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Abstract: - In this paper we propose a new numerical model for the simulation of the wave breaking.  The three-

dimensional equations of motion are expressed in integral contravariant form and are solved on a curvilinear 

boundary conforming grid that is able to represent the complex geometry of coastal regions. A time-dependent 

transformation of the vertical coordinate that is a function of the oscillation of the turbulent wave boundary layer 

is proposed. A new numerical scheme for the simulation of the resulting equations is proposed. New boundary 

conditions at the free surface and bottom for the equations of motion expressed in contravariant form are 

proposed. We present an analysis of the importance of the correct positioning, inside the oscillating turbulent 

boundary layer, of the centre of the calculation grid cell closest to the bottom, in order to correctly simulate the 

height of the breaking waves. 
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1 Introduction 
In hydraulic engineering, the simulation of the 

hydrodynamic fields and turbulence under breaking 

waves allow the analysis of the effect produced by 

coastal defence structures and the modifications of 

the shoreline. One of the most used approaches for 

the simulation of breaking waves is based on the two-

dimensional depth-averaged equations of motion [1-

4], that are obtained by assuming a simplified 

distribution of the hydrodynamic quantities along the 

vertical direction (depth averaged models). 
In the literature, the three-dimensional simulation 

of wave induced free surface flows can carried out by 

numerical models that integrate the three-

dimensional Navier- Stokes equations, in which the 

so-called 𝜎 transformation is used. In such a 

framework, the vertical Cartesian coordinate is 

transformed in a vertical coordinate that moves with 

the free surface. The adoption of shock-capturing 

numerical schemes in the 𝜎-coordinate models 

allows the simulation of breaking waves. In these 𝜎-

coordinates shock-capturing models, the equations of 

motion are written in terms of Cartesian based 

conserved variables and are solved on a coordinate 

system that includes a time-varying vertical 

coordinate [5-6].  
In a more recent class of numerical models, the 

three-dimensional equations of motion are expressed 

in a boundary conforming curvilinear coordinate 

system, where the vector and tensor quantities are 

expressed in a Cartesian frame of reference and only 

the vertical coordinate varies over time [7-8]. In these 

models, that aspire to use a computational grid with 

a reduced number of points along the vertical 

direction (of the order of a ten), the simulated wave 

height is in good agreement with respect to the 

experimental measures only before the wave 

breaking point. Ma et al., [5] demonstrated that, in 

general, the σ-coordinate shock-capturing models 

underestimate the wave breaking energy dissipation 

and overestimate the wave height in the surf-zone. 
In this paper, we propose a time-dependent 

transformation of the vertical coordinate that is a 

function also of the thickness of the oscillating 

turbulent wave boundary layer.  
To the knowledge of the writers, to date, there are 

no models in the literature, that solve the equations of 

motion on a computational grid with a reduced 

number of points along the vertical direction, that are 

able to simulate with a high level of accuracy the 

initial wave breaking point and the wave height in the 

surf-zone.  
The lack of high level of accuracy, in the wave 

breaking simulation, depends not only on too 

dissipative turbulence models, but also on the errors 

produced by the numerical schemes. Furthermore, 

the above-mentioned high accuracy depends also on 

the way by which the boundary conditions at the 

bottom and free-surface are assigned in the 

momentum equation and on the way by which, in 

particular, the turbulence phenomena are represented 

along the water column. In the literature, in the way 

to assign the boundary conditions at the bottom there 
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is a contradiction. As it is known, the turbulent 

boundary layer can be subdivided in three regions: 

the viscous sub-layer is the region closest to the 

bottom and is characterized by the dominance of the 

viscous stress; the buffer layer is the intermediate 

region and is characterized by the equal importance 

of viscous and turbulent stresses; the turbulent core is 

the region which is further from the bottom and 

where the turbulent stresses are dominant. 

   In the literature, the velocity boundary 

conditions and the friction velocity are deduced from 

appropriate logarithmic law.  
In the calculation cell closest to the bottom, the 

cell-averaged velocity is obtained from the numerical 

solution of the momentum equation: this value is 

usually located in the centre of the above-mentioned 

grid cell. From this cell averaged velocity value, the 

friction velocity and the velocity boundary condition 

are obtained by the logarithmic law. The logarithmic 

law is valid in the turbulent core and, consequently, 

the centre of the calculation cell closest to the bottom 

(where the cell averaged velocity is calculated by the 

momentum equation) must necessarily be located 

inside of the turbulent core.  
Placing the centre of the calculation cell closest to 

the bottom outside the boundary layer, or too close to 

the bottom (in the buffer layer or even in the viscous 

sub-layer), produces wrong evaluations of the 

friction velocity and wrong velocity boundary 

conditions and turbulent stresses in the turbulent 

boundary layer. In the current numerical models 

falling within the framework of the σ-coordinate 

transformation, the above-mentioned centre of the 

calculation cell closest to the bottom oscillates 

coherently with the oscillations of the free-surface, 

but in contradictory form with respect to the 

oscillations of the turbulent wave boundary layer: 

consequently, during the wave period, the centre of 

the calculation cell closest to the bottom is located 

outside or inside the turbulent wave boundary layer. 

It is evident that, in these numerical schemes, wrong 

evaluations of velocity boundary conditions, friction 

velocity and bottom stresses occur, with a consequent 

wrong simulation of the wave height at the breaking 

point and in the surf-zone.  
In this work, a new model for the simulation of 

breaking waves is proposed. The three-dimensional 

equations of motion are expressed in integral 

contravariant form in time varying coordinates that 

can adapt to free-surface movements and to the 

evolution of the turbulent boundary layer thickness 

and are solved on boundary conforming curvilinear 

grids that can reproduce the complex geometry of the 

coastal regions. 

In [9-10], the numerical scheme is based on a 

fractional-step method in which the sequence of steps 

to update the numerical solution consists in the 

calculation of a predictor velocity field, followed by 

a corrector step (in which a Poisson-like equation is 

numerically solved) and, finally, by the updating of 

the free-surface elevation. Furthermore, in [9-10] the 

finite difference numerical approximation of the 

differential terms in the Poisson-like equation are 

expressed in conservative form. 

