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Abstract: - In this paper, we simulate the sea bottom modifications produced by the presence of a T-head groin. 

We present a simulation model of sea bottom modifications composed of two sub-models: a two-dimensional 

phase-resolving model that simulate the variation of the fluid dynamic variables inside the wave; a second sub-

model to simulate the sea bottom modifications, in which the suspended sediment concentration is calculated by 

the wave-averaged advection-diffusion equation. The fluid motion equation and the concentration equation are 

expressed in a new contravariant formulation. The velocity fields from deep water up to just seaward of the surf-

zone are simulated by a new integral contravariant form of the Fully Nonlinear Boussinesq Equations. The new 

integral form of the proposed continuity equation does not contain the dispersive term. The Nonlinear Shallow 

Water Equations, expressed in an integral contravariant form, are solved in order to simulate the breaking wave 

propagation. The momentum equation, integrated over the turbulent boundary layer, is solved to calculate the 

near-bed instantaneous flow velocity and the intra-wave hydrodynamic quantities. Starting from the contravariant 

formulation of the advection–diffusion equation for the suspended sediment concentration, it is possible to 

calculate the sea bottom modification. The advective sediment transport terms in the advection-diffusion equation 

are formulated according to a quasi-three-dimensional approach. 

 

Key-Words: - Phase-resolving model, undertow, intra-wave quantities, concentration equation, sediment 

transport, sea bottom modification. 

 

1 Introduction 

The sea bottom modifications produced by a coastal 

defence structure, in the literature, is carried out by 

the simulation of the velocity fields and of the 

suspended sediment concentration. The three-

dimensional simulation of the velocity fields [1-3] 

requires considerable computational time for the 

long-term sea bottom simulations. Consequently, the 

motion equations and the concentration equation are 

depth-averaged.  

 The two-dimensional phase-resolving models 

(that are not averaged over the wave period) use the 

Boussinesq equations, obtained by defining the depth 

dependence of the variables, and by depth integrating 

the motion equations. 

Shock-capturing schemes for numerical 

integration of the Fully Nonlinear Boussinesq 

Equations (hereinafter called FNBE’s) [4,5] and 

nonlinear shallow-water equation (hereinafter called 

NSWE) models allow explicit simulations of wave 

breaking [6].  

 Sea bottom modifications in the coastal region 

are produced by complex hydrodynamic processes; 

among these, the undertow plays a fundamental role 

in the transport of solid particles in the offshore 

direction. The undertow consists of a circulation in 

the vertical plane in which the near-bed current 

velocities are off-shore directed in the surf zone. In 

order to simulate the undertow Lynett [7] proposed a 

correction to the vertical distribution of the horizontal 

velocity calculated by depth-averaged motion 

equations. 

 The hydrodynamic quantities that vary in the 

wave period drive the resuspension of the solid 

particles and their transport and settling. The wave 

period variability of the fluid dynamic quantities, the 

wave-current interaction can be taken into account by 

FNBE’s/NSWE models.  

The particular form of the FNBE’s present in the 

literature, due to the presence of the dispersive terms 

in the continuity equation, and the schemes by which 

these terms are discretized, produce a lack of a high 

level of accuracy in the wave motion simulation. 

In the works present in the literature, the 

improvement of the dispersive properties of the 

standard forms of the FNBE’s is due to the adoption 

of the velocity at an arbitrary distance from the still 

water level, as dependent variables, instead of the 

depth-averaged velocity. This choice entailed the 
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appearance of the dispersive term in the continuity 

equation. 

 In the works present in the literature [8-11], the 

dispersive term, that appears in the continuity 

equation, is discretized with a second-order cell-

centered finite difference scheme consistently with 

the finite difference scheme of the hybrid scheme 

(finite volume – finite difference). The discretization 

of this dispersive term by a second-order cell-

centered finite difference scheme, introduces 

truncation errors into the solution that can reduce the 

local accuracy of the numerical scheme and induce 

oscillations in the numerical solution. 

 We present a simulation model of sea bottom 

modifications composed of two sub-models: a two-

dimensional phase-resolving model that simulate the 

variation of the fluid dynamic variables inside the 

wave period and that takes into account the undertow; 

a second sub-model to simulate the sea bottom 

modifications, in which the suspended sediment 

concentration is calculated by the wave-averaged 

advection-diffusion equation. The fluid motion 

equation and the concentration equation are 

expressed in a new contravariant formulation. 

 In this paper, a new integral form of the FNBE’s 

is proposed in order to simulate hydrodynamic fields 

from deep water up to just seaward of the surf zones. 

The abovementioned motion equations retain the 

term related to the second-order vertical vorticity. 

Breaking wave propagation in the surf zone is 

simulated by integrating the NSWE. 

The integral form of the proposed continuity 

equation does not contain dispersive terms and is 

entirely discretized by a shock-capturing finite 

volume scheme: in this way, the errors due to the low-

order discretization of such dispersive term are not 

induced into the solution. 

 From the horizontal velocity vertical profile, 

obtained by the proposed hydrodynamic model, and 

from the integration of the momentum equation over 

the wave boundary layer, the near-bed velocity, the 

instantaneous boundary layer thickness, the friction 

velocity and the bed shear stress are calculated. 

The instantaneous eddy viscosity vertical 

distribution, under breaking waves, is calculated by 

taking into account the turbulence contribution due to 

the wave boundary layer, current and wave breaking. 

Bed evolution dynamics is calculated starting 

from the contravariant formulation of the advection–

diffusion equation for the suspended sediment 

concentration. The advective sediment transport 

terms, that appear in the advection–diffusion 

equation, are formulated according to a quasi-three-

dimensional approach [12,13], hereinafter called 

Q3D; these terms are calculated starting from the 

depth-integrated product of the horizontal velocity 

and the vertical distribution of the concentration, in 

order to take into account the sediment transport 

related to the undertow. The time bottom variation is 

related to the contribution given by the product of the 

settling velocity and the difference between reference 

concentration and actual concentration (at a distance 

a from the sea bottom) and to the contribution given 

by the spatial variation of the bed load transport. 

