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Khuri-Treiman equations have proven to be a useful theoretical tool in the analysis of three-body decays,
especially into the 3π final state. In this work we present in full detail the necessary generalization of the
formalism to study the decays of particles with arbitrary spin, parity, and charge conjugation. To this extent,
we find it most convenient to work with helicity amplitudes instead of the so-called invariant amplitudes,
especially when dealing with the unitarity relations. The isobar expansions in the three possible (s-, t-, and
u-) final channels are related with the appropriate crossing matrices. We pay special attention to the
kinematical singularities and constraints of the helicity amplitudes, showing that these can be derived by
means of the crossing matrix.
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I. INTRODUCTION

As our knowledge of the hadron spectrum increases, so
does the complexity of the necessary experiments and the
need for better theoretical methods to analyze the exper-
imental data. Three-body spectra from 2-to-3 scattering or
1-to-3 decays are fundamental tools to study both electro-
weak and strong physics. For example, the XYZ phenom-
ena observed in the spectrum of charmonia are almost
exclusively seen in strong decays to three particle final
states [1]. Furthermore, constraining strong amplitudes
describing three hadron final states, e.g., in heavy flavor
meson or τ lepton decays is crucial in testing various

Beyond Standard Model scenarios [1]. Finally reaction
amplitudes describing three-hadron interactions will soon
be needed for the analysis of lattice QCD simulations
which are gearing toward simulations of three particle
spectra [2–4].
The presence of hadrons in any reaction complicates the

analysis of the amplitude of the process because of the final
state interactions (FSI) of the former. In a three-body
hadronic decay X → ABC there are three possible two-
hadron subsystems: AB, BC, and CA. If, for any reason,
one can ignore the FSI (and the resonant content) of two of
those channels, one can perform a resummation of the
interaction of the remaining channel, as it is often done in 2-
to-2 scattering processes. This is not feasible in many three-
body decays, and certainly not possible in 3π decays, which
is an important decay channel for many resonances.
Among three-body hadron decays, one of the first reac-

tions to be studied was the K → 3π decay. In Ref. [5] Khuri
and Treiman (KT) proposed for this reaction a dispersive
approach with a set of approximations, leading to a system
of linear integral equations for functions depending on a
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single Mandelstam variable and which build up the full
amplitude. Soon after, several papers appeared discussing
different aspects of the formalism [6–10] and, in particular,
the first application to the decay η → 3π [11] (see also the
recent lectures in Ref. [12]). Since its appearance, the KT
formalism has been applied to various three-body decay
channels of both light and heavy mesons [13–27]. The
extension of the formalism to include coupled channels was
achieved in Ref. [24] (see also Ref. [28]). Besides the
practical applications, some theoretical studies about the
formalism itself have also been presented. For the decay of
light mesons, for instance, KT equations can be justified in
chiral perturbation theory (χPT) at lowest orders via the so-
called reconstruction theorem [29–31]. In Ref. [32] the KT
formalism is applied to ππ scattering, finding it to be
equivalent to Roy equations [33,34] when both formalisms
are restricted to S- and P-waves, whereas when higher
waves are included, good agreement is found with other
dispersive approaches [35].1

An amplitude Aðs; t; uÞ for a scattering (2-to-2) or
decay (1-to-3) process can be expanded in an infinite sum
of partial wave amplitudes in one of the Mandelstam
variables, say s. As it is well known, these partial waves
are functions of a single variable and have both right- and
left-hand cut (RHC and LHC, respectively) discontinu-
ities. Furthermore, they can contain singularities of
dynamical origin; i.e., resonances or bound states of
the s-channel can show up as poles in the partial wave
amplitudes. Because these singularities are only in the s-
channel, those in the t- and u-channels can appear in the
full amplitude Aðs; t; uÞ if and only if an infinite number
of partial waves is kept in the partial wave expansion.
Sure, this can be done only at a theoretical level, and on
practical terms a truncation to a finite number of partial
waves is always necessary. In this way, crossing symmetry
is lost. In the KT formalism, the infinite sum of partial
waves in the s-channel is substituted by three finite sums
of so-called isobar amplitudes, one for each of the s-, t-,
and u-channels. The isobar amplitudes are also functions
of a single Mandelstam variable, but, unlike the partial
wave amplitudes, they only have RHC discontinuities. In
this way, the full amplitude Aðs; t; uÞ can have singular-
ities coming from all the three channels, and crossing
symmetry can be restored.
A quick look into the literature [5,20–22,24,26] shows

that most of the reactions to which the KT formalism has
been applied are decays of pseudoscalars (P → 3P) or, at
most, vector (V → 3P) mesons. The KT decomposition of
these two classes of amplitudes are very similar, and the
complications that arise from spin are not present in vector
decays. Generalizations of the KT equations to incorporate

spin are necessary to extend the framework to more
complicated decays such as axial-vector or tensor mesons
which are as yet unexplored within this formalism.
The modern generation of experiments further neces-

sitate this generalization. The COMPASS Collaboration,
for example, offers experimental information on X → 3π
decays2 for many of the allowed JPC quantum numbers of
the decaying particle, several with spin J ≥ 1 (see, e.g.,
Ref. [37]). Their freed-isobar partial wave analysis [38–40]
provides particularly valuable insight into two-body sub-
channel dynamics within the 2π isobar amplitudes, which
are the main objects of interest in KT equations.
Comparison with the “freed isobars” is an ideal probe of
rescattering and FSI effects to resonant lineshapes.
Additionally, the GlueX and CLAS12 experiments,
through photo- and electroproduction, respectively, are
able to study these types of decays for particles with spin.
The extracted properties of resonances (formed in inter-
mediate stages and subsequently decaying into three pions)
can be greatly affected by the parametrizations used for the
isobars, and a good understanding of these is of foremost
importance to obtain reliable resonance parameters. In this
sense, KT equations can play an important role in studying
these reactions and in hadron spectroscopy. As such, they
must be generalized in order to consider more than just the
lowest lying resonances.
The extension of the KT equations to these new sectors

also serves as a test of the formalism itself. The application
of KTequations to describe data has been met with success,
although the agreement between theory and experiment is
not always straightforward. In the paradigmatic case of
η → 3π, for example, the determination of Dalitz plot
parameters based on the KT equations are in good agree-
ment with measured values. This agreement is not without
tension, however, with some aspects that still attract
discussion: e.g., the convergence of the chiral series (see
Ref. [26] for a recent review) and the effect of intermediate
coupled channels which has only recently been addressed
[24]. Interestingly, the recent experimental determinations
by BESIII [41] of the ω → 3π Dalitz plot parameters seem
to be in disagreement with theoretical calculations [19,20]
based in the KT formalism. This discrepancy appears to be
large, but point to important subtleties on the theory side
that must be addressed. In any case, it would prove useful to
further investigate the range of validity of the KT decom-
position itself with different decays. These generalizations
are also the first steps toward the eventual inclusion of spin
also in the final states, which would very much open its
phenomenological applicability.

1We also point out that the KT decomposition of ππ scattering
in Ref. [32] is compatible with the form of the amplitude obtained
in Ref. [36] imposing crossing and chiral symmetries.

2The COMPASS Collaboration actually measures the diffrac-
tive dissociation of a pion beam (at 190 GeV) on a proton,
π−p → π−π−πþprecoil, a reaction that proceeds via Pomeron
exchange. The X− is produced, and it subsequently decays into
three pions.
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Due to the motivations described above, we present a
generalization of the KT formalism to the decay of mesons
with arbitrary spin, parity, and charge conjugation, focusing
on the three pion final state for its ubiquity. We will find
it convenient to work with helicity amplitudes [42].
Crossing symmetry is at the heart of the KT equation,
and including spin mean crossing relations between differ-
ent scattering kinematics becomes more complicated and
must be carefully dealt with [43,44] (see further discussions
in Ref. [45]). We combine the standard crossing relations
for helicity amplitudes with the underlying ideas of the KT
formalism to obtain amplitudes KTequations for the decays
of particles with spin. The crossing matrix relating the three
isobar expansions serves also to derive reduced isobar
amplitudes, free of kinematic singularities. These reduced
isobars are thus suitable for a dispersive approach, based on
the unitarity relations that are also derived.
The structure of the manuscript is as follows: we start

in Sec. II by discussing our kinematic conventions, paying
special attention to the relation between the s- and
t-channels center-of-mass frames. In Sec. III we introduce
the helicity amplitudes and its properties, in particular,
crossing symmetry and how it is expressed in terms of the
so-called crossing matrix. In Sec. IV we discuss the
kinematical singularities and constraints of the helicity
amplitudes. In Sec. V we obtain the KT decomposition and
integral equations for the helicity amplitudes.

II. KINEMATICS

We start by discussing our conventions and notation for
the kinematics of the process3

XJðpXÞπðp3Þ → πðp1Þπðp2Þ; ð1Þ

where the meson XJ has arbitrary quantum numbers I and
JPC (theG-parity quantum number,G ¼ −1, is fixed by the
three pion final state). Although we are primarily interested
in the physical decay, XJ → 3π, amplitudes are more easily
formulated in the scattering picture, Eq. (1), and related by

crossing to the decay process through analytic continuation
of momenta. For completeness, our derivations will be
done at length with particular care in distinguishing
kinematic quantities in different frames. This connection
between different reference frames is vital in formulating a
KT decomposition with the correct crossing symmetry
structure.
The XJ and π masses are denoted by M and m,

respectively, and invariant Mandelstam variables are
defined through

s ¼ ðpX þ p3Þ2 ¼ ðp1 þ p2Þ2;
t ¼ ðpX − p1Þ2 ¼ ðp2 − p3Þ2;
u ¼ ðpX − p2Þ2 ¼ ðp3 − p1Þ2; ð2aÞ

with

sþ tþ u ¼ M2 þ 3m2: ð2bÞ

In the s-channel center-of-mass (CM) frame, the z-axis is
chosen such that the four-momenta of the incoming
particles have the components (see Fig. 1)

pX ¼ ðEXðsÞ;þpðsÞẑÞ and p3 ¼ ðEπðsÞ;−pðsÞẑÞ:
ð3aÞ

Similarly the outgoing pions have

p1 ¼
� ffiffiffi

s
p
2

; qðsÞq̂s
�

and p2 ¼
� ffiffiffi

s
p
2

;−qðsÞq̂s
�
;

ð3bÞ

where the unit vector, q̂s, is defined as

q̂s ¼ ðsin θs; 0; cos θsÞ: ð4Þ

The modulus of the three-momentum of the XJπ and the ππ
systems are, respectively, given by

pðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
λXðsÞ
4s

r
and qðsÞ ¼

ffiffiffiffiffiffiffiffiffiffi
λπðsÞ
4s

r
; ð5Þ

FIG. 1. Representation of the s- and t-channel kinematics.