In the proposed numerical model, the integral 

contravariant form of the continuity and momentum 

equations are discretized by a finite-volume shock-

capturing that uses an HLL approximate Riemann 

solver [11] and are updated by a fractional-step 

method that is different from the one presented in [9-

10]. In the proposed fractional step method, the 

calculation of the predictor velocity field is followed 

by updating the free surface elevation and, finally, by 

a corrector step based on the numerical solution of a 

Poisson-like equation. Moreover, the differential 

terms in the Poison-like equation are expressed in 

non-conservative form in order to avoid the errors 

produced by the introduction of the metric terms in 

the finite difference approximations of the 

differential operators. New boundary conditions at 

the free surface and bottom for the contravariant 

equations are proposed. We present an analysis of the 

importance of the correct positioning, inside the 

oscillating turbulent boundary layer, of the centre of 

the calculation cell closest to the bottom, in order to 

correctly simulate the height of the breaking waves.  

In this work, the centre of the calculation cell 

closest to the bottom oscillates coherently with the 

oscillations of the turbulent wave boundary layer and 

is always located in the turbulent core. The boundary 

condition for the cell averaged flow velocity, that is 

deduced form the logarithmic law, and for the eddy 

viscosity (which intervenes in the closure relation for 

the turbulent stress tensor in the turbulent boundary 

layer) are assigned on the lower face of the 

calculation cell closest to the bottom, that is to say in 

the lower part of the turbulent core, close to the buffer 

layer, where the balance between the production and 

dissipation of turbulent kinetic energy take place. 

 

2 Governing Equations 
In this paper we adopt the governing equations 

proposed in [9-10] in which the Navier-Stokes 

equations are expressed in integral contravariant 

form in a time-dependent curvilinear coordinate 

system. 
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where 𝑢𝑘 (𝑘 = 1,3) is the contravariant component 

of the fluid velocity; 𝑣𝛼 (𝛼 = 1,3) is the 

contravariant component of the velocity of the 

moving coordinate lines; 𝜌 is the water density; 𝑓𝑘 

and 𝑅𝑘𝛼 (𝑘, 𝛼 = 1,3) are, respectively, the 

contravariant component of the external body forces 

for unit mass vector and the contravariant 

components of the stress tensor. In the above 

equations 𝜏 is the time and 𝜉1, 𝜉2, 𝜉3 are moving 

curvilinear coordinates obtained from the Cartesian 

coordinate system (𝑥1, 𝑥2, 𝑥3, 𝑡) by a time-dependent 

transformation 𝑥𝑖 = 𝑥𝑖(𝜉1, 𝜉2, 𝜉3, 𝜏 ), 𝑡 = 𝜏 . Vectors 

�⃗�(𝑙) and �⃗�(𝑙) are, respectively, the covariant and 

contravariant base vectors of the curvilinear 

coordinate system; √𝑔 is the Jacobian of the 

transformation. ∆𝑉0 = ∆𝜉1∆𝜉2∆𝜉3 is the volume 

element in the transformed space and  ∆𝐴0
𝛼+ and 

∆𝐴0
𝛼− indicate the contour surfaces of the volume ∆𝑉0 

on which 𝜉𝛼 is constant and which are located at the 

larger and at the smaller value of 𝜉𝛼 respectively. 

Here, the indexes 𝛼 , 𝛽, and 𝛾 are cyclic.  

Equations (1) and (2) represent the general 

integral form of the Navier-Stokes equations 

expressed in a time dependent curvilinear coordinate 

system. The complete derivation of these equations 

can be found in [10]. In [9] it has been demonstrated 

that, by taking the limit as the volume approaches 

zero, the integral Equations (1) and (2) are reduced to 

the complete differential form of the contravariant 

Navier-Stokes equations in a time dependent 

curvilinear coordinate system that have been 

proposed in the literature by Luo and Bewley [12].  

In this paper, in order to simulate the fully 

dispersive wave processes and the wave breaking, we 

start from the model proposed in [9-10] and obtain 

the following governing equations 

𝜕𝐻𝑢𝑙̅̅ ̅̅ ̅

𝜕𝜏
= − 
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1
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𝜕𝑝𝑑
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𝜕𝜏
=

1

∆𝐴𝑜
3√𝑔0

∑ [∫ ∫ 𝑢𝛼𝐻√𝑔0𝑑𝜉𝛽𝑑𝜉3

∆𝜉𝑜
𝛼+

1

0

2

𝛼=1

− ∫ ∫ 𝑢𝛼𝐻√𝑔0𝑑𝜉𝛽𝑑𝜉3

∆𝜉𝑜
𝛼−

1

0

]  

 

(4) 

 where 𝐻 = ℎ + 𝜂 is the total water depth; ℎ is the 

undisturbed water depth and 𝜂 is the free surface 

elevation with respect to the undisturbed water level; 

𝐺 is the gravity acceleration; pressure 𝑝 is divided 

into a hydrostatic part, 𝜌𝐺(𝜂 − 𝑥3) (the vertical 

coordinate 𝑥3 is zero at the still free surface and it is 

positive upwards), and a dynamic one, 𝑝𝑑. The 

curvilinear coordinates 𝜉1, 𝜉2, 𝜉3, 𝜏 are defined as 

 𝜉1 = 𝜉1(𝑥1, 𝑥2, 𝑥3)      ;      𝜉2 =  𝜉2(𝑥1, 𝑥2, 𝑥3)      ;        

𝜉3 =
𝑥3+ℎ(𝑥1,𝑥2)

𝐻(𝑥1,𝑥2,𝑥3,𝑡)
      ;      𝜏 = 𝑡 

 

(5) 

     where 𝜉1 and  𝜉2 are the horizontal boundary 

conforming curvilinear coordinates and 𝜉3 is the time 
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varying vertical coordinate by which the irregular 

varying domain in the physical space is mapped into 

a regular fixed domain in the transformed space. 

