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Two electrons in a quantum dot repel each other: their interaction can be characterized by a positive interaction
energy. From the theory of superconductivity, we also know that mechanical vibrations of the crystal lattice can
make the electron-electron interaction attractive. Analogously, if a quantum dot interacts with amechanical degree
of freedom, the effective interaction energy can be negative; that is, the electron-electron interaction might be
attractive. In this work, we propose and theoretically study an engineered electromechanical system that exhibits
electron-electron attraction: a quantum dot suspended on a nonlinear mechanical resonator, tuned by a bottom
and a top gate electrode. We focus on the example of a dot embedded in a suspended graphene ribbon, for which
we identify conditions for electron-electron attraction. Our results suggest the possibility of electronic transport
via tunneling of packets of multiple electrons in such devices, similar to that in superconducting nanostructures,
but without the use of any superconducting elements.
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I. INTRODUCTION

Two electrons usually repel each other due to the Coulomb
force. However, mechanical vibrations of a crystal lattice can
mediate an effective attractive interaction between the delo-
calized electrons, leading to the formation of Cooper pairs and
the emergence of superconductivity [1,2]. Moreover, recent
experiments have demonstrated attractive interaction in the
absence of superconductivity, between electrons confined in
engineered nanostructures: in a carbon nanotube double quan-
tum dot [3], where the attraction was induced by capacitive
coupling to a nearby auxiliary quantum-dot system [4], and in
a sketched quantum dot at the SrTiO3/LaAlO3 interface [5,6],
where the mechanism of attraction has not been revealed. A
recent proposal [7] describes how to engineer electron-electron
attraction in an artificial nanostructure using a careful design
of orbital and tunneling energies.

The possibility of vibration-mediated attractive interaction
among confined electrons has been discussed, e.g., in the
context of amorphous semiconductors [8], vacancies in sili-
con [9,10], fullerenes [11], and molecular junctions [12–15].
Figure 1(a) depicts the simplest model capturing the basic
ingredients of the effect: it involves (i) a single vibrational
mode (phonon), characterized by a mass m and frequency ω,
(ii) a single electronic orbital that can be occupied by one
or two electrons, i.e., the occupation number is N ∈ {0,1,2};
this orbital is characterized by an on-site energy ε and a
repulsive Coulomb energy U > 0, (iii) the coupling between
the phonon and the confined charge, characterized by the force
λ encoding the coupling strength, and (iv) a (zero-temperature)
electron reservoir, with Fermi energyμ = 0, which can supply
electrons to the orbital. We refer to this as the Anderson-
Holstein model [15]. (See Methods for more details.) The
presence of the electron-phonon coupling leads to an effective
Coulomb energy Ueff = U − λ2

mω2 , which becomes negative if
the coupling λ is strong enough, i.e., if λ > ω

√
mU . That is, a
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strong enough electron-phonon coupling implies an attractive
electron-electron interaction.

In a system with tunable on-site energy and tunable
electron-phonon coupling strength, this attractive electron-
electron interaction could lead to remarkable equilibrium
and transport properties, as indicated in Figs. 2(a) and 2(b).
Figure 2(a) shows the charge stability diagram, that is, the
numberNeq of electrons occupying the orbital in equilibrium at
zero temperature, as the function of the two tunable parameters
ε and λ. For weak electron-phonon coupling λ < ω

√
mU , the

filling sequence of the orbital is regular: for example, at λ = 0,
as ε is decreased, the occupation of the orbital increases by one
at ε = 0 and again by one at ε = −U . In contrast, for strong
electron-phonon coupling λ > ω

√
mU , the occupation is in-

creased abruptly by two as the 0/2 boundary, i.e., the boundary
between the Neq = 0 and Neq = 2 regions, is crossed. When
tuned to the 0/2 boundary, such a system is expected to show
an exotic transport effect when embedded between a source
and a drain electrode, reminiscent of Cooper-pair transport in
a normal-superconductor junction [16]: current is carried by
tunneling of electron pairs [12,15]. Furthermore, the current-
bias voltage curve exhibits a smooth “Coulomb hill” instead
of a sharp Coulomb plateau [12]; shot noise [15] (Fano factor)
increases compared to its value for single-electron tunneling,
corresponding to an increased granularity of the charge quanta
carrying the current; and unconventional Coulomb-blockade
features are induced also in the regimes of single-electron
tunneling [17].

