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Abstract

It has been proposed that primordial black holes (PBHs) form binaries in the radiation dominated era. Once
formed, some fraction of them may merge within the age of the universe by gravitational radiation reaction. We
investigate the merger rate of the PBH binaries when the PBHs have a distribution of masses around  ( )M10 ,
which is a generalization of the previous studies where the PBHs are assumed to have the same mass. After
deriving a formula for the merger time probability distribution in the PBH mass plane, we evaluate it under two
different approximations. We identify a quantity constructed from the mass distribution of the merger rate density
per unit cosmic time and comoving volume ( )m m,1 2 , a = - + ¶ ¶ ¶( )m m m mln1 2

2 2
1 2, which universally

satisfies 0.97α1.05 for all binary masses independently of the PBH mass function. This result suggests that
the measurement of this quantity is useful for testing the PBH scenario.
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1. Introduction

Recent detections of gravitational wave events (GW150914,
LVT151012, GW151226, GW170104, GW170608, and
GW170814) by the LIGO-Virgo collaboration (Abbott et al.
2016b, 2016c, 2017a, 2017b, 2017c) revealed the existence of
binary black holes (BHs) in the mass range 8–35 M . These
observations clearly demonstrate that there are numerous
BH–BH binaries in the universe that have previously eluded
the scrutiny of astronomers. The origin of such heavy BHs and
the formation of close binary BHs which merge within the age
of the universe are widely debated. Various astrophysical
scenarios for the explanations of the gravitational wave events
are summarized, for instance, in Abbott et al. (2016a) and
Miller (2016).
Although only five robustly identified BH–BH binary

mergers with GW detections have been reported so far, merger
rates are constrained to within - -–12 240 Gpc yr3 1 (Abbott
et al. 2017a). With the further improvement of GW detectors,
we will soon enter the era of black hole rush, where a large
number of BH–BH binaries are detected with their masses,
spins, and locations determined. Those data will serve us
important clues to clarify the origin of binary BHs as well as
the formation mechanism of the binaries. Clearly, investiga-
tions of how various astrophysical scenario producing merging
BH binaries can be distinguished by observations will become
a fundamentally important topic.

Recently, a collaboration including three of the authors,
Sasaki et al. (2016), pointed out that the GW event GW150914
could be merger events of two primordial black holes (PBHs)
based on earlier studies (Nakamura et al. 1997; Ioka

et al. 1998). In Nakamura et al. (1997) and Ioka et al.
(1998), the formation mechanism of the PBH binaries was
proposed, and a connection between the PBH binaries and the
gravitational wave events from the merger of binary PBHs was
given.7 PBHs stand for BHs that formed in the very early
universe much before the epoch of the matter-radiation equality
(Carr & Hawking 1974). For instance, in the well-studied
scenario, PBHs form from rare high peaks of the primordial
density inhomogeneities whose amplitudes are much larger
than the standard deviation. In this case, the PBH mass is given
by the total energy contained in the Hubble horizon at the
formation time,
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where T is the temperature of radiation and g = ( )1 depends
on the details of the BH formation. Analytic estimates give
g = »-3 0.23 2 (Carr 1975). Other mechanisms of the PBH
production are summarized by Carr (2005). After having
formed in the very early universe, PBHs stay on the expansion
flow of the universe. Even when PBHs are randomly
distributed in space without being clustered, there is a small
but non-vanishing probability that two neighboring PBHs
happen to be much closer than the mean distance. Such PBHs,
being initially on the cosmic expansion flow, eventually start to
come closer, influenced by their mutual gravity when the
cosmic expansion rate becomes too low to separate them apart.
As was shown by Nakamura et al. (1997), a direct collision is
avoided by the tidal effect of other PBHs in their vicinity,
which leads to the formation of a PBH binary with a large
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7 There are other papers in which the potential detection of PBHs by LIGO
was claimed (Bird et al. 2016; Kashlinsky 2016; Clesse & García-Bellido
2017a). The binary formation path is different from that in Sasaki et al. (2016).
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eccentricity. Further, Ali-Haimoud et al. (2017) have recently
shown that the tidal field of halos and interactions with other
PBHs, as well as dynamical friction by unbound dark matter
particles, do not affect PBH binaries significantly. Highly
eccentric PBH binaries radiate GWs efficiently, and a fraction
of them can merge within 14 billion years.

In Sasaki et al. (2016), under the approximation that all
PBHs have the same mass of 30 M , it was shown that the
expected event rate of the PBH binary mergers is consistent
with the one determined by the LIGO-Virgo collaboration after
the announcement of GW150914 (Abbott et al. 2016d), if the
fraction of cold dark matter in PBHs is about 10−3. This
fraction is consistent with existing observational upper limits
(Brandt 2016; Horowitz 2016; Carr et al. 2017; Gaggero et al.
2017; Green 2017; Inoue & Kusenko 2017; Koushiappas &
Loeb 2017a; Matsumoto et al. 2017; Poulin et al. 2017). So far,
the PBH scenario proposed by Sasaki et al. (2016) is successful
in explaining the LIGO event GW150914.

In the next decades, many more BH binaries will be
detected, which will deliver fruitful statistical information
on the merger rates in the two-dimensional BH mass plane
(m1, m2; see Abbott et al. 2016b; O’Leary et al. 2016; Fishbach
& Holz 2017; Gondán et al. 2017b; Kovetz et al. 2017; Mandel
et al. 2017; Zevin et al. 2017). The purpose of the present paper
is to examine if the mass distribution can be used observa-
tionally to test the PBH scenario. The currently announced five
robust merger events show some scatter in the BH mass as
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of solar mass (90% credible intervals; Abbott et al.
2016b, 2016c, 2017a, 2017b, 2017c). In this paper, we
estimate the merger rate density in the m1–m2 plane predicted
by the PBH scenario. We extend the formalism of previous
studies (Nakamura et al. 1997; Ioka et al. 1998; Sasaki
et al. 2016) to compute the merger event rate to the case in
which the PBH mass function is not restricted to a single mass
but extends over a mass range between mmin and mmax with

m m 10max min .8 We assume that the PBH mass function
does not extend over many orders of magnitude, since in that
case the dynamics may not be accurately captured by the
simple physical processes adopted by Nakamura et al. (1997),
Ioka et al. (1998), and Sasaki et al. (2016). Quite interestingly,
we find that the merger rate distribution in this case depends on
the mass of the BH binary in a specific way and that a quantity
constructed from the mass distribution of the merger rate
density per unit time and volume ( )m m,1 2 ,

a = - + ¶ ¶ ¶( ) ( )m m m mln , 21 2
2 2

1 2

is insensitive to the PBH mass function. This distinct feature is
advantageous since there is no theoretically tight constraint on
the shape of the PBH mass function. Identifying the
information in the merger rate density that is insensitive to
the BH mass function may be used to discriminate different
formation channels (O’Leary et al. 2016; Gondán et al. 2017b;
Kovetz et al. 2017; Zevin et al. 2017). This information may be
used to obtain the probability of mergers for given BH masses,

Pintr(m1, m2; defined by Equation (25)), which is essential in
measuring the underlying BH mass function f (m) itself.
Before closing this section, in Table 1 we list definitions of

important symbols that are used in this paper.
The paper is organized as follows. We first develop a

formalism to compute the event rate in the PBH scenario which
can be applied to the case of a non-monochromatic9 mass
function. Then, we apply the derived formula to evaluate the
mass dependence of the merger rate in the (m1, m2) BH mass
plane and show that the special quantity constructed out of the
event rate density becomes almost independent of the PBH
mass function.

