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Prostate cancer screening research can benefit from network
medicine: an emerging awareness
Valeria Panebianco1✉, Martina Pecoraro1, Giulia Fiscon2, Paola Paci2, Lorenzo Farina3 and Carlo Catalano1

Up to date, screening for prostate cancer (PCa) remains one of the most appealing but also a very controversial topics in the
urological community. PCa is the second most common cancer in men worldwide and it is universally acknowledged as a complex
disease, with a multi-factorial etiology. The pathway of PCa diagnosis has changed dramatically in the last few years, with the
multiparametric magnetic resonance (mpMRI) playing a starring role with the introduction of the “MRI Pathway”. In this scenario the
basic tenet of network medicine (NM) that sees the disease as perturbation of a network of interconnected molecules and
pathways, seems to fit perfectly with the challenges that PCa early detection must face to advance towards a more reliable
technique. Integration of tests on body fluids, tissue samples, grading/staging classification, physiological parameters, MR
multiparametric imaging and molecular profiling technologies must be integrated in a broader vision of “disease” and its
complexity with a focus on early signs. PCa screening research can greatly benefit from NM vision since it provides a sound
interpretation of data and a common language, facilitating exchange of ideas between clinicians and data analysts for exploring
new research pathways in a rational, highly reliable, and reproducible way.
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INTRODUCTION
Prostate cancer (PCa) is the second common cancer in men
worldwide1. In their lifetime, 1/6 of men will eventually be
diagnosed with prostate cancer, with the prevalence increasing
with advancing age2. It represents a major health concern,
especially in western countries, with their greater proportion of
elderly in the general population3. PCa is universally acknowl-
edged as a complex disease, given its multi-factorial etiology
involving multiple genetic and environmental factors. Conse-
quently, there is an urgent need to resort to an integrated
approach mainly focused on the tight interconnections among
the many factors involved, from the molecular to the environ-
mental level. “Network medicine” (NM)4 is a new approach to
complex disease that offers a promise in this regard. What is NM?
A “network” is a collection of point (nodes) that are joined in

pairs by lines (edges). This simple definition provides a powerful
graphical approach to visualize and analyze relationships between
heterogeneous variables of interest. NM is a new field combining
principles and approaches from systems biology and network
science to understand the causes of human diseases by
integrating different sources of clinical and molecular data4.
Moreover, the network representation of the links among
biological entities allows an “explorative analysis” of data using
cognitive metaphors such as the topological concepts of “hub” or
“community” taken from the social sciences and amenable of
biological interpretation5. As an illustrative example, increasingly
sophisticated network-based approaches have been recently
developed for the identification of disease genes and disease
pathways, which may also lead to more accurate integrated
biomarkers for pathology early detection to monitor the
functional integrity of networks that are perturbed by diseases.
Liquid biopsy is an emerging noninvasive diagnostic tool that

can target different cancer biomarker (e.g., circulating miRNA,

DNA, exosome and cancer cells), and has proved to be a
promising diagnostic strategy for breast, prostate, colorectal, and
non small cell lung cancer. Approved and commercialized liquid
biopsy tests applied to prostate cancer for diagnostic purposes
and not for screening are: the ExoDx Prostate (IntelliScore), the
Progensa PCA3 and the SelectMDx. Tests on body fluids might
provide access to multiple layers of tumor-specific biological
information (genomes, epigenomes, transcriptomes, proteomes,
metabolomes, circulating tumor cells, and exosomes), and can be
integrated, with a network-based method, to the many emerging
omics technologies for diverse purposes, among which, we
notably find disease early diagnosis6.
An effort to go toward precision medicine in oncology,

integrating phenotype and genotype to establish standards for
translation of the research in cancer biology has been made and
described by Halu et al. who build and analyze the multiplex
network of 779 human diseases, for both a genotype-based layer
and a phenotype-based layer, proposing new disease associations
generating a unique feature of the information flow within and
across the two layers7. Sonawane et al. recently reviewed all the
existing network types and biomedical data sources that helped in
the identification of driver somatic mutations, the molecular basis
of cancer progression, and potential therapeutic interventions for
cancer subtypes8. Applying such techniques on pre-symptomatic
population’s wide screening for early cancer detection is vital
possibly improving patients’ clinical outcomes.
Screening for prostate cancer early detection is one the most

important topics for its management. Among researchers in the
field, there is a growing awareness of the complexity of the task,
which may involve the integration of many different data,
techniques, and approaches. In our opinion, the new paradigm
of NM possess all the features needed to become a key player in
the field, given its specific ability to deal with the essential
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interconnectivity of all the factors and pathways involved in PCa
development and, as such, a good candidate to explore complex
computational and clinical biomarkers for screening.

