0.3,
0.4, 0.9) as a function of p0r . We also present the e0=0.9 curve in this plot in
order to show that S Ntot is a strictly monotonically increasing function of e0
over the full range of p0r . We find similar trends with p0r and e0 for other
random choices of binary direction and orientation (not shown).
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eccentric binaries, where the PN expansion is slowly
convergent (Kocsis & Levin 2012).
Such low-eccentricity errors may give the aLIGO–AdV–

KAGRA GW detector network the capability to distinguish
among different astrophysical formation channels. In a compa-
nion study (Gondán et al. 2017), we illustrate the expected
distribution of eccentricities and other physical parameters for
single–single GW capture sources in GNs. Similar studies for
other astrophysical formation channels are underway.

Future multiwaveband searches of eccentric inspiral sources
with LISA and aLIGO–AdV–KAGRA (Kocsis & Levin 2012;

Sesana 2016) have good prospects for even more accurate
measurements of the physical parameters well beyond the level
reported here. In that case, the GW frequency range is much
wider. Since eccentricity decreases due to GW emission,
eccentricity may be expected to be much higher at lower
frequencies in the LISA band. This leads to a much larger total
GW phase shift caused by eccentricity. A better measurement
of relativistic precession may more efficiently break degen-
eracies between mass and other parameters. The modulation
caused by the orbit of the instrument around the Sun and
Earth’s spin can help break degeneracies among the source
direction, orientation, and other parameters. Accounting for
eccentricity for third-generation Earth-based (e.g., Einstein
telescope), deci-Hertz to mHz space-based instruments will be
essential (Chen & Amaro-Seoane 2017).
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which is supported by National Science Foundation grant
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HPC cluster at the University of Debrecen, Hungary.

Figure 8. Initial pericenter distance and eccentricity dependence of the measurement errors of various parameters for 10 M–10 M precessing eccentric BH binaries
for a specific sky position and inclination chosen as in Figure 2. The different lines show different initial eccentricities as labeled. Top left: luminosity distance

D D DlnL L LD = D( ). Top right: redshifted chirp mass, lnz z z  D = D( ). Bottom left: semimajor axis of the sky position error ellipse, aN. Bottom right:
semimajor axis of the error ellipse for the binary orbital plane normal vector direction, aL. We find similar trends with p0r and e0 for other random choices of binary
direction and orientation (not shown). We also show the e0=0.9 curve in this plot to illustrate that measurement errors of binary parameters are strictly monotonically
increasing functions of e0 over the full range of p0r .

Table 4
Errors in tc (ms) and Φc (rad) and the Relative Errors in z and η in the
Circular Limit for Equal-mass Binaries for a Specific Sky Position and

Inclination 2Nq p= , 3Nf p= , 4Lq p= , and 5Lf p=

m mA B- tcD cDF z z D h hD

10 M–10 M 0.30 0.32 3.6×10−4 3.4×10−3

15 M–15 M 0.55 0.39 8.7×10−4 6.5×10−3

20 M–20 M 0.94 0.49 1.5×10−3 10−2

25 M–25 M 1.38 0.57 2.2×10−3 1.3×10−2

30 M–30 M 1.84 0.62 2.8×10−3 1.5×10−2

Note. In each case, we have assumed detection with the detector network
introduced in Table 1, and the errors correspond to a fixed S N 100tot =/ . We
find similar trends for other random choices of binary directions and
orientations (not shown).
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Appendix A
The Circular Limit

The circular limit follows from the limit e 00  for arbitrary
ρp0 or p0r  ¥ for arbitrary e0�1 (see Figure 5 in O’Leary
et al. 2009). In practice, we set e0=10−4, ρp0=1000, and
omit the parameters from the Fisher matrix that become
degenerate or unconstrained in the circular limit: γc, e0, and
eLSO. Thus, the parameters in the circular limit are

t D

M

, , ln , ln ,

ln , , , , , 55
c c L z

z N N L L

Prec,circ

tot,

l
q f q f

= F{ ( ) ( )
( ) } ( )

where Mtot,z arises due to precession even in the circular limit
(see Equation (25)). In the p0r  ¥ limit, 0gD  ¥ and

e0D  ¥; however, the Fisher matrix algorithm becomes
invalid for ΔeLSO in this limit (Section 6.2).

We have also examined how the measurement errors depend
on the total mass of the binary in the circular limit, and
qualitatively compared our results to those of previous
parameter estimation studies in Section 6.3. We have found
an excellent match between our results and the results of
previous studies.

Appendix B
Response of an Individual Ground-based Detector

Here we describe the measured signal of individual ground-
based detectors, and introduce the adopted coordinate system.