2. Formation of Binary PBHs

In this section, we derive a formula of the merger rate
density as a function of the masses of two BHs comprising the
binary.

2.1. Formation and Mass Function of PBHs

There are several mechanisms to form PBHs (Carr 2005).
Among them, the most natural and widely investigated
mechanism is the direct gravitational collapse of the primordial
density perturbation in the radiation dominated universe. In this
scenario, when an overdense region containing an extremely
high density peak in which the perturbation amplitude is greater
than d = ( )1th reenters the Hubble horizon, that region
directly collapses to a BH (for the estimation of δth, see
Carr 1975; Harada et al. 2013). Crudely speaking, all the
energy inside the Hubble horizon at the time of BH formation
turns into the BH. This picture allows us to relate the BH mass
to the comoving wavenumber k of the primordial density
perturbation as

~
-

-


⎛
⎝⎜

⎞
⎠⎟ ( )m M

k
20

1 pc
. 3PBH 1

2

There are no direct observational constraints on the probability
distribution of density perturbations on such small scales.
Although Equation (3) gives us a simple and approximate

estimate of the PBH mass in terms of k, the relation (3) is not
precisely correct, since the PBH mass also depends on the
amplitude of the density perturbation. Deviation of the actual
PBH mass from the horizon mass becomes significant as
the amplitude of the density perturbation approaches dth
(Choptuik 1993; Niemeyer & Jedamzik 1998). Thus, even if
the spectrum of the primordial density perturbation is
monochromatic, the resulting PBH mass function is not
monochromatic (Yokoyama 1998). Furthermore, the power
spectrum of the primordial density perturbations needs not be
monochromatic. In the paradigm of the standard inflationary
cosmology, the primordial density perturbations are produced
in the inflationary era preceding the radiation dominated era.
Several inflationary models have been proposed to date, with
different predictions for the power spectral shape of the
primordial density perturbation which lead to different PBH
numbers and mass functions (see Carr et al. 2016 and
references therein). To a varying degree, these models predict
a non-monochromatic power spectrum. Thus, the PBH mass
function is generally not concentrated on a single mass.8 Recently, such an extension has also been done in Raidal et al. (2017). Our

study differs from Raidal et al. (2017) in that our primary purpose is to
investigate the universal feature of the merger rate distribution that is
insensitive to the PBH mass function.

9 By “monochromatic mass function,” we refer to a population in which all
PBHs have the same mass.
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The PBH mass function is determined once the inflation
model is fixed and the power spectrum of the primordial density
perturbation is computed.10 Since there is no fiducial inflation
model producing PBHs and different models predict different
PBH mass functions, we do not restrict our analysis to any
particular PBH mass function. As mentioned earlier, our only
requirement is that it is confined to the mass range
mmax/mmin10. The case where the PBH mass function is
extended over many orders of magnitude requires a separate
analysis, which is beyond the scope of this paper.

In addition to the mass function, the spatial distribution of
PBHs also affects the probability of binary formation. In this
study, for simplicity we assume that the distribution of PBHs at
their birth is statistically uniform and random in space.
However, we also have to keep in mind that primordial
clustering of PBHs is also possible and could be an important
factor to enhance the merger event rate for a fixed mass fraction
of PBHs. We define the PBH mass function f (m) such that f (m)

dm is the probability that a randomly chosen PBH has mass in
(m, m+dm). Thus, f (m) is normalized as

ò =( ) ( )f m dm 1. 4
m

m

min

max

We denote the comoving PBH number density as nBH. The
mean comoving separation between two neighboring BHs is
thus given by -nBH

1 3.
Before closing this subsection, it is important to mention that

we do not consider the mass growth of the PBHs following
their initial formation. The mass change due to accretion is
negligible when PBH is in environments similar to the cosmic
average density (Carr & Hawking 1974; Custodio &
Horvath 1998; Ali-Haimoud & Kamionkowski 2017). This
may not be true for PBHs residing in high density regions of
galaxies such as molecular clouds, accretion disks, or stellar
interiors. However, since the majority of PBHs are expected to
remain mostly in low density regions such as dark matter halos,
we ignore the mass growth of PBHs.

Table 1
Definitions of Important Symbols that Are Used in this Paper

Symbols Meaning

m1, m2 Mass of the individual PBHs in binary
mt Total mass m1+m2

nBH Comoving PBH number density
fPBH Fraction of PBHs in dark matter
f (m) PBH mass function with normalization condition (4)
( )m m t, ,1 2 Merger rate density per unit cosmic time t and comoving volume

( )P m m t, ,intr 1 2 Intrinsic merger rate density defined by Equation (25)
α Universal rate exponent defined by Equation (2)
D Physical distance between PBHs that form a binary
Mi Mass of ith outer PBH
Di Physical distance to ith outer PBH (see Figure 1)
yi Comoving distance to ith outer PBH
θi Angle (see Figure 1)
ei Vector (see Figure 1 and Equation (15))
x Comoving distance between PBHs that form a binary
xmax Maximum value of x to form binary (see Equation (9))
zdec Redshift when PBHs form a binary
tdec Cosmic time corresponding to zdec
A Defined by Equation (11)
a Initial semi-major axis of PBH binary
amax amax=xmax/(1+zeq)
e Initial eccentricity of PBH binary
em Maximum eccentricity given by Equation (30)
ζ Length of z defined by Equation (17)
F(x, ζ) Probability density of (x, ζ) (see Equation (26))
t Cosmic time when PBH binary merges
τ Time delay between binary formation and merger: τ=t-tdec
β sin(2θ1) (see Equation (36) and below it)
K Dimensionless quantity defined by Equation (41)
mc Defined by Equation (44)
G(x) Defined by Equation (45)
mmin Minimum PBH mass of flat mass function (47)
mmax Maximum PBH mass of flat mass function (47)
z̃ Defined by z z=˜ ( )m mt max (see section 3.2)
s s̃, σ defined by Equation (52) and s s=˜ ( )m mt max

ξ Fitting parameter appearing in Equation (53)
ν Dimensionless quantity defined by Equation (56)
wm Defined by Equation (57)

10 In addition, non-Gaussianity of the primordial density perturbation also
affects the PBH mass function (Byrnes et al. 2012; Young & Byrnes 2013).
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2.2. Semi-major Axis and Eccentricity of a Binary

Just after PBHs are formed in the early universe, they are
typically separated by super-Hubble distances. Apart from a
possible peculiar velocity, each PBH is attached to the flow of
the cosmic expansion. Let us denote the mass of a randomly
selected PBH by m1, and the mass of and the comoving
distance to the closest PBH by m2 and x, respectively. Denoting
the physical distance between the two BHs by D (see Figure 1),
the gravitational force is given by Gm1m2/D

2. Ignoring for the
moment the subdominant effects of the other remote BHs and
the initial peculiar velocity, and assuming that the above
gravitational force is the only dynamical effect acting on each
BH,11 the BHs attract each other and collide within the free-fall
time given by

