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Abstract—Service Function Chaining (SFC) paradigm consists
in steering traffic flows through an ordered set of Service
Functions (SFs) so that to realize complex end to end services.
SFC architecture introduces all the logical functions that need
to be developed in order to provide the required service. The
SFC overlay infrastructure can be built on top of many different
underlay network technologies. The high flexibility and centrally
controlled feature of Software Defined Networking (SDN), make
SDN networks to be a perfect underlay to build the SFC
architecture. Due to Ternary Content Address Memory (TCAM)
limited size, SDN switches have a limitation in the number of
flow rules that can be hosted. This constraint is particularly
penalizing in case of the SFC classifier function, since it requires
to manage a high number of different flows. The limitation
imposed by the TCAM size on the SFC classifier can be a
bottleneck for the number of SFC requests that the SDN-based
SFC architecture can handle. In this paper we define the Dynamic
Chain Request Classification Offloading (D-CRCO) problem, as
the one of maximizing the number of accepted SFC requests,
having the possibility of: i) implement the SFC classifier also in
a node that is internal to the SDN-based SFC domain, and ii)
install classification rules in a reactive fashion. Furthermore, we
propose the Dynamic Nearest Node (DNN) heuristic to solve the
D-CRCO problem. Performance evaluation shows that by using
DNN heuristic it is possible to triple the number of accepted
requests, with respect to existing solutions.

Index Terms—SDN, NFV, SFC, TCAM.

I. INTRODUCTION

Thank to the advent of Network Function Virtualization
(NFV) technology, Service Providers can provide complex
services to end users, without the need to make strong Capital
Expenditure (CAPEX) investments in the hardware infrastruc-
ture. In fact, by steering traffic flows through an ordered set of
Virtual Network Functions (VNFs), it is possible to realize any
kind of service, by only relying on software applications. This
paradigm is also known as Service Function Chaining (SFC)
[1]. The most appealing feature from the Service Provider
perspective is the possibility to scale up or down the involved
physical infrastructure, as a function of the actual volume of
traffic to serve, with a consistent reduction of the Operational
Expenditure (OPEX).

In order to force traffic flows to go through the ordered
set of required VNFs, packets must be encapsulated with a
Network Service Header (NSH) [2]. This process is accom-
plished in two steps: i) as first the incoming traffic must be
classified, then ii) the NSH has to be inserted on top of each
incoming packet. In the reference SFC architecture, this task

is accomplished by a single device, named SFC classifier. An
SFC classifier is a border router, that receives traffic flows
from external networks, and inject them into the SFC domain.
Then, the entire classification process is distributed among few
devices, that must host specific flow rules in order to steer the
incoming traffic through the required chain.

Flow table in network nodes are realized by means of
TCAMs. This type of memory is known to have very high
performance in terms of time required to access the contents,
but also to be limited in storage capacity. TCAMs constitute
a bottleneck for different applications, such as Traffic Engin-
eering [3], Green Networking [4], Traffic Measurements [5],
etc.

In [6] we have investigated the problem of limited TCAM
size in an SDN-based SFC architecture, showing how the
classification process can easily become a bottleneck for the
number of served SFC requests. To overcome this limitation,
we have proposed the classification offloading mechanism. The
idea is to let also nodes that are internal to the SFC domain
to host classification rules. This simple modification highly
increases the number of served requests, having as drawback
the increase on the path length (and a consequent bandwidth
wastage).

In this work we introduce an enhancement of the model
presented in [6] to further increase the number of served
requests. Specifically, we include dynamic behaviour in the
set of SFC requests, which simply means that a request can
be idle or active over time. When the request is idle, it
does not inject traffic in the network, and consequently the
related classification rule can be removed, creating room in
the TCAMs of the network nodes to host more classification
rules.

Specifically, the main contributions of this work are:

o we improve the model described in [6], adding the

dynamic behaviour to the set of requests;

e we propose an heuristic algorithm to maximize the num-

ber of served SFC requests;

« we evaluate the impact of the proposed solution by means

of simulation experiments.

