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Abstract—We study distributed optimization and processing of
subspace-constrained signals in multi-agent networks with sparse
connectivity. We introduce the first optimization framework
based on distributed subspace projections, aimed at minimizing
a network cost function depending on the specific processing
task, while imposing subspace constraints on the final solution.
The proposed method hinges on (sub)gradient optimization tech-
niques while leveraging distributed projections as a mechanism
to enforce subspace constraints in a cooperative and distributed
fashion. Asymptotic convergence rates to optimal solutions of
the problem are established under different assumptions (e.g.,
nondifferentiability, nonconvexity, etc.) on the objective function.
We also introduce an extension of the framework that works
with constant step-sizes, thus enabling faster convergence to
optimal solutions of the optimization problem. Our algorithmic
framework is very flexible and can be customized to a variety
of problems in distributed signal processing. Finally, numerical
tests on synthetic and realistic data illustrate how the proposed
methods compare favorably to existing distributed algorithms.

Index Terms—Distributed Optimization, Signal Processing,
Networks, Subspace Projections, Convergence Analysis.

I. INTRODUCTION

Distributed signal processing aims at performing learning
tasks from data that is naturally distributed over a multi-agent
network having, typically, a sparse topology [1], [2]. Such
inference goals typically arise in multiple real-world scenarios
including, among others, wireless sensor networks [1], [3],
data mining in peer-to-peer networks [4], distributed databases
[5], and mobile edge computing in 5G systems [6]. Common to
these applications is the necessity of performing a completely
decentralized computation/optimization. For instance, when
data are collected/stored over a distributed network, sharing
local information with a central processor is either unfeasible
or not economical/efficient, owing to the large size of the
network and volume of data, time-varying network topology,
energy constraints, and/or privacy issues. Performing learning
in a centralized fashion may raise robustness concerns as
well, since the central processor represents an isolate point of
failure. Due to these reasons, nowadays, the need for fully dis-
tributed inference is recognized as a defining characteristic of
many real-world big data applications [7]. Additional emphasis
is also provided by the Internet-of-Things (IoT) paradigm,
which envisions that several trillions of smart devices will be
connected in the very near future [8].

To be more specific, let us consider a network composed
of N sensors, where the i-th node collects a measurement
y; of the signal value z; at its local geographic position. Let

x = [z1,...,2n]7 be the vector collecting the signal values
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at every node of the network. The gathered measurements
{y:}¥., may be highly unreliable due to observation noise,
presence of outliers, missing data, etc. Improving the reliability
of the individual node is typically unfeasible because of
increased complexity and cost, which are fundamental design
constraints in large scale networks. A way to recover reliability
is to properly fuse the measurements collected over all the
network in order to reach some globally optimal decision. This
is possible if the set of data gathered by the network exhibits
some kind of structure, which is typically the case in many
physical fields of interest, e.g., the distribution of temperatures
or the concentration of a contaminant. In mathematical terms,
this means that the observed signal field belongs to a low-
dimensional subspace, i.e., the vector « can be cast as:

x = Us, (D)

where U is an N x r matrix, with » < N, and s is an
r X 1 column vector. The columns of U are assumed to be
linearly independent and thus constitute a basis spanning the
signal subspace. In many applications, the signal is a smooth
function, which can be very well modeled by choosing the
columns of U as the low frequency components of the Fourier
basis, or low-order polynomials, for example. In practice, the
dimension r of the signal subspace is typically much smaller
than the dimension N of the observation space [9], [10].

In this paper, we consider a broad family of signal pro-
cessing tasks that can be written as instances of the following
subspace-constrained optimization framework:

min f(z;y) )
subject to « € R(U)

where f(-) is the network objective function, which depends
on the observed vector y and on the vector x to be recovered,
and R(U) denotes the range space of the full-column rank
matrix U, i.e., the subspace where x lies. The properties of
f() [e.g., (non)convexity, (non)differentiability] depend on the
specific processing task, as specified in the examples below.
Signal Processing Applications. The framework in (2) sub-
sumes several different signal processing tasks. We provide
next a few instances of applications that fall within (2).

