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Lunar orbit dynamics and transfers at low altitudes are subject to considerable perturbations related to the 

gravitational harmonics associated with the irregular lunar mass distribution. This research proposes the original 

combination of two techniques applied to low-thrust lunar orbit transfers, i.e. (i) the variable-time-domain 

neighboring optimal guidance (VTD-NOG), and (ii) a proportional-derivative attitude control algorithm based on 

rotation matrices (PD-RM). VTD-NOG belongs to the class of feedback implicit guidance approaches, aimed at 

maintaining the spacecraft sufficiently close to the reference trajectory. This is an optimal path that satisfies the 

second-order sufficient conditions for optimality. A fundamental original feature of VTD-NOG is the use of a 

normalized time scale, with the favorable consequence that the gain matrices remain finite for the entire time of 

flight. VTD-NOG identifies the trajectory corrections by assuming the thrust direction as the control input. Because 

the thrust direction is fixed with respect to the spacecraft, VTD-NOG generates the desired orientation pursued by 

the attitude control system. A proportional-derivative approach using rotation matrices (PD-RM) is employed in 

order to drive the actual spacecraft orientation toward the desired one. Reaction wheels are considered as the 

actuators that perform attitude control. Extensive Monte Carlo simulations are performed, in the presence of 

nonnominal flight conditions related to (i) lunar gravitational harmonics, (ii) gravitational pull of the Earth and the 

Sun as third bodies, (iii) unpredictable propulsive fluctuations, and (iv) errors on initial attitude. The numerical 

results unequivocally demonstrate that the joint use of VTD-NOG and PD-RM control represents an accurate and 

effective methodology for guidance and control of low-thrust lunar orbit transfers. 

 

 

I. INTRODUCTION 

Recently, several countries have shown an 

increasing interest toward robotic or human missions to 

the Moon. Most lunar mission architectures include a 

spacecraft that orbits the Moon at low altitude. Orbit 

transfers between different low-altitude lunar orbits 

often represent a crucial phase, which can be completed 

only if the space vehicle is equipped with an efficient 

and robust guidance and control system.  

In this context, low-thrust propulsion may represent 

a valuable option. In fact, low-thrust propulsive systems 

can be proven to outperform high-thrust engines in 

terms of propellant budget, in a wide variety of practical 

scenarios, at the price of increasing considerably the 

time of fight. Propellant minimization represents the 

main purpose of low-thrust orbit transfer optimization, 

with the final aim of identifying the nominal path 

associated with the mission specifications. A variety of 

analytical and numerical techniques1-5 have been 

employed in the past for spacecraft trajectory 

optimization. However, in concrete scenarios, 

deviations from the nominal trajectory related either to 

the imperfect modeling of the space vehicle or to 

unpredictable environmental conditions affect the actual 

spacecraft dynamics. Driving a spacecraft along a 

specified path thus requires defining the corrective 

actions aimed at compensating the nonnominal behavior 

due to these deviations, while minimizing the additional 

fuel required to perform these corrective maneuvers. 

The present research is intended to describe and 

apply an implicit guidance and control approach, 

capable of generating perturbed paths sufficiently close 

to the nominal trajectory, which is assumed to be 

optimal. 

As a preliminary step, the general optimization 

methodology termed indirect heuristic method (IHM)6,7  

is employed, with the intent of obtaining the nominal 

(optimal) path. The method at hand is based upon the 

joint use of the necessary conditions for optimality and 

a heuristic technique (e.g., the particle swarm 

algorithm). The subsequent, closely related problem is 

in driving the space vehicle along the optimal path. This 

requires defining the corrective actions aimed at 

compensating the nonnominal behavior of the space 

vehicle. This means that a feedback control law, or, 

equivalently, a closed-loop guidance algorithm, is to be 
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defined, based on the current state, evaluated at 

prescribed sampling times. Neighboring Optimal 

Guidance (NOG) is an implicit guidance concept that 

relies on the analytical second order optimality 

conditions, in order to find the corrective control actions 

in the proximity of the reference path. In general, the 

neighboring optimal path originates from a perturbed 

state and is associated with the minimization of the 

second differential of the objective function. Several 

time-varying gain matrices, referring to the nominal 

trajectory, are defined, computed offline, and stored in 

the onboard computer. Only a limited number of works 

have been devoted to studying neighboring optimal 

guidance8-12. A common difficulty encountered in 

implementing the NOG consists in the fact that the gain 

matrices become singular while approaching the final 

time. As a result, the real-time correction of the time of 

flight can lead to numerical difficulties so relevant to 

cause the failure of the guidance algorithm. 

This research is focused on the original combination 

of two techniques applied to low-thrust orbit transfers, 

i.e. (i) the recently-introduced variable-time-domain 

neighboring optimal guidance (VTD-NOG)13-15, and (ii) 

a proportional-derivative approach based on rotation 

matrices (PD-RM) for the attitude control algorithm.  

VTD-NOG belongs to the class of feedback implicit 

guidance approaches, aimed at finding the corrective 

control actions capable of maintaining the spacecraft 

sufficiently close to the reference trajectory. This is an 

optimal path that satisfies the second-order sufficient 

conditions for optimality. A fundamental original 

feature of VTD-NOG is the use of a normalized time 

scale as the domain in which the nominal trajectory and 

the related vectors and matrices are defined. VTD-NOG 

identifies the trajectory corrections by assuming the 

thrust direction as the control input. Because the thrust 

direction is fixed with respect to the spacecraft, VTD-

NOG iteratively generates the desired attitude, which 

can be possibly discontinuous across subsequent 

guidance intervals. This circumstance implies that the 

actual orientation, which is subject to the spacecraft 

attitude dynamics, does not coincide with the desired 

orientation. Hence, the attitude control system must be 

capable of maintaining the actual spacecraft orientation 

sufficiently close to the desired one. Reaction wheels 

are considered as the actuators that perform attitude 

control. This technological solution is often employed 

onboard satellites with low-thrust propulsion16,17. The 

control law being adopted is proportional-derivative-

like and uses directly the rotation matrices (PD-RM), 

because large attitude maneuvers may be required. 

Combinations of VTD-NOG and different types of PD 

attitude control have been employed for a lunar ascent 

problem18, as well as for high-thrust and low-thrust LEO 

to GEO transfers19,20.  

This study describes the application of VTD-NOG & 

PD-RM to the low-thrust orbit transfer that starts from a 

low Moon orbit (LMO) and ends at injection into a 

coplanar LMO at greater altitude. As a first step, the 

optimal two-dimensional trajectory is derived, and 

represents the nominal path. Then, several deviations 

from nominal flight conditions are assumed, i.e. (i) 

gravitational perturbations related to the harmonics of 

the lunar gravitational field, (ii) third body attraction 

due to Sun and Earth, (iii) unpredictable oscillations of 

the propulsive thrust, and (iv) errors on initial attitude. 

Monte Carlo campaigns are performed, with the final 

aim of proving that the unified architecture based on the 

joint use of VTD-NOG and PD-RM indeed represents 

an effective guidance and control approach, capable of 

determining precise and fuel-efficient low-thrust orbit 

transfers, in the presence of nonnominal flight 

conditions. 

 

II. ORBIT TRANSFER OPTIMIZATION 

This paper addresses the problem of driving a 

spacecraft from an equatorial circular low Moon orbit 

(LMO) at altitude of 300 km to a final, coplanar LMO at 

altitude of 400 km, in the presence of nonnominal flight 

conditions. Both trajectory and attitude dynamics of the 

space vehicle are modeled. This section is specifically 

devoted to defining the nominal transfer path. In this 

context, the space vehicle is modeled as a point mass. 

Subsequently, attitude dynamics is considered, with the 

final intent of determining the appropriate attitude 

control action. 