The steady progress in the fabrication of molecular
junctions allows for electrical control of the orbital ener-
gies [18,19]; however, tuning the strength of the electron-
phonon coupling in these systems is very challenging. Ac-
cordingly, to our knowledge, the effects discussed above have
not been observed in molecular junctions.

In this work, we propose an engineered nanostructure to ob-
serve electron-electron attraction, electron-pair tunneling, and
the associated interesting phenomenology discussed above.
The structure we suggest is a suspended quantum dot [20–23],
see Fig. 1(b), with a top and a bottom gate electrode. This
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FIG. 1. Electromechanical systems showing mechanically assisted electron-electron attraction. (a) Electron-electron attraction arises in the
Anderson-Holstein model, where the charge on a single electronic orbital (quantum dot) interacts with a single vibrational mode (phonon).
(b) Electron-electron attraction can also be engineered in a suspended quantum dot (blue spot), which is located on a nonlinear nanomechanical
resonator (dashed line). The dot can be displaced along the z direction. The equilibrium occupation and displacement of the dot can be tuned
by the top and bottom gate voltages, Vt and Vb, respectively. (c) Capacitor-network model of the suspended dot, which is coupled to a grounded
charge reservoir via capacitance C, and to top and bottom gates via z-dependent gate capacitances Ct (z) and Cb(z).

combination allows for independent control of the orbital
energy and the electron-phonon coupling strength: in short,
the average gate voltage defines the former, whereas the
gate-voltage difference defines the latter.

Importantly, in this setup the electron-phonon coupling is
of extrinsic origin [20–23]; i.e., it arises due to the external
electric field created by the gates and not due to intrinsic mech-
anisms (e.g., deformation potential, bond-length change).
Utilizing this extrinsic mechanism brings two advantages:
the electron-phonon coupling is tunable via the gate voltages,
and the corresponding extrinsic force can well exceed those
arising from the intrinsic mechanisms (see Methods). We
focus on the example of a dot embedded in a suspended
graphene ribbon [23], for which we identify conditions for
electron-electron attraction. Furthermore, our results reveal
the possibility of electronic transport via tunneling of packets
of multiple electrons in such devices, similar to that in
superconducting nanostructures, but without the use of any
superconducting elements.

II. RESULTS

A. Setup

We consider a quantum dot embedded in a mechanical
resonator, as shown in Fig. 1(b). For concreteness, we
formulate amodel for the casewhen the resonator is a graphene
nanoribbon, suspended over a trench [24–27], as shown in
Fig. 1(b). The system is controlled by voltages Vt and Vb

applied on the top and bottomgate electrodes, respectively. The
geometry of the resonator is characterized by the width W and
the length L0 of the suspended part of the ribbon. The ribbon
might be stretched even if the gates are inactive; characterized
by the residual strain (prestrain) uxx,0 = (L0 − Lu)/Lu, where
Lu is the unstretched length of the suspended part of the ribbon.

The dot, indicated by the blue spot in Fig. 1(b), is located on
the suspended part of the resonator. The dot interacts with an
electron reservoir; the capacitive part of this interaction is char-
acterized by the capacitance C. In addition, electrons can also
tunnel between the reservoir and the dot. The dot is coupled
to the top and bottom gates via the displacement-dependent
capacitances Ct (z) and Cb(z), respectively. As indicated in
Fig. 1(c), the displacement dependence of the capacitances

arises since the displacement of the dot changes the distance
between the capacitor plates. To keep the number of parameters
to the minimum, we assume that the three capacitances are
equal at z = 0, and that the displacement dependencies are that
of a planar capacitor Ct (z) = Cb(−z) = Cd/(d − z), where d

is the distance between the plates. First, we consider the case
of an ‘n-type semiconducting’ dot, by which we mean that the
number N of excess electrons in the dot at zero gate voltages
is zero, and at finite gate voltages it can only be non-negative,
N � 0.