We define the Cartesian coordinate system with basis vectors
i, j, k and a spherical coordinate system (θ, f) fixed relative to
the center of the Earth, such that k and θ=0 is along the north
geographic pole and f=0 is along the prime meridian. We
denote the unit vector pointing from the center of the Earth to
the binary’s sky position as N , and define L to be the normal
vector parallel to the binary’s orbital angular momentum,

N i j ksin cos sin sin cos , 56N N N N Nq f q f q= + + ( )

L i j ksin cos sin sin cos . 57L L L L Lq f q f q= + + ( )

We denote the unit vectors parallel to the arms of the kth
detector as xk and yk, and set zk=xk×yk. As xk and yk are
parallel to the surface of the Earth for all detectors, zk points
from the center of the Earth toward the geographical location of
the kth detector. Let the coordinates (θk, fk) denote the location
of the kth detector, thus the unit vectors along the arms can be
expressed as

x i
j

k

cos sin sin cos cos

cos cos sin sin cos

sin sin , 58

k k k k k k

k k k k k

k k

y f y f q
y f y f q

y q

= -
+ - -
+

( )
( )
( ) ( )

y i
j

k

sin sin cos cos cos

sin cos cos sin cos

cos sin , 59

k k k k k k

k k k k k

k k

y f y f q
y f y f q
y q

= - -
+ -
+

( )
( )
( ) ( )

z i j ksin cos sin sin cos 60k k k k k kq f q f q= + + ( )

(Creighton & Anderson 2011), where the orientation angle of
the kth detector, ψk, is defined in Section 3.

These vectors define the response tensor for the kth detector:

D x x y y
1

2
61k

ij
k
i

k
j

k
i

k
j= -( ) ( )

(Finn & Chernoff 1993), where xk
i and yk

i are the ith Cartesian
components of xk and yk.
We adopt the basis vectors following the conventions of

previous studies (Finn & Chernoff 1993; Cutler & Flanagan
1994; Anderson et al. 2001; Dalal et al. 2006; Nissanke
et al. 2010),

X
N L
N L

Y
X N
X N

, 62=
´
´

=
´
´∣ ∣ ∣ ∣

( )

with preferred polarization basis tensors

e X X Y Y , 63ij i j i j= -+ ( )

e X Y Y X , 64ij i j i j= +´ ( )

where i and j are Cartesian components. Thus, the transverse-
traceless metric perturbation describing the GW is written as

h h e h e , 65ij ij ij= ++
+

´
´ ( )

where h+ and h× are given in Equations (1) and (2).
The response of the kth detector to a GW with frequency f

can be given in the time domain by

h e D h e h F h F 66k
i

k
ij

ij
i

k k, ,k k= = +DF DF
+ + ´ ´( ) ( )

(Nissanke et al. 2010), where r zRk k= Å is the position of the
kth detector, the factor N rk- · measures the light travel time
between the kth detector and the coordinate origin, and thus
the factor N rf2k kpDF = - · measures the phase shift between
the kth detector and the coordinate origin. In Equation (66),
F+,k and F k,´ are the antenna factors

F e D F e D, . 67k ij k
ij

k ij k
ij

, ,= =+
+

´
´ ( )

In our calculations, Earth is taken to be a sphere with a radius
of R 6, 370 km=Å .
If the time that the GW signal spends in the detectors’

sensitive frequency band is negligible compared to the rotation
period of the Earth, then the measured waveform in the
frequency domain for the kth detector is

h f F h f F h f e , 68N r
k k k

if
, ,

2 k= + p
+ + ´ ´

-˜ ( ) [ ˜ ( ) ˜ ( )] ( )·

where h f+˜ ( ) and h f˜́ ( ) are the Fourier-transformed expressions
of h+ and h× at Earth’s center, and F k,+ and F k,´ are given by
the (practically time-independent) orientation of the detectors
shown in Table 1.
Similarly, using the frequency harmonic triplets for eccentric

precessing inspiraling binaries in the stationary phase approx-
imation, the measured waveform for the kth detector is

f f fh F h F h , 69k k k k k, , , ,= ++ + ´ ´˜ ( ) ˜ ( ) ˜ ( ) ( )

where fh k,+˜ ( ) and fh k,
˜́ ( ) can be derived from fh+˜ ( )

and fh˜́ ( ) by multiplying each term of f with the phase shift
factors e N rif2 n kp- · and e N rif2 n kp-  · for each harmonic, respectively.
More specifically, the measured signal’s Fourier phase in
Equations (35) and (36) in the kth detector is shifted
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respectively according to

N rif2 , 70n k n n k, pY = Y - · ( )

N rif2 . 71n k n n k, pY = Y -   · ( )

Appendix C
Time Evolution of the Orbit

In this section, we derive the time evolution of different
harmonics in the detectors’ sensitive frequency band, and for
each orbital harmonic, we determine the eccentricity at which
the signal enters the detectors’ sensitive frequency band. These
formulae will be utilized in Appendix D.