The paper is structured as follows. In Section 2 

are proposed, the hydrodynamic and morphodynamic 

model. The motion equations and the concentration 

equation are written in integral contravariant form. In 

Section 3 and 4 we numerically reproduce, by the 

proposed model, respectively the sandbar formation 

and the bed evolution dynamic behind a T-head 

groin. In Section 5 are shown the conclusions. An 

appendix is found at the end of a paper. 

 

2 Governing equations 
2.1 Hydrodynamic model 
We define 𝐻 = ℎ + 𝜂 as the total local water depth, 

where ℎ is the local still water depth and 𝜂 is free 

surface elevation with respect to the undisturbed free 

surface. By using a Taylor expansion of the velocity 

about an arbitrary distance from the still water 

surface, 𝜎, and by assuming zero horizontal vorticity, 

the vertical distribution of the horizontal velocity 

�⃗⃗� (𝑧) can be written as 
 

�⃗⃗� (𝑧) = �⃗� + 𝑣 (𝑧) (1) 
 

 

where �⃗�  is the horizontal velocity at an arbitrary 

distance from the still water level 𝑧 = 𝜎, and 𝑣 (𝑧) is 

defined as 
 

𝑣 (𝑧) = (𝜎 − 𝑧)𝛻(𝛻 · (ℎ�⃗� )) + 

(
σ2

2
−
z2

2
)𝛻(𝛻 · (�⃗� )) 

(2) 
 

that represents the second order term in power series 

expansion of the velocity vector about σ, in which 𝛻 

is the two-dimensional differential operator defined 

as 𝛻 = (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
) in a Cartesian reference system. We 

define �̅�  as the depth averaged value of 𝑣 (𝑧), 
obtained by retaining terms of order 𝑂(𝜇2, 𝜀2𝜇2), 
which is 
 

�̅� =
1

𝐻
∫𝑣 (𝑧)

𝜂

−ℎ

𝑑𝑧 = 

(
𝜎2

2
−
1

6
(ℎ2 − ℎ𝜂 + 𝜂2))  𝛻(𝛻 · (�⃗� )) 

+(𝜎 +
1

2
(ℎ − 𝜂))𝛻(𝛻 · (ℎ�⃗� )) (3) 
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 We define 𝑥𝑙 = 𝑥𝑙(𝜉1, 𝜉2) (with l=1,2) as the 

transformation from the Cartesian coordinate system 

𝑥  to the curvilinear coordinate system ξ  (henceforth 

the superscript indicates components and not 

powers). Let 𝑔 (𝑙) = 𝜕 𝑥 𝜕⁄ 𝜉𝑙 be the covariant base 

vector and 𝑔 (𝑙) = 𝜕 𝜉𝑙 𝜕⁄ 𝑥  be the contravariant base 

vector. The metric tensor and its inverse are given 

respectively by 𝑔𝑙𝑚 = 𝑔 (𝑙) · 𝑔 (𝑚) and 𝑔𝑙𝑚 = 𝑔 (𝑙) ·

𝑔 (𝑚). The Jacobian of the transformation is √𝑔 =

√𝑑𝑒𝑡(𝑔𝑙𝑚). The transformation relationships 

between the components of the generic vector �⃗�  in 

the Cartesian coordinate system and its contravariant 

and covariant components, 𝑏𝑙 and 𝑏𝑙, in the 

curvilinear coordinate system are given in the 

Appendix. 

In order to apply a shock capturing scheme to the 

Boussinesq type equations, the convective terms 

must be expressed in conservative form, i.e. in 

divergence form. In [4] the system evolution 

variables were the conserved variables 𝐻 e 𝐻𝑢𝑙. The 

choice of these conserved variables implied the 

presence of a source term in the mass conservation 

equation (right-hand side of Equation (4) in [4]. In 

this paper we choose, as conserved variables, the total 

local depth H and the contravariant quantity 
 

𝑀𝑙 = 𝐻(𝑢𝑙 + �̅�𝑙) (4) 
 

in which (𝑢𝑙 + �̅�𝑙) represents the depth averaged 

horizontal velocity. With this choice, considering that 

the bottom depth does not vary over time, the 

contravariant integral form of the continuity Equation 

can be written as 
 

∬
𝜕𝐻

𝜕𝑡
𝑑𝐴

𝛥𝐴

+∫𝑀𝑚𝑛𝑚𝑑𝐿
𝐿

= 0 
(5) 

 

where L is the contour line of the surface element of 

area 𝛥𝐴 and 𝑛𝑚 is the m-th component of the 

covariant outward normal. As follows from Equation 

(5), the choice of the conserved variable 𝑀𝑙 

expressed by Equation (4) makes it possible to write 

the continuity equation without any source term, but 

only with a flux term (second term of Equation 5).  

This result implies that the continuity equation 

can be solved entirely by a high order shock capturing 

finite volume scheme. 

With this new conserved variable, the integral 

over the surface element of area 𝛥𝐴 of the 

contravariant momentum equation can be written as 
 

∬
𝜕𝑀l

𝜕𝑡
𝑑𝐴

𝛥𝐴
+∬  (

𝑀𝑙𝑀𝑚

𝐻
)
,𝑚
 𝑑𝐴

𝛥𝐴
  

= −∬ 𝐺𝐻𝑔𝑙𝑚𝜂,𝑚𝑑𝐴𝛥𝐴
  

−∬ 𝐻(𝑉𝑙 + 𝑇𝑙 +𝑊𝑙 + 𝑅𝑙)
𝛥𝐴

𝑑𝐴  (6) 

−∬ 𝐻 (
𝜕�̅�𝑙

𝜕𝑡
+ �̅�,𝑚

𝑙 𝑢𝑚 +
𝛥𝐴

  