1) Noise reduction via subspace projection: Given noisy
measurements {y;}~, of the signal values {z;}¥,, a fun-
damental task is to “clean” the observations to reduce the
effect of noise. Since the signal belongs to the low-dimensional
subspace R(U), a strong noise reduction may be obtained by
computing the least square estimator for &, which reads as:

z = argmin |y — =3 3)

subject to € R(U).



Problem (3) is clearly an instance of the framework in (2),
and its optimal solution is given by the projection of the ob-

servation vector y = [y1,...,yn]T onto the signal subspace:
= A
2 = Prouyy = U(U U) U”y, (4)
where
-1
Pru) = U(UTU) U’ )

is the operator that projects onto the subspace R(U). If
the additive noise in {y;}}¥, is Gaussian, with zero mean
and variance o2 for all i, the expression (4) represents the
maximum likelihood (ML) estimator of x. Otherwise, if the
noise probability density function (pdf) is unknown, (4) is still
significant, as it represents the so called Best Linear Unbiased
Estimator (BLUE) [11].

2) Maximum likelihood estimation: In general, if the noise
has a known pdf, the ML estimate of « can be found as the
solution of problem:

T = argmax logp(x;y) (6)
x

subject to € R(U)

where p(x;y) is the joint pdf of the observations. Problem (6)
is an instance of (2), and is convex only if the joint pdf is a
log-concave function, otherwise (6) is generally nonconvex. In
some circumstances, we can also exploit the intrinsic structure
of the joint pdf p(x; y), which can be factorized into functions
of subsets of variables [3]. The most simple situation pertains
to the case where the observations are statistically independent,
but we may also consider more general correlation structures
among the variables described by, e.g., Bayes networks or
Markov random fields. This is the case, for example, when
the sensors monitor a field of spatially correlated values, like
a temperature or an atmospheric pressure field.

3) Interpolation: A fundamental task in signal processing
is interpolation, which emerges whenever cost constraints limit
the number of observations that can be taken. Given a vector x,
suppose we observe a subset of samples x;, with i € T, where
T represents the sampling set, whose cardinality is smaller
than the dimension IV of «. The goal is to recover the whole
vector  from this subset of observations. In formulas, suppose
we observe the values:

with d; = 1,if i € T and d; = 0 otherwise. Given the sampled
vector y, the goal is to reconstruct . This is possible if & has
a structure. Suppose x satisfies (1). Combining (1) with (7),
the interpolation task involves the solution of the system of
linear equations

y = DUs, ()

where D = diag(dy,...,dy) is the sampling operator. If
system (8) admits a unique solution, i.e., if rank(DU) =
rank(U) = r, the signal interpolation task can be equivalently
cast as the solution of the following optimization problem:

T = argIr;in ID(y — )3 ©)

subject to € R(U).

Again, (9) can be seen as an instance of (2). The formulation in
(9) is totally general, and also includes interpolation of graph
signals as a particular case. In such circumstance, the basis
U can be chosen as a proper selection of eigenvectors of
Laplacian or adjacency matrices describing the graph signal
frequency support, see, e.g., [12], [13].

4) Outlier rejection via {1 minimization: Let us consider
now the case where a subset C of nodes is strongly corrupted
by noise or damaged. In such a case, we have

Yi =T +qv;, t=1,...,N, (10)

with ¢; = 1 for ¢ € C, and ¢; = 0 otherwise. We also assume
that the noise vector v = {v;}X¥; in (10) is arbitrary but
bounded, i.e., ||v|l1 < oco. The goal in this case is the exact
recovery of the signal x irrespective of noise. This problem is
also known as the Logan’s phenomenon [14]. If the signal
x belongs to a low-dimensional subspace and the indexes
of the noisy samples are known, the solution is simple, as
one could simply discard the noisy measurements and then
running an interpolation method over the noise-free samples.
The challenging situation occurs when the location of the noisy
observations is not known. In such a case, we may resort to
a constrained ¢;-norm minimization, which reads as:

z = (11)

argmin [y — o,
subject to € R(U).