= º + ( )t D Gm m m m, . 5ff
3 2

t t 1 2

In reality, the space is expanding, and the BHs will be
distanced if the space expands by( )1 or more within the free-
fall time. Conversely, if the free-fall time is shorter than the
Hubble time 1/H, then the two BHs become gravitationally
bound and eventually collide. Since the free-fall time and the
Hubble time respectively scale as (scale factor)3/2 and (scale
factor)2 during the radiation dominated era, the Hubble time
may eventually exceed the free-fall time in the radiation
dominated era, even if the BHs are initially on the cosmic
expansion flow (Nakamura et al. 1997). The condition for
forming the bound system can be written as

+
<

⎛
⎝⎜

⎞
⎠⎟ ( )

( )
Gm

x

z H z

1

1

1
, 6

t

3 2

where z is the cosmological redshift. Using the Friedmann
equation for a flat cosmology and neglecting factors of order
unity, this condition can be rewritten as

r>
+

( )
( )

( )m z
x

z1
, 7t

3

3

where r ( )z is the background energy density. From this
expression, we can give another but equivalent physical
interpretation to the criterion for forming the gravitationally
bound state. The left-hand side is the total mass of the two BHs,
and the right-hand side is the total mass of whatever matter
component that dominates the background universe. Thus, the
condition for two BHs to become gravitationally bound is

equivalent to the condition for the total energy mt to exceed the
background energy contained in the comoving volume to the
nearest PBH x3.
In the radiation dominated era, the energy density of

radiation can be written as

r r»
+
+

W( ) ( ) ( )z
z

z

1

1
, 8c m,0

4

eq

where zeq is the redshift at the time of matter-radiation equality,
ρc,0 and Ωm respectively represent a critical density and a
density parameter of the non-relativistic matter at the present,
and the right-hand side in Equation (7) decreases in time. Then,
if x is smaller than xmax given by

r
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Equation (7) becomes satisfied at = >z z zdec eq, where zdec is
given by

+ = + ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )z z

x

x
1 1 . 10dec eq

max
3

The physical distance of the BH pair at the time of decoupling
time, which becomes the semimajor axis of the resultant binary,
is given by

r
=

+
= º

+
=

+

W

( )11

a
z

x Ax A
z x z m
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1
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1
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1
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4
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3
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,0

t

Since the BH pair forms only for <x xmax, there is an upper
bound on a as < = +( )a a x z1max max eq .
If there is no force other than the gravitational force from the

neighboring BHs, and the initial peculiar velocities vanish,
such two BHs come closer by moving on the same straight line
and end up with a head-on collision. However, in reality, there
are other remote BHs surrounding the BHs in pair, and they
exert a torque during the infall motion of the BHs in pair. As a
result, the BH pair acquires an angular momentum, and the
head-on collision is circumvented. The torque exerted by the
ith distant BH to the lowest order in the distance Di to the ith
BH is given by

q= ( ) ( )N
GM

D

m m

m
D

3

2
sin 2 , 12i

i

i
i3

1 2

t

2

where D is the physical distance between BH1 and BH2 (see
Figure 1), Mi is the mass of the ith perturber BH, and θi is the
angle between a line connecting two BHs in pair and a line
connecting ith BH and a center of mass of the BH pair (see
Figure 1). Thus the angular momentum generated by this
torque throughout the free fall becomes

 ( )J N t . 13i i ff

Taking the direction of the torque exerted by each BH into
account, the total angular momentum that the BH pair acquires
is given by

å q=
´
´=

( ) ( )
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( )J
e e
e e

t
Gm m
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D
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3

2
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1 2
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2

1
3

Figure 1. Schematic picture showing the spatial configuration of BHs.

11 In particular, we neglect the gravitational pull of the background density
inhomogeneities and the forces that arise due to anisotropic accretion from the
background density. We will discuss these assumptions below.
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where we have chosen the line of the semi-major axis to be
parallel to the z-axis and

f q f q q= ( ) ( )e cos sin , sin sin , cos 15i i i i i i

is the unit vector pointing to the ith BH (see Figure 1). For the
Keplarian motion, there is a relation between the orbital angular
momentum and the eccentricity e as

= -∣ ∣ ( )J m m
GD

m
e1 . 161 2

t

2

Using this formula, we obtain

åz z q- = =
´
´=

( ) ( )
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e e
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4
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z i

z i

2 2

1

3

3
t

where x is the comoving distance between BH1 and BH2 and yi
is the comoving distance to the ith BH. Equations (11) and (17)
are the main results of this subsection. They are the major axis
and the eccentricity of the BH binary at the time of formation.
Our analysis in the next subsection is based on these formulae.

Let us now estimate the value of N, namely the number of
the surrounding BHs that are inside the Hubble horizon at the
time of the PBH binary formation. For simplicity, only in this
paragraph we assume all the PBHs have the same mass mBH

and constitute a fraction fPBH of all the cold dark matter (for
instance, -f 10PBH

3 is required to explain the LIGO
observation; Sasaki et al. 2016). First of all, we notice that
N depends on the initial comoving separation of the PBHs that
form a pair. For instance, if the initial comoving separation of
the BHs that form a binary is sufficiently small, they form a
binary at very early time. In such a case, most likely few BHs
exist inside the Hubble horizon and N=0 or N=1 will be the
typical value. Thus, what we have to estimate is the typical
value of N of PBH binaries that are relevant to observations.
According to Sasaki et al. (2016), the probability dP that a
given BH pair forms a binary, and then undergoes a merger at
short cosmic time interval (t, t+dt), is given by

= - -⎜ ⎟⎛
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⎞
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e e
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For distinction between the lifetime and merger time of
binaries, see the discussion around Equation (28). The merger
probability for fixed t is dominated by the binaries having
eccentricity near its upper limit eupper, given by Equation (11)
in Sasaki et al. (2016),
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We only consider the first case < ft TPBH
37 3 , which is shown

to be relevant to LIGO observations (Sasaki et al. 2016).
For PBH mass mPBH=30 M , this condition becomes

 -f 10PBH
3. Analysis in the second case is straightforward.

PBH binaries we are interested in are those that merge on the

order of the age of the universe = ~t t H10 0. Then, when we
fix the merger time and the eccentricity to t0 and eupper,
respectively, the semi-major axis a at the time of the binary
formation is uniquely determined (see Equation (28)). Once the
typical semi-major axis is determined in this way, we can
convert it to the typical redshift of the PBH binary formation by
using Equations (10) and (11), from which we can evaluate the
number of PBHs inside the Hubble horizon at that redshift,
namely N. The result is given by

~ ´ -
-
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Thus, for the typical PBH binary with = ( )m M10PBH that
we are interested in, there are in general more than ∼3×1010

PBHs in the Hubble horizon at the time of the binary formation
if t;t0. Because of the weak dependence of the PBH number
N on the merger time t, N is much bigger than unity for
merger times relevant to observations. In what follows, we
take  ¥N .
One may wonder if the subsequent torque exerted on the BH

binary by the surrounding BHs changes significantly the orbital
parameters from the ones given by Equations (11) and (17).
Considering the contribution only from the closest BH (i= 1)
for simplicity, the angular momentum that the BH pair acquires
during one period T of the orbital motion is given by

qD = ( ) ( )J
GM D

D

m m

m
T

3

2 2
sin 2 . 221

2

1
3

1 2

t
1

While D does not increase with the scale factor because the BH
pair is gravitationally bound, the distance D1 grows in
proportion to the scale factor which scales as ∝t1/2 in the
radiation dominated epoch. Then, denoting by ( )D1

0 the initial
value of D1 at the time of binary formation, D1 when the BH
pair is in the nth cycle of the orbital motion becomes ( )n D1 2

1
0 .

