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Abstract

Myxovirus resistance (Mx) proteins are interferdBN)-inducible Dynamin-like GTPases, which play an
important role in antiviral immunity. Three Mx gen@Vix1-3) have been cloned previously in rainbooutr

In this study, an additional six Mx genes were elbrnthat reside in four chromosomal loci. Further
bioinformatics analysis suggests the presencerettkeleost Mx groups (TMG) each with a charadieris
gene organisation. Salmonid Mx belong to TMG1 aMiGR. The increased salmonid Mx gene copies are
due mainly to local gene duplications that happdrefdre and after salmonid speciation, in a linégugries
specific manner. Trout Mx molecules have been dified in the loop 1 and 4 regions, and in the eacl
localisation signal in loop 4. The trout Mx genesrg/shown to be differentially expressed in tissugth
high levels of expression of TMG1 (Mx1-4) in bloadd TMG2 (Mx5-9) in intestine. The expression af th
majority of the trout Mx genes was induced by p@yin vitro andin vivo, and increased during development.
In addition, induction by antiviral (IFN) and préimmmatory cytokines was studied, and showed 2 1
IFN, IFNy and IL-13 can induce Mx gene expression in an Mx gene-, kioyés and cell line-dependent
manner. These results show that salmonids posdasgeanumber Mx genes as well as complex regulator

pathways, which may contribute to their succesmianadromous life style.

Key words. Rainbow trout, Mx, anti-viral defence, evolutiagene expression, modulation, type | interferon,
IFNy, IL-1p
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1. Introduction

Mx (myxovirus resistance) proteins are interfertN)-inducible Dynamin-like GTPases, with an im@ot
role in antiviral immunity [1-2]. They are membesta family of large GTPases, and share an N-tamin
GTPase domain, a middle domain (MD), and a C-teainfBTPase effector domain (GED). The GTPase
domain is the most conserved part that consiststdpartite GTP-binding motif (GDXXSGKS, DLPG, and
TKPD) and a dynamin signature (LPRXXGXXTR). The NEDimportant for oligomerization and viral target
recognition, whilst the GED has a conserved C-teamlieucine zipper that folds back to join the N+mal
GTP-binding domain to establish the enzymaticatlfive center of Mx proteins [1-3]. Mx proteins form
tetramers in solution that oligomerize further ifagge filaments and rings [3], with both GTPastvéyg and

oligomerization required for antiviral immunity.

A prototype Mx gene has been found in amphioxustaining the N-terminal GTPase domain [4]. Typical
Mx genes are found in all vertebrate groups. Tret &vidence of Mx genes in fish started with thaation

of an Mx genomic DNA fragment in percRefca fluviatilis) in 1989 [5]. The first full-length characterisati

of Mx genes was reported in rainbow tr@dcorhynchus mykiss, that has three Mx genes (Mx1-3) [6-7].

Subsequently Mx genes have been characterised ity figh species, with 1-9 genes present [4, 8-21].
However, some fish species such as the Gadiforrage lost their Mx genes [22]. The role of fish Mx

proteins in antiviral defence has been establishea few species, such as Japanese floufdealichthys

olivaceus, Atlantic salmorSalmo salar and grass carptenopharyngodon Idella [23-26].

The multiple copies of mammalian Mx are closehkdéid and arise from local gene duplications [2]. How
multiple fish Mx genes have evolved is currentlglear [4,16]. A recent publication has shown tharé¢ are
nine Mx genes present on three chromosomes (Chflantic salmon with Mx1-3 on Ch12, Mx4-8 on Ch25,
and Mx9 on Ch9 [27]. The origin of multiple copieEMx genes on the same chromosome, that are linked
closely and share high sequence identities, i$ylilkealso be via local gene duplications. Howewder to the
third teleost-wide whole genome duplication (3R WG@&IDd the salmonid 4R WGD, many genes with single
copy in mammals are present as four copies ondioramosomes in salmonids [28]. Thus it is posditsee
could be a fourth chromosome that harbours Mx gensalmonids, and if discovered this may shedtlah

how the different Mx-bearing chromosomes evolvedalmonids.

Mammalian Mx gene expression is induced by typad &pe Il IFNs but not by type Il IFNor other
proinflammatory cytokines [29-31]. Interestinglyhet diversified repertoire of Atlantic salmon Mx gsn
appear to show some differential responsivenedyp® | and Il IFNs, with those on Ch12 being highly
induced by type | IFNs and those on Chr25 beingenstrongly induced by IFNthan by type I IFN [27].
This finding is very interesting and raises thegfiom as to whether a diversified Mx repertoire rago be
responsive to other cytokines released during eaativiral defence, and remains to be examinedcelgn

this study we aimed to shed light on Mx gene evotutn actinopterygian fish, in an attempt to ebtlba
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better model of their evolution, and to establishether the increased Mx copy number in salmonids ha
allowed neo-functionalisation giving a broader msgveness to a variety of cytokines. We first tifeu

and cloned an additional six Mx genes in rainbawtyand found that all salmonids with a mappedgen
have four chromosomes harbouring Mx genes. Weifikshthree groups of Mx genes present in telemsts
lineage-specific manner, with some (Ostariophysdyvihg all three groups, some having two groups
(Protacanthopterygii, including salmonids) but grercomorphs possessing only a single group. We next
investigated the expression of the nine trout Mxifa members individually. We found that the trddk
genes are differentially expressed constitutiveljissues, that they increase during developmeatinauced

in vivo by poly IC, and are modulated vitro by type | and type Il IFNs, and by other proinflaatory

cytokine in a gene-, cytokine- and cell line-speamanner.
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2. Materials and methods
2.1. Rainbow trout

Healthy rainbow trout (~40 g) were purchased frdme Mill of Elrich Trout Fishery (Aberdeenshire,
Scotland, UK). The fish were fed twice a day wittc@mmercial diet (EWOS) and maintained in 1-m-
diameter fibreglass tanks with recirculating freatev at 14°C at the Scottish Fish Immunology Retear
Centre, University of Aberdeen, UK. Head kidney (Hivabs were taken routinely and showed no batteria
presence [32]. Fish were given at least two weekadclimation prior to use and ranged in size ff8-140

g when experiments were performed. All the expemtmedescribed comply with the Guidelines of the
European Union Council (2010/63/EU) for the usdatioratory animals, and were carried out under UK

Home Office project licence PPL 60/4013, approvedhe ethics committee at the University of Aberdee
2.2. ldentification, cloning and sequence analysis of Mx cDNA in rainbow trout

Three Mx genes (Mx1-3) are known in rainbow tra@{7]. To identify additional Mx genes in this
species, we searched the recently released raintmw reference genome (GCF_002163495.1)
using TBLASTN [33] with the known trout Mx genes@sery, resulting in the identification of four
genomic loci (Chromosomes (Ch)3, 11, 17 and 24)hhébour Mx genes. The Mx genes were then
predicted as described previously [34-35]. In addijtpotential exons in untranslated regions (UTR)
were predicted by using trout RNA-seq datasets (®8PI8) through aligning to the reference
genome. Primers (supplementdrgble S1) were subsequently designed in the predictedrid- 3-
UTR for PCR cloning of the complete coding regidreach predicted Mx gene. The general cloning
and sequence analysis was as described previo84igg]. The nucleotide sequences generated
were assembled and analysed with the AlignIR progra (LI-COR, Inc.). Homology search was
performed using the BLAST program (http://blastimdim.nih.gov/Blast.cgi) [33] and the gene
organization was predicted using the Spidey progaarNCBI. Protein prediction was undertaken
using software at the ExPASy Molecular Biology Servhttp://www.expasy.org/tools) [36].

Multiple sequence alignments were generated usibySTALW [37]. Amino acid sequence
identity/similarity comparison was performed usitige scoring matrix BLOSUMG62 within the

MatGAT program, with a gap open penalty of 10 aad gxtension penalty of 1 [38].
2.3. Analysisof Mx genesin other salmonids

The Mx genes in other salmonids were predictedyaedl using recently released genomes of
Atlantic salmon §almo salar, Atlantic, acc. no. GCF_000233375.1), chinook sadr©ncorhynchus
tshawytscha, Chinook, acc. no. GCF_002872995.1), coho salmamedr hynchus kisutch, Coho, acc.
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no. GCF_002021735.1), and Arctic chasal¢elinus alpinus, Charr, acc. no. GCF_002910315.2).
Each Mx aa and nucleotide sequence was mappeddmobomes/scaffolds. Similarly, Mx genes
were analysed in the pik&gox lucius) reference genome (acc. no. GCF_000721915.3)ltsest
relative of salmonids that has not undergone thm@ad 4R WGD and that has a sequenced
genome. The aa sequences were used for phylogeretianalysis using MEGA7.0 software [39]
based on aa multiple alignmengenerated by CLUSTALW. The evolutionary distancesrav
computed using the JTT matrix-based method. A roEghjoining phylogenetic tree was
constructed using pair-wise deletion option.

2.4. Evolutionary analysis of teleost Mx family

Mx genes/proteins were analysis at NCBI from sekdeleost fish, including species known to
possess multiple Mx genes. The naming of Mx gemems followed those already published [4,
16, 40-41] or simple Mx with an acc. no. For phyaogtic tree analysis, Mx protein sequences were
extracted from one holostean species, spottedLgprspsteus oculatus, Lepisosteiformes) that is an
early actinopterygian fish species without the 3RSV twenty-one teleosts and three mammals
(humanHomo sapiens, mouseMus musculus and cowBos taurus) as an outgroup. The teleost
species included an elopomorph, Europeanfgguilla anguilla, Anguilliformes), five Ostariophysi
(Otophysi) species including three Cypriniformeshficommon cargCyprinus carpio, goldfish
Carassius auratus and zebrafistDanio rerio), channel catfishl¢talurus punctatus, Siluriformes),
and Mexican tetra or blind cave fisAsfyanax mexicanus, Characiformes), five protacanthopterygii
(the salmonids and pike described above), and ¢ézoomorphs including two Pleuronectiformes
(turbot Scophthalmus maximus, and olive flounderParalichthys olivaceus), Atlantic killifish
(Fundulus  heteroclitus, Cyprinodontiformes), stickleback Gésterosteus  aculeatus,
Gasterosteiformes), MedakaOrfyzias latipes, Beloniformes), fugu Takifugu rubripes,
Tetraodontiformes), Nile tilapiaOfeochromis niloticus, Cichliformes) and three Perciforme fish
(gilt-head sea brea®arus aurata, orange-spotted groupEpinephelus coioides, and the Asian sea
bassLates calcarifer). A neighbour joining phylogenetic tree was comstied as above. Synteny
analysis was performed using the Genomicus prodeéfh or with information extracted from
reference genome sequence at NCBI.