3Our notation and the forthcoming discussions are similar to
those in Ref. [46].
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where we introduce the shorthands

λXðsÞ ¼ λðs;M2; m2Þ and λπðsÞ ¼ λðs;m2; m2Þ: ð6Þ

Above, λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ is the
well-known Källén or triangle function [47]. The energies
EXðsÞ and EπðsÞ in Eqs. (3a) and (3b) are given by

EXðsÞ ¼
sþM2 −m2

2
ffiffiffi
s

p and EπðsÞ ¼
sþm2 −M2

2
ffiffiffi
s

p :

ð7Þ

From Eqs. (3a) and (3b), we obtain the cosine of the
scattering angle θs,

cos θs ¼
t − u

4pðsÞqðsÞ : ð8Þ

As mentioned above, we may analogously define
kinematics in the t-channel CM frame, i.e., the
XJðp0

XÞπð−p0
1Þ → πðp0

2Þπð−p0
3Þ process. The prime over

the four-momenta is introduced to distinguish the four-
vectors evaluated in the t-channel instead of in the
s-channel; cf. Eqs. (3a) and (3b). In this frame, the
four-momenta for the incoming particles are given by
(see Fig. 1)

p0
X ¼ ðEXðtÞ;þpðtÞẑÞ; −p0

1 ¼ ðEπðtÞ;−pðtÞẑÞ; ð9aÞ

and for the outgoing particles

−p0
3 ¼

� ffiffi
t

p
2
;þqðtÞq̂t

�
; p0

2 ¼
� ffiffi

t
p
2
;−qðtÞq̂t

�
: ð9bÞ

The corresponding unit vector q̂t is defined as

q̂t ¼ ð− sin θt; 0; cos θtÞ; ð10Þ

with the cosine of the scattering angle θt given by

cos θt ¼
s − u

4pðtÞqðtÞ : ð11Þ

The relative sign of the x̂ component of the q̂t vector
compared to Eq. (4) is by convention and chosen for
simplicity in later developments. This choice is related to
the fact that, while the signs of cos θs and cos θt in Eqs. (4)
and (10) are determined through kinematics (e.g., from the
product p · p2), a priori the signs of sin θs;t are not fixed. In
other words we have a freedom to choose the orientation of
the ŷ axis, which translates into a freedom of choosing
independent ηs;t ¼ �1 in defining

sin θs ¼ ηs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2θs

q
¼ ηs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðs; t; uÞp

2
ffiffiffi
s

p
pðsÞqðsÞ ð12Þ

and

sin θt ¼ ηt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 θt

q
¼ ηt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðt; s; uÞp

2
ffiffi
t

p
pðtÞqðtÞ ; ð13Þ

where ϕ is the Lorentz-invariant Kibble function [48],

ϕ≡ ϕðs; t; uÞ ¼ stu −m2ðM2 −m2Þ2
¼ ð2 ffiffiffi

s
p

sin θspðsÞqðsÞÞ2: ð14Þ

The boundaries of the physical regions are defined through
ϕðs; t; uÞ ¼ 0. From the 4 four-momenta we can define an
additional, fifth four-vector that we call the Kibble vector,4

Kμ ¼ ϵμαβγpα
3p

β
1p

γ
2: ð15Þ

We note that, since none of the momenta has a ŷ
component, in both the s- and the t-channel CM frames
K can only have a ŷ component. In the s-channel frame
then5

K ¼ ð0;− ffiffiffi
s

p
pðsÞqðsÞ sin θsŷÞ ¼ ð0;−ηs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðs; t; uÞ

p
ŷÞ;
ð16Þ

while in the t-channel frame we have

K0 ¼ ð0;− ffiffi
t

p
pðtÞqðtÞ sin θtŷÞ ¼ ð0;−ηt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðt; s; uÞ

p
ŷÞ:

ð17Þ

Covariant quantities in the s- and t-channel CM frames
may be related to each other by a Lorentz transformation. In
other words there exists a Λ satisfying

fp0
1; p

0
2; p

0
3; p

0
X; K

0gμ ¼ Λμ
νfp1; p2; p3; pX; Kgν; ð18Þ

where the four-vectors on the left-hand side (LHS) are
expressed in the s-channel, Eqs. (3) and (16), and the four-
vectors on the right-hand side (RHS) are expressed in the
t-channel, Eqs. (9) and (17). The transformation, Λ, can be
expressed as a series of simpler Lorentz transformations
written compactly as

Λ ¼ ΛtΛηtΛωΛηsΛs: ð19Þ

The transformations Λs and Λt, defined as

4Because of its transformation under parity, it is actually an
axial-vector, but we shall keep the name vector since no
confusion can arise.

5We are taking ϵ0123 ¼ 1.
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Λs ¼

0
BBB@

γðsÞ 0 0 −γðsÞβðsÞ
0 1 0 0

0 0 1 0

−γðsÞβðsÞ 0 0 γðsÞ

1
CCCA;

Λt ¼

0
BBB@

γðtÞ 0 0 þγðtÞβðtÞ
0 1 0 0

0 0 1 0

þγðtÞβðtÞ 0 0 γðtÞ

1
CCCA; ð20Þ

with

γðsÞ ¼ EXðsÞ
MX

and βðsÞ ¼ pðsÞ
EXðsÞ

; ð21Þ

are boosts along the ẑ-axis connecting the s- and t-channel
CM frames, respectively, with a frame in which XJ is at
rest. The transformations

Ληs ¼ diagð1; ηs; ηs; 1Þ; Ληt ¼ diagð1; ηt; ηt; 1Þ; ð22Þ

represent rotations of π radians around the ẑ-axis when ηs
and/or ηt are −1, and correspond to the identity trans-
formation when ηs and/or ηt areþ1. They take into account
the arbitrary phases introduced in Eq. (12). Finally,

Λω ¼

0
BBB@

1 0 0 0

0 cosω 0 − sinω

0 0 1 0

0 sinω 0 cosω

1
CCCA ð23Þ

is a rotation around the ŷ-axis by an angle ω given by

cosω ¼ nðs; tÞ
4
ffiffiffiffi
st

p
pðsÞpðtÞ and sinω ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðs; t; uÞp

2
ffiffiffiffi
st

p
pðsÞpðtÞ ;

ð24Þ

with

nðs; tÞ ¼ ðsþM2 −m2ÞðtþM2 −m2Þ − 2M2ðM2 −m2Þ:
ð25Þ

Figure 2 presents a schematic representation of each
transformation of the total Lorentz transformation in
Eq. (19). As we will see in Sec. III, the angle ω in
Eq. (24) will appear as the argument of additional
Wigner d-functions in the crossing relations when consid-
ering decays with spin.
It is straightforward to check that detðΛÞ ¼ 1, since all

the matrices appearing in the product in Eq. (19) have a unit
determinant. We note the determinant of Eq. (24) addi-
tionally gives the relation

n2ðs; tÞ þ 4M2ϕðs; t; uÞ ¼ λXðsÞλXðtÞ: ð26Þ

Computing explicitly the matrix elements of Λ, it can be
seen that the only finite ðs; tÞ point where the off-diagonal
ones vanish is s ¼ t ¼ M2−m2

2
.6 At this point,

FIG. 2. Schematic representation of the successive Lorentz transformations in Eq. (19) (for the case ηs ¼ ηt ¼ 1). The first and last
subfigures, respectively, correspond to the s- and t-channel CM frames given by Eqs. (3) and (9), and are shown in the left and right
subfigures of Fig. 1. In each of the intermediate figures the dashed lines correspond to the three-momenta prior to the applied Lorentz
transformation. The last step is not a transformation but a reversal of some of the shown momenta, to match Eq. (9) and Fig. 1 (right).

6This value corresponds to u ¼ 4m2. It can be seen that this
point lies in the boundary of the M → 3m decay region.
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Λ ¼ diagð1; ηsηt; ηsηt; 1Þ: ð27Þ

The most natural option is thus to take ηs ¼ ηtð¼ 1Þ,
because then we can always connect the transformation
between the two frames with the identity. This is indeed the
convention we use in this manuscript. In this case,

ffiffiffi
s

p
pðsÞqðsÞ sin θs ¼

ffiffi
t

p
pðtÞqðtÞ sin θt: ð28Þ

If we were to take ηs ¼ −ηt, then Λðs ¼ t ¼ M2−m2

2
Þ ¼

diagð1;−1;−1; 1Þ, which corresponds to a rotation of π
around the ẑ-axis. In any case, the final Khuri-Treiman
equations for the XJπ → ππ amplitudes shall be indepen-
dent of this convention.

III. HELICITY AMPLITUDES

We may denote the transition amplitude for the process
Eq. (1) by

AabcdðϵðpXÞ; p3;p1; p2Þ
¼ hπcðp1Þπdðp2ÞjT̂jXa

JðϵðpXÞÞπbðp3Þi; ð29Þ

which can be decomposed into s-channel helicity
amplitudes,

AðsÞabcd
λ ðs; t; uÞ ¼ AabcdðϵðsÞλ ðpXÞ; p3;p1; p2Þ; ð30Þ

determined by polarization tensor ϵðsÞλ ðpÞ and the helicity
projection of the decaying meson, λ ¼ −J;…; J in the

s-channel CM frame. For J ¼ 1, the components of ϵðsÞλ are
given by Eqs. (C3). Higher rank polarization tensors may
also be constructed from Eq. (C3) but analytic forms of
the polarization tensor will not be necessary for the
construction of amplitudes in the helicity representation
[cf. Eq. (C13)].
For physical decays the helicity amplitudes in Eq. (30)

are projected into a basis of definite isospin in the s-channel
through the projectors (here we assume X is an isovector for
concreteness; the isoscalar case is treated specifically in
Sec. V but for the purposes of discussing symmetries it is
identical to the I ¼ 1 amplitude):

Pð0Þ
abcd ¼

1

3
δabδcd;

Pð1Þ
abcd ¼

1

2
ðδacδbd − δadδbcÞ;

Pð2Þ
abcd ¼

1

2
ðδacδbd þ δadδbcÞ −

1

3
δabδcd ð31aÞ

with

AðIÞ
λ ðs; t; uÞ≡ 1

ð2I þ 1Þ
X
a;b;c;d

PðIÞ
abcdA

ðsÞabcd
λ ðs; t; uÞ: ð31bÞ

To avoid confusion with later discussion of crossing
symmetry, we define and use only isospin definite ampli-
tudes in the s-channel as in Eq. (31b). Finally, the isospin
amplitudes are expanded into partial waves as

AðIÞ
λ ðs; t; uÞ ¼

X∞
j≥jλj

ð2jþ 1Þdjλ0ðθsÞAðIÞ
jλ ðsÞ; ð32Þ

where θs ≡ θsðs; t; uÞ is the s-channel center-of-mass
scattering angle given in Eqs. (8) and (12), and djλ0ðθsÞ
are Wigner d-functions.7

A. Crossing symmetry

As previously mentioned, the crossing properties
between the s- and t-channel scattering (physical) regions
are needed as they will be the basis for the isobar
decomposition in Sec. V. To this end we define the
t-channel helicity amplitudes in analogy to Eq. (30) by

AðtÞacbd
λ0 ðt; s; uÞ ¼ Aabcdðϵ0ðtÞλ0 ðp0

XÞ; p0
3;p

0
1; p

0
2Þ: ð33Þ

We remind the reader that primes denote quantities evalu-

ated in the t-channel such that ϵ0ðtÞλ0 is the polarization tensor
for t-channel helicity λ0, with components also given by
Eqs. (C3), with jp⃗Xj → pðtÞ and EX → EXðtÞ. We also note
that Eq. (33) is a definition, and that the order of the
arguments and of the isospin indicesAðtÞacbd is an arbitrary
choice, made to simplify future formulas.
The amplitudes in Eqs. (30) and (33) then are related by

crossing symmetry [42–44,46], and we see that complica-
tions because of the spin arise due to the transformation of
the polarization vector. We may express the s-channel
polarization vector in the t-channel frame with the Lorentz

transformation identified in Eq. (19), ϵ0ðsÞλ ¼ ΛϵðsÞλ as
discussed in Sec. II. However, this is not the same as
the polarization vector initially defined in the t-channel,

ϵ0ðtÞλ0 , because unlike the momenta four-vectors, there is
additional dependence on the helicities, λ and λ0, which are
defined with respect to their original scattering kinematics
and require an additional transformation. Thus with our
conventions and definitions, the crossing relation reads

7For completeness, we specify that our convention for the latter
are such that the rotation operator matrix elements are

DðjÞ
m0mðα; β; γÞ ¼ hjm0jRðα; β; γÞjjmi

¼ hjm0je−iαĴz e−iβĴye−iγĴz jjmi
¼ e−iαm

0
djm0mðβÞe−iγm:

For instance, d101ðβÞ ¼ sin β=
ffiffiffi
2

p
.
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AðtÞacbd
λ0 ðt; s; uÞ ¼

X
λ

dJλλ0 ðωtÞAðsÞabcd
λ ðs; t; uÞ ð34aÞ

or, equivalently,

AðsÞabcd
λ ðs; t; uÞ ¼

X
λ0
ð−1Þλ0−λdJλ0λðωtÞAðtÞacbd

λ0 ðt; s; uÞ;

ð34bÞ

where the angle ωt ≡ ωðs; t; uÞ has been defined in
Eqs. (24). These relations were originally deduced by
Trueman and Wick [43] (see also Ref. [44] and, in
particular, Ref. [46]). They can also be directly deduced
from the definitions of the amplitudes, Eqs. (30) and (33).
Finally, we also mention that these relations are obtained
for some particular examples in the Appendix C in
connection with the relation between helicity amplitudes
and invariant functions.
The relation in Eq. (34) is between AðsÞabcd

λ ðs; t; uÞ and
AðtÞacbd

λ0 ðt; s; uÞ. Now, the next, crucial step is to relate

AðtÞacbd
λ ðt; s; uÞ with some AðsÞa0b0c0d0

λ ðt; s; uÞ pinning down
the appropriate prefactors, such that the expansion of

AðtÞacbd
λ0 ðt; s; uÞ into partial waves does not involve new

functions A0ðIÞ
jλ , but the already introduced s-channel partial

waves, AðIÞ
jλ . With our conventions, the sought relation is

AðtÞacbd
λ0 ðt; s; uÞ ¼ ð−1Þλ0AðsÞacbd

λ0 ðt; s; uÞ: ð35Þ

The proof of this relation, starting from the definitions of

AðsÞ
λ and AðtÞ

λ0 , is given in Appendix A. In Appendix C the
relation between helicity amplitudes and invariant func-
tions is discussed, where this expression is explicitly cross-
checked for particular XJ → 3π decays. Putting together
Eqs. (34) and (35), we have the t-channel helicity ampli-
tude crossing relation

AðsÞabcd
λ ðs; t; uÞ ¼

X
λ0
ð−1ÞλdJλ0λðωtÞAðsÞacbd

λ0 ðt; s; uÞ: ð36Þ

With respect to the amplitude on the left, that on the right
has two indices (b and c) and two Mandelstam variables (s
and t) swapped. Using Eq. (40), the analogous relation for
the u-channel can be written as

AðsÞabcd
λ ðs; t; uÞ ¼

X
λ0
ð−1Þλ0dJλ0λðωuÞAðsÞadcb

λ0 ðu; t; sÞ;

ð37Þ

where ωuðs; t; uÞ≡ ωðs; u; tÞ. Acting on both sides of
Eqs. (36) and (37) with the isospin projectors
[cf. Eq. (31)] gives us the crossing relations needed for
the isobar expansion.

B. Discrete symmetries

Here we discuss additional symmetries that serve to
constrain the helicity amplitudes. First, the parity relation
for helicity amplitudes of definite isospin is [42]

AðIÞ
−λðs; t; uÞ ¼ η3πηXð−1ÞλAðIÞ

λ ðs; t; uÞ; ð38Þ

where the naturality, ηX ¼ Pð−1ÞJ depends on the total
spin, J, and parity quantum number, P, of the decaying
particle, and ηπ ¼ −1. This relates amplitudes of opposed
helicities such that only J or J þ 1 helicity amplitudes are
independent for natural and unnatural decays, respectively.
Thus we may choose to consider only those 0 ≤ λ ≤ J.
Next, because the sum over index j in Eq. (32) represents

the total angular momentum of the initial (XJπ) and final
(ππ) states, it is restricted, at least, to values which satisfy
Bose symmetry, jþ I ¼ even. From Eqs. (8) and (12), we
see that

cos θsðs; u; tÞ ¼ − cos θsðs; t; uÞ and

sin θsðs; u; tÞ ¼ sin θsðs; t; uÞ; ð39Þ

which imply

θsðs; u; tÞ ¼ π − θsðs; t; uÞ: ð40Þ

Therefore, we can write

AðIÞ
λ ðs; u; tÞ ¼

X
j

ð2jþ 1Þdjλ0ðπ − θsðs; t; uÞÞAðIÞ
jλ ðsÞ

¼ ð−1ÞλþI
X
j

ð2jþ 1Þdjλ0ðθsðs; t; uÞÞAðIÞ
jλ ðsÞ;

ð41Þ

this is

AðIÞ
λ ðs; u; tÞ ¼ ð−1ÞλþIAðIÞ

λ ðs; t; uÞ ð42aÞ

or, in terms of the amplitudes of Eq. (30),

AðsÞabcd
λ ðs; u; tÞ ¼ ð−1ÞλAðsÞabdc

λ ðs; t; uÞ: ð42bÞ

IV. KINEMATIC SINGULARITIES
AND CONSTRAINTS

The identification of kinematic singularities is particu-
larly important within the KT formalism as the unitarity
equations involve an analytic continuation between the
s- and t-channel physical regions as well as the three-body
decay region. Furthermore, unitarity is easily imposed
within a dispersive approach, and thus kinematical
singularity-free (KSF) amplitudes are best suited for our
purposes.

KHURI-TREIMAN EQUATIONS FOR 3π DECAYS OF … PHYS. REV. D 101, 054018 (2020)

054018-7



The construction of KSF helicity amplitudes has been
the focus of many papers in the past [44,49–56].
(See further discussions in Refs. [57,58].) In particular,
Refs. [49,54] show that all singularities arising from the
kinematics of the reaction can be identified by the analytic
structure of the crossing relation, Eq. (34). Here we will
present results for use in the derivation of KT equations,
and we refer to the literature for a more complete discussion
of kinematic singularities.
To motivate the systematic construction of amplitudes

within the Khuri-Treiman framework for the XJ → 3π
reaction with arbitrary quantum numbers, we demonstrate
this process for two cases of interest: the a1ðJPC ¼ 1þþÞ
and π2ðJPC ¼ 2−þÞ. By using the crossing relation for
helicity amplitudes to identify kinematic singularities, we
alleviate the need to write amplitudes in terms of general
Lorentz covariant structures which can prove nontrivial and
unwieldy for particles with spin. Connections to the
conventional method of identifying kinematic singularities,
i.e., by matching to Lorentz invariant amplitudes, are
illustrated in Appendix C.

A. Example: a1(JPC = 1+ + )

As mentioned above, the starting point given a set of
quantum numbers, JPC, for the decaying particle is the
crossing relation, Eq. (34). Using the parity relation,
Eq. (38), with JP ¼ 1þ we see the process, a1π → ππ,
has only two independent helicity amplitudes for which we
choose λ ¼ 0;þ1. This allows us to write Eq. (34) com-
pactly as (we remove isospin indices as the kinematic
singularities do not depend on the isospin projection)

 ffiffiffi
2

p
AðsÞ

þ ðs; t; uÞ
AðsÞ

0 ðs; t; uÞ

!
¼
�
cosω − sinω

sinω cosω

�

×

 ffiffiffi
2

p
AðtÞ

þ ðt; s; uÞ
AðtÞ

0 ðt; s; uÞ

!

≡ Cðs; tÞ
 ffiffiffi

2
p

AðtÞ
þ ðt; s; uÞ

AðtÞ
0 ðt; s; uÞ

!
; ð43Þ

where the angle ω is given by Eq. (24). We now define

AðsÞ
λ ðs; t; uÞ ¼ Kλðs; tÞÂðsÞ

λ ðs; t; uÞ; ð44Þ

such that ÂðsÞ
λ has only dynamical singularities, with the

functionKλðs; tÞ factoring out the kinematic singularities in
direct and cross-channel variables. With these functions, we
construct the diagonal kinematic function matrix Kðs; tÞ by

Kðs; tÞ ¼ diagðKþðs; tÞ; K0ðs; tÞÞ: ð45aÞ

Then, inserting Eq. (44) into Eq. (43), we have

 ffiffiffi
2

p
ÂðsÞ

þ ðs; t; uÞ
ÂðsÞ

0 ðs; t; uÞ

!
¼ K−1ðs; tÞCðs; tÞKðt; sÞ

×

 ffiffiffi
2

p
ÂðtÞ

þ ðt; s; uÞ
ÂðtÞ

0 ðt; s; uÞ

!
: ð45bÞ

Now we want to determine the functions Kλ such that, by
construction, the vectors on the LHS and RHS in Eq. (45b)
have no kinematic singularities, for which the matrix
product must then also be kinematic-singularity-free.
Using Eqs. (24), we identify

Kðs; tÞ ¼ diagðs−1=2 sin θsλ1=2π ðsÞ; λ−1=2X ðsÞÞ
¼ λ−1=2X ðsÞdiagð2

ffiffiffiffi
ϕ

p
; 1Þ; ð46Þ

such that the elements of the crossing matrix ffiffiffi
2

p
ÂðsÞ

þ ðs; t; uÞ
ÂðsÞ

0 ðs; t; uÞ

!
¼ 1

λXðtÞ
�
nðs; tÞ −M
4Mϕ nðs; tÞ

�

×

 ffiffiffi
2

p
ÂðtÞ

þ ðt; s; uÞ
ÂðtÞ

0 ðt; s; uÞ

!
ð47aÞ

are regular in s and t. Additionally we may invert Eq. (47a)
and use Eq. (35) [together with Eq. (26)] to write every-
thing in terms of s-channel helicity amplitudes: ffiffiffi

2
p

ÂðsÞ
þ ðt; s; uÞ

ÂðsÞ
0 ðt; s; uÞ

!
¼ 1

λXðsÞ
�−nðs; tÞ −M

−4Mϕ nðs; tÞ

�

×

 ffiffiffi
2

p
ÂðsÞ

þ ðs; t; uÞ
ÂðsÞ

0 ðs; t; uÞ

!
: ð47bÞ

Except for the factor 1=λXðsÞ, the crossing matrix between
the LHS and the RHS has no kinematics singularities.
Because λXðsÞ → 0 as s → ðM �mÞ2, the RHS of
Eq. (47b) would develop a singularity at threshold and
pseudothreshold. Since the LHS is expanded into helicity
partial waves in the t variable, this singularity could not be

reabsorbed into the definition of ÂðsÞ
λ ðt; s; uÞ. Thus, in order

to have the LHS free of kinematic singularities, the

amplitudes ÂðsÞ
λ ðs; t; uÞ on the RHS cannot be independent

at these points. Specifically, in order to cancel this behavior,
they must obey the kinematic constraint:

½
ffiffiffi
2

p
nðs; tÞÂðsÞ

þ ðs; t; uÞ þMÂðsÞ
0 ðs; t; uÞ� ∝

s∼ðM�mÞ2
λXðsÞ:

ð48Þ
We note that the singularities in Eq. (46) are identical to

those tabulated in Refs. [44,59] for the a1 quantum
numbers. This includes powers of ðsin θsÞjλj corresponding
to the so-called “half-angle factors” which contain all
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singularities in the cross variable. The s-dependence addi-
tionally includes necessary powers of

ffiffiffi
s

p
to ensure the

factorization of Regge poles and correct behavior of partial
waves near threshold.
We now generalize the results obtained for the a1 case

before. For XJπ → ππ, we may write

Kλðs; tÞ ¼ ðs−1=2 sin θsÞjλjðλ1=2X ðsÞÞjλj−YXðλ1=2π ðsÞÞjλj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4ϕÞjλj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλXðsÞÞ−YX

q
; ð49Þ

where the exponent

YX ¼ J −
1

2
½1þ ηX� ð50Þ

depends on the spin and naturality of the decaying
particle to compensate for the possible mismatch between
factors of momentum at the XJπ vertex in the helicity and
LS bases.
For a crossing matrixCðs; tÞ given by the Trueman-Wick

crossing relation, Eq. (34), and kinematic-singularity
matrices Kðs; tÞ whose elements are given by Eq. (49),
the matrix