The rest of the paper is organized as follows: in Sec.
II related works are discussed, in Sec. III we describe the
considered SDN-based SFC architecture and detail the classi-
fication offloading mechanism, in Sec. IV the system model
is presented and the Dynamic Chain Request Classification
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Offloading (D-CRCO) problem is defined, in Sec. V we
introduce the DNN heuristic to solve the D-CRCO problem.
Sec. VI contains the performance evaluation, while conclusion
and future works are presented in Sec. VIL

II. RELATED WORK

The Dynamic Chain Request Classification Problem (D-
CRCO) aims at increasing the number of accepted requests
(or reducing the blocking probability) due to the TCAM size
limitation at the SFC classifier, in the context of an SDN-based
SFC architecture. In order to validate the considered scenario
and show the novelty of the studied problem, in the following
an overview of the state-of-the-art is presented. In particular,
related works are divided in three categories: i) integration of
NFV/SDN paradigms with SFC; ii) NFV placement and SFC
routing optimization; and iii) TCAM size limitation problem.

A. Integration of NFV/SDN with Service Function Chaining

In [7], a survey on the existing technology for traffic steering
in SDN-based SFC domains is presented. Specifically, the
programmability feature of SDN is exploited to build an over-
lay SFC infrastructure on top of an underlay SDN network.
Traffic steering types are divided into three main categories: 1)
header-based methods, such as NSH or Segment Routing (SR)
encapsulation , ii) tag-based methods, which exploit existing
header fields (VLAN, Source MAC, Type of Service, etc.)
to encode SFC related information, and iii) programmable
switch-based methods, which aim at re-classifying the traffic
at every SFC element (both classifier and Service Function
Forwarders (SFF)).

An example of SDN-based SFC domain is OpenSCaaS, an
open platform for service chain as a service [8]. OpenSCaaS
uses a tag-based traffic steering method, by encoding the Ser-
vice Chain Identifier (SC-ID) in the Source MAC to guarantee
scalability. The SDN controller can install SFC classification
rules both proactively or in a reactive fashion.

Another example of SDN-based SFC architecture is presen-
ted in [9], where programmable OpenFlow-based switches
are used to realize SFCs, leveraging simple L2 forwarding,
thus avoiding the creation of an overlay network by means of
packet encapsulation.

B. Efficient resource allocation

In NFV environment, there are some open optimization
problems focusing on energy-efficient resource usage max-
imization. Authors in [10] face the problem by proposing a
power-aware VNF placement and routing approach, while in
[11] it is proposed a novel resource architecture which enables
an energy efficient SFC that keeps into account the Quality of
Service (QoS). In [12], the problem is faced by applying a
joint approach of VNF consolidation and migration to use the
less number of servers in each time interval; likewise authors
in [13] propose to dynamically place VNFs in a distributed
computing environment to obtain an efficient SFC.
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C. TCAM size limitation

Flow tables are implemented by means of TCAMs, which
are the fastest and most scalable packet classification solutions
thanks to their parallel search capabilities. However, the high
speed offered by TCAMs for classifying packets has several
associated drawbacks, such as large power consumption and
high cost [14]. Consequently, these two factors have an impact
on the relatively small number of rules a TCAM is able
to store. In particular, commercial switches only support a
small fraction of the total number of rules required to operate
networks (from 2k to 20k rules, as reported in [15]). Therefore,
this limitation on the size of TCAMs is a challenging problem
to be considered when proposing solutions on SDN-based
networks.

A large number of solutions are devoted to optimize the
usage of the TCAMs in SDN switches [16], [17]. The aim of
these proposals is to reduce, as much as possible, the memory
space required to store a set of flow rules. This is achieved
by re-writing the flow rules using a different semantic, trying
to aggregate as many of them as possible. Here we want
to highlight that the problem of shrinking the flow table of
an SDN switch is different from the service chain request
classification problem under TCAMs size constraint we aim
to solve. In fact, while in the former the set of flow rules
is considered to be an input, in the latter it is actually the
output, which basically means that compression techniques can
be seen as a post-processing of the flow tables obtained as a
result of the SFC requests classification procedure.

The present work extends the model considered in [6],
where SFC classification rules are proactively installed, by
including the possibility to install/remove classification rules
in a reactive way.

