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Highlights

• Dynamics of drilling with non-uniform blades distribution is studied.

• More blades and non-uniform distribution benefit drilling stability.

• Improvement of stability is accompanied with more complex bifurcation

scenarios.

• Slow rotary speed yields more complexity in nonlinear drilling chatter.
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Abstract

This paper investigates the linear stability and nonlinear dynamics of drilling

with non-uniformly distributed blades in the drill-bit. The analysis is based

on a lumped parameter model considering both axial and torsional drill-string

deformation, with both regenerative cutting and frictional effects in bit-rock

interaction considered as sources of drilling instability. Given the flexibility

of angles’ selection introduced by the non-uniform blade distribution, eigen-

value analysis reveals that letting one angle occupy the majority of the angles

summation and introducing an extra blade can enlarge the stable region for

stationary drilling. Then perturbation analysis finds both subcritical and su-

percritical types of instability on the stability boundaries, where the subcriti-

cal Hopf bifurcation introduces large-amplitude oscillations to deteriorate the

global drilling stability in the regions close to the up-left and up-right areas of

the stable regions. Moreover, numerical bifurcation analysis of drilling with 3

non-uniformly distributed blades discovers various complex nonlinear dynamics

including bit-bounce, stick-slip motion, loss of contact.

Keywords: drill-string vibration, non-uniform distribution of blades,

state-dependent delay, bit-bounce, stick-slip
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1. Introduction

A typical drilling system uses a rotary table to drive a series of hollow drill-

strings ended with a section called bottom-hole assembly (BHA), which consists

of thick drill-collars, stabilizers and drill-bit exerting Weight-On-Bit (WOB)

and Torque-On-Bit (TOB) for down-hole drilling [1]. During the progression of5

drill-bit, unwanted vibratory drill-strings deformation often arise to cause pre-

mature component failures, excessive bit and stabilizer wear, deterioration of

well trajectory and low penetration rate, which rises roughly 2%-10% well costs

in the manner of poor quality wellbore, increased service cost, etc [2, 3]. Thus

the drill-string vibration should be avoided while pursuiting higher drilling ef-10

ficiency, where sophisticated modelling of slender drill-strings deformation and

complex bit-rock interaction are expected for the analysis of uncoupled or cou-

pled types of axial, torsional and lateral drill-string vibration.

Models of the slender drill-strings deformation has been classified into four

categories: lumped parameter, distributed parameter, neutral-type time-delay15

and coupled PDE-ODE models [4]. Both of the distributed parameter and

coupled PDE-ODE models employ partial differential equations (PDEs) to rep-

resent the drill-sting deformation, which are relative accurate but infinite many

dimensions of the drill-string crucially complicate the analysis of drilling dy-

namics, especially when a complex bit-rock interactive model is used [5]. Alter-20

natively, delayed differential equations (DDEs) can be used as well to represent

wave propagation in the slender drill-string [6], which is relative simpler but still

has infinite dimensions due to the introduction of time delays. Among the four

kinds of models, the lumped parameter one is the simplest, which uses ordi-

nary differential equations (ODEs) involving one or multiple degrees-of-freedom25

(DOF) for various drilling dynamics of interest [7].

Beside the drill-string deformations, the instability sources should be mod-

elled accurately as well for different drilling vibrations [8]. For example, the

axial vibration is attributed to regenerative effect during blade cuts into rocks,
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which causes bit-bounce and damages bit cutter and bearings [9]. Meanwhile,30

there also exists velocity-dependent frictional force in the bit-rock interaction

as the instability source of torsional drill-string vibration, inducing stick-slip

vibration and fatiguing drill collars connections [10]. The lateral drill-string vi-

bration, which occurs as forward and backward whirling oscillations, is mainly

caused by dill-pipe eccentricities and asymmetries, resulting in large-amplitude35

response, impact with borehole wall and high rates of component failures [11].

In addition to individual types of drilling instability, the effect of mode-

coupling is also very crucial. Richard et al. [12] found the coupling of axial and

torsional drill-string movements can be the cause of stick-slip vibration beside

the velocity-dependent friction. His model was then updated by Besselink et al.40

[13] to involve finite axial stiffness and viscous damping in the drill-string, which

was used to study the stick-slip instability caused by axial bit-rock interactive

force. Thereafter, the axial damping was added by Nandakumar and Wierci-

groch [14] for the analysis of drilling stability and prediction of bit-bounce and

stick-slip oscillations. This linear analysis was followed by studying criticality45

of bifurcation in the drilling model, where Gupta and Wahi [15] observed both

subcritical and supercritical Hopf bifurcations on linear stability boundaries.

Recently, Wiercigroch et al. [16] further developed the model proposed in

[14] by considering non-uniformly distributed blades in the drill-bit, which per-

turbs the regenerative effect and can potentially improve the drilling stability.50

The effect of non-uniform distribution of blades is somewhat similar to milling

operations using variable pitch or variable helix tools, which can destroy the pe-

riodicity of the regenerative effect between successive passes of adjacent blades

(teeth) [17]. However, there is no investigation of the stability and dynamics

of non-uniform drilling up to now, so its advantages are still theoretically un-55

known. To reveal its mechanism, one should study the relationship between the

angles distribution and rock surface regeneration, which acts as the instability

source of drill-string’s axial deformation.

Investigation of the regenerative phenomenon is originated from the works

performed by Arnold [18] and Tobias [19], who disclosed that regeneration of60
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workpiece surface is responsible for turning chatter. For any point in the work-

piece surface, one pass of a cutting tool leaves a mark recording the tool dis-

placement, which perturbs the tool motion after one workpiece revolution. This

regenerative effect gradually induces periodic vibration when energy dissipa-

tion of the turning system is insufficient, leaving chatter marks on the whole65

workpiece surface [20]. Similar phenomena can also been found in other cutting

operations, such as milling, grinding and drilling processes [21, 22, 23]. More

specifically for the borehole drilling, its drill-bit normally has numerous blades

dynamically interacting with each others via regenerative effect in rock surface.

As there is no general guidelines for the organization of the blades up to now,70

a thorough discussion of the effect of blades distribution is very critical for the

improvement of drilling stability and efficiency.

