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Abstract
Invasive alien species continue to arrive in new locations with no abatement in rate, and thus greater pre-
dictive powers surrounding their ecological impacts are required. In particular, we need improved means 
of quantifying the ecological impacts of new invasive species under different contexts. Here, we develop 
a suite of metrics based upon the novel Relative Impact Potential (RIP) metric, combining the functional 
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response (consumer per capita effect), with proxies for the numerical response (consumer population re-
sponse), providing quantification of invasive species ecological impact. These metrics are comparative in 
relation to the eco-evolutionary baseline of trophically analogous natives, as well as other invasive species 
and across multiple populations. Crucially, the metrics also reveal how impacts of invasive species change 
under abiotic and biotic contexts. While studies focused solely on functional responses have been suc-
cessful in predictive invasion ecology, RIP retains these advantages while adding vital other predictive 
elements, principally consumer abundance. RIP can also be combined with propagule pressure to quantify 
overall invasion risk. By highlighting functional response and numerical response proxies, we outline a 
user-friendly method for assessing the impacts of invaders of all trophic levels and taxonomic groups. We 
apply the metric to impact assessment in the face of climate change by taking account of both changing 
predator consumption rates and prey reproduction rates. We proceed to outline the application of RIP to 
assess biotic resistance against incoming invasive species, the effect of evolution on invasive species impacts, 
application to interspecific competition, changing spatio-temporal patterns of invasion, and how RIP can 
inform biological control. We propose that RIP provides scientists and practitioners with a user-friendly, 
customisable and, crucially, powerful technique to inform invasive species policy and management.

Keywords
biological control, ecological impacts, functional response, invasive alien species, numerical response, 
propagule pressure, relative impact potential metric, risk assessment

Introduction

In recent decades, the tourism, agriculture, aquaculture, horticulture and pet trades, among 
others, have been boosted by new globalised transport networks (Hulme 2009, Seebens 
et al. 2018), facilitating novel pathways for invasive alien species (IAS; herein invasive spe-
cies) to spread and establish (Zieritz et al. 2016, Seebens et al. 2019). Indeed, the number 
of confirmed invasive species per country has risen around 70% since 1970 (IPBES 2019). 
The combination of species introductions with changing climate (Seebens et al. 2015, 
Gallardo et al. 2018) and other anthropogenic impacts (MacDougall and Turkington 
2005, Didham et al. 2007) is aiding species establishment and spread, with the number 
of invasive species unlikely to saturate in the near future (Seebens et al. 2017). While the 
effects of invasive species can be benign (invasiveness is not correlated with impact: Ric-
ciardi and Cohen 2007), many invasive species have severe ecological consequences that 
drive negative economic, social and health implications (Laverty et al. 2015a,b). Assessing 
and predicting such ecological impacts are crucial to prevent and mitigate invasions (Sim-
berloff et al. 2013). Note that here, we define ecological impact as changes in populations 
of affected species, principally through consumption of living resources by animals (e.g. 
predator-prey) and interspecific competition for limited resources (especially in plants - see 
Dick et al. 2017a,b,c and “Understanding and predicting competition with RIP” section 
below). Further, predicting which future species are likely to exert ecological impacts, and 
how such impacts are likely to change under different abiotic and biotic contexts, are vital 
objectives for the conservation of biodiversity worldwide (Dick et al. 2017a, IPBES 2019).

The management of invasive species is challenging, with certain high-profile failed 
management programmes (Bergstrom et al. 2009, but see Simberloff 2009). Successful 
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prediction of impact is vital to successful prevention, which is deemed the most effec-
tive invasive species management (Piria et al. 2017) and one that may avoid unpredict-
able indirect effects, such as trophic cascades (Jackson et al. 2017). Aichi Biodiversity 
Targets of the Convention on Biological Diversity focus on invasive species preven-
tion, requiring a list of priority invasive species and preventative measures by 2020. EU 
legislation (Regulation No 1143/2014), alongside the list of IAS of Union Concern 
(Regulation No 2016/1141), and subsequent updates (Regulation Nos 2017/1263, 
2019/1262), add further impetus to impact prediction, requiring all member states 
to develop evidence-based lists of invasive species likely to impact biodiversity and 
ecosystem services.

Here, we develop a suite of metrics based on the per capita effects and abundanc-
es of species (Dick et al. 2017c) that can quantify the spectrum of benign through 
to severely damaging invasive species. We outline the background to these metrics, 
the development of their key components, namely per capita effects (principally the 
functional response), the consumer population response (i.e. the numerical response), 
incorporation of risk (i.e. propagule pressure) and suitable proxies for these three ele-
ments. We then demonstrate the versatility of the metrics across abiotic and biotic con-
texts, including the prediction of climate change effects on invasive species impacts, 
how native species and established invaders can offer biotic resistance, how evolution 
can affect impact, aspects of interspecific competition, spatio-temporal patterns of in-
vasion and impact, and the assessment of biological control agent efficacy.

Background and development of invasive species ecological impact 
metrics

Numerous studies have failed to find traits of species, spanning diverse taxonomic and 
trophic groups, that reliably predict invader ecological impact (Hayes and Barry 2008, 
Ricciardi et al. 2013, Dick et al. 2014; but see Valdovinos et al. 2018, Fournier et al. 
2019 for recent studies on specific taxa). While some have found traits that predict 
invasiveness (Hui et al. 2016), there is no correlation between invasiveness (i.e. estab-
lishment and spread) and ecological impact (Ricciardi and Cohen 2007). Parker et al. 
(1999) proposed the impact (I) of an invader as the product of its range (R), abun-
dance (A) and its per capita effect (E):

I = R × A × E	 (1)

Following this “Parker-Lonsdale” equation, Dick et al. (2013, 2014) proposed 
the classic metric of the functional response (see Fig. 1) could be used as a univer-
sal per  capita effect in invasion ecology. Functional responses typically describe the 
rate of prey capture by a predator in relation to prey density (Solomon 1949, Hol-
ling 1959), however, they can be applied to any consumer/resource interaction (see 
Dick et al. 2017a,b,c), including herbivores (Farnsworth and Illius, 1996), microbial 
communities (Graves et al. 2016) and nutrient uptake rates by plants (Tilman 1977, 
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Rossiter-Rachor 2009). Indeed, the concept of functional responses in plants was the 
basis of the “functional resource-utilisation responses” proposed by Tilman (1977). 
By focusing on resource sequestration rate, functional responses quantify the strength 
of primary ecological interactions exhibited by any species, and hence can potentially 
unify invasion ecology across trophic and taxonomic groups (Dick et al. 2017a,b). 
Indeed, resource acquisition is at the core of the majority of longstanding hypotheses 
in invasion ecology (Catford et al. 2009, Ricciardi et al. 2013).