Ĉðs; tÞ ¼ K−1ðs; tÞCðs; tÞKðt; sÞ ð51aÞ

is free of kinematic singularities and is regular in all
variables (except at threshold and pseudothreshold where
additional constraints may apply) and satisfies

Ĉ−1ðs; tÞ ¼ Ĉðt; sÞ: ð51bÞ

B. Example: π2(JPC = 2− + )

The πJ family of mesons are of particular interest as
candidates for QCD structure beyond typical qq̄ states.
Although the π1 state is more established both theoretically
and experimentally as a spin-exotic hybrid candidate, we
focus on the π2 as a more illuminating example for its
nontrivial helicity structure.
As before, using the parity relation of Eq. (38), we

choose the three independent helicity amplitudes to corre-
spond to λ ¼ 0;þ1;þ2. Then the analogous expression to
Eq. (47b) for the π2 is

0
BB@

ÂðsÞ
2 ðt; s; uÞ

ÂðsÞ
1 ðt; s; uÞ

ÂðsÞ
0 ðt; s; uÞ

1
CCA ¼ Cðs; tÞ

0
BB@

ÂðsÞ
2 ðs; t; uÞ

ÂðsÞ
1 ðs; t; uÞ

ÂðsÞ
0 ðs; t; uÞ

1
CCA; ð52aÞ

where

C ¼ Cðs; tÞ ¼ Cðt; sÞ ¼

0
BB@

ð1þ cos2ωÞ=2 −ðsin 2ωÞ=2 ffiffiffiffiffiffiffiffi
3=8

p
sin2ω

−ðsin 2ωÞ=2 1 − 2cos2ω
ffiffiffiffiffiffiffiffi
3=8

p
sin 2ωffiffiffiffiffiffiffiffi

3=2
p

sin2ω
ffiffiffiffiffiffiffiffi
3=2

p
sin 2ω ð3cos2ω − 1Þ=2

1
CCA: ð52bÞ

Directly from Eq. (49), with ηπ2 ¼ −1, we write

Ks ≡ Kðs; tÞ ¼ λ−1X ðsÞdiagð4ϕ; 2
ffiffiffiffi
ϕ

p
; 1Þ ð53Þ

and verify that [with nst ≡ nðs; tÞ and λsX ≡ λXðsÞ]

Ĉðt; sÞ ¼ K−1
t CKs ¼

1

λ2XðsÞ

0
BB@

ðλsXλtX þ n2stÞ=2 −Mnst
ffiffiffiffiffiffiffiffi
3=8

p
M2

−4Mϕnst ð4M2ϕ − nstÞ
ffiffiffiffiffiffiffiffi
3=2

p
Mnst

8
ffiffiffi
6

p
M2ϕ2 2

ffiffiffi
6

p
Mϕnst ðnst − 2M2ϕÞ

1
CCA ð54Þ

is free of singularities except at (pseudo)threshold. The
factor of λ2XðsÞ in front gives the kinematic constraints
analogous to Eq. (48) for the π2 as s → ðM �mÞ2. It is
worth noting that the matrices in Eqs. (47b) and (54) are not
only free of singularities but are their own inverse up to the
interchange of s ↔ t. This is a manifestation of the
crossing property of Eq. (35) whereby helicities amplitudes
in different channels are related by the interchange of
variables.

C. Partial-wave expansion

In the previous subsection we have derived the KSF
helicity amplitudes ÂðsÞ

λ ðs; t; uÞ in terms of the original ones,

AðsÞ
λ ðs; t; uÞ; see, e.g., Eqs. (44) and (46). In this section,

building upon the previous examples, we discuss additional
steps required to define KSF partial wave amplitudes.
Because the kinematic structure is independent of iso-

spin we trivially extend these results to the s-channel
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helicity amplitudes of definite isospin in Eq. (31b), where
analogous to Eq. (44)

AðIÞ
λ ðs; t; uÞ ¼ Kλðs; tÞÂðIÞ

λ ðs; t; uÞ ð55Þ

with the kinematic function being exactly the same as in
Eq. (49). These amplitudes may then be expanded into
helicity partial waves as in Eq. (32).
We recall that Eq. (49) includes appropriate half-angle

factors which can be pulled out from the Wigner-d
function, by defining the reduced d-function d̂jλ0ðθsÞ as

djλ0ðθsÞ≡ ðsin θsÞjλjd̂jλ0ðθsÞ: ð56Þ

However, because of the denominator in its definition,
Eq. (8), cos θs becomes singular as s approaches (pseudo)
threshold at ðM �mÞ2. Specifically, it develops a square-

root type singularity proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλXðsÞλπðsÞÞj−jλj

q
.

Writing ÂðIÞ
λ ðs; t; uÞ from Eq. (44), we explicitly factor this

pole as

ÂðIÞ
λ ðs; t;uÞ ¼

X∞
j≥jλj

ð2jþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλXðsÞλπðsÞÞj−jλj

q

×
djλ0ðθsÞAðIÞ

jλ ðsÞ
Kλðs; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλXðsÞλπðsÞÞj−jλj

q

¼
X∞
j≥jλj

ð2jþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλXðsÞλπðsÞÞj−jλj

q

×

�
djλ0ðθsÞ
sinjλjθs

�� ffiffiffiffiffiffi
sjλj

p
AðIÞ
jλ ðsÞ

ðλ1=2X ðsÞÞj−YXðλ1=2π ðsÞÞj
�
: ð57Þ

We stress that the sum over j is restricted to values j ≥ jλj,
and that this restriction is implicitly carried over all
formulas below involving j and λ.
Since ÂðIÞ

λ ðs; t; uÞ is KSF, and so is the factor outside the
brackets in Eq. (57), we deduce that the expressions in
brackets must also be KSF. We thus define the KSF partial

wave helicity amplitude, ÂðIÞ
jλ ðsÞ, as

AðIÞ
jλ ðsÞ ¼

ðλ1=2X ðsÞÞj−YXðλ1=2π ðsÞÞjffiffiffiffiffiffi
sjλj

p ÂðIÞ
jλ ðsÞ: ð58Þ

The partial wave amplitude, in fact, is expected to behave
as [59]

AðIÞ
jλ ðsÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
λLi
X ðsÞ

q ffiffiffiffiffiffiffiffiffiffiffiffi
λ
Lf
π ðsÞ

q
ð59Þ

near threshold where Li and Lf are the minimal orbital
angular momentum allowed for the helicity/parity combi-
nation of the Xπ and ππ states, respectively. This is the

so-called angular momentum barrier factor for particles
with spin which depends on the spin of the partial wave,
corrected by the additional power YX in the Kλ function in
Eq. (49). Here we note that there are in fact three different
threshold points associated with the behavior in Eq. (59):
ðM �mÞ2 and 4m2 which may give rise to kinematic
square-root type singularities. The orbital angular momen-
tum of the final ππ system is clearly Lf ¼ j, which agrees
with Eqs. (59) and (58). The orbital angular momentum of
the initial state with total angular momentum j, however,
obeys

Li ≥ jj − YXj; ð60Þ

where the minimally allowed Li for j < J − 1ðJÞ for
natural (unnatural) decays, respectively, is different from
those with j ≥ J − 1ðJÞ. Examining Eq. (58) we see we
need to account for this dependence.
We combine the half-angle factors and the behaviors in

Eqs. (58) and (60) to define the kinematic function for KSF
partial waves,

Kjλðs; θsÞ ¼ ðs−1=2 sin θsÞjλjðλ1=2X ðsÞÞjj−YX jðλ1=2π ðsÞÞj

¼ ð2
ffiffiffiffi
ϕ

p
Þjλj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλXðsÞλπðsÞÞj−jλj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λXðsÞYj

q
;

ð61aÞ

with the exponent Yj now having the additional j depend-
ence for the lowest partial wave [cf. Eq. (50)]:

Yj ¼ jj − YXj − j: ð61bÞ

In general then, we may write the fully factorized
amplitude as a sum of s-channel partial waves compactly
as

AðIÞ
λ ðs; t; uÞ ¼

X∞
j≥jλj

ð2jþ 1ÞKjλðs; θsÞd̂jλ0ðθsÞÂðIÞ
jλ ðsÞ; ð62Þ

where we see KSF partial-wave amplitudes given by

ÂðIÞ
jλ ðsÞ ¼

1

2

Z
d cos θ0ðsin2θ0Þjλjd̂jλ0ðθ0Þ

×
AðIÞ

λ ðs; tðs; θ0Þ; uðs; θ0ÞÞ
Kjλðs; θ0Þ

ð63Þ

are left as dynamical functions to be constrained by the KT
equations in the following section. We note here that
angular momentum conservation restricts j ≥ jλj and we
thus do not need to consider cases with j < jλj.
To end our discussion about the partial wave expansion,

we note that the kinematical constraint in Eq. (48) is
expressed in terms of the KSF full amplitude, Â, and, upon
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projection of the LHS into helicity partial waves [Eq. (32)],
can be expressed as kinematical constraints for the latter.
When this is done, it is easy to check that Eq. (48) is
completely equivalent, up to some redefinitions, to the
kinematical constraints obtained in Ref. [57]. Furthermore,
the fulfillment of the kinematical constraints by the partial
waves can modify the definition of the KSF isobar in

Eq. (58), ÂðIÞ
jλ , for lower (in j) partial waves, and these cases

must be specifically checked.

V. KHURI-TREIMAN EQUATIONS

At the heart of the KT formalism is the isobar decom-
position which truncates the infinite series of s-channel
helicity partial wave amplitudes in favor of a finite series of
isobar amplitudes in each channel. Later, elastic (ππ → ππ)
unitarity is imposed on each channel simultaneously. To
treat all possible decays, XJ → 3π, tabulated in Table I, we
consider two cases based on their isospin structure. Specific
implementation between different mesons of the same
isospin amounts only to different parity constraints as seen
in Eq. (38).

A. Isoscalar decay (ωJ=ϕJ and hJ)

1. Isobar decomposition

We start with the case where the decaying particle XJ has
total isospin, I ¼ 0, and therefore does not have additional
complications from different isospin projections as the only
allowed intermediate states must be isospin-1. In other
words, for the s-channel scattering process XJðpÞπðp3Þ →
πðp1Þπðp2Þ, the only allowed amplitudes are

AðsÞ
λ ðs; t; uÞ≡X

a;b;c

PabcA
ðsÞabc
λ ðs; t; uÞ; ð64Þ

where Pabc ¼ −iϵabc=
ffiffiffi
2

p
is the antisymmetric isospin

factor corresponding to the coupling of three isospin-1
pions to the isoscalar initial state. In Sec. III we discussed
the crossing symmetry relations for the case of an isovector
decay. For the case we are discussing here, the formulas
equivalent to Eqs. (34) and (35) are

AðsÞabc
λ ðs; t; uÞ ¼

X
λ0
ð−1Þλ0−λdJλ0λðωÞAðtÞbac

λ0 ðt; s; uÞ ð65aÞ

and

AðtÞbac
λ ðt; s; uÞ ¼ ð−1ÞλAðsÞbac

λ ðt; s; uÞ: ð65bÞ

Inserting these into Eq. (64), we get

Aλðs; t; uÞ ¼ ð−1Þλþ1
X
λ0
dJλ0λðωÞAλ0 ðt; s; uÞ: ð66Þ

The full amplitude, Aλðs; t; uÞ, is projected into partial
waves as in Eq. (32), but with the isoscalar decay condition
we may drop the superscript isospin index

Aλðs; t; uÞ ¼
X
j≥jλj

ð2jþ 1Þdjλ0ðθsÞAjλðsÞ: ð67Þ

Now we need to perform the KT decomposition of this full
amplitude. As said, this consists of substituting the infinite
sum of helicity partial waves above by three truncated sums
of helicity isobars. The expansion reads

Aλðs; t; uÞ ¼ Āλðs; t; uÞ þ
X
λ0
ð−1Þλþ1dJλ0λðωtÞĀλ0 ðt; s; uÞ

þ
X
λ0
ð−1Þλ0þ1dJλ0λðωuÞĀλ0 ðu; t; sÞ; ð68Þ

where, analogous to Eq. (67), each of the “amplitudes”
Āλðs; t; uÞ is defined as a truncated sum of isobars ajλðsÞ,

Āλðs; t; uÞ ¼
Xjmax

j≥jλj
ð2jþ 1Þdjλ0ðθsÞajλðsÞ: ð69Þ

In the following, we make some points about this
expansion.
First, by virtue of Eq. (69), the isobar sums in Eq. (68)

must be truncated at the same jmax for each channel in
order to maintain crossing symmetry. By adding the t- and
u-channel isobar expansions, we recover some of the
singularity structure in these variables corresponding to
exchange physics that is lost when the infinite sum in
Eq. (32) is truncated.
Second, the cross-channel isobar terms must include the

additional rotation by ωt and ωu as per Eq. (34) for particles
with spin. From the discussion in Sec. III, it is intuitive why
Eq. (68) restores crossing symmetry. For completeness,
though, we present a detailed proof in Appendix B. We
stress here that any KT-like expansion which does not take
into account this structure does not preserve crossing
symmetry, contrary to the original program.
Third, we make the necessary distinction that the isobar

amplitudes are not the same as the partial wave amplitudes
of Eq. (32). By assumption, each isobar amplitude has only
a RHC opening from the two pion threshold as opposed to
both LHC and RHC structures in the whole partial wave.