SCREENING FOR PCA: A CONTROVERSIAL ISSUE
Screening for PCa is one of the most debated topic in urological
literature9. Up to date, early detection is primarily based on
Prostate Specific Antigen (PSA) value tests. Currently, there is
strong advice against population-based systematic screening in all
countries. International guidelines recommend PSA screening to
high-risk individuals with a life expectancy of at least fifteen
years10,11, benefits exist in terms of lower stage and grade cancer
at diagnosis, with still any benefit in terms of mortality in case of
aggressive disease12,13. However, the discussion on overdiagnosis
and overtreatment continues, especially in asymptomatic patients
with comorbidities, which might cause considerable harm due to
a limited life expectancy14. Among the drawbacks, we find
unnecessary biopsies due to false-positive PSA tests, overdiagno-
sis and follow-up of indolent disease, and potential complications
from prostate cancer treatment. Also, the potential role of the
Digital Rectal Examination (DRE) as an alternative test for early
diagnosis has been proved only in patients with a high level of
PSA15.
Additional information might be gained using alternative tests

performed in patients with very high suspicion of PCa with a prior
negative biopsy. Among these, we find Progensa-PCA3 and
SelectMDX DRE urine tests, the serum 4Kscore and PHI tests or a
tissue-based epigenetic test (ConfirmMDx). A small percentage of
men with PCa have a real inheritable disease (5-10%) and certain
recognized single-point mutations have been linked to an
increased risk of PCa such as breast cancer genes 1 and 2 (BRCA1
and BRCA2, respectively), mutL homolog 1 (MLH1), mutS
homologs 2 and 6 (MSH2 and MSH6, respectively), postmeiotic
segregation increased 2 (PMS2), homeobox B13 (HOXB13),
checkpoint kinase 2 (CHEK2), nibrin (NBN), BRCA1-interacting
protein C-terminal helicase 1 (BRIP1), and ataxia telangiectasia
mutated (ATM)16. Instead, in primary prostate cancer, one of seven
subtypes defined by specific gene fusions (ERG, ETV1/4, FLI1) or
mutations (SPOP, FOXA1, IDH1) have been recognized and
presented by The Cancer Genome Atlas (TCGA). They investigated
a total of 333 primary prostate carcinomas and they found that
74% of these showed specific gene alterations and defined certain
epigenetic profiles that could be actionable in the future with
genetic/molecular testing panels17. However, no recommenda-
tions exist on the use of these tools.
Prostate cancer has very different therapeutic approaches,

varying according to its grading and staging classification.
Prostate cancer is graded using the Gleason system, which is
recommended as an international standard in prostate cancer
grading. Gleason score stratifies prostate cancer into five grades of
glandular patterns of differentiation. A new grading system for
prostate cancer was proposed in 2014 by the International Society
of Urological Pathology (ISUP) that introduced the definition of
five different Grade Group with different prognostic signifi-
cance18,19. PCa exists as two separate entities with their own
natural history. Clinically insignificant prostate cancer (CiPCa) is
defined as T1c or T2a, PSA < 10 ng/ml, PSAD < 0.15 ng/ml,< 3
positive cores with <50% cancer, GS 6 (GrG1); 3+ 4, if MR-targeted
biopsy performed20. Clinically significant cancer (CsPCa) is defined
as Gleason score >7, tumor volume >0.5 ml, and/or extra prostatic
extension10.
Imaging plays a valuable role in the noninvasive detection,

localization, grading, and pretreatment staging of prostate
carcinoma, being able to differentiate clinically localized disease
(e.g., stage T1 or T2), generally amenable to local therapy, from a
more advanced disease that may require multimodal therapy. In
addition, it plays an important role to carry out biopsies for

histopathologic analysis of the tumor21. Particularly, multipara-
metric MRI has become a powerful tool to achieve these goals.
Instead, Transrectal ultrasound (TRUS) has proved to be unreliable
for PCa detection. MpMRI is increasingly performed in patients
with suspect PCa, based on clinical and laboratory data, and it is
recommended as first-line study in naive patients, according to
the European Association of Urology (EAU) guidelines on PCa and
the updated PI-RADS v2.1 recommendations, followed by
systematic plus targeted biopsy in case of PI-RADS≥ 3 lesion
detection10,11,22.
MpMRI and its “pathway” has been extensively studied and