III. SFC CLASSIFICATION OFFLOADING

IETF has standardized the architecture for SFC [1]. In this
architecture, packets are classified at ingress nodes of the SFC-
enabled domain by inserting, in the NSH, the required set
of Service Functions (SFs). Next, each packet is forwarded
through the set of SFs for processing. The network operator
instantiates Service Function Paths (SFPs), i.e., constrained
paths that allow to cross the SFs of a specific SFC. An SFP is
characterized by a Service Path Identification (SPI). The SPI
is inserted in the NSH together with the Service Index (SI);
the SI is initialized to a value equal to the number of SFs to be
executed and decreased by one in each VNF Instance (VNFI).
An example of an IETF SFC-enabled network is shown in Fig.
1. The network is composed by 6 SDN switches and 4 servers,
hosting the SFs instantiated by the VNFIs. As an example, let
us consider that an SFC composed by a Firewall (FW) and an
Intrusion Detection System (IDS) is available. The network
provider then instantiates the SFP involving the switches E'1,
A, G, D, E2, and the servers Sy and Sp; where FW
and IDS VNFIs are respectively activated. The tuple (10,2)
is assigned as SPI and SI to the SFP. Finally, notice how the
classification of the traffic is performed by a classifier placed
in switch E'1. Packet flows are therefore assigned an SFP by
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Figure 1. Example of IETF SFC-enabled network in which traditional (a) and proposed (b) classification procedures are considered.

encapsulating them with an NSH reporting the corresponding
SPI [2]. A network operator configures and dimensions the
bandwidth allocated to the SFP according to traffic forecast
[18].

As previously introduced, in this work we face the problem
of TCAMs limited size at SFC classifiers. Even if the SFP
bandwidth is sufficient to support all the packet flows, it could
happen that not all of them could be classified due to the
TCAM limited size of the SFC classifier. This situation is
illustrated in Fig. 1(a), where three packet flows character-
ized by the 5-tuples (194.10.5.0, 80, 200.45.1.3, 80, TCP),
(192.20.7.0, 80, 250.65.10.5, 80, TCP) and (198.25.9.1, 80,
232.75.15.6, 80, TCP) need a classification to be carried out
on the SFP characterized by the SPI equal to 10. Unfortunately,
in the case in which the TCAM memory size of the classifier
is two entries, only two ((194.10.5.0, 80, 200.45.1.3, 80, TCP),
(192.20.7.0, 80, 250.65.10.5, 80, TCP)) of the three flows can
be supported, while the third one (198.25.9.1, 80, 232.75.15.6,
80, TCP) must be rejected.

To solve the problem, in [6] we have proposed a solution
in which the classification is offloaded to internal switches for
these packet flows that otherwise could not be supported. The
only requirement on the node to offload the classification to, is
that it has to belong to the Shortest Path between the Ingress
Node (IN) and the Egress Node (EN) of the considered SFC
request. This is because, before that the packets belonging to
the SFC request are NSH-encapsulated, they are forwarded
according to their destination IP address.

The solution is illustrated in Fig. 1(b), in which we show
how the packet flow characterized by the 5-tuple (198.25.9.1,
80, 232.75.15.6, 80, TCP) is classified by switch C' and
the SFP is updated. The application of the solution requires
that the network operator, according to the number of packet
flows composing the offered traffic, re-configures the classi-
fiers.Obviously, the use of internal switches for classification
may lead to SFPs length increase and, consequently, to side
effects such as bandwidth wasting.
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IV. THE DYNAMIC CHAIN REQUEST CLASSIFICATION
OFFLOADING PROBLEM

The considered scenario is the one of an Internet Service
Provider (ISP) network, which is implemented using the SDN
technology. The network topology is represented by means
of a directed graph G(NSV, L), where N3V is the set of
SDN switches and £ represents the set of links. Considering
SDN node n$¥, its flow table maximum size is referred to
as «;, while the set of installed flow rules is represented
as F;. Clearly, the condition |F;| < «; must hold for each
SDN switch. The available capacity of link [/ is expressed as
bHINK The ISP offers SFC services by steering traffic flows
through a set of VNFIs. VNFIs are instantiated at the Data
Centers, which are connected to the core network by means
of SFFs. The set N'VNF contains all the VNFIs defined in
the considered scenario. The physical resources available at
VNFI nYNF are represented by the vector byNF, whose j-
th component expresses the amount of the physical resource
j (e.g., CPU, storage, etc.) available. We assume that C
different types of SFC services are available in the network,
and for each type k£ of SFC there are Ij instances already
configured. It implies that the flow rules needed to process
NSH encapsulated packets are already installed in the flow
tables of the SFFs. All the SFC instances are designed by
using, for instance, the approach proposed in [18]. The j-th
instance of SFC of type k is referred to as If and consists of
all the involved VNFIs, SFFs, and network links. Moreover,
If[l] refers to the first SFF of the SFC instance, while
Z7[LAST] indicates the last one.