2.5. Real-time PCR analysis of gene expression

Specific primers for each Mx gene were carefullgigeed based on a multiple cDNA sequence aligniiwent
ensure that at least one primer was isoform spedfid one primer crosses an intron to prevent geno

DNA amplification. The primers for gPCR analysis Mk genes and other cytokine genes are detailed in

6
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Table S1 and S2, respectively. Total RNA prepanatt®NA synthesis and qPCR analysis were as destrib
previously [43]. The expression of each gene west fiiormalized to that of the house keeping gene
elongation factord (EF-1n). To directly compare the expression level of tligerent Mx paralogues, a

reference was constructed using equal molar amafiRER product from each gene, including k-1
2.6. Tissuedistribution of rainbow trout Mx gene family

Six healthy rainbow trout (~140 g) were killed aselventeen tissues (blood, thymus, gills, scales,
skin, muscle, tail fins, adipose fin, brain, ad@dssue, spleen, liver, heart, intestine, gonaadh

kidney (HK) and caudal kidney) were collected anocpssed as described previously [34-35]. The
relative expression level of Mx genes in each samas normalized against the expression level of

EF-1o and expressed as arbitrary units (AU) where 1 Atle=expression level of EF/L,000,000.
2.7. Ontogeny of the expression of the Mx gene family

To investigate if the expression of Mx is corretate immune capacity in early life, the ontogenytioé
expression of Mx genes was examined. Archived sasripbm a previous experiment were used in thidystu
as detailed in Wang et al. [44]. Briefly, eyed eggsmediate post-hatch fry, pre-first feeding (Rreding)

fry at the stage of full disappearance of the ygalk, and fry 3 weeks following first feeding weaenpled and
cDNA prepared. Six samples for each developmetagleswere prepared. The gPCR quantification of gene

expression was as described above.

2.8. Production of recombinant trout typel IFNa

The cDNA sequence encoding the mature peptide coit tiFNa was amplified from a poly IC
stimulated cDNA sample using the primers IFNaF (BACTGGATCCGACACCAT) and IFNaR
(GTACATCTGTGCTGCAAGGATATCC). The amplified produetas cloned to a pTriEx vector
(Novagen) as described previously [45]. Sequenedysis of the construct used for recombinant
protein production revealed that it encodes a Bis-(MAHHHHHHHHG) at the N-terminus
followed by the 152 aa mature peptide identicaXfo 021480273. Thus, the recombinant trout IFNa
was 163 aa with a calculated molecular weight ob Xa and a theoretical pl of 9.17. A sequence
confirmed plasmid was transformed into BL21 Stag8Pcompetent cells (Invitrogen). The protein
was produced, purified under denaturing conditioeflded, and quantified as described previously
[34,43,45]. The refolding buffer was phosphate &gl saline (PBS, pH7.4, Sigma, UK) containing
10% glycerol, 0.5 M arginine monohydrochloride, aBdmM 2-mercaptoethanol (2-ME). The
purified protein was buffer changed using a cemgad concentrator (10 kDa cutoff, Thermo
Scientific). The storage buffer was PBS (pH7.4)taonng 10% glycerol, 2 mM EDTA, 10 mM
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arginine monohydrochloride, 10 mM glutamine, anoh® 2-ME. After sterilization with a 0.2 pm

filter, the recombinant protein was aliquoted atmtex] at -88C ready for bioactivity analysis.
2.9. Stimulation of cell lineswith PAMPs and recombinant cytokines

Three trout cell lines, a macrophage-like cell IRES-11 from spleen [46], a fibroblast-like celtdi RTG-2
from gonad [47], and an epithelial-like cell lin@ &ill from gills [48] were used fom vitro stimulation. All
the cells were maintained at 20°C in Leibovitz nedi(L-15) supplemented with 100 U/ml penicillin and
100 pg/ml streptomycin (P/S), and 10% (for RTG-2 and RIT€eIl lines) or 30% (for RTS-11 cells) foetal
bovine serum (FBS). The cells were seeded at “1g&ls/ml (RTS-11) or 0.5xf@ells/ml (RTG-2 and
RTGill) in L-15 containing 10% FCS at 2 ml/well I2-well cell culture plates overnight before stiatidn.

RTS-11 cells were first stimulated with pathogesea$ated molecular patterns (PAMPS), the bactegdl
wall component lipopolysaccharide (LPS, francoli strain 055:B5, Sigma) and the viral dsRNA mimic
polyinosinic: polycytidylic acid (poly IC, SigmaJ.he stimulants were added to the cells aug@hnl for LPS
and 50ug/ml for poly IC, or medium alone as control. Theatments were terminated by dissolving the cells
in TRI reagent (Sigma, UK) 4 h, 8 h and 24 h pdistgation. Total RNA isolation and gene expression

analysis was as described above.

The RTS-11 cells were then stimulated with fivautreecombinant cytokines, IRN20 ng/ml) [49], IFN: (25
ng/ml) prepared above, ILB1(25 ng/ml) [50], IL-6 (100 ng/ml) [51] and TNH50 ng/ml) [52], or medium

alone as control. The treatments were terminatdchaB h and 24 h and gene expression analysaioas.

Finally, RTG-2 and RTGIll were stimulated with 1FN20 ng/ml) and IFN (25 ng/ml) for 4 h and gene

expression analysed as above.
2.10. Modulation of Mx gene expression in vivo by poly IC

Poly I:C (Sigma, UK) was dissolved at 10 mg/ml terie cell culture-grade water, stored at <@0and
diluted to 5 mg/ml in PBS before intraperitonegb) (iinjection. Trout (~100 g, N=24) were injected
intraperitoneally (ip) with 1 mg poly IC in 0.2 raf PBS, or the same amount of PBS as control. iSixffom
each group were killed at 6 h and 24 h post igectand spleen, HK, gills and intestine were ctdlddor
gene expression analysis as described previou8ly The time points chosen were based on pastestiafi
the rapid PAMP response1 vivo in rainbow trout [54]. The expression was exprdsss AU after

normalisation with EF-4, where 1 AU = the average expression level inrobfish at 6 h in each tissue.
2.11. Statistical analysis

The data were statistically analyzed using the SBt@8stics package 24 (SPSS Inc., Chicago, Ikndihe

analysis of real-time PCR data was as describedqusy (43). To improve the normality of data, Irdme

8



213  quantitative PCR measurements were scaled, withothest expression level in a data set defined, asd
214 log2 transformed. One way-analysis of variance (MM and the LSD post hoc test were used to analyse

215 the gene expression data, witk B.05 between treatment and control groups coreidgignificant.
216

217

218 3. Results

219 3.1 ldentification, cloning and sequence analysis of Mx gene family in rainbow trout

220 In addition to the known Mx1-3 in rainbow troutx fidditional Mx genes (Mx4-9) have been identifeet!
221 cloned in this study (Supplementary Figs. S1-S6é, ags. MK301134-MK301139). Mx4, as with Mx1-3, was
222 located on Ch17 and was located between Mx2 and Mx3-6, Mx7-8 and Mx9 were located on Ch3, Chl1l
223 and Ch24, respectivelyr@ble 1).

224 Each trout Mx cDNA sequence had a complete opedingdrame that encoded for 635, 614, 606, 613, 608
225 and 640 aa for Mx4-9, respectively. Each trout Madta N-terminal dynamin GTPase domain, and a C
226  terminal GTPase effector domain, that were wellseoved as shown in a multiple alignment of theo@itr
227  and two human Mx protein§ig. 1). The tripartite GTP-binding motif (GDXXSGKS, DLR@nd TKPD) in
228  all trout Mx were identical to human MxA and MxBh& dynamin signature (LPRXXGXXTR), and the
229 leucine residues that form leucine zipper foldshie GTPase effector domain, were also conseriviagl {).

230 The middle domain and the GTPase effector domaidofold into a four-helical bundle that constitata
231  stalk that mediates oligomerization and transmitsfarmational changes from the G domain to theetarg
232 structure [55]. The regions forming the helix, dadps L2 and L3 were all conserved. However, reddyi
233  large differences were present in loops L1 thaheots the N and C-terminal of the halik and introduces a
234  kink, and L4 that connects the heli8 ando4 (Fig. 1). Potential nuclear localisation signals (KKRKRg a
235 present in trout Mx2 and Mx4 in L4, where a lysimetif (KKKK) is also present in human MxA that

236  contribute to membrane association of MxA [2].
237  3.2. Sequence analysis of Mx family in salmonids

238  Nine Mx genes (Mx1-9) have been described recemthtlantic salmon [27] that map to three chromossm
239 (Ch9, 12 and 25Table 1). In addition, a partial sequence for Atlantic NIx{XP_013998960) has been
240 mapped to Chl5T@ble 1). At least 6 Mx genes each in chinook salmon asttbcsalmon, and 10 Mx genes
241  in Arctic charr could be identified and mapped twornosomes or scaffold3 ble 1). Partial sequences for
242 three pike Mx genes were also found, with Mx1 o1l Thnd Mx2-3 on Ch13T@ble 1).
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A phylogenetic tree constructed using all the kn@satmonid Mx and the three pike Mx protein sequence
showed that the salmonid Mx family clustered indarf separate cladebi). 2A). Moreover, salmonid Mx
genes are located on four cognate chromosomesasttih rainbow trout, Atlantic, chinook and colatnson,

in which their genome sequences have been mappethrtimosomes. The Mx genes on the same
chromosome are grouped togethleig( 2B), as seen also in Atlantic salmon [27], suggestived multiple
genes on the same chromosome originate from laaaé gluplication events in each species. Thus #mere
four salmonid Mx groups (SM@&ig. 2). Pike Mx1 was grouped with SMG1, whilst pike Magd Mx3,
which are linked on Ch13, were grouped with SMG2G& consisted of Mx1-4 of trout, Mx1-3 of Atlantic,
chinook and coho salmon, and Mx1-2 of charr. SM@8Asested of trout Mx5-6, Atlantic salmon Mx4-8,
chinook and coho salmon Mx4, and charr Mx3-8. SM&8atained trout Mx7-8, Atlantic salmon Mx10,
chinook and coho salmon Mx5 and char Mx9-10. SM@&d fnout and Atlantic salmon Mx9, and chinook and

coho salmon Mx6Kig. 2).

It is notable that trout Mx1/3 and Mx2/4, along hvitheir cognate salmonid Mx molecules formed two
separate branches with high bootstrap support iGSiroup Fig. 2A), suggesting that the existence of these
genes, or their ancestral gene predates salmoeridagion. A similar situation was also observedhwibut
Mx7 and Mx8 in SMG3 groupHig. 2A). Although more Mx genes might still be found, ttata for
salmonids with an advanced (sequenced) genome ssghat the distinct numbers of Mx genes in SMG1-3

are due to species-specific independent local dapkcation or deletion events after salmonid sgiban.

In agreement with four SMGs in the phylogenetie tthe Mx aa sequences within each SMG share kigh a
identities Table 2). In SMG1, trout Mx1-4 share high aa sequencetities between each other (86.3-98.4%)
in similar range to SMG1 Mx from different salmosifB3.4-98.2%), but have relatively low identitiegvix
from SMG2 (43.8-47.0%), SMG3 (41.5-48.1%) and SM@2.1-48.1) Table 2). Similarly, Mx sequences
share high identities within SMG2 (82.7-93.6), SM(53.8-93.8%) and SMG4 (80.2-97.0%). However, the
identities of Mx between SMGs are similarly low B51.6%) with the exception of Mx molecules in SRIG
and SMG3 that share moderate 53.4-71.2% aa identifiable 2). Furthermore, the Mx bearing
chromosomes in rainbow trout (Ch3, 11, 17 and 24 Atlantic salmon (Ch9, 12, 15 and 25) do not shar
syntenic origins [56-57]. These data suggest thafdur Mx-bearing chromosomes do not appear graie
from the salmonid 4R WGD.

