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Abstract

Several studies suggest that dogs, as well as primates, utilize a mental representation of the signaler after hearing its
vocalization and can match this representation with other features provided by the visual modality. Recently it was found
that a dogs’ growl is context specific and contains information about the caller’s body size. Whether dogs can use the
encoded information is as yet unclear. In this experiment, we tested whether dogs can assess the size of another dog if they
hear an agonistic growl paired with simultaneous video projection of two dog pictures. One of them matched the size of
the growling dog, while the other one was either 30% larger or smaller. In control groups, noise, cat pictures or projections
of geometric shapes (triangles) were used. The results showed that dogs look sooner and longer at the dog picture
matching the size of the caller. No such preference was found with any of the control stimuli, suggesting that dogs have a
mental representation of the caller when hearing its vocalization.
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Introduction

Several theoretical and field studies have shown that animals

estimate the physical characteristics of the opponent before starting

costly fights [1,2]. Often such estimations are based on visual displays

before starting a fight (e.g. red deer (Cervus elaphus): [3], elephant seals

(Mirounga angustriostris): [4] and cichlid fish: [5]). However, ritualized

displays of body size are often considered dishonest signals since the

signalers may appear larger than they are (e.g. parallel walking of

deer, fur erecting, spreading fins, erecting gills, etc. [6]).

During acoustic communication the parameters of vocal signals

are affected by physical constraints, which are dependent on the

anatomical features of the animals and cannot easily be

manipulated, resulting in a reliable predictor of body size [7].

The physical constraints responsible for the reliability are

described by the source-filter theory of voice production [8]. In

brief, when the air from the lungs flows out between the two vocal

folds, they start to resonate, which generates an acoustic signal

(source). The resonance is defined as the fundamental frequency of

the sound and dependent on the size and the tension of the vocal

folds. When this signal passes through the supra-laryngeal vocal

tract (the trachea, the oral and optionally the nasal cavity), the air

also starts to resonate in this tube. Consequently, the natural

resonances of this air column interfere with the signal’s resonances

and the vocal tract acts like a frequency band filter enhancing or

extinguishing particular bands of the signal (filter). The enhanced

bands then represent the formant frequencies of the signal. The

length of the supra-laryngeal vocal tract, which is dependent on

the body size of the caller, determines the frequencies of the

formants and especially the spacing between them [9].

In human speech, the shape and change of the formant frequencies

are responsible for the differentiation of speech sounds [10], but also

carry indexical cues about the callers’ sex and body size [11]. Early

anatomical studies suggest that the manipulation of the vocal tracts’

shape and size is uniquely human. However, Fitch and Reby (2001)

[12] have shown that besides humans, several mammalian species,

including pigs, goats, monkeys and dogs, are able to actively change

the characteristics of their vocal tract during vocalization. When a

species gains such a trait, it gives an opportunity for dishonest

signaling, which can lead to an evolutionary arms race between

signalers and receivers modifying their ability to precisely perceive the

exact size of the caller [7]. For example, during roaring, male red deer

can lower their larynx to lengthen their vocal tract, thus closing the

formant frequencies in their signals which indicate bigger body size.

For red deer, this and the correct perceived assessment of body size, is

advantageous because females prefer larger body size of mates [13]

and males use the formant spacing of the callers as a cue for body size

during their agonistic encounters [14]. Both the size assessment of the

males and the choice of the females put selection pressure on

broadcasting of size information. The ability to lengthen the vocal

tract however provides a way to lie about body size. In summation,

perception of formants and formant spacing can be an important cue

for judging size of conspecifics, as several studies have shown in

humans [15], the rhesus monkey [16] and dogs [17,18].

Dogs, like other species in the Canidae family, have a diverse vocal

communication system [19] and recent studies have shown that dog
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barks have a communicative role in dog-human [20,21] and dog-dog

communication [22,23]. Growls are also important for communica-

tion because they carry context specific information [24]. Moreover,

Taylor and co-workers have shown that growls recorded in agonistic

contexts carry indexical cues because formant spacing correlated with

body size [18]. In addition, humans were sensitive to this indexical

cue [18] and dogs showed a different pattern of explorative behavior

in response to different formant-manipulated growls [25]. However,

it is still unknown whether dogs are able to match size related

acoustical information with visual size information.