Continuous low-thrust propulsion is employed to 

perform the transfer at hand. Let c and 0n  denote the 

effective exhaust velocity of the propulsive system and 

the initial thrust acceleration. The thrust magnitude is 

assumed constant, thus the thrust acceleration ( )T m  is  

 0

0

n cT

m c n t
=

−
 [1] 

where c is the (constant) effective exhaust velocity of 

the propulsive system, 
0n  is the initial thrust 

acceleration (at 
0t , set to 0), and t is the actual time. The 

following nominal values are assumed: 

( )2

0 0 00.0001  and  30 km sec  9.8 m secn g c g= = = . 

 

II.I Formulation of the problem 

The spacecraft motion can be described in a 

convenient Moon-centered inertial reference frame 

(MCI), associated with the right-handed sequence of 

unit vectors ( )1 2 3
ˆ ˆ ˆ, ,c c c , where ( )1 2

ˆ ˆ,c c  lie in the Moon’s 

equatorial plane, 
3̂c  points toward its rotation axis, and 

1̂c  is associated with the initial spacecraft position. The 

time-varying position can be identified by the following 
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three variables: radius r, absolute longitude  , and 

latitude  , portrayed in Fig. I(a). The spacecraft 

velocity can be projected into the rotating frame 

( )ˆˆ ˆ, ,r t n , where r̂  is aligned with the position vector r 

and t̂  is parallel to the ( )1 2
ˆ ˆ,c c -plane (and in the 

direction of the spacecraft motion, cf. Fig. I(a)). The 

related components are denoted with ( ), ,r t nv v v  and 

termed respectively radial, transverse, and normal 

velocity component. The state vector x (with 

components denoted with ( ) 1, ,6kx k = ) of the 

spacecraft includes the variables associated with the 

position and velocity vectors and is given by 

  :
T

r t nr v v v =x  [2] 

The spacecraft is controlled through the thrust direction, 

defined by the in-plane angle   and the out-of-plane 

angle  , both illustrated in Fig. I(b) (in which T̂  is 

aligned with the thrust direction). Thus, the control 

vector u is     

    1 2:
T T

u u  = =u  [3] 

The equations of motion, also termed state equations 

hence forward, govern the spacecraft dynamics, and 

involve the state vector x and the control vector u, 

 
rr v=  [4] 

 
cos

tv

r



=  [5] 

 nv

r
 =  [6] 

 
2 2

2
sin cost n

r r

v v T
v a

r mr


 

+
= − + + +  [7] 

 ( )tan cos cost

t n r t

v T
v v v a

r m
  = − + +  [8] 

 
2

tan sint r n

n n

v v v T
v a

r r m
 = − − + +  [9] 

where ( )T m  is given by Eq. [1] and 

( )3 2 4902.9 km sec =  is the Moon gravitational 

parameter. The symbols ra , ta , and na  denote the 

overall perturbing acceleration components, related to 

third bodies and higher harmonics of the lunar 

gravitational fields. In general, these components have 

modest magnitude and depend on the spacecraft 

position and velocity in a rather complicated way. 

Therefore, they are neglected for trajectory 

optimization, whereas they are being taken into account 

later in this work, while testing the guidance and control 

algorithm. Hence, Eqs. [4]-[9] can be written in the 

general compact form 

 ( ), ,t=x f x u  [10] 

Due to the definition of the inertial frame in relation to 

the initial spacecraft position, the initial conditions 

(denoted with the subscript “0”) are 

 

0 0 0

0 0 0

     0            0     

0          0

i

r t n

i

r R

v v v
R

 



= = =

= = =
 [11] 

where 
iR  is the radius of the initial lunar orbit. The 

final conditions (denoted with subscript “f ”) are  

    0     0          0f f f rf tf nf

f

r R v v v
R


= = = = =  [12] 

where 
fR  is the radius of the final lunar orbit. 

Equations [11]-[12] can be written in compact form as  

 ( )0 , ,f ft = 0ψ x x  [13] 

 

 

 
 

Fig. I: Reference frames (a) and thrust angles (b) 

 

The problem at hand can be reformulated by using 

the dimensionless normalized time  , 

 
0:           0 1f ft t   =       [14] 

Let the dot denote the derivative with respect to   

hence forward. Equations [10] are rewritten as 

 ( ) ( ), , : , , ,f ft t  = =x f x u f x u a  [15] 

where a collects all the unknown parameters of the 

problem ( ft=a  for the problem at hand). 

As the space vehicle uses continuous thrust, 

minimizing the propellant consumption is equivalent to 

minimizing the time of flight ( )0ft t− . Thus, as 0t  is set 

to 0, the objective function is   

 fJ t=  [16] 
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II.II First-order necessary conditions for an extremal 

With the intent of obtaining the necessary conditions 

for a local extremal, the Hamiltonian H and the function 

of the boundary conditions   are introduced, 

( )

( )

5 6

1 4 2 3

1 3 1

2 2

5 6

4 1 22

11

5

5 6 3 4 1 2

1

2

5 4 6

6 3 2

1 1

, , :
cos

                sin cos

                tan cos cos

                tan sin

f fT

f

f

f

f

t x t x
H t x

x x x

x x T
t u u

x mx

x T
t x x x u u

x m

x x x T
t x u

x x m

  








= = + +

 +
+ − + + 

 

 
+ − + 

 


+ − +

x u a λ f


 
 

 [17] 

( ) ( )

( )
( )

( )

0 1 10

2 20 3 30 4 40 5 50

6 60 7 1 9 3 9 4

10 5 11 6

, , :

                   

                   

                   

T

f f f i

i

f f f f

f f f

t t x R

x x x x R

x x R x x

x R x



    

   

  

 = + = + −

+ + + + −

+ + − + +

+ − +

x x a υ ψ

 [18] 

where ( )0 0k kx x t=  and ( )kf k fx x t=  ( )1, ,6k = ; λ   

and υ  represent respectively the adjoint variable 

conjugate to the dynamics equations [15] and to the 

boundary conditions [13], with components  
1, ,6j j


=

  

and  
1, ,11j j


=

. The first-order necessary conditions for 

optimality include the adjoint (or costate) equations21, in 

conjunction with the related boundary conditons, 

 0

0

            

TTT

f

f

H      
= − = − =            

λ λ λ
x x x

 [19] 

The optimal control 
*

u  can be expressed as a function 

of the costates through the Pontryagin minimum 

principle, 

 *

4 1 2 5 1 2 6 2arg min sin cos cos cos sinu u u u u  = + +
u

u  [20] 

leading to 

 
*

* 6

2 2 2* * *
4 5 6

arcsin



  

= −
+ +

 [21] 

   
**

* * 54

2 2 2 2* * * *
4 5 4 5

sin        cos


 
   

= − = −
+ +

 [22] 

where the superscript “*” denotes the optimal value of 

the respective variable. Equations [21]-[22] imply the 

also the stationariety of H with respect to u. Lastly, the 

parameter condition21 must hold, and yields 

  

1 1

0 0

0    1 0

TT

T

f

H
d d

t
 

    
+ =  + =       

 
f

λ
a a

 [23] 

After introducing the variable μ , Eq. [23] is equivalent 

to  

0=   with     0   and   0

TT

f

H    
− = − =      

μ μ μ
a a

 [24] 

However, the parameter condition can be 

transformed into an inequality constraint, due to 

homogeneity of the costate equations, in conjunction 

with Eqs. [21]-[22], in which the control angles are 

expressed as the ratios of adjoint variables. In fact, due 

to Eqs. [21]-[22], homogeneity implies that if λ  is 

proportional to *
λ  ( *;  k k =λ λ  denotes a positive 

constant), then the final conditions are fulfilled at the 

minimum final time 
*

ft . In contrast, the parameter 

condition is violated, because the integral of Eq. [23] is 

 
1 1

*

0 0

1T T

f f

d k d k
t t

  
 

= = −  −
  

f f
λ λ  [25] 

Therefore, if the proportionality condition holds, the 

optimal control *
u  can be found without considering 

the parameter condition, which can be replaced by  

 

1

0

0T

f

d
t







f
λ  [26] 

In the formulation of the optimization problem the 

Moon is assumed spherical, as well as its gravitational 

field. As no further external force affects the spacecraft 

motion, the optimal transfer path can be assumed to lie 

entirely on the ( )1 2
ˆ ˆ,c c -plane, and can be reasonably 

conjectured to outperform any hypothetical alternative 

three-dimensional trajectory. In fact, due to symmetry 

of the gravitational field, any out-of-plane thrust 

maneuver has the only effect of rotating the 

instantaneous velocity and would imply a useless waste 

of propellant. Therefore, the problem of determining the 

minimum-fuel path can be simplified by assuming that 

at any time the out-of-plane variables equal 0, i.e. 