𝑢,𝑚
𝑙 �̅�𝑚 + �̅�,𝑚

𝑙 �̅�𝑚) 𝑑𝐴  
 

in which 𝑢𝑙 and �̅�𝑙 are the contravariant components 

of the vectors �⃗�  and �̅� ; G is acceleration due to 

gravity. 𝑅𝑙, 𝑉𝑙, 𝑇𝑙, 𝑊𝑙 are, respectively, the 

contravariant components bottom resistance term, 

dispersive terms obtained by retaining terms of order 

𝑂(𝜇2,𝜀3𝜇2) and term related to the second order 

approximation of the vertical vorticity expressed by 
 

𝑉𝑙 =
𝜎^2

2
𝑔𝑙𝑚 [(

𝜕𝑢𝑘

𝜕𝑡
)
,𝑘
]
,𝑚

  

+𝜎𝑔𝑙𝑚 [(ℎ
𝜕𝑢𝑘

𝜕𝑡
)
,𝑘
]
,𝑚

  

−𝑔𝑙𝑚 [
1

2
𝜂^2 (

𝜕𝑢𝑘

𝜕𝑡
)
,𝑘
+ 𝜂 (ℎ

𝜕𝑢𝑘

𝜕𝑡
)
,𝑘
]
,𝑚

  
(7) 

𝑇𝑙 = 𝑔𝑙𝑚 {(𝜎 − 𝜂)𝑢𝑖([ℎ𝑢𝑘],𝑘),𝑖 

+
1

2
(𝜎^2 − 𝜂^2)𝑢𝑖(𝑢,𝑘

𝑘 )
,𝑖
}
,𝑚

  

+
1

2
𝑔𝑙𝑚 {[(ℎ𝑢𝑘)

,𝑘
+ 𝜂𝑢,𝑘

𝑘 ]
^2
}
,𝑚

  

 (8) 

𝑊𝑙 = (𝜀𝑚𝑖𝑔𝑖𝑝𝑢,𝑚
𝑝
)𝜀𝑗𝑙�̅�𝑗 

+(𝜀𝑚𝑖𝑔𝑖𝑝�̅�,𝑚
𝑝
)𝜀𝑗𝑙𝑢𝑗 (9) 

 

in which 

𝜀𝑚𝑖 = 

{
 
 

 
 

1

√𝑔
𝑖𝑓(𝑚, 𝑖) 𝑖𝑠 𝑎 𝑒𝑣𝑒𝑛 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (1,2)

−
1

√𝑔
 𝑖𝑓 (𝑚, 𝑖) 𝑖𝑠 𝑎 𝑜𝑑𝑑 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (1,2)

0  𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙

 

(10) 
 

 

  The “^” symbol indicates the operation of power 

raising and 𝜂𝑐 is an arbitrary constant value.  

 Motion equations admit stationary solutions in 

which the source terms are perfectly balanced by the 

flux terms. A numerical scheme is said to be well-

balanced and satisfies the C-Property if it preserves 

the steady state solutions exactly. The surface 

gradient term could be split into a source term that is 

related to the bed slope and a term related to the 

gradient of the square of the local total depth, in order 

to include this term into the flux term and to perform 

a shock capturing upwind scheme. 

 In particular, in the absence of motion, the 

numerical discretization of the source term relative to 

the bottom slope should perfectly balance the 

numerical discretization of the term related to the 

gradient of the square of the total local depth. Shi et 
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al [5] point out that the above decomposition induces 

a numerical imbalance problem and does not allow 

the numerical scheme to satisfy the C-Property for 

non-uniform bed. 

In order to obtain a "well-balanced" numerical 

scheme, the surface gradient term is decomposed as 
 

𝐺𝑔𝑙𝑚𝐻𝜂,𝑚 = (𝐺𝑔𝑙𝑚
𝐻^2

2
)
,𝑚

 

−𝐺(𝜂 − 𝜂𝑐)(𝑔
𝑙𝑚ℎ)

,𝑚
− 𝐺𝜂𝑐(𝑔

𝑙𝑚ℎ)
,𝑚

 

−𝐺 (𝑔𝑙𝑚
ℎ^2

2
)
,𝑚

 
(11) 

 

We split the term 𝑉𝑙 on the right-hand side of 

Equation (6) as follows 
 

𝑉𝑙 =
𝜕𝑉′𝑙

𝜕𝑡
+ 𝑉′′𝑙 

(12) 

in which 𝑉′𝑙  and 𝑉′′𝑙 are expressed by 
 

𝑉′𝑙 =
1

2
𝜎^2𝑔𝑙𝑚 [(𝑢𝑘)

,𝑘
]
,𝑚

 

+𝜎𝑔𝑙𝑚 [(ℎ𝑢𝑘)
,𝑘
]
,𝑚

 

−𝑔𝑙𝑚 [
1

2
𝜂^2(𝑢𝑘)

,𝑘
+ 𝜂(ℎ𝑢𝑘)

,𝑘
]
,𝑚

 
(13) 

𝑉′′𝑙 = 𝑔𝑙𝑚 [
𝜕

𝜕𝑡
(
𝜂^2

2
) (𝑢𝑘)

,𝑘
]
,𝑚

 

+𝑔𝑙𝑚 [
𝜕𝜂

𝜕𝑡
(ℎ𝑢𝑘)

,𝑘
]
,𝑚

 
(14) 

 

We define with 𝐷𝑙 an auxiliary variable defined by 
 

𝐷𝑙 = 𝐻(𝑢𝑙 + 𝑉′𝑙) (15) 
 

In order to obtain a contravariant integral form of the 

Fully Nonlinear Boussinesq Equations devoid of 

Christoffel symbols, we identify a physical direction 

with the one of the contravariant base vector �̃� (𝑙) 
which is defined at the centre of ΔA. We take the 

projection, in the direction of vector �̃� (𝑙)., of the rate 

of change of the momentum of the material volume 

of fluid that at the generic instant 𝑡 coincides with 

ΔA. We equate this projection to the projection, in the 

same direction, of the net force acting on the material 

volume. By substituting Equations (11), (12) and (15) 

into Equation (6), and by adopting the above-

mentioned procedure we obtain 
 

𝜕�̃�𝑙

𝜕𝑡
= 

1

𝛥𝐴
{−∑ [∫ (�̃� (𝑙) ∙ 𝑔 (𝑘)