B. Charge stability diagram

Our primary goal is to determine the charge stability
diagram of the dot; that is, to determine how the numberNeq of
electrons in the dot at zero-temperature equilibrium depends
on the gate voltages Vt and Vb. Motivated by the result of
the Anderson-Holstein model [Fig. 2(a)], we look for the 0/2
boundary that separates regions of the empty dot (Neq = 0)
and the doubly occupied dot (Neq = 2). To this end, we express
the total energy E(N,z) of the system (see Methods) which
depends on the parameters W , L0, uxx,0, C, d, Vt , and Vb,
as well as the dot occupation N and the dot displacement
z. We take into account the geometrical nonlinearity of the
resonator by keeping the mechanical energy term that is of
fourth order in the displacement z; this is required to avoid
the apparent charge instability arising in the case of a purely
harmonic oscillator [13]. Then, we minimize the total energy
E(N,z) with respect toN and z, to obtain the zero-temperature
equilibrium occupation Neq and displacement zeq.

The charge stability diagram is shown in Fig. 2(c), for
a certain realistic parameter set (see caption). To be able
to compare the diagram with that of the Anderson-Holstein
model [Fig. 2(a)], we plot Neq as the function of the average
gate voltage V̄ = (Vt + Vb)/2 and the gate-voltage difference
δV = (Vt − Vb)/2: intuitively, V̄ controls the on-site energy
of the dot, whereas δV controls the electric field that acts on
the dot and hence controls the coupling strength between the
dot charge and the resonator.

The key features in Fig. 2(c) are as follows. (i) Overall,
the diagram shows strong qualitative similarities with that of
the Anderson-Holstein model [Fig. 2(a)]. (ii) Similarly to the
Anderson-Holstein case [Fig. 2(a)], Fig. 2(c) also shows a
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FIG. 2. Characteristics ofmechanically assisted electron-electron
attraction. Charge stability diagram (a) and displacement stability
diagram (b) of the Anderson-Holstein model. Analogous results for
the suspended quantum dot are shown in (c) and (d), respectively [28].
(e) Charge excitation gap �E (thick gray line) along the 0/2
boundary shown in (c) (labeled as “tunneling of electron pairs”).
(f) Gate-voltage range of the 0/2 (pink) and 0/3 (blue) boundaries, as
a function of prestrain. The upper horizontal axis corresponds to the
frequency f associated to the resonator (see Methods). Parameters:
ribbon length L0 = 1.5μm, ribbon width W = 0.4μm, ribbon-gate
distance d = 150 nm, capacitance C = 5 aF. The prestrain in (c)–(e)
is uxx,0 = 5 × 10−6.

triple point between the Neq = 0,1,2 regions. The coordinates
of this triple point are δV2 ≈ 2.6V and V̄2 ≈ −3.5mV. (iii) In
addition to the Anderson-Holstein result, the figure also shows
a triple point between the Neq = 0,2,3 regions, at δV3 ≈ 3.1V
and V̄3 ≈ −9mV, and a triple point between the Neq = 0,3,4
regions, at δV4 ≈ 3.6V and V̄4 ≈ −14.5mV. (iv) Similarly to
the Anderson-Holstein case, a 0/2 boundary is observed in
Fig. 2(c), labeled as “tunneling of electron pairs.” This 0/2
boundary connects the triple points at (δV2,V̄2) and (δV3,V̄3).
(v) Importantly, Fig. 2(c) shows that the 0/2 boundary arises
at a gate-voltage difference of a few volts, and an average
gate voltage of a few millivolts, which suggests that the

experimental observation of this charge stability diagram, and
the pair-tunneling transport effects it implies [12], is feasible.
(vi) In addition to the 0/2 boundary, Fig. 2(c) also shows 0/Neq

boundaries with Neq > 2; e.g., the 0/3 boundary between the
triple points (δV3,V̄3) and (δV4,V̄4), labeled as “tunneling of
three electrons.”

C. Displacement stability diagram

Besides the charge stability diagram, it is instructive,
and, for the description of transport effects, is crucial to
describe how the equilibrium displacement zeq varies as
the gate voltages are tuned. We will refer to this function
as the displacement stability diagram. Figure 2(b) shows
the displacement stability diagram of the Anderson-Holstein
model, whereas Fig. 2(d) shows the diagram for our suspended
quantum dot model, for a specific set of parameter values listed
in the caption. [The pixel structure in Fig. 2(d) is due to data
being obtained on a δV -V̄ grid of size 36 × 30.] Naturally,
the equilibrium displacement varies smoothly within the
regions belonging to a certain Neq, and jumps abruptly along
the boundaries between those regions. Note that for the
suspended quantum dot, the characteristic scale of these jumps
is nanometer.