√𝑔 = �⃗⃗� ∙ |�⃗�(1)⋀�⃗�(2)| , where ⋀ indicates the vector 

product. �̅� and 𝐻𝑢𝑙̅̅ ̅̅ ̅ are spatial average values over 

volume elements defined in the form 

�̅� =
1

∆𝐴0
3√𝑔0

∫ 𝐻√𝑔0𝑑𝜉1𝑑𝜉2

∆𝐴𝑜
3

 
 

𝐻𝑢𝑙̅̅ ̅̅ ̅ =
1

∆𝑉0√𝑔0

∫ �⃗̃�(𝑙) ∙ �⃗�(𝑘)𝑢𝑘𝐻√𝑔0𝑑𝜉1𝑑𝜉2𝑑𝜉3

∆𝑉0

  

 

(6) 

3 Boundary conditions  
3.1 Bottom boundary condition 

 

Fig. 1 Computational grid cells at the bottom 

In Fig. 1 are shown the first grid cells near the bottom. 

For the sake of simplicity, let us consider flat bottom.  

Let 𝑧2 be the distance from the bottom of the centre 

of the first calculation cell closest to the bottom 

(indicated whit 2 in Fig. 1); let 𝑧𝐵 be the distance 

from the bottom of the lower face of the first 

calculation cell closest to the bottom. The centre of 

the grid cell 1 belong to the bottom (as shown in Fig. 

1). The cartesian based velocity cell averaged 𝑢2̅̅ ̅, 

indicated in Fig. 1, is deducted from the contravariant 

components of the velocity, obtained by Equations 

(3) and (4). This cell averaged velocity, 𝑢2̅̅ ̅, is placed 

at the centre of the cell 2. 

The logarithmic law used in order to calculate 

the friction velocity 𝑢∗ is 

𝑢2̅̅ ̅̅

𝑢∗ =
1

𝜅
ln (

𝐸𝑢∗𝑧2

  𝜈
) (7) 

where 𝐸 = 0.9 is a coefficient used for a smooth 

wall; 𝜅 = 0.41 is the von Kármán constant and 𝜈 is 

the kinematic viscosity. 𝑢𝐵 is the velocity boundary 

condition and it is calculated at the point 1 + 1 2⁄  (as 

shown in Fig. 1), on the lower face of the calculation 

cell closest to the bottom: this value is calculated 

using the logarithmic law (𝑢𝐵 =
𝑢∗ 𝜅⁄ ln(𝐸𝑢∗𝑧𝐵   𝜈⁄ )), through the friction velocity 

𝑢∗. 

As known, the turbulent boundary layer is 

divided in three regions: the viscous sub-layer is 

characterized only by the presence of the viscous 

stresses, (𝑦+ ≤ 5 where 𝑦+ =
𝑧𝑢∗

𝜈
 and 𝑧 is the 

distance from the wall in a Cartesian coordinate 

system); the buffer layer is characterized by the 

presence of the viscous stresses and turbulent stresses 

(5 < 𝑦+ < 30); the turbulent  core is characterized 

by the dominant presence of turbulent stresses (30 <
𝑦+ < 100). The logarithmic law is valid in the 

turbulent core and consequently, the point at the 

centre of the calculation cell, in which the velocity is 

calculated, (in Fig. 1 is the point 2, distant 𝑧𝐵 from 

the wall) needs to be placed in the turbulent core. 

In the 𝜎-coordinate models present in the 

literature, the points position 1 + 1/2 and 2 oscillates 

consistent whit the free surface movement, as shown 

in Fig. 2(a).  Consequently, in the above-mentioned 

models the points 1 + 1/2 and 2, during the wave 

period, are located out the oscillating turbulent wave 

boundary layer, or in the turbulent core, or in the 

buffer layer, or in the viscous sub-layer. Hence, 

wrong values of the velocity boundary condition and 

the turbulent stress near the wall are produced. These 

wrong values influence the phase-averaged crest 

elevations.  

In this paper, we propose an analysis on the 

importance of the correct placement of the points 1 +
1/2 and 2 in the turbulent core in order to correctly 

evaluate the phase-averaged crest elevations. 
The turbulent closure relation used in this paper is 

expressed as follows  

𝑅𝑚𝑛 =  2𝜈′𝑆𝑚𝑛    (8) 

where 𝑅𝑚𝑛 are the contravariant components of the 

stress tensor; 𝜈′ = 𝜈 + 𝜈𝑡 is the sum of the kinetic 

viscosity 𝜈 and the turbulent eddy viscosity 𝜈𝑡; 𝑆𝑚𝑛 

are the contravariant components of strain rate tensor. 

The turbulent stress boundary condition, 𝜏𝑚𝑛, 

collocated on the lower face of the calculation cell 

closest to the bottom, is calculated using the turbulent 

eddy viscosity  

𝜈𝑡 = 𝜅𝑢∗𝑧𝐵 (9) 

Outside the turbulent boundary layer, the turbulent 

eddy viscosity is evaluated by 𝜈𝑡 =

(𝐶𝑠Δ)2√2𝑆𝑚𝑛𝑆𝑚𝑛, where Δ = √Δ𝜉1Δ𝜉2Δ𝜉33
 is the 

length scale dependent on the grid size and 𝐶𝑠 is the 

Smagorinsky coefficient. 
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The Equation (9) is deducted by the hypothesis of the 

balance between the production and the dissipation of 

turbulent kinetic energy, that is holds true on the 

lower part of the turbulent core, near the buffer layer. 

In this paper the points 1 + 1/2 and 2 oscillate 

coherently with the turbulent boundary layer, as 

shown in Fig. 2(b). In particular, the point 2 is always 

located in the turbulent core; the point 1 + 1/2 is also 

located in the turbulent core near the buffer layer, 

where is holds true the balance between the 

production and dissipation of turbulent kinetic 

energy. In Fig. 2(b) it is possible to notice that the 

first cell thickness increases in correspondence of the 

reduction of the velocity at the bottom and it reduces 

in correspondence of the increase of the velocity at 

the bottom. 

(a) 

(b) 

Fig. 2 Instantaneous representation of: a) 

computational grid in which the points 1 + 1/2 and 

2 move whit the free surface; b) computational grid 

in which the points 1 + 1/2 and 2 move with the 

oscillating wave boundary layer. 

3.2 Surface boundary condition 

The boundary conditions for the dynamic pressure 

fields are derived from considering that, at the free-

surface, the normal stresses are not equal to zero at 

all time. 