When a user requires an SFC service, it has to sign a
Service Level Agreement (SLA) with the ISP. Such SLA
contains the following information: i) the Ingress Node (IN)
and the Egress Node (EN), ii) a flow classification rule,
iii) the type of requested SFC, iv) the minimum requested
throughput, v) the amount of required cloud resources, and vi)
QoS parameters. An SFC request r is described by the tuple
(IN(r), EN(r), match,., k(r), T™", Z,, q,), where Z, is a
vector describing the required amount of each cloud physical
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resource (storage, CPU, etc.), while q,. is a vector that specifies
the QoS parameters requested by r (e.g., maximum delay,
maximum path length, etc). The full set of SLA is referred
to as R and it is stored at the controller

In the considered scenario, the ISP has to manage two
different types of traffic flows, i.e., SFC requesting traffic and
normal IP flows. While the firsts need to be steered through
an SFC, the latter can be directly forwarded toward the proper
egress node. IP-like flow rules are computed on the basis of a
shortest path criterion (e.g., by using the Dijkstra algorithm).
We refer to the path between nodes nY and n?w as p;;. Then,
the SDN switches host two types of flow rules: i) classification
rules, with a complex matching pattern (based on the value
of many header fields) and requiring multiple actions to be
performed (encapsulation and forwarding), and ii) IP-like flow
rules, which are only focused on destination IP addresses and
apply a single action (i.e., forward).

Due to the structure of the related flow entries, classification
rules are in general, much higher in number than the IP-like
ones. Consequently, the installation of classification rules in
a proactive fashion would lead to a low number of served
requests. This is a consequence of the limited size of the
TCAMs of the SDN switches. On the other hand, due to
the relative low number, IP-like flow rules can be proactively
installed in the SDN switches. In [6] we have proposed
the classification rule offloading mechanism as a method to
increase the number of accepted requests, when these are
handled in a proactive way. In the present work we propose
to exploit the dynamic behaviour of the SFC requiring traffic,
to further increase the number of served requests.

Specifically, considering a request r, this can be active or
idle at any time. When the request is active, the stream of
packets belonging to it is present in the network and needs to
be served with the required SFC. Consequently, a classification
rule must be present in the data path. On the other hand,
when the request is idle, it means that currently there are not
packets belonging to it in the network. For an idle request,
there is no need to keep a classification rule installed in the
data path. In Fig. 2 we propose a simple example to show how
the active/idle behaviour of the requests can be exploited, in
conjunction with the classification offloading mechanism, to
increase the number of served requests.

Let us assume that each of the switches reported in the ex-
ample of Fig. 2 can host a single flow rule. Globally, there are
three different requests to be handled at the ISP. If the classical
SFC architecture is considered, then classification rules must
be pro-actively installed at the ingress node. As a consequence,
only one, out of three requests, is served. Assuming that the
classification offloading mechanism is exploited, it is possible
to serve two out of three requests. For instance, in Fig. 2(a),
classification rules for r; and 73 are pro-actively installed at
nodes A and B, respectively. Anyway, by exploiting also the
dynamic behaviour of the requests, it is possible to serve all
of them. In fact, when ry is idle, classification rules installed
at the data path are needed only for requests r; and rs (Fig.
2(a)). As soon as the request r; becomes idle, the controller
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Figure 3. Architecture of the proposed DNN heuristic. This figure shows all
the logical components of the proposed solution.

removes the related classification rule at node A, making room
for the classification rule for request 75 that now is active (Fig.
2(b)).

We define D-CRCO as the problem of maximizing, given
a set of input requests, the number of served ones, having
the possibility to both offload the classification of requests
to transit nodes and to exploit the dynamic behaviour of
the requests, while satisfying the QoS requirements and the
capacity constraints (on links and VNFIs). In the next section
we propose an heuristic algorithm that efficiently solves the
D-CRCO problem.