The time-dependent GW signal of a precessing eccentric
BH binary as measured by the kth detector can be
given as

h t h t F t

h t F t

, , ,
, , , , 72

k k N N L L

k N N L L

,

,

a b a b
a b a b

=
+
+ +

´ ´

( ) ( ) [ ( ) ]
( ) [ ( ) ] ( )

where h t+( ) and h t(́ ) are given in Equations (1) and (2), and
F+,k and F k,´ are quantified by Equation (67). We ignore
spins in this study, and therefore the angular momentum
vector direction ,L La b( ) is conserved during the eccentric
inspiral (Cutler & Flanagan 1994). The polar angle of the
source αN relative to the detector depends on the rotation
phase of the Earth during the day. We ignore the Earth’s
rotation, since the total duration of an eccentric inspiral
from e=0.9 to merger is of order M40 4p0

4 1
totr h -[( ) ( )

M20 min( ) ] as shown in Figure 3 in O’Leary et al.
(2009).16

The waveform of an eccentric binary in the stationary phase
approximation is a sum over harmonics n for each component
of the frequency triplet ( f f f, ,n n n

+ -) with different reference
times t t t, ,n n n

+ -( ) (see Section 2.2). During the evolution, e(t)
(and tpr ( )) shrinks strictly monotonically in time (Peters 1964);
therefore, its inverse function t(e) is well-defined and
determines tn, tn

+, and tn
-. For inspiraling circular binaries,

time t can be expressed using the frequency of the emitted GW
signal f 2n= as

t f t
df

f
t f5 8 73c

f
c

8 3 5 3ò p= -
¢
¢
= -

¥
- -( ) ˙ ( ) ( )

(see Equations (2.13) and (2.19) in Cutler & Flanagan 1994
for details), where the constant of integration, tc, is defined
by the requirement that t tc as f  ¥. We generalize
Equation (73) for eccentric inspirals by changing the

integration variable from f to e in Equation (73),

t e t
de

e e
t I e , 74c

e

c t
0ò t= +

¢
¢

= -( )
˙( )

( ) ( )

where ė is given by Equation (15), and we introduced

c

M e e

H e

15

304
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304

1
, 75

5 3
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LSO pLSO LSO
4

LSO
8 3





t p

r

=

=
-

- -( )

[( ) ( )]
( )

( )

and substituted c0 using Equation (22). Here, epLSO LSOr ( ) and
H eLSO( ) are given by Equations (21) and (19), and It(e) in
Equation (74) is of the form

I e
x x

x
dx

1

1
76t

e

0

29 19 121

304
2

2 3 2

1181
2299

ò=
+

-

( )
( )

( )
( )

(see Mikóczi et al. 2012 for an analytic result). Using
Equation (74), we obtain the total duration of the nth harmonic
in the detector’s sensitive frequency band

T t e t e I e I e , 77n n n n nmin, max, 1 max, 1 min, t= - = -( ) ( ) [ ( ) ( )] ( )

T t e t e I e I e , 78n n n n nmin, max, 1 max, 1 min, t= - = -+ + + + +( ) ( ) [ ( ) ( )] ( )

T t e t e I e I e . 79n n n n nmin, max, 1 max, 1 min, t= - = -- - - - -( ) ( ) [ ( ) ( )] ( )

Here, e nmin, (e e,n nmin, min,
+ - ) refers to the eccentricity at which the

harmonic fn ( f f,n n
+ -) reaches the LSO or when it exists the

detectable highest frequency for the given detector, and e nmax,

(e e,n nmax, max,
+ - ) refers to the eccentricity at which the signal

related to fn ( f f,n n
+ -) first enters the detector’s sensitive

frequency band or when it forms within the band. Thus,

e e emax , , 80n nmin, LSO det,
min= ( ) ( )

e e emin , , 81n nmax, 0 det,
max= ( ) ( )

where

e f , 82n ndet,
min 1

det,maxn= - ( ) ( )

e f , 83n ndet,
max 1

det,minn= - ( ) ( )

e n e . 84nn n=( ) ( ) ( )

Here, en ( ) is given analytically by Equation (18), n
1n- (·)

denotes the inverse function of enn ( ), fdet,min and fdet,max are the
lower and upper limits of the detector’s sensitive frequency
band (typically 10 Hz and 104 Hz, respectively), and eLSO

16 Earth’s rotation may be relevant for highly eccentric low-mass compact
objects with large ρp040, such as NS binaries. For BHs, if ρp0 ? 40, then
the signal mostly circularizes before it enters the detectors’ sensitive frequency
band, and the amount of time it spends in the band with a significant S/Ntot is
limited to less than a minute. For an illustration of the accumulation of the
S/Ntot with time, we refer the reader to Figure 10 of O’Leary et al. (2009) and
Figure 7 of Kocsis & Levin (2012).
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is determined from Equation (21). Similarly, we define the
parameters corresponding to fn

+ and fn
- as

e e emax , , 85n nmin, LSO det,
min=+

+( ) ( )

e e emin , , 86n nmax, 0 det,
max=+

+( ) ( )

e e emax , , 87n nmin, LSO det,
min=-

-( ) ( )

e e emin , , 88n nmax, 0 det,
max=-

-( ) ( )

where

e f , 89n ndet,
min 1

det,maxn=+ +
- ( ) ( )

e f , 90n ndet,
max 1

det,minn=+ +
- ( ) ( )

e f , 91n ndet,
min 1

det,maxn=- -
- ( ) ( )

e f , 92n ndet,
max 1

det,minn=- -
- ( ) ( )

e n e
e

, 93nn n
g
p

= ( ) ( ) ˙ ( ) ( )

where eġ ( ) is given by Equation (25), and n
1n 

- (·) is the inverse
function of enn ( ) given by Equation (93).
In practice, the second term is negligible in Equations