3.3. Phylogenetic tree analysis of Mx in vertebrates

To understand how the four SMGs evolved, we andlyise Mx gene family in other vertebrates with eu®

on teleost Mx genes. Three Mx genes, Mx1-2 on Girdd Mx3 on Ch3, are present in spotted gar, ay earl
Actinopterygian (Holostei) that has not undergdme 3R WGD that may represent an ancestral sta/]4,

A neighbour-joining phylogenetic tree was constdcbased on a multiple alignment of Mx proteingrfro

selected mammalian and teleost fish species. leeaggnt with previous studies, mammalian Mx form an

10
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independent group separate from all teleost Mx mdés Fig. 3). Three teleost Mx groups (TMG) can be
identified, with a gar Mx at the root of each cladi®G1 contained gar Mx1, salmonid SMG1 and Mx from
all the major teleost groupEi@. 3). TMG2 contained gar Mx3, salmonid SMG2, SMG3 &MG4, and Mx
molecules from European eel, zebrafish, goldfiskxidan tetra and catfish. TMG3 contained gar Mx®&{ a
Mx from Cypriniformes (zebrafish, common carp amadfish) and Characiformes (tetrafi¢. 3). This
phylogenetic tree may suggest that the 3R WGD dagd 6 Mx genes (from the 3 ancestral Mx genes
present in gar) that have subsequently undergomeade specific deletion, with Cypriniformes and
Characiformes species retaining a copy of eacheftiuplicates, protacanthopteryggii such as theaats
and pike retained two whilst in the majority ofeies$ts, the percomorphs only one is present. Watlgpecies

the numbers of Mx genes might be increased agaladay gene duplication.
3.4. Synteny analysis of Mx locusin vertebrates

Despite much analysis, the evolutionary relatiopgtiiMx genes in different vertebrates is still ieac [4,16].
In the present study we performed a synteny arsaly@ng the most advanced genomes available. Rik& C
(Mx1) and trout Ch17 (Mx1-4), and pike Ch13 (Mx2&8)d trout Ch11 (Mx7-8) share a considerable synten
relationship Fig. 4). However, trout Ch3 (Mx5-6) and Ch24 (Mx9) shareclear syntenic relationships to
pike Mx loci, but have a good relationship instedth gar Chl7 (Mx1-2) and Ch3 (Mx3), respectivefyd.

4).

Interestingly, the Gar Mx3 (Ch3) locus also hassiderable synteny with zebrafish Chl5 (MxF) and &£h2
(MxD, Gland G2), in addition to the trout Mx9 locasd all the Mx residing in these loci belong toG®
Furthermore, zebrafish Ch15 and 25 combined sharerfact match syntenically to gar Ch3, suggesting
break of the ancestral gar-like derived chromosonmeebrafish. The gar Mx3 locus also shares synteitty
the tetrapod Mx locus, eg. human Ch21 (MxA and MgHY. 4), as also reported by Robertsen et al. [27].
This suggests that a gar Mx3-like ancestral locagegrise to the teleost Mx group loci in zebrafisid

salmonids, and led to the tetrapod Mx locus.

The gar Mx1-2 locus shares synteny to tetra Ch12L{¥) and the combined tetra Ch19 (Mx8) and scdffol
NW_019172839 (Mx9) of tetra, indicating the retentof two 3R derived Mx loci in this species. Sianly,
the gar Mx1-2 locus shares synteny to both zeltrais1 (MxA/B) and Ch9 (MxC/E)Hig. 4). It is notable
that the tetra Ch12 Mx locus has Mx genes thatrgeto TMG1 (Mx1) as well as TMG2 (Mx2-7), whilsteth
zebrafish TMG2 resides in Ch15 and 25 derived fganCh3. Taken as a whole, two ancestral gar-like M

loci gave rise to the current teleost Mx loci ineage-specific manner.
3.5. Geneorganisation analysis of Mx genesin vertebrates

To shed more light on the evolution of the thrdedst Mx groups, we analysed the gene organisaticil

trout Mx genes in comparison with Mx genes fromeotteleosts and humans. All exon-intron boundasfes
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trout Mx genes conformed to the consensus sequé@de@é\G). In TMG1, trout Mx1-4 genes all had a 12
coding exon/11 intron structure with identical onirphase. The coding region of exons were identil

the exception of exon 8 and 1Hid. 5). A similar gene organisation of the coding regiwas observed with
other TMG1 genes, eg. zebrafish MxA and MxB that an the same chromosome, tetra Mx1 and gar Mx1,

with the exception of a non-coding exon in the 5RJ3f the gar and tetra Mx gene in this grobg(5).

Trout Mx5-9 belong to TMG2. They all had 13 coderpns with the coding regions of exons well conseyv
with the exception of the first and the last twoex Fig. 5). Compared to TMGL1 genes, the last eleven intron
phases were identical to that of TMG1 genes. Than rddference in gene organisation was an extra N-
terminal coding exon that brought a phase Il intonMx5-9 that was missing in Mx1-4. This gene
organisation was conserved in other TMG2 Mx genxeg@ gar Mx3, that shared the same gene orgaomsati
with TMG1 Mx genesKig. 5).

Human MxA and MxB also had the same 13 coding estorcture as TMG2 but with the first intron in paas
0 (Fig. 5). Interestingly, some TMG3 Mx genes had the saemeg@rganisation as in humans (zebrafish MxE
and gar Mx2), and others (eg. zebrafish MxC anchtbtx8) had the same as in TMGHig. 5). Some of
TMG3 Mx genes have lost the last third exon.

In general, the exon size and intron phase in ¢giggons encoding for the N-terminal GTPase domdie, t
middle domain and the C-terminal GTPase effectonalo are well conserved. The noticeable variations
size were the'5last exon that encodes the L1 loop, and the selesn@xon that encodes for the L4 lo&jx(
5).

3.6. The expression of rainbow trout Mx family in tissues and cell lines

The expression of each trout Mx gene was compaigtistudied using gene specific primers and
serial dilutions of references, and expressed bigrany units (AU) relative to EF-4 expression.
Thus the AU of the relative expression is on anaégquolar basis. The expression of paralogues on
the same chromosome was grouped together, anissues were ordered according to the average
expression level of Mx1Hig. 6). The expression level of Mx1-4 on Ch7 was med{&d =100 to
1,000) to high (AU > 1,000) across tissuegy( 6A). Mx5 and Mx6 expression was detectable in all
the seventeen tissues but at low levels (AU <10bg exceptions were Mx5 in intestine that was at
a high level, and Mx5 in thymus, gills, adipose, fiail fins, spleen, scales and gonad, and Mx6 in
intestine and gills that was at medium expressevels Fig. 6B). Mx8 expression was also
detectable in all tissues examined but at low keesicept for high level expression in intestine and
medium level expression in thymus, brain and gom&xi/ expression was undetectable in head/

caudal kidney and tail fins, but had high level reggion in intestine, medium level in thymus, with
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342 low levels in other tissuesFig. 6C). Mx9 expression was also high in intestine buw lor
343 undetectable in other tissuésd. 6D).

344 Each Mx gene was differentially expressed acroBerdnt tissues. In the same tissue, the majority
345 of Mx genes had varying expression levels, as shbwihe ratio of different genes and paired-
346 samples T testsT@ble S3). In general, the expression of the Mx1-4 and Mx&as more similar
347  within each group than between groups. It is notéwathat blood expressed highest levels of Mx1-
348 4 but low levels of Mx5-9. In contrast, intestingpeessed highest levels of Mx5-9 genes amongst
349  the tissues examine#ig. 6).

350 The constitutive expression of the trout Mx genmifa was also examined in three trout cell lines.
351 The macrophage-like cell line RTS-11 expressedtral Mx genes at low levelF{g. 6). The
352 fibroblast-like cell line RTG-2 and epithelial-likeell line RTGiIll expressed medium levels of Mx2
353 and Mx3, and low levels of other Mx genes but Mx&l &x8 in RTG-2 and Mx9 in RTGill were
354 not detectable (AU < 1).

355  3.7. Transcript expression of Mx gene family during developmental stages

356  The high levels of expression of Mx gene family nbens in blood and intestine suggest an importdatino
357 immune defence. We next examined the expressidhest genes in eyed-eggs, immediately post-hagch fr
358  pre-first feeding fry or fry 3 weeks after firsef@ing, which represent a critical period when tke &€ncounter
359  potential pathogens from the environment and fodd].[ The expression levels of all Mx genes were
360 maintained from eyed-eggs till post-hatch. The espion of Mx1, Mx8 and Mx9 was increased in pre-
361 feeding fry and maintained at the same levels st-feeding fry Fig. 7). Mx5 expression was low in eyed-
362  eggs and post-hatch fry but increased significantiyre-feeding fry and increased further in pesefing fry.
363 The expression of Mx2 and Mx5 was only increasegdast-feeding fry whilst that of Mx3, Mx4 and Mx6

364  was unchanged across the different developmeisigéstig. 7).
365 3.8. Modulation of the expression of trout Mx and proinflammatory cytokine genesin vivo by poly IC

366 Poly IC, a known strong inducer of Mx expressiorgswused to investigate its ability to modulate Mx
367 expressiorin vivo. The expression of Mx genes was examined in twpmsystemic lymphoid tissues, the
368 spleen and HK, and two mucosa-associated lymplssdés, the gills and intestine. The expressiavixdf-4
369 was induced in all four tissues at both 6 h antl pést poly IC injection, with the exception of Mahd Mx3
370 inintestine at 6 hHig. 8A-D). As seerin vitro, poly IC did not increase Mx9 expressionivo (Fig. 8l). The
371  induction of other Mx (5-8) genes was time- anduesdependent-{g. 8E-H). In the spleen, poly IC
372  increased Mx5 and Mx7 expression at 24 h and MxbMx8 expression at both time points. In the HKlypo
373 IC increased Mx5 and Mx8 expression at both timiatspand Mx6 expression at 24 h, but had no effect
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Mx7 expression. In the gills, poly IC increased ¢x@ression of Mx6-8 at 24 h, and Mx5 at both timoints.
In the intestine that has high constitutive expmssf Mx5-8, poly IC increased Mx5 expression athbtime
points and Mx7 expression at 6 h, but had no effentMx6 and Mx8Kig. 8E-H). In summary, poly IC was

also a strong inducer of Mx gene expressiovivo with highest induction seen at 24 h post-injectigiy. 8).

In addition to inducing Mx gene expression, polydlSo induced the expression of many pro-inflammyato
cytokines, including IL-f1-2, IL-6, IL-8, TNFu1-2, IFNal, IFN and CXCL11, at least at one time point, in
all the four tissues examinefig. 9). In contrast to the later (at 24 h) peak indutid Mx gene expression,

poly IC induced an early (6 h) induction of the oréy of the proinflammatory cytokines studied (eglp1-

2, IL-6, IL-8, TNFu2 and IFNal)Kig. 9).