The Anderson-Holstein displacement stability diagram
[Fig. 2(b)] shows zero displacement zeq = 0 for an uncharged
dot, i.e., in the Neq = 0 region. However, the uncharged
suspended quantum dot can be displaced toward the bottom
gate, as indicated by the green region of Fig. 2(d). This effect
arises due to the capacitive coupling to the reservoir, as shown
by the following argument. First, consider a specific setting:
the nonequilibrium situation when N = 0, z = 0, the top gate
is grounded, Vt = 0, and the bottom gate voltage is negative,
Vb < 0. That corresponds to δV > 0 and V̄ < 0, i.e., the region
where the negative zeq is observed in Fig. 2(d). In this case,
a charge qr is accumulated on the plate of the reservoir, and
the charges accumulated on the three plates r , t , b associated
to the dot [see Fig. 1(c)] are −qr , −qr , and 2qr , respectively.
This means that the Coulomb attraction between the plates of
the bottom capacitor is four times stronger than for the top
capacitor, implying that the dot is pulled toward the bottom
gate. In a more general case, when the gate voltages are not
specified, but δV > 0 and V̄ < 0 still hold, we can say that a
finite charge will accumulate on the plate facing the reservoir,
and therefore the sum of the charges on the plates facing the top
and bottom gates does not vanish. In turn, that sum determines
the force acting on the dot, hence we conclude that that force
is nonzero, and therefore the dot is displaced.

It is expected that transport, e.g., electron-pair tunneling,
through such a suspended quantum dot will be sensitive to the
size of the jumps on the displacement stability diagram: the
larger the displacement jump, the lower the current flowing
through the device. This effect is known as the Franck-Condon
blockade [12,15,29–31] and arises for the following reason. In
a transport situation, the system is voltage-tuned to a point
along one of the instability lines, e.g., the 0/2 boundary.
Then, electrons can hop between the leads and the dot, and
hence the occupation of the dot can fluctuate between 0 and
2. As argued above, the ground-state displacement for the
two occupancies is different. As a consequence, the overlap
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FIG. 3. Results for a suspended metallic quantum dot. (a) Charge stability diagram. (b) Displacement stability diagram [28]. (c) Charge
excitation gap �E (thick gray line) along the 1/-1 boundary shown in (a). Parameters: see caption of Fig. 2. (d) Gate-voltage ranges of the
1/-1 and 2/-2 boundaries, as a function prestrain. The upper horizontal axis corresponds to the frequency f associated to the resonator (see
Methods).

between the resonator’s quantum states corresponding to the
two charge occupancies can become much smaller than unity;
the larger the displacement jump at the selected point of the
0/2 boundary, the stronger the suppression of that overlap. In
turn, that overlap controls the electron’s tunnel rates between
the leads and the dot, and hence these tunnel rates and
thereby the current through the device are also suppressed. The
quantitative characterization of these effects in the presence
of mechanical nonlinearities, multiple mechanical modes,
finite temperature, and arbitrary electronic occupation is an
important future theory task.

D. Results for a metallic suspended quantum dot

So far,we presented and discussed the results corresponding
to an n-type semiconducting quantum dot, where the number
of excess electrons is restricted to nonnegative integers,N � 0.
However, depending on the specifics of the experimental setup,
it can happen that the quantum dot is occupied by a large
number N0 of, say, conduction-band electrons, when the top
and bottom gate voltages are set to zero. In that case, which
we refer to as a “metallic” dot [13], the number of these
electrons can not only be increased, but also decreased by
tuning the system via the gate voltages. To characterize this
scenario, in Fig. 3 we show the results corresponding to the
metallic dot. To obtain the results in Fig. 3, we simply extended
the energy minimization procedure (described in Methods) to
include negative occupancies, N ∈ {−4, − 3, . . . ,3,4}.

There are two major differences between the metallic
(Fig. 3) and semiconducting (Fig. 2) results. (i) Naturally,
the stability diagrams of the metallic dot show perfect
antisymmetry with respect to the average gate voltage V̄ ; this
antisymmetry is absent in the semiconducting case. Note that
it is expected that the V̄ > 0 part of the semiconducting and
metallic stability diagrams are identical, and that expectation is
confirmed by comparing Fig. 2(c) with Fig. 3(a) and Fig. 2(d)
with Fig. 3(b). (ii) The charge stability diagram of the metallic
dot [Fig. 3(a)] shows boundaries of the typeN/ − N , along the
V̄ = 0 line. In principle, tuning the system to such a boundary
could imply transport via tunneling of electron packets of
size 2N .