Problem (11) is an instance of (2), and its solution allows
perfect recovery of the bandlimited signal « if the number of
corrupted nodes is not too large, see, e.g., [14].

5) Bandlimited plus sparse signal recovery: In many real
systems, the observed signal is often given by the superposi-
tion of a smooth, or bandlimited, component plus a sparse
component. This is the case, for example, of traffic data
observed over the backbone of large-scale telecommunication
networks, given by the superposition of some unknown “clean”
traffic, which is usually smooth due to network topology-
induced correlations, and traffic anomalies that occur sporadi-
cally over time and space [15]. In such a case, the observation
model is given by:

yi:xi+ai+viv i:]-v'”va (12)

where * = [z1,...,2n]7 represents the bandlimited part,
a = [ay,...,ay]T models the sparse component, and v =
[v1,...,un]T is the additive noise vector. Leveraging the

bandlimitedness property of x and the sparsity of a, the
signal recovery problem can be formulated as the constrained,
regularized least square fitting given by:

@) = agmin Jy— - al® + M|, (13)

subject to € R(U)

with A > 0. Problem (13) is a particular case of (2), where only
one of the two variables (i.e., &) is constrained to lie in the
subspace spanned by the columns of U. Of course, Problem
(13) can be generalized in several ways incorporating, e.g.,
sampling (see Example #3), or adaptivity over time resorting
to recursive least squares (RLS) formulations.



Related Works on Distributed Optimization. In principle,
problem (2) requires that all nodes send their measurements
to a fusion center that solves the corresponding optimization.
Nevertheless, there is an ample literature showing when and
how the problem can be solved in distributed form, where each
node exchanges local information with its neighbors only. To
allow a distributed solution for (2), we need some preliminary
assumption on the objective function. First of all, we can
notice that the objective functions in (3), (9), (11), (13), all
have a separable structure, i.e.,

N
flasy) = filwisvi)- (14)
i=1
The structure (14) is amenable for a distributed solution using
consensus-based optimization algorithms [16]. More specif-
ically, using (1), an iterative algorithm can be implemented
to achieve a consensus on the global vector s. In particular,
denoting with s; the local copy of the global variable s at
node 7, with ¢ = 1,... N, problem (2) can be recast as the
following optimization problem:

N N
msiani(S;yi) = {m}i}g Zfz(szay7) (15)
i=1 Sifi=1 ;1

subject to s; = s; for all 4, j.

This problem can be solved using a consensus optimization
algorithm where, at each iteration, each node exchanges the
current local copy s; with its neighbors. At convergence, every
node will have the same value for vector s;, i.e. s; = s.
Then, exploiting (1) and denoting with %! the i-th row of
matrix U, every node can compute its local component z;
by simply taking x; = @, s. This only requires knowledge, at
each node, of the local vector w;. Distributed solution methods
for convex instances of Problem (15) have been widely studied
in the literature; they are usually either primal (sub)gradient-
based methods or primal-dual schemes. Algorithms belonging
to the former class include: i) consensus-based (sub)gradient
schemes [17]-[19] along with its accelerated versions [20]-
[22]; ii) the (sub)gradient push-method [23]; iii) the dual-
average method [24]; and iv) distributed second-order-based
schemes [25]. Algorithms for adaptation and learning tasks
based on in-network diffusion techniques were proposed in
[26]-[28]. The second class of distributed algorithms is that
of dual-based techniques. Among them, we mention here
only the renowned Alternating Direction Method of Multi-
pliers (ADMM); see [16] for a survey. Distributed ADMM
algorithms tailored for specific machine learning problems
and parameter estimation in sensor networks were proposed
in [29]-[31]. The literature related to nonconvex distributed
optimization is much more scarce, but we may highlight some
important works [32]-[40]. Interestingly, the very recent works
in [38]-[40] moved beyond first order stationarity, giving also
second-order guarantees on the final solution.