TABLE I. Allowed quantum numbers of XJ in XJ → 3π
decays.

PC Jmin I Notation (for I ¼ 0, 1)

þþ 1 Odd aJ
þ− 1 Even hJ
−þ 0 Odd πJ
−− 0 Even ωJ=ϕJ
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This is equivalent to assuming that the (reduced) isobar
amplitude satisfies only the single-variable dispersion
relation (shown here as unsubtracted but in general may
have additional polynomial dependence),

âjλðsÞ ¼
1

π

Z
∞

4m2

ds0
Disc âjλðs0Þ
s0 − s − iϵ

; ð70Þ

as opposed to the more general dispersion relation for the
partial wave amplitude that involves also an integral along
the LHC.
To make this difference more concrete, we write out the

full expansion in isobar amplitudes,

Aλðs; t; uÞ

¼
Xjmax

j≥jλj
ð2jþ 1Þdjλ0ðθsÞajλðsÞ

þ
X
λ0
ð−1Þλþ1dJλ0λðωtÞ

�Xjmax

j0≥jλ0j
ð2j0 þ 1Þdj0λ00ðθtÞaj0λ0 ðtÞ

�

þ
X
λ0
ð−1Þλ0þ1dJλ0λðωuÞ

�Xjmax

j0≥jλ0j
ð2j0 þ 1Þdj0λ00ðθuÞaj0λ0 ðuÞ

�
;

ð71Þ

and project out the jth partial wave,

AjλðsÞ ¼
1

2

Z
d cos θ0djλ0ðθ0ÞAλðs; tðs; θ0Þ; uðs; θ0ÞÞ

¼ ajλðsÞ þ ð−1Þλþ1

�X
λ0j0

ð2j0 þ 1Þ

×
Z

d cos θ0djλ0ðθ0ÞdJλ0λðω0
tÞdj

0
λ00ðθ0tÞaj0λ0 ðt0Þ

�
;

ð72Þ

where t0 ¼ tðs; θ0Þ and θ0t ¼ θtðs; θ0Þ according to Eq. (11).
We see isobars in both the direct and the cross channels
must contribute to the full partial wave. Additionally, we
see Eq. (71) satisfies Bose symmetry—by exchanging u
and t, one gets a relative factor ð−1ÞIþλ as Eq. (42a), with
I ¼ 1 in this case.
Physically these isobar amplitudes may be thought of in

terms of sequential two-body decays, with ajλðsÞ repre-
senting the particle XJ decaying with helicity-λ into an
intermediate two-pion state of spin-j and a spectator
pion. Crossing and Bose symmetry allow for every such
intermediate state to propagate in each of the s-, t-, and
u-channels thus motivating the expansion in Eq. (71).
Last, from the definition Eq. (69), we see that the isobar

partial wave amplitudes have the same kinematic singu-
larities as the partial wave amplitudes of Eq. (32), as

discussed in Sec. IV. This means we can define KSF isobar
amplitudes exactly as in Eq. (63). The t- and u-channel
terms in Eq. (71) seemingly introduce kinematic singular-
ities in the cross-channel variables which are not present in
our previous discussion of KSF partial waves. Specifically,
looking at only the t-channel piece of Eq. (71) together with
Eq. (44),

Âλðs; t; uÞ ∝ ½K−1
jλ ðs; tÞdJλ0λðωtÞKj0λ0 ðt; sÞ�d̂j

0
λ00ðθtÞâj0λ0 ðtÞ:

ð73Þ

We see the terms in square brackets are the elements of the
KSF matrix Ĉðs; tÞ in Eq. (51a). Similarly the u-channel
term is proportional to the elements of Ĉðs; uÞ. This means
the kinematic singularities introduced by cross-channel
isobars are taken care of by the crossing matrix such that
Eq. (72) still satisfies Eq. (63).

2. Unitarity relations

Unitarity serves as a constraint on the discontinuity
across the RHC of each isobar in Eq. (70). Specifically, at
fixed t and u we compute the discontinuity:

Disc Aλðs; t; uÞ ¼
1

2i
½Aλðsþ iϵ; t; uÞ −Aλðs − iϵ; t; uÞ�

ð74Þ

by assuming a two-pion intermediate state,

XJðpXÞπðp3Þ → πðq1Þπðq2Þ → πðp1Þπðp2Þ; ð75Þ

and integrating over the allowed two-body phase space.
This amounts to calculating

Disc AλðpXp3 → p1p2Þ

¼ ρðsÞ
64π2

Z
dΩ0

sT �ð1Þðq1q2 → p1p2ÞAλðpXp3 → q1q2Þ

¼ ρðsÞ
64π2

Z
dΩ0

sT �ð1Þðs; t00; u00ÞAλðs; t0; u0Þ ð76Þ

from the isobar expanded amplitude, Eq. (71), with
t0 ¼ tðs; θ0sÞ, t00 ¼ tðs; θ00s Þ, and

T ðIÞðs; zsÞ ¼ 32π
X∞
l¼0

ð2lþ 1ÞPlðcos θsÞτðIÞl ðsÞ ð77Þ

is the standard decomposition of the elastic pion scat-

tering amplitude into partial waves, τðIÞl ðsÞ, and ρðsÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

p
is the two-body phase space function. The

integration in Eq. (76) is over the solid angle dΩ0
s ¼

sin θ0sdθ0sdϕ0 of the intermediate state momenta related by
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cos θ00s ¼ cos θs cos θ0s þ cosϕ0 sin θs sin θ0s: ð78Þ

Inserting Eqs. (71) and (77) into Eq. (76), carrying out
the angular integration, and taking the partial wave pro-
jection, we arrive at the unitarity equation

Disc ajλðsÞ ¼ ρðsÞτ�ð1Þj ðsÞ
�
ajλðsÞ þ ð−1Þλþ1

X
λ0j0

ð2j0 þ 1Þ

×
Z

d cos θ0djλ0ðθ0ÞdJλ0λðω0
tÞdj

0
λ00ðθ0tÞaj0λ0 ðt0Þ

�
:

ð79Þ

In terms of KSF functions, we write the unitarity relation in
the compact form,

Disc âjλðsÞ ¼ ρðsÞτ�ð1Þj ðsÞ½âjλðsÞ þ ãjλðsÞ�; ð80aÞ

where

ãjλðsÞ ¼ ð−1Þλþ1
X
λ0j0

ð2j0 þ 1Þ
Z

d cos θ0Ĉjj0
λλ0 ðs; θ0Þd̂jλ0ðθ0Þ

× d̂j
0
λ00ðθ0tÞâj0λ0 ðt0Þ ð80bÞ

contains the three-body contribution from the cross channel
and is often referred to as the inhomogeneity of the KT
equation. The kernel function,

Ĉjj0
λλ0 ðs; θÞ ¼ ðsin2θÞjλj½K−1

jλ ðs; θÞdJλ0λðωtðs; θÞÞ
× Kj0λ0 ðtðs; θÞ; θtðs; θÞÞ�; ð81Þ

contains the appropriate combination of the crossing matrix
and factored out kinematic functions such that Eq. (80) is
free of all nondynamical singularities except at (pseudo)
threshold. We note that the kernel itself is a KSF quantity in
the scattering kinematics of Eq. (1). Complications may
arise in numerical solutions of the KT equations near the
three threshold points identified in Sec. IV due to a
necessary contour deformation to analytically continue
the kinematics between the direct and cross channels as
discussed in Appendix D and references therein.
We see the simplest case is that considered in

Refs. [19,20] for the JPC ¼ 1−− decay, in which when
truncated to jmax ¼ 1 gives the only nonzero inhomoge-
neity kernel, C11

11ðs; θÞ ¼ sin2 θ. Using the parity relation
Eq. (38), the KT equations of Eq. (80) reduce to the
equations derived by the authors:

Disc âðsÞ ¼ ρðsÞτ�ð1Þ1 ðsÞ
h
âðsÞ

þ 3

2

Z
d cos θ0 sin2 θ0âðtðs; θ0ÞÞ

i
: ð82Þ

B. Isovector decay (aJ and πJ)

The derivation for the I ¼ 1 case proceeds very similar
as the isoscalar case except now we must allow the
possibility of intermediate states with I ¼ 0, 1, or 2. In
this case we write the isospin decomposition right away
with Eqs. (36) and (37)

AðsÞabcd
λ ðs; t; uÞ ¼ ĀðsÞabcd

λ ðs; t; uÞ
þ
X
λ0
ð−1ÞλdJλ0λðωtÞĀðsÞacbd

λ0 ðt; s; uÞ

þ
X
λ0
ð−1Þλ0dJλ0λðωuÞĀðsÞcbad

λ0 ðu; t; sÞ

ð83Þ

and project out the Ith isospin projection in the s-channel

with Eq. (31b) and with similar definitions for ĀðIÞ
λ ðs; t; uÞ.