The effect of non-uniform blades distribution in the drill-bit is studied as fol-

lows. A lumped parameter model involving both axial and torsional drill-string

deformations is proposed in Section 2, which consists of state-dependent delays75

and non-smoothness in the bit-rock interaction. Then Section 3 studies the

influence of blades number and their distributions on the stability boundaries,

which confirms the advantages of using more blades and non-uniform distribu-

tion in the drill-bit. After that, both local and global bifurcation analyses are

performed in Section 4, discovering multi-stability, bit-bounce, stick-slip and80

other complex drilling dynamics. Finally, conclusions are drawn in Section 5.

2. Description of drilling process and governing mathematical model

To focus on the effect of bit-rock interaction on the axial-torsional drill-string

vibration, this section employs the simple lumped parameter model shown in

Fig. 1, without considering lateral whirling of the drill-string. Correspondingly,85

a dynamic model with 2 DOF, which involves regenerative and frictional effects

[24] in the bit-rock interaction, is proposed and nondimensionalized to discuss

the vertical translation and rotation of the drill-bit.

6
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Figure 1: Schematic of the lumped parameter model, where the inertial properties (m and I)

are lumped at the BHA and the slender drill-string has only damping (Ca and Ct) and elastic

(Ka and Kt) properties. The top of the string is driven with constant angular speed (Ω) and

hook load (H), and the BHA suffers reactive force (W ) and torque (T ) from rock.

2.1. Modelling

As seen in Fig. 1, the slender drill-string has equivalent axial and torsional90

stiffness, Ka [N m−1] and Kt [N m rad−1], and damping, Ca [N s m−1] and Ct

[N m s rad−1], respectively [14]. At the top of the drill-string, draw-works and

electric motors are used to control vertical and rotary movements of the BHA

via the slender string, applying a constant hook load H [N], an angular speed

Ω [rad s−1] and a linear downward speed V [m s−1] on the drill-string.95

With respect to the driven system, vertical and angular positions of the

string top can be written as

U0(t) = V t and Φ0(t) = Ωt. (1)

Given the length and deformation of the drill-string, the vertical and angular

7
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positions of the BHA are denoted as

U(t) = U0(t) + l0 +Xs +X(t) and Φ1(t) = Φ0(t) + Φs + φ(t), (2)

where U(t) [m] and Φ1(t) [rad] represent the vertical and torsional positions

of the first blade on the drill-bit, and l0, Xs and X(t) are the free length,

vertical static and dynamic deformations of the string, respectively. Similarly,

the static and dynamic torsional deformations of the string are denoted as Φs and

φ(t) respectively in Eq. (2). When the progression of the drill-bit is stabilised100

at the constant vertical and rotary speeds, V and Ω, without any dynamics

responses, the drill-string has only the static deformations, Xs and Φs, with

X(t) = φ(t) ≡ 0.

When the rotational drill-bit moves against rocks, reactive forces are gener-

ated and exerted on the BHA to excite its dynamics governed by

mÜ(t) + CaU̇(t) +Ka(U(t)− U0(t)− l0) = −W,

IΦ̈1(t) + CtΦ̇1(t) +Kt(Φ1(t)− Φ0(t)) = −T,
(3)

or

mẌ(t) + Ca(V + Ẋ(t)) +Ka(Xs +X(t)) = −
n∑

i=1

Wi,

Iφ̈(t) + Ct(Ω + φ̇(t)) +Kt(Φs + φ(t)) = −
n∑

i=1

Ti,

(4)

where W and T are the overall reactive vertical force and torque exerted by

rocks on the drill-bit, and Wi and Ti (i = 1, 2, · · · , n) are individual ones on105

the ith blade. Here, the dots over the variables in Eqs (3) and (4) represent the

derivatives with respective to time, t.

For each blade engaged with rocks, its cutting face cuts and its wearflat rubs

the rock to respectively generate cutting and frictional forces [12]. Thus both

the reactive force and torque on the ith (i = 1, 2, · · · , n) blade have cutting and

frictional components:

Wi = Wc,i +Wf,i and Ti = Tc,i + Tf,i. (5)

8
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According to the experimental results reported by Detournay et al. [25], the

cutting force and torque on each blade are given by

Wc,i = ξεadi(t)H(di)H(Φ̇i) and Tc,i =
a2εdi(t)

2
H(di)H(Φ̇i), (6)

where a, di(t), ε and ξ are bit radius, instantaneous cutting depth of the ith

blade, intrinsic specific energy of the rock and inclination of the cutting forces

on the cutting face, respectively. Besides, the overall frictional components of

the WOB and TOB are

Wf,i = σaliH(di)H(U̇) and Tf,i =
µγaWf,i

2
sgn(Φ̇i), (7)

where γ is related to the orientation of the cutter, σ is the maximum contact

pressure at bit-rock interface, and li = l
n is the mean wear-flat length of every

cutters. In Eqs (6) and (7), H(•) and sgn(•) are Heaviside and sign functions110

representing the non-smoothness in the bit-rock interaction [26]. Those effects

would not show up until the drill-string response extensively deviates from the

its stationary deformation, so that the non-smoothness can be omitted first in

the following static and linear analysis but will be considered in the investigation

of nonlinear drilling dynamics.115

From Eqs (5), (6) and (7), W and T in the governing equations of the drilling

dynamics can be rewritten as

W = ξεa
n∑

i=1

diH(di)H(Φ̇i) + σal

∑n
i=1H(di)H(U̇)

n
,

= ξεaH(Ω + φ̇)
n∑

i=1

diH(di) + σalH(V + Ẋ)

∑n
i=1H(di)

n

T =
a2ε

2

n∑

i=1

diH(di)H(Φ̇i) +
µγa2σ

2

∑n
i=1H(di)H(U̇)

n
sgn(U̇)

=
a2ε

2
H(Ω + φ̇)

n∑

i=1

diH(di) +
µγa2σl

2
H(V + Ẋ)sgn(V + Ẋ)

∑n
i=1H(di)

n
m,

(8)

where the instantaneous cutting depth of the ith blade, di(t), can be determined

based on regenerative theory. As seen in Fig. 2, di(t) is the difference of current

9
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 i+1U(t)

U(t-τi)

di(t)

Φi+1(t)

Φi(t)

αi

Ω

Figure 2: Regenerative effect in the interaction between drag bit and rock, where the ith blade

cut into the rock surface generated by the pass of the (i+ 1)th blade. Thus the instantaneous

cutting depth of the ith blade is the difference of the two successive blade passes.

axial displacement of the ith blade, U(t), and previous displacement of the

(i+ 1)th blade, U(t− ti):

di(t) = U(t)− U(t− ti) = V ti +X(t)−X(t− ti), i = 1, 2, · · · , n, (9)

where ti is the time difference for the two blades successively passing the same

point. Given the distribution of the blades and the torsional vibration of the

drill-string, ti is implicitly governed by

Φi(t)− Φi+1(t− ti) = Ωti + φ(t)− φ(t− ti) = αi, i = 1, 2, · · · , n, (10)

where Φn+1 = Φ1 also indicates the 1st blade.