III. DISCUSSION

Steady advances in nanofabrication now allow the tai-
loring of electron-phonon interaction in suspended quantum
dots [22]. For graphene-based mechanical resonators, the
tension and hence the nonlinearity can be tuned in situ [32] and
the real-space mode shape can be visualized [33]. Suspended
nanostructures with top and bottom gates have been fabricated
and studied in various experiments [26,31,34]. In addition,
quantum dots on suspended graphene ribbons have been
created [26], and voltage-controlled charge-phonon coupling
in such devices have been demonstrated [23]. Such devices
bear the promise of combining few-electron transport with
the outstanding mechanical characteristics, e.g., high Q-factor
and low mass density, of this material [25]. Similar structures
could be fabricated using members of the recently discovered
family of two-dimensionalmaterials [35]. These developments
suggest that the fabrication of an engineered device as
proposed here is within reach.

A conceptually simple experiment to observe the charge
stability diagram in Fig. 2(c) could be based on charge sensing;
that is, Neq could be measured via the current flowing through
a mesoscopic conductor that is capacitively coupled to the
suspended dot and therefore sensitive to Neq. Without the
charge sensor, the boundaries of the diagram could also be
mapped by sending a current through the suspended quantum
dot, e.g., by utilizing the left and right reservoir depicted
in Fig. 1(b) as a source and drain contact, respectively.
For a fixed value of the gate-voltage difference below the
Neq = 0,1,2 triple point of Fig. 2(c), that is, for δV < δV2 ≈
2.6V, the current I (Vsd,V̄ ) at finite bias voltage Vsd would
show standard Coulomb-blockade features. However, in the
range δV2 < δV < δV3, the characteristics of electron-pair
tunneling [12,15] discussed in the Introduction are expected
to appear when I (Vsd,V̄ ) is measured.

Our results indicate that such a device would allow for
the exploration of transport via multi-electron tunneling as
well. For example, when voltage-tuned to the 0/3 boundary
of Fig. 2(c), current could be carried by the simultaneous
tunneling of three electrons. To our knowledge, it is an open
challenge for both theory and experiment to characterize such
exotic scenarios.
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So far, our discussion focused on the case of zero tem-
perature. To observe a sharp 0/2 boundary of the charge
stability diagram shown in Fig. 2(c), the thermal energy scale
kBT should be much lower than the charge excitation gap
�E along the 0/2 boundary. Along this boundary, the charge
excitation gap is the difference between the energy of the
lowest-energy excited charge configuration, being the lower
of Emin(N = 1) and Emin(N = 3), and that of the twofold
degenerate ground state Emin(N = 0) = Emin(N = 2). Here,
Emin(N ) = minz E(N,z). We plot the charge excitation gap in
Fig. 2(e), for the parameter set listed in the caption. The plot
shows �E (thick gray line) as the two gate voltages are varied
simultaneously such that we move along the 0/2 boundary.
For this example, the charge excitation gap is tuned between
zero, at the triple points, to a maximum of ≈2.2meV, reached
around the center of the considered gate-voltage range, at
δV ≈ 2.95V. Regarding the fact that temperatures of the order
of 100mK corresponding to an energy scale of kBT ≈ 10μeV
are available, reaching the above condition kBT � �E seems
experimentally feasible. Similar conclusion can be reached in
the case of the metallic dot; see Fig. 3(c).

Figure 2(c) proves the existence of the 0/2 and 0/3 bound-
aries in the charge stability diagram for a specific parameter
set, in case of the semiconducting dot. We demonstrate the
robustness of these boundaries with respect to parameter
variations by revealing how they change as the prestrain
uxx,0 of the ribbon is varied. In Fig. 2(f), we plot the pre-
strain dependence of the gate-voltage-difference coordinates
characterizing the three triple points of Fig. 2(c), that is,
δV2, δV3, δV4. Note that the prestrain value uxx,0 = 5 × 10−6

corresponds to Figs. 2(c)–2(e). Figure 2(f) indicates that the
gate-voltage intervals [δV2,δV3] and [δV3,δV4] of the 0/2 and
0/3 boundaries shrink as the prestrain is increased.However, in
the considered range of prestrain, the order of magnitude of the
required gate-voltage difference remains to be a few volts, and
the order of magnitude of the widths δV3 − δV2 and δV4 − δV3

remains to be a few hundred millivolts. The corresponding
result in the case of the metallic dot are shown in Fig. 3(d).