𝑀𝑘𝑀µ

𝐻
𝛥𝜉µ+

2
µ=1 + 

�̃� (𝑙) ∙ 𝑔 (µ) 𝐺
𝐻^2

2
)√𝑔𝑑𝜉𝜈 − 

 

 

 

 

 

 

∫ (�̃� (𝑙) ∙ 𝑔 (𝑘)
𝑀𝑘𝑀µ

𝐻
𝛥𝜉µ−

+ 

�̃� (𝑙) ∙ 𝑔 (µ)𝐺
𝐻^2

2
)√𝑔𝑑𝜉𝜈]+ 

∬ 𝐺(𝜂 − 𝜂𝑐)𝛥𝐴
�̃� (𝑙) ∙

𝑔 (𝑘)𝑔
𝑘𝑚ℎ,𝑚√𝑔𝑑𝜉

1𝑑𝜉2+ 

𝐺𝜂𝑐 ∑ [∫ �̃� (𝑙) ∙ 𝑔 (µ)ℎ√𝑔𝑑𝜉𝜈
𝛥𝜉µ+

2
µ=1 - 

−∫ �̃� (𝑙) ∙ 𝑔 (µ)ℎ√𝑔𝑑𝜉𝜈
𝛥𝜉µ−

] + 

G

2
∑ [∫ �̃� (𝑙) ∙ 𝑔 (µ)ℎ^2√𝑔𝑑𝜉𝜈

𝛥𝜉µ+
2
µ=1 - 

∫ �̃� (𝑙) ∙ 𝑔 (µ)ℎ^2√𝑔𝑑𝜉𝜈
𝛥𝜉µ−

] – 

∬ 𝐻�̃� (𝑙) ∙ 𝑔 (𝑘)𝑉′′
𝑘√𝑔𝑑𝜉1𝑑𝜉2𝛥𝐴

 - 

∬ 𝐻�̃� (𝑙) ∙ 𝑔 (𝑘)(𝑇
𝑘 +𝑊𝑘 +

𝛥𝐴

𝑅𝑘)√𝑔𝑑𝜉1𝑑𝜉2 + 

∬ �̃� (𝑙) ∙ 𝑔 (𝑘)
𝜕𝐻

𝜕𝑡
(𝑉′𝑘 − �̅�𝑘)

𝛥𝐴 √𝑔𝑑𝜉1𝑑𝜉2+ 

∬ 𝐻(�̃� (𝑙) ∙ 𝑔 (𝑘)�̅�
𝑘)
,𝑚
𝑢𝑚

𝛥𝐴
√𝑔𝑑𝜉1𝑑𝜉2 + 

∬ 𝐻(�̃� (𝑙) ∙ 𝑔 (𝑘)𝑢
𝑘)
,𝑚
�̅�𝑚

𝛥𝐴
√𝑔𝑑𝜉1𝑑𝜉2 + 

∬ 𝐻(�̃� (𝑙) ∙ 𝑔 (𝑘)�̅�
𝑘)
,𝑚
�̅�𝑚

𝛥𝐴 √𝑔𝑑𝜉1𝑑𝜉2}      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(16) 

 

where �̃�𝑙 represent the averaged value of 𝐷𝑙 over the 

surface element of area ΔA, defined as 
 

�̃�𝑙 =
1

𝛥𝐴
∬ 𝐷𝑙√𝑔𝑑𝜉1𝑑𝜉2

𝛥𝐴

 (17) 

 

Over the same element of area ΔA, the integral form 

of the continuity Equation (6) reads 
 

𝜕�̃�

𝜕𝑡
= −

1

𝛥𝐴
∑ [∫ 𝑀µ√𝑔𝑑𝜉𝜈

𝛥𝜉µ+
−

2

µ=1

∫ 𝑀µ√𝑔𝑑𝜉𝜈
𝛥𝜉µ−

]  
(18) 

 

where �̃� represents the average value of 𝐻 over the 

surface element of area ΔA 
 

�̃� =
1

𝛥𝐴
∬ 𝐻√𝑔𝑑𝜉1𝑑𝜉2

𝛥𝐴

 
(19) 

 

Equations (16) and (18) represent a new integral form 

of the Fully Nonlinear Boussinesq Equations 

expressed in a contravariant formulation in which 

Christoffel symbols are absent. These equations are 

accurate to 𝑂(𝜇2, 𝜀3𝜇2)  in dispersive terms and 

conserve vertical vorticity with a leading-order error 

of 𝑂(𝜇4). In the above-mentioned equations the 

conserved variables are 𝐻 and 𝑀𝑙. Consequently, the 

momentum balance equation differs from the one 

presented by Cannata et al. [4] for the different 

expression of the convective terms. Furthermore, 

unlike the [4] model, in the continuity equation no 

dispersive term is present. This result makes it 
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possible to solve the continuity equation entirely by 

a high order shock capturing finite volume scheme. 

In this way in the numerical solution the errors due to 

the discretization of the dispersive term in the 

continuity equation are not introduced. Furthermore, 

the surface gradient term has been split in order to 

solve this term by a finite volume technique and to 

obtain a "well balanced" numerical scheme. 