 0   and   0nv = =  [27] 

 * * *

3 60   and   0          0  = =  =  [28] 

Only the state equations [4], [5], [7], and [8], the 

respective adjoint equations, and Eq. [22]  are needed 

for the purpose of determining the optimal planar ascent 

path. The remaining adjoint equations, together with the 

related boundary conditions, are identically satisfied if 

Eqs. [27]-[28] hold. In addition, Eq. [5] is ignorable, 

because no final condition is prescribed for the right 

ascension 2x , and 2x  does not appear in the right-hand-

side of any state equation. This circumstance implies 

also that 
2 0  =  . In the end, the optimal ascent path 

optimization problem can be formulated as a two-point 

boundary-value problem in which the unknowns are the 

initial values of the adjoint variables 
1 , 

4 , and 
5 , as 

well as the time of flight ft . 
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II.III Optimal transfer trajectory 

This subsection addresses the numerical 

determination of the minimum-time transfer path from 

the initial to the final low lunar orbit. To this end, the 

first-order conditions for optimality are used, in 

conjunction with a simple implementation of swarming 

algorithm. This is a heuristic optimization technique, 

based on the use of a population of individuals (or 

particles). Selection of the globally optimal parameters 

is the result of a number of iterations, in which the 

individuals share their information. This optimization 

approach is extremely intuitive and easy-to-implement. 

Nevertheless, in the scientific literature6,7,22-25 several 

papers prove that the use of this method is effective for 

solving trajectory optimization problems. 

In this work the optimal control problem involves 

continuous time-dependent control variables and can be 

translated into a parameter optimization problem 

through the first-order necessary conditions for 

optimality, which allow expressing the control variables 

as functions of the adjoint variables conjugate to the 

dynamics equations. The parameter set includes 

 10 40 50, , , ft   . The boundary conditions are 

represented by the three equality constraints [12] for 
fr , 

rfv , and 
tfv , accompanied by the inequality constraint 

[26]. Once the optimal parameter set has been 

determined, the (planar) state and costate equations can 

be integrated, using Eq. [22] to express the control angle 

  as a function of the adjoint variables. 

For the problem at hand the PSO algorithm employs 

100 particles and is run for 500 iterations. The problem 

is solved by employing a set of canonical units: the 

Moon radius represents the distance unit 

( )1 DU 1738 km= , whereas the time unit is such that 

3 21 DU TU =  (i.e. 1 TU 1034.8 sec= ). The search 

space is defined by the inequalities 

( )01 1   1,3,4k k−   =  and 10 TU 50 TUft  . It is 

worth remarking that the ignorability of the parameter 

condition allows defining arbitrarily the range in which 

the initial values of the adjoint variables are sought. The 

swarming algorithm is capable of obtaining the optimal 

(planar) ascent trajectory with great accuracy. In fact, 

the errors on the desired final conditions are 
* 113.357 10  kmf fr R −− =  , 

* 86.258 10rfv −=   km sec , 

and 
* 71.033 10tf fv R −− =   km sec , whereas the 

minimum time turns out to be 
* 10.60 hrsft = . Figures II 

through V portray the state components associated with 

the optimal ascent trajectory and the related optimal 

control time history. 

 
 

Fig. II: Optimal transfer path: altitude time history 

 
 

 
 

Fig. III: Optimal transfer path: radial velocity time 

history 
 

 
 

Fig. IV: Optimal transfer path: transverse velocity time 

history 

 

 
 

Fig. V: Optimal transfer path: thrust angle time history 
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Evaluation of the matrices H
uu

 and Ŝ  along the 

optimal path allows verifying that the second-order 

sufficient conditions for a minimum are both satisfied, 

and this represents the theoretical premise for a 

successful application of VTD-NOG. 

 

III. ORBIT PERTURBATIONS 

Due to the irregular mass concentrations, the lunar 

gravitational potential differs considerably from that 

generated by a spherical mass distribution. As a result, a 

relevant number of harmonics of the Moon potential are 

to be included in the dynamical simulations, in order to 

provide realistic results. Moreover, the Earth and Sun 

gravitational pull affects the spacecraft motion and can 

be modeled as a third body perturbation. This section is 

devoted to these two gravitational actions. 

 

III.I Harmonics of the lunar gravitational field  

Currently, some accurate models exist for the Moon 

gravitational fields, (a) Goddard gravity model 3 

(GLGM3150) and (b) Lunar Prospector models, to 

name a few. This research employs the Lunar 

Prospector LPE100K model, which supplies the 

coefficients of zonal, tesseral, and sectorial harmonics 

of the Moon gravitational field up to order 100. These 

coefficients (
,l mJ  and 

lm ) appear in the classical 

equation of planetary gravitational potentials (per mass 

unit), written in terms of Legendre polynomials 
lmP ,  

( )

( ) ( )

0

2

,

2 1

sin

   sin cos

l

M M M

l l

l

ll
M

l m lm g lm

l m

R
U J P

r r r

R
J P m

r

 


  



=



= =

 
= −  

 

 
 + −   

 





[29] 

where 
M  and 

MR  are the Moon gravitational 

parameter and equatorial radius,   and 
g  are the 

satellite latitude and geographical longitude (taken from 

the Moon reference meridian26), whereas r is its 

instantaneous radius. If 
( )ref

a  denotes the absolute 

longitude (taken counterclockwise from 
1̂c ) of the 

Moon reference meridian, then the satellite absolute 

longitude is ( )ref

a g  = + .  

In the ( )ˆˆ ˆ, ,r t n -frame, the gravitational acceleration 

is given by 

 
ˆ ˆ

ˆ   where   
cos g

t n
U r

r r r  

  
=   = + +

  
G [30] 

The previous expression, together with Eq. [29], leads 

to obtaining the three components ( ), ,r t nG G G  of the 

gravitational acceleration in the ( )ˆˆ ˆ, ,r t n -frame. Because 

rG  includes the main gravitational term, the related 

disturbing accelerations are 
( ) 2H

r r Ma G r= + , 

( )H

t ta G= , and 
( )H

n na G= .  

 

III.I Third body gravitational attraction  

The Earth and Sun gravitational influence can be 

modeled as a third body perturbation. In general, the 

perturbing acceleration due to a third body can be 

expressed as 

 
( ) ( )

2

3 32

3 3 33 2 3 23

3 3 3

3 3

1 1 1
B

q q
q

s q q

  + +
= − + 

+ + +  

a r s  [31] 

where ( )2 2

3 3 3: 2q r s= − r s . The symbol 
2  denotes 

the gravitational parameter of the third body, 
3s  

represents its position vector relative to the main body 

(i.e., the Moon), and 3 3s = s . The previous expression 

makes use of the Battin-Giorgi27,28 approach to Encke’s 

method for orbital perturbations. The perturbing 

acceleration 
3Ba  is to be projected into the ( )ˆˆ ˆ, ,r t n -

frame, for its inclusion in the dynamics equations. To do 

this, 
3s  needs to be projected into this frame. 