Then the isobar decomposition for the isovector case is

AðIÞ
λ ðs; t; uÞ

¼ ĀðIÞ
λ ðs; t; uÞ þ

X
λ0
ð−1ÞλdJλ0λðωtÞĀðI0Þ

λ0 ðt; s; uÞ 1
2
CII0

þ
X
λ0
ð−1Þλ0dJλ0λðωuÞĀðI0Þ

λ0 ðu; t; sÞ 1
2
CII0 ð−1ÞIþI0 ; ð84Þ

where the coefficients CII0 are the elements of the isospin
crossing matrix:

1

2
CII0 ¼

X
a;b;c;d

1

2I þ 1
PðIÞ
abcdP

ðI0Þ
acbd ¼

0
BB@

1
3

1 5
3

1
3

1
2

− 5
6

1
3

− 1
2

1
6

1
CCA:

ð85Þ

In terms of isobar amplitudes,

AðIÞ
λ ðs; t; uÞ

¼
Xjmax

j≥jλj
ð2jþ 1Þdjλ0ðθsÞaðIÞjλ ðsÞ

þ
X
λ0j0I0

ð−1Þλð2j0 þ 1ÞdJλ0λðωtÞdj
0
λ00ðθtÞaðI

0Þ
j0λ0 ðtÞ

1

2
CII0

þ
X
λ0j0I0

ð−1Þλ0 ð2j0 þ 1ÞdJλ0λðωuÞdj
0
λ00ðθuÞaðI

0Þ
j0λ0 ðuÞ

×
1

2
CII0 ð−1ÞIþI0 ; ð86Þ

where the sums over j are restricted to jþ I, is even by
Bose symmetry. We additionally see the appropriate
relative factor of ð−1ÞλþI between the cross-channel sums.
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The isospin-projected partial wave amplitude is then related to the isobar amplitudes by

AðIÞ
jλ ðsÞ ¼ aðIÞjλ ðsÞ þ ð−1Þλ

X
λ0j0I0

�
ð2j0 þ 1Þ 1

2
CII0

Z
d cos θ0djλ0ðθ0ÞdJλ0λðω0

tÞdj
0
λ00ðθ0tÞaðI

0Þ
j0λ0 ðt0Þ

�
: ð87Þ

Now to derive the KT equations for the isoscalar case, we write the analogous unitarity relation to Eq. (76),

Disc AðIÞ
λ ðs; t; uÞ ¼ ρðsÞ

64π2

Z
dΩ0

sT �ðIÞðs; t00; u00Þ ×AðIÞ
λ ðs; t0; u0Þ; ð88Þ

where the only difference is that isospin conservation requires the intermediate ππ amplitude to have the same isospin
projection as the total amplitude for I ¼ 0, 1, or 2. Then carrying out the angular integration and taking the partial-wave
projection of Eq. (88), the unitarity relation for the isovector amplitude is

Disc aðIÞjλ ðsÞ ¼ ρðsÞτ� ðIÞ
j ðsÞ

�
aðIÞjλ ðsÞ þ ð−1Þλ

X
I0λ0j0

ð2j0 þ 1Þ 1
2
CII0

Z
d cos θ0djλ0ðθ0ÞdJλ0λðω0

tÞdj
0
λ00ðθ0tÞaðI

0Þ
j0λ0 ðt0Þ

�
; ð89Þ

which, as expected, is similar to Eq. (79) with an additional sum over the cross-channel isospin. Finally, in terms of KSF
quantities, we generalize Eq. (80a) as

Disc âðIÞjλ ðsÞ ¼ ρðsÞτ� ðIÞ
j ðsÞ½âðIÞjλ ðsÞ þ ãðIÞjλ ðsÞ� ð90aÞ

for the inhomogeneity for isospin I given by

ãðIÞjλ ðsÞ ¼ ð−1Þλ
X
I0λ0j0

ð2j0 þ 1Þ 1
2
CII0

Z
d cos θ0Ĉjj0

λλ0 ðs; θ0Þd̂jλ0ðθ0Þd̂j
0
λ00ðθ0tÞâðI

0Þ
j0λ0 ðt0Þ; ð90bÞ

where the kernel function is independent of isospin and is
the same as Eq. (81).
We note Eqs. (90a) and (90b) reduce to the unitarity

equations for the ππ scattering case derived in Ref. [32]
when J ¼ 0. Additionally a similar isobar decomposition
is considered in Ref. [60] in the context of the a1 → 3π
decay. For this particular case, Eq. (90b) also connects
to Ref. [61].

VI. SUMMARY AND OUTLOOK

The KT formalism has recently acquired great impor-
tance, and it has been applied to study many reactions. In
view of this, in this manuscript we have generalized it to
make it usable in the decays of particles with arbitrary spin,
parity, and charge conjugation. To perform the KT decom-
position in a proper way, the crossing symmetry relation of
the helicity amplitudes has been carefully taken into
account. By analyzing the crossing matrix, we have also
been able to derive reduced helicity isobars which are free
of kinematic singularities, as well as the kinematic con-
straints that they must satisfy. We have then derived the
elastic ππ unitarity relations that the isobars must fulfill,
from which dispersion relations can be written in order to
solve the KT equations.
As mentioned in the Introduction, the generalization of

KT equations presented in this manuscript goes beyond a

purely theoretical exercise, and it can readily be applied to
study specific processes. Indeed, we are already working in
specific decays in this framework, to compare with the
available experimental information related to these decays,
as well as in connection with the discussion of the technical
aspects of the formalism sketched in Appendix D [62].
Because of its more immediate interest, we have focused

on the cases of isoscalar and isovector particles decaying
into three pions. The generalization to decays of particles
with I ¼ 2, 3 should be quite straightforward. Indeed, the
key step of our construction of KT equations is incorpo-
rating in the decomposition crossing relations, which are
easily generalized to other isospin values.
We also note that the formalism presented here does not

apply only to strong, isospin-conserving processes. It can
readily be applied to other non-isospin-conserving (either
strong or electroweak) reactions, where the amplitudes are
decomposed into isospin components by means of the
Wigner-Eckart theorem (see, e.g., Ref. [24]).

ACKNOWLEDGMENTS

M. A. and D.W. contributed equally to this work. This
work was supported by the U.S. Department
of Energy under Grants No. DE-AC05-06OR23177 and
No. DE-FG02-87ER40365, by the U.S. National
Science Foundation under Grant No. PHY-1415459, by

M. ALBALADEJO et al. PHYS. REV. D 101, 054018 (2020)

054018-14



the Ministerio de Ciencia, Innovación y Universidades
(Spain) under Grants No. FPA2016-77313-P and
No. FPA2016-75654-C2-2-P, by PAPIIT-DGAPA
(UNAM, Mexico) under Grant No. IA101819, by
CONACYT (Mexico) under Grants No. 251817,
No. 734789, and No. A1-S-21389, by the DFG
[Projektnummer 204404729—SFB 1044], and in part
through the Cluster of Excellence (PRISMA+EXC 2118/
1) within the German Excellence Strategy (Project ID
39083149). V. M. is supported by the Comunidad
Autónoma de Madrid through the Programa de
Atracción de Talento Investigador 2018 (Modalidad 1).

APPENDIX A: DERIVATION OF
CROSSING RELATION

In this Appendix we present a general derivation of
Eq. (35) which relates the helicity amplitudes defined
in the different scattering frames by the permutation of
Mandelstam variables,

AðtÞacbd
λ ðt; s; uÞ ¼ ð−1ÞλAðsÞacbd

λ ðt; s; uÞ: ðA1Þ

We recall that the amplitudes are defined by the represen-
tations of the four-momenta and polarization vectors in
their respective frame as in Eqs. (30) and (33). We make
use of the expressions of the momenta of the particles
expressed in the s- and t-channel frames, Eqs. (3) and (9),
to first relate the arguments of the RHS in Eq. (A1), in each
frame. The usual polarization vectors have components
[see Eq. (C3)] which satisfy

ϵ0ðtÞ� ðs; t; uÞ ¼ ϵðsÞ� ðt; u; sÞ and ϵ0ðtÞ0 ðs; t; uÞ ¼ ϵðsÞ0 ðt; u; sÞ;
ðA2Þ

and, since the polarization tensor of any order J > 1 can be
built from the above polarization vectors [see, e.g.,
Eq. (C13) for J ¼ 2], the relations above are more gen-
erally

ϵ0 ðtÞλ ðs; t; uÞ ¼ ϵðsÞλ ðt; u; sÞ: ðA3Þ

Now, we relate the momenta p0
iðs; t; uÞ (see Fig. 1) with the

analogous momenta piðt; u; sÞ in the s-channel. For the
initial state pion, p0

1ðs; t; uÞ, we find

p0
1ðs; t; uÞ ¼ ð−EπðtÞ; pðtÞẑÞ ¼ −p3ðt; u; sÞ: ðA4Þ

To relate the final state momenta, p0
2;3ðs; t; uÞ, in the

t-channel with the four-vectors p2;1ðt; u; sÞ in the s-channel,
we must first relate q̂0tðs; t; uÞ with q̂sðt; u; sÞ. From their
definitions [Eqs. (4), (10), and (12)], it can be shown that

q̂0tðs; t; uÞ ¼ − sin θtðs; t; uÞx̂þ cos θtðs; t; uÞẑ
¼ − sin θsðt; u; sÞx̂ − cos θsðt; u; sÞẑ
¼ −q̂sðt; u; sÞ; ðA5Þ

and therefore the momenta satisfy

p0
3ðs; t; uÞ ¼ −

� ffiffi
t

p
2
; qðtÞq̂0tðs; t; uÞ

�
¼ −

� ffiffi
t

p
2
;−qðtÞq̂sðt; u; sÞ

�
¼ −p2ðt; u; sÞ ðA6aÞ

and

p0
2ðs; t; uÞ ¼

� ffiffi
t

p
2
;−qðtÞq̂0tðs; t; uÞ

�
¼
� ffiffi

t
p
2
;þqðtÞq̂sðt; u; sÞ

�
¼ p1ðt; u; sÞ: ðA6bÞ

Combining Eqs. (A3)–(A5) with the definitions Eq. (30) and (33), we have

AðtÞacbd
λ ðt; s; uÞ ¼ Aabcdðϵ0 ðtÞλ ðs; t; uÞ; p0

1ðs; t; uÞ; p0
2ðs; t; uÞ; p0

3ðs; t; uÞÞ
¼ AabcdðϵðsÞλ ðt; u; sÞ;−p3ðt; u; sÞ;þp1ðt; u; sÞ;−p2ðt; u; sÞÞ
¼ AacbdðϵðsÞλ ðt; u; sÞ;þp2ðt; u; sÞ;þp1ðt; u; sÞ;þp3ðt; u; sÞÞ
¼ AacdbðϵðsÞλ ðt; u; sÞ;þp1ðt; u; sÞ;þp2ðt; u; sÞ;þp3ðt; u; sÞÞ
¼ AðsÞacdb

λ ðt; u; sÞ ¼ ð−1ÞλAðsÞacbd
λ ðt; s; uÞ; ðA7Þ

which is the result in Eq. (35). In the intermediate steps above we have used the additional result regarding the interchange
of pion isospin indices:

Aabcdðϵ; p1; p2; p3Þ ¼ Aacbdðϵ;−p3; p2;−p1Þ ¼ Aabdcðϵ; p2; p1; p3Þ: ðA8Þ
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APPENDIX B: PROOF OF CROSSING
SYMMETRY OF KT DECOMPOSITION

The KT formalism aims to restore the crossing symmetry
of the full amplitude using a decomposition into a truncated
sum of isobar amplitudes. As such we have paid particular
attention to the crossing relations between helicity ampli-
tudes in different scattering frames in Sec. III. The resulting

isobar decomposition in Eq. (68) presents the combination
of truncated isobar sums in each channel: Āλðs; t; uÞ,
Āλðt; s; uÞ, Āλðu; t; sÞ that satisfies the crossing symmetry
relation in Eq. (66). This Appendix provides an explicit
proof of this fact.
We start by inserting the definition (68) into the RHS of

Eq. (66), using ωtðs; t; uÞ ¼ ωtðt; s; uÞ:

X
λ0
dJλ0λðωtÞAλ0 ðt; s; uÞ ¼ ð−1Þ1þλ

X
λ0
dJλ0λðωtðs; t; uÞÞĀλ0 ðt; s; uÞ

þ
X
λ00

X
λ0
ð−1Þλ0þλdJλ00λ0 ðωtðs; t; uÞÞdJλ0λðωtðs; t; uÞÞĀλ00 ðs; t; uÞ

þ
X
λ00

X
λ0
ð−1Þλ00þλdJλ00λ0 ðωuðt; s; uÞÞdJλ0λðωtðs; t; uÞÞĀλ00 ðu; s; tÞ: ðB1Þ

The first term in Eq. (B1) is clearly equal to the second term in the definition of Aλðs; t; uÞ in Eq. (68). To identify the
second term in Eq. (B1), we perform the λ0 summation, obtainingX