𝑅𝑒𝑥𝑡
33 = −

𝑝𝑎𝐻

𝜌
 (10) 

𝑅𝑖𝑛𝑡
33 = −

𝑝𝑎𝐻

𝜌
−

𝑝𝑑𝐻

𝜌
+ 𝑅33 (11) 

where 𝑝𝑎 is the atmospheric pressure; 𝑅𝑒𝑥𝑡
33  and 𝑅𝑖𝑛𝑡

33  

are, respectively, the normal external and internal 

stress tensor; 𝑅33 is the normal stress tensor due to 

the turbulence and viscosity. The continuity of the 

normal stress reads 

𝑅𝑖𝑛𝑡
33 = 𝑅𝑒𝑥𝑡

33  (12) 

Introducing Equations (10) and (11) in Equation (12) 

we obtain 

𝑝𝑑 =
𝜌

𝐻
𝑅33 (13) 

The normal stress tensor is expressed in 

contravariant formulation in a time-dependent 

curvilinear coordinates system as follows 

𝑅33 =
�⃗�(3)

|�⃗�(3)|
∙ �̅� ∙

�⃗�(3)

|�⃗�(3)|
 

(14) 

The components of the turbulent stress tensor 

(�̅�) are expressed as follow:  𝑅𝑚𝑛 = 2𝜈′𝑆𝑚𝑛,  in 

which 𝑆𝑚𝑛 the components of the strain rate are 

written as follow 

𝑆𝑚𝑛 =
1

2
∑ [

𝜕(�⃗�(𝑗)𝑚𝑢𝑗

𝜕𝜉(𝑖)
�⃗�𝑛

(𝑖)
+

𝜕(�⃗�(𝑗)𝑛𝑢𝑗

𝜕𝜉(𝑖)
�⃗�𝑚

(𝑖)
]

3

𝑖=1

 
 

(15) 

Introducing (15) in (13) we obtain the 

equation, written in contravariant formulation in a 

time-dependent curvilinear coordinate system, for the 

calculation of the dynamic pressure on the upper face 

of the top computational cell which correspond to the 

free surface. 

𝑝𝑑 =
2𝜌𝜈𝑒𝑓𝑓

𝐻
{
1

2
∑ [

𝜕(�⃗�(𝑗)𝑚𝑢𝑗

𝜕𝜉(𝑖)
�⃗�𝑛

(𝑖)
+

𝜕(�⃗�(𝑗)𝑛𝑢𝑗

𝜕𝜉(𝑖)
�⃗�𝑚

(𝑖)
]

3

𝑖=1

} 
(16) 

4 Numerical schemes 
The numerical scheme for the spatial discretization of 

the governing equations consists in a finite volume 

Shock capturing scheme in which TVD muscle 

reconstructions and the HLL approximate Riemann 

solver adopted in [9-10] are used to calculate the 

point values of water depth and flow velocity at the 

centre of the cell faces of the computational grid. 

Analogously to [9-10], the numerical procedure for 
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updating the cell averaged 3D flow velocity field and 

free-surface elevation is based on a predictor-

corrector method in conjunction with a two-stage 

second order Runge-Kutta method.  

With respect to these papers, we propose two 

elements of originality: a modification of the 

procedure to update the free-surface elevation and a 

modification of the Poisson-like equation that 

characterize the corrector step. These two elements 

of originality entail a new procedure for the 

numerical solution of the flow velocity and free-

surface elevation that can be summarized into the 

following steps: 

1) Predictor step.  
At each stage of the Runge-Kutta method, an 

approximate velocity field (called predictor velocity 

field) is carried out by numerically integrating the 

momentum equation, Equation (3), devoid of the 

dynamic pressure q, by a shock-capturing numerical 

scheme in which MUSCLE-TVD reconstructions 

and the HLL approximate Riemann solver are used to 

obtain the point values of flow velocity and water 

depth at the centre of the computational cell faces. 

2) Updating of the free surface elevation. 

At the end of the predictor step, the point values of 

the water depth and flow velocity obtained at the 

centre of the cell faces by the local solution of the 

Riemann Problem are integrated over the vertical 

faces of the water column in order to calculate (by 

equation 4) the new position of the cell averaged free-

surface elevation.  

3) Corrector step. 

The new position of the free-surface is used to 

recalculate the position of all the grid points and to 

update the metric terms that relate coordinates, 

vectors and tensors expressed in the irregular and 

time-varying physical domain occupied by the water 

to the ones expressed in a fixed regular computational 

domain obtained by the time dependent coordinate 

transformation; in the updated geometry, a Poisson-

like equation is solved, by an iterative procedure, to 

calculate the scalar field 𝜓; the irrotational corrector 

velocity field is obtained as the gradient of the scalar 

field 𝜓 and is summed to the predictor one, in order 

to produce a final non-hydrostatic divergence-free 

velocity field.  

Differently from what is done in [9-10], where 

the free-surface elevation was calculated at the end of 

the corrector step, in this paper we update the free 

surface elevation at the end of the predictor step. 

Consequently, the position of the free surface is 

updated by using the point values of the flow velocity 

and water depth at the centre of the cell faces that 

result from the local solution of the approximate 

Riemann Solver used in the predictor step. This 

improves the shock capturing properties of the 

numerical procedure and allows to better simulate 

steep wave fronts and the wave breaking. 

Furthermore, in order to improve the accuracy 

of the numerical solution in highly distorted grids, we 

propose a curvilinear form of the Poisson-like 

equation that is different from the one used in [9-10]. 

The corrector velocity field is the gradient of a scalar 

field 𝜓, which is obtained by imposing that the 

divergence of the gradient of 𝜓 is equal and opposite 

to the divergence of the predictor velocity field. In 

curvilinear coordinates, both the divergence and 

gradient operators can be expressed in two different 

forms: the so called conservative form, in which the 

Jacobian √𝑔 (and metric terms) of the coordinate 

transformation are written inside the spatial 

derivatives with respect to the curvilinear 

coordinates; and the so-called non conservative form, 

in which (by invoking a well-known metric identity) 

the Jacobian of the transformation is not explicitly 

present in the differential operator and the metric 

terms are written outside the spatial derivatives [13]. 

In the papers of [9-10], the divergence of the gradient 

of the scalar 𝜓 (in the corrector step) is written in 

conservative form and, consequently, the numerical 

approximation of the Poisson-like equation proposed 

in [9-10] includes the discretization of the spatial 

derivatives of the Jacobian of the transformation. 