3.9. Modulation of trout Mx expression in RTS-11 cells by PAMPs

The expression of all trout Mx genes was detectabkae macrophage cell line RTS-1Aid. 6). Thus we
examined the modulation of trout Mx gene family nbems first in this cell line using poly IC and LPS,
classical viral and bacterial PAMPs. Poly IC wasti@ng inducer of Mx gene expression. It signifiban
induced the expression of Mx2, Mx3 and Mx4 from 24 h, that of Mx1, Mx5 and Mx6 from 8 h to 24 h
and that of Mx7 and Mx8 at 8 h, but had little effen Mx9 expressior{g. 10). As expected, LPS had only
minor effects on Mx gene expression; it inducednalsupregulation of Mx4 at 8 h and Mx5 at 24 hdan
small downregulation of Mx1 at 24 h and Mx2 at &g. 10).

3.10. Modulation of Mx expression by proinflammatory cytokinesin RTS-11 cells

The early peak induction of proinflammatory cytakiexpression and late peak induction of Mx geneg ma
suggest that poly IC can induce Mx indirectly vimipflammatory cytokines as well as by virus segsin
pathways. Indeed, IFNhas been shown recently to modulate some of thaskforms in Atlantic salmon
[27]. Hence, the possibility of modulation of Mxrgeexpression by IFNal, IFNIL-1p, IL-6 and TNF was
studied using RTS-11 cells. Mx9 expression wasaoefiry to all the cytokinesF{g. 111). However, the
expression modulation of the other Mx genes wasknye-specific. IFNa induced the expression of Mx1-
and Mx6 from 4 h to 24 h, Mx5 at 4 h and 24 h, &hd at 8 h, but had no effects on MxBig. 11). IFNy
induced the expression of Mx2-6 from 4 h to 24 x,/M8 at 24 h, but decreased Mx1 expression at @d
11A-H). IL-1p induced the expression of Mx3-4 and Mx8 from 4 124 h, Mx2 and Mx6 at 4 h and 8 h, Mx5
at 24 h, but had no effects on the expression df Bhd Mx7 Fig. 11A-H). IL-6 increased the expression of
Mx3 at 8 h and 24 h, Mx5 at 24 h, and Mx6 at 4ut,decreased the expression of Mx 1 and Mx4 at, 2 th
Mx8 at 8 h and 24 h. It had no effects on Mx2 and/NFig. 11A-H). TNFa induced the expression of Mx2
and Mx4 at 8 h, Mx3 from 4 h to 24 h, Mx5 at 24Hut decreased Mx1 expression at 24 h and Mx5
expression at 8 h. It had no effects on Mx@-8y( 11A-H). It is noteworthy that IFNa is a strong inducér o

the expression of Mx1-4 and Mx7, IFNs a strong inducer of Mx5-6 expression and fLalstrong inducer
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of Mx8 (Fig. 11A-H). In conclusion, all the Mx genes except Mx9 camiiodulated by multiple antiviral and

proinflammatory cytokines in an Mx- and cytokingpdadent manner.
3.11. Modulation of Mx expression by typel and typell IFNsin RTG-2 and RTGill cell lines

The cytokine-dependent Mx modulation may also betgee dependent. Thus, the IFN modulated Mx gene
expression was further studied in the fibroblaat-kell line RTG-2 and the epithelial like celldiRTGill. In
RTG-2 cells, both IFN and IFNa induced the expression of Mx1-6, withisinpotency for Mx5 and Mx6.
However, IFNa was more potent for Mx1Hig. 12). In RTGill, both IFNy and IFNa induced the expression
of Mx2 and Mx3, with IFN more potent for Mx2, but had no effects on Mx1 abdt (Fig. 12A-D). Only
IFNy but not IFNa induced the expression of Mx5 and Mx&TGiIll cells Fig. 12E-F). The expression of

Mx7-9 was low and refractory (data not shown).

4. Discussion

This study reveals that at least 9 active Mx gamegresent in the rainbow trout genome, the samwar as
reported recently in Atlantic salmon [40]. Howevar,this study we show that there are in fact 4 g
present in salmonids and that the number of Mx g@teach locus differs between these two speti@oh
these loci. Multiple Mx genes are also presenttheonsalmonids at four chromosomal loci. The saiichdx
genes at the same genomic locus share high seqigemtities within and between species, suggegtiry
arose from local gene duplication events. It setfraslocal Mx gene duplication/gene loss is commath
some duplication events likely to have happenedrbe$almonid speciation, eg. duplication of Mx1fla
Mx2/4 in SMG1, and Mx7 and Mx8 in SMG3, but othafger salmonid speciation, eg. Atlantic salmon Mx4-
8 in SMG2. The four Mx bearing chromosomal loci Icbhave arisen from the 3R and 4R WGDs as seen
with other genes when mammals have one and salsbaik 4 [28]. However, sequence homology, synteny
and phylogenetic tree analysis do not clearly stphés, and past models [4] do not adequatelyarpheir

evolutionary path in bony fish.

Multiple Mx genes (up to 10) can be found in maeleost species. Our phylogenetic tree analysicabels
that three TMG exist. TMG1 are present in differeh¢ost lineages, but TMG2 and TMG3 are foundrily o
more basal teleosts [57]. Each TMG has a unique geganisation in terms of coding exon number &ed t
first intron phase. For example, whilst TMG1 hak2acoding exon structure with the first intron inage |,
TMG2 has 13 coding exons with the first intron imape Il, and TMG3 has either 13 coding exons wiéh t
first intron in phase 0 (as seen with mammalianddres) or the same organisation as in TMG1. Irtiaghg,

the spotted gar possesses three Mx genes, withresent in each TMG.
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Although the four cognate Mx chromosomal loci betwesalmonids are well conserved, no clear syntenic
conservation have been observed in trout and athlenonid species between the four Mx loci. Howewer,
syntenic relationship between the two gar Mx lowil ahose in zebrafish/ tetra is apparent. For exantipe
Gar Mx1-2 locus and tetra Mx loci on Ch12 and Chib@t harbour Mx genes in all the three teleost Mx
groups. However, the zebrafish cognate Mx lociaf gx1-2 only have Mx genes that belong to TMG1 and
TMG3, and the zebrafish TMGZ2 locus shares synterthé¢ gar Mx3 locus. The two gar Mx loci also share
apparent synteny with two of the trout Mx loci vtithe other two show a syntenic relationship i two
pike Mx loci. This complex syntenic relationship yreuggest that the current Mx genes in 3R or 48ost
may have arisen from the three Mx genes presdmtcathromosomal loci as seen in spotted gar, viigh3R
duplicated Mx loci retained/lost in a lineage sfieananner Eig. 13). This model differs from that in Qi et al.

[4] in taking into account the number of loci presm actinopterygians as well as Mx copy number.

The increased copy number of Mx genes seen in rtelagsts may confer increased expression level and
hence heightened antiviral defence. The duplicatggles may also acquire novel sequence propefas t
confer anti-viral specificity and efficiency. Thena trout Mx genes have considerable variationhe t
nucleotide sequence coding for the L1 and L4 ldophe stalk, as seen in the multiple aa alignmants$
their gene organisation. Both L1 and L4 are atsiindace of the stalk [3] that can interact withreunding
proteins and may be involved in interaction witmal/icomponents. L4 of mammalian Mx is a critical
determinant of viral substrate specificity [58-5Bhe diversification of these regions might haverbdriven

by past virus exposure and life history traits iffedent species. For example, zebrafish and tedrse short
life cycles but live in diverse changing water eomiments. Their survival depends heavily on innate
immunity against viral pathogens. Salmonids sunguecessfully in both fresh and marine waters, rang
encounter a larger virus repertoire compared tgiepdiving in only fresh water or marine water.ride, the

increase of copy number and types of Mx genesdsetlspecies may confer a fithess advantage.

Mx antiviral effects depend on where the Mx protenpresent. Thus, the mouse Mx1 protein which is
localized in the nucleus mainly inhibits orthomyxoges that replicate in the nucleus, whereas mbbxsis
confined to the cytoplasm and inhibits viruses vaithexclusively cytoplasmic replication phase [@0jere is

a potential NLS in the L4 of some salmonid Mx pnogeeg. trout Mx2, and Mx4, but not Mx1 and Mx3.i§'h
NLS may indeed be functional as trout Mx2 is foumthe nucleus, and Mx1/ Mx3 in the cytoplasm [I7is
suggests the nuclear presence of trout Mx4. Takemwhole, salmonids, such as rainbow trout argpqd
with a battery of diversified Mx genes with themofein products present in the cytoplasm and nscteu

protect themselves from viral attack during thé& tycle.

Investigation of Mx isoform expression will help derstand their functional roles. Although multipix
genes have been identified in several teleost epeai comparative expression study in healthy disthe
individual gene level is lacking [17, 27]. Our risushow that the nine trout Mx genes were diff&ediy

expressed across different tissues and cell leesutlined below, suggesting a level of neofumatisation
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of trout Mx paralogues through variation in expresgatterns. The high levels of Mx1-4 transcripbiood
and Mx5-9 in intestine is of particular interestad different viruses can infect hosts via the dtite to
cause acute infectious gastroenteritis, or getsact@ the blood by physical breaches (wounds) oingu
viremia [61]. So preventing their spread at thétes $s a good antiviral strategy. The differengapression
of Mx genes in the cell lines may suggest thatifipazell types preferentially express a particuiéx gene or
a set of Mx genes to defend against potentialtgp#-tropic viruses. However, the three cell liezamined
expressed relatively low levels of Mx genes comgpdrmethe tissues analysed, perhaps due to the foeed

humoral factors preseir vivo to maintain high level Mx gene expression.

The expression of Mx genes was also studied dulévglopment, and several were increased in prerged
and post-feeding fry (eg Mx1, Mx2, Mx5, Mx7-9). §liffeeding is a critical stage in the life of ahfisvhen
potential food borne viruses are met directly foz first time and when the adaptive immune systamriot
fully developed. Indeed, it was the genes prefeliyexpressed in the intestine in adults thateniecreased

in the post-hatch fry.