Comparing the functional responses of native and invader consumers can high-
light differences in the strength of consumer/resource interactions (Fig. 1), with impli-
cations for population stability of the prey or other resources (Holling 1959, Dick et 
al. 2014). Type I functional responses are typical of filter feeders (Jeschke et al. 2004) 
with a directly proportional increase in resource consumption with availability; Type II 
responses are hyperbolic and inversely density-dependent; and Type III responses are 
sigmoidal, with low consumption at low resource densities. Type II responses may have 
a destabilising effect due to high proportional resource consumption at low resource 
densities, while Type III responses may have a stabilising effect due to low proportional 
consumption at low resource densities (Dick et al. 2014). Type III may arise when con-
sumers switch to more abundant resources (Van Leeuwen et al. 2007) or when habitat 
complexity offers refuge for prey (Alexander et al. 2012).

The comparative functional response approach (Fig. 1), whereby the impacts of in-
vasive species are compared with analogous native species as eco-evolutionary baselines 
(Dick et al. 2017c), have proved a reliable tool for explaining the ecological effects of 
existing invasive species and predicting the impacts of new, emerging and indeed poten-
tial future invaders under a wealth of different contexts (Dick et al. 2014, 2017a, b, c, 
Crookes et al. 2018, Howard et al. 2018, Hoxha et al. 2018). Such contexts include 
dissolved oxygen levels (Laverty et al. 2015a), habitat complexity (Wasserman et al. 
2016), temperature regimes (Zamani et al. 2006), water chemistry gradients (Kestrup 

Figure 1. Type I, II and III functional responses and hypothetical invader/native comparisons (see Dick 
et al. 2014).
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et al. 2011), higher order predators (Barrios-O’Neill et al. 2014) and parasites (Laverty 
et al. 2017b). Such studies are not limited to the laboratory either, with numerous ex-
amples of functional responses estimated from field studies (Goss-Custard et al. 2006, 
Smout et al. 2014). Further, Penk et al. (2017) illustrated the utility of this approach, 
providing a framework for its application across a range of novel organisms. Finally, the 
comparative functional response approach can be applied to asking which of several 
actual or potential invaders will have more or less impact, with several studies indicat-
ing that higher functional responses (i.e. maximum feeding rates) do indeed predict 
higher ecological impact. For example, the killer shrimp (Dikerogammarus villosus) has 
consistently higher maximum feeding rates than the less ecologically damaging demon 
shrimp (Dikerogammarus haemobaphes: Bovy et al., 2014), with a similar effect being 
noted for the invasive golden apple snail relative to other introduced snails (Xu et al. 
2016). With regards to plants, it is notable that resource utilization curves, which are 
essentially functional responses, can be used comparatively to understand the dynam-
ics of plant invasions (e.g. Rossiter-Rachor et al. 2009). Most recently, the utility of 
determining functional responses of multiple populations of the same invasive species 
was shown by Howard et al. (2018) and Boets et al. (2019), with functional responses 
derived within and between geographical populations tracking actual impacts in the 
field. Further, a recent study of multiple populations of the invasive crayfish Faxonius 
limosus shows context-dependencies of functional response parameters (Grimm et al. 
2020), and the authors caution that risk assessments of invasive species should, where 
possible, be based on multiple population estimates of functional responses. This rec-
ognition of population level as opposed to species level differences is now a burgeoning 
question and we encourage more research in this area.

Although the comparative functional response approach has been successful in 
characterising ecologically damaging invasive species by itself (e.g. Dick et al. 2013, 
Alexander et al. 2014, Dick et al. 2014, 2017a,b,c), it may provide limited quantifica-
tion of total ecological impact as the functional response is only one of the three com-
ponents of the aforementioned Parker-Lonsdale equation (Eq. 1: Parker et al. 1999). 
Since “range” is dependent on time since invasion, and is not necessarily a species 
characteristic (Kumschick et al. 2013), the ecological impact of a species can be viewed 
as a function of its per capita effects and some measure of the number of individuals 
involved (Dick et al. 2017c, Pearse et al. 2019). The latter is often measured as the con-
sumer population numerical response, but often more simply as consumer abundance 
(Dick et al. 2017c). Assessment of both functional response and numerical response 
(or proxies) is crucial. For example, Fig. 2 illustrates that high ecological impact will 
result when both the functional and numerical responses of an invader are high, but 
impact may also result when a few individuals demonstrate particularly high func-
tional responses, or when the functional responses of invaders are similar to natives 
but invader numerical response is very high. Note also from Fig. 2 that high invader 
numerical responses alone do not necessarily equate to high, or indeed any noticeable 
impact if there are low levels of inter-specific interactions, or no detectable interac-
tion (see Dick et al. 2017c; Fig. 2). Indeed, this method proposes that relatively low 
functional and/or numerical responses can be used to identify low impact or relatively 
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Figure 2. Ecological impact heat map of the combination of functional and numerical responses of 
invasive species compared to trophically analogous equivalents, with ecological impact increasing from 
bottom left to top right (see text for details).

benign invaders (Fig. 2). Here, we thus propose that Relative Impact Potential (RIP, 
see below), which incorporates functional responses and numerical responses into a 
ratio for invader and native analogues, offers a way to identify the range of impacts of 
invasive species illustrated in Fig. 2.