This introduces approximation errors in the 

numerical scheme that can make the solution very 

sensitive to the deformation of the computational 

cells. In order to avoid this problem, in this paper we 

propose the following Poisson like equation for the 

corrector step in which both the divergence and 

gradient operators are written in non-conservative 

form 

�⃗�(𝛼) ∙

𝜕 (
�⃗�(𝑗)𝜕𝛹

𝜕𝜉𝑗 )

𝜕𝜉𝛼 = − �⃗�(𝛼) ∙
𝜕𝑣∗

𝜕𝜉𝛼 
 

(17) 

in which, differently from [9-10], the Jacobian of the 

transformation, √𝑔, is not present at all. 

By adopting a second order finite difference 

scheme for the spatial derivatives of the divergence 

operator, the proposed non-conservative form of the 

Poisson like equation (17) reads 

�⃗�
𝑖,𝑗,𝑘+

1
2

(1)
 

Δ𝜉
𝑖,𝑗,𝑘+

1
2

1 ∙ [(�⃗�𝑗
𝜕𝛹

𝜕𝜉𝑗
)

𝑖+1
2,𝑗,𝑘+1

2

− (�⃗�𝑗
𝜕𝛹

𝜕𝜉𝑗
)

𝑖−1
2,𝑗,𝑘+1

2

] + 

 

�⃗�
𝑖,𝑗,𝑘+

1
2

(2)
 

Δ𝜉
𝑖,𝑗,𝑘+

1
2

1 ∙ [(�⃗�𝑗
𝜕𝛹

𝜕𝜉𝑗
)

𝑖,𝑗+
1
2,𝑘+1

2

− (�⃗�𝑗
𝜕𝛹

𝜕𝜉𝑗
)

𝑖,𝑗−
1
2,𝑘+1

2

] + 
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�⃗�
𝑖,𝑗,𝑘+

1
2

(3)
 

Δ𝜉
𝑖,𝑗,𝑘+

1
2

1 ∙ [(�⃗�𝑗
𝜕𝛹

𝜕𝜉𝑗
)

𝑖,𝑗,𝑘+1

− (�⃗�𝑗
𝜕𝛹

𝜕𝜉𝑗
)

𝑖,𝑗,𝑘

] = − 

 

{

�⃗�
𝑖,𝑗,𝑘+

1
2

(1)
 

Δ𝜉
𝑖,𝑗,𝑘+

1
2

1 [�⃗�∗
𝑖+

1
2

,𝑗,𝑘+
1
2

− �⃗�∗
𝑖−

1
2

,𝑗,𝑘+
1
2

]

+

�⃗�
𝑖,𝑗,𝑘+

1
2

(2)
 

Δ𝜉
𝑖,𝑗,𝑘+

1
2

1 [�⃗�∗
𝑖,𝑗+

1
2

,𝑘+
1
2

− �⃗�∗
𝑖,𝑗−

1
2

,𝑘+
1
2

] + 

 

   

�⃗�
𝑖,𝑗,𝑘+

1
2

(3)
 

Δ𝜉
𝑖,𝑗,𝑘+

1
2

1 [�⃗�∗
𝑖,𝑗,𝑘+1 − �⃗�∗

𝑖,𝑗,𝑘]} 

 

(18) 

By applying the same discretization scheme to 

the first order derivatives on the left-hand side of 

Equation 18, we obtain a set of algebraic equations 

that can be written in the form: 

 

𝑏1𝛹𝑖,𝑗−1,𝑘−1
(𝑠)

  + 𝑏2𝛹𝑖−1,𝑗,𝑘−1
(𝑠)

  + 𝑏3𝛹𝑖,𝑗,𝑘−1
(𝑠)

 +

𝑏4𝛹𝑖+1,𝑗,𝑘−1
(𝑠)

 + 𝑏5𝛹𝑖,𝑗+1,𝑘−1
(𝑠)

  + 𝑏6𝛹𝑖−1,𝑗−1,𝑘
(𝑠)

+

𝑏7𝛹𝑖,𝑗−1,𝑘
(𝑠)

      +  

 

 

𝑏8𝛹𝑖+1,𝑗−1,𝑘
(𝑠)

  + 𝑏9𝛹𝑖−1,𝑗,𝑘
(𝑠)

      + 𝑏10𝛹𝑖,𝑗,𝑘
(𝑠)

    

+ 𝑏11𝛹𝑖+1,𝑗,𝑘
(𝑠)

    + 𝑏12𝛹𝑖−1,𝑗+1,𝑘
(𝑠)

+ 𝑏13𝛹𝑖,𝑗+1,𝑘
(𝑠)

  + 𝑏14𝛹𝑖+1,𝑗+1,𝑘
(𝑠)

+ 

 

𝑏15𝛹𝑖,𝑗−1,𝑘+1
(𝑠)

+ 𝑏16𝛹𝑖−1,𝑗,𝑘+1
(𝑠)

+ 𝑏17𝛹𝑖,𝑗,𝑘+1
(𝑠)

+ 𝑏18𝛹𝑖+1,𝑗,𝑘+1
(𝑠)

+ 𝑏19𝛹𝑖,𝑗+1,𝑘+1
(𝑠)

=  𝑅𝑖,𝑗,𝑘+1
2
 

 

 

(19) 

The 𝑅𝑖,𝑗,𝑘+1
2
 represents the divergence (changed in 

sign) of the predictor velocity field in which 𝑏𝑙 are 19 

coefficients.  

As a consequence of the new non-conservative 

curvilinear form of the Poisson-like equation 

proposed in this paper, the 19 𝑏𝑙 coefficients of 

Equation 19 do not involve the Jacobian of the 

coordinate transformation √𝑔. This choice produce a 

numerical solution that is less sensitive to the 

deformation of the computational cells in presence of 

distorted curvilinear grids, especially in the 

simulation of breaking waves. 

The solution of the algebraic system defined 

by Equation (19) is carried out by an iterative 

multigrid technique in which the gauss-seidel line-

by-line relaxation method is used (14). 