The accumulated angular momentum becomes

å< D » D
=

¥
- ( )J J n J2.6 . 23

n 1

3 2

Thus, the subsequent change of the angular momentum of the
BH binary after its formation is at most a factor of ∼2. This
factor is not important for our main result, and we do not
consider this effect in the following analysis. On the other
hand, note that if a distant third black hole with mass M1 is
captured on a bound orbit around the binary in a hierarchical
configuration with some orbital period T1?T and eccentricity
e1, it can cause significant changes in the eccentricity of the
binary due to the Lidov–Kozai effect on a timescale

= + -[( ) ]( )t m M M e T T1Kozai t 1 1 1
2 3 2

1
2 (Naoz 2016). How-

ever, we neglect this possibility in this paper for simplicity.
There are also other effects that have been ignored in

deriving Equations (11) and (17). They include peculiar
velocity of the individual BH seeded in at the time of BH
formation, the radiation drag, the tidal interaction with the other
PBHs in the matter dominated epoch, subsequent infall of the
surrounding BHs to the BH binary, tidal force from the
perturbations of non-PBH dark matter, and baryon accretion
onto the PBH binaries. The first three effects are investigated in
Ioka et al. (1998) and were found to be subdominant. Recent
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study by Ali-Haimoud et al. (2017) also confirms that the tidal
forces from outer PBHs do not significantly affect the late-time
evolution of PBH binaries. The subsequent infall of the
surrounding BHs is also studied in Ioka et al. (1998). Ioka et al.
(1998) assumed that the dark matter consists of a single-mass
PBH population. In this case, the surrounding BH that caused
the angular momentum of the BH binary at early times is
eventually trapped by the BH binary if the outer BHs are within
the mean distance of PBHs, which can be also understood from
the expression of xmax given by Equation (9). Since the
dynamics of the three-body problem is difficult to solve, such a
case was not considered, and only the opposite case where the
nearest BH is more distant than the mean distance was included
in the derivation of the merger event rate in Ioka et al. (1998).
Even under this restriction, it was found that the event rate is
reduced at most by 40%. On the other hand, in the present case
where PBHs constitute only a fraction fPBH of all the cold dark
matter, the mean distance is enhanced by a factor -fPBH

1 3

compared with the case where PBHs provide all of the dark
matter. Thus the probability that the surrounding BHs are
trapped by the BH binary in the latter case is smaller than the
former by a factor fPBH. Because of this consideration, we
make an assumption that the surrounding BHs are not
gravitationally bound to the BH pair. Then, the subsequent
interaction by the surrounding BH in the BH binary is not
significant, and we ignore the late-time effect of the surround-
ing BHs in the following analysis.

The tidal force from the surrounding density perturbations of
cold dark matter, not in the form of PBHs, exists when PBHs
constitute only a fraction of entire dark matter. This issue was
addressed by Eroshenko (2016) and Ali-Haimoud et al. (2017),
who showed that the tidal effect is not significant by
extrapolating the primordial perturbations on CMB scales
down to the PBH scales (see also Hayasaki et al. 2016). Due to
the random nature of the density perturbations, they yield
additional statistically independent random contribution to z in
Equation (14). Since the power of the dark matter perturbation
on small scales is not well understood, we do not consider this
effect in this paper.

Finally, baryon accretion onto PBHs was claimed to
significantly affect the PBH binaries and accelerate mergers
in Hayasaki et al. (2016). But recent study by Ali-Haimoud
et al. (2017), based on the simple analytic calculation, suggests
that the baryon mass accumulated on PBHs in Hayasaki et al.
(2016) is likely to be an overestimation and the baryonic effect
is much weaker, although it may still be significant with respect
to angular momentum exchange. For simplicity, we do not
account for baryon accretion in this work.

3. Distribution of the Merger Rate

In the previous section, we have derived the expressions for
the major axis and the eccentricity of the PBH binary in terms
of the initial comoving positions and masses of PBHs. They are
the basic ingredients for the evaluation of the merger rate,
which is the purpose of this section.

Let us denote by ( )m m t, ,1 2 a merger event density per
unit cosmic time t and unit comoving volume in the m1–m2

plane. In other words,

( ) ( )m m t dm dm dtdV, , 241 2 1 2

represents the number of merger events of PBH binaries in the
mass intervals (m1, m1+dm1), (m2, m2+dm2) that happen

during (t, t + dt) and in the comoving volume dV. Since the
merger time t can be inferred from the luminosity distance
(depending on the cosmological parameters), and the source
frame BH masses (m1, m2) can be also estimated from the GW
waveform, is the quantity that can be in principle determined
observationally. Our strategy to derive ( )m m t, ,1 2 is
described as follows. What we have to evaluate is the
probability ( )P m m t dt, ,intr 1 2 that a given BH pair consisting
of two BHs with m1 and m2, respectively, forms a binary, and
then undergoes a merger during the short cosmic time interval
(t, t + dt). Once the quantity Pintr is obtained, using the PBH
mass function given by Equation (4) and assuming that the
masses of the two PBHs in the binary are independent, the
merger rate density  is given by

 =( ) ( ) ( ) ( ) ( )m m t
n

f m f m P m m t, ,
2

, , . 251 2
BH

1 2 intr 1 2

The semi-major axis and the eccentricity of the BH binary at
the formation time are given by Equations (11) and (17),
respectively. From these equations, we see that the initial
semimajor axis is a function of the random variable x as
º ( )a a x and the initial eccentricity is a function of the length

of the random vector z as zº ( )e e , where zz = ∣ ∣. Denoting
by F the probability distribution for x and ζ, the probability that
the BH binary takes the values of the parameters in the range
(x, x + dx) and z z z+( )d, is given by

z z( ) ( )F x dxd, . 26

We can then convert this probability into the one expressed in
terms of a and e as

z
z( ( ) ( )) ( )F x a e

dx

da

d

de
dade, . 27

This gives the probability that the BH binary at the formation
time has the semi-major axis and the eccentricity in the range
(a, a + da),(e, e + de).
PBH binaries shrink by emitting GWs until they finally

merge. The lifetime τ of the BH binary with parameters (m1,
m2, a, e) until it merges due to GW emission is given by (Peters
1964)12

t = - =( ) ( )Q e a Q
G m m m

1 ,
3

85

1
. 282 7 2 4

3
1 2 t

Denoting by tdec the cosmic time corresponding to zdec, namely
the time of binary formation, we have t = -t tdec. Since PBH
binaries that are relevant to GW observations merge at late time
t?tdec ( < ´t 4 10 yeardec