As pointed out above, it is expected that transport through
a suspended quantum dot can take the form of sequential
tunneling of electron pairs, in a fashion reminiscent of certain
electronic circuits containing superconducting leads [17].
This possibility naturally leads to the question: are there
any electronic arrangements, where the functionality of a
superconducting lead can be mimicked by a suspended
quantum dot? In Fig. 4, we present such a setup. Figure 4(a)
shows the sketch of a Cooper-pair splitter circuit [36–38],
where a superconducting source electrode serves as a source
of spin-singlet Cooper pairs, and the two quantum dots transfer
the electrons to the left and right normal leads such that the
entanglement of their spins is maintained. Hence, this device
supplies a stream of spatially separated, spin-entangled pairs
of electrons. It has been suggested that this functionality can
be achieved even if the superconducting source is replaced by
a normal-metal electrode, and a third (conventional) quantum
dot [39]. Here, we suggest to utilize the mechanical degree of
freedomof the suspended dot for the same purpose, in the setup
shown in Fig. 4(b). The suspended quantumdot should be gate-
voltage-tuned to the 0/2 boundary, which could guarantee that
only spin-singlet pairs of electrons can tunnel from the source

QD2QD1

N1 N2

S

QD2QD1

N1 N2

N

SQD

(a) (b)

FIG. 4. Mechanically assisted electron-electron attraction for
creating a stream of spatially separated spin-entangled electrons.
(a) A Cooper-pair splitter circuit, based on the controlled emission of
Cooper pairs from a superconducting source electrode (S), through
two quantum dots (QD1 and QD2), to two different normal drain
electrodes (N1 and N2). (b) A similar functionality is offered if the
superconducting electrode is replaced by a normal electrode (N) and
a suspended quantum dot (SQD) that is tuned to the 0/2 boundary of
its charge stability diagram.

to the triple-dot system, and thereby allow for the creation of
a stream of spatially separated spin-entangled electrons.

IV. METHODS

A. Anderson-Holstein model: Attractive electron-electron
interaction and stability diagrams

In the Introduction, we discussed that an effectively
attractive electron-electron interaction can arise [8] in the
Anderson-Holstein model depicted in Fig. 1(a). Here, we
summarize how that conclusion is reached, and outline how the
charge and displacement stability diagrams shown in Figs. 2(a)
and 2(b) are obtained.

As discussed in the Introduction, the energy of the
Anderson-Holstein model is the sum of three contributions,
EAH = EAH,m + EAH,o + EAH,int. The mechanical energy is
EAH,m = 1

2mω2z2, the energy of the electrons occupying the
orbital is EAH,o = εN + U

2 N (N − 1), whereas the electron-
phonon interaction energy is EAH,int = λzN .

The energy of the Anderson-Holstein model can be
rewritten [8,12,13], using the definitions z0 = λ/(mω2), εeff =
ε − λ2/(2mω2), and Ueff = U − λ2/(mω2), as

EAH = 1
2mω2(z + Nz0)

2 + εeffN + 1
2UeffN (N − 1). (1)

This energy function is the same as that of a system where the
harmonic oscillator has an occupation-dependent equilibrium
position at −Nz0, and the electronic orbital is characterized
by the on-site energy εeff and the electron-electron interaction
energy Ueff. As mentioned in the main text, Ueff becomes
negative, and hence can be interpreted as an attractive electron-
electron interaction, for sufficiently strong electron-phonon
coupling strengths λ > ω

√
mU .