The Relative Impact Potential metric for quantification of invasive 
species ecological impacts

The combination of functional and numerical responses is consistent with the idea of 
the total response (TR) of a consumer (Holling 1959):

TR = FR × NR	 (2)

Unlike the functional response, the rather nebulous numerical response has proven 
difficult to derive due, for example, to time lags in consumer population responses (see 
Dick et al. 2017c, Laverty et al. 2017a), resulting in the need for more simplistic and 
pragmatic proxies for the numerical response that capture consumer reproduction, 
aggregation and resource assimilation (Dick et al. 2017c). Consequently, Dick et al. 
(2017c) proposed that the ”Impact Potential” (IP) of an invader can be represented 
as the product of the functional response (FR) and a chosen proxy for the numerical 
response (NRproxy), such as field abundance/density (AB: see Dick et al. 2017c, Laverty 
et al. 2017a), giving an equation that blends Eq.1 and Eq. 2:

IP = FR × NRproxy	 (3)

e.g.

IP = FR × AB	 (4)
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An IP value by itself offers limited insight, but we relate the IP of an invasive spe-
cies to the IP of a trophically analogous native (the baseline, or co-evolved relation-
ship), giving the “Relative Impact Potential” of the invader (henceforth, RIP) as:

RIP
 FR invader 

 FR native 

 NRproxy of invader 

 NRp
� �
�
�

�
�
��

rroxy of native 

�

�
�

�

�
�
	 (5)

In Eq. 5, the functional response may be the maximum feeding rate, that is, the 
curve asymptote, or 1/h (where h is the handling time parameter: Dick et al. 2017c), 
or, where this is not possible, the consumer feeding rate with an over-abundance of 
resource supply. However, the latter will lack the benefits of the functional response 
method, which gives the extrapolated maximum feeding rate (1/h) and resolution of 
potentially destabilising Type II versus stabilising Type III functional responses (see 
Fig. 1). When the resulting RIP value is < 1, this predicts the invader will have less 
impact than the trophically analogous native; when RIP = 1, we predict invader im-
pact no different from that of the native; and when RIP is > 1, we predict the invader 
will have a greater impact than the native (Dick et al. 2017c). The native comparator 
thus allows the degree of ecological impact of the invader to emerge, and RIP values 
do indeed correlate positively with actual ecological impacts of invasive species in the 
field (Dick et al. 2017c, Laverty et al. 2017a, Kemp et al. 2018). The choice of native 
comparator(s) can be guided by assessment of those native species that are trophically 
similar to the invader and found in the invader’s new range, with multiple native com-
parators useful if available (see Dick et al. 2017c). For example, comparing invasive 
Dikerogammarus villosus with both Gammarus pulex and G. duebeni celticus gives cov-
erage of almost all of the UK/Ireland and many European mainland freshwaters (Bol-
lache et al. 2008), and Rossiter-Rachor et al. (2009) successfully compared the invasive 
gamba grass with two locally abundant and analogous native grasses.

RIP lends itself to data collection by experiment and/or survey, or information 
from already available/published results. Single estimates of the functional response 
and the numerical response proxy may be used in the RIP equation; alternatively, 
means, standard errors, variances, standard deviations or confidence intervals can al-
low the incorporation of uncertainty into RIP. To do this, it is assumed that the ob-
served functional response and numerical response proxy are samples from underlying 
distributions of values (see Dick et al. 2017c). With both measures being positive, a 
log-normal form for both underlying distributions is used, giving the probability den-
sity function (pdf ) for the RIP measure given the four input pdfs (two numerators, 
two denominators):

f f
f

f
( )

( )

( )

(
RIP

 FR invader 

 FR native 

 NRproxy of i
�
�

�
�

�

�
��

nnvader 

 NR proxy of native 

)

( )f
�

�
�

�

�
� 	 (6)

where ƒ() = the pdf.
As an example, we have functional responses for the Ponto-Caspian invasive am-

phipod D. villosus (killer shrimp) and the native analogue G. duebeni towards Asellus 
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aquaticus prey (Bollache et al. 2008). Abundances were taken from Berezina & Duris 
(2008) and Dick (1996) respectively, giving RIP as:

We can then use the pdf, f (RIP), and report RIP and the confidence intervals 
(80% and 60%) and the probability that RIP is greater than 1, or any other figure (e.g. 
>10; see Dick et al. 2017c). By using the means and SDs from the worked example 
above [i.e. mean (SD) = 22(3.5), 230.5(23.3), 16(1.7), 31.6(5.4)], we get:

f f D villosus
f G duebeni

f D villosus
(RIP)=

FR

FR

AB( . )

( . )

( . )�

�
�

�

�
�� ff G duebeni( . )AB

�

�
�

�

�
�

The result can also be visualised using “RIP biplots”, with maximum feeding rate 
on the x-axis, and the numerical response proxy on the y-axis (e.g. Laverty et al. 2017b; 
Cuthbert et al. 2018b, c). Using an example from Laverty et al. (2017a; Fig. 3), scan-
ning diagonally from the origin to the top right of the plot, the invasive top mouth 
gudgeon Pseudorasbora parva has a greater ecological impact than the native bitterling 
Rhodeus amarus. Here, the numerical response proxy is fish field abundance but alter-
natives may be available (see below).

The other classic functional response parameter “a”, the attack rate, is an alterna-
tive to the maximum feeding rate. This quantifies the initial gradient of the functional 
response curve, and gives insights into the critical impact a consumer exerts at low 
resource densities (Dick et al. 2014). Cuthbert et al. (2018c) show the consistency 
of the maximum feeding rate and attack rate as functional response measures for two 
copepod species, Macrocyclops albidus and Megacyclops viridis, at three different tem-
peratures. However, Dickey et al. (2018) reveal a noticeable difference between these 
two metrics for two turtle species, with Trachemys scripta troostii demonstrating a high 
maximum feeding rate but a low attack rate, and Kinosternon subrubrum demonstrat-
ing the reverse. However, a solution to the dilemma of whether to use a or h has 
emerged, with the unified metric of FRR, the Functional Response Ratio, which is 
simply a/h (Cuthbert et al. 2019).

