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Abstract

Given a set B of finite rooted graphs and a radius r as an input, we prove that it
is undecidable to determine whether there exists a sequence (Gi) of finite bounded
degree graphs such that the rooted r-radius neighbourhood of a random node of Gi

is isomorphic to a rooted graph in B with probability tending to 1. Our proof implies
a similar result for the case where the sequence (Gi) is replaced by a unimodular
random graph.

1 Introduction

There are two different approaches of handling large graphs by limits of finite graphs. The
first is the Lovász–Szegedy theory [8], which is about dense graphs (with O(|V (Gn)|2)
edges), and the other is about sparse graphs (with O(|V (Gn)|) edges), introduced by
Benjamini and Schramm. [2] Although the two concepts are developed for two different
asymptotic classes of graphs, it turned out that there is a lot of analogy between the two
theories, and in this paper, we show a further one.

Either approach tries to describe what information we can get about a graph in con-
stant time, using random access to the vertices. In the dense case, we can sample from
the distribution of the subgraph spanned by a constant number of uniform random ver-
tices, and in the sparse case, we can sample from the distribution of the constant radius
neighbourhood of a uniform random vertex. In both cases, an important problem is to
characterise the set of all possible distributions and its closure.

Both theories use some kind of limit objects of graph sequences. In the dense case,
these are symmetric measurable functions [0, 1]× [0, 1]→ [0, 1]. In the sparse case, a limit
object is (equivalent to) a sequence of finer and finer distributions of the neighbourhoods
of the vertices with larger and larger constant radius. Therefore, describing the set of
limits of all convergent graph sequences is equivalent to describing, for each r, the closure
Cl(r) of the set of all distributions of the r-radius neighbourhoods of the vertices of all
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graphs. Consequently, only in the sparse case, this question is both about the distribution
from which we sample, and about the set of limits of graph sequences.

About dense graphs, Hatami and Norine [7] showed the undecidability of the problem
of determining the validity of a linear weak inequality between the densities. Namely, let
tH(G) denote the probability that |V (H)| random nodes of G span H. Then the unde-
cidable question is, given the sequence of graphs H1, H2, ..., Hn and rational coefficients
λ1, λ2, ..., λn as input, whether

∑
λi · tHi

(G) > 0 holds for all graphs G. This result shows
that the closure of the set of these distributions does not form a nice set, in this particular
sense.

For sparse graphs, Cl(r) is convex, so contrary to the dense case, linear inequalities
are sufficient to completely describe it. This paper will show the undecidability of the
following question. Given a radius r and a set B of r-neighbourhoods, whether Cl(r)
contains a point at which all densities of the neighbourhoods are 0. Equivalently, whether
there exists a positive lower bound of the total relative frequency of these neighbourhoods
or not.

We mention that Bulitko investigated similar problems, namely he showed the unde-
cidability of the following. Given a rooted graph G as an input, does there exist a finite
graph such that the 1-neighbourhood of each of its nodes is isomorphic to G? [5] The
main difference between the result of Bulitko and of ours is that Bulitko dealt with all
neighbourhoods, while we deal with almost all neighbourhoods, in a particular sense.

We also mention that Bulitko showed that finding a finite or finding an infinite graph
with the above property are not equivalent. [4] This implies the analogous nonequivalence
for our case (Problem Ĩ), as well.