5 Rip current test 
In this Section, in order to validate and verify the 

ability of the new numerical procedure (PSC) and to 

underline the importance of the correct location of the 

calculation cell closest to the bottom at 𝑦+ = 40, we 

numerically reproduce wave propagation, wave 

breaking and hydrodynamic velocity fields. To this 

end we reproduce a laboratory experiment carried out 

by Hamm [15]. The tank used by Hamm [15] 

measured 30 m by 30 m; the sea bed consisted of a 

plane beach sloping at 1 in 30, with a rip channel 

excavated in the centre which produce a curved 

shaped coastline.   

It is sufficient to reproduce only one-half of the 

basin because the basin is symmetric with respect to 

the y-axis. The turbulence stress tensor is estimated 

by the Smagorinsky sub-grid model in which the 

Smagorinsky coefficient is set to 0.21. 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2020.15.4 

Benedetta Iele, Federica Palleschi, Francesco Gallerano

E-ISSN: 2224-347X 47 Volume 15, 2020



(a) 

 (b) 

Fig. 3 a) Plan view of the curvilinear computational grid (Only one out of every five coordinate lines is 

shown). b): three-dimensional view of the bottom.

A plan view of the curvilinear computational grid 

and bottom variation, in which only one out of every 

five coordinate lines, are shown in Fig. 3. We 

numerically reproduce a regular wave train with 

period 𝑇 = 1.25s and height 𝐻 = 0.07m. 

 
Fig. 4 Three-dimensional view detail of an 

instantaneous wave field at the time when the 

breaking induced circulation is fully developed. 

A three-dimensional instantaneous wave field is 

shown in Fig. 14 where the nearshore currents are 

fully developed. Fig. 4 shows the wave height 

increase in correspondence with the channel location 

due to occurrence of a pronounced rip current along 

the channel. 

 

 
Fig. 5 Mean current velocity along the rip channel. 

Comparison between the experimental 
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measurements [15] for unidirectional (crosses) and 

multidirectional (square) random waves and the 

numerical results (solid line). 

 

Fig. 5 shows the time-average of the cross-

shore velocity components calculated near the 

bottom along the rip channel. From this Fig. it is 

possible to notice the good agreement between 

numerical result and experimental measurements [5]. 

 

6 Results  
In this Section, the results of the numerical 

simulations of the wave breaking, obtained by the 

proposed model, are presented and are compared 

against the experimental data conducted by Ting and 

Kirby [16]. 

The experimental arrangement adopted by [16] 

consists in a sea bed with a sloping beach with slope 

1: 35. The still water depth is ℎ = 0.4𝑚. See Fig. 6 

for a schematic view. 

For the numerical simulations, the 

computational grid consists in: 13,728 grid cells in 

the horizontal direction with spacing Δ𝑥1 =
0.025 m; 13 grid cells in the vertical direction. A 

cnoidal wave with period 𝑇 = 2𝑠 and wave height 

𝐻 = 0.125𝑚, is imposed as input boundary 

condition.   

 
Fig. 6 Schematic experimental arrangement by Ting 

and Kirby [16] 

 

 

Fig. 7 Ting and Kirby [16] breaking wave test case. 

Phase-averaged crest elevations. 

In Fig. 7 the experimental measurements by Ting and 

Kirby [16] in terms of the cross-shore distribution of 

crest, are shown.  

 

Fig. 8 Ting and Kirby [16] breaking wave test case. 

Phase-averaged crest elevations. Experimental data 

(circles) and numerical results obtained by PSC 

(solid line) and PCS (dashed line). 

In Fig. 8 the comparison between the results 

obtained by using the numerical procedure of [9-10] 

and the results obtained by the numerical procedure 

proposed in this paper. The dashed line shows the 

cross-shore distribution of crest, obtained by the 

numerical procedure proposed in [9-10], which 

consists in a fractional-step method with the 

following sequence: evaluation of the predictor 

velocity field; evaluation of a corrector velocity field; 

evaluation of the free-surface elevation. Is to be noted 

that in the procedure PCS proposed in [9-10], the 

finite approximations of the differential terms that are 

present in the Poisson-like equation, are expressed in 

conservative form.  

The solid line shows the cross-shore 

distribution of crest, obtained by the numerical 

procedure proposed in this paper, which consists in a 

fractional-step method with the following sequence: 

evaluation of the predictor velocity field; evaluation 

of the free-surface elevation; evaluation of a 

corrector velocity field. Is to be noted that in the 

procedure proposed in this paper (PSC), in order to 

avoid the errors produced by the introduction of the 

metric terms in the finite approximations of the 

differential operators that are present in the Poisson-

like equation, these finite approximations are 

expressed in non-conservative form. 

In both the numerical simulations, the 

boundary conditions proposed in this work are used 

and a Smagorisnky coefficient  𝐶𝑠 = 0.21 is adopted 

in the turbulent closure relation outside the turbulent 

boundary layer. 

The distance between the wall and the lower 

face of the calculation cell closest to the bottom (in 

which the boundary conditions for the velocity and 

for the turbulent stress tensor, are imposed), 

oscillates coherently with respect to the turbulent 

boundary layer and it is set to  

the dimensionless wall distance 𝑦+ = 40. 

The numerical results obtained by means of the 

procedure PCS (dashed line in Fig. 8) show that the 

initial wave breaking point is located at 𝑥 = 5.5𝑚, 
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much before the predicted location by the 

experimental results (𝑥 = 6.4𝑚); after the wave 

breaking, the cross-shore distribution of crest is 

underestimated until 𝑥 = 7.0𝑚 and their slope is 

lower than the experimentally predicted one; after 

𝑥 = 7.0𝑚, the cross-shore distribution of crest is 

overestimated. 

The numerical results obtained by means of the 

procedure PSC (solid line in Fig. 8) show that the 

initial wave breaking point (𝑥 = 6.4𝑚) and the slope 

of the cross-shore distribution of crest are well 

predicted until 𝑥 = 7.25𝑚; from 𝑥 = 7.25𝑚 to 𝑥 =
8.5𝑚, the cross-shore distribution of crest is slightly 

underestimated; after 𝑥 = 8.5𝑚, the cross-shore 

distribution of crest is slightly overestimated. 