In order to investigate this question, we used the preferential-

looking paradigm, which has already been used successfully to test

similar questions in rhesus monkeys [26]. The rationale of this

paradigm is that individuals prefer to look at visual stimuli that

correspond to broadcasted auditory stimuli, instead of non-

matching visual stimuli (human infants: [27,28]; capuchin

monkeys: [29]; rhesus monkeys [30]). Therefore, in order to test

if dogs could also match visual with acoustical information, we

presented dogs with a choice of two pictures of the same dog,

together with a playback of a growl recorded in a food competition

context. One of the two pictures was manipulated to show smaller

or larger body size compared to the growling dog, while the other

picture was matched in size to the growling dog.

We expected, according to the other studies using the

preferential-looking-time paradigm, that dogs would look longer

at a picture of a dog that was matched to the signalers’ body size

and moreover, that no preference for either picture would be

shown in control trials where either no size information was given

in the acoustical domain (presentation of noise) or non-dog

pictures were presented (shapes or cat pictures).

Results

The latency of looking at the matching and the resized picture

showed that dogs in the Dog-Growl group looked earlier at the

matching picture than at the non-matching picture. 20 of 24

subjects in this group looked first at the matching picture (two

tailed Binomial test with 50% expected value: p = 0.0015), while in

the other three groups we found no significant difference from the

expected 50% (Binomial test: DN (50%): p = 1; SG (58.3%):

p = 0.541; CG (41.7%): p = 0.541) (Figure 1). Moreover, the dogs

in the test group also showed a strong looking preference towards

the matching picture (Wilcoxon test: p = 0.0022) compared to the

control groups (Wilcoxon test: DN: p = 0.9441; SG: p = 0.8334;

CG: p = 0.8774) (Figure 2).

When comparing the behavior of the dogs in all of the

experimental groups, we found that dogs spent more time looking

at the stimuli when animal pictures were presented as compared to

triangles (Kruskal-Wallis test: x2 = 27.003; p,0.001; Dunn post

hoc test: DN vs. DG: p.0.05; DN vs. S: p,0.001; DN vs. C:

p.0.05;DG vs. SG: p,0.01; DG vs. CG: p.0.05; SG vs. CG:
p,0.001), suggesting that the visual information conveyed by the

pictures on natural objects was more interesting to the dogs than

the artificial shapes.

None of the groups showed significant preference towards the

bigger picture (Wilcoxon test: DN: p = 0.0738; DG: p = 0.8334;

SG: p = 0.4389; CG: p = 0.4732). This suggests that the visual

proximity did not affect the subjects’ looking behavior. Moreover

we tested if other factors had an effect on the looking behavior of

the dogs, but neither the size of the growling dog (Mann-Whitney

test: DN: Z = 20.696; p = 0.514; DG: Z = 20.262; p = 0.793 SG:

Z = 21.049; p = 0.316 CG: only small dogs’ growl were used in

this group), the size of the non-matching picture (DN: Z = 21.827;

p = 0.068; DG: Z = 20.145; p = 0.887 SG: Z = 20.586; p = 0.558

CG: Z = 20.614; p = 0.551), nor the size (DN: Z = 20.176;

p = 0.86; DG: Z = 21.193; p = 0.233 SG: Z = 21.182; p = 0.237

CG: Z = 20.029; p = 0.977) or the sex of the subject (DN:

Z = 20.090; p = 0.953; DG: Z = 20.088; p = 0.930 SG:

Z = 20.952; p = 0.341 CG: Z = 21.026; p = 0.305) had an effect

on the looking preference.

Figure 1. First glance at the pictures. This graph shows the number and ratio of dogs glancing first at the matching or at the resized picture in
each group.
doi:10.1371/journal.pone.0015175.g001
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Another interesting pattern was found when we compared the

side preference in the looking behavior of the dogs. In the cat-

picture group a strong left gaze bias was found, while in the other

three groups we found no such preference (Wilcoxon signed rank

test: DN: p = 0.1140; DG: p = 0.5271; S: p = 0.2897; C:
p = 0.0087).