2.2. Model nondimensionalization

To simplify the following analyses, an effective method is to nondimension-

alize the governing equation of the drilling process. By letting L = 2Kt

εa2 and

introducing the following dimensionless variables

x =
X

L
, δi =

di
L
, τ =

√
Kt

I
t, τi =

√
Kt

I
ti, (11)

10
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and parameters

δ0 =
V

L

2π

Ω
, ω0 = Ω

√
I

Kt
, v0 =

V

L

√
I

Kt
=
δ0ω0

2π
,

ψ =
ξaεI

mKt
, ζ =

Ca

2
√
Kam

, β =

√
KaI

Ktm
, κ =

Ct

2
√
KtI

,

xs =
XS

L
, fx =

Iσal

mKtLn
, fφ =

µγσa2l

2Ktn
,

(12)

one can change Eq. (4) into its dimensionless form as follows

x′′(τ) + 2ζβx′(τ) + β2x(τ) =− 2ξβv0 − β2xs − ψH(ω0 + φ′)
n∑

i=1

H(δi)δi

− fxH(v0 + x′)
n∑

i=1

H(δi),

φ′′(τ) + 2κφ′(τ) + φ(τ) =− 2κω0 − Φs −H(ω0 + φ′)
n∑

i=1

H(δi)δi

− fφH(v0 + x′)sgn(ω0 + φ′)
n∑

i=1

H(δi).

(13)

Meanwhile, the dimensionless depth of cut defined in Eq. (9) is transformed into

δi = v0τi + x(τ)− x(τ − τi), i = 1, 2, · · · , n, (14)

and the implicit equation for the time delays, Eq. (10), becomes

τi +
φ(τ)− φ(τ − τi)

ω0
=
αi
ω0
, i = 1, 2, · · · , n. (15)

2.3. Approximation of the state-dependent delays

Equation (15) does not have an analytical solution of the time delay as τi (i =

1, 2, · · · , n) appears both in and out of φ(τ−τi), so we find an approximation of τi

valid for small torsional deformation of the drill-string. Correspondingly, a small

dimensionless parameter ν is introduced to denote φ(τ) as νφ(τ). Meanwhile,

τi is expanded into

τi = τi,0 + ντi,1 + ν2τi,2 + · · · . (16)

11
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Next substituting Eq. (16) into Eq. (15), expanding νφ(τ − τi) into Taylor’s

series and collecting the coefficients of ν0, ν1 and ν2 respectively yield

τi,0 =
αi
ω0
, (17)

τi,1 +
φ(τ)− φ(τ − τi,0)

ω0
= 0, (18)

and

τi,2 +
φ′(τ − τi,0)

ω0
τi,1 = 0. (19)

Solving Eqs (17), (18) and (19) successively and using Eq. (16) yield the ap-

proximation of the time delay for the ith blade as follows

τi =
αi
ω0

+
φ(τ − τi,0)− φ(τ)

ω0
+
φ(τ)− φ(τ − τi,0)

ω2
0

φ′(τ − τi,0) + · · · . (20)

It should be remarked that the approximation in Eq. (20) is valid only in the

vicinity of τi = τi,0 and can be used for static and linear analyses. In simu-120

lations of large-amplitude drilling vibration, this approximation is abandoned

and Eq. (15) is solved by numerical iteration.

3. Stationary drilling process and its stability

With the dimensionless model and the approximation of regenerative delays

obtained above, next discussion focuses on linear drilling stability, where special125

attention is paid to the effects of number of blades and their distribution in the

drill-bit. To begin with, the stationary drilling process is calculated, around

which the governing equation is linearised for stability analysis by eigenvalue

calculation. Namely, all the nonlinearity and non-smoothness are dropped first,

so that the analysis in this section is locally valid only. Then the selection of130

distribution angles is investigation, revealing that more blades with non-uniform

distribution benefit the drilling stability.

12
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3.1. Stationary drilling

When the drilling is stationary without any dynamic response (x(τ) =

φ(τ) ≡ 0), Eq. (20) is simplified to be

τi ≡ τi,0 =
αi
ω0
, i = 1, 2, · · · , n, (21)

and the nominal drilling depth given in Eq. (14) is fixed as

δi ≡ δi,0 = v0
αi
ω0
, i = 1, 2, · · · , n, (22)

where τi,0 and δi,0 denote the stationary dimensionless delay and drilling depth

of the ith blade, respectively. Corresponding to the stationary cutting, the

discontinuous functions are fixed as follows

H(δi) ≡ H(δi,0) = 1,

H(ω0 + φ′) = H(ω0) = 1,

H(v0 + x′) = H(v0) = 1,

sgn(ω0 + φ′) = sgn(ω0) = 1.

(23)

As a result, the governing equation, Eq. (13), is simplified to be

0 =− 2ξβv0 − β2xs − ψ
v0
ω0

n∑

i=1

αi − nfx,

0 =− 2κω0 − Φs −
v0
ω0

n∑

i=1

αi − nfφ.
(24)

Solving the above equation yield the dimensionless stationary drilling processes:

xs =
w0

β2
and Φs = t0, (25)

where w0 = −2ξβv0 − 2πψ v0
ω0
− nfx and t0 = −2κω0 − 2π v0ω0

− nfφ are dimen-

sionless static force and torque for the stationary drilling, respectively.135

3.2. Critical boundaries

Stability of the stationary drilling process given in Eq. (25) can be revealed

by eigenvalue analysis base on the linear part Eq. (13) [22]. From Eqs (14) and

13
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(20), one can obtain linear approximation of the drilling depth of the ith blade

as follows

δi ≈
v0
ω0
αi +

v0
ω0

(φ(τ − τi,0)− φ(τ)) +x(τ)−x(τ − τi,0), i = 1, 2, · · · , n. (26)

Moreover, Eq. (23) is still valid as the linear analysis is in the vicinity of the

stationary state so that the non-smoothness would not play a role. Thus, sub-

mitting Eqs (23) and (26) into Eq. (13) yields the linearised governing equation

as follows

Ix′′(τ) + Cx′(τ) + Kx(τ) + nDx(τ)−D

n∑

i=1

x(τ − τi,0) = 0, (27)

where

x(τ) =


x(τ)

φ(τ)


 , C =


2ζβ 0

0 2κ


 ,

K =


β

2 0

0 1


 , D =


ψ −ψ v

ω0

1 − v
ω0


 .