1.1 Notation and the Aldous–Lyons problem

Graph means finite or infinite graph with at least one vertex and with degrees bounded
by a fix constant. Random graph is a probability distribution on connected rooted
graphs (up to isomorphism). For a graph G, a node o of G and an integer r, the r-
neighbourhood of o is the rooted subgraph Br(G, o) spanned by all nodes of G at
distances at most r from o, with the root at o. The r-neighbourhood distribution of a
finite graph G is the probability distribution of the r-neighbourhood of a uniform random
node of G, up to isomorphism. Consider a sequence (Gn) of finite graphs. If for all r,
the distribution of the r-neighbourhoods of Gn converges in n, then we say that (Gn) is
convergent. In this case, there exists a random graph with the same distribution of the
r-neighbourhoods of the root as these limit distributions of (Gn). We call this random
graph the limit of (Gn) and we call a random graph which is the limit of some sequence of
finite graphs a limit random graph. All limit random graphs satisfy a natural condition,
called unimodularity, which means the following. Directed-edge-rooted graph means an
ordered triple (G, o, i) where G is a graph, and (o, i) is an edge of G. For each random
graph, we can construct a distribution of directed-edge-rooted graphs as follows. We
choose a rooted graph (G, o) randomly with the distribution, and we choose a uniform
random neighbour i of o. If this distribution of the (G, o, i)-s is invariant under the change
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of the direction of the edge-root (namely, the distribution is symmetric to the last two
arguments) then we say that the original random graph is unimodular.

No nice characterisation of the set of all limit random graphs is known. However,
Aldous and Lyons conjecture that this coincides with the set of all unimodular random
graphs [1], which is something better understood. For example, Gábor Elek showed that
each unimodular random graph can be represented by a topological graphing [6] which
means a set of measure-preserving equivalence relations on a topological space with a
probability measure. Whether these two sets really coincide is still an open question.
About the importance of the conjecture, this would imply that all groups are sofic, which
would prove a number of famous conjectures which are proven for sofic groups but still
open for all groups.

We show that describing either the set of all limit random graphs or of the unimodular
random graphs is algorithmically undecidable in some sense. We hope that our result can
provide insight to the Aldous-Lyons problem.

2 Results

We study the computability of the following problems.

Problem L (limit). Given a set B of finite rooted graphs and a radius r as input, does
there exist a limit random graph so that the r-neighbourhood of the root belongs a.s. to
B?

Problem U (unimodular). Given a set B of finite rooted graphs and a radius r as input,
does there exist a unimodular random graph so that the r-neighbourhood of the root belongs
a.s. to B?

Problem I (infinite). Given a set B of finite rooted graphs and a radius r as input, does
there exist a (possibly infinite) graph so that the r-neighbourhood of each node belongs to
B?

For an input (B, r) denote the three answers by L(B, r), U(B, r) and I(B, r), respec-
tively. We know from [2] and [1] that L(B, r)⇒ U(B, r)⇒ I(B, r). The first implication
is derived from a kind of unimodular property of the finite graphs, while the second one
holds, because if in a unimodular random graph u, the root a.s. has a local property, then
for a randomly chosen graph from u, a.s. all its vertices has this property.

Theorem 1. Problems L, U and I are undecidable. Moreover, there exists a subset of
inputs such that, for each input (B, r), the three answers L(B, r), U(B, r) and I(B, r) are
the same, and the three problems are undecidable on this set of inputs.

Coloured graph means a graph with directed and coloured edges. All concepts we
defined above can also be defined for coloured graphs using a fixed finite colour set. (In
this case, distance in graph is measured ignoring the direction of the edges.) First, we
prove the same for the following three problems.
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Problem L̃. Given a set B̃ of finite rooted coloured graphs as input, does there exist a
limit random coloured graph so that the 2-neighbourhood of the root belongs a.s. to B̃?

Problem Ũ . Given a set B̃ of finite rooted coloured graphs as input, does there exist a
unimodular random coloured graph so that the 2-neighbourhood of the root belongs a.s. to
B̃?

Problem Ĩ. Given a set B̃ of finite rooted coloured graphs as input, does there exist a
(possibly infinite) graph so that the 2-neighbourhood of each node belongs to B̃?

For an input B̃, denote the three answers by L(B̃), U(B̃) and I(B̃), respectively.
L(B̃)⇒ U(B̃)⇒ I(B̃) holds by the same reason as in the uncoloured case.

Proposition 2. There exists a subset of inputs such that, for each input B̃, the three
answers L(B̃), U(B̃) and I(B̃) are the same, and the three problems L̃, Ũ and Ĩ are
undecidable on this set of inputs.

Proof of Proposition 2. We will show the undecidablity of these problems even if B̃ only
contains graphs with degrees bounded by 4.