5 ), it is a good approximation to
identify τ with t. Thus, in what follows, we replace τ in all of
the expressions with t. Under this approximation, we can
express a as a function of { t, e, m1, m2} as a=a(t, e, m1,
m2). Using this relation, Equation (27) becomes

z
z ¶
¶

( ( ) ( )) ( )F x a e
dx

da

d

de

a

t
dedt, , 29

where it should be understood that a is replaced by
{ }t e m m, , ,1 2 . Initial eccentricity of the BH binary is not a
quantity that can be measured directly by the GW

12 We assume that e is typically close to 1 initially, which is a good
approximation in the present case.
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interferometers for primordial binaries and must be integrated.
There is an upper bound em for the initial eccentricity for fixed t
because of the existence of the maximum value of the major
axis amax=xmax/(1 + zeq) (see Section 2.2). It is determined
by the equation

= -( ) ( )t Q e a1 . 30m
2

max
47

2

Notice that in the case of the monochromatic mass function, em
coincides with eupper in the second case in Equation (20).
Finally, the intrinsic probability distribution is given by

ò z
z

=
¶
¶

( ) ( ( ) ( )) ( )P m m t de F x a e
dx

da

d

de

a

t
, , , . 31

e

intr 1 2
0

m

Having established the general framework to compute the
merger rate density, let us implement this methodology in
practice. It is straightforward to derive the last three factors in
the integrand of Equation (31), and they are given by

z
= =

-
-( ) ( )dx

da
Aa

d

de

e

e

1

4
,

2

3 1
, 323 1 4

2

¶
¶

= - -
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )a

t t

t

Q
e

1

4
1 . 33

1 4
2 7 8

The highly non-trivial part is the evaluation of F (x(a), ζ(e)) sincez
depends on many random variables (in fact, an infinite number of
variables) in a complicated manner. Formally, it can be written as

ò 

z
p

q q f
p

d z q f

= Q -

´

´ Q - -

-

¥ =
-

-
- p

( ( ) ( )) ( ) ( )

( )

( ) ( ( )) ( )

F x a e a a
x a

n

dV

n

f M dM

n

d d

y y e g x y M

,
4

lim
sin

4

, , , , , 34

N i

N
i i i i i i

i i
n y

i i i i

max

2

BH
1

1 BH
1

BH

1 N
4
3 BH

3

where Θ(·) is the Heaviside step function and δ (·) is the Dirac’s
delta function. Here, we have used the parametrization
Equation (15) for ei, and introduced the notation as

p= =y x dV y dy, 4i i i0
2 and

åq f qº
´
´=

( ) ( ) ( )
∣ ∣

( )e e
e e

g x y M
x

y

M

m
, , , , sin 2 . 35i i i i

i

N

i

i
i

z i

z i1

3

3
t

The derivation of Equation (34) is given in the Appendix.
We evaluate F(x(a), ζ(e)) using two approximations. The first

case is that only the nearest BH (i= 1) is incorporated in the
calculation of z . This approximation was adopted in the previous
studies (Nakamura et al. 1997; Ioka et al. 1998; Sasaki et al. 2016)
for single-mass PBH mass functions. In that case, all the PBHs
have the same mass, and the nearest BH (i= 1) exerts the
strongest torque on the BH binary. Given that the torque by an
outer BH is suppressed by the inverse cube of the distance, the
approximation of taking only the nearest BH into account is
physically natural as the zeroth order approximation.13

On the other hand, if the mass function is multimass, a
massive outer BH may exert a stronger torque than a low-mass
inner one. The wider the mass function, the more likely it is
that this possibility may arise. To take into account the effect of
outer perturbers, in our second estimate we consider a flat mass
function up to a certain BH mass mmax and include the outer
BHs to evaluate the torque.
In what follows, we evaluate z( ( ) ( ))F x a e, and the intrinsic

probability distribution for these two cases, separately.

3.1. Case 1: Torque Only from the Nearest BH

In this subsection, we make an approximation that the torque
is exerted only by the nearest BH. Accordingly, the function g
defined by Equation (35) becomes

q= ( ) ( )g
x

y

M

m
sin 2 . 36

3

1
3

1

t
1

Even after this simplification, it is hard to evaluate the integral
(31) analytically. For an analytic estimate, we carry out the
calculation for an arbitrary but fixed value β=sin (2θ1). Our
result is insensitive to the value of β, as long as it is not
extremely close to zero. Since the probability of realizing β =
1 is suppressed (see discussion after Equation (37) for the
estimation of this probability), we think that this simplification
does not lose the essential feature of the merger rate density.
The integral over y1 simplifies to

ò

z
p

b

p
b

b

= Q -
-

´ -
-

´ Q - -

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

( ( ) ( )) ( )

( )

( )

F x a e a a
n

e

a

A

dM f M
M

m

n M

e m

a

A

M

m
e

,
12

1

exp
2

1

2

3
1 . 37

max

2
BH
2

5 4

1 1
1

t

BH 1

2
t

3 4

1

t

2

The PBH binaries at the time of their formation are highly
eccentric (e≈1). Since the PBH mass function is implicitly
assumed to be narrow in the present case, M1 does not differ
from mt significantly, and the argument of the last Heaviside
function is positive unless β is smaller than - e1m

M

2

3
2t

1
. Now,

let us estimate the probability that β becomes smaller than the
critical value βc for which the argument of the Heaviside
function becomes zero. To this end, we again consider the
monochromatic mass function and use the eccentricity given by
the first case of Equation (20). Then, βc becomes

b ´


⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )f

t

t

m

M
0.01

10
. 38c PBH

16 37

0

3 37
BH

5 37

For βc = 1, the probability that β happens to be smaller than βc
is approximately given by

b b
b

< » ´ -( ) ( )P
16

6 10 , 39c
c
2

6

for the fiducial values used in Equation (38). This probability is
much smaller than unity, and we replace the last Heaviside
function by 1 in the following analysis. Then, the intrinsic

13 The cumulative torque from all objects in a logarithmic radius bin of width
D yln (e.g., here we may set D ~ D ~ -y y y n yln BH

1 3 ) follows from the
central limit theorem and is described by a normal distribution with zero mean
and root-mean-square that corresponds to DN g1 2

1,rms, where ΔN is
the number of objects in that logarithmic radius bin and =g1,rms

q- -( ) ( ) ( )x y M m2 sin 21 2 3
rms t rms. This may be estimated roughly as

pD = DN n y y4 lnBH
3 . Therefore, the relative cumulative contribution of

distant objects to the torque scales with y−3/2, and so the smallest y dominates
the integral where the number of objects is ∼1.
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probability distribution (31) becomes

ò

ò
b

=

´ -

´ - -

-

-

( ) ( )

( )

[ ( ) ] ( )

P m m t
t

dM
m

M
K

f M

n

de e e

K e

, ,
1

8

1

1

exp 1 , 40

e

intr 1 2 1
t

1

2 1

BH

0

2

2

m 45
16

37
32

where we have introduced a dimensionless parameter K by

p bº -
⎛
⎝⎜

⎞
⎠⎟ ( )K n

M

m
A

t

Q
2 . 41BH

1

t

3
4

3
16

This is a small parameter. For instance, for a single-mass PBH
mass function with mass mBH and the Hubble time t=1/H0,
we have

p
p b

b

= + W

~ ´ -



⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( )