validated in recent years as “state of the art”management tool23–25

and it has been proved to be a cost-effective exam for prostate
cancer detection26,27. The Precision clinical trial28, the MRI First, the
4 M validating pairing studies29,30, and the Cochrane 2019 meta-
analysis31 have shown the superiority of performing mpMRI
followed by targeted biopsy in naïve patient with PCa suspicion,
rather than performing systematic biopsy in patients with
increased PSA values. MpMRI has significantly increased the
accuracy to detect cancer with a Positive Predictive Value (PPV) of
38% (36–40%)31,32. MRI detects index lesion in 90% of cases,
however in few cases, it misses specific types of lesions, mostly
ciPCa, non-index csPCa <1 cm, anterior tumors <0.5 ml and tumors
showing the cribriform patter on histopathology33–42. MpMRI
negative predictive value (NPV) for ISUP G ≥ 2 prostate cancer is
91% (86–94%)31,38,43, it varies according to PCa prevalence among
countries and upon different definitions of clinically significant
PCa. It has been suggested that this wide variability relies on
centers’ expertise and excellence, which often differ due to lack of
general quality standards44. In fact, predictive factors of prostate
mpMRI performance relies upon quality control, radiologists’
expertise and the application of clinical and laboratory data in the
diagnostic work-up of PCa. Inadequate equipment, protocol
optimization, sequence parameters with an altered signal to noise
ratio, patients’ preparation and radiologists’ expertise are major
reasons of low negative and positive predictive values45.
Last, but not least, we believe that Machine Learning (ML)

techniques, that are gaining increasing popularity for medical
imaging diagnostic applications, can greatly benefit from NM
methodologies, also in the prostate cancer diagnostics46,47. In
precision medicine, it is required to find groups of patients with
“similar” genomic profile so that each group can be treated by
specific molecular targeting. However, it is well known, that there
are cases in which results provided by a ML approach are not
reproducible, that is, different groups are found using data from a
different cohort of patients48. The key point is that ML results are
generally prone to over-fitting with noisy data and often not
interpretable in clear biological terms, so that the “data pattern”
identified may not mechanistically linked to a molecular
machinery. In fact, for ML, “data are just data” and the pattern
found may not necessarily be consistent with biological con-
straints. By contrast, NM is inherently explanatory, since it provides
a link with an underlying “disease module” in the PPI, which can
be a guide for the physician to understand the functional
commonalities of the identified group, thus providing a sound
biological background rationale for the identified data pattern.
Finally, several drawbacks lie beneath the surface of PCa

screening: a generally approved and appropriate tool is still
missing. Network medicine might fit in this context to link
different and significant variables such as clinical data, genetic
profile and diagnostic imaging with MRI and ML techniques, to
establish the foundation of PCa screening.
Data obtained from patients’ follow-up (minimum of 48 months)

with PSA measurements, MRI exams (given the high MRI negative
predictive value) with application of ML techniques and targeted
biopsy results (areas not harboring prostate cancer), integrated to
information obtained from body fluid examinations, gene profile
and molecular data might be exploited through the application of
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a network-based method, to obtain meaningful data not solely on
cancer cell, rather on normal tissue in order to perform tumor
screening and early diagnosis. Primary end-point being a
reduction of patients undergoing useless diagnostic exams such
as systematic prostate biopsy, which would lead to overdiagnosis
and overtreatment (Fig. 1). As secondary end-point, network-
based method might offer significant insight on cancer cells
development, tumor grading, treatment strategy, and prognosis.

NETWORK-BASED APPROACHES IN PROSTATE CANCER
RESEARCH
NM assumes that all cellular components that belong to the same
topological, functional or disease module have a high likelihood of
being involved in the same disease. Network-based tools have
been applied to a wide range of diseases and pathopheno-
types49,50, such as several different types of cancer, including
prostate cancer (Table 1).
Ergün et al. proposed a reverse-engineered gene regulatory