We prove this undecidability by a reduction from Wang’s Tiling Problem [9] which is
the following. We get a finite set of equal-sized square tiles with a color on each edge. We
want to place one of these on each square of a regular square grid so that abutting edges
of adjacent tiles have the same color. The tiles cannot be rotated or reflected, but each
tile can be used arbitrary many times, or in other words, we have infinitely many tiles of
each kind in the set. The question is, given the set of tiles as input, whether there exists
a tiling of the whole plane. Berger showed in 1966 that this question is algorithmically
undecidable. [3]

For each specific input of the tiling problem, we construct a set B̃ such that the
existence of a tiling of the plane is equivalent to all of L(B̃), U(B̃) and I(B̃). This will
imply the undecidabilities.

To each tiling of a part of the plane, we assign a graph, as follows. The nodes
of this graph represent the different tiles. The colour set of the edges is {→, ↑} ×
(all colours in the tiles). If a tile Y is the right or up neighbour of X, and the colour
of the abutting edges is c then we put a directed edge from X to Y with colour (→, c) or
(↑, c), respectively.

Consider graphs corresponding to all 5 × 5 tilings. We define B̃ as the set of 2-
neighbourhoods of the central nodes of all such graphs. Figure 1/b illustrates such a
neighbourhood, corresponding to the tiling in Figure 1/a.

Now we prove the equivalence of L(B̃), U(B̃), I(B̃) and the existence of a tiling of the
plane, by the following implications.

• L(B̃)⇒ U(B̃)⇒ I(B̃), as we have already seen.

• If I(B̃), then there exists a tiling of the plane.
Proof. Consider such a graph. Each of its vertices can be represented by a tile,
namely the four colours of the tile are the four colours of the incident edges in
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Figure 1/a Figure 1/b Figure 1/c

the appropriate directions. Consider the lattice group, which is the group gener-
ated by two elements, called up and right, with the defining relation up · right =
right · up. This group acts on the graph, because the structure of the neighbour-
hoods guarantees that for each vertex v, up

(
up−1(v)

)
= right

(
right−1(v)

)
= v, and

up
(
right(v)

)
= right

(
up(v)

)
. Let us take an arbitrary vertex v. Let us naturally

identify the unit squares of the grid with the group elements. Then let the tile at
each square s be the representing tile of s(v). This is clearly a valid tiling.

• If there exists a tiling of the plane, then L(B̃).
Proof. Consider a tiling and let Gn be the graph corresponding to an n×n tiling. For
each node in distance at least 2 from the border of the square, the 2-neighbourhood
of it is in B̃. Thus the relative frequency of these nodes tends to 1, so the limit of
the sequence (Gn) satisfies the requirements.

Proof of Theorem 1. We construct a recursive function F that maps every finite set B̃ of
finite rooted coloured graphs to a pair (B, r) so that L(B, r), U(B, r), I(B, r), L(B̃), U(B̃),
I(B̃) are all equivalent. This will prove the theorem, because if there were an algorithm
computing L(B, r), then we could compute L(B̃), as well, by transforming B̃ to (B, r) and
then computing L(B, r).

For the sake of simplicity, we assume that the colours in B̃ are {1, 2, ..., k}. Take a
3-length path as a graph, let A, B, C and D be the four consecutive nodes of it. Take an
l-length cycle, and identify one node of the cycle with B. If l = 2c+ 1 or l = 2c+ 2, then
let us call this graph Rc and Uc, respectively. From a coloured graph G̃, we construct
a graph G = f(G̃) with degrees bounded by 4, like from Figure 1/b to Figure 1/c, as
follows. For each directed edge from X to Y with colour (→, c) or (↑, c), we add a new
copy of Rc or Uc, respectively, and identify X with A and Y with D.