Discussion

The dogs’ looking behavior suggests that they can extract size

information encoded in the growls of conspecifics. When

confronted with two dog pictures while hearing the growl, dogs

looked sooner and longer at the picture showing a dog matched in

size to the growling dog, than a picture of a smaller or larger one,

which means that they linked the acoustic size cue with the visual

information provided by the pictures. However, our subjects did

not generalize the size cue to any type of objects e.g., they showed

no looking preference if the growl playbacks were paired with non-

dog visual stimuli such as triangles or cat pictures. The fact that

dogs had a looking preference exclusively when the two modalities

were both showing dogs, suggests that our subjects linked the

growls with the dog pictures, further suggesting that dogs might be

able to activate a specific mental representation of the signaler

with respect to the species and the size.

Riede and Fitch (1999) [17] showed that the formant spacing in

dog growls correlated not only with the vocal tract length, but also

with the body size of the signaler. This suggests that formant

dispersion can function as a reliable cue for dogs to assess the body

size of conspecifics. Growls are mostly emitted as a threatening

signal during agonistic social contexts, such as territory defense or

food competition [19,31], thus the ability to estimate body size and

fighting ability based on these vocalizations could be advantageous

for the receivers. As Taylor and co-workers (2008) [18] have

shown, formant dispersion is an important clue for humans to

assess the size of dogs when they growl. In addition, they modeled

in a playback study an intrusion of a strange dog to the subject

dogs’ household and they found that the subjects behave

differently according to the perceived intruders’ body size. Large

dogs showed more explorative behaviors when they heard growls

in which the formant dispersion showed smaller dogs than their

own size [25]. However, there was no other effect of the intruders’

apparent body size when it was larger, or when the subjects were

smaller. In contrast, our results showed that dogs are able to

precisely match the size encoded in the growls with visual

information about the emitter’s size. Moreover, our findings

strengthen the idea that looking preference in the test group was

evoked by acoustic information provided by the growls. In contrast

with Taylor and colleagues’ [5]results, we did not find any effect of

the size of neither the growling dog, nor our subjects. This was

probably caused by the difference between the experimental

environments used during the growl playbacks. While Taylor’s

study modeled an intrusion into the household of the subjects, in

which a more active explorative behavior seems appropriate, our

experiments were conducted in a strange place, where a more

passive reaction can be expected from dogs.

Although we have little knowledge about how animals perceive

the two dimensional representations of real world objects,

numerous studies on animals and humans use pictures instead of

real objects to investigate cognitive abilities [32]. Several studies

Figure 2. Looking preference towards matching picture. This graph shows the time ratio of looking at the matching sized picture of dogs in
each group. The horizontal line at 0.5 represents random choice when dogs show no preference. The area above the line represents preference
towards the matching sized picture. The boxplots shows the median, interquartiles and outliers.
doi:10.1371/journal.pone.0015175.g002
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have used picture presentations to test individual and species

specific recognition (for example in sheep [33] and cattle [34]). In

an earlier study, Adachi and co-workers demonstrated that dogs

show a surprise reaction if a picture of a stranger’s face coupled

with the voice of their owner was shown to them, and similarly

they looked longer at the owner’s picture when a stranger’s voice

was played back [35]. Such intermodal matching ability has been

shown in several other species recently in connection with various

different cognitive abilities (individual recognition in a chimpanzee

(Pan troglodytes): [36]; recognition of communicative signals in

capuchin monkeys (Cebus capucinus): [29] facial expressions in

rhesus monkeys (Macaca mulatta): [30] and size perception: [26]).

Our results and the aforementioned studies, suggest that dogs as

well as primates, possess the ability to have a mental representation

of the signaler after hearing its vocalization and they can match

this representation with other features provided by other

modalities.

The overall duration dogs spent observing the pictures did not

vary if they heard a growl or a noise and also did not differ

between the groups that saw dog or cat pictures. However, the

triangles grabbed the attention of the dogs markedly less. The

reason for this can be that complex pictures might contain more

processable information for dogs than triangles. There are some

studies which suggest that dogs are capable of extracting some

information from pictures. An earlier study reported that young

and adult dogs, when presented with a life-size dog painting,

sniffed those areas of the picture which are normally investigated

by conspecifics during a first encounter [37]. Another study by

Pongrácz and co-workers, investigated dogs’ performance in a

pointing and an obedience task and they found that when

comparing real and live video projected signaling of the owner, the

dogs readily obeyed the life size two-dimensional projections [38].