The charge and displacement stability diagrams in
Figs. 2(a) and 2(b) characterize the lowest-energy state of the
electron-phonon system composed with a zero-temperature
electron reservoir with Fermi energy μ = 0 [Fig. 1(a)]. The
occupation Neq and displacement zeq of the lowest-energy
states are plotted in Figs. 2(a) and 2(b). These are analytical
results, obtained by minimizing the energy function EAH(N,z)
with respect to N and z.
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B. Charge and displacement stability diagrams
of the suspended quantum dot

The stability diagrams in Figs. 2(c) and 2(d) are obtained by
minimizing the total energyE(N,z) of the suspended quantum
dot depicted in Fig. 1(b). This energy E = Em + Eem + W

includes a purely mechanical (Em), an electromechanical
(Eem), and a purely electronic (W ) contribution. Here we
describe how these contributions are estimated, and how the
energy function is used to obtain the stability diagrams.

First, we describe the purely mechanical contribution,
associated to the deformation of the graphene ribbon. We
assume that most of the excess charge of the quantum dot
is localized in a narrow region around the center of the
suspended part of the ribbon. Then, the gate-induced forces
stretch the ribbon in the way shown in Fig. 1(b), and the
deformation-induced elongation of the ribbon is assumed to
be homogeneous for simplicity. Themechanical energy arising
from this stretching deformation can be expressed as a function
of the ribbon’s parameters and the displacement z of the dot:

Em(z) = 1
2YWLuu

2
xx(z). (2)

Here, Y = 340N/m is the Young modulus of graphene [40],
anduxx(z) = (L(z) − Lu)/Lu is the relative elongation (strain)
of the ribbon. Simple geometrical considerations imply

uxx(z) =
√
(1 + uxx,0)2 + 4(z/Lu)2 − 1. (3)

Substituting this into Eq. (2) and expanding the latter up to
fourth order in z, we find, up to a constant,

Em(z) ≈ α2z
2 + α4z

4, (4)

where α2 ≈ 2Yuxx,0W/L0 and α4 ≈ 2YW/L3
0; the latter two

expressions are accurate up to leading order in the small
prestrain uxx,0 � 1.

The electromechanical contribution to the energy is associ-
ated to the effective capacitors[41] shown in Fig. 1(c):

Eem(N,z) = q2
r /2C + q2

t /2Ct (z) + q2
b/2Cb(z), (5)

where qr,t,b are the charges accumulated on the reservoir,
top gate, and bottom gate, respectively. The relation of these
charges to the dot occupancy N and displacement z can be
established using that (i) the quantized dot charge−|e|N can be
expressed as −|e|N = −qr − qt − qb, (ii) the top gate voltage
is the sum of the voltages dropping on the reservoir and top
capacitors, Vt = qt/Ct (z) − qr/C, (iii) analogously for the
bottom gate voltage, Vb = qb/Cb(z) − qr/C. This linear set
of three equations for qr,t,b is solved, and the solutions are
inserted into Eq. (5), to obtain the explicit dependence of the
electromechanical energy Eem on N and z.

The third, last contribution to the total energy of the system
is the work done by the voltage sources [41] W (N,z) =
−qtVt − qbVb.

To find the equilibrium occupation Neq and displacement
zeq of the suspended quantum dot, we minimize the energy
E(N,z) as a function of displacement z and occupation number
N , using the following procedure. We focus on the case
of small displacements z � d, hence we Taylor-expand the
electromechanicalEm and the electronicW terms up to second
order in the variable z around zero. By this expansion, the
total energy function becomes a fourth-order polynomial of z,

which we can minimize numerically with respect to z for the
different occupation numbers N ∈ {0,1,2,3,4}, yielding the
minimum valueEmin(N ) = minz E(N,z) of the energy and the
corresponding displacement zmin(N ), assuming dot occupancy
N . The equilibrium occupation Neq at zero temperature is
then found my minimizing the energy Emin(N), also yielding
the equilibrium displacement zeq = zmin(Neq). Repeating this
procedure for various values of the gate voltages, we obtain the
charge and displacement stability diagrams shown in Figs. 2(c)
and 2(d), respectively. The same procedure is followed to
obtain the results for the metallic dot, Figs. 3(a) and 3(b),
with the generalization that we allow for negative occupation
numbers as well, N ∈ {−4,−3, . . . ,3,4}.

C. Relation between the Anderson-Holstein model
and the suspended quantum dot model

Here, we establish the relation between the Anderson-
Holstein model and the semiconducting suspended quantum
dot model. Focusing on the regime of large gate-voltage
differences, e.g., to the vicinity of the 0/2 boundary where
electron pair tunneling is expected, we show that the energy
of the suspended quantum dot model incorporates two terms
that are absent in the energy of the Anderson-Holstein model.