There may be difficulties in determining functional and numerical responses, for 
example, practicalities surrounding consumer and resource supply, or ethical issues. 
Hence, we now review proxies for both.

G
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Figure 3. RIP biplot from Laverty et al. (2017a): invasive top mouth gudgeon Pseudorasbora parva (red 
and orange circles representing prey type 1 and 2 respectively), has a greater ecological impact than the 
native bitterling Rhodeus amarus (blue, prey type 1, and green, prey type 2, squares).

Choosing appropriate functional response proxies

In some situations (e.g. large-bodied species in the wild) functional response experi-
ments may prove difficult. For example, the functional responses of deer species are 
poorly described (but see Illius et al. 2002), but there are proxies in the literature, such 
as absolute daily intake rate (e.g. Newman et al. 1998). Intake per metabolic body 
mass (kg0.75) is a proxy (Drożdż 1979) that allows comparison of trophic analogues 
differing in body size (e.g. Reeves’ muntjac, Muntiacus reevesi, versus native British 
deer species). For plants (e.g. Rossiter-Rachor et al. 2009), there are a number of 
metrics from resource uptake curves that are analogous to functional response metrics, 
such as Vmax (maximum uptake rate over time) and Km (substrate concentration at 
50% maximum uptake rate).

As per Dick et al. (2017c), offering an over-abundance of a resource in experiments 
could suffice as a functional response proxy, however, highly informative aspects such 
as curve type will not then be available (see Fig. 1) and such an over-abundance may 
lead to unrealistically high consumption rates. On the other hand, low consumption 
rates can emerge from gregarious prey defence behaviours (e.g. the postulated Type 
IV functional response: Jeschke and Tollrian 2000). Consequently, where possible, we 
strongly recommend performing full functional response experiments/surveys, with a 
range of resource availability, to maximise information.
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Choosing appropriate numerical response proxies

Population abundance/density are backed theoretically and in practice as suitable proxies 
for the numerical response (Dick et al. 2017c, Laverty et al. 2017a). These can be derived 
in numerous ways, such as through monitoring programmes, and from estimates of con-
sumer densities from non-native ranges. In most cases, relative abundance is a sufficient 
proxy, with the effort required to determine absolute abundance often better spent on 
extra sampling (Hayes et al. 2007). One example of a fisheries technique directly propor-
tional to abundance is Catch Per Unit Effort (CPUE; Maunder and Langley 2004), and 
there are numerous other techniques for estimating abundance and density for both open 
and closed populations (e.g. Seber 1986, Hayes et al. 2007; Suppl. material 1: Table S1).

Where abundance/density data are not suitable, for example, due to large body size 
differences among species, biomass is a suitable proxy. For example, the invasive sharp-
tooth catfish Clarias gariepinus reaches lengths of 148 cm (Clay 1984), whereas the na-
tive trophic analogue river goby, Glossogobius callidus, reaches only 12 cm (Greenwood 
1994, Alexander et al. 2014). The benefit of using biomass instead of abundance for 
this example is demonstrated in Fig. 4, which gives a more realistic demonstration of 
impact for C. gariepinus. Further, for plant numerical response proxies, estimates of in-
dividuals per unit area proved useful in calculating RIP values for invasive gamba grass 
in comparison to native grass species (Dick et al. 2017c), and other measures such as 
biomass and percentage coverage could be utilised.

Figure 4. Comparison of impact derived from use of Catch Per Unit Effort and biomass, whereby CPUE gives 
a misleading impact assessment of the extralimital predator. CPUE data were taken from Bokhutlo et al. (2016) 
and Richardson et al. (2006), with unpublished biomass data from O.L.F Weyl taken from Dick et al. (2017c).
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Often there is no known invasion history of a species, which will become in-
creasingly common as new source pools of invaders are linked to human transport 
(Seebens et al. 2018). In such contexts, basing the RIP upon the abundance/density 
of the species in its native range, where it has co-evolved with natural enemies, 
could be misleading and it may be more prudent to use numerical response proxies 
based on other life history traits. For example, fecundity can be a key determinant 
of invasive species establishment (Grevstad 1999) and persistence (Pöckl 2007). 
While many highly fecund species never become invaders, and a large number of 
invaders have low fecundity, fecundity can strongly affect population size (Par-
vulescu et al. 2015). Thus, fecundity may be a pragmatic proxy for the numerical 
response (see Cuthbert et al. 2018b, Dickey et al. 2018). For example, in the abun-
dance and fecundity impact biplot for two Gammarus species (Fig. 5), the invader 
G. pulex is compared with native G. duebeni celticus. We size-matched the two 
species by using the average size of the native (10–11mm: Hynes 1954), and took 
the corresponding mean number of eggs for the invader at that size (Hynes 1955). 
Abundance figures are from Kelly et al. (2006). The resulting biplots are consistent 
(Fig. 5), with G. pulex showing greater impact across both proxies of the numerical 
response, in line with actual field impacts. We outline further numerical response 
proxies in Suppl. material 1: Table S1.