From the comparison between the results obtained by 

the procedure PCS and the results obtained by the 

procedure PSC, it can be seen that the results 

obtained by the procedure PSC, in terms of cross-

shore distribution of crest, are in good agreement 

with the experimental measurements, in contrast to 

the results obtained by the procedure PCS [9-10]. 

The procedure PCS induces a high numerical 

dissipation, which causes the anticipation of the 

initial wave breaking point, the underestimation in 

the cross-shore distribution of crest and in their slope, 

and from a certain point onwards an overestimation 

of the cross-shore distribution of crest. 

The procedure PSC proposed in this paper, 

allows us to better simulate the cross-shore 

distribution of crest and the initial wave breaking 

point, with respect to the procedure PCS. The 

procedure PSC induces a lower numerical dissipation 

than the procedure PCS, thanks to the fact that, with 

the non-conservative form of the Poisson-like 

equation, the errors produced by the introduction of 

the metric terms into the finite approximations of the 

differential operators, are avoided. 

 

Fig. 9 Ting and Kirby [16] breaking wave test case. 

Phase-averaged crest elevations. Experimental data 

(circles) and numerical results obtained by 𝑦+ 

average fixed value of 40 (solid line) and 𝑦+ fixed 

value of 40 (dashed line). 

In Fig. 9, the comparison between the results 

obtained with an oscillation of the lower face of the 

calculation cell closest to the bottom, with the free-

surface movement (coherently with 𝜎-coordinate 

models), and the results obtained with an oscillation 

of the aforementioned face, with the turbulent 

boundary layer, is shown.  

The dashed line shows the cross-shore 

distribution of crest obtained by the numerical 

simulation in which the distance between the wall 

and the lower face of the calculation cell closest to 

the bottom oscillates with the free-surface movement 

and it is set to a dimensionless wall distance that has 

a time-averaged value equal to 40. 

The solid line shows the cross-shore 

distribution of crest obtained by the numerical 

simulation in which the distance between the wall 

and the lower face of the calculation cell closest to 

the bottom coherently oscillates with the turbulent 

boundary layer and it is always set to a dimensionless 

wall distance 𝑦+ = 40, and it is always located inside 

the turbulent core, near the buffer layer, where the 

hypothesis of balance between production and 

dissipation of turbulent kinetic energy holds true.  

In both the numerical simulations, in the 

turbulent closure relation, outside the turbulent 

boundary layer, a Smagorisnky coefficient  𝐶𝑠 =
0.21 is adopted.  

The numerical results obtained with an 

oscillation of the lower face of the calculation cell 

closest to the bottom, with the free-surface movement 

(dashed line in Fig. 9), show that the initial wave 

breaking point is located at 𝑥 = 6.0𝑚, much before 

the predicted location by the experimental results 

(𝑥 = 6.4𝑚); from 𝑥 = 4.8𝑚 to 𝑥 = 10.0𝑚, the 

cross-shore distribution of crest is underestimated;  

after 𝑥 = 10.0𝑚, the cross-shore distribution of crest 

is overestimated. 

The numerical results obtained with an 

oscillation of the lower face of the calculation cell 

closest to the bottom, with the turbulent boundary 

layer (solid line in Fig. 9) are in good agreement with 

the experimental measurement, as shown before, in 

the discussion of the Fig. 8. 

The comparison between the results obtained 

with an oscillation of the lower face of the calculation 

cell closest to the bottom, with the free-surface 

movement, and the results obtained with an 

oscillation of the aforementioned face with the 

turbulent boundary layer, shows the limitation of the 

𝜎-coordinate models that are present in the literature.    

In the 𝜎-coordinate models, the lower face of 

the calculation cell closest to the bottom follows the 

free-surface movement, in a contradictory oscillation 

with respect to the one of the turbulent boundary 
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layer. Consequently, in the 𝜎-coordinate models, the 

lower face of the calculation cell closest to the 

bottom, during the wave period, may be located 

alternatively outside the turbulent boundary layer, 

inside the turbulent core, inside the buffer layer, or 

(when the velocity is low) inside the viscous sub-

layer. It is evident that in the aforementioned model, 

there is an erroneous evaluation of the velocity 

boundary condition, of the friction velocity and of the 

turbulent bottom stresses, which causes an erroneous 

simulation of the cross-shore distribution of crest. 

In the scheme proposed in this work, the cell-

averaged velocity value is located at the centre of the 

calculation cell closest to the bottom near the bottom; 

by means of this cell-averaged velocity value, 

through the logarithmic law defined in Section 4, the 

friction velocity 𝑢∗ and the velocity value at the lower 

face of the grid cell  𝑢𝐵, are computed. 

The adopted logarithmic law holds true in the 

turbulent core. The relation used to calculate the 

turbulent eddy viscosity in the turbulent boundary 

layer is valid inside the turbulent core, near the buffer 

layer. The accordance between the numerical results 

and the experimental measurements, in terms of 

cross-shore distribution of crest and of location of the 

initial wave breaking point, demonstrates that it is 

necessary that the centre of the aforementioned grid 

cell oscillates coherently with the turbulent boundary 

layer and that the lower face of the aforementioned 

grid cell is placed near the buffer layer, where the 

balance between production and dissipation of 

turbulent kinetic energy holds true.  

 

 
Fig. 10 Ting and Kirby [16] breaking wave test case. 

Phase-averaged crest elevation. Experimental data 

(circles) and numerical results with 𝑦+ = 80 (dash 

dot dot line), 𝑦+ = 60 (dash dot line), 𝑦+ =
40 (solid line) and 𝑦+ = 30 (dashed line). 

 

In Fig. 10, the comparison among the results 

obtained with four numerical simulations, in which 

the lower face of the calculation cell closest to the 

bottom oscillates with the turbulent boundary layer, 

is shown. In Fig. 10, the cross-shore distribution of 

crest, obtained by the aforementioned four different 

simulations in which the distance between the wall 

and the lower face of the calculation cell closest to 

the bottom is set to a dimensionless wall distance 

𝑦+ = 80 (dash dot dot line), 𝑦+ = 60 (dash dot line), 

𝑦+ = 40 (solid line) and 𝑦+ = 30 (dotted line), is 

shown. 