network combined with expression profiles to compute the
likelihood that genes and associated pathways are mediators of
prostate cancer51. The algorithm, called mode-of-action by
network identification (MNI), is used to infer a model of regulatory
interactions between genes. The model is inferred from the
training set of microarray expression obtained from a variety of
cancer cell lines and it relates changes in gene transcript
concentrations to each other. Then, the trained regulatory
network is used as a filter to determine the genes affected by a
test condition, by computing a z-score designed to boost the
likelihood of including genes with significant changes in the test
expression profile. By applying this network-based approach to
non-recurrent primary and metastatic prostate cancer data, the
authors identify the androgen receptor gene (AR) among the top
genetic mediators and the AR pathway as a highly enriched
pathway for metastatic prostate cancer. The main advantage of
this reverse engineering method is its unbiased approach to
network mapping, since it is not necessary a priori knowledge of
regulatory relationships. However, a bottleneck can be

characterized by applying the algorithm to larger and much more
sophisticated regulatory networks. In addition, since the inferred
connections can only be binary described as “active” or
“inhibited”, more complex network relationships involving inter-
actions beyond transcriptional regulation could not be considered.
Network-based methods could also aid drug discovery by

exploiting shared similarities among drugs or diseases and infer
similar therapeutic applications or drugs selection (drug repurpos-
ing). Drug repurposing involves the investigation of existing drugs
for new therapeutic purposes and it appears as a promising
strategy to identify non-cancer drugs that have anti-cancer
activity, as well as tolerable adverse effects for human health.
Among network-based approaches for repurposing new thera-
peutic agents for prostate cancer, Chen et al. exploited the human
functional linkage network (FLN) and integrated genomics and
drug-response expression data52, while Turanli et al. exploited the
genome-scale metabolic models (GEMs) and integrated tissue-
specific metabolic, proteomics and transcriptomics data53.
Chen et al. mapped the prostate mutated genes on the FLN (i.e.,

an evidence-based weighted network that provides a quantitative
measure of functional association among any set of human genes)
and select those ones that share a strong functional relationship,
whose expression is highly perturbed by the disease, and that are
within significantly perturbed pathways of diseases, thus defining
the “disease perturbed genes”. Then, they integrated the
information about the effects of several drugs on the selected
genes expression, thus identifying the drug-response genes.
Finally, the authors built two correlation networks composed of
drug and disease perturbed genes, defined by genes that are
upregulated (downregulated) by the disease and downregulated
(upregulated) by the drugs. The greater the drug and disease
genes sets correlation, the higher the likelihood that the drug is a
viable candidate for repurposing52. One of the advantages of this
approach is to account for multiple data sources, including
genomics and transcriptomics data, functional connectivity and
proximity of within module genes. However, as gene expression-
based method, it must face the difficulty in defining a robust gene
signature due to the existence of noise in gene expression data. In

Fig. 1 Schematic representation of the integrated computational approach for studying prostate cancer. The cylindrical shapes represent
different data types given as input of the computational model: drug-target therapeutic associations data (drug-target data), genomic,
transcriptomics, and proteomics data, and Magnetic Resonance Imaging (MRI) data. The rectangular shapes represent the innovative parts
that will be ad-hoc developed: (i) network-based approaches to identify disease genes and disease pathways; and (ii) machine learning (ML)
approaches to identify the more relevant morphological features related to the pathology, which may help to avoid overdiagnosis and
overtreatment. These approaches should be combined for therapy best tailoring.

V. Panebianco et al.

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)    13 



addition, genes used as drug targets and/or regulated by a target
may not always show significant expression changes.
Turanli et al. instead exploited a prostate cancer-specific GEMs

to build a drug-gene association network composed of candidate
drugs and their interacting genes that induce reversal effects in
prostate cancer expression for tumor versus non-tumor tissues,
and then tested their effect on in vitro cell models53. The main
advantage of this approach is to integrate transcriptomics
proteomics and metabolic data to build a prostate cancer-
specific model, facing the issue of inter-tumor heterogeneity
(between tumors heterogeneity); however, by constructing a
“consensus” model for prostate cancer, the authors did not take
into account the intra-tumor heterogeneity (within tumors
heterogeneity), which is a relevant point in neoplastic diseases,
such as prostate cancer, showing different molecular subtypes.
Thus, patients’ stratification could be the most appropriate
strategy to find highly efficient drugs for a given subgroup of
patients that might have a lower effect in different subgroups.
Conversely, Hussain et al. proposed a network-based approach