V. THE DYNAMIC NEAREST NODE HEURISTIC

In this section, the proposed heuristic to solve the D-CRCO
problem is described. The main idea behind the Dynamic
Nearest Node heuristic (DNN) is to exploit the concept of the
nearest node, i.e., the classification rule for the current request
is selected according to the distance with respect to the IN. In
particular, if a request arriving to the SDN-based SFC domain
needs to be classified, this process will be carried out by the
node, among the ones belonging to the shortest path between
the IN and the EN, which i) is closer to the IN; and ii) has
available space in its TCAM to host the classification rule.
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Fig. 3 shows the architecture of the DNN heuristic, with
all the logical components (a set of data-bases available at the
controller) needed to run it. The first logical component used in
DNN is the set of SFC requests reaching the ISP network, R.
This information is stored in the Request DB, and it is known
since SFC services must be negotiated in advance with the
Service Provider (see Sec. IV). The current status of the flow
table of each switch of the SDN-based SFC domain is stored
in the TCAM status DB of the controller. OpenFlow protocol
can be used to gather specific information, by periodically
sending OFP_STAT REQUEST messages. Using a similar
approach, the controller can continuously monitor the status
of the network links, which is stored in the Link status DB.
Network paths are calculated by the controller by running the
Dijkstra algorithm. The result of this computation is stored
in the Network paths DB. The set of available SFC instances
(I]’?, Vk e K & j =1...I) configured in the network, with
all the related information, are available at the controller in
the SFC instances DB. This DB is periodically updated by
interacting with the Network Orchestrator, which computes the
SFC instances. Finally, the available resources at each VNFI
are stored in the VNFI status DB, that is built by interacting
with the various Virtualized Infrastructure Managers (VIMs)
that belong to the considered SDN-based SFC domain.

When a new request r arrives, DNN heuristic performs
the following steps (represented with numbers in Fig. 3):
i) it first inspects the Request DB in order to get all the
required information, then ii) it searches the shortest path
between IN(r) and EN(r) in the Network paths DB, after
that iii) it determines the node to offload the classification
rule to, by inspecting the TCAM status DB and by executing
the select_classifier function, finally, iv) it looks for an SFC
instance with enough resources (link bandwidth and cloud
resources) to serve the current request, by collecting all the
required inputs (link and VNFIs status, plus SFC instances
paths) and passing them to the steer_traffic function. If all the
steps can be successfully performed, then the classification rule
for the current request can be installed in the identified node.
Furthermore, the controller sets an idle_timeout for this rule in
the SFC classifier. In this way, as soon as the stream of packets
related to the current request stops, then it is considered to be
idle and the classification rule is removed. Clearly, the action
to decide the value of the idle_timeout is critical. If it is set too
high, then the time needed to detect that the request is idle will
be higher, with a consequent waste of TCAM space. On the
other hand, if it is set too low, the request might be considered
as idle, while it is actually active. As a consequence, the
same rule will be re-installed many times, with a consequent
increase of the signaling overhead and degradation of QoS
experienced by the request.

In the next subsection we provide an insight of the main
functions used in the DNN heuristic.

A. DNN Technical Details

The first function used in the DNN heuristic that we intro-
duce is the select_classifier, whose pseudo code is reported
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Algorithm 1 select_classifier function pseudo code.
Require: An incoming SFC request: 7.

I: pIN(r),EN(r) < Network paths DB

2: for all nf € PIN(r),EN(r) dO

3: if | F;| < «a; then

4: return nfw
5: end if

6: end for

7: return ()

Algorithm 2 steer_traffic pseudo code.
Require: Current request: r, the set of SFC instances of the required
type: I]’.C(T),j = 1... Iy, the classifier node: n"
1 UMY =00, " « )

2: for all Ifm € 7" do 1 Evaluate each SFC instance of type
k(r)

3 P = pingey e U pnr,IJI-C(T)[l] v IJI'C(T) U pzf(") [LAST],EN(r)

4: U, <—check_link_constraints(p, r, Link status DB)

5: if U; < 100 then

6: UvnE <—check_VNF_constraints(IJ’-C , 7, VNFI status DB)

7: if Uyne < 100 then

8: tmp < minl\SUl’ Uvnr)

9: if tmp < UMAX then

10: UMAX « tm

1 M) )

12: end if

13: end if

14: end if

15: end for

in Alg. 1. Given an incoming SFC request, r, as input, this
function returns the node in the shortest path between I N (r)
and EN(r) (line 1) which i) is closer to the I N (r); and ii) has
available space in its TCAM to host the classification rule (line
3). For the ease of readability, we refer to the node selected
as classifier for the current request r as n”.