K z f Gm H

f
m

M

170

3

3
1

3 10
10

, 42

meq PBH BH 0

4
PBH

BH

3
16

1
4 3

4

1
4

5
16

5
16

where fPBH is the mass fraction of the PBHs to the entire cold
dark matter

The integration over e can be expressed in terms of the
incomplete gamma function. Then, Equation (40) becomes

ò b
=

´ -
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( ) ( )

( ) ( )

P m m t
t

dM
m

M

f M

n
K

G K G
M

m

, ,
2

37

1

, 43
c

intr 1 2 1
t

1

1

BH

1

16
37

where mc and G(x) are defined by

p b

r
º +

W⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )m

m

n

t

Q
z

m2

1
1 , 44c

c mt

BH

1 7

eq
4 7 ,0

t

25
21

= G⎜ ⎟⎛
⎝

⎞
⎠( ) ( )G x x

58

37
, . 45

For the monochromatic mass function, mc is given by

b~ ´ - -




⎛
⎝⎜

⎞
⎠⎟( ) ( )m M f

m

M
7 10

10
. 46c

4
PBH

1 BH

26
21

Equation (43) for arbitrary f (M) mass function is the final
expression of the intrinsic merger probability distribution in the
present case.

3.2. Case 2: Torque from the Outer BHs

Let us next consider the case in which the PBH mass
function is flat from =m mmin max to mmax and vanishes
outside of it. As mentioned earlier, we implicitly assume that
  0.1. Then the PBH mass function is given by


=

-
Q - Q -( )

( )
( ) ( ) ( )f m

m
m m m m

1

1
. 47

max
max min

We include not only the nearest BH but also outer BHs.

It is extremely difficult to perform the integration of
Equation (34) analytically.14 However, we can estimate the
approximate behavior of F(x, ζ) in the domain n x 1BH

3 ,
where the PBH binaries with lifetime comparable to the age of
the universe form.15 To this end, let us first write F(x, ζ) as

z
p

z= -
- p( ) ( ) ( )F x

x

n
e P x,

4
, , 48n x

2

BH
1

4
3 BH

3

where P(x, ζ0)dζ is a probability that ζ takes value in the
interval (ζ0, ζ0+dζ) for given x. For later convenience, let us
define z̃ by (mt/mmax) ζ. Thus, we have

z p z»( ) ˜( ˜ ) ( )F x n x P x
m

m
, 4 , , 49BH

2 t

max

where z z˜( ˜ ) ˜P x d, 0 is the probability that z̃ takes a value in the
interval z z z+(˜ ˜ ˜ )d,0 0 for given x. Looking at the definition of z ,
we expect that the typical value of z̃ for given x is around nBHx

3,
since yi ( = ( )i 1 ) is typically about -nBH

1 3 and the contribution
from yi with higher i is suppressed (see footnote 13). Noting
that yi>x, the case in which z  n xBH

3 is realized by either
if -y n1 BH

1 3 or if accidental cancellation takes place among
terms with different i. Since the former is suppressed
exponentially as ~ - p

e n y4
3 BH 1

3
, the latter, which is stochastic,

dominates. Recalling that z is essentially a two-dimensional
vector, the probability that z̃ is in the thin ring z z z+(˜ ˜ ˜ )d, by
the random choice is proportional to the ring area, namely z z˜ ˜d .
Thus, we expect

z zµ˜( ˜ ) ˜ ( )P x, , 50

for z ˜ n xBH
3. On the other hand, the case z ˜ n xBH

3 is
realized mainly when y1 is accidentally much smaller than the
typical value -nBH

1 3. The probability of such a situation is
controlled by the volume element y dy1

2
1, and the relation

z µ -˜ y1
3 leads to z zµ -˜ ˜y dy d1

2
1

2 . Thus, we expect

z zµ -˜( ˜ ) ˜ ( )P x, , 512

for z ˜ n xBH
3. From the definition of z given by

Equation (17), we have

 zs
p

º á ñ = + +
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )m

m
n x

32

135
1 . 522 2 max

t

2

BH
3 2

The derivation of this result is given in Appendix. One simple
function that interpolates Equations (50) and (51) is given by

z
p

x s
z

z xs
=

+
˜( ˜ ) ˜

˜
˜ ˜

( )P x,
3 3

2
, 531 3 2

3 6

where s s=˜ ( )m mt max , x = ( )1 is a fitting parameter, and
the normalization condition is imposed.
In order to check the validity of the approximation (53), we

evaluate z˜( ˜ )P x, numerically by the Monte Carlo method. For
this purpose, we first fix N and x. Then, we randomly generate a
set of random variables q f{ }M y, , ,i i i i and compute z̃ . By

14 Analytic expression of the probability distribution for the eccentricity was
derived for the monochromatic mass function in Ali-Haimoud et al. (2017).
15 PBH binaries with nBHx

3∼1 have a larger semimajor axis and more
circular orbit than those with nBHx

3 = 1. These two factors make the lifetime
of the binaries much longer than the age of the universe.
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repeating this process many times, we obtain the distribution of
z̃ for a given N and x up to the statistical uncertainty.

Figure 2 shows the distribution of 10,000 realizations of z̃
for N=5 for  = = ´ ´p - -(n x0.1, 10 , 5 10 , 24

3 BH
3 2 3

- - )10 , 103 3 . The red curve represents the distribution obtained
by the Monte Carlo calculations, and blue one represents the
analytic approximation (53) with ξ=5.5. We find that this
simple ansatz of z˜( ˜ )P x, fairly recovers the numerically
obtained probability distribution. Although we consider the
flat mass function, we expect that the ansatz should work
qualitatively for other mass functions since the asymptotic
behaviors (50) and (51) are determined independently of the
mass function. In what follows, we adopt Equation (53). Then,
F(x, ζ) becomes

z x s z

z xs

=

´ +
-

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

( ) ˜

˜ ( )

F x n x
m

m

m

m

, 6 3

. 54

1 3
BH

2 2 t

max

2

t

max

3
3 6

1

Substituting F(x, ζ) given by Equation (54) into
Equation (31), after some algebra, we obtain

  òp x
n=

+ + +

¥
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P
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m

m

w

w
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Here we have defined a dimensionless quantity ν by

 n
p
x= + + -

⎛
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⎞
⎠⎟( ) ( )n

m

m
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t
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16
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1 , 561 3 2
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t

3 4

3
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and we have changed the integration variable as =w
n -- ( )e132 37 2 , and n= -- ( )w e1m

32 37
m
2 . Using a relation

r= +( ( ))n m2 1BH BH max , which is valid for a flat mass
function, we have
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⎛
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To estimate typical magnitude of wm, for equal mass binary
( = =m m m1 2 BH), wm is given by

» ´ - -



⎛
⎝⎜

⎞
⎠⎟ ( )w f

m

M
2 10 . 58m

4
PBH

BH32
37

160
777

This shows that wm can be bigger or smaller than unity within
the range of the feasible values of fPBH and mBH. Although the
integration over w in Equation (55) can be expressed in terms
of the hypergeometric function, we do not write it explicitly
here since it gives no useful information. Thus, Equation (55) is
the final expression of the intrinsic merger rate and the main
result of this subsection.