(28)

The corresponding characteristic equation of Eq. (27) is

∣∣∣∣∣Iλ
2 + Cλ+ K + nD−D

n∑

i=1

e−λτi,0

∣∣∣∣∣ = 0, (29)

or

(
λ2 + 2ζβλ+ β2

) (
λ2 + 2κλ+ 1

)
− v0
ω0

(
λ2 + 2ζβλ+ β2

)

×
(
n−

n∑

i=1

e−λτi,0

)
+ ψ

(
λ2 + 2κλ+ 1

)
(
n−

n∑

i=1

e−λτi,0

)
= 0,

(30)

where |•| indicates the determinant and λ represents eigenvalues [27]. As known,

the stable drilling requires all the eigenvalues having negative real parts but any

positive real part indicates an unstable drilling process [28]. Thus the critical

boundaries dividing the stable and unstable regions always have at least one

pair of pure imaginary eigenvalues, λ = ±ωi. Substituting this into Eq. (30),

letting v = v0
ω0

, replacing τi,0 by αi

ω0
and respectively collecting the real and

14
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imaginary parts of the characteristic equation yield

(β2 − ω2)(1− ω2)− 4ζβκω2 + 2ω(vζβ − κ)
n∑

i=1

sin

(
αi
ω0
ω

)

+ (1− ω2 − vβ2 + vω2)

(
n−

n∑

i=1

cos

(
αi
ω0
ω

))
= 0,

2ζβω(1− ω2) + 2κω(β2 − ω2) + 2ω(κ− vζβ)

(
n−

n∑

i=1

cos

(
αi
ω0
ω

))

+ (1− ω2 − vβ2 + vω2) sin

(
αi
ω0
ω

)
= 0.

(31)

Solving Eq. (31) yields the critical boundaries for the drilling stability, but this

transcendental equation is unlike the one studied in [14] which has only an

unique time delay. Equation (31) has n distinct delays, significantly complicat-

ing the calculation of eigenvalues, so the following analysis will employ numerical140

iterations and continuation scheme [22] to obtain the critical boundaries.

3.3. Angle constraint

Given the significance of time delays for various systems [29, 30, 31, 32],

the selection of rotary speed, ω0, and angles between successive blades, αi (i =

1, 2, · · · , n), which determines the combination of the time delays, τi,0 (i =145

1, 2, · · · , n), becomes very critical for the drilling stability. Moreover, it is known

from the commutative property of addition and the governing equations of the

drilling dynamics, Eqs. (13) and (27), that it is not the permutation but only the

combination of the angles, αi (i = 1, 2, · · · , n), influencing the drilling stability

and dynamics. That is to say, there would be no difference if we randomly150

reorganise the blade distribution in Fig. 3(a) into that in Fig. 3(b) provided

they have the same combination of the angles.

Therefore, we can sort the angles as follows without loss of generality for the

analysis of the drilling dynamics

0 ≤ αn ≤ · · · ≤ αi+1 ≤ αi ≤ · · · ≤ α2 ≤ α1. (32)
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Figure 3: Two different permutations of the blade distribution, making no difference for the

drilling dynamics as long as the combination of the angles are the same.

In addition, it is also seen from Fig. 3 that

n∑

i=1

αi = 2π. (33)

From Eqs (32) and (33), one can obtain that

2π

n
=

∑n
i=1 αi
n

≤ α1 = 2π −
n∑

i=2

αi ≤ 2π. (34)

In a similar manner, the constraint for a2 can be represented as

2π − α1

n− 1
=

∑n
i=2 αi
n− 1

≤ α2 = 2π −
n∑

i=3

αi − α1 ≤ 2π − α1. (35)

Given Eq. (32), this constraint is rewritten as

2π − α1

n− 1
≤ α2 ≤ min (α1, 2π − α1) . (36)

By repeating this procedure, one can find the constraints for all the angles as

follows

2π

n
≤ α1 ≤ 2π,

2π −∑i−1
j=1 αj

n− i+ 1
≤ αi ≤ min


αi−1, 2π −

i−1∑

j=1

αj


 , i = 2, 3 · · · , n− 1,

αn = 2π −
n−1∑

i=1

αi.

(37)
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Figure 4: Constraints of the angles’ selection for (a) 3-blades, (b) 2-blades and (c) 1-blade

drilling, where only the blue regions are feasible for design.

For the analysis of drilling dynamics with n-blades, the constraint in Eq. (37)

can shrink the feasible region for the selection of the angles combination. To

illustrate, the feasible regions of the angles for 2- and 3-blades drilling shrink to

be

α1 ∈
[

2π

2
, 2π

]
, α2 = 2π − α1, (38)

and

α1 ∈
[

2π

3
, 2π

]
,

α2 ∈
[

2π − α1

2
,min (α1, 2π − α1)

]
,

α3 = 2π − α1 − α2,

(39)

respectively. The two cases are displayed in Fig. 4, where the areas for the

selection of the distribution angles are marked as blue, which are extensively

smaller than those without sorting the angles according to Eq. (32).155

Degenerate model. In addition, the extreme cases marked in Fig. 4 represent

the degenerate situations. For example, the yellow triangles in Figs 4(a) and

(b) have α1 = 2π, which actually becomes an 1-blade drilling shown in Fig. 4(c).