In order to simulate the undertow Lynett [7] 

proposed a correction to the vertical distribution of 

the horizontal velocity calculated by depth-averaged 

motion equations. Indicating by 𝑢𝐵
𝑘(𝑧) the corrective 

contravariant velocity vector, the horizontal velocity 

𝑢𝑘(𝑧) reads as follows 
 

𝑢𝑘(𝑧, 𝑡) = 𝑢𝛼
𝑘 + (𝜎 − 𝑧)𝑔𝑘𝑟 [(ℎ𝑢𝛼

𝑙 )
,𝑙
]
,𝑟
+

[(𝜎2 2⁄ ) − (𝑧2 2⁄ )]𝑔𝑘𝑟 [(𝑢𝛼
𝑙 )
,𝑙
]
,𝑟
+ 𝑢𝐵

𝑘(𝑧)      
(20) 

 

where 𝑢𝛼
𝑘  is the horizontal velocity contravariant 

vector computed by Equations (16) and (18). We 

indicate by 𝑈(𝑧, 𝑡) the Cartesian horizontal 

component of the fluid velocity; Ω(𝑡) indicates the 

thickness of the boundary layer, 𝑈Ω(𝑡) the horizontal 

velocity at the top of the wave boundary layer and 

𝑢𝑓(𝑡) the friction velocity. From the integration of 

the momentum balance equation inside the boundary 

layer gives and from the logarithmic law of the 

velocity profile, we obtain the equation 
 

−𝑢𝑓
2(𝑡) = −Ω(𝑡)

𝑑𝑈Ω(𝑡)

𝑑𝑡
+ 

1

𝐾

𝑑𝑢𝑓(𝑡)

𝑑𝑡

𝑘

30
[𝑒

𝑈Ω(𝑡)

𝑢𝑓(𝑡)
𝐾
(
𝑈Ω(𝑡)

𝑢𝑓(𝑡)
𝐾 − 1) + 1]  

 

 

 

(21) 

where 𝑘 30⁄ , represents the characteristic length 

scale, in which 𝑘 is the bed roughness and 𝐾 is the 

von Karman constant. The thickness of the boundary 

layer is obtained by the following equation 
 

Ω(𝑡) = (𝑒

𝑈Ω(𝑡)

𝑢𝑓(𝑡)
𝐾
− 1) 

𝑘

30
   

(22) 
 

Solving the system composed by Equations (21) and 

(22) the values of 𝑢𝑓(𝑡) and Ω(𝑡) are given. The 

average of the instantaneous quantities over the wave 

period 𝑇 is indicated by the mark [ ]̃ . The turbulence 

inside the boundary layer is produced by the 

interaction between wave and current. Let be ufc̃ the 

current friction velocity given by 
 

𝑢𝑓�̃�
2 =

1

𝑇
∫ 𝑢𝑓

2(𝑡)
𝑇

0
𝑑𝑡    (23) 

 

Within the boundary layer, the eddy viscosity is  

 

𝜈𝑡,𝑟(𝑧, 𝑡) = 

𝐾𝑢𝑓(𝑡)𝑧 [1 −
𝑧

Ω(𝑡)
(1 −

𝑢𝑓�̃�

𝑢𝑓(𝑡)
)] (1 −

𝑧

�̃�
)  

(24) 
 

While, outside the boundary layer the eddy viscosity 

is 

𝜈𝑡,𝑟(𝑧) = 𝑢𝑓�̃�𝐾𝑧 (1 −
𝑧

�̃�
)  (25) 

 

Under breaking waves, the turbulence is given by the 

contributions produced by current, wave boundary 

layer and wave breaking. The turbulent kinetic 

energy equation [14] comes into in the calculation of 

the eddy viscosity 𝜈𝑡,𝑓(𝑧, 𝑡) related to the breaking of 

the wave 
 

𝜕𝑘𝑡

𝜕𝑡
=

𝑃(𝑘)

𝜌
− 𝑐𝑑

𝑘𝑡
3
2

𝑙
+

𝜕

𝜕𝑧
(𝜈𝑡,𝑓(𝑧, 𝑡)

𝜕𝑘𝑡

𝜕𝑧
)  (26) 

 

where 𝑙 is the turbulence length scale, 𝑘𝑡 = 𝑘𝑡(𝑧, 𝑡) 
is the kinetic energy of the wave breaking-induced 

turbulence and 𝑐𝑑 = 0.08. The kinetic energy 

production 𝑃(𝑘) is calculated according to [14]. 

The integration of Equation (26) gives the 

instantaneous value of 𝑘𝑡 which is used in order to 

calculate the eddy viscosity produced by the wave 

breaking as 

𝜈𝑡,𝑓(𝑧, 𝑡) = 𝑙√𝑘𝑡  (27) 
 

Consequently, the total eddy viscosity 𝜈𝑡(𝑧, 𝑡) is the 

quadratic sum of the eddy viscosity due to the current 

and wave breaking and the eddy viscosity produced 

by the wave boundary layer 
 

𝜈𝑡
2(𝑧, 𝑡) = 𝜈𝑡,𝑟

2(𝑧, 𝑡) + 𝜈𝑡,𝑓
2(𝑧, 𝑡)  (28) 

 

The instantaneous values of  𝑢𝑘, 𝑢𝑓, 𝜈𝑡, 𝐻 and Ω are 

used to calculate the input variables of the 

morphodynamic model, as shown in the following 

Subsection. 

 

2.2 Morphodynamic model 
The integral contravariant form of the solid particle 

concentration equation, in which a quasi-three-

dimensional methodology is used, is expressed by 
 

∬
𝜕�̃�̅�̃�

𝜕𝑡∆𝐴
𝑑𝐴 + ∫ [∫ �̃�(𝑧)

�̃�

𝑎
�̃�𝑟(𝑧)𝑑𝑧]𝑛𝑟𝑑𝐿𝐿

−

∫ 𝜈�̅̃��̃�𝑏
𝑟𝑘(�̃�̅)

,𝑘
𝑛𝑟𝑑𝐿𝐿

= ∬ (𝑃 − 𝐷)
∆𝐴

𝑑𝐴      (29) 
 

in which �⃗�  is the outward normal vector to the 

contour line 𝐿; �̃�(𝑧) is the solid particle concentration 

averaged on the wave period; �̃� is the water depth; 

�̃�𝑟 is the horizontal contravariant velocity vector 

averaged over the wave period; 𝑎 is the distance from 

the bottom which defines the region in which the bed 

load transport develops; 𝜈�̅̃� is the depth and wave-

averaged eddy viscosity; 𝐷 is the rate of the sediment 

deposition and 𝑃 is the rate of turbulent sediment 

pick-up. 𝐷 and 𝑃 are expressed by  
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𝐷 = 𝑤𝑠𝑒𝑑�̃�𝑎  (30) 

𝑃 = 𝑤𝑠𝑒𝑑�̃�𝑅  (31) 
 

in which 𝑤𝑠𝑒𝑑 is the sediment fall velocity, �̃�𝑎 and �̃�𝑅 

are, respectively, the actual and reference 

concentrations, that are evaluated at height 𝑎 = 2𝑑50. 