(77)–(79). We find that Tn
+ and Tn

- are within �20% of Tn for
any fixed n. The top panel of Figure 9 shows the total time the
GW signal spends in an aLIGO-type detector’s sensitive
frequency band for different harmonics. Higher harmonics
enter the aLIGO band earlier and that depending on ρp0, the
first 10 orbital harmonics spend between seconds to minutes
in the detector’s sensitive frequency band for a 30 M–30 M
precessing highly eccentric BH binary.
The bottom panel of Figure 9 shows the fraction of

the squared S/N that accumulates in different orbital
harmonics for various ρp0 for aLIGO. For high ρp0, the
signal effectively circularizes by the time it enters the
detector’s sensitive frequency band and the n=2 harmonic
dominates. However, the contribution of n 2¹ is significant
for ρp020 for a 30 M–30 M precessing highly eccentric
BH binary.

Appendix D
Calculating the S/N and the Fisher Matrix

In this section, we derive numerically efficient formulae to
calculate the S/N and the Fisher matrix for individual
detectors. We first ignore pericenter precession, then extend
the calculations for precessing eccentric sources.

D.1. Signal-to-noise Ratio

D.1.1. Eccentric Inspirals Without Precession

The NoPrec signal measured by a detector at position r is
given in Fourier space from Equations (31) and (32) as

h L e f e e e, , 94
n

n n
i e f

NoPrec
1

H 0
,n nå= Q -

=

¥
Y˜ ( ) ( ) ( )( )

where Ψn is the Fourier phase at the origin of the coordinate
system set to the Earth’s center, given by Equation (35), 0g º˙ ,
γ ≡ γc, HQ (·) denotes the Heaviside function, which is zero and
unity for negative and positive arguments,17 respectively, and

Figure 9. Top panel: the time duration that the first 10 harmonics (specifically
fn
- here) spend in an aLIGO-type detector’s sensitive frequency band for

30 M–30 M precessing eccentric BH binaries with initial eccentricity
e0=0.9 for various p0r values between 10 and 100 as labeled. For this
choice of masses, Tn

- varies within 10% of its value shown for e0=0.9 for
0.9�e0<1 for n Î {1,2, K, 10}. Bottom panel: the fraction of squared
signal-to-noise ratio ( S N S Nn n

2
tot

2g = - -( ) · ( ) ) in the first 10 harmonics
corresponding to the fn

- frequencies in aLIGO for 30 M–30 M precessing
eccentric BH binaries with initial eccentricity e0=0.9 for different p0r values
as labeled. We show results for the fn

- components of the frequency triplet
f f f, ,n n n

+ -( ) because the dominant fraction of the S Ntot accumulates in these
frequencies. For any n 1, 2, , 10Î ¼{ } and e0.9 0.990  , ng varies by less
than 60% of its value shown for e0=0.9.

17 More precisely, we assume a smoothed truncation of the signal as

e e
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where e0d is the absolute change of the eccentricity during the first orbit, which
from Equations (14) and (15) is

e
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where Mz ztot,
5 3h = ( ) .
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where h0 and Λn are given by Equations (33) and (34), An and
Bn

 are given by Equations (5) and (7), γc specifies the
argument of pericenter, which is assumed to be fixed here, and
F+ and F́ are the antenna factors given by Equation (67). The
factor N rf2n npDF = - · gives the phase shift of the
measured signal between the position of the detector r and
the origin of the coordinate system for the nth harmonic
(Appendix B). Ln depends on fn implicitly through ΔΦn and h0.

In Equation (94), e eH 0Q -( ) accounts for the start of the
waveform when the binary forms with initial eccentricity18 e0.
Along the same lines, a similar term e eH LSOQ -( ) could be
incorporated to account for the end of the eccentric inspiral,
where the waveform transitions to a plunge and ringdown
phase. However, we conservatively do not account for such a
term, since the waveform near the end of the inspiral is
sensitive to higher-order PN corrections, which are not known
and ignored here (Kocsis & Levin 2012; Loutrel &
Yunes 2017). Nevertheless, the inspiral rate is sensitive to
eLSO in Equations (18), (19), and (22), which affects Ln and Ψn.

For each detector, the square of the S/N for the NoPrec
waveform, S NNoPrec

2 , can be obtained by substituting hNoPrec
˜

into Equation (42). We find that the product of sums in
h hNoPrec NoPrec

*˜ ˜ is dominated by the elements such that19
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where f nmin, is the frequency at which the nth harmonic first
enters the detector’s sensitive frequency band or when it forms
in the band, and similarly f nmax, is the frequency at which the
signal exits the detector’s sensitive frequency band or when it
reaches the LSO,

f e fmin , , 99n nmax, LSO det,maxn= ( ( ) ) ( )

f e fmax , . 100n nmin, 0 det,minn= ( ( ) ) ( )

Computationally, it is practical to change the integration
variable from fn to e as

df n
d

de
de, 101n

n
= ( )

thus Equation (98) can be rewritten generally as

n L e
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Gen 2
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where en ( ) is given analytically by Equation (18), and L(e)
may be obtained from Equation (97) by substituting
f n en n= ( ). The integration bounds e nmin, and e nmax, are
given by Equations (80) and (81). We truncate the calculation
beyond a maximum spectral harmonic n emax ( ) defined in
Equation (37).