Another more recent work showed the discriminative capability of

dogs with pictures of dog and human faces, suggesting that dogs

can use facial cues to differentiate individual dogs and humans

[39]. Moreover, Range and co-workers showed that during a

touch-screen based procedure, dogs were able to classify

photographs of dogs and landscapes correctly by perceptional

differences [40]. Fagot and co-workers differentiated three levels of

pictorial processing: independence, confusion and equivalence

[41]. In independence, the subject makes no connection between

the picture and its referent, while equivalence means that the

animal perceived the picture as a representation of a real object.

On the lowest level, the viewer of the picture confuses it with its

content and acts like it would be the real three-dimensional object.

We assumed that the dogs in our study worked on this lowest level

in order to link the visual and acoustical modalities. The dogs in

our study showed significantly more attention towards the pictures

if the pictures showed dogs or cats. Moreover, the fact that the

dogs showed a preference towards the matching sized picture, only

on the occasion of dog-growl intermodal pairings, suggests that

they could perceive the dog pictures as dogs. However to confirm

this, other more specific tests would be necessary, such as showing

pictures of different species pairs, such as dogs versus cats, while

playing dog or cat specific vocalizations. We also realize that it is

possible that the longer looking times at the dog and cat pictures

can be attributed to different causes. Looking at dog pictures can

be an attentive response, elicited by perceiving conspecifics, while

the cat picture in odd pairing with dog growls, can cause a surprise

response with orientation behavior. This is supported by the fact

that dogs showed marked left gaze bias only when looking at the

cat pictures. This interesting result can be explained by the

asymmetric manner of perception of sensory stimuli. Recent

studies showed a left gaze bias in dogs in the case of simultaneous

bilateral heterospecific visual presentations (cat and snake

silhouettes), [42] as well as acoustical [43] unanimated natural

sound stimuli (thunder). More importantly, when dogs were

presented with a dog silhouette or dog vocalizations, they showed

no bias or a right gaze bias in the above mentioned experiments,

suggesting that similarly as in other mammals and humans, the

right hemisphere shows increased activity in association with

novel, attention grabbing or unexpected stimuli [44]. Because the

auditory tract fully crosses in the dogs’ brain and the optical nerve

crosses 75% as well [45], the left gaze bias towards cat pictures,

coupled with growls found in our study, could be explained by the

non-matching visual and acoustical modalities functioning as a

novel, non-expected stimulus that is processed more by the right

hemisphere causing a left gaze bias.

The lack of a right gaze bias in our study, when compared to the

study by Siniscalchi and co-workers’ experiments where dogs were

presented with conspecific vocalizations [42,43], can be explained

by the fact that our sound playbacks came from the middle, rather

than the bilateral presentation of Siniscalchi’s experiments. It is

also possible that our experimental manipulation masked out this

gaze effect because the size information might have had a stronger

impact on the looking behavior of the dogs.

In conclusion, we have shown for the first time that dogs can

match cross-modal information between pictures and sounds and

we provided evidence that dogs can assess accurately the size of a

growling dog based on the acoustic information. Moreover, our

results suggest that dogs are able to perceive species specific

information based on pictures.

Materials and Methods

Ethics statement
The owners and their dogs participated in this study voluntarily.

The owners were present at the behavioral testing. The testing

procedure was short and entirely non-invasive.

No special permission for the use of animals (dogs) in socio-

cognitive research such as this study is required in Hungary or

Austria. The relevant committees that allow research without

special permission in regard to using animals are the University

Institutional Animal Care and Use Committee (Hungary) and

Tierversuchskomission und Bundesministerium für Wissenschaft

und Forschung (Austria).

Subjects
Participants in our study were well socialized family dogs,

recruited from the database of the Clever Dog Lab, Vienna. In

total, 116 dogs participated in this study. Of these, 20 dogs had to

be excluded from the sample due to technical problems (n = 11)

and behavioral difficulties (n = 9), leaving a total of 96 dogs (male:

42, female: 56, mean age: 4.762.6 years) for analyses.