As a first step, the Earth-centered inertial frame 

(ECI) and the Moon-centered inertial frame (MCI) are 

defined in relation to the heliocentric inertial frame 

(HCI). The latter reference system is associated with the 

unit vectors 
( ) ( ) ( )( )1 2 3

ˆ ˆ ˆ, ,
S S S

c c c , where 
( )
1̂

S
c  is the vernal 

axis (corresponding to the intersection of the ecliptic 

plane with the Earth equatorial plane) and 
( )
3

ˆ
S

c  points 

toward the Earth orbit angular momentum13. The ECI-

frame is associated with the unit vectors 
( ) ( ) ( )( )1 2 3

ˆ ˆ ˆ, ,
E E E

c c c , where 
( )
1̂

E
c  is the vernal axis and 

( )
3

ˆ
E

c  

points toward the Earth rotation axis29. The ECI-frame 

and the HCI-frame are related through the ecliptic 

obliquity angle ( ) 23.45 degE = , [32] 

  
( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 1 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ
T T

E E E S S S

Ec c c c c c   = −
   

R  [32] 

According to Cassini’s laws, the Moon’s rotation axis 

ˆ
Mz  is coplanar with the Moon’s orbit angular 

momentum 
Mh  and the normal to the ecliptic plane 

( )
3

ˆ
S

c . The two vectors ˆ
Mz  and 

Mh  are located at 

opposite sides of the ecliptic pole 
( )
3

ˆ
S

c , and both of them 

are subject to clockwise precession due to the Sun, with 

a period of 18.6 years. Hence, axis 
3̂c  of the MCI-frame 

can be properly identified as the rotation axis ˆ
Mz  at a 

reference epoch reft , ( )3
ˆ ˆ

M refc z t= . If 
M  and 

M  

denote respectively the precession angle and the Moon 

equator obliquity (separating 
3̂c  from 

( )
3

ˆ
S

c ), then 
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( ) ( )( ) ( ) ( ) ( )
1 2 3 1 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ
TT ref S S S

M Mc c c c c c     =   
R R  [33] 

where ( ) ( ) 81.7 deg
ref

M = −  represents the precession 

angle at 
reft  (set to 1 January 2020). 

As a second step, the two-body-problem model is 

adopted to describe the Moon’s motion around the 

Earth. If the Moon’s orbit is approximated as circular, 

then its position vector relative to the Earth, denoted 

with 
Mr , can be written in the ECI-frame in terms of 

M , 
Mi , and 

M , i.e. the Moon RAAN, inclination, 

and (instantaneous) argument of latitude 
M , 

( )

( )

( )

1

2

3

ˆcos cos sin sin cos

ˆsin cos cos sin cos

sin sin ˆ

ET

M M M M M

E

M M M M M M M

E
M M

ci

r i c

i c

 

 



  −  
 

 =  +   
 

 
     

r  [34] 

where 
Mr  is the instantaneous orbit radius 

(approximated to the constant value 384400 km). The 

position vector of the Earth with respect to the Moon is 

simply 
( )
3

E

M= −s r . Due to precession of 
Mh , the angles 

M  and 
Mi  vary with a period of 18.6 years and can be 

assumed as constant only for relatively short times of 

flight. In order to project 
( )
3

E
s  along ( )ˆˆ ˆ, ,r t n , the 

relations between these three unit vectors and the MCI-

frame is needed, 

 ( ) ( ) 2 3 1 2 3
ˆˆ ˆ ˆ ˆ ˆ

T T

ar t n c c c   = −  R R  [35] 

Using Eqs. [32]-[35], the position vector 
Mr  can be 

written in the desired frame,  

      

( ) ( )( ) ( ) ( ) ( )1 3 1 3 2

cos cos sin sin cos

sin cos cos sin cos

sin sin

ˆ

ˆ    

ˆ

T

M M M M M

M M M M M M M

M M

refT T T T

E M M a

i

r i

i

r

t

n

 

 



    

 −  
 

=  +  
 
  

 
 

  
 
 

r

R R R R R

 [36] 

and the Earth perturbing acceleration, denoted with 
( ) ( ) ( ) ( )
3

ˆˆ ˆE E E E

B r t na r a t a n= + +a , can be calculated by means 

of Eq. [31], where 
( )
3

E

M= −s r . 

Lastly, the two-body-problem model is adopted also 

to describe the Earth motion around the Sun. If the 

Earth orbit is approximated as circular, then its position 

vector, denoted with 
Er , can be written in the 

heliocentric inertial frame (HCI) in terms of 
E , i.e. the 

(instantaneous) Earth ecliptic longitude, 

   ( ) ( ) ( )
1 2 3

ˆ ˆ ˆcos sin 0
T

S S S

E E E Er c c c   =
 

r  [37] 

where 
Er  is the instantaneous orbit radius 

(approximated to the constant value of 1 AU). Using 

Eqs. [32], [33], [35], and [37], 
Er  can be rewritten as 

 
  ( )( )

( ) ( ) ( )

3

1 3 2

cos sin 0

ˆˆ ˆ

refT

E E E E M

TT T

M a

r

r t n

  

  

= 

   

r R

R R R

 [38] 

and this expression provides the projection along 

( )ˆˆ ˆ, ,r t n . The position vector of the Sun with respect to 

the Moon is 
( ) ( )3

S

E M= − +s r r , and can be written in the 

( )ˆˆ ˆ, ,r t n -frame by means of Eqs. [36] and [38]. Finally, 

the Sun perturbing acceleration, denoted with 
( ) ( ) ( ) ( )
3

ˆˆ ˆS S S S

B r t na r a t a n= + +a , can be calculated through Eq. 

[31]. 

 

IV. VARIABLE-TIME-DOMAIN NEIGHBORING 

OPTIMAL GUIDANCE  

The Variable-Time-Domain Neighboring Optimal 

Guidance (VTD-NOG) uses the optimal trajectory as 

the reference path, with the final intent of determining 

the control correction at each sampling time 

  00, ,
,  with 0

S
k k n

t t
=

= . These are the times at which 

the displacement between the actual trajectory, 

associated with x , and the nominal trajectory, 

corresponding to *
x , is evaluated, to yield 

 ( ) ( ) ( )* ,     with   
k

k k k k k k fd t t t t  = − =x x x x  [39] 

where ( )k

ft  denotes the overall time of flight calculated 

at time 
kt . The total number of sampling times, 

Sn , is 

unspecified, whereas the actual time interval between 

two successive sampling times is given and denoted 

with 
St , 

1S k kt t t+ = −  ( )0, , 1Sk n= − . A 

fundamental ingredient needed to implement VTD-

NOG is the formula for determining 
( )k

ft  at 
kt . 

 

IV.I Time-to-go updating law and termination criterion 

The fundamental principle that underlies the VTD-

NOG scheme consists in finding the control correction 

( ) u  in the generic interval  1,k k  +  such that the 

second differential of J is minimized13,15, while holding 

the first-order expansions of the state equations, the 

related final conditions, and the parameter condition 

Minimizing the second differential of J is equivalent to 

solving the accessory optimization problem, defined in 

the interval  ,1k .  The solution of the same problem in 

the overall interval  0,1  leads to deriving all the 

relations reported in Refs. 13 and 15. This means that 

the latter relations need to be extended to the generic 
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interval  ,1k . The analytical developments lead to 

deriving the feedback control correction, 

 ( )1H H H d H  −= − + +
uu ux ua uλ

u x a λ  [40] 

depending on the displacements (denoted with  x , 

 λ , da ) of the state, costate, and parameter vector 

from the respective optimal values. Equation [40] yields 

the control correction in each interval 
1k k   +  . 