Let G, G̃ and G̃k denote the isomorphism classes of graphs, coloured graphs and
coloured graphs with colour set {1, 2, ..., k}, respectively. Let G∗, G̃∗ and (G̃k)∗ denote
their rooted versions.
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We will use a global retransformation f−1 : G → G̃ ∪ {error} and for each k ∈ N,
a local retransformation algorithm f−1

k : G∗ → (G̃k)∗ ∪ {error}, satisfying the following
properties. (Note that f−1 denotes not the inverse of f , but something very similar.)

We define f−1(G) as follows. We call a node central if it has degree 4 and it has two
neighbours with degree 4. These nodes will be the vertices of f−1(G). In G, let us cut
these nodes into 4 nodes with degrees 1, keeping all edges. Then each component should
be an Ri or Ui – otherwise we output an error – and we add the corresponding directed
coloured edge between the corresponding nodes of f−1(G). The coloured graph we get is
f−1(G).

We define f−1
k (G∗) = f−1

k (G, o) as follows. We find the central node õ closest to o. This
should be unique and in distance at most k + 2 from o. õ will be the root of the coloured
graph. We take all central nodes in the 6-neighbourhood of õ as the vertices of the coloured
graph. We cut these nodes into 4 nodes with degrees 1, keeping all edges. We should get
components with diameter at most k + 3. We decode them into coloured directed edges
between the nodes. If everything was right then we output the 2-neighbourhood of the
root in this coloured graph, otherwise we output an error.

These retransformation algorithms have the following properties.

1. f−1
(
f(G̃)

)
= G̃.

2. f−1
k depends only on the constant radius neighbourhood of the root, namely

f−1
k (G∗) = f−1

k

(
B2k+8(G∗)

)
.

3. If f−1
k (G∗) ∈ (G̃k)∗, then each vertex of f−1

k (G∗) is in distance at most 2 from the
root.

4. A graph is globally retransformable if and only if it is locally retransformable at
each point. Namely,(

∀o ∈ V (G) : f−1
k (G, o) ∈ (G̃k)∗

)
⇔
(
f−1(G) ∈ G̃k

)
.

5. There exists a constant Ck that if G̃ = f−1(G) ∈ G̃k, then there exists a mapping
m : V (G)→ V (G̃) satisfying the followings.

∀v ∈ V (G) : B2

(
m(v)

) ∼= f−1
k (G, v)

∀ṽ ∈ V (G̃) : 1 6
∣∣m−1(ṽ)

∣∣ 6 Ck

Properties 1, 2, 3 and 4 are obvious consequences of the retransforming methods. At
Property 5, m(v) can be constructed as follows. We take the central node v0 closest to v. In
the definition of f−1, the new nodes are constructed from the central nodes of the original
graph. Let m(v) be the node of G̃ corresponding to v0. Then B2

(
m(v)

) ∼= f−1
k (G, v), by

the definition of f−1
k . About m−1(ṽ), it contains the central node v0 of G corresponding
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to ṽ, and each node in m−1(ṽ) must be in distance at most k + 2 from v0, according to
the construction of m. That is why,

∣∣m−1(ṽ)
∣∣ 6 1 + 4 + 42 + ...+ 4k+2 = Ck.

Let B = F (B̃) be the set of rooted graphs G∗ satisfying that its degrees are at most 4,
and its nodes are in distance at most r = 2k+ 8 from the root, and f−1

k (G∗) ∈ B̃. Clearly,
F is a recursive function.

If L(B̃), then there exists a finite coloured graph sequence (G̃n) so that the relative
frequency of the nodes with 2-neighbourhoods from B̃, tends to 1. Then using Property 5,
we get that the relative frequency of r-neighbourhoods of f(G̃n) which are from B, tends
to 1. This implies L(B, r).

If I(B, r), then take a graph G so that ∀v ∈ V (G) : Br(v) ∈ B. By Property 4,
f−1(G) ∈ G̃k, and ∀v ∈ V (G) : f−1

r (G, v) ∈ B̃. Thus, f−1(G) shows that I(B̃).
To sum up, L(B, r) ⇒ U(B, r) ⇒ I(B, r) ⇒ I(B̃) ⇔ U(B̃) ⇔ L(B̃) ⇒ L(B, r), which

proves the equivalences.
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