to study Magnetic Resonance (MR) imaging data54. The authors
extracted several morphological features from prostate cancer
images available from the Prostate MR Image Database and
exploited a Bayesian network-based approach to quantify the
association between these features. They built a Bayesian network,
which is a Direct Acyclic Graph (DAG), whose nodes are ten
morphological features and edges represent probabilistic relation-
ships among these variables quantified by using Pearson’s
correlation, mutual Information, and Kullback Liebler distance.
Network-based approaches have been also successfully

exploited to stratified cancer cohorts into clinically and biologi-
cally meaningful subtypes for several cancer types with marked
heterogeneity, including ovarian, uterine, lung, and prostate
cancer55,56. In particular, Hofree et al.56 proposed a network-
based stratification method, which integrates genome-scale
somatic mutation profiles with protein–protein interaction (PPI)
network, for ovarian cancer, uterine cancer, and lung adenocarci-
noma cohorts. For each tissue, by exploiting a network-
propagation algorithm and by clustering together patients with
mutations in similar network regions, they obtained a robust
patients division into molecular subtypes that were predictive of

clinical outcomes, such as tumor histology, overall patient survival,
and therapy response. Specifically, they identified three uterine
cancer subtypes that were closely associated with the known
histological-based subtypes and with the tumor grade; four
ovarian cancer subtypes that were significant predictors of patient
survival time and of an independent survival with respect to other
clinical covariates (e.g., tumor stage, age, mutation rate); and
finally six lung cancer subtypes that were also significant
predictors of patient survival. Similarly, Yang et al.55 integrated
somatic mutation profiles in a PPI network for stratifying prostate
adenocarcinoma samples. In particular, they mapped prostate
cancer mutation profiles into the PPI network and applied a
random walk with restart algorithm to spread the effect of each
mutation over its network neighborhood, thus obtaining “net-
work-smoothed” patient profiles. Finally, they exploited an
unsupervised clustering method based on graph-regularized non
negative Matrix factorization to classify the network-smoothed
profiles into different molecular subtypes. In particular, they
identified three robust molecular subtypes of prostate adenocar-
cinoma that were associated with most of the clinical and
pathological characteristics, such as Gleason score, PSA level,
lymph nodes, pathologic N and T stages.

EMERGING OPPORTUNITIES FROM NETWORK MEDICINE FOR
PCA EARLY DETECTION
Recent results using network-based algorithms, as discussed in the
dedicated section for PCa, represent just the beginning of a new
era of network-based medicine, as witnessed by the plethora of
papers on this subject, estimated to be about 3300 from the
inception of NM in 200757. The basic tenet of NM, i.e., disease as a
perturbation of a network of interconnected molecules and
pathways, seems to fit perfectly with the challenges that PCa early
detection has to face to advance towards a more reliable—
possibly noninvasive—technique. As a matter of fact, tests on
body fluids, tissue samples, grading/staging classification, physio-
logical parameters, multiparametric MRI, and many other mole-
cular profiling technologies must be integrated in a broader vision
of “disease” and its complexity, with a focus on early signs. In this
regard, the field can benefit from the framework and algorithms of

Table 1. Summary of network-based approaches to analyze different cancer types, including prostate cancer.

Method Network type Database Cases of study Data type Reference

Mode-of-action by network
identification (MNI) algorithm

Gene regulatory
network

Microarray data from: GEO, Oncomine, EBI ArrayExpress
(MEXP-441), Broad Institute Cancer and the St Jude
Research

Non-recurrent
primary and
metastatic
prostate cancer

Transcriptomics data 51

Drug repurposing based on human
functional linkage network (FLN)

Drug-disease
perturbed
genes network

(1) TCGA: prostate cancer transcriptomics data, (2) OMIM:
prostate mutated genes, (3) LINCS: prostate cancer cell line
expression in response to more than 4000 drugs, (4)
DrugBank: drug data

Prostate cancer,
breast cancer, and
leukemia

Transcriptomics,
Genomics, Drug-
target data

52

Drug repurposing based on Prostate
cancer-specific genome-scale
metabolic models (GEMs)

Drug-gene
association
network

(1) TCGA: prostate cancer transcriptomics data, (2) the
Human Protein Atlas: proteome tissue proteome, (3) the
Human Pathology Atlas: prostate cancer GEMs, (4) Human
Metabolic Atlas: healthy prostate tissue GEMs, (5)
ConnectivityMap2: gene expression data from drug-
perturbed cancer cell lines

Prostate cancer Metabolics,
Proteomics,
Transcriptomics,
Drug-target data

53

Bayesian network-based approach
(Person correlation, mutual
information, Kullback Liebler)