Moreover, in Ref. 13, the following equation is 

derived: 

  1 1   with  :
qxpT

k k k k k

pxp

d

d
 − −

  
= − − =   

    

0
V U V Θ Θ

I

υ
x μ

a
 [41] 

This relation differs from that included in the second 

order sufficient conditions, because 
k  0μ  at the 

generic 
k  (unlike 

0 = 0μ ). The symbols qxp0  and 

pxpI  denote respectively the null and the identity 

matrices (with dimensions indicated in the subscript), 

whereas matrices 
kU  and 

kV  are time-varying gain 

matrices defined in Ref. 13. The latter relation supplies 

the corrections dυ  and da  at 
k  as functions of 

k x  

(evaluated at 
k , cf. Eq. [39]), and 

k μ  (coming from 

the numerical integration of the respective linear 

differential equation Ref 13 in the preceding interval 

 1,k k − ). Actually, Eq. [41] contains the updating law 

of the total flight time 
ft , which is included as a 

component of a. Hence, if 
( )k

fdt  denotes the correction 

on 
*

ft  evaluated at 
k , then 

 
( ) ( )*k k

f f ft t dt= +  [42] 

If the actual sampling interval 
St  is specified, the 

general formula for 
k  is 

 
( )

( )1

0

          1, , 1
k

S

k Sj
j f

t
k n

t
 +

=


= = −  [43] 

The overall number of intervals 
Sn  is found at the first 

occurrence of the following condition: 

 
( ) 1

0

 1          1
S

S

n

S

nj
j f

t

t
 +

=


  =  [44] 

It is worth stressing that the updating formula [42] 

derives directly from the natural extension of the 

accessory optimization problem to the time interval 

 ,1k . In addition, the introduction of the normalized 

time   now reveals its great utility. In fact, all the gain 

matrices are defined in the normalized interval [0,1] and 

cannot become singular. Moreover, the limiting values 

 
1, , 1S

k k n


= −
 are calculated at each sampling time using 

Eq. [43], while the sampling instants in the actual time 

domain are specified and equally-spaced. Also the 

termination criterion has a logical, consistent definition, 

and corresponds to the upper bound of the interval [0,1], 

to which   is constrained. 

 

IV.II Modified sweep method 

The definition of a neighboring optimal path 

requires the numerical backward integration of the 

sweep equations. A suitable integration technique is 

based on using the classical sweep equations in the 

interval  ,1sw  (where 
sw  is sufficiently close to 

1f = ) and then switching to Ŝ . However, due to Eq. 

[41], new relations are to be derived for Ŝ  and the 

related matrices. 

As a preliminary step, the following relation is found 

for  λ 13:  

 ( )ˆ T T d d = − − −S Wm Wn Wαλ x υ a  [45] 

where 1: −=W UV Θ . Further, considerable analytical 

developments13,15 (not reported for the sake of 

conciseness) lead to the following modified sweep 

equations: 

 

1 1 1ˆ ˆ ˆ ˆ ˆ

ˆ ˆ     

T

T T T

− − − = − + + + +
 

− − − −

S SA SBS SDα WFα Eα m

WE WD S C A S

 [46] 

       ˆT T T T T= − −R R BS R A R BWm  [47] 
T T= −Q R BWn                                                    [48] 

 ( )T= −n R D + BWα                      [49] 

 
ˆ

ˆ        

T T T T T

T T T T

= − + −

− − +

m m A m BS m BWm

E D S D Wm
 [50] 

 
T T T= − − −α D Wα F m BWα m D  [51] 

In the end, the gain matrices involved in the sweep 

method, i.e. S, Ŝ , R, Q, n, m, and α , can be backward  

integrated in two steps:  

(a) in the interval  ,1sw  the equations of the classical 

sweep method13, with the respective boundary 

conditions are used,  

(b) in the interval  0, sw  Eqs. [46]-[51] are used. The 

matrices R, Q, n, m, and α  are continuous across 

the switching time 
sw , whereas Ŝ  is given by 

1ˆ : T−= −S S UV U ; 
sw  is set to 0.99. 

 

IV.III Preliminary offline computations 

The implementation of NOG requires several 

preliminary computations that can be completed offline 

and stored in the onboard computer.  

First of all, the optimal trajectory is to be 

determined, together with the related state, costate, and 

control variables, which are assumed as the nominal 

ones. In the time domain   these can be either available 
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analytically or represented as sequences of equally-

spaced values, e.g. 

( ) ( )* *

0     0, , ;  0 and 1
Di i D ni n  = = = =u u  [52] 

However, in the presence of perturbations, NOG 

determines the control corrections ( ) u  in each 

interval  1,k k  + , where the values  k  never 

coincide with the equally-spaced values  i  of Eq. 

[52]. Hence, regardless of the number of points used to 

represent the control correction ( ) u  in  1,k k  + , it is 

apparent that a suitable interpolation is to be adopted for 

the control variable *
u  (provided that no analytical 

expression is available). In this way, the value of *
u  can 

be evaluated at any arbitrary time in the interval 

0 1  . For the same reason also the nominal state 
*

x  and costate *
λ  need to be interpolated. If a 

sufficiently large number of points is selected (e.g., 

1001Dn = ), then piecewise linear interpolation is a 

suitable option. The successive step is the analytical 

derivation of the matrices 

 




0 0 0 0

, , , , , , , , , , ,

, , , , , , , , , ,

, ,

f f f

f f

H H H H H H H H

H H H H   

  

x u a xx xu xλ xa ux uu ua uλ

ax au aa aλ x x a x x x a x x

x a ax aa

f f f

ψ ψ ψ  [53] 

Then, they are evaluated along the nominal 

trajectory, and used to define also the matrices A, B, C, 

D, E, and F. Each element of these matrices, together 

with those of the matrices of Eq. [53], are linearly 

interpolated. Subsequently, the two-step backward 

integration of the sweep equations described in Section 

III.II is performed and yields the gain matrices Ŝ , R, m, 

Q, n, and α , using also the analytic expressions of W, 

U, and V (written in terms of R, m, Q, n, and α ). The 

linear interpolation of all the matrices not yet 

interpolated concludes the preliminary computations.  

 

IV.IV VTD-NOG & PD-RM algorithm structure 

On the basis of the optimal reference path, using the 

nominal quantities computed offline, at each time 
k  

the VTD-NOG algorithm determines the time of flight 

and the control correction. Specifically, the following 

steps implement the feedback guidance scheme: 

1. Set the actual sampling time interval 
St . 

2. At each time ( )0 0, , 1;  0k Sk n = − =  

a. Evaluate 
k x  through Eq. [39]; 

b. Assume the value of  μ  calculated at the end of 

the previous interval  1,k k −  as 
k μ  ( )0 = 0μ ; 

c. Calculate the correction 
( )k

fdt  and the updated 

time of flight 
( )k

ft  by means of Eqs. [41]-[42]; 

d. Calculate the limiting value 
1k +
 using Eq. [43]; 

e. Evaluate 
k λ  through Eq. [45]; 

f. Integrate numerically the linear differential 

system for ( )t x , ( )t λ , and ( )t μ ; 

g. Determine the control correction ( ) u  in 

 1,k k  +  through Eq. [40]. 

3. If Eq. [44] holds, then VTD-NOG terminates, 

otherwise point 2 is repeated after increasing k by 1. 

Figure VI portrays a block diagram that illustrates the 

sample-data feedback structure of the NOG algorithm, 

in which the control and flight time corrections 

definitely depend on the state displacement  x  

(evaluated at specified discrete times) through the time-

varying gain matrices, which are computed offline and 

stored onboard. The attitude control loop (encircled by 

the dotted line) is being described in detail in the 

following. 

 

 
 

Fig. VI: Block diagram of VTD-NOG & PD-RM 

 

V. PD ATTITUDE CONTROL USING ROTATION 

MATRICES  

The attitude control system is designed for the 

purpose of guaranteeing the correct spacecraft 

orientation, based on the corrected control u yielded by 

VTD-NOG. The output of the attitude control system is 

represented by the actual control 
au  (cf. Fig. VI). The 

desired attitude is pursued using reaction wheels. 

 

V.I Commanded attitude 

With reference to Fig. VI, VTD-NOG yields the 

corrected control u, i.e. the thrust direction identified by 

the angles   and  . Because the thrust is aligned with 

the longitudinal axis of the spacecraft, these two angles 
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represent the commanded values, denoted with 
c  and 

c , that the attitude control system must pursue. 