In all the numerical simulations, the boundary 

conditions and the procedure PSC proposed in this 

work, are adopted and, in the turbulent closure 

relation, outside the turbulent boundary layer, the 

Smagorisnky coefficient is set to 𝐶𝑠 = 0.21.  

The numerical results obtained with the 

numerical simulation carried out with 𝑦+ = 80 (dash 

dot dot line), show that the initial wave breaking 

point is located at 𝑥 = 5.75𝑚, much before the 

predicted location by the experimental results (𝑥 =
6.4𝑚); from 𝑥 = 5.75𝑚 to 𝑥 = 9.5𝑚, the cross-

shore distribution of crest is underestimated and their 

slope is lower than the one obtained by the 

experimental measurements. 

The numerical results obtained with the 

numerical simulation carried out with 𝑦+ = 60 (dash 

dot line), show that the initial wave breaking point is 

located at 𝑥 = 6.25𝑚, before the predicted location 

by the experimental results (𝑥 = 6.4𝑚); from 𝑥 =
6.25𝑚 to 𝑥 = 9.0𝑚, the cross-shore distribution of 

crest is underestimated and their slope is comparable 

to the one obtained by the experimental 

measurements; after 𝑥 = 9.0𝑚, the cross-shore 

distribution of crest is slightly overestimated. 

The numerical results obtained with the 

numerical simulation carried out with 𝑦+ = 40 (solid 

line), have been already described and show the best 

agreement with the experimental results. 

The numerical results obtained with the 

numerical simulation carried out with 𝑦+ = 30 

(dashed line), show that the initial wave breaking 

point is located at 𝑥 = 6.5𝑚, slightly after the 

predicted location by the experimental results (𝑥 =
6.4𝑚); after 𝑥 = 6.5𝑚, the cross-shore distribution 

of crest is overestimated and their slope is higher than 

the one obtained by the experimental measurements. 

From the comparison among the different 

simulations carried out, it is possible to notice the 

importance to correctly locate the lower face of the 

calculation cell closest to the bottom. With the 

increase of the distance 𝑧𝐵 between the wall and the 

lower face of the calculation cell closest to the 

bottom: the friction velocity 𝑢∗ decreases; the 

velocity boundary condition 𝑢𝐵 decreases; the 

bottom turbulent stresses decrease, causing a 

decrease in the value of the cross-shore distribution 

of crest and an anticipation of the initial wave 

breaking point. 

As stated before, the closure relation adopted 

for the evaluation of the turbulent eddy viscosity 𝜈𝑡 
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in the turbulent boundary layer, is deducted from the 

hypothesis of balance between production and 

dissipation of turbulent kinetic energy (which holds 

true inside the turbulent core, near the buffer layer). 

The accordance of the numerical results (solid 

line in Fig. 9) with the experimental measurements, 

in terms of cross-shore distribution of crest and of 

location of the initial wave breaking point, 

demonstrates that it is necessary that the lower face 

of the calculation cell closest to the bottom, where the 

turbulent eddy viscosity 𝜈𝑡 is evaluated, oscillates at 

a dimensionless wall distance 𝑦+ of about 40, inside 

the turbulent core near the buffer layer, where the 

balance between production and dissipation of 

turbulent kinetic energy holds true.  

 

 

Fig. 11 Ting and Kirby [16] breaking wave test case. 

Phase-averaged crest elevation. Experimental data 

(circles) and numerical results with 𝐶𝑠 = 0.14  (dash 

dot line), 𝐶𝑠 = 0.21 (solid line) and 𝐶𝑠 = 0.28 

(dashed line).  

In Fig. 11, the comparison among the results 

obtained with three different numerical simulations 

in which in the turbulent closure relation, outside the 

turbulent boundary layer, the Smagorisnky 

coefficient is set to 𝐶𝑠 = 0.14 (dash dot line), 0.21 

(solid line) and 0.28 (dashed line).  

In Fig. 11, the cross-shore distribution of crest, 

obtained by means of the aforementioned three 

different simulations in which the distance between 

the wall and the lower face of the calculation cell 

closest to the bottom is set to a dimensionless wall 

distance 𝑦+ = 40, is shown 

The numerical simulation carried out with 

𝐶𝑠 = 0.14 (dash dot line) is unstable, because of the 

low turbulent kinetic energy dissipation. 

The results obtained by means of the numerical 

simulation carried out with 𝐶𝑠 = 0.21 (solid line), 

have been previously described in the discussion of 

Fig. 8 and show the best agreement with the 

experimental results. 

The results obtained by means of the numerical 

simulation carried out with 𝐶𝑠 = 0.28 (dashed line), 

show that the initial wave breaking point is located at 

𝑥 = 6.85𝑚, after the predicted location by the 

experimental results (𝑥 = 6.4𝑚); after 𝑥 = 4.25𝑚, 

the cross-shore distribution of crest is overestimated. 

From the comparison among the different 

simulations, carried out with different Smagorisnky 

coefficients, it is possible to notice that by adopting 

low 𝐶𝑠 in the turbulent closure relation outside the 

turbulent boundary layer, the numerical simulations 

are unstable, because of the low turbulent kinetic 

energy dissipation. High Smagorisnky coefficients 

cause an increase of the turbulent stresses, with a 

consequent overestimation of the cross-shore 

distribution of crest and erroneous prediction of the 

location of the initial wave breaking point.  

 

7 Conclusion 
In this paper we propose a new numerical model for 

the simulation of the wave breaking. The three-

dimensional equations are expressed in contravariant 

form and are solved over a curvilinear boundary 

conforming grid, which is capable to represent the 

complex geometries, typically present in coastal 

regions. A transformation over the time of the 

vertical coordinate, as a function of the movement of 

the oscillating turbulent boundary layer, other than 

the free-surface elevation. It has been demonstrated 

that the proposed numerical procedure allows us to 

correctly simulate the cross-shore distribution of 

crest and the location of the initial wave breaking 

point. It has been demonstrated that the centre of the 

first calculation cell must oscillate coherently with 

the turbulent boundary layer. It has been 

demonstrated that the lower face of the calculation 

grid cell, where the turbulent eddy viscosity 𝜈𝑡 is 

evaluated, must always oscillate inside the turbulent 

core and near the buffer layer, where the hypothesis 

of balance between production and dissipation of 

turbulent kinetic energy holds true. 
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