The second function that is defined in the DNN heuristic is
the steer_traffic, whose pseudo code is specified in Alg. 2. It
is executed only if the select_classifier function has produced
a non empty output. The main purpose of the steer_traffic
function is to find a feasible SFC instance, of the required
type, to serve the current request r. This task is accomplished
in two main steps: i) evaluate the feasibility in terms of
link bandwidth and QoS requirements, and ii) evaluate the
feasibility in terms of cloud resources.

At first, the steer_traffic function (line 1) initializes two
variables, named UMAX and Z" respectively. The first one is
used to store the maximum resource utilization achieved by
the best SFC instance checked so far, while the latter is used
to return the selected SFC instance as output. After that, it
iterative inspects each of the available SFC instances of the
requested type (line 2). In order to do that, it is needed to
reconstruct the overall end to end path (p°>¢) followed by the
request r in case it is assigned to the SFC instance under
test (line 3). The end-to-end path is composed of, at most,
four paths: i) the shortest path between ingress node of the
request (IN(r)) and the classifier (n"); ii) the shortest path
between the classifier and the first SFF of the SFC instance

78



2019 10th International Conference on the Network of the Future (NoF)

under test (Ijk (r) [1]); iii) the corresponding path defined by

the SFC instance; and iv) the shortest path between the last
SFF of the SFC instance (IJ]?(T) [LAST]) and the egress node
(EN(7)). In case the request r is classified at the ingress node,
then the first path is empty.

Next, the feasibility of the overall end to end path is checked
(line 4). Specifically, the function check_link_constraints is
invoked, having as input the end to end path (p°), the
request (r) and the Link status DB, which contains all the
information related to links (latency, residual bandwidth, etc).
The check_link_constraints function verifies that the QoS
requirements (q,.) of the request r are satisfied. It also checks
if all the links in the end to end path have enough residual
capacity to steer the request (7Mn < pH-NK v e pe2e) If
both the performed checks are successfully verified, then the
check_link_constraints function returns as output the utiliza-
tion of the most loaded link (U;), otherwise it returns the value
U, =101

Similarly, in line 6, the capacity constraint on the VNFI
is checked. This task is accomplished by the function
check_VNF _constraints, which takes as input the SFC instance
under test (I]]-C(T)), the request 7, and the residual capacity of
the VNFI (b;jNF ), which is retrieved from the VNFI status
DB. The check_VNF_constraints function verifies the validity
of the following conditions: Z, < by™' Vi € If(r). Finally,
it returns as output the utilization of the most loaded VNFI
(Uyng). In case the test fails, it returns Uyng = 101.

Once all the SFC instances have been checked, the
steer_traffic has to select one to be used to serve the current
request. The criterion adopted to select the best SFC instance is
the one with the lowest global utilization value. This selection
process is implemented in lines 8 — 12. The global utilization
is defined as the minimum between the most loaded link in
the path and the most loaded VNFI in the SFC instance (line
8).

If there is a feasible end-to-end path (and its associated SFC
instance) to handle the request, the traffic demand of request
r is steered through the selected path.

VI. PERFORMANCE EVALUATION

In this section, the potential benefits achieved by the pro-
posed DNN heuristic, as well as possible drawbacks, are
evaluated. To do that, a performance evaluation is carried
out over a real network topology. In particular, four different
analyses are performed to show i) the impact of the selection
of the idle timeout; ii) the impact of the inter-arrival requests
time; iii) the impact of the number of incoming requests to
the system; and iv) the penalty that must be paid in terms
of number of times a rule must be re-installed due to idle
timeouts expiration.