In a similar manner, the line segment between the yellow triangle and the green
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Table 1: Values of dimensionless parameters adopted from [14]

Parameter Symbol Value [-]

Axial damping coefficient ζ 0.01

Torsional damping coefficient κ 0.01

Axial-to-torsional frequency ratio β 1.58

Cutter inclination parameter ψ 13.9

Frictional WOB fx 1.74048

Frictional TOB fφ 0.04467

square in Fig. 4(a) for the 3-blades drilling has α1+α2 = 2π and α3 = 0, which is160

exactly the same as the blue segment in Fig. 4(b) for the non-uniform 2-blades

drilling. Both of the green squares in Figs 4(a) and (b) have α1 = α2 = π,

indicating the uniform 2-blades drilling, while another uniform case is the red

disk in Fig. 4(a) for 3-blades drilling [14, 26]. From this viewpoint, this complex

model proposed here can degenerate into a relatively simpler problem in two165

ways: the n-blades drilling becomes (n− 1)-blades drilling when αn = 0, while

the non-uniform case degenerates into uniform once all the angles are identical.

3.4. Numerical eigenvalue analysis

With the non-uniformly distributed n blades, the drilling dynamics is nor-

mally governed by equations with n distinct time delays, which extensively com-170

plicates the analysis of the drilling stability so that analytically solving Eq. (30)

is impossible. Therefore, the following analysis will use numerical method based

on Newton-Raphson iteration and continuation scheme [22]. Moreover, it is

known from Fig. 4 that part of the n-blades drilling dynamics is known once

the (n − 1)-blades problem has been solved, so the following analysis will suc-175

cessively discuss the stability of drilling operations with 1, 2 and 3 blades.

3.4.1. 1-blade drilling stability

The linear stability analysis is started with the simplest 1-blade drilling. By

using the parameter values listed in Table 1, one obtains the stability boundaries
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in Fig. 5(a), dividing the stable (grey) and unstable (white) regions. To validate180

the stability chart, one point inside the stable (ω0 = 15 and v = 0.5) is selected

to show the focus in Fig. 5(b), where both the axial and torsional vibration

gradually damped down. When the parameter value crosses the left boundary,

as seen in Fig. 5(c) for ω0 = 9 and v = 0.5, unstable drilling with large-amplitude

axial vibration occurs, where the non-smoothness only in the downward bit185

progression presents as bit-bounce. By contrast, when the parameter selection

is above the stability boundary, Fig. 5(d) shows us non-smoothness both in the

axial and in the torsional movements. Details of Fig. 5(d) is enlarged in Fig. 5(e),

showing that the axial stick motion is always in advance of the bit-bounce.

Once the torsional movement of the drill-bit is stuck, the axial progression190

is accelerated forward and then backward for bit-bounce. When the drill-bit

bounces backwards, the torsional deformation of the drill-string is released for

the slip motion until the torsional movement gets stuck again. It illustrates that

the source of drilling instability in this area is in the torsional movement.

3.4.2. 2-blades drilling stability195

Then we move forward to the case of 2-blades drilling, which introduces

flexibility in the angles’ selection and thus the time delays for the improvement

of drilling stability. As discussed in Section 3.3, α1 = π and 2π respectively

correspond with the uniform drilling studied by Nandakumar and Wiercigroch

[14] and the 1-blade drilling discussed above. By using the non-uniform drilling,200

we expect to properly select α1 ∈ (π, 2π) for the largest stable region. As

displayed in Fig. 6(a), the stable region expands monotonously with respect to

the increase of α1 from π (uniform drilling) to 15π
10 . Then the stable region in

Fig. 6(b) gradually shrinks with respect to further increase of α1 to 2π (1-blade

drilling). Namely, the largest stable region of the 2-blades drilling is achieved205

by using α1 = 3π
2 and α2 = π

2 , instead of the conventional uniform drilling.
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Figure 5: (a) Stability boundaries of 1-blade drilling, with time series of (b) stable drilling for

ω0 = 15 and v = 0.5, (c) bit-bounce for ω0 = 9 and v = 1 and (d) stick-slip for ω0 = 15 and

v = 1 added. In addition, part of the stick-slip motion in Panel (d) is enlarged in Panel (e).
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Figure 6: Stability boundaries of 2-blades drilling for various values of α1, yielding the largest

stable region for α1 = 15π
10

. By contrast, the uniform-distributed drilling (α1 = 10π
10

) and

1-blade drilling (α1 = 20π
10

) have smaller stable regions.
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Figure 7: (a) Feasible angles for the 3-blades drilling. For every fixed value of α3 ∈ [0, 2π
3

],

the feasible values of α1 and α2 are located on the red line segment (α1 + α2 = 2π − α3)

between the green square (α1 = α2 = π − α3/2) and the yellow triangle (α1 = 2π − 2α3 and

α2 = α3). (b) Trace of the optimal point for the largest stable region for every given value of

α3.

3.4.3. 3-blades drilling stability

The case of 3-blades drilling is even more complex as two parameters out of

α1, α2 and α3 should be determined before the stability analysis. The feasible

region for the angles’ selection has already been displayed in Fig. 4(a), where210

the right edge of the feasible region corresponding to 2-blades drilling has been

thoroughly studied in the previous section, so the analysis will move from this

edge towards its opposite corner corresponding to uniform 3-blades drilling.

This procedure is schematically illustrated in Fig. 7(a), where we draw the

line, α1 +α2 = 2π−α3, for a given value of α3. This line has the segment (red)

between the green square and the yellow triangle located in the feasible region.

With respect to the increase of α3 from 0 to 2π
3 , the line segment correspondingly

sweeps all the feasible region from the edge for 2-blades drilling to the corner

for uniform 3-blades drilling. By using some simple algebraic manipulation, one

can project the red linear segment onto the horizontal and vertical coordinates

for the selection of α1 and α2 as follows

α1 ∈ [π − α3

2
, 2π − 2α3], α2 = 2π − α1 − α3, (40)
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Figure 8: Stability boundaries of drilling with distribution angles corresponding to the optimal

points on (a) Slices 0-5 and (b) Slices 5-10 plotted in Fig. 7, showing the largest stable region

on the 3rd slice.

where α3 ∈ [0, 2π3 ].

By following the procedure described above, one can change the complex215

3-blades drilling problem into a relative simpler 2-blades problem for a given

value of α3. As illustrated in Fig. 7(b), the feasible region is sliced into 11

pieces and the jth slice has α3 = jπ
15 (j = 0, 1, · · · , 10), where Slices 0 and 10

correspond to 2-blades and uniform 3-blades drilling operations, respectively.