The spacecraft instantaneous orientation is 

associated with the body frame ( )ˆ ˆ ˆ, ,b b bx y z , whose 

origin is in the instantaneous center of mass of the 

vehicle, its axes coincide with the principal axes of 

inertia, and ˆ
bx  is aligned with the longitudinal axis. The 

two angles c   and c  identifiy the desired orientation 

of ˆ
bx , denoted with 

( )ˆ c

bx  and given by 

 

( )

( ) ( )
1

2 3 2

3

ˆcos sin

ˆˆ cos cos

ˆsin

ˆcos sin

ˆ     cos cos

ˆsin

T

c c

c

b c c

c

T

c c

c c

c

r

x t

n

c

c

c

 

 



 

   



   
   

=
   
      

   
   

= −
   
      

R R

 [54] 

The commanded unit vector 
( )ˆ
c

bz  is chosen to be 

 
( )

( )

( )

3

3

ˆ ˆ
ˆ

ˆ ˆ

c

c b

b c

b

c x
z

c x


=


 [55] 

whereas 
( )ˆ
c

by  completes the right-hand sequence 

( ) ( ) ( )( )ˆ ˆ ˆ, ,
c c c

b b bx y z . It is apparent that in nominal flight 

conditions 
( )ˆ
c

bz  lies in the equatorial plane and has 

positive component along the local nadir direction 

during the entire time of flight. Equations [54] and [55] 

lead to defining the commanded rotation matrix cR , 

which relates ( )1 2 3
ˆ ˆ ˆ, ,c c c  to 

( ) ( ) ( )( )ˆ ˆ ˆ, ,
c c c

b b bx y z , 

 
( ) ( ) ( )  1 2 3

ˆ ˆ ˆ ˆ ˆˆ
T Tc c c

b b b cx y z c c c  =
 

R  [56] 

Matrix cR  represents the input that is supplied to the 

attitude control system. 

 

V.II Attitude dynamics 

A reaction wheel assembly is employed for the 

purpose of controlling the spacecraft attitude. Let 
T

x y z   =  ω  be the body coordinates of the 

spacecraft angular velocity with respect to ( )1 2 3
ˆ ˆ ˆ, ,c c c . 

The actual orientation is associated with the rotation 

matrix R, which relates ( )1 2 3
ˆ ˆ ˆ, ,c c c  to ( )ˆ ˆ ˆ, ,b b bx y z ,  

    1 2 3
ˆ ˆ ˆ ˆ ˆˆ

T T

b b bx y z c c c= R  [57] 

Then, the kinematics equations are given by30 

 

0

   where   : 0

0

z y

z x

y x

 

 

 

 

 −
 

= − = − 
 − 

ω ωR R  [58] 

Moreover, the attitude dynamics equations are  

 
c

+ =ω ω ω MI I  [59] 

where  diag , ,x y zI I II =  is the spacecraft inertia 

matrix, whereas 
T

c cx cy czM M M =  M  are the body 

coordinates of the control torque generated by the 

reaction wheel assembly. Let cxM , cyM , czM   denote 

the maximum torque components (about each body 

axis) that the reaction wheel assembly can generate. In 

order to take into account these limits, the variable 
T

c cx cy czM M M =  M  is introduced, related to 
cM  

through the following equation: 

( )

 if    

sat    if    

   if    

cx

cx cx cx

cx cx cx cx cx cxM

cx cx cx

M M M

M M M M M M

M M M

−  −


= = −  




[60] 

and through similar equations for cyM  and czM . 

Variable 
cM  represents the attitude control input for the 

spacecraft. Note that a model for the reaction wheel 

assembly is not included since it can be neglected for 

practical purposes31. 

 

V.III Attitude control law 

As the commanded attitude is specified by the 

rotation matrix cR  (cf. Section V.I), it is convenient to 

employ a control law that uses directly rotation matrix 

cR  for determining the appropriate torque that the 

reaction wheels must generate. In fact, this avoids 

singularities or ambiguities that the conversion of cR  

into other attitude representations (such as Euler angles 

or quaternions) would introduce. 

The following PD-like attitude control action is 

applied32: 

 ( )
3

1

T

c p i c i d

i=

= −  −M e e ωK R R K  [61] 

In the previous equations  diag , ,p px py pzk k k=K  and 

 diag , ,d dx dy dzk k k=K  are positive control gains, while 

 
1,2,3i i=

e  form the 3 by 3 identity matrix  1 2 3e e e . 

To analyze the convergence properties achieved by the 

considered controller, first it is worth noticing that quite 

often the commanded attitude cR  can be modeled as 

constant since it changes slowly with respect to the 

actual attitude R. Proposition 2 of Ref. 32 implies that R 

converges to cR  locally and exponentially. In fact, Ref. 

32 shows that after linearizing the closed-loop system 

composed of Eqs. [58] through [61] about c=R R  and 

=ω 0 , one obtains the following system: 
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 1 12d p

− −+ + =ζ ζ ζI K I K 0  [62] 

where  :
T

=   ζ  and ,  ,  and     represent 

respectively the actual spacecraft 3-2-1 Euler angles 

relative to the commanded attitude. Then, it follows 

immediately that →ζ 0 . 

 

V.IV Gain selection 

The goal of the current subsection is presenting a 

method for determining at least first guess values for the 

gains  pxk , pyk , pzk , dxk , dyk , and dzk . The method is 

here illustrated only for gains pxk  and dxk , because it 

can be extended easily to the other gains. Consider the 

first equation of the linearized closed-loop system in Eq. 

[62], 

 2 0
pxdx

x x

kk

I I
 +  =+  [63] 

The corresponding characteristic equation in the 

Laplace domain is given by 

 2 2 0
pxdx

x x

kk
s s

I I
+ + =  [64] 

However, the value of xI  varies during the flight. Let 

xI  and xI  be the minimum and maximum values of xI . 

Then, the gains pxk  and dxk  are chosen so that for all 

x x xI I I   the solutions of Eq. [64] have damping 

ratio x x   and natural angular frequency nx nx  . 

The lower bounds x  and nx  are chosen based on 

experience and proceeding by trial-and-error. Because 
22 px x nxk I =  and 2dx x x nxk I  = , it is easy to verify 

that the specifications x x   and nx nx   are 

fulfilled for all 
x x xI I I   by setting 

 

2

     and     2
2

nx x

px dx x nx x

I
k k I


 = =  [65] 

 

V.V Actual attitude 

The actual spacecraft orientation is defined by the 

instantaneous value of matrix R, which identifies the 

actual orientation of axis ˆ
bx  by means of Eq. [57]. 

Combination of the latter equation with Eq. [35] yields 

   ( ) ( )3 2
ˆˆ ˆ ˆ ˆˆ

TT T

b b bx y z r t n   =  RR R  [66] 

The actual thrust direction is aligned with ˆ
bx , and can 

be written also as a function of the two actual thrust 

angles a  and a  in the ( )ˆˆ ˆ, ,r t n -frame, 

 

ˆcos sin

ˆ ˆˆ cos cos

ˆsin

T

a a

a b a a

a

r

T x t

n

 

 



   
   

 =
   
      

 [67] 

Comparison of Eqs. [66] and [67] leads to obtaining a  

and a  as functions of  R,  , and  . 

 

VI. VTD-NOG & PD-RM APPLIED TO  

LOW-THRUST LUNAR TRANSFER 

The guidance and control methodology based on the 

joint use of VTD-NOG and PD-RM is applied to the 

low-thrust lunar transfer. The optimal transfer path is 

derived in a previous section and takes about 10.5 

hours. 

Further characteristics of the spacecraft are the 

initial mass 0 2400 kgm = , the maximal torque 

generated by the reaction wheels about each body axis 

0.5 N mcx cy czM M M= = = , and the time-varying 

inertia moments xI , yI , and zI ,  

 0 0 0          x x x y y y z z zI I I t I I I t I I I t= + = + = +  [68] 

where 
2

2 4

0

2
2 4

0 0

m
1200 kg m    3.92 10  kg 

sec

m
800 kg m    2.61 10  kg 

sec

x x

y y y z

I I

I I I I

−

−

= = − 

= = = = − 

[69] 

Moreover, the following values are selected for 

VTD-NOG & PD-RM. The sampling interval St  is set 

to 1 min, and the control gains are determined as 

follows. First, note that the constant thrust equals 

0 0T n m= , whereas the maximum values for xI , yI , 

and zI  are 0x xI I= , 0y yI I= , and 0z zI I= . Proceeding 

by trial and error, the lower bounds for the natural 

frequencies and the damping coefficients are set to  

             

10.03 rad sec    and

0.7

nx ny nz

x y z

  

  

−= = =

= = =
 [70] 

Thus, by Eq. [65] and analogous equations for the other 

attitude control gains, one obtains 0.54pxk = , 

50.4dxk = , 0.36py pyk k= = , 33.6dy dzk k= = . 