Figure 5. Comparing abundance and fecundity as numerical response proxies for the invader amphipod 
G. pulex and native G. duebeni. Functional response data taken from Laverty et al. (2015a), abundance 
taken from Kelly et al. (2006), and fecundity data taken from Hynes (1955).
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Incorporating risk into RIP: propagule pressure proxies and Relative In-
vasion Risk, RIR

Invasive species success can be heavily dependent on propagule pressure, that is, the 
number, frequency and viability of individuals introduced (Briski et al. 2012). Man-
agement prioritisation thus needs to balance the likely ecological impacts of an invasive 
species with its risk of arriving, establishing and spreading. Dickey et al. (2018), using 
terrapins in the pet trade, combined the RIP metric with the multiplier “Pet Propagule 
Pressure” (PPP) to calculate Invasion Risk (IR: Eq. 7):

IR = FR × NR × PPP	 (7)

PPP took two forms: one assessed availability of the species across 20 pet stores; the 
other surveyed classified advertisement websites for unwanted pets. Three dimensional 
triplots (i.e. x-, y- and z-axes) visualise relative invasion risk i.e. RIR (R script available 
therein). Dickey et al. (2018) also proposed other proxies for propagule pressure, such 
as live wildlife import and export data (US Law Enforcement Management Information 
System), and studies assessing survivability in ship ballast water (Gollasch et al. 2000). 
Surveys that account for the role of horticulture in plant invasions (e.g. Bayón and 
Vilà 2019) and some invertebrate invasions (Cannon et al. 1999) could also offer valu-
able proxies of propagule pressure. We therefore propose that combining such proxies 
of propagule pressure alongside functional and numerical responses offers an effective 
three-pronged assessment and prioritisation method that assesses overall invasion risk.

RIP in predicting invasive species impacts due to climate change

The past four years have been the hottest on record (2015–2018: NOAA 2019), and 
such changing environmental conditions will affect the establishment and impact of 
invading species (Kelley 2014, Iacarella et al. 2015a, Laverty et al. 2017b). Resultant 
changes in species range, phenology and physiology (see Bellard et al. 2012) may thus 
influence both functional and numerical responses. For example, temperature often in-
fluences functional responses (Englund et al. 2011) in a number of ways, affecting me-
tabolism (especially for ectotherms: Gillooly 2001) and digestion efficiency (Pavasovic 
et al. 2004). Numerical responses will also be affected with, for example, many reptile 
species exhibiting temperature dependent sex determination (Laloe et al. 2014). Phe-
nological shifts can also influence food availability and hence growth and abundance 
(Visser and Both 2005), potentially increasing the impact disparity between native and 
invader (Lediuk et al. 2014).

We thus propose that, for any invader, the effect of temperature increases (or other 
abiotic variables) on its ecological impact can be assessed by Eq. 8 as:

RIP
 FR of invader at high temp 

 FR of invader at low temp
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where ‘high temp’ could be the mean environmental temperature projected from 
climate models. Note that abiotic variables such as temperature may not affect func-
tional response and numerical response proxies linearly (e.g. feeding parameters can 
show hump-shaped responses to temperature: Englund et al. 2011), and this RIP for-
mula compares snapshots of impact at the study temperatures of choice.

The rate of reproduction of the prey (or other resource e.g. plant growth and repro-
duction) will also likely be affected by the same temperature rise, thus either decreasing 
or increasing impact. For example, if reproduction by the prey increases at higher tem-
peratures (e.g. Sutcliffe and Carrick 1981), then impact will be reduced. Alternatively, 
a prey species already close to its thermal tolerance may be stressed by temperature 
rise and thus actually reduce its reproductive allocation (Dhillon and Sharma 2009), 
increasing impact. We thus propose a modifier to Eq. 8 that we call the “Resource Re-
productive Qualifier” (RRQ), defined as the reciprocal of the fraction or proportion to 
which reproduction changes with temperature (or other variable: Eq. 9):

RRQ
 Reproductive output of prey at the higher temperatu

�1/
rre 

 Reproductive output of prey at the lower temperature 
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�
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�
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For example, if a prey species doubles its reproductive output at the higher tem-
perature, then this will halve the RIP value as it is multiplied by ½; alternatively, a prey 
species that halves its reproductive output at a higher temperature will double the RIP 
value (i.e. multiply RIP by 1/0.5=2). Eq. 8 thus becomes:

RIP q
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For example, South et al. (in prep) demonstrate that lionfish Pterois volitans ex-
ert higher predation upon shrimp Palaemonetes varians at 26 °C (max. feeding rate 
of 8.34 ± 0.65 SE) than at 22 °C (4.34 ± 0.55 SE) and that lionfish have greater 
abundances at the higher temperature (28.80 ± 1.75 SD ha-1: Kulbicki et al. 2012 vs 
21.20 ± 5.1 SD ha-1: Whitfield et al. 2007), thus:

However, their prey is likely to increase in abundance by 5% between the two 
temperatures, meaning RRQ is:

Since more prey means the impact exerted lessens, this leads to a reduced RIP of:

RIPq = 2.611 × 0.952 = 2.486
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However, we can see that the increased prey abundance due to temperature in-
crease does not offset the increased feeding rate and abundance of the predator, leading 
to maintenance of an RIP value > 1.

RIP can thus be adapted with RRQ to include context dependencies like tempera-
ture, but also associated climate change conditions such as ocean acidification (Uthicke 
et al. 2013) and freshening (Casties et al. 2015), providing new predictive metrics for 
the vast array of climate change consequences for invasive species impacts.

RIP as a measure of biotic resistance

Functional and numerical responses of resident species towards invasive species may 
provide biotic resistance (see also Twardochleb et al. 2012, Cuthbert et al. 2018c). 
For example, high functional responses of native and naturalised Gammarus species 
towards invasive prey Crangonyx pseudogracilis explain the field patterns of presence/
absence of the invader (MacNeil et al. 2013, Cuthbert et al. 2018c). Using RIP, we 
propose here a powerful biotic resistance metric that can: (1) determine which native/
naturalised species exhibit greater biotic resistance; and (2) predict the influence of 
abiotic factors on the strength of such biotic resistance (br). Thus, to assess which of 
two resident species better resists an invader:

RIPb
FR of native1

FR of native2

AB of native1

AB of native2
	 (11)

Taking the functional response data of MacNeil et al. (2013) with non-native C. 
pseudogracilis prey, and the Gammarus spp. abundance data of Kelly et al. (2006), the 
RIPbr for the naturalised G. pulex relative to the native G. duebeni is:

Therefore, resistance to the non-native C. pseudogracilis prey by the naturalised G. pulex 
is stronger than by native G. duebeni due to higher per capita feeding rate and abundance.