λ0
ð−1Þλ0dJλ00λ0 ðωtÞdJλ0λðωtÞ ¼ ð−1Þλ00δλλ00 : ðB2Þ

Inserting this into the second term of Eq. (B1), we getX
λ00

X
λ0
ð−1Þλ0þλdJλ00λ0 ðωtðs; t; uÞÞdJλ0λðωtðs; t; uÞÞĀλ00 ðs; t; uÞÞ

¼
X
λ00

ð−1Þλ00þλδλλ00Āλ00 ðs; t; uÞ ¼ Āλðs; t; uÞ; ðB3Þ

which we identify as the first time of Aλðs; t; uÞ in Eq. (68). Finally to match the third term we note that ωuðt; s; uÞ ¼
ωtðt; u; sÞ and the λ0 summation becomesX

λ0
dJλ0λðωtðs; t; uÞÞdJλ00λ0 ðωtðt; u; sÞÞ ¼ dJλ00λðωtðs; t; uÞ þ ωtðt; u; sÞÞ: ðB4Þ

From definitions Eq. (24), we see

cos ðωtðs; t; uÞ þ ωtðt; u; sÞÞ ¼ cos ðωtðs; u; tÞÞ ðB5aÞ
and

sin ðωtðs; t; uÞ þ ωtðt; u; sÞÞ ¼ − sin ðωtðs; u; tÞÞ; ðB5bÞ
which imply the argument of the single Wigner function in Eq. (B4) is

ωtðs; t; uÞ þ ωtðt; u; sÞ ¼ −ωtðs; u; tÞ ¼ −ωuðs; t; uÞ: ðB6Þ
Therefore, inserting Eq. (B6) to Eq. (B4) and using the Bose symmetry relation of Eq. (42a), the third term in Eq. (B1)
becomes X

λ00
ð−1Þλþλ00dJλ00λð−ωuðs; t; uÞÞĀλ00 ðu; s; tÞ ¼

X
λ00

dJλ00λðωuðs; t; uÞÞĀλ00 ðu; s; tÞ

¼
X
λ0
ð−1Þ1þλ0dJλ0λðωuðs; t; uÞÞĀλ0 ðu; t; sÞ; ðB7Þ

which corresponds to the final remaining term in the definition of Aλðs; t; uÞ in Eq. (68).
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APPENDIX C: RELATION BETWEEN
HELICITY AMPLITUDES AND

INVARIANT FUNCTIONS

In this Appendix we study the relation between invariant
and helicity amplitudes. This is done for particular cases of
XJ quantum numbers. The purpose of the Appendix is
twofold: first, to show how to compute the invariant
amplitudes from the helicity amplitudes that we have used
through the manuscript; and second, to give an example of
how the crossing relations, Eqs. (34) and (35), emerge from
the definitions of the amplitudes.

1. Axial vector meson, a1∶IG(JPC)= 1− (1+ + )

We start by considering the specific process

aa1ðϵ; pXÞπbðp3Þ → πcðp1Þπdðp2Þ; ðC1Þ

which is also the subject of Sec. IVA. As before, the amp-
litude is denotedAabcdðϵðpXÞ; p3;p1; p2Þ [cf. Eq. (29)] but
instead of the decomposition into helicity partial wave
amplitudes as in Eq. (30), we write the amplitude in terms
of the most general Lorentz covariant structure satisfying
parity and Bose symmetry [cf. Eqs. (38) and (42a)] as

Aabcdðϵðpa1Þ; p3;p1; p2Þ ¼ ϵ · ðp1 þ p2ÞFabcdðs; t; uÞ þ ϵ · ðp1 − p2ÞGabcdðs; t; uÞ: ðC2Þ

We see the functions F and G are Lorentz scalars and are thus referred to as invariant amplitudes.
The components of the usual rank-one polarization vector are

ϵ0 ¼
�jp⃗Xj

M
;
EX

M
ẑ

�
and ϵþ ¼

�
0;
x̂þ iŷffiffiffi

2
p

�
; ðC3Þ

for helicity projection, λ ¼ 0;þ1, respectively. We see in the covariant representation of Eq. (C2), the helicity amplitude is
dictated by the form of the polarization vector. From this we may derive relations between the s- and t-channel helicity
amplitudes and the invariant amplitudes. For the s-channel, from Eq. (30)

 ffiffiffi
2

p
AðsÞabcd

þ ðs; t; uÞ
AðsÞabcd

0 ðs; t; uÞ

!
¼ 1

M

 
0 2MqðsÞ sin θs

pðsÞ ffiffiffi
s

p
−2qðsÞEa1ðsÞ cos θs

! 
Fabcdðs; t; uÞ
Gabcdðs; t; uÞ

!

≡Qðs; tÞ
 
Fabcdðs; t; uÞ
Gabcdðs; t; uÞ

!
; ðC4Þ

where the factor
ffiffiffi
2

p
in front of AðsÞabcd

þ ðs; t; uÞ and kinematic matrix Qðs; tÞ are introduced for later convenience.
Using Eq. (33) we may derive the analogous equation for the t-channel with appropriate changes of momenta and isospin

indices by enforcing

Aabcdðϵ; p3; p1; p2; Þ ¼ Aacbdðϵ;−p1;−p3; p2Þ: ðC5Þ

From Eq. (C2), we notice

ð ϵ · ð−p3 þ p2Þ ϵ · ð−p3 − p2Þ Þ ¼ Mð ϵ · ðp1 þ p2Þ ϵ · ðp1 − p2Þ Þ; ðC6aÞ

where the constant matrix

M ¼ −
1

2

 
1 3

1 −1

!
; with M−1 ¼ M; ðC6bÞ

connects the covariant kinematic factors in the different channels. Combining Eqs. (C5) and (C6), we find invariance under
isospin rotations requires the invariant amplitudes to satisfy

 
Fabcdðs; t; uÞ
Gabcdðs; t; uÞ

!
¼ M

 
Facbdðt; s; uÞ
Gacbdðt; s; uÞ

!
: ðC7Þ
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Now we find the analogous expression to Eq. (C4) for the t-channel:

 ffiffiffi
2

p
AðtÞacbd

þ ðt; s; uÞ
AðtÞacbd

0 ðt; s; uÞ

!
¼ diagð−1; 1ÞQðt; sÞ

 
Facbdðt; s; uÞ
Gacbdðt; s; uÞ

!
: ðC8Þ

Combining Eqs. (C4) and (C1) with Eq. (C7), we may equate helicity amplitudes in different channels up to a combination
of kinematic matrices:

 ffiffiffi
2

p
AðsÞabcd

þ ðs; t; uÞ
AðsÞabcd

0 ðs; t; uÞ

!
¼ Qðs; tÞMQ−1ðt; sÞ

 ffiffiffi
2

p
AðtÞacbd

þ ðt; s; uÞ
AðtÞacbd

0 ðt; s; uÞ

!
: ðC9Þ

Calculating the matrix explicitly and using definitions in Eq. (24), we find

Qðs; tÞMQ−1ðt; sÞ ¼
 
cosω − sinω

sinω cosω

!
; ðC10Þ

which is exactly the crossing relation Eq. (34) for JPC ¼ 1þþ [cf. Eq. (43) for the explicit evaluation of d-matrix elements
for this case]. We note that taking Eq. (C1) with the interchange s ↔ t and Eq. (C4), we arrive at

 
−
ffiffiffi
2

p
AðtÞacbd

þ ðs; t; uÞ
AðtÞacbd

0 ðs; t; uÞ

!
¼ Qðs; tÞ

 
Facbdðs; t; uÞ
Gacbdðs; t; uÞ

!
¼
 ffiffiffi

2
p

AðsÞacbd
þ ðs; t; uÞ

AðsÞacbd
0 ðs; t; uÞ

!
; ðC11Þ

which is the relation between s- and t-channel kinematics
with the interchange of energy variables in Eq. (35).

2. Tensor meson, a2∶IGðJPCÞ= 1− ð2+ + Þ
Similar to the above derivations we may consider the

process

aa2ðϵ; pa2Þπbðp3Þ → πcðp1Þπdðp2Þ ðC12Þ

to illustrate how things change when considering the decay
a natural parity meson and higher spin.
To build the general most covariant structure and to

identify the invariant amplitudes, we first construct the
rank-two polarization tensor for the J ¼ 2 meson from
Eq. (C3) as

ϵðλÞμν ¼
X
λ0;λ00

h1λ0; 1λ00j2λiϵðλ0Þμ ϵðλ
00Þ

ν : ðC13Þ

Explicitly this gives us for λ ¼ 0;þ1;þ2

ϵð2Þμν ¼ ϵðþÞ
μ ϵðþÞ

ν ;

ϵð1Þμν ¼ ϵðþÞ
μ ϵð0Þν þ ϵð0Þμ ϵðþÞ

νffiffiffi
2

p ;

ϵð0Þμν ¼ ϵðþÞ
μ ϵð−Þν þ ϵð−Þμ ϵðþÞ

ν − 2ϵð0Þμ ϵð0Þνffiffiffi
6

p : ðC14Þ

The decomposition of Eq. (C13) may be used as a template
to define the polarization tensor or arbitrary rank.
With Eq. (C14), we write the “master amplitude” as a

covariant expression as in Eq. (C2):

Aabcdðϵðpa2Þ; p3; p1; p2Þ
¼ −i

ffiffiffi
2

p
ϵμνKμððp1 þ p2ÞνBabcdðs; t; uÞ

þ ðp1 − p2ÞνCabcdðs; t; uÞÞ; ðC15Þ

whereK is the kibble vector defined in Eq. (16) and we take
ϵ0123 ¼ þ1. As before, the Lorentz scalar functions B and
C are the invariant amplitudes for this process. There are
only two independent invariant functions because due to
the parity relation in Eq. (38) which enforces the amplitude,
it vanishes for λ ¼ 0.
Now we use Eq. (C15) to relate the s-channel helicity

amplitudes of Eq. (30) (for λ ¼ 1, 2) to the invariant
functions,

 
AðsÞabcd

2 ðs; t; uÞ
AðsÞabcd

1 ðs; t; uÞ

!
¼ Q2ðs; tÞ

 
Babcdðs; t; uÞ
Cabcdðs; t; uÞ

!
; ðC16Þ

where by explicitly doing the Lorentz contraction one may
show the kinematic matrix is related to the matrix consid-
ered in Eq. (C4) by
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Q2ðs; tÞ ¼
ffiffiffi
s

p
pðsÞqðsÞ sin θsffiffiffi

2
p Qðs; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

 
ϕ

4

!vuut Qðs; tÞ:

ðC17Þ
As before, we may also write the analogous expression for
the t-channel by interchanging p1 → −p3 and b ↔ c in
Eq. (C15). Carrying out the Lorentz contractions one will
find

 
AðtÞacbd

2 ðt;s;uÞ
AðtÞacbd

1 ðt;s;uÞ

!
¼ diagð1;−1ÞQ2ðt;sÞ

 
Bacbdðt;s;uÞ
Cacbdðt;s;uÞ

!
:

ðC18Þ

Since we have identical isospin structure as in the vector
case, the invariant amplitudes in this case can be shown to
obey the same relations as in Eq. (C7),

 
Babcdðs; t; uÞ
Cabcdðs; t; uÞ

!
¼ M

 
Bacbdðt; s; uÞ
Cacbdðt; s; uÞ

!
; ðC19Þ

for the same constant matrix M in Eq. (C6). Combining
Eqs. (C16), (C18), and (C19) we arrive at the crossing
relations for helicity amplitudes for the a2, 
AðsÞabcd

2 ðs; t; uÞ
AðsÞabcd

1 ðs; t; uÞ

!
¼ diagð1;−1ÞQ2ðs; tÞMQ−1

2 ðt; sÞ

×

 
AðtÞacbd

2 ðt; s; uÞ
AðtÞacbd

1 ðt; s; uÞ

!
ðC20Þ

and

 
AðtÞacbd

2 ðt; s; uÞ
−AðtÞabcd

1 ðt; s; uÞ

!
¼ Q2ðs; tÞ

 
Bacbdðt; s; uÞ
Cacbdðt; s; uÞ

!