The first reason for the existence of deviations from 

nominal flight conditions is related to the fact that the 

commanded attitude does not coincide with the actual 

attitude. This is due to the fact that in general the 

commanded angles, yielded by VTD-NOG, are 

discontinuous across subsequent guidance intervals, 

while the actual thrust direction is constrained to vary 

with continuity, because it obeys the equations of 

attitude motion. This circumstance is pointed out also in 

Fig. VI, which illustrates clearly that the corrected 
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control u does not coincide with the actual control au , 

which affects the real dynamics of the center of mass. 

Moreover, (modest) deviations from the nominal 

path occur also as a result of the gravitational 

perturbations due to Earth gravitational harmonics as 

well as to the Moon and Sun influence as third bodies. 

These perturbations were neglected while obtaining the 

nominal path. In the present context, these terms are to 

be considered, and include all the previously cited 

gravitational perturbations, 

 
( ) ( ) ( )

/ / / / / / / /

H E S

r t n r t n r t n r t na a a a= + +  [71] 

where superscripts H, M, and S refer respectively to the 

lunar harmonics, the Earth, and the Sun contributions. 

With regard to the lunar gravitational field, all the 

harmonics with magnitude 
510lmJ −  are included in 

the dynamical simulations, i.e. 2J  
6J , 

7J ,
9J , 22J , and 

31J . 

As a first step, VTD-NOG & PD-RM has been 

tested in order to evaluate these deviations, exclusively 

related to attitude motion and gravitational 

perturbations. The reference epoch at the initial time is 

set to 1 January 2020 at 12 UTC. The first column of 

Table I (denoted with GP, standing for “gravitational 

perturbation”) reports the related results (obtained in a 

single simulation), i.e. the final displacements from the 

nominal final altitude, latitude, and velocity 

components, and testifies to the excellent accuracy of 

VTD-NOG & PD-RM in this context. 

However, further perturbations exist, related to the 

dynamical system itself. Monte Carlo (MC) campaigns 

are run, with the intent of obtaining some useful 

statistical information on the accuracy of the guidance 

and control algorithm of interest, in the presence of the 

existing perturbations, which are simulated 

stochastically. Usually, the thrust magnitude (and the 

related acceleration, as a result) exhibits small 

fluctuations. This time-varying behavior is modeled 

through a trigonometric series with random coefficients, 

5 5

0 0 5* *
1 1

2 2
1 sin cosp

k k

k kf f

k t k t
n n a a

t t

 
+

= =

    
= + +    

        
   [72] 

where 0

pn  denotes the perturbed value of 0n , whereas 

the coefficients  
1, ,10k k

a
=

 have a random Gaussian 

distribution centered around the zero and a standard 

deviation equal to 0.01. As the thrust magnitude is no 

longer constant, Eq. [1] is replaced by 

 0 0 0

0

     where     
p pn m nT m

m m m c
= = −  [73] 

The symbol 
0m  denotes the initial spacecraft mass. 

Moreover, errors on the initial attitude angles and rates 

are modeled. All of these displacements have Gaussian 

distribution and zero mean. Their standard deviation 

equals 10 deg for the initial attitude (Euler) angles and 

10 deg/sec for the initial angular velocity components 

(along the body axes). 

At the end of VTD-NOG & PD-RM, two statistical 

quantities are evaluated, i.e. the mean value and the 

standard deviation for all of the outputs of interest. The 

symbols 
____

  and 
( )

  will denote the mean error (with 

respect to the nominal value) and standard deviation of 

  henceforth. A single MC campaigns is performed, 

including all perturbations. 

With  reference  to  MC,  Figs. VII through  16 

portray   the  time  histories  of  0

pn , some relevant  state 

variables, the torque components, as well as the 

principal rotation angle30 between the commanded and 

the actual rotation matrices R and 
cR . Moreover, Table  

I  reports  the  statistics  on  the errors at injection and 

the time of flight. Inspection of this table reveals that 

VTD-NOG & PD-RM guarantees orbit injection with 

very satisfactory accuracy, despite the relatively relaxed 

sampling time. Furthermore, the average time of flight 

is very close to the nominal value, and the 

corresponding standard deviation is modest. 

As a final remark, the runtime of VTD-NOG & PD-

RM on an Intel i5-3570K @ 3.40 GHz takes 13.37 min 

(while the nominal time of flight exceeds 10 hours), and 

this guarantees that the guidance and control algorithm 

at hand can be implemented in real time. 
 

 
 

Fig. VII: Time histories of 0

pn  in the MC campaign 

 

 
 

Fig. VIII: Altitude   time   histories  obtained in  the MC  

                campaign 
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Fig. IX: Radial velocity time histories obtained in the 

MC campaign 

 

 
 

Fig. X: Transverse velocity time histories obtained in 

the MC campaign 

 

 
 

Fig. XI: Normal velocity time histories obtained in the 

MC campaign 

 

 
 

Fig. XII: Time histories of torque component 
xM   

obtained in the MC campaign 

 

 
 

Fig. XIII: Time histories of torque component 
yM   

obtained in the MC campaign 
 

 
 

Fig. XIV: Time histories of torque component 
zM    

obtained in the MC campaign 
 

 

 

Statistics GP MC 

( )
___

 kmfr  0.31 0.33 

( )
___

 degf  -5.9e-3 -5.9e-3 

( )
___

 m secrfv  -0.50 -0.48 

( )
___

 m sectfv  -0.35 -0.36 

( )
___

 m secnfv  -8.9e-3 -9.3e-3 

( ) hrsft  10.57 10.56 

( ) ( ) kmfr


 / 0.33 

( ) ( ) degf


  / 3.8e-5 

( ) ( ) m secrfv


 / 0.18 

( ) ( ) m sectfv


 / 2.28 

( ) ( ) m secnfv


 / 9.9e-3 

( ) ( ) hrsft


 / 2.9e-2 

 Table I: Statistics on the errors on the final 

state and on the time of flight  
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VI. CONCLUDING REMARKS 

This work proposes VTD-NOG & PD-RM, a new, 

general-purpose guidance and control algorithm for 

space vehicles, and describes its application to three-

dimensional lunar orbit transfers. VTD-NOG is a 

feedback guidance technique based upon minimizing 

the second differential of the objective function along 

the perturbed trajectory. This minimization principle 

leads to deriving all the corrective maneuvers. Due to 

adoption of a normalized time scale as the domain in 

which the nominal trajectory is defined, the gain 

matrices remain finite for the entire time of flight, while 

the updating law for the time of flight and the 

termination criterion find consistent definitions. VTD-

NOG identifies the trajectory corrections, and the 

commanded thrust angles. A proportional-derivative 

approach using rotation matrices (PD-RM) is employed 

in order to drive the actual spacecraft orientation toward 

the desired one. Reaction wheels are employed for 

attitude control and pursues this alignment condition. 

The new guidance and control architecture based on the 

joint use of VTD-NOG and PD-RM is applied to low-

thrust lunar orbit transfer, with the intent of testing its 

capabilities. Oscillating perturbations of the propulsive 

thrust, gravitational perturbations, and errors on initial 

attitude are included in the dynamical model, and yield 

perturbed three-dimensional transfer paths. Monte Carlo 

simulations point out that orbit injection occurs with 

excellent accuracy, thus demonstrating that VTD-NOG 

& PD-RM indeed represents an effective methodology 

for the application at hand. Due to its generality, VTD-

NOG & PD-RM may be regarded as a promising 

approach for guidance and control of space vehicles 

employed in a wide variety of mission scenarios. 