As mentioned above, the energy of the suspended quantum
dot E(N,z) in the small displacement regime z � d can be
approximated by its Taylor expansion in the variable z. This
yields

E(N,z) ≈ α2z
2 + e2N2

6C
− 2

3
|e|NV̄ − 2

3
|e|NδV

z

d

− 1

3
CδV 2

( z

d

)2
− 2

3
CδV V̄

z

d
+ α4z

4, (6)

where terms independent of N and z are neglected. In Eq. (6)
we drop further second- and higher-order terms in z, which,
in the vicinity of the 0/2 boundary where |V̄ |,|e|/C � δV

holds, are much smaller than CδV 2(z/d)2.
We now compare the energy E of the quantum dot model in

Eq. (6), with the energy EAH of the Anderson-Holstein model.
We claim that the first five terms of E correspond to the four
terms of EAH. That is, the former is obtained from the latter
via making the substitutions

U �→ e2

3C
, (7)

1

2
mω2 �→ α2 − 1

3
CδV 2 1

d2
, (8)

ε �→ −2|e|V̄
3

+ e2

6C
, (9)

λ �→ −2

3
|e|δV 1

d
. (10)

These results confirm the expectations that the average gate
voltage V̄ controls the on-site energy ε [Eq. (9)], and the gate-
voltage difference δV controls the electron-phonon coupling
strength λ [Eq. (10)]. The second term on the right-hand side
of Eq. (8) shows that the oscillator eigenfrequency of the
Anderson-Holstein model corresponds to a combination of a
mechanical and an electronic contribution in the suspended-dot
model. The last two terms in the energy Eq. (6) of the
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suspended quantum dot, i.e., the charge-independent term
proportional to the displacement and the quartic potential, do
not appear in the Anderson-Holstein model.

D. Resonator frequency

The frequency f associated to the resonator in Fig. 2(f) is
defined from the quadratic term of the mechanical energy Em

in Eq. (4) via α2z
2 = 1

2m(2πf )2z2. Here, m = WL0ρ, which
approximates the mass WLuρ of the suspended part of the
graphene ribbon, with the surface mass density of graphene
being ρ = 7.61 × 10−7 kg/m2. From these, the frequency is
expressed as

f = 1

πL0

√
Yuxx,0

ρ
. (11)

E. Extrinsic forces can be much stronger than intrinsic ones

The force acting on a singly occupied suspended quantum
dot due to the extrinsic electron-phonon interaction, i.e.,
due to the electric field induced by the top and bottom
gates, is estimated as Fe = e(Vt − Vb)/2d. Inserting the
characteristic values Vt − Vb = 1V and d = 150 nm, we
find Fe = 3.3meV/nm. On the other hand, in equilibrium,
the force acting on the quantum dot due to the dominant
intrinsic electron-phonon coupling, that is, the deformation
potential mechanism, isFi = {∂z[�uxx(z)]}z=zeq

≈ 4�zeq/L
2
0.

Here, � = 30 eV is the in-plane deformation potential of
graphene [42,43], we used Eq. (3), and we present the
leading-order result in the small quantities zeq/L0 and uxx,0.
For the characteristic values of zeq = 1 nm and L0 = 1.5μm
[see Fig. 2(d)], we find Fi ≈ 0.05meV/nm, which indeed
fulfills Fi � Fe. In the suspended quantum dot model, we

have neglected the energy contribution of the intrinsic electron-
phonon interaction, and that simplification is justified by these
quantitative estimates.

V. CONCLUSIONS

In conclusion, we suggested a way to engineer an elec-
tromechanical system that exhibits effective electron-electron
attraction. Our study, focused on the example of a suspended
quantum dot in a graphene nanoribbon, supports the exper-
imental feasibility of observing the remarkable but so far
elusive equilibrium and transport phenomena implied by the
attractive nature of the interaction. Furthermore, our work
suggests the possibility that certain functionalities of super-
conducting nanostructures can be achieved by substituting
the superconducting elements with appropriately assembled
electromechanical systems. These results raise interesting
questions regarding, e.g., the feasibility of realizing an
electron-based quantum simulator of the attractive Hubbard
model, or the design of artificial superconductors based on
engineered electromechanical systems as building blocks.
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