A threshold value of the sediment particle motion 

comes into the calculation of �̃�𝑅. In order to integrate 

Equation (29), the calculation of �̃�𝑎 and �̃�𝑅 is needed 

and shown hereinafter. The value of �̃�𝑎 is taken as the 

lower boundary condition of the following turbulent 

suspended sediment diffusion equation 
 

−�̃�(𝑧)𝑤𝑠𝑒𝑑 = 𝜈�̃�(𝑧)
𝜕�̃�(𝑧)

𝜕𝑧
  (32) 

 

and as the lower extreme of the integral that gives the 

depth-averaged value of �̃�(𝑧) 
 

�̃�̅ =
1

�̃�
∫ �̃�(𝑧)
�̃�

𝑎
𝑑𝑧  (33) 

 

Thus, �̃�𝑎 is calculated by an iterative procedure using 

Equation (33), where the values of �̃�̅ and 𝜈�̃�(𝑧) are 

known (from the previous time step). The value of �̃�𝑅 

is obtained by wave-averaging its instantaneous 

values 𝐶𝑅(𝑡) that are calculated according to [15]. 

The total transport is given by the sum of the bed load 

transport, which takes into account the near bed 

transport mechanism, and the suspended load 

transport. The contravariant equation of the bed 

change expressed in a curvilinear coordinate system 

is 
𝜕𝑧𝑓

𝜕𝑡
= −

1

1−𝑝
[(𝑃 − 𝐷) + �̃�𝑏,𝑘

𝑘 ]  (34) 
 

in which 𝑝 is the porosity of the sediment and 𝑧𝑓 is 

the elevation of the bed; �̃�𝑏
𝑘 (𝑘 = 1,2) is the 

contravariant components of the bed load transport 

vector 𝑞 ̃𝑏 that is define as 
 

𝑞 ̃𝑏 =
1

𝑇
 ∫ (5 (1 +

𝜋

6
𝛽

|�⃗⃗� |−𝜃𝑐𝑟
)
−1 4⁄

(√|𝜃 | −
𝑇

0

         0.7√𝜃𝑐𝑟)√(
𝜌𝑠

𝜌𝑤
− 1)𝐺𝑑50

3 )
�⃗⃗� 𝑎

|�⃗⃗� 𝑎|
𝑑𝑡  

(35) 

in which 𝛽 is the coefficient of the dynamic friction; 

𝜌𝑠 𝜌𝑤⁄  is the ratio between the sediment and water 

density; 𝜃𝑐𝑟 is the parameter of stability of Shield and 

|𝜃 | = |𝜃 (𝑡)| is the parameter of mobility of Shield, 

where 𝜃 (𝑡) is the bed shear stress induced by current 

and wave and 𝑑50 is the sediment mean diameter. 

 

3 Sandbar formation  
In this Section, we numerically reproduce an 

experiment extracted from "LIP 11D Delta Flume 

Experiments", described in the data report by 

Roelvink and Reniers [16]. The report contains 

hydrodynamic and sediment transport measures. The 

experiments was conducted in a wave flume with a 

183𝑚 long mobile bottom and were carried out so as 

to reproduce slightly erosive wave conditions acting 

for 12ℎ. In this test, narrow-banded random waves 

was generated (by a random phase, linear generator 

from a JONSWAP spectrum) at 𝑥 = 0𝑚 normally 

incident to the coast, whose characteristics are shown 

in Table 1. The bottom profile of the wave flume used 

as initial condition and the still water level are shown 

in Fig. 1. The wave flume was characterized by three 

different regions:  a first region in which the depth is 

equal to 4.1 m; a second region in which the water 

depth varies following a Dean-type bottom profile 

(the so-called equilibrium beach parabolic profile of 

Brunn-Dean-More); a third region in which the water 

depth varies following a constant bottom slope. The 

initial position of the shoreline is approximately 

located at 𝑥 =  181𝑚. In the experiment, the 

sediment was characterized by a mean diameter of 

220𝜇𝑚. 
 
Table 1. Incident wave characteristics  

𝑯𝟎 (𝐦) 𝑻𝒑 (s) 
Water level 

(m) 
Duration (h) 

0.9 5 4.1 12 

 
Fig. 1. Initial bottom profile (solid line) and still 

water level (dashed line)  

The test is numerically reproduced by internally 

generating random wave trains, characterized by a 

JONSWAP frequency spectrum with a significant 

wave height respectively of 0.9𝑚 and 1.4𝑚. The 

wave-averaged total sediment transport calculated by 

using the proposed model and compared with respect 

to the experimental measurements is shown in Fig. 2.   

The sediment resuspension phenomena are larger 

in the first region, located around at 𝑥 =  145𝑚, 

where the wave breaking starts. Fig. 2 also shows that 

in the breaking zone, the wave-averaged total 

sediment transport is offshore directed. The wave-

averaged total sediment transport in the second 
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region, located around at 𝑥 =  170 𝑚, is represented 

by the sediment contribution provided by the swash  

zone. The wave-averaged total sediment transport is  

 

offshore directed even in this region. 

 

 
Fig. 2. Comparison of calculated (black line) and measured (red line) wave-averaged total sediment transport by 

using the proposed model. 