Although there are substantial differences between all the
above mentioned approaches, these methods can be generi-
cally abstracted as combinations of local optimization steps
followed by variable exchanges and averaging of information
among neighbors. Since all these methods solve (15) by

learning the r-dimensional parameter s, they typically need
to exchange at least r scalar parameters per iteration (some
implementations require even more exchange of data [16],
[34]). Furthermore, from a complexity point of view, the
simpler (linear) methods require a number of computations
that scales as O(r) [18], [19], [26], whereas ADMM typically
needs to solve an optimization problem at each iteration [if f
is quadratic, ADMM has complexity O(r3)] [16], [31]. Thus,
for consensus-based optimization methods, both computational
complexity and communication burden increases with the
dimension r of the signal subspace.

Contributions. In this paper, differently from all the liter-
ature based on consensus-like approaches, we wish to find a
solution of the general problem (2) using algorithms where
each node, at each iteration, exchanges only a scalar variable
with its neighbors, irrespective of the dimension r of the signal
subspace. Eventually, each node reaches the desired value x;
directly, i.e., without the need of building local copies of vector
s at each node. More specifically, at a first instance, we are
interested in finding solutions of problem (2) using iterative
algorithms that can be expressed in the form

Z wijzj[k] — p[k]O fi(zi[k])

JEN;U{i}

zilk +1] = (16)

where p[k] > 0 is a step-size sequence, Jf;(x;) denotes the
(sub)gradient of f;(z;;y;) and N; is the set of neighbors of
node i. We will term this new method as Distributed Subspace
Projected Optimization (DiSPO). Consensus methods repre-
sent a trivial case of (16) corresponding to the very simple
scenario where the true vector x is constant or, in terms of
(1), = is simply a scalar multiplying the vector 1 of all ones.

The crux of DiSPO is the interplay between distributed
projections and optimization, which enables us to solve (2)
directly in the signal domain so that each node 7 reconstructs
the local value z; that is compliant with the global subspace
constraint * € R(U), without the need of reconstructing s.
This marks a sharp difference with consensus-based methods
where all nodes tend to reach an agreement over the r-
dimensional vector s. Our algorithm is especially suitable for
applications like sensor networks, whose goal is to reconstruct
a spatial field, so that each node has only to retrieve the value
of the filed in its position and not the overall field. Our method
presents also clear advantages with respect to consensus meth-
ods in terms of communication and computations, because it
only requires the exchange of scalar values at each iteration,
instead of vectors of dimension 7, and less computations at
each iteration. This is also corroborated by numerical results
showing that our schemes outperform classical distributed
methods such as distributed gradient descent [18] and ADMM
[16] in terms of practical convergence speed, when applied to
instances of the general formulation in (2). Furthermore, under
mild assumptions, DiSPO is proved to converge in both convex
and nonconvex scenarios. As a second instance of our work,
we introduce an extension of DiSPO that we call EDiSPO,
which is still based on the exchange of scalar values, at each
iteration, and enables the use of a constant step size, which
leads to faster convergence properties. The price paid for the
advantages of our algorithms with respect to consensus-based



approaches is that DiSPO requires a network connectivity
that increases with the dimension of the signal subspace (cf.
Proposition 2); and the weights w;; depend on the signal
subspace, so that they have to be pre-computed and stored
in each node before the iterations start [cf. (22)-(23)].

Part of this work was recently presented in [41]; further-
more, in the same venue, another group of researchers came
up with similar results in a totally independent fashion, see
[42] and the extensions in [43], [44]. The works in [42]-
[44] consider a stochastic setting assuming strongly con-
vex and differentiable cost functions, proposing a diffusion
adaptation algorithm with provable mean-square performance.
Differently from these works, in this paper we consider a
deterministic scenario, which however allows more general
nondifferentiable, nonconvex cost functions, thus proposing an
aggregation plus innovation type of algorithm with provable
convergence properties. In this work we extend our prelimi-
nary results in [41] adding several important contributions (not
contained in [42]-[44]), which can be summarized as:

1) We extend the theory of distributed subspace projection
methods initially proposed in [45] and [46] and we
highlight an interesting interplay between network con-
nectivity and signal subspace dimension; more specifi-
cally, we derive necessary conditions showing that the
connectivity of the network has to increase with the
dimension r of the signal subspace to guarantee the
feasibility of the design problem:;

2) Hinging on the initial results of [41], we develop DiSPO,
the first algorithmic framework based on distributed
subspace projections, aimed at solving the class of
problems (2) in a distributed fashion;

3) We provide a detailed convergence analysis for DiSPO,
which proves its convergent behavior for different prop-
erties [e.g., (non)differentiability, (non)convexity, etc.]
of the objective function in (2), giving also convergence
rates to the optimal solutions;

4) We propose an Exact DiSPO (EDiSPO) method that pro-
vides exact (and fast) convergence to stationary solutions
of (2) by exploiting gradient information at two previous
instants, while using constant step-size rules;

5) We test the proposed DiSPO/EDiSPO frameworks over
realistic data generated using the ray-tracing method of
the Wireless InSite Prediction Software [47], and over
the real Abilene IP traffic dataset.

QOutline. The paper is organized as follows. Section II de-
scribes the main theoretical aspects of distributed projections
over networks, including optimal design of sparse projec-
tion matrices and necessary conditions for the optimization
problem feasibility. Section III contains the main theoretical
results of the paper: we start with a constructive description
of the DiSPO algorithm; then, we introduce formally its
convergence properties (cf. Sec. III.A); finally, we extend
DiSPO to EDiSPO, which enables exact convergence to sta-
tionary solutions of (2) using constant step-sizes (cf. IIL.B).
Section IV assesses the performance of the proposed schemes
numerically and compares our methods with other distributed
algorithms, considering two practical problems in distributed

signal processing. Finally, Section V draws some conclusions.
Notation. Scalar, vector, and matrix variables are indicated by
plain letters a, bold lowercase letters a, and bold uppercase
letters A, respectively. a;; is the (i, j)-th element of A, I is
the identity matrix, and 1 (Op) is the N x 1 vector of all
ones (zeros). The rank of a matrix is denoted by rank(A); the
matrix spectral norm is given by || A |2 or by the spectral radius
p(A). R(A) and Null(A) denote the range and the nullspace
of matrix A, respectively. f(x;y) denotes a function of the
variable x, with y being a given parameter. Other notation is
defined along the paper, whenever it is needed.

II. DISTRIBUTED SUBSPACE PROJECTIONS

In this section we recall and extend the theory related to
distributed subspace projections [45], [46], which will form
the basic block for the development of the proposed distributed
methods. The operation performed in (4) corresponds to the
orthogonal projection of the observation vector y onto the
subspace spanned by the columns of U. Assuming, without
any loss of generality (w.l.0.g.), the columns of U to be
orthonormal, the projector simplifies in

z = UU'y = Pruny. (17)

The aim of this section is to set up a distributed procedure
where each node initializes a state variable with the local
measurement, let us say x;[0] = y;, and then it evolves by
interacting with nearby nodes in order to compute (17). The
nodes are interconnected through a communication network
described by the weight matrix W = {w;;};;_, € RV*¥,
whose sparsity pattern describes its topology, i.e., w;; = 0
if nodes ¢ and j do not share a link. Then, w;; # 0 if
j € N; U{i}, and w;; = 0 otherwise. Denoting by x[k] the
N-size state vector containing the states of all the nodes at
iteration k, we let the network state evolve according to the
following dynamical system:

xzlk+1] = Welk], with z[0] =y. (18)

Clearly, (18) is a distributed procedure because, thanks to the
sparsity of W, at each iteration each node interacts (directly)
only with its neighborhood. Useful distributed procedures for
filtering over graphs were also recently proposed in [48]-[50].
Now, given the interaction mechanism (18), our problem is
twofold: 1) guarantee that system (18) converges to the desired
vector (17); 2) find the sparse matrix W, under a topological
constraint, so that the convergence time is minimized. We will
analyze these two key points in the following subsections.