Performance evaluation is carried out over NSFNET net-
work, which is composed of 14 SDN switches and 46 links
[18], and is reported in Fig. 4. It is assumed that all the SDN
switches can host the same number of rules, i.e., they have the
same TCAM size. Since real TCAMs are able to store a range
between 2000 and 4000 rules [16], TCAM size is set to 2000
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Figure 4. NSFNET topology with 14 SDN switches and 8 Cloud Infrastruc-
tures.

rules in the simulations. Four SFs are considered: Firewall
(FW), Intrusion Detection System (IDS), Network Address
Translator (NAT) and Proxy. With this set of SFs, four types
of SFCs are used: 1) FW; 2) FW—IDS; 3) FW—IDS—NAT;
4) FW—IDS—NAT—Proxy. Finally, 20 SFC instances are
deployed in the network, using the approach described in [18].

Concerning the creation of the set of requests, the following
procedure has been used: i) at first, an IE TM (aggregated
flow) is generated, in which each entry is characterized by a
bandwidth value chosen in the set [10Gbps, 15Gbps, 20Gbps,
25Gbps, 30Gbps] according to a Zipf distribution [18], then
ii) each aggregated flow is divided into m micro-flows of the
same size (in terms of requested bandwidth).

DNN, S-CRCO [6] and alwaysIN are coded in Matlab and
run on a dual-core Intel-based machine at 3.1 GHz with 16
GB of RAM. All the analyses are repeated 25 times and the
average values are considered.

The first analysis we propose aims at evaluating the impact
of the rules’ idle timeout on the number of accepted requests.
For this analysis, a set of 50000 SFC requests is used.
Moreover, the duration of each request is set according to
an exponential distribution with average time of y = 5s. for
all the performed analyses. Finally, inter-arrival time between
requests is set to 6 = 1s. Fig. 5 reports the results obtained by
the alwaysIN approach (in which the classification procedure
is always performed at the IN), by the S-CRCO (classification
rules are installed proactively), and by the proposed DNN
heuristic as a function of the idle timeout. For the DNN
solution, an incoming request is accepted only if it is classified
every time it becomes active. Clearly, the dynamic behaviour
exploited by DNN obtains much better results compared to
alwaysIN and S-CRCO, especially for low values of idle
timeout. The fact of removing rules after an idle timeout allows
to handle and classify more incoming requests. In case the idle
timeout is highly increased, the number of accepted requests is
decreased. This is due to the fact that rules remain much more
time installed in the flow tables of the nodes even though the
last matching packet occurred long time ago and there is less
space to accommodate new classification rules. Anyway, in the
worst-case scenario (idle timeout equal to 10°s.), DNN is able
to classify 1000 requests more than the alwaysIN, achieving
similar results compared to S-CRCO.

In the second analysis, the objective is to analyze the
impact of the inter-arrival requests time on the number of
accepted requests. For this analysis, inter-arrival times for
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Figure 5. Accepted requests as a function of Figure 6. Accepted requests as a function Figure 7. Accepted requests as a func-

the idle time with inter-arrival time equal to

d=1s. values of idle times.

the set of requests follow a Poisson distribution with average
0s. Looking at Fig. 6, DNN heuristic presents again better
results compared with alwaysIN and S-CRCO by exploiting
the removal of rules after an idle timeout expiration. If we only
focus on the different lines reported for the DNN, in which
different idle timeouts are considered, it can be seen that they
tend to follow a logarithmic function, in which the number of
accepted requests increases with 4. It is clear again, as in the
analysis reported in Fig. 5, that the idle timeout has a strong
impact on the number of requests that can be classified, being
high for small values of idle timeout and vice-versa (see, e.g.,
the values reported for 6 = 107 3s.).

Next, an analysis to show the number of accepted requests
as a function of the number of incoming ones is shown in Fig.
7. In this case, we define term A as the ratio between the idle
timeout for each request and the average inter-arrival time for
the set of requests:

ldle_t%meout 0

By inspecting Fig. 7, it can be seen that all the incoming
requests are accepted (and indeed classified) by DNN for
values of A < 10°. This means that if the difference between
the idle_timeout and the average inter-arrival time of requests,
8, is not quite big, rules are continuously been removed from
the flow tables of the nodes and there is free space for
installing new classification rules. On the contrary, for values
of A > 10%, the number of accepted requests decreases up to
reaching a minimum of 22000 in the worst-case scenario. In
this way, it is necessary that the idle timeout is big enough
compared to the average inter-arrival time to not be able to
classify, and therefore reject some of the incoming requests.
Remarkably, the worst solution obtained by the proposed DNN
approach overcomes alwaysIN, since it is limited to only
classify at the ingress node. It is also interesting to notice that
S-CRCO presents better results than DNN when the number
of incoming requests belong to the range [20000, 30000]. This
is caused by the timing component introduced in DNN, which
is not considered in the static version.