Is to be underlined that, in the proposed model, the 

suspended sediment transport contribution to the 

wave-averaged total sediment transport is higher than 

the bed load transport contribution. Indeed, in the 

proposed model, the separation point between the 

region in which the suspended sediment transport is 

dominant and the region in which the bed load 

transport is dominant, is placed nearer than 2.5𝑑50 

from the bed. In fact, following [17], the thickness of 

the region in which the bed load transport is dominant 

(i.e. by the sediment particles moving by rolling, 

sliding, or in short jumps) is particularly small. 

The sediment particles, in the upper region, are held 

in suspension by the turbulence. The strong 

turbulence induced by waves, since the sediment 

consists of very fine sand, tends to put into 

suspension most of the sediment and therefore the 

bed load transport is small. 

The numerical results are in good agreement with the 

experimental measurements. The numerical results 

show that model is able to capture the sediment 

resuspension phenomena produced by wave breaking 

and the offshore sediment transport due to undertow 

currents.  

 Fig. 3 shows the comparison between the 

numerical and experimental results, in terms of bed 

modifications. From Fig. 3 it can be seen that two 

sandbars in the nearshore zone are present. The first 

sandbar is formed in the breaker zone. The second 

sandbar is formed in the nearer area to the swash 

zone. 

 
 

Fig. 3. Comparison of calculated (black line) and 

measured (red line) bed modifications by using the 

proposed model. 

The first sandbar is located around at 𝑥 =  137𝑚 and 

is characterized by a crest height of 0.1 𝑚 about. The 

above-mentioned sandbar is produced by the deposit 

of sediments put into suspension near the wave 

breaking (145𝑚 <  𝑥 < 155𝑚) and transported by 

undertow currents. In fact, the suspended sediment is 

bound to settle just seaward of the breaker zone due 

to a strong turbulence reduction. The second sandbar 

is located around at 𝑥 =  165𝑚, it is characterized 

by a crest height of about 0.12𝑚 and it is produced 

by contribution of the transported material from the 

swash zone.  

A similar seaward sandbar migration dynamic 

involves the movement of the second sandbar located 

in the nearer area to the swash zone. The numerical 

results are in good agreement with the experimental 

measurements.  The bar migration and the general 

trends of the beach profile changes are well predicted 

by the proposed model. 

 

4 Sea bottom modifications behind a 

T-head groin 
In this Section, we numerically reproduce a Test 

T3C1 extracted from "LSTF Experiments Transport 

by Waves and Currents & Tombolo Development 

Behind Headland Structures", described in the data 

report by Gravens and Wang [18]. That Test was 

carried out experimentally on a natural beach with a 

4-m long T-head groin centrally located in the 

alongshore direction of the model beach and with 

head section parallel-positioned 4m offshore of the 

initial shoreline. It had a duration of 184 min. A 

random wave was generated by a waves generator 

and it was characterized by a 0.26 m significant 

breaking wave height, 1.5 s period and an 

approximate wave angle of 6.5° with respect to the 

shoreline. In the experiment, the sediment were 

characterized by a mean diameter of 150 𝜇𝑚. Test 

T3C1 is numerically reproduced by internally 

generating random wave trains characterized by a 
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JONSWAP frequency spectrum and a significant 

breaking wave height of 0.26 m. 

 
Fig. 4. Initial depth contour lines (black solid lines), 

and comparison sections (black solid line A and B) 

for Test T3Cl. 

 Fig. 4 illustrates the depth contour lines in the 

initial condition for Test T3Cl, and the two sections 

A and B where experimental data are known.  

 

 
Fig. 5. Instantaneous wave field for Test T3Cl.  

 An instantaneous wave field obtained by the 

numerical simulation of Test T3C1 carried out by the 

proposed model is shown in Fig. 5. It is observed that, 

starting from about 𝑥 = 15𝑚 toward the shoreline 

the wave height gradually decreases because of the 

breaking. In the same figure it is noted that the wave 

fronts, in the lee of the T-head groin, although 

attenuated by breaking undergo a rotation owing to 

the diffraction effects. 

 The wave-averaged velocity field obtained by the 

numerical simulation of Test T3C1 carried out by the 

proposed model is compared with respect to the 

experimental measurements as shown in Fig. 6. It can 

be seen that the current is intercepted and offshore-

diverted by the T-head groin. In the same figure, the 

simulated velocity field is characterized by the 

formation of two eddies close to the T-head groin. It 

is possible to notice that the wave-averaged velocity 

field obtained by numerical simulation is in good 

agreement with respect to the experimental 

measurements.  

 
Fig. 6. Wave-averaged velocity field: calculated 

(black vectors) and measured (red vectors) velocity 

current for Test T3Cl. 

 

(a) 

 
(b) 

Fig. 7. Comparison of calculated (dashed line) and 

measured (asterisks) significant wave height for Test 

T3Cl (beach profile in solid line) in section A (Fig. 

7a) and in section B (Fig. 7b). 

 

In Fig 7 the comparison between the numerical 

results and experimental measurements by Gravens 

and Wang [18], in terms of significant wave height, 

at the two sections (𝑦𝐴 = 26𝑚 and 𝑦𝐵 = 22𝑚) is 

shown.  In Figs. 7(a) and 7(b) it is possible to notice 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2020.15.6 Marco Tamburrino, Francesco Gallerano

E-ISSN: 2224-347X 69 Volume 15, 2020



that the sharp rise in the bed elevation induces the 

wave breaking and consequently the decay in wave 

height between 𝑥 = 14𝑚 and 𝑥 = 12𝑚. The wave 

height changes minimally in the zone from 𝑥 = 12𝑚 

to 𝑥 = 4𝑚, being, in that zone, the bed elevation 

nearly constant. In the zone between the head section 

of the T-head groin and the shoreline, where the 

structure produces the maximum shielding effect on 

the incident waves, the wave height substantially 

decreases. These figures show that the numerical 

results are in good agreement with the experimental 

measurements.  