Figure 2. Red curves represent the probability distribution z˜( ˜ )P x, of 10,000 Monte Carlo realizations of the dimensionless torque parameter z̃ for four different values
of p = -n x 104

3 BH
3 2 (top-left panel), 5×10−3 (top-right panel), 2×10−3 (bottom-left panel), and 10−3 (bottom-right panel) with N=5 perturbing BHs for a flat

PBH mass function (47) with ò=0.1. Here nBH and x is the comoving PBH number density and initial comoving distance between BHs that form binary, respectively.
Blue curves represent the probability distribution given by Equation (53) with ξ=5.5.
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4. Hidden Universality in the Merger Rate Density

In the previous section, we have derived the analytic
expression of Pintr in the m1–m2 plane for the two different
limiting cases corresponding to the different approximations.
According to Equation (25), the observable merger rate density
is not Pintr, but Pintr weighted by the PBH mass function. The
observable merger event density is highly dependent on the
PBH mass function, and it appears at first glance that no
definite prediction can be extracted for the PBH scenario
without choosing the specific mass function. Contrary to this
naive guess, there is a unique feature expressed as a
mathematical relation for the differentiated merger rate density
specific to the PBH scenario, as we will show below. Such a
relation could be quite useful as a powerful method for testing
the PBH scenario when the sufficient number of merger events
have been accumulated.

Let us first consider the case where Pintr is given by
Equation (40). This expression of Pintr still contains the
integration over the PBH mass nearest to the BH binary.
Although this integration cannot be done explicitly without
choosing the specific PBH mass function, carrying out the
explicit integration is not needed for our present purpose. The
function G(x) appearing in the integrand is monotonically
decreasing, and its asymptotic behavior is given as
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Using this formula and noting that K, which is much smaller
than unity according to Equation (42), is always less than
M1/mc, we find that the integrand of Equation (40) becomes
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A crucial consequence of these approximate expression is that
the integrand has a simple scaling property with m1 and m2.
Using the scalings,
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we find that the above integrand scales as

-

µ
<

>

-

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎧
⎨⎪
⎩⎪

( ) ( )

( )

( )
( )

m

M

f M

n
K G K G

M

m

m m m

m m m

, 1

, 1.
62

c

M

m

M

m

t

1

1

BH

1

t 1 2

t 1 2

c

c

16
37

22
21

1
7

1

36
37

3
37

1

Because of this factorization, the same scaling for m1m2 and mt

remains for Pintr. Assuming one of the branches (M1<mc or

M1>mc) dominates the integral, Pintr scales as
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Then, the observable merger rate density  per unit time and
unit volume defined by Equation (25) can be written as
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where º º-( ) ( ) ( ) ( )h m m f m h m m f m,A B
1
7

3
37 and CA, CB are

quantities that are independent of m1 and m2, but contain
information of f (m). An interesting point of Equation (64) is
that the dependence of the merger rate density on the total
mass mt is independent of the model-dependent functions
hA(m) or hB(m) (namely, mass function) and is completely
determined as µmt

36 37 for the former case and µmt
22 21

for the latter case. The mass function enters the game only
through the total normalization constant (represented
as CA and CB) and the factorizable part hA(m1) hA(m2) or
hB(m1) hB(m2). Thus, by focusing on the total mass part
of merger rate density and picking it up, we can provide
a definite prediction for the merger rate density that is

insensitive to the shape and amplitude of the PBH mass
function. Indeed, we can pick up the total mass part by taking
the logarithm of  and then differentiating it by m1 and m2,
namely,
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for any (m1, m2). As discussed at the beginning of Section 3,
the merger rate density  can be determined in principle by
observations if a sufficient number of BH merger events are
detected and the potential detection bias can be appropriately
eliminated. Thus, the quantity α on the left-hand side can be
also determined observationally. In this sense, the left-hand
side can be determined by observations. Our PBH merger
scenario predicts that this quantity is equal to 36/37 for the
upper case and 22/21 for the lower case. In reality, what is
realized lies between the above two cases, and the left-hand
side of Equation (65) may take a value between the two
values corresponding to the upper case and the lower case,
respectively. Given that the numerical values on the right-
hand side for both cases are close to 1 (within less than 5%),
the left-hand side of Equation (65) in the mixture case would
be also close to 1. Taking into account this possibility, we
conclude that under the assumption of the uniform spatial
distribution of PBHs the merger rate density satisfies the
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following relation:

 a( ) ( )m m t
36
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This relation is robust in the sense that it is independent of the
underlying mass function.

A similar conclusion can be drawn to the second case where
Pintr is given by Equation (55). In this case, the observable
merger rate density (Equation (25)) is given by
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As we have done in the case 1, let us evaluate the integral for
two limiting cases (wm = 1 and wm?1), separately.

First, when wm = 1, we can extend the lower limit of the
integral to 0. As a result, we obtain
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where C1 is a constant of order unity. Using the scaling for ν as
(see Equation (56))
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3

37 and C̃1 is a quantity that is independent
of m1, m2, but contains information of f (m). As with the above
discussion for the case 1,  has a unique dependence on mt.
This dependence can be again extracted by considering the
quantity α as

a =( ) ( )m m t, ,
36

37
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This value precisely coincides with the lower end of
Equation (66).

Let us next investigate the case wm?1. In this case, we
obtain
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where C2 is a constant of order unity. Using the scaling for wm

as (see Equation (57))
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as well as that for ν, we find
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where º -( ) ( )h m m f m2
1
7 and C̃2 is a quantity that is

independent of m1, m2, but contains information of f (m).
Then, we find

a =( ) ( )m m t, ,
22

21
. 751 2

This value precisely coincides with the upper end of
Equation (66). Thus, the range of α in the present case is
also given by Equation (66).
To summarize, our study demonstrates that 0.97

α1.05 holds in the considered PBH scenario in which
PBHs form binaries in the early universe. The uncertainty in
α is small enough to distinguish the PBH scenario from
different scenarios for explaining the origin of the merging
BH binaries once a sufficiently large number of merger
events are measured. For instance, Bird et al. (2016)
considered the formation of PBH binaries due to close
encounters in dark matter halos at low redshifts. This PBH
scenario gives a different merger rate density, that is (Raidal
et al. 2017),

 =( ) ( ) ( ) ( )m m t Cm f m m f m m, , , 761 2 1 1 2 2 t

2
7

2
7

10
7

where C is a quantity independent of m1 and m2. For this
process, Equation (2) gives

a = » ( )10

7
1.43. 77

Thus, this scenario predicts a unique and different value from the
one studied in this paper. Gondán et al. (2017b) has recently
extended this analysis to systems in collisional equilibrium where
mass segregation takes places such as in galactic nuclei. In this
case, α is a unique function of the total binary mass. Another
example is the astrophysical scenario in which the BH binaries
form and evolve due to dynamical encounters in dense stellar
environments. In this scenario, O’Leary et al. (2016) found that
approximately = µ( ) [ ( ) ( )]P m m f m f m m,intr 1 2 1 2 t

4. In this
case, the higher mass mergers are much more probable mainly
due to the mass dependence of binary formation during
chance triple encounters, exchange interactions, mass segregation,
and dynamical hardening effects. If the intrinsic merger
probability does not depend on the symmetric mass ratio
h = +( )m m m m1 2 1 2