S NNoPrec
Gen accurately recovers Equation (98) generally for

any value of the initial eccentricity in the range e0 10< < ;
however, the number of considered harmonics n emax 0( )
increases rapidly for high e0 (Equation (37)), and
n emax 0  ¥( ) in the limit e 10  . Therefore, S NNoPrec

Gen is
computationally efficient for low to moderate initial eccentri-
cities (e 0.80  ), and it is inefficient for higher e0. In order to
make S NNoPrec

Gen computationally efficient for high initial
eccentricities, we reverse the order of the sum and the integral
in Equation (102) and truncate the sum over harmonics at
n emax ( ) (O’Leary et al. 2009).20 Thus, we get

n L e

S n e

d

de
deS N 4 . 103

e

e

n

n e
n

n
NoPrec
High 2

1

2

n

n

min,

max, max

ò å n
n

»
=

( ) ∣ ( )∣
( ( ))

( )
( )

/

We use the above introduced trick to derive computationally
efficient formulae in the high initial eccentricity limit for Fisher
matrix elements in the precession-free case (Appendix D.2.1)
and for the S/N and the Fisher matrix elements in the
precessing case (Appendices D.1.2 and D.2.2).

D.1.2. Eccentric Inspirals with Precession

We derive the S/N of the precessing model in this section.
The Fourier-transformed waveform given by Equation (69) can
be rewritten as
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where the terms Kn, Kn
+, and Kn

- are defined as
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The terms Kn and Kn
 depend on ν through h0, which are

expressed with f f,n n
 using Equations (29) and (30). Further-

more, these equations depend on fn and fn
 through nDF and

nDF (e.g., N rf2n npDF = - · ) and N rf2n npDF = -  · ).

18 The initial eccentricity e0 does not enter the waveform anywhere else, and
Ln and Ψn are independent of e0. Due to this term, e0 and eLSO may be
measured independently, and Δρp0 follows from Equation (50).
19 Numerically, we confirm that the cross-terms proportional to
L L i iexpn m n m* Y - Y( ) have a negligible contribution for n m¹ . 20 In this case, the number of considered harmonics reduces significantly.
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Next, we substitute this waveform hPrec
˜ into Equation (42).

Similarly to that of the NoPrec signal (Equation (94)), the
cross-terms in the product of sums in h hPrec Prec

*˜ ˜ have negligible
contributions to S NPrec

2( ) , and so
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where f nmax, and f nmin, are defined in Equations (99) and (100).
The integration bounds for the integrals over fn

 are defined
similarly to f nmax, and f nmin, in Equations (99) and (100),

f e fmin , , 109n nmax, LSO det,maxn=
( ( ) ) ( )
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where nn  is defined in Equation (93).
Next, we change the integration variables from fn to

e using Equation (101) and similarly from fn
 to e using

Equation (30) as
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Here, d dg n˙ is given by Equation (25) as
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After truncating the sum over the harmonics to the relevant
range as in Equation (102), Equation (108) can be written as
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where K e K e e,n n nnº( ) ( ( )) and K e K e e,n n nnº 
( ) ( ( )). The

integration bounds are given by Equations (85) and (88).
Similarly to S NNoPrec

Gen , S NPrec
Gen is computationally efficient

only for low to moderate initial eccentricities (e 0.80  ). For
high initial eccentricities, the computationally efficient form of
S NPrec

Gen , S NPrec
High, can be given by reversing the order of the

sum and the integral as
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D.2. Fisher Matrix

Due to the similarity of the equations defining the S/N (see
Equation (42)) and the Fisher matrix (see Equation (44)), we
may follow the same procedure to derive numerically efficient
formulae for the Fisher matrix in the limit of high initial
eccentricity. Similarly to Appendix D.1, we start the analysis
with the NoPrec model and then generalize the calculation to
the Prec model, which accounts for the precessing case.

D.2.1. Eccentric Inspirals Without Precession

Let us substitute Equation (94) into Equation (44). Similarly
to the product of the sums of orbital harmonics h hNoPrec NoPrec

*˜ ˜ ,
we find numerically that the cross-terms in h hj kNoPrec NoPrec

*¶ ¶˜ ˜
with j k¹ have a negligible contribution to jkG . Thus, we find
that the stationary phase approximation is applicable if we drop
the cross-terms, and thus in Equation (44) we may use
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Here,