 
(a) 

 
(b) 

Fig. 8. Comparison of calculated (dashed line) and 

measured (asterisks) longshore current for Test T3C1 

(beach profile in solid line) in section A (Fig. 8a) and 

in section B (Fig. 8b). 

Fig. 8 shows the comparison between the 

longshore currents obtained by the numerical model 

proposed in this paper and the experimental 

measurements by Gravens and Wang [18] at the two 

sections previously indicated.  

From Fig. 8a, it is possible to notice that, in the zone 

close to the head section downdrift side, 2𝑚 < 𝑥 <
4𝑚, there is an inversion of the direction of the long-

shore current, due to the presence of a small eddy. In 

the zone from 𝑥 = 2𝑚 to 𝑥 = 0𝑚, the long-shore 

current is slightly overestimated. 

The aforementioned inversion of the long-shore 

current is also present in section B (see Fig. 8b), due 

to the presence of a second eddy. 

In these figures, it is observed that the numerical 

results are in good agreement with respect to the 

experimental measurements.  

 
(a) 

 
(b) 

Fig. 9. Comparison of calculated (dashed line) and 

measured (asterisks) cross-shore current for Test 

T3Cl (beach profile in solid line) in section A (Fig. 

9a) and in section B (Fig. 9b). 

 Fig. 9 shows the comparison between the cross-

shore currents obtained by the numerical model 

proposed in this paper and the experimental 

measurements by Gravens and Wang [18] at the two 

sections previously described. In these figures, it is 

possible to notice that the numerical results are in 

good agreement with respect to the experimental 

measurements. In Fig. 10, the depth contour lines 

obtained at the end of the numerical simulation of 

Test T3C1 carried out by the proposed model (black 

lines), and the corresponding depth contour lines 

obtained from experimental data by Gravens and 

Wang [18] (grey lines) are shown. 

 

 
Fig. 10. Comparison of calculated (red lines) and 

measured (grey lines) depth contour lines for Test 

T3Cl. 
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The comparison between Figs. 4 and 10 highlights 

the modifications in the bed elevation obtained by the 

numerical model. From this comparison it is possible 

to notice a seaward advancement of the shoreline 

development in the lee of the T-head groin and right 

near the stem: the advancement of the 0.0 − 0.1𝑚 

depth contour lines toward the head section is about 

1 m. The sediment puts into suspension in the region 

upstream of the T-head groin (with respect to 

longshore current direction) and the one coming from 

the swash zone produce an accretion in the updrift 

side of the stem: in the lee of the T-head groin, the 

accumulation of sediment is due to the decay of the 

current velocity highlighted  by the presence of the 

above-mentioned first eddy. In the downdrift side of 

the stem, the rise in the bed elevation is produced by 

the sediment coming from the swash zone and 

transported by the second eddy toward the stem. 

The comparison between Figs. 4 and 10 evidences 

also that, in proximity of the head section extremes, 

there are two erosion areas: the first one is located 

close to the top left corner of the T-head groin 

(3.5𝑚 < 𝑥 < 4.5𝑚 and 26𝑚 < 𝑦 < 28𝑚) where 

the depth contour line is 0.2𝑚; the second one is 

located near the bottom right corner of the T-head 

groin (2.5𝑚 < 𝑥 < 3.5𝑚 and 22𝑚 < 𝑦 < 20.5𝑚) 

and is characterized by the retreat toward the 

shoreline of 0.15𝑚 depth contour line.  

In Fig. 10 the comparison between the measured 

depth contour lines obtained at the end of the 

experiment T3C1 and the ones obtained by the 

proposed numerical model is shown. It can be noted 

a good agreement between the numerical and 

experimental results.  

The numerical results show: a slight underestimation 

of the extension of the erosion area in the region near 

the shoreline located upstream of the T-head groin 

(28𝑚 < 𝑦 < 32𝑚); a small underestimation of the 

extension of the erosion area in the region near to the 

shoreline downstream of the T-head groin (𝑦 >
21𝑚); a slight underestimation of  the extension of 

the erosion area near the top left corner of the T-head 

groin. The salient updrift and downdrift of the T-head 

groin stem is shown to be well predicted by the 

proposed numerical model. 

The presence of the coastal defence structures 

induces a complex current velocity field that 

influences the local sediment transport. The wave 

induced longshore current transports the sediment, 

that are put into suspension by the breaking waves, 

up to the region upstream of the T-head groin; close 

to the stem of the T-head groin the current is offshore 

directed and the sediment are carried towards the lee 

of the T-head groin, where it settles. 

5 Conclusion 
In this paper, the modifications induced by a T-head 

groin on the sea bottom have been simulated by a new 

numerical model which is composed by a 

hydrodynamic model and a morphodynamic model. 

The good agreement between the numerical and 

experimental results shows the ability of the 

proposed hydrodynamic model, based on a new 

conservative integral contravariant form of the Fully 

Nonlinear Boussinesq Equations, and of the proposed 

morphodynamic model, based on the Quasi-Three-

dimensional approach, to simulate the sea bottom 

modifications behind a T-head groin. 

 

 

Appendix 

𝑏𝑙 = 𝑔 (𝑙) · �⃗�     ;    𝑏𝑙 = 𝑔 (𝑙) · �⃗�     (A1) 

�⃗� = 𝑏𝑙𝑔 (𝑙) ;    �⃗� = 𝑏𝑙𝑔 
(𝑙) (A2) 

𝑏𝑙,𝑚= 𝜕 𝑏𝑙 𝜕⁄ 𝜉𝑚 + 𝛤𝑚𝑘
𝑙 𝑏𝑘 (A3) 

𝛤𝑚𝑘
𝑙 = 𝑔 (𝑙) · 𝜕 𝑔 (𝑘) 𝜕⁄ 𝜉𝑚 (A4) 

𝑇,𝑚
𝑙𝑚 =

1

√𝑔

𝜕𝑇𝑙𝑚√𝑔

𝜕𝜉𝑚
+ 𝑇𝑛𝑚 𝛤𝑛𝑚

𝑙  (A5) 
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