Features
association
network (DAG)

Prostate MR Image Database Prostate cancer MR imaging data 54

Patients stratification based on
network propagation (PRINCE
algorithm) and clustering

Protein–Protein
interaction
network

(1) TCGA: ovarian, uterine, and lung adenocarcinoma
somatic mutations data, (2) STRING: protein–protein
interactions, (3) HumanNet: protein–protein interactions,
(4) PathwayCommons: protein–protein interactions and
functional gene interactions

Ovarian, uterine,
and lung cancer

Genomics data,
Protein–Protein
interactions

56

Patients stratification based on
network propagation (random walk
with restart algorithm) and
clustering

Protein–Protein
interaction
network

(1) TCGA: prostate cancer somatic mutations data, (2)
STRING: protein–protein interactions TCGA: prostate
cancer somatic mutations data

Prostate cancer Genomics data,
Protein–Protein
interactions

55
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NM. Moreover, screening is particularly important for PCa, since its
early detection and treatment provide the greatest chance of cure.
However, so far, performance relies upon human-based skills that
vary considerably among dedicated health centers.
In conclusion, we envisage that PCa screening research can

greatly benefit from NM vision and algorithms since it provides a
sound biological interpretation of data and a common language (a
metaphor) that facilitate the exchange of ideas between clinicians
and data analysts for exploring new research pathways in a
rational, highly reliable and reproducible way.

Received: 14 November 2019; Accepted: 9 April 2020;

REFERENCES
1. Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 10, 63–89 (2019).
2. Pollock, P. A., Ludgate, A. & Wassersug, R. J. In 2124, half of all men can count on

developing prostate cancer. Curr. Oncol. 22, 10 (2014).
3. Arnold, M. et al. Recent trends in incidence of five common cancers in 26 Eur-

opean countries since 1988: analysis of the European Cancer Observatory. Eur. J.
Cancer 51, 1164–1187 (2015).

4. Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based
approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

5. Paci, P. et al. SWIM: a computational tool to unveiling crucial nodes in complex
biological networks. Sci. Rep. 7, 44797 (2017).

6. Bratulic, S., Gatto, F. & Nielsen, J. The translational status of cancer liquid biopsies.
Regen. Eng. Transl. Med. https://doi.org/10.1007/s40883-019-00141-2 (2019).

7. Halu, A., De Domenico, M., Arenas, A. & Sharma, A. The multiplex network of
human diseases. npj Syst. Biol. Appl. 5, 15 (2019).

8. Sonawane, A. R., Weiss, S. T., Glass, K. & Sharma, A. Network medicine in the age
of biomedical big data. Front. Genet. 10, 294 (2019).

9. Barry, M. J. Screening for prostate cancer—the controversy that refuses to die. N.
Engl. J. Med. 360, 1351–1354 (2009).

10. Mottet, N. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening,
diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

11. N. Mottet et al., EAU Guidelines edn. presented at the EAU Annual Congress
Barcelona. (ISBN 978-94-92671-07-3, 2019).

12. Schröder, F. H. et al. Screening and prostate cancer mortality: results of the
European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years
of follow-up. Lancet 384, 2027–2035 (2014).

13. Pinsky, P. F., Prorok, P. C. & Kramer, B. S. Prostate cancer screening—a perspective
on the current state of the evidence. N. Engl. J. Med. 376, 1285–1289 (2017).

14. Loeb, S. Guideline of guidelines: prostate cancer screening: review of prostate
cancer screening guidelines. BJU Int. 114, 323–5 (2014).

15. Carter, H. B. et al. Early detection of prostate cancer: AUA guideline. J. Urol. 190,
419–426 (2013).

16. Zhen, J. T. et al. Genetic testing for hereditary prostate cancer: current status and
limitations: germline testing for prostate cancer. Cancer 124, 3105–3117 (2018).

17. Abeshouse, A. et al. The molecular taxonomy of primary prostate. Cancer Cell 163,
1011–1025 (2015).

18. Epstein, J. I. et al. 2014 The International Society of Urological Pathology (ISUP)
Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of
Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 40,
244–252 (2015).

19. WHO. WHO classification of tumours of the urinary system and male genital
organs: [… consensus and editorial meeting at the University Hospital Zürich,
Zürich, 11–13 March, 2015]. (IARC Press, 2016).