One possible issue of using functional response data to infer biotic resistance is the 
use of a single prey species, unlikely in the wild where alternative prey will occur. We 
thus suggest functional response experiments feature the target invasive prey and ad-
ditional native prey, coupled with experiments that explore the other classic ecological 
concept of prey “switching” or “frequency dependent predation” (Murdoch 1969). Prey 
switching, or lack thereof, has strong implications for the stability of prey populations 
and the biotic resistance that predators can exert upon invasive species. For example, 
Cuthbert et al. (2018c) assessed predation by the native amphipod G. duebeni celticus 
upon native mayfly larvae Baetis rhodani and invasive C. pseudogracilis. They noted 
similar Type II destabilising functional responses upon both prey species when offered 
separately. However, when both prey species were offered simultaneously, the predator 
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did not exhibit prey switching, and instead consumed disproportionately less of the 
invader, indicating a lack of biotic resistance. This matches field patterns, where the 
invader successfully colonises diverse communities, counter to the idea that high com-
munity diversity leads to high biotic resistance (Howeth 2017, Cuthbert et al. 2018c).

RIP and the effect of evolution on invasive species impact

There is a notable lack of evolutionary theory for invasive species (Colautti and Lau 
2015), but RIP could determine the drivers and consequences of adaptive evolution 
and thus help long-term decision-making. Siemann and Rogers (2001) highlighted 
that invasive species in receiving environments may be different from those in native 
ranges. In addition, Shine (2012) highlighted that differences in traits of a species 
can be evident when comparing the invasion front and long-colonised areas. Alleles 
coding for enhanced dispersal, aggression and rapid resource consumption are likely 
to accumulate within the invasion front, while alleles coding for slower dispersal will 
be confined in the long-colonised areas (Phillips et al. 2006, Shine 2012). Thus the 
dispersal process and selection may lead to differences in behaviour that increase im-
pact on native species at invasion fronts (the Invasion Front Hypothesis: Iacarella et al. 
2015b). In support of this hypothesis, front line Hemimysis anomala have higher attack 
rates (Iacarella et al. 2015b) and front line Orconectes limosus have greater clutch sizes 
(Parvulescu et al. 2015). Comparing front line and long-established populations with 
RIP could thus improve invasive species risk assessments by explicitly incorporating 
spatio-temporal variation in impact. We therefore propose:

	 (12)

There are, however, a very limited number of studies of functional and numeri-
cal response changes with range expansion, and we can only encourage collection of 
data to populate Eq. 12 to test these ideas. We discuss other aspects of RIP in spatio-
temporal contexts below.

Finally, the use of RIP in the evolutionary context could assist with a still relatively 
untested conservation technique, genetic backburning (Phillips et al. 2016). This involves 
moving long-established individuals ahead of the front line individuals, and slowing the 
progression of the invasion. RIP could test the ecological outcomes of such efforts.

Understanding and predicting competition with RIP

Interspecific competition can reduce the abundances of interacting species and drive 
species exclusions and coexistence (Connell 1961, Tilman 1977, Schoener 1983, Oyu-
gi et al. 2012). The patterns of resource use by, and the population densities of, inter-
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acting species determine these outcomes. Hence RIP, by capturing both, could help to 
elucidate the role of competition in invasions. Tilman (1977) explicitly included the 
role of “functional resource-utilisation responses” in determining interspecific com-
petition “winners” and “losers”, a concept very close to the “functional response” as 
described by Holling and others. However, Tilman’s examples were from plants and 
referred to competition over abiotic resources (e.g. Tilman 1977, 1982, 2004), while 
Holling and subsequent animal-focused researchers have viewed functional responses 
as determining impacts on living resources, especially prey (e.g. Holling 1959, 1966, 
Schoener 1974). While functional responses are implicit in competition theory (e.g. 
Abrams 1980), their routine measurement as determinants of interspecific competi-
tion outcomes is lacking in the literature, especially for animals. We contend this is due 
to what we call the “Competition Spectrum” (Fig. 6), whereby the role of differential 
use of shared and limiting resources in driving interspecific competition varies across 
trophic and taxonomic groups. In particular, plants compete for resources that are dis-
crete, unique in the sense of not having equivalents (such as nitrogen), meaning that 
competing species cannot switch to analogous resources (Fig. 6). At the other extreme, 
a generalist predator has many potential prey items of some energetic and nutritional 
equivalence, and can switch between prey analogues, such that reduction of one prey 
item by a competitor (e.g. invader) could lead to little or no effect on interspecific 
competition (Fig. 6). Further, motility to find and utilise alternative resources increases 
from left to right in Fig. 6, thus decreasing the utility of functional responses in eluci-
dating competition (i.e. potential competitors can reduce overlap in time and space). 
Along this spectrum lie, for example, filter feeders that can only utilise certain species/
sizes of resource, with limited switching, and specialist predators that can at least move 
to new resource-rich areas and have some switching opportunities.