The last analysis we propose aims at analyzing the impact of
the DNN heuristic on the number of times a classification rule
must be re-installed due to the expiration of the idle timeout.
The setting of the simulation is described as follows. At first,

)\:
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of the average inter-

arrival time for different tion of the number of incoming requests

for different values of .

the set of 50000 requests used in the last analysis (see Fig. 7)
is selected. Next, we assume the case where all the requests are
accepted by exploiting, e.g., DNN with a value of A\ = 10% or
A = 103. Then, for each accepted request, we generate a flow
pattern following the Variable bitrate (VBR) traffic pattern.
In this way, a flow is composed of a set of sending periods
(in which the traffic is sent at a constant bitrate) followed
by silent periods (in which no traffic is sent). For the flows
composition, next considerations are taken into account: i)
the number of silent periods is selected using a probabilistic
distribution in the range [1, 5]; ii) the percentage of aggregated
silent time over the total flow duration is selected using a
random distribution in the range [0, 100] [%]; iii) the duration
of each silent period is then randomly selected respecting the
aggregated maximum limit obtained in ii).

Five values for idle timeout are considered, in the range
[1,5] € N. Results of this last analysis are shown in Fig. 8, in
which the number of times a classification rule is installed for
the same flow throughout time is reported. Since the dataset
used contains 50000 requests and tests have been repeated
25 times, average values are considered for each case. By
inspecting Fig. 8§, it is clear to remark that DNN has to pay a
penalty in terms of the re-installation of rules that are removed
due to idle timeout expiration, unlike S-CRCO, where each
classification rule is installed once at most. Fortunately, such
penalty is not extremely restraining, resulting on average that
a rule must be installed 1.6 times in the worst-case scenario,
i.e., when the idle timeout is low (1s.). Clearly, the penalty
decreases with the increase of the idle timeout, since the
probability that rules are removed due to timeout expiration is
reduced. This situation can be better explored by looking at
Fig. 9, in which the number of times it is required to install
the same classification rule is reported for each individual
incoming request, considering idle timeouts of 1s. (Fig. 9(a)),
and 5s. (Fig. 9(b)). The smaller the idle time is, the higher
the number of times the rule must be re-installed.

VII. CONCLUSION AND FUTURE WORKS

In this paper, the problem of TCAM size limitation at the
SFEC classifier has been studied. In particular, considering an
SDN-based SFC domain, the main logical functions of the
SFC architecture can be mapped in SDN switches. While
the possibility to control the network in a centralized way
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Figure 8. Number of times a classification
rule is installed as a function of the idle time.

in conjunction with the flexibility offered by the generalized
packet forwarding, brings SDN into the light as an enabling
technology for implementing SFC underlay, the limited size of
the TCAM memories turns to be a bottleneck for the number
of SFC requests that can be handled by the classifier.

To overcome this hard constraint, the Dynamic Nearest
Node heuristic is introduced. DNN exploits the classification
offloading mechanism, i.e., it aims to install classification
rules also into nodes that are internal to the SDN-based SFC
domain. Moreover, DNN also exploits the dynamic behaviour
of SFC request flows, to further increase the number of
accepted requests. The performance evaluation shows that
DNN can increase the number of accepted requests of 354%
with respect to the classical alwaysIN approach, and of 127%
with respect to the static CRCO, which installs classification
rules in a proactive way.

As future steps, there is the formalization of the Dynamic
Chain Request Classification Offloading problem by means of
an Integer Linear Programming formulation, so that to provide
an indication of the maximum benefit of the classification
offloading mechanism as well as of the reactive classification
rule installation. Furthermore, as a future step there is the
realization of a working test-bed to validate the feasibility of
the proposed approach.
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