Next we studied whether the Mx genes could be fadeld by PAMPS or cytokines. In agreement with Mx
induction in other species, poly IC was a strorduaer of trout Mx1-8 gene expressianvitro andin vivo,

with Mx9 more refractory. Although the inductiontigginsin vivo were gene- and tissue-dependent, highest
expression was seen at 24 h with most of the Mxgelmjection of poly IC also induced the expressib
proinflammatory cytokines, such as IB;1L-6 and TNFe as well as type | and type Il IFNs. In contrastite

late peak of induction of Mx gene expression, g@lycaused an early peak of expression in the cyéski
studied. Therefore, the later peak in Mx expressionld be influenced by such molecules. To test thi
hypothesis, we stimulated RTS-11 cells with thegekines to see if they could modulate Mx exprassio
Seven of the nine Mx genes were induced by typeNaland type Il IFN, and six were induced by ILB1In
contrast, IL-6 and TN& had only minor effects on Mx expression. This &jrte mediated induction was
gene-dependent. IFNa was a strong inducer of Mehd Mx6-7. Past studies have shown Mx1-3 to be
modulated by type | IFNs, and so it was no surphse Mx4 as an additional SMG1/TMG1 member was als
induced. Mx6 and Mx7 on the other hand are TMGZ2egestudies with two other cell lines confirmed the
induction of Mx6 by type | IFN as well as a smaitluction of Mx5 (as seen in RTS11 cells) but Mx%&wat
expressed in these cells. IiFMas a strong inducer of Mx5-6, although some itidacof Mx1-4 was also
seen in the different cell lines. Trout Mx5 and Mxi@ on the same locus as Mx4-8 in Atlantic salntioat
were also responsive to IFNR7], and are SMG2/TMG2 genes. The SMG3 (Mx7-8 &8MG4 (Mx9) genes
did not show this responsiveness. Ik-as able to induce Mx8 (SMG3) in RTS-11 cells @ligh some
induction of Mx2-4 and Mx5-6 was also seen, sugggst broader responsiveness across SMGs. In common
with salmon, no induction of Mx9 was found with seePAMPS/cytokines and its role, if any, in anglir

defence remains to be elucidated.
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Such findings contrast with mammalian Mx genes #natstrictly induced by type | and type 11l IFNstlare
not induced by IFN or other proinflammatory cytokines [29-31]. Salrttsnpossess multiple type | (IFNa-f)
and type Il (IFN1-2 and IFNrels) IFNs, but type Il IFN has not been identifie any fish species [62]. In
addition to the induction of Mx genes by type | atgbe Il IFNs, this study confirms that some
proinflammatory cytokines also influence Mx expiessn fish. IL-18 in particular has a clear impact on Mx
gene expression in trout and was the only cytokina¢ induced Mx8 expression. Thus, it is apparbat t

cytokines other than IFNs can have a role in amtivdefence.
Conclusions:

Up to 10 Mx genes are present in salmonids thadlees four chromosomal loci. Three teleost Mx grsu
(TMG) can be identified with characteristic genganmisations, each with a spotted gar Mx gene atabiein

the phylogenetic tree. Synteny analysis suggesisthie current Mx genes in 3R or 4R teleosts may be
evolved from the three Mx genes present at tworabsmmal loci in spotted gar, with the 3R duplicaliéxd

loci retained/lost in a lineage specific mannerdnaid Mx belong to TMG1 and TMG2. The increased
salmonid Mx gene copies are due to local gene cafpdns that have happened before and after sadimoni
speciation in a lineage/species specific manndm@ads are equipped with a diversified batteryM
genes, with their protein products present in htfoplasmic and nuclear locations to protect agaiiral

attack during their life in freshwater and seawater

Trout Mx genes are differentially expressed inuéss with high levels of expression of TMG1 (Mx1id)
blood and TMG2 (Mx5-9) in the intestine. The exgies of most of the trout Mx genes was induced dly p
IC (in vitro andin vivo), and increased during early developmental stagesddiition to induction by type |
IFN, IFNy and IL-18 also induced Mx expression in rainbow trout arel@stokines that are highly modulated
by viral infection. These results show that salrdenpossess a large humber Mx genes as well as e@ompl
regulatory pathways to induce Mx gene expressianafttiviral defence, which may contribute to their

success in an anadromous life style.
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Table 1. Summary of Mx gene family in salmonids and pike

Genebank accession number

Common name | Gene | Chromosome Location \
(mRNA/protein)

Rainbow trout Mx1 | NC_035093.1 (Ch17) | 54,895,743—54,907,262 NM_001171901.1
Rainbow trout Mx2 | NC_035093.1 (Ch17) | 54,827,385—54,839,851 NM_001124751.1
Rainbow trout Mx3 | NC_035093.1 (Ch17) | 54,879,332—54,883,908 XM_021569609.1
Rainbow trout Mx4 | NC_035093.1 (Ch17) | 54,848,974—54,863,639 MK301134
Rainbow trout Mx5 | NC_035079.1 (Ch3) | 82,015,213—81,992,259 MK301135
Rainbow trout Mx6 | NC_035079.1 (Ch3) | 82,029,332—82,045,373 MK301136
Rainbow trout Mx7 | NC_035087.1 (Ch11) | 76,228,384—76,215,926 MK301137
Rainbow trout Mx8 | NC_035087.1 (Ch11) | 76,240,419—76,420,666 MK301138
Rainbow trout Mx9 | NC_035100.1 (Ch24) | 21,286,705—21,268,999 MK301139
Atlantic salmon | Mx1 | NC_027311(Ch12) 66,798,275—66,829,177 NM_001123690/NP_001117162
Atlantic salmon | Mx2 | NC_027311(Ch12) 66,776,028—66,803,979 NM_001139918/NP_001133390
Atlantic salmon | Mx3 | NC_027311(Ch12) 66,816,288—66,829,177 NM_001123675/NP_001117147
Atlantic salmon | Mx4 | NC_027324(Ch25) 47,088,993—47,121,652 XM_014174614/XP_014030089
Atlantic salmon | Mx5 | NC_027324(Ch25) 47,228,437—47,217,827 XM_014174615/XP_014030090
Atlantic salmon | Mx6 | NC_027324(Ch25) 47,161,992—47,139,132 XM_014174616/XP_014030091
Atlantic salmon | Mx7 | NC_027324(Ch25) 47,193,272—47,175,785 XM_014174617/XP_014030092
Atlantic salmon | Mx8 | NC_027324(Ch25) 47,243,602—47,262,616 XM_014174618/XP_014030093
Atlantic salmon | Mx9 | NC_027308(Ch9) 117,838,750—117,853,816 | XM_014214722/XP_014070197
Atlantic salmon | Mx10 | NC_027314(Ch15) 5,299,091—5,292,439 XM_014143485/XP_013998960
Chinook salmon | Mx1 | NW_020142590 72,571—83,518 XM_024415949/XP_024271717
Chinook salmon | Mx2 | NW_020142590 17,032—35,480 XM_024415950/XP_024271718
Chinook salmon | Mx3 | NW_020142590 56,817—83,518 XM_024415946/XP_024271714
Chinook salmon | Mx4 | NW_020133776 172—6,566 XM_024410424/XP_024266192
Chinook salmon | Mx5 | NC_037108(Ch12) 2,001,377—2,013,759 XM_024438118/XP_024293886
Chinook salmon | Mx6 | NC_037110(Ch14) 41,090,466—41,103,747 XM_024445373/XP_024301141
Coho salmon Mx1 | NC_034174(Ch1) 46,664,816—46,675,808 LOC109896993
Coho salmon Mx2 | NC_034174(Ch1) 46,587,607—46,621,678 XM_020468497/XP_020324086
Coho salmon Mx3 | NC_034174(Ch1) 46,651,400—46,656,202 XM_020491468/XP_020347057
Coho salmon Mx4 | NW_018090236 57,121—68,549 GDQG01031501/ /Q6PW23
Coho salmon Mx5 | NC_034181(Ch8) 66,940,031—66,941,209 XM_020488627/XP_020344216
Coho salmon Mx6 | NC_034191(Ch18) 53,794,477—53,822,277 XM_020508491/XP_020364080
Arctic charr Mx1 | NC_036838(Ch1) 44797,136—44,802,044 XM_023993827/XP_023849595
Arctic charr Mx2 | NC_036838(Ch1) 44,762,649—44,772,138 XM_023993825/XP_023849593
Arctic charr Mx3 | NW_019943275 202,142—225,309 XM_024139811/XP_023995579
Arctic charr Mx4 | NW_019943275 93,732—108,405 XM_024139809/XP_023995577
Arctic charr Mx5 | NW_019943275 87,444—170,634 XM_024139810/XP_023995578
Arctic charr Mx6 | NW_019945020 48,231—54,383 XM_024143207/XP_023998975
Arctic charr Mx7 | NW_019945020 11,050—28,797 XM_024143206/XP_023998974
Arctic charr Mx8 | NW_019946381 2,678—17,616 XM_024144359/XP_024000127
Arctic charr Mx9 | NW_019942645 359,971—369,223 XM_024136430/XP_023992198
Arctic charr Mx10 | NW_019942645 378,229—388,058 XM_024136431/XP_023992199
Pike Mx1 | NC_025984(Ch17) 25,113,053—25,132,843 XM_013138351/XP_012993805

, ENSELUG00000023570/ENSELUT
Pike Mx2 | NC_025980(Ch13) 25,725,708— 25,740,882 00000043341
Pike Mx3 | NC_025980(Ch13) | 25,694,138—25,702,004 | ENSELUGO0000023626/ENSELUT

00000036437
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Table 2. Comparison of trout Mx aa sequenceidentitiesto Mx from other salmonids, spotted gar and

mammals. The amino acid number for each sequence is alserst@nly full-length aa sequences were
included in the analysis.