Figure 6. The Competition Spectrum, outlining how differential use of shared and limiting resources 
drives interspecific competition, with outcomes varying across trophic and taxonomic groups. For exam-
ple, plants compete for resources lacking equivalents, preventing competing species from switching to 
analogous resources, while generalist predators have many relatively equivalent potential prey items and 
the reduction of one prey item by an invader could lead to little or no effect on interspecific competition. 
We propose that RIP (Relative Impact Potential) will be most useful towards the right, whereas the same 
metric might better be named RICP (Relative Inter-specific Competitive Potential) to the left.
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This spectrum perhaps explains why animal ecologists have simply not used func-
tional responses in competition studies, while plant ecologists have done so for decades 
(see also Dick et al. 2017a). On the other hand, plant ecologists have not embraced the 
use of functional responses to explain and predict the identities of invader plants (but 
see resource use efficiency concept of Funk and Vitousek 2007); however, as pointed 
out by Dick (2017a, c), damaging invader plants may be identifiable from their higher 
maximum “feeding rates” (i.e. nutrient and other non-living resource uptake rates) 
compared to natives (e.g. Rossiter-Rachor et al. 2009). We propose that RIP as origi-
nally developed to assess impact on prey populations will be most useful towards the 
right of Fig. 6, whereas the same metric might better be named the Relative Inter-
specific Competitive Potential to the left of Fig. 6. Thus, for example, we could assess 
the Relative Inter-specific Competitive Potential (RICP) as:
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For example, using the uptake rates of NH4
+ of two grass species, the invasive 

Andropogon gayanus and the native Eriachne triseta (Rossiter-Rachor et al. 2009), and 
taking their respective abundance data from Parr (2010), we find the Relative Inter-
specific Competitive Potential as:

This large RICP value is congruent with the much greater general impact of the 
invasive species than the native analogue, particularly in terms of out-competing na-
tive plants.

Alternatively, it may be that the less commonly used functional response metric 
of attack rate offers greater insights into competition, since this captures the ability 
to effectively consume resources at low resource densities, reflective of Tilman’s R* 
theory (Tilman 1982). Thus, calculating RIP with attack rates and abundances may 
better predict the degree of competition between species. We thus propose that Rela-
tive Inter-specific Competitive Potential could unify the plant-animal dichotomy in 
invasion science.

Investigating spatio-temporal patterns of invasion using RIP

RIP as originally formulated assumed complete replacement of the native by the in-
vader, for example, the invasion of G. pulex leading to the replacement of G. duebeni 
celticus by intraguild predation (Kelly et al. 2006). However, there are often lag phases 
between invasive species arriving and exerting impact (Coutts et al. 2018), with further 
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Figure 7. Conceptual spatio-temporal patterns of invasion impact across four invasion stages. In Zone 1, 
the “Pre-invasion” baseline impact is driven by the native species before the invader arrives, and at point 
“a” the invasion takes place. In Zone 2, additional impact is exerted by the “Arrival” of the invader, that 
is, impact is driven by invader and native combined, up to a temporary impact peak, which might vary 
in magnitude, denoted “b1–b3” in Zone 2. Following these peaks, impact declines as the invader replaces 
the native, with the point of complete “Replacement” denoted “c”. In Zone 3, with only the invader now 
present, the impact level may remain higher than the native species baseline. Further, in Zone 4, after 
point “e”, “Proliferation” of the invader may occur with consequent heightened impact. This scheme does 
not assume all stages will occur (e.g. partial replacement may persist) but outlines all likely scenarios.

time before total (or partial) species replacement. Hence, we outline four main zones in 
the fluctuation of invasive species impact potential over the course of an invasion (Fig. 
7). In Zone 1 of Fig. 7, the “Pre-invasion” baseline impact is driven solely by the native 
species, and at point “a” the invasion takes place. In Zone 2, additional impact is ex-
erted by the “Arrival” of the invader, up to a temporary impact peak, which might vary 
in magnitude, denoted “b1-b3” in Zone 2. Following these peaks, impact declines as 
the invader replaces the native, with the point of complete “Replacement” denoted “c”. 
In Zone 3, with only the invader now present, the impact level may be higher (“d1”), 
or similar to (“d2”), or lower than (“d3”) the native species baseline. Further, in Zone 
4, after point “e”, “Proliferation” of the invader may occur with consequent height-
ened impact. We can quantify the changes in total impact (Zone 2, 3 or 4) against the 
Zone 1 baseline, giving us Relative Total Impact Potential (RTIP). This is calculated 
by dividing the total impact potential of the invader and trophically analogous native 
species by the Pre-invasion baseline impact:
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In a hypothetical example:
Zone 2 (point b1, native + invader)
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An alternative scenario could result from one-sided intraguild predation, whereby 
the invader consumes the native and converts native abundance into its own. In this 
situation, the presence of the native species may lead to a greater abundance of invader 
than if the native had been extirpated:

Most studies fail to account for these potential changing impacts of an invader over 
time, and while there is a need to study the often acute initial effects of the invader, 
subsequent effects also need focus (Strayer et al. 2006).

RIP application to biological control

Biocontrol agent selection targeting native or invader pests has commonly examined the 
functional responses of agents toward target organisms (Van Driesche and Bellows 2011, 
Cuthbert et al. 2018a,b). However, assessments of functional responses alone have fre-
quently failed to forecast or explain biocontrol agent success in the field due to omission 
of context dependencies and a disregard for associated numerical responses of agents 
(Fernández-Arhex and Corley 2003). The application of RIP offers a holistic metric to 
assess and predict the comparative potential impact of biocontrol agents, denoted Rela-
tive Control Potential (Cuthbert et al. 2018b,d). The coupling of per capita effects (i.e. 
functional response) and proxies such as field abundance or fecundity estimates in the 
Relative Control Potential metric facilitates a rapid assessment of agent potential. Levels 
of uncertainty can also be projected using the pdf approach (see above), with biplots 
further enabling the clear illustration of comparative impact potential (Cuthbert et al 
2018a,b,c). Moreover, Relative Control Potential can compare the impact of both na-
tive and non-native biocontrol agents under differing environmental contexts, reducing 
the potential for harmful effects commonly associated with ‘classical’ biocontrol agent 
releases (Simberloff and Stiling 1996). Non-native biocontrol agents are often unreli-
able and ecologically damaging (e.g. Azevedo-Santos et al. 2016), yet native analogues 
that exert similar impact levels may be available and should be preferentially selected. 
Relative Control Potential (Cuthbert et al. 2018b) is thus proposed as:
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Proxy selection for this metric can additionally be adjusted to suit the nature of bio-
control in respect to the method of release. Inoculative agent releases that seek to induce 
self-sustaining populations from a single introduction may be best to incorporate fecun-
dity estimates, whilst temporary, inundative releases may be better suited to apply a proxy 
such as agent longevity. For example, Cuthbert et al. (2018b) compared the functional 
responses of two predatory cyclopoid copepods Macrocyclops albidus (agent A) and Mega-
cyclops viridis (agent B) towards larvae of the West Nile virus vector mosquito Culex pipi-
ens. Field abundance data for the two copepods originating from the same site (Tinson 
and Laybourn-Parry 1986) were integrated alongside attack rate (a) estimates from the 
functional responses, allowing comparison between the two species using RCP (Eq. 15):

Here, the Relative Control Potential value is substantially above 1, and thus M. al-
bidus (agent A) is a much more efficacious agent of target mosquito prey than M. viridis 
(agent B). This corroborates with the demonstrated effectiveness of M. albidus in bio-
control applications aiming to reduce mosquito populations (Marten and Reid 2007).