Experimental design
We used four different types of stimuli pairs during the

experiment in a parallel intermodal presentation (see [46]):

Dog-Growl (DG) – matching modalities: presentation of dog

growls with projection of dog pictures. (N = 24)

Dog-Noise (DN) – non-informative sound: presentation of

Brownian noise with projections of dog pictures. This control was

conducted to test if there was any effect caused by the size

difference of the dog pictures on the looking behavior of the

subjects. (N = 24)

Shape-Growl (SG) – non-informative picture: presentation of

dog growls with projection of triangles. This control group was

used to test if the looking preferences of the dogs were nonspecific

Dogs’ Size Is Encoded in Their Growls
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in that they would occur also with non-natural, unknown pictures.

(N = 24)

Cat-growl (CG) – non-matching modalities: presentation of dog

growls with projection of cat pictures. This control was conducted

to test the effect of the nature of the pictures. (N = 24)

These latter two controls were specifically designed to test if

possible positive results of the test condition was dependent on the

nature of the visual stimuli or not. We tested 24 subjects in each of

the four experimental groups. All dogs tested in the first three

groups were familiar with other dogs. Moreover, subjects in the

last group were also familiar with cats (once lived, currently living

together or in regular contact with cats).

We used a between-subject design to avoid order effects and

possible habituation of the subjects to the stimuli. Thus, each dog

was tested only once with one sound sample paired with a visual

stimuli.

Stimuli design
The auditory stimuli were chosen from a pool of pre-recorded

food guarding growls from 12 different dogs and previously

generated Brownian noise (Audio S1) samples (Adobe audition

1.5). We used a food guarding growl because these growls are used

against other conspecifics in an agonistic encounter (for detailed

information about the growls and how they were collected see

[24]). The physical parameters (height at withers, weight) of the

twelve growling dogs were known (see Table S1). We used the

growls of two groups of markedly different sized dogs (six ‘‘small

dogs’’: shorter than 52 cm and six ‘‘large dogs’’: taller than 60 cm

at the withers) for the experiments (Figure 3, Audio S2 and S3).

The growls in the two size categories differed significantly in their

acoustic structure (parameters were measured with PRAAT, for

exact definition of these acoustic parameters see [17]). The

formant dispersion, as mentioned in our introduction, is in strong

negative correlation with body size, thereby acting as a reliable

cue. The same was true in our growl samples: small dog growls

had significantly higher formant dispersion than the large growls

(mean dF - small: 26586232 Hz; large: 6716253 Hz; unpaired t-

test: t = 14.17; p,0.0001). The fundamental frequency in most of

the examined species shows only weak or no correlation with body

size because the anatomy of the vocal folds is not affected by the

skeletal and muscular conformation of the body [7]. However,

different dog breeds show such high morphological diversity, that

their vocal fold size and fundamental frequency can also correlate

with the physical parameters of the body [18]. The two subsets of

growls used in this study also differed in their fundamental

frequencies: small dogs’ growls had significantly higher funda-

mental frequency than the growls of the large dogs (mean F0 -

small: 130625 Hz; large: 906253 Hz; unpaired t-test: t = 2.83;

p = 0.018) suggesting that the two acoustical parameters together

can act as an indexical cue for the dogs in our study.

The visual stimuli were digital photos of twelve different

shortnosed dog breeds (DG, DN), twelve different cat breeds (CG)

and twelve differently colored triangle shapes with various internal

angles (SG) (for some examples see Figure S1). The pictures were

presented in front of a homogenous black background. In each

experimental trial, we showed the same two pictures, but one was

adjusted to be life sized (the size of the projection was similar to the

size of the actual growling dog - matching), while the other picture

was 30% smaller or larger than the matching picture (resized). The

projections’ height was measured on the canvas from the ground

to the withers in the case of dogs (22283 cm) and cats

(22267 cm). The length of the vertical side was used for the

height of the triangles.

Within each group half of the subjects heard a ‘‘small dog’’

growl, and the other half heard a ‘‘large dog’’ growl. The side

where the manipulated picture appeared was balanced within each

group. Each growl was presented with the same pictures to two

different dogs, but the size was differently adjusted: one dog saw a

smaller picture paired with the matching sized photo, while the

other one saw a larger picture paired with the matching sized

photo. Thus, each growl was used two times for playbacks within

each group, except in the Cat-Growl group. In the CG group we

used only the six small dogs’ growls, as cat pictures adjusted to

match their size to the large dog growls would be unnaturally big.