SM G1 SM G2 SM G3 SM G4
< < R 2 P 2 E > < £
3 = = s = s s = = =
5 5 5 5 5 5 5 5 5 5
o ° ° ° ° ° ° ° ° o
P = [ [ = [ [ [ [ =
Trout Mx1 621 | 100.0| 865 | 96.3 | 865 | 46.2 | 46.3| 47.9] 46.4] 471
Trout-Mx2 635 | 86.5 | 100.0| 86.3 | 98.4 | 456 | 45.0| 47.0| 451 473
Trout Mx3 623 | 96.3 | 86.3 | 1000| 86.0 | 459 | 46.0| 48.1] 466 47.d
Trout Mx4 635 | 865 | 984 | 86.0 [ 1000| 458 | 455] 470] 452 474
Atlantc Mx1 | 623 | 95.3 | 85.8 | 97.3 | 85.4 | 45.7 | 459 47.9] 464 47.
Atlantc Mx2 | 638 | 854 | 940 | 85.4 | 939 | 454 | 4a8]| 46.4| 447 461
Atlantc Mx3 | 623 | 96.3 | 865 | 95.8 | 86.6 | 465 | 46.0| 48.1] 46.7] 483
Chinook Mx1 | 621 | 982 | 86.8 | 96.0 | 865 | 46.2 | 462 47.9] 467 474
Chinook Mx2 | 633 | 83.7 | 95.0 | 83.4 | 95.1 | 436 | 435 454 435 454
Chinook Mx3 | 623 | 95.2 | 86.0 | 97.8 | 862 | 462 | 46.2| 481 46.3 474
Coho-Mx2 648 | 843 | 952 | 841 [ 957 | 447 | 443] 458] 442 454
Coho Mx3 623 | 968 | 855 | 97.8 | 85.4 | 46.0 | 46.2| 47.9] 46.3 474
® | Charr Mx1 623 | 96.0 | 86.6 | 97.9 [ 862 | 457 | 46.0] 48.1] 461 474
% [Charr Mx2 638 | 85.6 | 948 | 856 | 951 | 454 | 44.9| 470| 453 473
Trout Mx5 614 | 46.2 | 456| 459] 458 1000] 936 | 61.2 | 69.4 | 51.4
Trout Mx6 606 | 46.3 | 45.0| 46.0] 455 93.6 | 100.0| 61.4 | 69.7 | 50.8
Atlantic Mx4 | 606 | 456 | 454 452] 456] 860 | 883 | 62.2 | 70.1 | 49.7
Atlantic Mx5 | 608 | 454 | 44.7| 455| 448 901 | 888 | 62.7 | 708 | 50.2
Atlantic Mx6 | 627 | 453 | 444| 4a50| 447 839 | 844 | 613 | 679 | 495
Atlantic Mx7 | 603 | 46.4 | 45.0| 46.1] 455 866 | 87.1 | 61.8 | 69.9 | 498
Atlantic Mx8 | 607 | 470 | 455| 46.7] 456] 870 | 900 | 625 | 71.2 | 506
Coho Mx4 614 | 46.0 | 452| 457| 453 951 | 91.7 | 61.1 | 69.9 | 516
& [Charr Mx4 607 | 465 | 459| 46.2] 46.1] 90.9 | 898 | 61.2 | 69.3 | 50.2
% [Charr Mx5 612 | 451 | 43.8| 452] 44.2] 827 | 85.0 | 606 | 682 | 49.7
Trout Mx7 613 | 47.9 | 47.0| 481] 470 612 | 61.4 [1000] 686 | 49.1
Trout Mx8 608 | 46.4 | 451 | 46.6] 452 69.4 | 69.7 | 686 | 100.0]| 498
3 |Charr Mx9 549 | 42.3 | 41.7| 42.4] 415 536 | 534 [ 80.7 | 57.8 | 445
% [Charr Mx10 608 | 46.1 | 45.2| 46.4] 454 693 | 696 | 687 | 93.8 | 498
Trout Mx9 640 | 47.7 | 47.3| 479] 470 514 508 49k  49(8100.0
Atlantc Mx9 | 642 | 481 | 476| 482] 471 51d 508 495 495949
& [Chinook Mx6 | 638 | 47.4 | a72| 478] 469 514 505 49B  49la97.0
% |Coho Mx6 646 | 432 | 42.3| 432] 421] 454 448 a5k a3l680.2
Spottedgar M| 619 | 739 | 713 | 748 | 713 | 466 | 47.1| s0.8] 47.0] 481
_ [Spotted garm| 684 | 485 | 478 | 485 | 478 | 38.7 | 386] 412 30.2] 394
& |spottedgar i 616 | 476 | 443 | 470 | 444 | 413 | 408 411 408 373
% |[HumanMxA | 670 | 52.6 | 52.1 | 52.4 | 520 | 405 | 40.4| 421] 412 431
% Mouse-Mx1 631 | 51.8 | 51.2 | 52.0 | 51.6 | 40.4 | 40.4| 42.1] 409 433
= |Cow Mx1 648 | 51.8 | 52.0 | 52.1 | 51.7 | 39.5 | 40.7| 42.7| a1s| 424
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Figurelegend

Fig. 1. Amino acid multiple alignment of rainbow trout Mx family. The multiple alignment was produced
using ClustalW, and conserved amino acids shadad BOXSHADE (version 3.21). Human MxA and MxB
were included in the alignment for comparison. ™¢erminal GTPase domain and C-terminal GTPase
effector domain are indicated above the alignmené conserved tripartite GTP-binding motif (GDXXSE&K
DLPG, and TKPD) and a dynamin signature (LPRXXGXXTiRRthe GTPase domain, and leucine residues
that form leucine zipper folds in the GTPase etiedomain are in red. The fourhelices and the four loops
connecting them are shown under the alignment &isedeby Gao et al. [55]. The potential nuclear

localisation signal (KKRKR) in trout Mx2 and 4, thaur lysine residues of human MxA in L4 are indalu

Fig. 2 Phylogenetic tree (A) and chromosome localisation (B) of salmonid Mx genes. A. The phylogenetic
tree was constructed using a multiple alignmensadmonid and pike Mx aa sequences and the neighbour
joining method within the MEGA7.0 program. The exadnary distances were computed using the JTT
matrix-based method with all ambiguous positiomsaeed for each sequence pair. The percentage (>60%)
replicate trees in which the associated taxa dledtegether in the bootstrap test (10,000 re@&at shown
next to the branches. The accession number for ®smience is given in Table 2. Four salmonid Mxugso

(SMG)1-4 are indicated on the rigBt. the chromosome localisation of Mx genes in said®and pike.

Fig. 3 Phylogenetic tree analysis of bony fish Mx. The phylogenetic tree was constructed using amiit a
multiple alignments of Mx from selected teleostd ammmals, and the neighbour-joining method withi:
MEGA7.0 program. The evolutionary distances wemamated using the JTT matrix-based method with all
ambiguous positions removed for each sequence Idaite values represent percent bootstrap confidence
derived from 10,000 replications. The accession bmnrior each sequence is given after the specids an
molecule names. The salmonid clades are highlightedcondensed under the name of SMG (salmonid Mx
group)1-4, which share the same topologies &sign2. The root bootstrap values of mammalian Mx and

teleost Mx group 1-3 are highlighted in red witle tentative groupings indicated on the right ofttiee.

Fig. 4. Synteny analysis of Mx loci in bony fish and human. The synteny was predicted using the

Genomicus program [42] or information extractedrfn@cently released reference genomes at NCBI.

Fig. 5. Comparison of gene organisation of the Mx gene family in rainbow trout, other bony fish and

humans. Boxes represent exons, and lines between exonssesyrintrons. The black and white boxes
represent non-coding and amino acid (aa) codingomeg respectively. The sizes (bp) of each exon are
numbered in the boxes. The gene organization oboav trout Mx genes was predicted using the Splign
program based on the sequence information fromeTalaind Figures S1-S6 in Supplementary Materiad. Th

information of other species was extracted fronenéceleased reference genomes at NCBI.
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Figure 6. Transcript expression of rainbow trout Mx gene family in tissues and cell lines. The expression
level of Mx1-4 (A), Mx5-6 (B), Mx7-8 (C) and Mx9 (Dwas determined by RT-gPCR in 17 tissues from six
fish and four replicates of each cell line. Thenseipt level was calculated using a serial dilutiof
references that contained equal molar amountseopthbes for each gene and was normalized agai@st t

expression level of EFel The results are presented as the average +SEM.

Fig. 7. The expression ontogeny of rainbow trout Mx gene family. cDNA samples were prepared from
eyed-eggs, immediately post-hatch, pre-first fegdny or fry 3 weeks after first feeding. Six indement
samples for each developmental stage were pregdareteal-time quantification of gene expression as
described in Fig. 6. The results are presentechesaverage + SEM. Different letters over bars iatdic
significant differences (g 0.05, one way-ANOVA).

Fig. 8. Modulation of Mx gene expression in vivo by poly IC. Rainbow trout were injected ip with 1 mg
poly IC in 0.2 ml PBS or 0.2 ml PBS as control. Bpdeen, head kidney (HK), gills and intestine waiteen
at 6 h and 24 h post injection. The quantificatadnMx gene expression was as described in Fig.h@ T
relative expression is shown, where the averageesgion level in the control fish at 6 h in eadsiie was
defined as 1. The results are presented as the m&&M of six fish. Different letters over barstire same

tissue indicate significant differences<{|0.05, one way-ANOVA).

Fig. 9. Modulation of proinflammatory cytokine gene expression in vivo by poly I C. Rainbow trout were
injected ip with 1 mg poly IC in 0.2 ml PBS or G2 PBS as control. The spleen, head kidney (HKIls gind
intestine were taken at 6 h and 24 h post injecfldie quantification of gene expression was asriestin
Fig. 6. The relative expression is shown, whereatlerage expression level in the control fish hatié each
tissue was defined as 1. The results are presastdte mean + SEM of six fish. Different lettergokars in

the same tissue indicate significant differences @05, one way-ANOVA).

Fig. 10. Modulation of Mx gene expression in RTS-11 cells by poly 1C and LPS. Overnight culture of
RTS-11 cells were stimulated with poly IC (B@/ml), LPS (25ug/ml), or medium as control for 4h, 8 h and
24 h, and the expression of trout Mx genes was tdigghby RT-gPCR as described in Fig. 6. The da&
presented as the mean (+SEM, N=4) fold change le#éclas the average expression level of stimulated
samples divided by that of time-matched controlse Telative significance of a LSD post hoc teseraét
significant one-way ANOVA between the stimulatedl aime-matched controls is shown above the bars as
p <0.05; *p<0.01 and *** p< 0.001.

Fig. 11. Modulation of trout Mx expression in RTS-11 cells by pro-inflammatory cytokines. Overnight
culture of RTS-11 cells were stimulated with {20 ng/ml), IFN-a (25 ng/ml), IL{1(25 ng/ml), IL-6 (100
ng/ml), TNFa (50 ng/ml), or medium as control for 4h, 8 h add2 and the expression of trout Mx genes
was quantified by RT-gPCR as described in Fig. Ite @lata are presented as the mean (+SEM, N=4) fold

change, calculated as the average expression ¢é\@imulated samples divided by that of time-matth
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controls. The relative significance of a LSD post lest after a significant one-way ANOVA betweén t

stimulated and time-matched controls is shown alloedars as * g 0.05; *p < 0.01 and *** p< 0.001.

Fig. 12. Modulation of trout Mx expression in RTG-2 and RTGill cell lines by IFNs. Overnight cultures
of cells were stimulated with IEN(20 ng/ml), IFN-a (25 ng/ml), or medium as contfot 4h, and the
expression of trout Mx genes was quantified by FPIGR as described in Fig. 6. The data are presastéte
mean (+SEM, N=4) fold change, calculated as theagecexpression level of stimulated samples diviged
that of controls. The relative significance of all_fost hoc test after a significant one-way ANOV&veen
the stimulated and controls is shown above the &srsp< 0.05; **p < 0.01 and ** p< 0.001. The line-

connected groups are significantly different.