To exemplify the influence of context dependency on biocontrol agent efficacy us-
ing Relative Control Potential, Cuthbert et al. (2018b) integrated functional response 
maximum feeding rates (1/h) of the same two copepods (M. albidus, agent A; M. 
viridis, agent B) across a temperature gradient (12–20 °C). Fecundity data for the two 
copepod species across matched temperatures from Laybourn-Parry et al. (1988) were 
then used to compare agents across temperatures:

Here, at 12 °C (RCP12), efficacies between agent A and agent B are relatively similar; 
however, as temperature increases to 20 °C (RCP20), differential efficacies in favour of 
agent A emerge. Thus, environmental context dependencies which alter the efficacy of 
biocontrol agents can be explicitly integrated into the Relative Control Potential metric.

Future challenges

The Relative Impact Potential (RIP) metric addresses the lack of consistent quantifica-
tion and representation of “ecological impact” in invasion ecology. Indeed, research has 
often focused on only one of the three components of the Parker-Lonsdale equation 
(Parker et al. 1999), and as a result ignored the “total response”. What RIP offers is 
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a standardised, user-friendly means of quickly calculating the impacts of established 
invaders, potential invaders, relocated natives, and pests, relative to each other and 
trophically analogous equivalents. There is potential to account for a range of abiotic 
and biotic conditions over spatio-temporal scales, and to study the vast suite of mecha-
nistic hypotheses within the invasion ecology literature. A challenge now is to ground-
truth these metrics with real world examples, such as the positive relationship found 
between RIP and actual field impacts shown by Dick et al. (2017c).

We also recognise that RIP has to this point assumed linearity by assessing im-
pact as the product of per capita effects and the numerical response (or proxy). We 
have hence assumed intraspecific interactions are neutral, rather than antagonistic or 
synergistic. We also note similarities with the “Density-Impact curve”, which assesses 
non-linear effects of invasive species abundance with economic impact (Yokomizo et 
al. 2009). Currently, there are conflicting theories on whether antagonistic or syn-
ergistic interactions best facilitate invasion spread. For example, aggression towards 
conspecifics is thought to facilitate spread (e.g. aggressive individuals inhabiting the 
range frontier: Groen et al. 2012), while a lack of aggression towards conspecifics may 
facilitate coexistence in high densities in the invaded range (e.g. Argentine ant, Linepi-
thema humile: Suarez et al. 1999). Calls for “bivariate FR approaches”, i.e. functional 
response experiments with differing numbers of predators as well as prey, have thus 
been made (Médoc et al. 2013). We thus recognise that functional responses as derived 
from multiple predator experiments, revealing neutral, antagonistic or synergistic ef-
fects, must be conducted and such data incorporated into RIP metrics.

Until now, quantitative evaluations of impact have not been satisfactorily included 
in risk assessments (Blackburn et al. 2014, Dick et al. 2014). For example, Gallardo et 
al. (2016) required that scores be assigned based on the likelihood and magnitude of 
ecological impact. Uncertainty amongst assessors meant there were large standard devia-
tions for invasive impact evaluation scores, suggesting a need for a more objective system. 
Blackburn et al. (2014) also encountered issues, presenting a risk assessment classifica-
tion scheme heavily reliant on assessing the impact of invaders based on invasion history, 
which will be increasingly unavailable with new invasions. RIP offers a quantifiable meas-
ure of impact that avoids these pitfalls and removes the subjectivity inherent in horizon 
scans. By comparing non-native species to trophically analogous natives, the most poten-
tially impactful invaders could be prioritised by RIP, and the addition of proxies for prop-
agule pressure could highlight overall risk (Dickey et al. 2018). While certain impacts 
would not be covered by RIP, such as hybridisation, spread of disease and bio-fouling, 
expert opinion would still be required, allowing a rounded description of impact built 
upon quantitative foundations. RIP and its other derived metrics above thus require new 
data across a range of taxonomic and trophic groups, necessitating new and imaginative 
data collection methods (see also Dick et al. 2014). By providing a user-friendly method 
of calculating impact, as well as offering succinct, intuitive means of displaying the results 
(e.g. via biplots, Laverty et al. 2017a, and triplots, Dickey et al. 2018), we also propose 
that RIP could go some way towards closing the knowledge gap between scientists and 
managers/practitioners, readily informing prioritisation and control (Matzek et al. 2014).
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Currently, successful implementation of RIP for real-world decision making is con-
strained by the lack of data on functional and numerical responses and their proxies. 
However, with university research laboratories and dedicated research facilities world-
wide (e.g. CABI), and databases such as FoRAGE (Functional Responses from Around 
the Globe in all Ecosystems), there are growing opportunities to compile functional 
and numerical response data across a wide range of taxa, trophic levels and ecosystems 
(Dick et al. 2017a). This should lead to a readily accessible capacity to aid policy deci-
sions and intervention. Once in place, RIP metrics offer considerable promise for aid-
ing the management of invasive species and pests, and we call for their usage as a vital 
component of risk assessments and horizon scans, thus facilitating the assessment and 
prioritisation of invaders as required by EU legislation and global biodiversity targets.
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