For any given value of α3, one can repeat the analysis in Section 3.4.2 to find220

the optimal point on the corresponding slice. As shown Fig. 7(b), the optimized

points on every slices are tracked and marked as red dots. Then the stability

charts corresponding with every optimal points in Fig. 7(b) are compared in

Figs 8(a) and (b), showing the largest stable region in Fig. 8(a) for α3 = 3π
15

(dot-dashed green line). This region corresponds with the 3rd slice in Fig. 7(b),225

where the location of the 3rd red dot has α1 = 8π
5 and α2 = π

5 .

3.4.4. Further discussion

The numerical discussion in the above sections shows that the i-blades prob-

lem can be recursively divided into a series of (i− 1)-blades drilling dynamics,

and the (i − 1)-blades drilling can be regarded as a special case of i-blades230

drilling. For example, the 4-blades drilling dynamics can be divided into a se-

ries of 3-blades problems which has already been studied in Section 3.4.3, which
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Figure 9: Enlargement of the stable regions by using more blades in the drill-bit.

can be further divided into several series of 2-blades drilling dynamics discussed

in Section 3.4.2. Correspondingly, the tediousness of this discussion will grow

exponentially when more and more blades are used in the drill-bit, although it235

is possible to write a recursive algorithm for the problem of drilling with many

blades.

To avoid the tediousness, we can make a guess about the optimal selection

of the angles based on the results obtained in the above sections. The optimal

combinations of the angles for 2- and 3-blades drilling are α1 = 15π
10 and α2 = 5π

10 ,240

and α1 = 16π
10 and α2 = α3 = 2π

10 , respectively, both of which have the largest

angle, α1, occupies the majority of the angles’ summation, around 80% of 2π.

Thus, as displayed in Fig. 9, we fixed α1 as 16π
10 and let the rest of the angles

equally share 2π − α1 for drilling with more than 2 blades. As seen, the stable

region expands monotonously with respect to the increase of the blade number,245

but the benefit of adding an extra blade keeps decreasing.
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Figure 10: Criticality of the Hopf bifurcation on the stability boundaries of (a) 1-blade, (b)

2-blades, (c) 3-blades, (d) 4-blades, (e) 5-blades and (f) 6-blades drilling processes.

4. Perturbation and numerical analysis

When the parameters cross the boundaries in Fig. 9 to enter the unstable

region, periodic drilling vibration is incurred by Hopf bifurcation, which could be

either subcritical or supercritical [33, 34]. In addition to the local bifurcation, its250

global bifurcation is also very crucial since it introduces various complex drilling

dynamics and co-existing attractors significantly influencing drilling operations.

4.1. Analytical perturbation analysis

The same as other cutting processes, such as turning [35], milling [36] and

grinding [22] operations, the subcritical Hopf bifurcation bends the periodic255

branch back into the stable region, yielding unsafe zones (UZs) for the co-

existence of stable and unstable drilling operations. To avoid the UZs which

hazards the stable drilling operations near the subcritical stability boundaries,

the criticality of Hopf bifurcation born on the drilling stability boundaries can be

checked by perturbation methods, such as the method of multiple scales (MMS)260

[37]. A brief perturbation analysis of 1-blade drilling is given in Appendix A,

and one can refer to [38, 39] for more details.
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Results of the perturbation analysis is displayed in Fig. 10, illustrating the

criticality of the Hopf bifurcation on the stability boundaries displayed in Fig. 9

with the thin red and thick blue lines representing the subcritical and super-265

critical Hopf bifurcations, respectively. It is seen that the left boundary of the

stable region is always of supercritical instability, no matter how many blades

are employed. By contrast, the nonlinear property of the top boundary keeps

varying with respect to the addition of a new blade. It is always subcritical in

Fig. 10(a) for 1-blade drilling, while the left segments of the top boundary in270

Figs 10(b) and (c) become supercritical when the stable region extends leftwards

for 2- and 3-blades drilling. Then, the 4-, 5- and 6-blades drilling operations

introduce one more subcritical segment on the left end of the top boundaries

shown in Figs 10(d), (e) and (f). This phenomenon gives a warning that the

drilling operates at the top-left corner of the stable region can be very dangerous275

when more than 3-blades are used. In addition, as the right parts of all the top

boundaries in Fig. 10 are subcritical, drilling with ω0 > 6 should keep a distant

with the stability boundary to avoid the co-existing large-amplitude vibration.

4.2. Numerical bifurcation analysis

Next the local bifurcation analysis will be extended by numerical simulations,280

with the boundaries in Fig. 10(c) for 3-blades drilling chosen as examples. The

first case has ω0 fixed as 8 and v varying between 0.8 and 4 to cross the top

subcritical stability boundary. With the Poincaré section selected as τ1 = τ1,0

and τ ′1 > 0 and the value of x on the section denoted as x∗, one obtains the

bifurcation diagram shown in Fig. 11, where the red and blue dots in Fig. 11(a)285

represent the result from forward and backward simulations, respectively. As

seen, the subcritical Hopf bifurcation occurs for v = 1.04, yielding co-existence

of stable drilling and periodic chatter for v ∈ [0.94, 1.04]. To illustrate, time

series and phase portrait for v = 1 are illustrated in Figs 11(b) and (c), where

the drilling chatter in Fig. 11(c) has non-smoothness in axial and torsional290

speeds and cutting depth δ2 = δ3, i.e., it is of bit-bounce, stick-slip motion and

loss of contact in the second and third blades. This periodic chatter persists for
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Figure 11: (a) Bifurcation diagram for 3-blades drilling with ω0 = 8 and v ∈ [0.8, 4]. The

subcritical Hopf bifurcation at v = 1.04 results in co-existence of stationary drilling and

chatter with stick-slip motion at (b-c) v = 1. As shown in Panels (d-e) v = 3.3, the chatter

then jumps to a periodic-two branch, after they co-exist for v ∈ [3.26, 3.38].
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v < 3.38 where it jumps to another periodic-two chatter. In addition, as shown

in Figs. 11(d) and (e), the two chatter motions co-exist for v ∈ [3.26, 3.38].