Fig. 13. Hypothetical evolutionary pathways of teleost Mx gene family. Three Mx loci (Mx1-3) were
present on two chromosomes in ancestral 2R acgnggiins. 3R WGD is expected to have produced 6 Mx
loci on four chromosomes that were retained imadge specific manner to to give rise to the tlesdant
teleost Mx groups. The ancestral vertebrates thalted into the tetrapod lineage appear to havegssed a
cognate Mx locus of gar Ch3. Arrow heads indieateestral Mx genes. Representative chromosomaateci

shown.
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Table 2. Comparison of trout Mx aa sequenceidentitiesto Mx from other salmonids, spotted
gar and mammals. The amino acid number for each sequence is aso shown. Only full-length aa

SMG1 SMG2 SMG3 SMG4

I - R R S R R R I

Bl 2| 2 2| 2| 2| 2| 2| 2| =

s| 8| 8| 8| 8| 8| 8| 8| 8| 8

z [ [ [ [ = = = = =
Trout Mx1 621 | 1000 | 865 | 963 | 865 | 462 | 463 | 479 | 464 47.7
Trout-Mx2 635 865 | 1000 | 86.3 | 984 | 456 | 45.0 | 470 | 451 47.3
Trout Mx3 623 96.3 | 86.3 | 100.0 | 86.0 | 459 | 460 | 481 | 466 47.9
Trout Mx4 635 865 | 984 | 86.0 | 100.0 | 458 | 455 | 470 | 452 47.0
Atlantic Mx1 623 953 | 858 | 973 | 854 | 457 | 459 | 479 | 464 47.4
Atlantic Mx2 638 854 | 940 | 854 | 939 | 454 | 448 | 464 | 447 46.7
8 AtlanticMx3 | 623 96.3 | 865 | 958 | 866 | 465 | 46.0 | 481 | 46.7 48.3
c% Chinook Mx1 | 621 982 | 868 | 960 | 865 | 46.2 | 462 | 479 | 46.7 47.9
Chinook Mx2 | 633 83.7 | 950 | 834 | 951 | 436 | 435 | 454 | 435 45.6
Chinook Mx3 | 623 952 | 86.0 | 978 | 862 | 46.2 | 462 | 481 | 463 47.8
Coho-Mx2 648 843 | 952 | 841 | 957 | 447 | 443 | 458 | 442 45.9
Coho Mx3 623 968 | 855 | 978 | 854 | 46.0 | 462 | 479 | 463 47.8
Charr Mx1 623 96.0 | 866 | 979 | 862 | 457 | 46.0 | 481 | 461 47.6
Charr Mx2 638 856 | 948 | 856 | 951 | 454 | 449 | 470 | 453 47.3
Trout Mx5 614 | 462 | 456 | 459 | 458 | 100.0 | 936 | 612 | 69.4 51.4
Trout Mx6 606 463 | 450 | 460 | 455 | 936 | 1000 | 614 | 69.7 50.8
Atlantic Mx4 606 456 | 454 | 452 | 456 | 860 | 883 | 622 | 70.1 49.7
Atlantic Mx5 608 454 | 447 | 455 | 448 | 901 | 888 | 627 | 708 50.2
8 Atlantic Mx6 627 453 | 444 | 450 | 447 | 839 | 844 | 613 | 679 49.5
% Atlantic Mx7 603 464 | 450 | 461 | 455 | 866 | 871 | 61.8 | 69.9 49.8
Atlantic Mx8 607 470 | 455 | 467 | 456 | 87.0 | 90.0 | 625 | 712 50.6
Coho Mx4 614 460 | 452 | 457 | 453 | 951 | 917 | 611 | 69.9 51.6
Charr Mx4 607 465 | 459 | 462 | 461 | 909 | 898 | 612 | 69.3 50.2
Charr Mx5 612 451 | 438 | 452 | 442 | 827 | 850 | 60.6 | 68.2 49.7
Trout Mx7 613 479 | 470 | 481 | 470 | 612 | 614 | 100.0 | 68.6 49.1
8 Trout Mx8 608 464 | 451 | 466 | 452 | 694 | 69.7 | 686 | 100.0 | 4938
% Charr Mx9 549 423 | 417 | 424 | 415 | 536 | 534 | 80.7 | 57.8 44.5
Charr Mx10 608 46.1 | 452 | 464 | 454 | 693 | 69.6 | 68.7 | 938 49.8
Trout Mx9 640 477 | 473 | 479 | 470 | 514 | 508 | 49.1 | 498 | 100.0

(q._') Atlantic Mx9 642 481 | 476 | 482 | 471 | 516 | 50.8 | 495 | 495 94.9
(% Chinook Mx6 | 638 474 | 472 | 478 | 469 | 511 | 505 | 493 | 494 97.0
Coho Mx6 646 432 | 423 | 432 | 421 | 452 | 448 | 454 | 436 80.2

Gar Mx1 619 739 | 713 | 748 | 713 | 466 | 471 | 508 | 470 48.1

g Gar Mx2 684 | 485 | 478 | 485 | 478 | 387 | 386 | 412 | 39.2 39.4
Gar Mx3 616 476 | 443 | 470 | 444 | 413 | 408 | 411 | 408 37.3

% Human MxA 670 526 | 521 | 524 | 52.0 | 405 | 404 | 421 | 412 43.1
% Mouse-Mx1 631 51.8 | 51.2 | 520 | 516 | 404 | 404 | 42.1 | 409 43.3
= | Cow Mx1 648 51.8 | 52.0 | 521 | 51.7 | 395 | 40.7 | 427 | 415 42.8

sequences were included in the analysis.




Trout Mx1 1 - MNNTLNQHYEERVRPCIDLIDSLRSLGVEKDLALPATAVIGDQSSGKSSVLEALSGVALPRGSGIVTRCPLELKMKRKKEGEEWHGKISYQDHE

Trout Mx2 l——— MNYTLNQHYEERVRPSIDLIDSLRSLGVERDLALPATAVIGDQSSGRSSVLEALSGVALPRGSGIVTRCPLELKMKRKKEGEEWHGKISYQDRE
Trout Mx3 l———— MNNTLNQHYEERVRPCIDLIDSLRSLGVERDLALPATAVIGDQSSGRSSVLEALSGVALPRGSGIVTRCPLELKMKRKREGEEWHGK ISYQDHE
Trout Mx4 1l -] MNYTLNQHYEERVRPSIDLIDSLRSLGVEKDLALPAIAVIGDQSSGKSSVLEALSGVALPRGSGIVTRCPLELKMKRKKEGEEWHGKISYQDRE
Trout Mx5 1l —— MSYD-DGPSMFQDQLAEKVRPFIDLIDDMRSIGIDKELPLPTIAVVGDQSSGKSSVLETLSGVALPRGTGIVTRCPLLLRLCNDR-TVKWDAVISYGGKI
Trout Mx6 1l —— MSHD-DGPRTFQDQLAEKTRPFIDLVDDMRSIGIDKELPLPTIAVVGDQSSGKSSVLETLSGVALPRGTGIVTRCPLLLRLCNDR-TVKWDAVISYGGKI
Trout Mx7 1l -] MS--EPISGQFQDQMAERVRPYIDLIDYLRSIGIEKELPLPSTAVVGDQSSGKSSVLEALSGVALPRGNGIVTRCPLELRLCYVS—-GVAWKAVISYRDKR
Trout Mx8 1 ——] MSDDEDGPSMFQDQLARKVRPFIELIDYLRSIGIEKELPLPSTAVVGDQSSGKSSVLEALSGVALPRGNGIVTRCPLELRLCYVS-GVVWKAVISYRNKT

Trout Mx9 1 MHRPDAGSEDEERDGIQRGVFYSHLDRHVRPFIELIDFLRSIGIEKDLALPATAVVGDQSSGKSSVLEALSGVALPRGSGIVTRCPLELKLRRCF-GGKWKAKISYQGVV
Human MxA 21 LLNGDATVAQKNPGSVAENNLCSQYEEKVRPCIDLIDSLRALGVEQDLALPATAVIGDQSSGKSSVLEALSGVALPRGSGIVTRCPLVLKLKKLVNEDKWRGKVSYQDYE
Human MxB 69 NNQPPPGNRSQPRAMGPENNLYSQYEQRVRPCIDLIDSLRALGVEQDLALPATAVIGDQSSGKSSVLEALSGVALPRGSGIVTRCPLVLKLKKQP-CEAWAGRISYRNTE

Dynamin-like GTPase Domain
Trout Mx1 95 EEIEDPSDVEKKIREAQDEMAGVGVGISDDLISLEIGSPDVPDLTLIDLPGIARVAVKGQPENIGEQIKRLIRKFIMKQETISLVVVPCNVDIATTEALKMAQEVDPEGE
Trout Mx2 95 EEIEDPSDVENKIRKAQDEMAGVGVGISDDLISLEIGSPDVPDLTLIDLPGIARVAVKGQPENIGEQIKRLIRKFITKQETINLVVVPCNVDIATTEALKMAQEVDPDGE
Trout Mx3 95 EEIEDPSDVEKKIREAQDEMAGVGVGISDDLISLEIGSPDVPDLTLIDLPGIARVAVKGQPENIGEQIKRLIRKFIMKQETINLVVVPCNVDIATTEALQMAQEVDPEGE
Trout Mx4 95 EEIEDPSDVENKIRKAQDEMAGVGVGISDDLISLEIGSPDVPDLTLIDLPGIARVAVKGQPENIGEQIKRLIRKFITKQETINFVVVPCNVDIATTEALKMAQEVDPDGE
Trout Mx5 99 IEFDEPSEVVRHVEQAQNTLAGKGVGICEDLITLKITSSTVCDLSLIDLPGITRVAVKGQPEDIGVQINNLISEFIKNKITIILAVVPCNVDIATTEALKMAQQVDPEGT
Trout Mx6 99 IEFDEPSEVVRHVEQAQNTLAGKGVGICEDLITLKITSSTVCDLSLIDLPGITRVAVKGQPEDIGVQINNLISKFIKNKRTIILAVVPCNVDIATTEALKMAQQVDPEGT
Trout Mx7 98 INIGDPSEVAGHVKEAQNELAGEGVGICDELISLKIMSSSVCDLTLIDLPGIARVPVQGQPEDIGAQIKRLILKILSKQKTINLVVVPCNVDIATTEALKMAKEVDPEGT
Trout Mx8 100 FEFDDREEVARHVEQAQNELAGRGVGICEDLITLKIKSSTVCDLSLIDLPGIARVPVPGQPEDIEAQIKSLIMKYISKKKTINLVVIPCYNDIATTEALKMVQKVDPEGT
Trout Mx9 110 ETFEDPSLVEIHVKTAQNTLAGDGVGICDDLITLEITSPDVCDLTLIDLPGITRVPVTGQPEDIGDQIRRLIFKFIKKQETINLVVVPCNVDIATTEALRMAQSVDPEGA
Human MxA 131 IEISDASEVEKEINKAQNAIAGEGMGISHELITLEISSRDVPDLTLIDLPGITRVAVGNQPADIGYKIKTLIKKYIQRQETISLVVVPSNVDIATTEALSMAQEVDPEGD
Human MxB 179 LELQDPGQVEKEIHKAQNVMAGNGRGISHELISLEITSPEVPDLTIIDLPGITRVAVDNQPRDIGLQIKALIKKYIQRQQTINLVVVPCNVDIATTEALSMAHEVDPEGD