L e L f e e e, , 116n n n
i f e e,n n= Y˜ ( ) ( ( ) ) ( )( ( ) )

and

L e L f e e , 117n j j n n
i f

, n n= ¶ Y˜ ( ) [ ( ) ]( ) ( )( )

where

L f L e f f f e f f, , , , 118n n n n n n n n n nº Y º Y( ) ( ( ) ) ( ) ( ( ) ) ( )

and L e f,n n( ) and e f,n nY ( ) are given by Equations (97) and
(35). We first differentiate the expressions in the bracket [ ] in
Equation (117) with respect to λj, then change the variable
from fn back to e. Note that for all n and e, L en˜ ( ) is independent
of e0, and so L e 0n j, =˜ ( ) for ej 0l = . In Equation (115), a b,d in
the second, third, and fourth terms denote the Kronecker δ,
defined to be unity if a=b and zero otherwise. In
Equation (115), the second and third terms arise due to the
Heaviside function in the waveform in Equation (94), which
represents the start of the waveform with eccentricity e0. The e0
derivative of this function is e e0d -( ), which denotes the
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Dirac δ function. Note that we use a smoothed version of
e eH 0Q -( ) over a scale e0d , which is given in Equation (95),

whose derivative is approximately21
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To avoid confusion, note that the numerator denotes the Dirac δ
function, which has a unit integral over e ≈ e0, and e0d in the
denominator is the quantity given by Equation (96).

Furthermore, we note that
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2
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in Equation (115). In these equations, fn enters when
substituting f nn for ν. By substituting Equation (115) into
Equation (44), changing the integration variable from fn to e
respectively for each harmonic using22 f n en n= ( ) and
Equations (18) and (22), and truncating the sum over the
harmonics to the relevant range, the Fisher matrix becomes23
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The limits of integration in Equation (121) are defined by
Equations (80) and (81). Here, the four terms correspond
respectively to the four terms in Equation (115). The first term
is directly analogous to that appearing in the S/N (see
Equation (103)). Note that in particular, the elements corresp-
onding to the j eLSO= and k eLSO= terms are nonzero. The
eLSO dependence enters in en ( ) as shown in Equations (18) and
(22). However, the first term in Equation (121) is zero for the
j e0= and k e0= elements. If the binary forms in the
detector’s sensitive frequency band, the second, the third, and
the fourth terms in Equation (115) contribute to this element of
the Fisher matrix. The eccentricity integral in the Fisher matrix
may be carried analytically over the δ function, which yields
the second and third terms in Equation (121). There, j e, 0d is the
Kronecker δ, which is zero unless j corresponds to the
parameter e0, and similarly for k e, 0d . Note further that only
harmonics with f e n f emax,det 0 min,det 0 n n( ) ( ) contribute
to these boundary terms, since otherwise S en n 0n = ¥( ( )) .

Similarly to the S NNoPrec
Gen , jk

NoPrecG is generally valid for any
initial eccentricity in the range e0 10< < , but it is
computationally efficient only for low to moderate initial

eccentricities (e 0.80  ). In order to make the calculation
computationally efficient for high initial eccentricities, we
reverse the order of the sum and the integral in the first term in
Equation (121), and truncate the sum over harmonics at n emax ( )
as in Appendix D.1.1. We get

L e L e

S e
n

d

de
de

n
d

de

L e

S e

n
d

de

L e

S e

e
n

d

de

L e

S e

4

2

2

4 .

122

jk
e

e

n

n e
n j n k

n n

k e
n e

j n

n n

j e
n e

k n

n n

j e k e

n e

n

n n

NoPrec,High

1

, ,

,
0

2

0

,
0

2

0

, ,

0

0
2

0

n

n

min,

max, max

0

0

0

0

0 0

0

*
ò å

å

å

å

n
n

d
n

n

d
n

n
d d
d

n
n

G »

+
¶

+
¶

+

=

( ˜ ( ) ˜ ( ))
( ( ))

∣ ( )∣
[ ( )]

∣ ( )∣
[ ( )]

∣ ( )∣
( ( ))

( )

( ) R

D.2.2. Eccentric Inspirals with Precession

Following the steps of Appendix D.2.1 for the precession-
free model, we may generalize the calculation of the Fisher
matrix to include precession similar to Appendix D.1.2. The
Fisher matrix, which is computationally efficient for low to
moderate initial eccentricities (e 0.80  ), can be given as

, 123jk jk
n

jk
n

jk
nPrec,Gen Gen, Gen, Gen,G = G + G + G+ - ( )

where

K e K e

S e
n

d

de
de

n
d

de

K e

S e

n
d

de

K e

S e

e
n

d

de

K e

S e

4

2

2

4 ,

124

jk
n

n

n e

e

e n j n k

n n

j e
n e

k n

n n

k e
n e

j n

n n

j e k e

n e

n

n n

Gen,

1

, ,

,
0

2

0

,
0

2

0

, ,

0

0
2

0

n

nmax 0

min,

max,

0

0

0

0

0 0

0

*
òå

å

å

å

n
n

d
n

n

d
n

n
d d
d

n
n

G »

+
¶

+
¶

+

=

( ˜ ( ) ˜ ( ))
( ( ))

∣ ( )∣
( ( ))

∣ ( )∣
( ( ))

∣ ( )∣
( ( ))

( )