Thus, in the Cat group, each growl sample was used in sum four

times, twice-twice with two different cat pictures (for the detailed

set see Table S1).

Experimental set-up
A chair for the dog’s owner was placed at one side of the

darkened experimental room (5 m66 m) facing the canvas on

which the pictures will be presented to the dog (Figure S2). During

the entire experiment, the owner was listening to music through

headphones to prevent him/her from hearing the playbacks and

influencing the behavior of the dog unintentionally.

The dog sat or laid between the owners legs, also facing towards

the canvas (size: 2.3 m61 m) on which the two pictures will be

shown (height of 30295 cm depending on the size of the growling

dog, 2.2 m apart). The pictures were presented by a projector

which was positioned behind the owner at a height of 1.5 m. The

speaker was placed on the ground in front of the canvas in the

middle of the two presented pictures. We used four cameras to

record the behavioral response of the dog. The first camera was

put next to the projector (Cam1) recording the projection on the

canvas. The second camera (Cam 2) – a zero lux camera that

could record in low light density – was put in front of the speaker

to record the dogs’ response. Near the owner’s chair, an infrared

lamp was directed to the dog’s face in order to lighten them up for

the zero lux camera, without interfering with the projections.

Finally, two wide-angle cameras with high light sensitivity

recorded the events in the entire room (Cam3 and 4). We used

Cam1’s microphone for sound recording. For effective projection

of pictures, the lights were switched off and the windows were

covered with a curtain. The experimenter controlled the events

from the neighboring room via a closed-circuit video system and a

PC was used for the picture presentation, audio play back and

video recording.

The stimuli were displayed during the experiments as Power-

Point slideshows. Three slides were used: the first and the last were

homogenous black, while the middle slide contained the pictures

and the sound. The change between the first and second slide

(stimuli presentation) was controlled by the experimenter, and was

dependent on the behavior and attention of the subject (see below

for the exact criteria) while the sound sample was automatically

played as soon as the visual stimuli appeared. The change between

the second and third slides (disappearance of the pictures) was

automatic after 20 seconds. The volume of the different growls was

measured from the location where the dogs sat and adjusted to the

same level (65 dB) prior to the experimental trials.

Procedure
Before the experiment, the owner was informed about the

procedure and told his/her tasks during the experiment, although

no detailed information such as the type of given stimuli was

explained. Next, the dog and its owner entered the experimental

room and the dog was allowed to explore the unfamiliar room for

approximately 2 minutes. During the experiment, the owner was
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asked to sit on the chair with headphones on and listen to music on

an mp3 player. The volume of the music was adjusted to a level

that prevented the owner from hearing the sound playbacks.

The dog was sitting or lying in front of the owner on the floor,

facing the screen (beginning body posture). The dog was not on

leash and the owner was allowed to position it with their hands just

before the appearance of the pictures. The experimenter switched

off the lights and asked the owner to adjust the dog gently into the

beginning body posture. Then he zoomed Cam2 at the dogs’ face

and started the video recording before finally leaving the room.

During these events the first black slide was projected at the

canvas.

After the experimenter left and the door was closed, the dog was

in the beginning body posture for at least 10 seconds and the sagittal

axis of the dog’s head pointed to the center of the canvas (looking to

the middle), the experimenter then switched to the second slide

which activated the growl. The projected pictures then appeared on

the canvas at the two lateral parts of the lower side of the canvas for

20 seconds. During the projection of pictures, the owners were not

allowed to look at the pictures and they were not allowed to talk or

touch their dog. If the owner interacted with the dog during the

projections, the data were not used for the analysis. After the

projection of the pictures ended, the experimenter entered the room

and the experiment was finished. If the dog did not orient towards

Figure 3. Spectrogram examples of the small and large dogs’ growl. A. Small dog’s growl (weight: 8,5 kg, height: 32 cm, F0: 131 Hz, dF:
2950 Hz) B. Large dog’s growl (weight: 34 kg, height: 64 cm, F0: 63 Hz, dF: 764 Hz). The fundamental frequency is shown as the lowest dark line in
the spectrum, while the formant frequencies are the broader, parallel dark stripes in the upper area. It is easy to see that the small dog’s growls have a
higher F0 and there are wider frequency steps between its formant frequencies.
doi:10.1371/journal.pone.0015175.g003
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the canvas during the growl playback, or did not look at either of the

pictures, the trial was considered to have failed and the data of the

subject were not used for the analyses.