20. Matoso, A. & Epstein, J. I. Defining clinically significant prostate cancer on the
basis of pathological findings. Histopathology 74, 135–145 (2019).

21. Wegelin, O. et al. The future trial: a multicenter randomised controlled trial on
target biopsy techniques based on magnetic resonance imaging in the diagnosis
of prostate cancer in patients with prior negative biopsies. Eur. Urol. 75, 582–590
(2019).

22. Turkbey, B. et al. Prostate imaging reporting and data system Version 2.1: 2019
update of prostate imaging reporting and data system version 2. Eur. Urol. 76,
340–351 (2019).

23. Richenberg, J. et al. The primacy of multiparametric MRI in men with suspected
prostate cancer. Eur. Radiol. 29, 6940–6952 (2019).

24. Venderink, W. et al. Multiparametric magnetic resonance imaging and follow-up
to avoid prostate biopsy in 4259 men: mpMRI and follow up to avoid prostate
biopsy. BJU Int. https://doi.org/10.1111/bju.14853 (2019).

25. Padhani, A. R. et al. PI-RADS steering committee: the PI-RADS multiparametric MRI
and MRI-directed biopsy pathway. Radiology 292, 464–474 (2019).

26. Faria, R. et al. Optimising the diagnosis of prostate cancer in the era of multi-
parametric magnetic resonance imaging: a cost-effectiveness analysis based on
the prostate MR imaging study (PROMIS). Eur. Urol. 73, 23–30 (2018).

27. Panebianco, V. et al. Clinical utility of multiparametric magnetic resonance ima-
ging as the first-line tool for men with high clinical suspicion of prostate cancer.
Eur. Urol. Oncol. 1, 208–214 (2018).

28. Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer
diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

29. Rouvière, O. et al. Use of prostate systematic and targeted biopsy on the basis of
multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multi-
centre, paired diagnostic study. Lancet Oncol. 20, 100–109 (2019).

30. van der Leest, M. et al. Head-to-head comparison of transrectal ultrasound-
guided prostate biopsy versus multiparametric prostate resonance imaging with
subsequent magnetic resonance-guided biopsy in biopsy-naïve men with ele-
vated prostate-specific antigen: a large prospective multicenter clinical study. Eur.
Urol. 75, 570–578 (2019).

31. Drost, F.-J. H. et al. Prostate magnetic resonance imaging, with or without
magnetic resonance imaging-targeted biopsy, and systematic biopsy for
detecting prostate cancer: a cochrane systematic review and meta-analysis. Eur.
Urol. 77, 78–94 (2019).

32. Thompson, J. et al. The role of magnetic resonance imaging in the diagnosis
and management of prostate cancer: The role of magnetic resonance imaging
in the diagnosis and management of prostate cancer. BJU Int. 112, 6–20
(2013).

33. Borofsky, S. et al. What are we missing? False-negative cancers at multiparametric
MR imaging of the prostate. Radiology 286, 186–195 (2018).

34. Branger, N. et al. Is negative multiparametric magnetic resonance imaging really
able to exclude significant prostate cancer? The real-life experience. BJU Int. 119,
449–455 (2017).

35. De Visschere, P. J. L. et al. What kind of prostate cancers do we miss on multi-
parametric magnetic resonance imaging? Eur. Radiol. 26, 1098–1107 (2016).

36. Johnson, D. C. et al. Do contemporary imaging and biopsy techniques reliably
identify unilateral prostate cancer? Implications for hemiablation patient selec-
tion. Cancer 125, 2955–2964 (2019).

37. Moldovan, P. C. et al. What is the negative predictive value of multiparametric
magnetic resonance imaging in excluding prostate cancer at biopsy? A sys-
tematic review and meta-analysis from the European Association of Urology
Prostate Cancer Guidelines Panel. Eur. Urol. 72, 250–266 (2017).

38. Panebianco, V. et al. Negative multiparametric magnetic resonance imaging for
prostate cancer: what’s next? Eur. Urol. 74, 48–54 (2018).

39. Schouten, M. G. et al. Why and where do we miss significant prostate cancer with
multi-parametric magnetic resonance imaging followed by magnetic resonance-
guided and transrectal ultrasound-guided biopsy in biopsy-naïve men? Eur. Urol.
71, 896–903 (2017).

40. Tan, N. et al. Characteristics of detected and missed prostate cancer foci on 3-T
multiparametric MRI using an endorectal coil correlated with whole-mount thin-
section histopathology. Am. J. Roentgenol. 205, W87–W92 (2015).