¼
 
AðsÞacbd

2 ðt; s; uÞ
AðsÞacbd

1 ðt; s; uÞ

!
; ðC21Þ

which are the analogous relations for Eqs. (C9) and (C11)
for J ¼ 2. In fact, solving for the elements of the matrix
above, we see

diagð1;−1ÞQ2ðs; tÞMQ−1
2 ðt; sÞ ¼

 
cosω − sinω

sinω cosω

!
;

ðC22Þ

which is identical to the crossing relation we found above, a
fact that can also be verified by explicitly evaluating the
elements of the d-matrix in Eq. (34).

APPENDIX D: SOLUTION STRATEGIES

In the main body of the paper we introduced a systematic
construction of amplitudes based on analyticity, crossing
symmetry, and subchannel unitarity based on the KT
formalism. In order to further make this manuscript as
self-contained as possible we include a schematic for
finding numerical solutions to the above KT equations.
For simplicity, let us consider a single reduced partial

wave, for a single helicity value, that we denote by â. The
generalization to include other reduced partial waves is
straightforward. Furthermore, in what respects the numerical
solution, the inclusion of coupled channels in the unitarity
relations does not bring forth additional complications [24].
With these simplifications in mind, Eq. (80a) reads

Disc âðsÞ ¼ ρðsÞτ�ðsÞðâðsÞ þ ãðsÞÞ; ðD1Þ

where the ππ scattering amplitude τðsÞ is given, and the
inhomogeneity ãðsÞ is given in terms of âðsÞ as an angular
integral, so we generically write Eq. (80b) as

ãðsÞ ¼
Z þ1

−1
dzCðs; zÞâðtðs; zÞÞ ¼

Z
tþðsÞ

t−ðsÞ
dtKðs; tÞâðtÞ;

ðD2Þ
where the kernels Cðs; zÞ and K [K is defined such that
Cðs; zÞ ¼ 2pðsÞqðsÞKðs; tðs; zÞÞ] can be known, for each
different case, from the analyses in the previous sections.
The dependence on s of the end points arises because of the z
to t variable transformation in the integral, and the relation of
t and z is given by [cf. Eq. (8)]

tðs; zÞ ¼ 3m2 þM2 − s
2

þ 2pðsÞqðsÞz; ðD3Þ

so that the end points are given by

t�ðsÞ ¼ tðs;�1Þ ¼ 3m2 þM2 − s
2

� 2pðsÞqðsÞ: ðD4Þ

An n-subtracted dispersion relation8 of Eq. (D1) gives

âðsÞ ¼ P̃n−1ðsÞ þ Ĩn−1ðsÞ; ðD5Þ

where P̃n−1ðsÞ is a n − 1 degree polynomial (with the
understanding that Pi<0 ¼ 0), and the dispersive integral
Ĩn−1ðsÞ is given by

Ĩn−1ðsÞ ¼
sn

π

Z
∞

sth

ds0
Disc âðs0Þ
s0nðs0 − sÞ : ðD6Þ

If, for a moment, we ignore the inhomogeneity ãðsÞ, then
Eq. (D1) becomes a standard Omnés problem, and the

8For simplicity, the subtractions, if any, are taken at s ¼ 0.
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solution for âðsÞ is simply the Omnés function,ΩðsÞ, times
a polynomial. The Omnés function satisfies in turn the
following unitaritylike relation,

discΩðsÞ ¼ ρðsÞτ�ðsÞΩðsÞ: ðD7Þ

For our problem of elastic ππ rescattering at hands, ΩðsÞ is
given by

ΩðsÞ ¼ exp

 
s
π

Z
∞

sth

ds0
δðs0Þ

s0ðs0 − sÞ

!
; ðD8Þ

where δðs0Þ is the ππ scattering phase shift associated with
the amplitude tðsÞ. Reintroducing in our considerations the
inhomogeneity f̃ðsÞ, the most general solution of Eq. (D1)
is given by

âðsÞ ¼ ΩðsÞðPnðsÞ þ InðsÞÞ; ðD9Þ

where PnðsÞ and InðsÞ are hereafter referred to as poly-
nomial and dispersive terms, and InðsÞ is given by

InðsÞ ¼
sn

π

Z
∞

4m2

ds0
sin δðs0Þãðs0Þ

jΩðs0Þjs0nðs0 − sÞ : ðD10Þ

The function aðsÞ is computed through Eqs. (D5) and/or
(D9), and ãðsÞ is computed through (D2) [or, as shown
below, Eq. (D11)], and thus these equations constitute a
closed system of linear integral equations for aðsÞ and âðsÞ.
Experience shows that, because of its linearity, iteration is a
good method to numerically solve this system, since
convergence is usually found after five to ten iterations.
Alternatively, an approach based on the matrix inversion of
the discretized integral system of equations can also be
exploited [22].

The most subtle point in the solution of the integral
equations is related to the function ãðsÞ, Eq. (D2), and the
end points of its defining integral, t�ðsÞ. The real part of
t�ðsÞ is shown in Fig. 3 as a function of s. We are
considering here the physical decay X → 3π. For values of
the decaying particle mass such that mX < 3m, the cuts of
ãðsÞ functions lie in a region Re s < 4m2, and thus it does
not overlap with the RHC, s > 4m2. For physical values
mX ≥ 3m, the cuts would seem to overlap (see Fig. 3), but
the prescription m2

X þ iϵ [63] allows the complex cuts of
f̃ðsÞ to be unambiguously separated from the RHC, as
shown in the right panel of Fig. 3. In practice, this analytic
continuation in m2

X implies that the t integration contour in
Eq. (D2) must be deformed such that it does not cross the s
integration contour, i.e., the right-hand cut, 4m2 ≤ s < ∞.
A possible such deformation is shown in Fig. 4. Thus, to
compute ãðsÞ from Eq. (D2), one possibility is to evaluate
the integrand in the t complex plane, since the kernel
Kðs; tÞ is analytically known, and either of Eqs. (D5) and
(D9) allow one to compute the function âðtÞ in the
complex plane.
We discuss now another possibility, which allows one to

analytically compute the integrals in t. This is achieved by
inserting the representation for âðsÞ given in Eq. (D5) into
the definition of ãðsÞ, Eq. (D2). By doing so, and reversing
the integration order, we get

ãðsÞ ¼ QðsÞ þ
Z

∞

sth

ds0Disc aðs0ÞLðs; s0Þ; ðD11Þ

where QðsÞ is a polynomial,

QðsÞ ¼
Z

tþðsÞ

t−ðsÞ
dtKðs; tÞP̃ðtÞ; ðD12Þ

and Lðs; s0Þ is given by

FIG. 3. Dependence on s of t�ðsÞ [Eq. (D4)], the end points of the integral in Eq. (D2). The red (blue) line curves correspond to tþðsÞ
and t−ðsÞ. Left: real part of t�ðsÞ as a function of s. It is seen that t�ðsÞ acquires a finite imaginary part for s ∈ ðs−; sþÞ,
s� ¼ ðM � −mÞ2. Right: Movement of t�ðsÞ on the complex plane for varying s. In particular, it shown how t−ðsÞ slides from the upper
to the lower part of the complex plane through the left of the branch point 4m2, with crossing the cut extending from this point to infinity.
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Lðs; s0Þ ¼ 1

π

Z
tþðsÞ

t−ðsÞ
dt

tmKðs; tÞ
s0mðs0 − tÞ

≡ L̄ðs; s0Þ þ Kðs; s0ÞLðs; s0Þ; ðD13Þ

where the function Lðs; s0Þ is given by

Lðs; s0Þ ¼ 1

π

Z
tþðsÞ

t−ðsÞ
dt

1

s0 − t

¼ log ðs0 − t−ðsÞÞ − log ðs0 − tþðsÞÞ: ðD14Þ

The advantage of computing ãðsÞ through Eq. (D11)
instead of Eq. (D2) is twofold. First, in this way the
function âðsÞ [through its discontinuity, Disc âðsÞ] is
needed only along the RHC. Second, and more importantly,
what is achieved with this decomposition is the isolation of
the effect of the necessary contour deformation into a single
function, Lðs; s0Þ. We can explicitly separate the function
Lðs; s0Þ as follows:

Lðs; s0Þ≡ L̄ðs; s0Þ þ 2iθðs− sAÞθðsB − sÞθðRe½t−ðsÞ�− s0Þ;
ðD15Þ

and it can be seen that the second term is the one that arises
from the deformation of the contour. This piece is the one

that gives rise to a well-known [13,27] square-root type
singularity9 of the ãðsÞ function for s → ðM −mÞ2.10 The
integration limits for the t0 integral are t�ðsÞ, so, if no
deformation needs to be done, the interval length is
tþðsÞ − t−ðsÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffi

s − s−
p

, which would, in principle, cancel
the singularity. By deforming the contour one is including
an integral which does not have this length, and thus a
singularity arises. Care must be taken in dealing with this
singularity when a numerical solution of the integral
equation system is attempted.
Let us consider how to numerically cope with this

singularity, for example, in the integral InðsÞ, Eq. (D10),
necessary for the calculation of âðsÞ by means of Eq. (D9).
For compactness, we define the function b̃ðsÞ,

s−nInðsÞ ¼
1

π

Z
∞

4m2

ds0
sin δðs0Þãðs0Þ

jΩðs0Þjs0nðs0 − sÞ≡
Z

∞

4m2

ds0
b̃ðs0Þ
s0 − s

:

ðD16Þ

Let us consider, as the simplest case, a singularity of ãðsÞ
such as

ãðsÞ ¼ αffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− − s0

p þ � � � ; ðD17Þ

which in turn allows one to deduce

b̃ðsÞ ¼ βffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− − s0

p þ � � � : ðD18Þ

The explicit value of α can be computed (in each iteration
along the solution procedure) from the integral representa-
tions of ãðsÞ, and β can be computed from the knowledge
of α and the functions ΩðsÞ and δðsÞ. Then, one can
write

s−nInðsÞ ¼
Z

∞

4m2

ds0
b̃ðs0Þ
s0 − s

¼ �
Z

∞

4m2

ds0
1

s0 − s

 
b̃ðs0Þ − βffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s− − s0
p

!

þ iπ

 
b̃ðsÞ − βffiffiffiffiffiffiffiffiffiffiffiffiffi

s− − s
p

!
þ ββ1ðsÞ: ðD19Þ

FIG. 4. Location of the end points t�ðsÞ for different values of s
with respect to the branch points 4m2 and the cut. Also shown is
the path deformation discussed in the text.

9Generally speaking, the power of the singularity, ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s−

p Þl
for some integer l ≥ 1, increases with the isobar total angular
momentum. The minimum value one finds is l ¼ 1.

10We remind the reader here that the functions that we have
defined as free of kinematical singularities are actually the âðsÞ
ones. One could still say that the ãðsÞ enter into the discontinuity
of aðsÞ, thus making it singular. This argument, however, is not
correct, since the discontinuity is ∝ âðsþ iϵÞ − âðs − iϵÞ. The
term that is actually diverging is âðs − iϵÞ, and the physical
amplitude, âðsþ iϵÞ, remains finite.
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Above, �R stands for the principal value integral. The first
integral is suitable for numerical integration, and the
function β1ðsÞ, the reminder integral, can be explicitly
computed, and it is indeed analytical at s ¼ s−.

Furthermore, the singularity of b̃ðsÞ cancels with the term
β=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s− − s

p
inside the parentheses. Similar methods can be

applied to deal with the singularities of ãðsÞ in the different
integrals in which it appears.
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