The second case focuses on the supercritical instability on the top boundary,295

where ω0 is fixed as 3 and v varies between 1.2 and 4. Bifurcation diagram in

Fig. 12(a) shows supercritical Hopf bifurcation for v = 1.96, which transforms

the stable drilling shown in Fig. 12(b) for v = 1.5 into the periodic chatter

in Fig. 12(d) for v = 2. The amplitude of this periodic chatter is relative

small without non-smoothness in its phase portrait, but it is then gradually300

enhanced by the increase of v, and bit-bounce and stick-slip motions show up

for v > 2.07. It is shown in Figs 12(c) and (e) that the new chatter motion with

non-smoothness in the axial and torsional speeds persists with respect to the

decrease of v, which co-exists with the stable drilling or small-amplitude chatter

for v ∈ [1.36, 2.07]. With respect to the increase of v, this periodic motion still305

persists until periodic doubling occurs for v = 3.59, yielding the periodic-two

chatter for v = 3.8 shown in Fig. 12(f). Unlike the chatter motions displayed in

Fig. 11, it is worth noting that all the drilling dynamics in Fig. 12 has only the

phenomena of bit-bounce and stick-motion, without loss of blade-rock contact.

The third case studies the nonlinear oscillations on the left side of the stable310

region of 3-blades drilling, where v is fixed as 1 and ω0 gradually decreases

from 2 to 0.1. As shown in Fig. 13(a), this bifurcation pattern is much more

complex compared with the two preceding cases. With respect to the decrease

of ω0, the stable drilling bifurcates into small-amplitude periodic chatter for

ω0 ∈ [1.9308, 1.932] via supercritical Hopf bifurcation, which is demonstrated315

by the phase portrait for ω0 = 1.931 in Fig. 13(l). As illustrated in Figs. 13(k)

and (i), this periodic motion is then bifurcates into quasi-periodic with bit-

bounce for ω0 < 1.9306 and then loss of contact in the blades shows up for

ω0 < 1.66. In addition, another periodic chatter with bit-bounce and stick-slip

motion co-exists with the quasi-periodic for ω0 ∈ [1.39, 1.77]. For ω0 < 1.39,320

the quasi-periodic one disappears but the periodic one persist until it changes

into irregular before it jumps to another periodic branch for ω0 < 1.04, which

is of bit-bounce, stick-slip motion and loss of contact. As seen in Figs. 13(g)
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Figure 12: (a) Bifurcation diagram for 3-blades with ω0 = 3 and v ∈ [1.2, 4] shows a supercrit-

ical Hopf bifurcation at v = 1.96, incurring small-amplitude chatter without non-smoothness.

However, stick-slip motion turns up at v = 2.07, resulting in a large-amplitude chatter co-

existing with the stationary drilling and small-amplitude chatter for (b-c) v = 1.5 and (e-d)

v = 2. The large-amplitude chatter then undergoes periodic-doubling for v = 3.59, resulting

periodic-two motion for (f) v = 3.8.
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Figure 13: (a) Bifurcation diagram for 3-blades drilling with v = 1 and ω0 ∈ [0.1, 2]. Periodic

chatter for (l) ω0 = 1.931 becomes quasi-periodic bit-bounce co-existing with stick-slip motion

for (j-k) ω0 = 1.7. Chatter with loss of blade-rock contact, shown in (i) v = 1.6, turns up

for v < 1.66, which disappears at ω0 = 1.39, leaving the periodic undergoes several jumps for

various complex drilling dynamics for (g-h) v = 0.87, (e-f) 0.64, (d) 0.24, (c) 0.2 and (b) 0.13.
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and (h), this branch then jumps to another irregular motion for ω0 < 0.87,

which suddenly changes into another periodic chatter for ω0 < 0.82. For further325

decrease of ω0, the periodic branch then jumps to another one for ω0 < 0.6, with

a bistable region for ω0 ∈ [0.61, 0.66] for the co-existence of the two periodic

branches. The new periodic branch persists with respect to further decrease

of ω0 until irregular and periodic-two chatter found for ω0 < 0.26. In general,

low torsional speed, ω0, induces more complex drilling dynamics with various330

non-smoothness in axial and torsional speeds and blade-rock interactions.

5. Conclusions

By using the lumped parameter model involving axial and torsional defor-

mations of the drill-string, we have investigated the stability and dynamics of

drilling process with non-uniformly distributed blades. It has been found that335

the non-uniform distribution can enlarge the region for stable drilling and the

introduction of an extra blade in the drill-bit can further enhance the drilling

stability. In addition, nonlinear bifurcation analysis based the MMS has found

both subcritical and supercritical types of drilling instabilities, where the sub-

critical one undermines the benefit of the top-left corner and top-right part of340

the stable regions of drilling operations with more than 3 blades.

Firstly, a lumped parameter model of the drill-string was proposed to study

the coupled axial-torsional vibration, with both regenerative and frictional bit-

rock interactions regarded as the sources of drilling instability. Moreover, the

model involves the non-smoothness in the bit-rock interaction for the study of345

nonlinear drilling dynamics. To analyse the effect of drill-bit with non-uniformly

distributed blades, every angles between successive blades and their correspond-

ing time delays were regarded as independent parameters, resulting in a more

complex model compared with previous investigations on uniform drilling.

Then the linear eigenvalue analysis for the drilling stability was performed to350

study the effects of blade number and the angle distribution on the stable region.

By sorting the angles, the feasible region of angles’ selection was largely shrunk
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to simplify the eigenvalue analysis. It was found that the (i− 1)-blades drilling

can be deemed as a special case of the i-blades drilling, or the investigation of

the dynamics of drilling with j blades can be divided into a bunch of (j − 1)-355

blades drilling dynamics. Eigenvalue analysis revealed that the non-uniformed

distribution of the blades can improve the drilling stability, and the best drill-bit

has one blade occupy the majority of the summation of the angles, around 80%

of 2π. Moreover, it was found that the drilling stability can also be enhanced by

introducing more blades, but the improvement becomes less and less evident.360

Next the perturbation analysis based on the MMS found both subcritical and

supercritical Hopf bifurcation on the stability boundaries. It was observed that

the left boundaries of the stable region is always supercritical, no matter how

many blades are involved. By contrast, the criticality of the Hopf bifurcation on

the top boundaries crucially depends on the number of blades in the drill-bit.365

Given the properties of the subcritical type of Hopf bifurcation, we suggested

that the areas near the top-left corner and the top-right part of the stable regions

should be avoided to guarantee the drilling stability.