Trout Mx1 205 RTLGILTKPDLVDKGTEETVVDIVHNEVIHLTRGYMIVKCRGQKEIMERVSLTEATEREKAFFKEHAHLSTLYDEGHATIPKLAEKLTLELVHHIERSLPRLEEQIEARL
Trout Mx2 205 RTLGILTKPDLVDKGTEETVVDIVHNEVIQLTRGYMIVKCRGQKEIMERVSLTEATEREKAFFKEHAHLSTLYDEGHATIPKLAEKLTLELVQHIEKSMPRLKEQIEEKL
Trout Mx3 205 RTLGILTKPDLVDKGTEETVVDIVHNEVIHLTRGYMIVKCRGQKEIMERVSLTEATEREKAFFKEHAHLSTLYDEGHATIPKLAEKLTLELVHHIERSLPRLEEQIEARL
Trout Mx4 205 RTLGILTKPDLVDKGTEETVVDIVHNEVIQLTRGYMIVKCRGQKEIMERVSLTEATEREKAFFKEHAHLSTLYDEGHATIPRLAEKLTLELVQHIERSMPRLKEQIEERL
Trout Mx5 209 RTLAILTKPDLIDPGAEKNVLEIVHNRVIFLSMGYVIVKCRGQKQIDENMSITRAIEEELEFFQNHEHFRSLVREEKATTKCLAKKLTNALVKQIKTYLPQMSEKIKEQL
Trout Mx6 209 RTLAILTKPDLIDPGAEKNVLEIVHNRVIFLSMGYVIVKCRGQKQIDENMSITRAIEEELEFFQSHEHFRSLVREEKATTKCLAKKLTNALVRQIKTHLPQMSEKIKEQL
Trout Mx7 208 RTLAILTKPDLIDRGTEKDVLDIVRNKITPLNMGYVIVKCRGQKQINDGVTINDAIEEERDFFENHDEFSSLLDEERVTTKCLAARLTQTLVNHIQRSMPQMADQIKQQL
Trout Mx8 210 RTLAILTKPDLIDKGTEKDVLEIVRNKTLPLNMGYVIVKCRGQKQIDDKMSIAQALEEELDFFQDHEHFKSLLLEERATTKHLATKLTYTLVNHIKKSLPDMSNQIKKQL
Trout Mx9 220 RTLAILTKPDLVDKGAEPDILKIVNGQVVHLNKGYIIVKCRGQNDINQKISLADATRLEMEFFKNHHHFSPLLEQNKVTTQCLATKLTQDLVDHIKTSLPYLTDQIREHL
Human MxA 241 RTIGILTKPDLVDKGTEDKVVDVVRNLVFHLKKGYMIVKCRGQQEIQDQLSLSEALQREKIFFENHPYFRDLLEEGKATVPCLAEKLTSELITHICKSLPLLENQIKETH
Human MxB 288 RTIGILTKPDLMDRGTEKSVMNVVRNLTYPLKKGYMIVKCRGQQEITNRLSLAEATKKEITFFQTHPYFRVLLEEGSATVPRLAERLTTELIMHIQKSLPLLEGQIRESH

Trout Mx1 315 SETHAELERYGTGPPEDSAERLYFLIDKVTAFTQDAINLSTGEEMKSGVRLNVFSTLRKEFGKWKLHLERSGEIFNQRIEGEVDDYEKTYRGRELPGFINYKTFEVMVKD
Trout Mx2 315 EETRTALERCGTGPPEDPKERLYFLIDKVTLFTQDAINLSTGEELKSG-DINVFSTLRTEFGKWKAYVDRSGKNFNKKIEKEVADYERRYRGRELPGEF INYKTFEVIVKD
Trout Mx3 315 SETHAELERYGTGPPEDSAERIYFLIDKVTAFTQDAINLSTGEELKSGVRLNVFSTLRQEFGKWKLHLDRSGENFNQRIEGEVSNYERTYRGRELPGF INYKTFEVMVED
Trout Mx4 315 EETRTALEKCGTGPPEDPKERLYFLIDKVTLFTQDAINLSTGEELKSG-DINVFSTLRTEFGKWKAHVDRSGKNFNKKIEKEVDDYEKRYRGRELPGFINYKTFEVIVKD
Trout Mx5 319 GEVRNSLSKLEGGPPLEPEERRKYLIQVITDFNEQITQLSKGDII-—-VEENLFVLMRREFTQWMKCLENDRSNYHKVVQQVVDEYDQEHRGSELPGFSNYRVFQHVVQK
Trout Mx6 319 GEVKHSLSKLEGGPPLEPEERRKYLIQVITDFNEQITQLSKGDII-—-VEENLFELMRREFTEWMECLKNARSHYHEVVQQVVDEYDQEHRGSELPGFSNYRVFQHVVQK
Trout Mx7 318 WVYQTELTKYEGGPPVDPVGKRKYLIEVIKQFNYKIDQLCRGELK---NDENLFINMQNIFAKWFEKLGHSRAGYHKMTQDVVNEFDQKHRGRELPGFNNYTLFESVVQK
Trout Mx8 320 WNVRKALVECEGGPPSDLAERKEFLIGIITEFNEKITRLSTGDNT---VEENLFVLMRSEFADWMKSLQNARPNYHEVVQQVVDEYDLKHRGSELPGFTNYMEFKRVVQR
Trout Mx9 330 ETVKRTELKKYSTGPPLERKKMGPYLTERLIDFIEKIHELCRIGNS-——SERNLHTCLRPVFQQWDSYLSNTRGSFLNKVAAMIKNYDREHRGRELMTFSDYCVYEHAVQK
Human MxA 351 QRITEELQKYGVDIPEDENERMFFLIDKVNAFNQDITALMQGEETVGEEDIRLFTRLRHEFHKWSTIIENNFQEGHKILSRKIQKFENQYRGRELPGFVNYRTFETIVRQ
Human MxB 398 QKATEELRRCGADIPSQEADKMFFLIEKIKMFNQDIEKLVEGEEVVRENETRLYNKIREDFKNWVGILATNTQKVKNIIHEEVEKYERQYRGRELLGFVNYKTFEIIVHQ

L1 L2 ——— —

ol" ol®
Trout Mx1 425 QIKQLEGPAVKKLKEISDAVRKVFLLLAQSSFTGFPNLLKSAKTKIEAIKQVNESTAESMLRTQFKMELIVYTQDSTYSHSLCERKREEDED——————-————-——- QPL
Trout Mx2 424 QIKQLEEPAVKKLKELSDAARKAFILLAQNSFTGFPILLKTAKTKIETIKQEKESTAESTLRTQFKMELIVYTQDSTYSSSLKKRKREEEELEEGELVKNNLGSWKGLEV
Trout Mx3 425 QIKQLEEPAVKKLKEISDAVRKVFLLLAQSSFTGFPNLLKSAKTKIEAIKQUNESTAESMLRTQFKMEMIVYTQDSTYSHSLSERKREEEDD-————-——-——-- RPLPT

Trout Mx4 424 QIKQLEEPAVKKLKELSDAARKAFILLAQNSFTGFPILLKTAKTKIETIRQEKESTAESTLRTQFRMELIVYTQDSTYSSSLKKRKREEEELEEGELVKNTLGSQRGFSV
Trout Mx5 426 LVAELKRPAMSTLQKIRDMVQKQFDHLSSESFRNYPYLHLVSKKNIETIQEKQSNIVRERIVEQFEMEMQVYTQDEIFNKVMLEAKSHLLEE-————————————————-
Trout Mx6 426 LVAELKRPAMSTLQTIRDMVQKQFDHLSSESFRNYPYLHLVSKKNIETIQEKQSNIVKERIVEQFEMEMQVYTQDEIFNKQSRK:
Trout Mx7 425 LVGELKNPAMDTLQKIKDLVQKHFFVVSKSSFENYPCLQRFSMTNIDDIQRQQLTTVMDRIEEQFEMEM--YTQDEIFARTLTPAQKET
Trout Mx8 427 LVAKLREPAMMTLQKIREMVHTQFVNLSKVSFENFPYLQHVSMKNIENIQEWQSNIVMKRIEEQFQMEMQVYTQDEIFFETLNPE
Trout Mx9 437 HILGLQEPALDVLKAIGGMVQAEFRNVCEACFKSYPQLRSMALSKIDEIQTKQETKVEKRIKEYINMERLVYTQDSIFIKGLKDHKAQFKEAIEEEH-————- FYDPEEI

Human MxA 461 QIKALEEPAVDMLHTVTDMVRLAFTDVSIKNFEEFFNLHRTAKSKIEDIRAEQEREGEKLIRLHFQMEQIVYCQDQVYRGALQRVRERELEEEKKKK-———————————— S
Human MxB 508 YIQQLVEPALSMLQKAMEITQQAFINVARKHFGEFFNLNQTVQSTIEDIKVKHTAKAENMIQLQFRMEQMVFCQDQIYSVVLKRVREEIFNPLGTPS—————————- QNM
L3 L4
a2 helix a3 helix

____________ GTPase effector domain
Trout Mx1 520 TEIRSTIFSTDNHATLQEMMLHLKSYYWISSQRLADQIPMVIRYLVLQEFASQLQREMLQTLQEKDNIEQLLKEDIDIGSKRAALQSKLKRLMKARSYLVEF-—----
Trout Mx2 534 VSVRSTVNGLDTHATLREMMLHLKSYYHIASQRLADQIPMVIRYLVLQEFASQLQREMLQTLQEKDNIEQLLKEDIDIGSKRAALQSKLKRLMKAHNYLVEF—————
Trout Mx3 522 PKIRSTIFSTDNHATLQEMMLHLKSYYRISSQRLADQIPMVIRYLVLQEFASQLQREMLQTLQEKDNIEQLLKEDFDIGSKRAALQNKLKRLMKARSYLVEF—————
Trout Mx4 534 VSVRSTVNGLDTHATLREMMLHLKSYYHIASQRLADQIPMVIRYLVLQEFASQLQREMLQMLQEKDNIEQLLKEDIDIGSKRAALQSKLKRLMKARDYLVEF------
Trout Mx5 518 ——-GEI-AEDKEQDTRSKYPGLLKAYYEIVVQRLADQVPMMICYFILKQSAKIVCSEMLDLL-HRDDTDNILQEDSEIGQYRARLQAQADRL ILANDKISSL—-——-
Trout Mx6 510 -—-EGT-AEGSDHDTRSKYPGLLKAYYEIVVQRLADQVPMLIRYFILKQSAKIVCSEMLDLL-HSDDTDNILQEDSEIGQYRAKLQAQADRL ILANDKISIL—-——-
Trout Mx7 512 ——-PGK-TDCSGYDTRSKYPELLNSYFEIVVQRLADQVPMLIRYFILKESARILSSEMLGLL-NREDLDEMLKEESEIGRKREALRDKVKRLGLANNKISTLWDQSG—
Trout Mx8 512 -—-EET-PDCSCYDTRSKYPELLKAYYEIVVQRLADQVPMLIRYFILKESARILCSKMLGLL-NSDDLDEMLTEESEIGRRRSALRSRVERLGLANDKISSL—————
Trout Mx9 541 EDITAT-FNSTTFDSRKLTPDKLGVYYEIVYQRLADYVPMLILQFMLKESAKMLCIQIMDER-DGADVVKLLSEDSMEGRRRAGLHQRLDRLKKAQEKLSEF—————
Human MxA 559 WDFGAFQSSSATDSSMEEIFQHLMAYHQEASKRISSHIPLIIQFFMLQTYGQQLQKAMLQLLQDKDTYSWLLKERSDTSDKRKFLKERLARLTQARRRLAQFPG—-—-
Human MxB 608 KLNSHFPSNESSVSSFTEIGIHLNAYFLETSKRLANQIPFIIQYFMLRENGDSLQKAMMQILQEKNRYSWLLQEQSETATKRRILKERIYRLTQARHALCQFSSKEIH

a4 helix
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Expression relative to EF-1¢ (x1,000,000)
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Highlights

In addition to Mx1-3, six novel Mx genes (Mx4-9) have been cloned in rainbow trout
Salmonids possesses 4 groups of Mx genesresiding at four chromosome |oci

Trout Mx1-4 are highly expressed in blood but Mx5-9 are highly expressed in intestine
Trout Mx gene expression can be induced by poly IC, type | and type Il IFNs, and IL-13

The potency of IFN induced Mx expression is gene- and cell line-dependent