 

REFERENCES 
1 J. D. Betts, "Optimal Interplanetary Orbit Transfers 

by Direct Transcription," Journal of the Astronautical 

Sciences, Vol. 42, pp. 247—326, 1994 
2 P. J. Enright and B. A. Conway, "Optimal Finite-

Thrust Spacecraft Trajectories Using Collocation and 

Nonlinear Programming," Journal of Guidance, 

Control, and Dynamics, Vol. 14, pp. 981—985, 1991 
3 A. Miele and T. Wang, "Multiple-Subarc Gradient-

restoration Algorithm, Part 1: Algorithm Structure," 

Journal of Optimization Theory and Applications, 

Vol. 116, No. 1, pp. 1—17, 2003 
4 C. A. Kluever and B. L. Pierson, "Optimal Low-

Thrust Earth-Moon Three-dimensional Trajectories," 

Journal of Guidance, Control, and Dynamics, Vol. 

18, pp. 830—837, 1995 
5 D. Hull, "Initial Lagrange Multipliers for the 

Shooting Method," Journal of Guidance, Control, 

and Dynamics Vol. 31, No. 5, pp. 1490—1492, 2008 
6 M. Pontani and B. A. Conway, "Optimal Low-Thrust 

Orbital Maneuvers via Indirect Swarming Method," 

Journal of Optimization Theory and Applications, 

Vol. 162, No. 1, pp. 272-292, 2014 
7 M. Pontani and B. A. Conway, "Minimum-Fuel 

Finite-Thrust Relative Orbit Maneuvers via Indirect 

Heuristic Method,"  Journal of Guidance, Control, 

and Dynamics, Vol. 38, No. 5, pp. 913-924, 2015 
8 H. H. Afshari, A. B. Novinzadeh, and J. Roshanian, 

"Determination of Nonlinear Optimal Feedback Law 

for Satellite Injection Problem Using Neighboring 

Optimal Control," American Journal of Applied 

Sciences, Vol. 6, No. 3, pp. 430—438, 2009 
9 H. Seywald and E. M. Cliff, "Neighboring Optimal 

Control Based Feedback Law for the Advanced 

Launch System," Journal of Guidance, Control, and 

Dynamics, Vol. 17, No. 3, pp. 1154—1162, 1994 
10 H. Yan, F. Fahroo, and I. M. Ross, "Real-Time 

Computation of Neighboring Optimal Control Laws," 

AIAA Guidance, Navigation and Control Conference 

and Exhibit, Monterey, CA, 2002; AIAA Paper 2002-

4657 
11 S. N. Naidu, J. L. Hibey, and C. B. Charalambous, 

"Neighboring Optimal Guidance for Aeroassisted 

Orbital Transfer," IEEE Transactions on Aerospace 

and Electronic Systems, Vol. 29, No. 3, pp. 656—

663, 1993 
12 C. B. Charalambous, S. N. Naidu, and J. L. and 

Hibey, "Neighboring Optimal Trajectories for 

Aeroassisted Orbital Transfer Under Uncertainties," 

Journal of Guidance, Control, and Dynamics, Vol. 

18, No. 3, pp. 478—485, 1995 
13 M. Pontani, G. Cecchetti, and P. Teofilatto, 

"Variable-Time-Domain Neighboring Optimal 

Guidance, Part 1: Algorithm Structure," Journal of 

Optimization Theory and Applications, Vol. 166, pp. 

76—92, 2015 
14 M. Pontani, G. Cecchetti, and P. Teofilatto, 

"Variable-Time-Domain Neighboring Optimal 

Guidance, Part 2: Application to Lunar Descent and 

Soft Landing," Journal of Optimization Theory and 

Applications, Vol. 166, pp. 93—114, 2015 
15 M. Pontani, G. Cecchetti, and P. Teofilatto. 

"Variable-time-domain neighboring optimal guidance 

applied to space trajectories." Acta Astronautica, Vol. 

115, pp. 102-120, 2015 
16 S. A. E. Berge, T. Olsson, G. Pionnier, M. Björk, C. 

Cbasset, T. Nordebäck, M. Rieschel, B. Lübke-

Ossenbeck, and P. Zentgraf, "Advanced AOCS 

design on the first small GEO telecom satellite," 

Proceedings of the 60th International Astronautical 

Congress, Daejon, South Korea, 2009; paper IAC-

09.C1.6.10 
17 A. Garulli, A. Giannitrapani, M. Leomanni, and F. 

Scortecci, "Autonomous low-earth-orbit station-

keeping with electric propulsion," Journal of 

Guidance, Control, and Dynamics, Vol. 34, No. 6, 

pp. 1683–1693, 2011 



70th International Astronautical Congress, Washington D.C. Copyright ©2019 by Mauro Pontani and Fabio Celani.  

Published by the IAF, with permission and released to the IAF to publish in all forms 

IAC-19-C1.8.8         Page 15 of 15 

18 M. Pontani and F. Celani, "Neighboring optimal 

guidance and constrained attitude control applied to 

three-dimensional lunar ascent and orbit injection." 

Acta Astronautica, Vol. 156, pp. 78—91, 2019 
19 M. Pontani and F. Celani, "Variable-time-domain 

neighboring optimal guidance and attitude control for 

low-thrust orbit transfers," 2018 Space Flight 

Mechanics meeting, Orlando, FL, 2018; paper AIAA 

2018-1456 
20 M. Pontani and F. Celani, "A new guidance and 

control architecture for accurate orbit injection," 

Advances in the Astronautical Sciences, Vol. 168, pp. 

4133—4152, 1994; paper AAS 19-305 
21 D. G. Hull, Optimal Control Theory for Applications, 

Springer International Edition, New York, NY, pp. 

199—254, 2003 
22 M. Pontani and B. A. Conway, "Particle swarm 

optimization Applied to Space Trajectories," Journal 

of Guidance, Control, and Dynamics, Vol. 33, No. 5, 

pp. 1429—1441, 2010 
23 M. Pontani and B. A. Conway, "Particle swarm 

optimization applied to impulsive orbital transfers," 

Acta Astronautica, Vol. 74, pp. 141—155, 2012 
24 M. Pontani and B. A. Conway, "Optimal Finite-

Thrust Rendezvous Trajectories Found via Particle 

Swarm Algorithm," Journal of Spacecraft and 

Rockets, Vol. 50, pp. 1222—1234, 2013 
25 M. Pontani, "Particle Swarm Optimization of Ascent 

Trajectories of Multistage Launch Vehicles," Acta 

Astronautica, Vol. 94, No. 2, pp. 852—864, 2014 
26 "A Standardized Lunar Coordinate System for the 

Lunar Reconnaissance Orbiter and Lunar Databases," 

LRO Project and LGCWG White Paper Version 5, 

Goddard Space Flight Center, Greenbelt, MD, 2008 
27 R. H. Battin, An Introduction to the Mathematics and 

Methods of Astrodynamics. AIAA Education Series, 

New York, NY, pp. 448—450, 490—494, 1987 
28 S. Giorgi, "Una Formulazione Caratteristica del 

Metodo di Encke in Vista dell’Applicazione 

Numerica." Scuola di Ingegneria Aerospaziale, 

Rome, Italy, 1964 
29 J. E. Prussing and B. A. Conway, Orbital Mechanics, 

Oxford University Press, New York,  NY, 2013, pp. 

46—50 
30 H. Schaub and J. L. Junkins, Analytical Mechanics of 

Space Systems, AIAA Education Series, Reston, VA, 

pp. 72—78, 95—97, 2003 
31 M. J. Sidi, Spacecraft Dynamics and Control, 

Cambridge University Press, New York, 1997, p. 164 
32 N. A. Chaturvedi, A. K. Sanyal, and N. H. 

McClamroch, "Rigid-Body Attitude Control," IEEE 

Control Systems, Vol. 31, No. 3, pp. 30—51, 2011 