2, then we get α=4 for this process.
Clearly, a α∼4 value is largely outside of the region obtained
for both PBH scenarios mentioned above. When a sufficient
number of mergers accumulates to determine α, it may be
possible to exclude several formation scenarios and pin down the
most likely scenario.
In order to crudely estimate the necessary sample size to

measure α from future GW detections, we generate a mock
Monte Carlo sample of BHs drawn from a fiducial flat mass
function between a range of masses 5 and 30 M , and
generate a random merger sample by randomly drawing
objects with probability proportional to + a( )m m1 2 . For this
order-of-magnitude estimate, we neglect the measurement
error of mass, since the mass measurement accuracy is
expected to be much smaller than the range of BH masses
(i.e., Δm1,2/m1,2∼25%) for half of the sources for the
design sensitivity of second generation GW instruments,
including Advanced LIGO, Advanced VIRGO, and KAGRA
(Ghosh et al. 2016).16 We generate a 2D histogram of events
and fit the value of α. Repeating this analysis 1000 times for
fixed fiducial α gives an approximate posterior distribution
function of the measured α. This analysis shows that a

16 If heavy BHs exist with mass 30 M <m1,2<50 M , the median mass
measurement errors are expected to be of order 40% (Vitale et al. 2017).
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sample of 100 events is necessary to measure α to integer
accuracy, and 1000 events would allow us to measure it with
an error of 0.15 if the fiducial value of α is between 1 and 3.
The current rate estimates predict  = 12– - -240 Gpc yr3 1.
Assuming a maximum detection distance of z=0.5 for the
design sensitivity of second generation instruments, a sample
of ∼100 events (1000 events) will accumulate in between 6
and 120 days (60 days and 3.3 years).

5. Summary

There is a growing interest in the possibility that the merging
BHs detected by LIGO are primordial. Previous studies (Sasaki
et al. 2016) showed that the BH binary merger event rate
estimated by LIGO can be explained by the PBHs, which
constitute only a tiny fraction of the entire dark matter. While
the estimated masses of the individual BHs show some spread
10∼30 M , it was assumed in the previous study that all the
PBHs have the same mass of 30 M . Although this is a
reasonable approximation when only the first event for which
masses of two BHs in the binary are almost the same is
observationally known, it hugely compresses the valuable
information about the event rate distribution in the BH mass
plane.

In this paper, we extended the formalism to compute the
merger event rate to the case where the PBH mass function is
not monochromatic. Our basic assumption on the mass function
made throughout this paper is that it is not widely extended
over many orders of magnitude in the BH mass range but is
confined to the mass range ∼10 M . The derived formula (31)
contains multiple integrations over many random variables
(Equation (34)) and is complicated enough to defeat the exact
analytic computation. Based on the physical expectation that
among remote BHs the closest one gives the largest torque on
average, we evaluated the simplified version of Equation (31)
in which only the closest BH is taken into account. In this
case, the computation becomes much more feasible. We found
that the quantity α constructed from the merger rate density 
in the BH mass plane as

a º - +
¶

¶ ¶
( ) ( ) ( ) ( )m m t m m

m m
m m t, , ln , , 781 2 1 2

2
2

1 2
1 2

becomes almost independent of the PBH mass function and
takes a value close to unity (0.97α1.05). Since it is
possible that several distant BHs generate the dominant torque
instead of the closest one during binary formation in the early
universe, we have also considered the case in which the remote
BHs are taken into account for a flat PBH mass function. Even
in this case, we found that the quantity α exactly coincides with
the one derived for the case of the closest perturbing BH. This
suggests that the determined value of α is robust to
observationally test the PBH scenario once a large sample of
mergers becomes available with accurately determined masses.

Other astrophysical mechanisms leading to BH mergers are
generally expected to yield different α values. Recently,
O’Leary et al. (2016) has shown that the probability of
merger is proportional to mt

4 for binary BH mergers in dense
star clusters, which implies α∼4 if the merger rates are
nearly independent to mass ratio. PBH binaries formed in
the low redshift universe by GW emission during close
encounters lead to α≈1.43 (Bird et al. 2016). BH binaries
formed by GW emission in mass-segregated environments

such as galactic nuclei lead to α values that vary with the
total binary mass mt (Gondán et al. 2017b).
The mass distribution is not the only GW observable that

allows one to distinguish between different mechanisms
leading to binary BH mergers. For instance, it was shown
recently that PBHs are unlikely to possess large spins (Chiba
& Yokoyama 2017). When the statistics of BH spins are
accumulated in the future, this will also become a powerful
discriminator. Further, the eccentricity distribution will be
useful to distinguish binaries formed by GW capture in high
velocity dispersion environments at low redshifts (O’Leary
et al. 2009; Gondán et al. 2017a). The observable PBH
binaries that formed at high redshifts are expected to have
close to zero eccentricity due to circularization by GW
emission (Peters 1964). LISA will be able to determine the
eccentricity for mergers with e  10−6 (Seto 2016).
Detection of BHs with masses less than ∼1 M , which may
be possible with the advanced LIGO, VIRGO, and KAGRA
at design sensitivity, would provide strong evidence of the
existence of PBHs (Clesse & García-Bellido 2017b; Magee &
Hanna 2017). Finally, future GW detectors will allow us to
map out the cosmological luminosity distance (or redshift)
distribution for BH mergers to high redshifts (Nakamura
et al. 2016; Koushiappas & Loeb 2017b). Examining the
multidimensional GW event rate distribution will be essential
to prove or disprove the PBH scenario.

This work was supported by MEXT KAKENHI Nos.
17H06357 (TT and TS), 17H06358 (TT), 17H06359 (TS),
15H05888 (TS and SY), 15H02087 (TT), and 15K21733
(TS and SY), JSPS Grant-in-Aid for Young Scientists (B)
No.15K17632 (TS) and No.15K17659 (SY), and the Grant-in-
Aid for Scientific Research No. 26287044 (TT). This project
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 638435
(GalNUC), and by the Hungarian National Research, Devel-
opment, and Innovation Office grant NKFIH KH-125675 (BK).
This work was performed in part at the Aspen Center for
Physics, which is supported by National Science Foundation
grant PHY-1607761.

Appendix
Derivation of the Probability Distribution

The non-trivial part of Equation (34) is the probability
distribution for x and yi (i=1, L, N), and we focus on this
part only.
Let P(N, V ) be the probability that there are N BHs in the

volume V. For BHs that are uniform randomly distributed, we
have

= -
⎛
⎝⎜
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( )P N V
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e,

1
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N
V V
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where V0 is the volume for which the expectation particle
number is 1. Thus,

= - ( )V n . 800 BH
1
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Then, the probability that the situation shown in Figure 3 is
realized is given by
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From the definition of z in Equation (17), we have
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Using Equation (15) for ei, we obtain
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By the assumption that Mi obeys the uniform distribution in the
interval (òmmax, mmax), we have
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The calculation of å á ñ= y1i i1
6 can be done by noting that it is

an expectation value of 1/y6 where y is the distance of particles
randomly distributed in the region y>x (Ioka et al. 1998),
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Plugging this result into Equation (85) finally yields
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