Behavior analyses
We measured the looking preference of the dogs. Their

orienting behavior and the time of looking at the two pictures

during the projections were blind coded by an assistant (Nándor

Takács) with a Solomon Coder (behavior coding software

developed by András Péter, Dept. of Ethology, Budapest). Inter

observer reliability was tested on a random subsample (10 dogs

from each group) of recordings (average Cohen Kappa: 0.87).

Orientation towards one side was defined as the angle between the

sagittal axis of the dogs’ head and the center of one of the pictures,

which is less than 10 degrees (looking at the picture), and the dogs’

eyes fixed on that projected picture (Figure 4 and Video S1 – for

annotated version see: http://www.cmdbase.org/web/guest/

play/-/videoplayer/9). We coded the behavior from the beginning

of the projection until the pictures disappeared to measure the

latencies and the looking time, the maximum of these time

variables was 20 seconds. We transformed the latency data to a

binary variable to analyze which picture the subject glanced at first

(1 – looking first at matching picture, 0 – looking at resized

picture). We calculated the overall looking time (the sum of time

looking at any of the two pictures) and the time ratio of looking at

the matching picture (time of looking at one given picture divided

with the overall looking time). The ratio of looking at the bigger

picture and at the left picture was also calculated to test the

possible effect of the size and the position of the picture

independently from the acoustic stimuli within groups.

Statistical analysis
None of our behavioral variables were normally distributed,

thus we used non-parametric statistical tests. To test within-group

effects, we used exact Binomial and Wilcoxon matched-pair tests,

for between group comparisons we used Kruskal-Wallis tests. To

measure looking and side preferences, the looking time of the

groups was compared to a hypothetical 0.5 median (no preference)

with Wilcoxon signed-rank tests. All tests were performed with

SPSS 15, except the looking preference tests and the Dunn post

hoc tests, for these GraphPad Instat statistical software was used.

For correcting on multiple measures, we applied FDR correction.

Supporting Information

Figure S1 Examples of the used visual stimuli.

(TIF)

Figure S2 Arrangement of the experimental room.

(TIF)

Table S1 Data of the subjects, specifications of the
growl samples and the experimental arrangement.

(XLSX)

Video S1 Video sample of the experiment. The subject

heard a big dog’s growl, the matching picture was the left one

(from the view of the dog), while the modified picture was bigger

than the actual growling dog. The subject looked first and

markedly longer at the matching picture, while observed the

modified one for just a couple of seconds. (for annotated version

see: http://www.cmdbase.org/web/guest/play/-/videoplayer/9)

(AVI)

Audio S1 Sound sample of the used Brownian noise.

(WAV)

Audio S2 Sound sample of the used growls. Small dog.

(WAV)

Figure 4. Examples of the looking behavior. A, Subject looking at the middle. B, Subject looking at the left picture. C, Subject looking at the
right picture. D, Projections of dog pictures.
doi:10.1371/journal.pone.0015175.g004
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Audio S3 Sound sample of the used growls. Large dog.

(WAV)
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38. Pongrácz P, Miklósi Á, Dóka A, Csányi V (2003) Successful application of video-

projected human images for signalling to dogs. Ethology 109: 809–821.
doi:10.1046/j.0179-1613.2003.00923.x.

39. Racca A, Amadei E, Ligout S, Guo K, Meints K, et al. (2009) Discrimination of
human and dog faces and inversion responses in domestic dogs (Canis familiaris).

Anim Cogn;doi:10.1007/s10071-009-0303-3.

40. Range F, Aust U, Steurer M, Huber L (2008) Visual categorization of natural
stimuli by domestic dogs. Anim Cogn 11: 339–47. doi:10.1007/s10071-007-0123-2.
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