( ) R

and

de
K e K e

S e

n
d

d

d

de

n
d

d

d

de

K e

S e

n
d

d

d

de

K e

S e

e
n

d

d

d

de

K e

S e

4

1

2
1

2
1

4
1

,

125

jk
n

n

n e

e

e n j n k

n n

j e
n e e

k n

n n

k e
n e e

j n

n n

j e k e

n e e

n

n n

Gen,

1

, ,
,

,
0

2

0

,
0

2

0

, ,

0

0
2

0

n

nmax 0

min,

max,

0

0 0

0

0 0

0 0

0 0

*
òå

å

å

å

n

p
g
n

n

d
p

g
n

n
n

d
p

g
n

n
n

d d
d p

g
n

n
n

G »

´ 

+ 
¶

+ 
¶

+ 



=

 

















 ( ˜ ( ) ˜ ( ))
( ( ))

˙

˙ ∣ ( )∣
( ( ))

˙ ∣ ( )∣
( ( ))

˙ ∣ ( )∣
( ( ))

( )

( ) R

where the integration bounds are given by Equations (85)–(88),
and

K e K f e e , 126n j j n n
i f

, n n= ¶ Y˜ ( ) [ ( ) ]( ) ( )( )

21 We neglect the partial derivatives of e0d with respect to the physical
parameters.
22 Note that en ( ) depends on eLSO as seen in Equations (18) and (22).
23 We label this general expression with “Gen” to distinguish from the
approximation “High” used below for high eccentricities.
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Similar to the precession-free case, here
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where K e f,n n( ) and K e f,n n
 ( ) are given by Equations

(105)–(107), e f,n nY ( ) and e f,n nY ( ) are expressed by
Equations (35) and (36), and we first differentiate the
expressions in the bracket [ ] in Equations (126) and (127)
with respect to λj, then change variables from fn and fn



back to e. Similar to the precession-free case, only
harmonics with f e n f emax,det 0 min,det 0 n n( ) ( ) and

f e n f emax,det 0 min,det 0 n n ( ) ( ) contribute to the bound-
ary terms in Equations (124) and (125), since otherwise
S en n 0n = ¥( ( )) and S en n 0n = ¥( ( )) .

For high initial eccentricities, the computationally efficient
form of jk

Prec,GenG , jk
Prec,HighG , can be derived by reversing the

order of the sum and the integral in the first term in
Equations (124) and (125), and truncating the sum over
harmonics at n emax ( ) as in Appendix D.1.1. Thus, jk

Prec,HighG can
be given as
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Appendix E
Validation of Codes

E.1. Analytic Circular Limit Without Precession

First, we study the circular limit of the eccentric waveform,
fh˜́ ( ) and fh+˜ ( ), defined by Equations (31) and (32) for the

NoPrec model. For e 0 , Bn n,2d=+ and 2 ,n n cgY = Y 
implying that γc is degenerate with Φc, which we henceforth
omit. After integrating the term n n n¢ ¢˙ ( ) over n¢ in
Equation (26) according to previous considerations, substitut-
ing ν with f 2, and expanding the expression of h0 2L , the
polarization components become

h f i
f e

D
2

5

96
cos , 133z

i5 6 7 6

2 3
L


p

= - Q´

- Y
( ) ( )

h f
f e

D

5

96
1 cos , 134z

i5 6 7 6

2 3
L

2
p

= - + Q+

- Y
( ) ( ) ( )

where the phase function Ψ can be given as

ft f2 4
3

4
8 . 135c c z

5 3p p pY = - F - + -( ) ( )

These are indeed the well-known frequency-domain polariza-
tion components of circular binaries in leading order (Cutler &
Flanagan 1994). The parameter set characterizing this wave-
form is

D tln , ln , , , , , , . 136L z N N L L c ccirc l q f q f= F{ ( ) ( ) } ( )

For validation tests, we calculate the S/N of circular
binaries, S N circ, for a single aLIGO detector. S Ncirc is
calculated by substituting Equations (133) and (134) into
Equation (68) and then using Equation (42). The Fisher matrix
of the circular binaries for the parameter set circl for each
detector jk

circG is calculated by substituting Equations (133) and
(134) into Equation (68) and then using Equation (44).

E.2. Eccentric Inspiral Without Pericenter Precession

Next, we discuss the validation tests performed for the
codes using the NoPrec waveform model. In this case, the
parameters are

D
t c e

ln , ln , ,
, , , , , , , . 137

L z N

N L L c c c

NoPrec

0 0

l q
f q f g

=
F

{ ( ) ( )
} ( )

Compared to circl , NoPrecl includes c0 (set by M ztot, and eLSO;
see Equation (22)) and e0.

E.2.1. Signal-to-noise Ratio

First, we generate a set of source parameters for comparison
m m D, , , , , ,A B L N N L Lq f q f( ), and compare the output of

S N circ with the output of S NNoPrec
Gen in the circular limit for

a single aLIGO detector (Table 1). Here and in further
validation tests, the set of fiducial source parameters generated
for comparison are m m D, , , , , ,A B L N N L Lq f q f( ), where cos Nq
and cos Lq are drawn from a uniform distribution between
[−1, 1], the set of Nf and fL are drawn from a uniform
distribution between [0, 2π], mA and mB are drawn from a
uniform distribution between [5 M, 100 M], and DL is drawn
from a uniform distribution between [100Mpc, 1000Mpc].
The generation of other source parameters are described in
detail in the corresponding paragraph. We assume the fiducial
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value t 0c c cg= F = = for each binary, and in practice we set
e 100