Finally, numerical simulations were used for nonlinear bifurcation analysis,

yielding various drilling chatters. In general, the bifurcation pattern with re-370

spect to the decrease of torsional speed is much more complex compared with

that with respect to the increase of axial speed. It was also seen that the

non-smoothness in the axial and torsional speeds and blade-rock interaction

significantly shapes the nonlinear drilling dynamics, where the phenomena of

bit-bounce, stick-slip motion, loss of contact and multi-stability were observed.375

Appendix A. Nonlinear analysis by MMS

The criticality of Hopf bifurcation on the stability boundary of 1-blade

drilling is discussed as an example, and the analysis of drilling with more blades

is straightforward. The method of multiple scales (MMS) [38] introduces time
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scales, T0 = τ and T2 = ε2τ , and expands x(τ) into

x(τ) = εx1(T0, T2) + ε2x2(T0, T2) + ε3x3(T0, T2) + · · ·

= ε


x1(T0, T2)

φ1(T0, T2)


+ ε2


x2(T0, T2)

φ2(T0, T2)


+ ε3


x3(T0, T2)

φ3(T0, T2)


+ · · · .

(A.1)
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Given the approximation of the state-dependent delay in Eq. (20), the delayed

terms are expanded into Taylor’s series as follows

x(τ − τ1) =εx1(T0 − τ1, T2 − ε2τ1) + ε2x2(T0 − τ1, T2 − ε2τ1)

+ ε3x3(T0 − τ1, T2 − ε2τ1) + · · ·

=εx1(T0 − τ1,0, T2) + ε2
(
x2(T0 − τ1,0, T2)

+
φ1(T0, T2)− φ1(T0 − τ1,0, T2)

ω0

∂x1(T0 − τ1,0, T2)

∂T0

)

+ ε3
(
x3(T0 − τ1,0, T2)− τ1,0

∂x1(T0 − τ1,0, T2)

∂T2

+
φ1(T0, T2)− φ1(T0 − τ1,0, T2)

ω0

∂x2(T0 − τ1,0, T2)

∂T0

+
φ2(T0, T2)− φ2(T0 − τ1,0, T2)

ω0

∂x1(T0 − τ1,0, T2)

∂T0

− φ1(T0, T2)− φ1(T0 − τ1,0, T2)

ω2
0

∂φ1(T0 − τ1,0, T2)

∂T0

∂x1(T0 − τ1,0, T2)

∂T0

+
(φ1(T0, T2)− φ1(T0 − τ1,0, T2))2

2ω2
0

∂2x1(T0 − τ1,0, T2)

∂T 2
0

)
+ · · · ,

φ(τ − τ1) =εφ1(T0 − τ1,0, T2) + ε2
(
φ2(T0 − τ1,0, T2)

+
φ1(T0, T2)− φ1(T0 − τ1,0, T2)

ω0

∂φ1(T0 − τ1,0, T2)

∂T0

)

+ ε3
(
φ3(T0 − τ1,0, T2)− τ1,0

∂φ1(T0 − τ1,0, T2)

∂T2

+
φ1(T0, T2)− φ1(T0 − τ1,0, T2)

ω0

∂φ2(T0 − τ1,0, T2)

∂T0

+
φ2(T0, T2)− φ2(T0 − τ1,0, T2)

ω0

∂φ1(T0 − τ1,0, T2)

∂T0

− φ1(T0, T2)− φ1(T0 − τ1,0, T2)

ω2
0

∂φ1(T0 − τ1,0, T2)

∂T0

∂φ1(T0 − τ1,0, T2)

∂T0

+
(φ1(T0, T2)− φ1(T0 − τ1,0, T2))2

2ω2
0

∂2φ1(T0 − τ1,0, T2)

∂T 2
0

)
+ · · · .

(A.2)

Then, substituting Eqs (A.1) and (A.2) into Eq. (13) and collecting the
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coefficients of ε and ε2 yield

I
∂2x1(T0, T2)

∂T 2
0

+ C
∂x1(T0, T2)

∂T0
+ (K + D)x1(T0, T2)−Dx1(T0 − τ1,0, T2) = 0,

(A.3)

and

I
∂2x2(T0, T2)

∂T 2
0

+C
∂x2(T0, T2)

∂T0
+ (K+D)x2(T0, T2)−Dx2(T0 − τ1,0, T2) = N2,

(A.4)

where

N2 =


ψ

1




(φ1(T0, T2)− φ1(T0 − τ1,0, T2))
(
∂x1(T0−τ1,0,T2)

∂T0
− vc ∂φ1(T0−τ1,0,T2)

∂T0

)

ω0
.

(A.5)

Equation (A.3) is the same as the linearised governing equation, Eq. (27),

which has the non-decaying solution corresponding to the critical eigenvalues,

λ = ±iω, as follows

x1 =


x1
φ1


 =


r1
r2


A(T2)eiωT0 + c.c. (A.6)

where c.c. and (r1, r2)T represent the complex conjugate of its preceding terms

and a right eigenvector with respect to the critical eigenvalue. Substituting

Eq. (A.6) into Eq. (A.5) yields

N2 = N2,0 + N2,2 + c.c., (A.7)

where

N2,0 =


ψ

1


 1

ω0

(
− iωr2(1− e−iωτ1,0)(vcr2 − r1)eiωτ1,0A(T2)A(T2)

)
,

N2,2 =


ψ

1


 1

ω0

(
iωr2(1− e−iωτ1,0)(vcr2 − r1)e−iωτ1,0A2(T2)e2iωT0

)
,

(A.8)

and • is the complex conjugate of •. By introducing

C2 = −4ω2I + 2iωC + K + (1− e−i2ωτ1,0)D, (A.9)
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one obtains the particular solution of Eq. (A.4) as follows

x2 =


x2
φ2


 = K−1N2,0 + C−12 N2,2 + c.c.. (A.10)

Then substituting Eqs (A.1), (A.2), (A.6) and (A.10) into Eq. (13), collect-

ing the coefficients of ε3 and eliminating the secular terms proportional to eiωT0

by Fredholm Alternative [38], one obtains the governing equation of A(T2) as

follows
∂A(T2)

∂T2
= Λ1A(T2) + Λ3A(T2)2A(T2), (A.11)

where Λ1 = 0 and the expression of Λ3 is omitted for brevity. The criticality

of the Hopf bifurcation is determined by the sign of Λ3, where positive and

negative values of Λ3 indicate subcritical and supercritical Hopf bifurcations,

respectively.380
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