41. Truong, M. et al. Impact of gleason subtype on prostate cancer detection using
multiparametric magnetic resonance imaging: correlation with final histo-
pathology. J. Urol. 198, 316–321 (2017).

42. Padhani, A. R., Haider, M. A., Villers, A. & Barentsz, J. O. Multiparametric magnetic
resonance imaging for prostate cancer detection: what we see and what we miss.
Eur. Urol. 75, 721–722 (2019).

43. Itatani, R. et al. Negative predictive value of multiparametric MRI for prostate
cancer detection: outcome of 5-year follow-up in men with negative findings on
initial MRI studies. Eur. J. Radiol. 83, 1740–1745 (2014).

44. Padhani, A. R. et al. Prostate imaging-reporting and data system steering com-
mittee: PI-RADS v2 status update and future directions. Eur. Urol. 75, 385–396
(2019).

45. Cuocolo, R. et al. Prostate MRI technical parameters standardization: a systematic
review on adherence to PI-RADSv2 acquisition protocol. Eur. J. Radiol. 120,
108662 (2019).

46. Padhani, A. R. & Turkbey, B. Detecting prostate cancer with deep learning for MRI:
a small step forward. Radiology https://doi.org/10.1148/radiol.2019192012 (2019).

47. Choyke, P. L. Quantitative MRI or machine learning for prostate MRI: which should
you use? Radiology 289, 138–139 (2018).

48. Ghosh, P. AAAS: Machine learning ‘causing science crisis’. BBC News https://www.
bbc.com/news/science-environment-47267081 (2019).

49. Ozturk, K., Dow, M., Carlin, D. E., Bejar, R. & Carter, H. The emerging potential for
network analysis to inform precision cancer medicine. J. Mol. Biol. 430,
2875–2899 (2018).

50. Tan, A., Huang, H., Zhang, P. & Li, S. Network-based cancer precision medicine: a
new emerging paradigm. Cancer Lett. 458, 39–45 (2019).

V. Panebianco et al.

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)    13 

https://doi.org/10.1007/s40883-019-00141-2
https://doi.org/10.1111/bju.14853
https://doi.org/10.1148/radiol.2019192012
https://www.bbc.com/news/science-environment-47267081
https://www.bbc.com/news/science-environment-47267081


51. Ergün, A., Lawrence, C. A., Kohanski, M. A., Brennan, T. A. & Collins, J. J. A network
biology approach to prostate cancer. Mol. Syst. Biol. 3, 82 (2007).

52. Chen, H.-R., Sherr, D. H., Hu, Z. & DeLisi, C. A network based approach to drug
repositioning identifies plausible candidates for breast cancer and prostate
cancer. BMC Med. Genom. 9, 51 (2016).

53. Turanli, B. et al. Discovery of therapeutic agents for prostate cancer using
genome-scale metabolic modeling and drug repositioning. EBioMedicine 42,
386–396 (2019).

54. Hussain, L. et al. Applying bayesian network approach to determine the asso-
ciation between morphological features extracted from prostate cancer images.
IEEE Access 7, 1586–1601 (2019).

55. Yang, L. et al. Molecular classification of prostate adenocarcinoma by the inte-
grated somatic mutation profiles and molecular network. Sci. Rep. 7, 738 (2017).

56. Hofree, M., Shen, J. P., Carter, H., Gross, A. & Ideker, T. Network-based stratification
of tumor mutations. Nat. Methods 10, 1108–1115 (2013).

57. Barabási, A.-L. Network medicine—from obesity to the “Diseasome”. N. Engl. J.
Med. 357, 404–407 (2007).

AUTHOR CONTRIBUTIONS
V.P. and L.F. wrote and edited the manuscript. All authors were involved in drafting
the content and structure of the manuscript and approved the final version.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41540-020-0133-0.

Correspondence and requests for materials should be addressed to V.P.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

V. Panebianco et al.

6

npj Systems Biology and Applications (2020)    13 Published in partnership with the Systems Biology Institute

https://doi.org/10.1038/s41540-020-0133-0
https://doi.org/10.1038/s41540-020-0133-0
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Prostate cancer screening research can benefit from network medicine: an emerging awareness
	Introduction
	Screening for PCa: a controversial issue
	Network-based approaches in prostate cancer research
	Emerging opportunities from network medicine for PCa early detection
	References
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