4= - and ρp0=1000 when considering the circular limit
(Appendix A). We find that the relative discrepancy between
S N circ and S NNoPrec

Gen is less than 10−3 in all cases.
Next, we examine if the output of S NNoPrec

Gen agrees with
Figure 11 in O’Leary et al. (2009), which shows the source sky
position- and orientation-averaged rms S/N for a single aLIGO
detector as a function of p0r and Mtot. O’Leary et al. (2009)
used the Fourier domain orbit-averaged leading-order wave-
form (Peters & Mathews 1963), which corresponds to our
NoPrec model. We set the sensitivity curve to that used in
O’Leary et al. (2009), set e=0.95, and find the results for
several p0r andMtot in the range [5,100] and [10 M, 1000 M],
respectively. For each ρ p0 and Mtot, we generate random
Monte Carlo samples of source sky location ( ,N Nq f ) and
binary orientation ( ,L Lq f ) as introduced above in this section.
We find that the rms of the S NNoPrec

Gen 2( ) distributions are in
agreement with the results of Figure 11 in O’Leary
et al. (2009).

Finally, we generate a set of source parameters for
comparison, and compare the output of S NNoPrec

Gen and
S NNoPrec

High for several high e0 and p0r , and for a single aLIGO
detector. In particular, e0 and p0r are drawn from a uniform
distribution between ]0.9, 1[ and [5, 1000] in these calcula-
tions, respectively. The relative discrepancy between S NNoPrec

Gen

and S NNoPrec
High is less than 10−3 in all cases.

E.2.2. Fisher Matrix

Since the parameter set of the leading-order circular and
eccentric binaries, circl and NoPrecl differ—see Equations (136)
and (137)—we cannot simply compare the output of jk

circG with
the output of jk

NoPrec,GenG in the circular limit. Therefore, we first
restrict NoPrecl to the parameter set circl . Next, we generate a
set of source parameters for comparison, and compare the
output of jk

circG with the output of jk
NoPrec,GenG in the circular limit

for the Fisher matrix elements corresponding to the circular
parameters circl and for a single aLIGO detector. The relative
discrepancy between jk

circG and jk
NoPrec,GenG is less than 10−2 in

all cases.
Finally, we generate a set of source parameters for

comparison, and compare the output of jk
NoPrec,GenG and

jk
NoPrec,HighG for the Fisher matrix elements corresponding to

the parameter set NoPrecl in the high-eccentricity limit for
several p0r and for a single aLIGO detector. Similarly to
Appendix E.2.1, e0 and p0r are drawn from a uniform
distribution between ]0.9, 1[ and [5, 1000] in these calcula-
tions, respectively. The relative discrepancy between Fisher
matrix elements is less than 10−3 in all cases.

E.3. Eccentric Pericenter-precessing Binary Waveforms

E.3.1. Signal-to-noise Ratio

We test the numerical accuracy of the precessing waveform
using the following theorem for leading-order PN binary
inspirals. The amount of energy radiated in GWs is equal to the
loss of mechanical energy of the binary, which is the same for
the NoPrec and for the Prec models. This is due to the fact that
a determines the mechanical energy of the binary in the
Newtonian approximation, and the orbital elements a and e are
not affected by pericenter precession. This also implies that the

amount of S/N must be equal for the NoPrec and our
precessing models for white noise.
Thus, assuming white noise, we generate a set of source

parameters, and compare the output of S NNoPrec
Gen with the

output of S NPrec
Gen for several e0 and p0r , where e0 and p0r are

drawn from a uniform distribution between 0, 1] [ and [5, 1000]
in these calculations, respectively. The relative discrepancy
between S NNoPrec

Gen and S NPrec
Gen is less than 10−3 in all cases.

Furthermore, we repeat the same analysis for S NNoPrec
High and

S NPrec
High, where e0 is drawn from a uniform distribution

between 0.9, 1] [. We find that the discrepancy between S/N
values is less than 10−3 in all cases.
Finally, we generate a set of source parameters for

comparison, and compare the output of S NPrec
Gen with the

output of S NPrec
High for several high e0 and p0r and assuming

white noise. Similarly to the NoPrec model, e0 and p0r are
drawn from a uniform distribution between ]0.9, 1[ and
[5, 1000] in these calculations, respectively. We find that the
relative discrepancy between S NPrec

Gen and S NPrec
High is less than

10−3 in all cases.

E.3.2. Fisher Matrix

jk
Prec,HighG can be validated by following the procedure for

jk
Prec,GenG , but considering jk

NoPrec,HighG and high-e0 values
(e 0.90  ). We find that the relative discrepancy between
Fisher matrix elements are less than 10−2 in all cases.
Finally, after generating a set of source parameters for

comparison, we compare the output of jk
Prec,HighG and jk

Prec,GenG
for the Fisher matrix elements corresponding to the parameter
set Precl in the high-eccentricity limit for several p0r in the
range [5, 1000] and for a single aLIGO detector. The
discrepancy between Fisher matrix elements is less than 10−3

in all cases.
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