A. Convergence Properties
The dynamical system (18) converges to the desired orthog-

onal projection of the observation vector y onto R(U), for any
given y € RY, if and only if

lim z[k] = lim Wry = Pru)y, (19
k—o0 k—o0
or, equivalently,
lim W* = Pr ). (20)

k—o0



Resorting to basic algebraic properties of discrete-time sys-
tems, it is possible to derive immediately some features
that matrix W has to satisfy in order to guarantee (20), as
illustrated in the following proposition.

Proposition 1: For any non-null vector y € RY, the
dynamical system (18) admits a unique globally stable solution
given by Pr )y if and only if:

cn WPrw = Prw)
(C2) PruyW = Pr)
(C3) p(W —=Pr)) <8 <1

with p(-) denoting the spectral radius operator.
Proof. Sufficiency: From (18), we have

=14~ Preoyyl < W~ Prg iyl
W = Prew)* el
9 (p(W — PR(U)))k||y||2
where in (a) we exploited (19) and the Cauchy-Schwartz
inequality; in (b) we exploited the fact that, under (C1) and
(C2), we have W* — Pr 5y = (W — Pr(u))¥; finally, (c)
follows from the fact that the ¢5 norm of a Hermitian matrix
coincides with its spectral radius. From (21), if (C3) holds, for
any finite vector y € RY, the error x[k] — Pru)y vanishes
asymptotically as k& — oo. Necessity: (Cl) is necessary
to guarantee that Pr )y is an invariant quantity for the
dynamical system (18), i.e., during its evolution (18) keeps
the component Pr )y of y unaltered. (C2) is necessary to
make Pr )y a fixed point of matrix W and thus a potential
accumulation point for {x[k]}g. Thus, if y is non-null and
system (18) converges, (C1) and (C2) are necessary conditions
to converge to Pru)y. Finally, (C3) is necessary to have
convergence to the subspace R(U), since it imposes that all
the modes associated to the eigenvectors orthogonal to R(U)
be asymptotically vanishing. |

21

As a final remark, conditions (C1)-(C3) contain, as a special
case, the convergence conditions of the average consensus
algorithm, when r = 1 and U = ﬁlN. In such a case, (C1)-
(C3) can be restated as: the graph associated to the network
described by W must be strongly connected and balanced.

B. Design of the Weight Matrix

In this section we formulate an optimization problem to
design a weight matrix W = {w;},_;, € RY*N that
asymptotically projects a vector onto the desired subspace
R(U) [i.e., (20) holds] with maximum convergence rate, while
having a sparsity pattern imposed by a given communication
graph G = (V,€), where V and £ denote the vertex and
edge sets, respectively. This problem was already tackled in
[45], where the same design objective considered here was
pursued, but assuming a particular structure of the weight
matrix given by W = I — ¢L. The method proposed in
[45] proceeded by formulating a nonconvex problem aimed
at jointly optimizing the parameter ¢ and matrix L. Here, we
generalize the approach in [45], considering matrices W not
necessarily adhering to the previous model. Thus, following

the approach of [51], but extending it to enable general
subspace projections, we consider the optimization problem:

min p(W —Prwuy))

subject to  WPr ) = Pru) (22)

wW=w"
p(W —Pr)) < <1
w;; =0 forall (4,7) ¢ €.

As shown in (21), the minimization of the objective function in
(22) aims at maximizing the convergence rate of the distributed
subspace projection operator. The first three constraints in (22)
impose the conditions (C1), (C2) and (C3) on the symmetric
matrix W, in order to guarantee convergence to the desired
subspace. Finally, given the set £ of edges of the commu-
nication graph, the last constraint in (22) imposes a sparsity
pattern to matrix W that reflects the network topology. Notice
that, differently from [45], problem (22) is convex and the
weight matrix does not require to be built using the model
W = I—¢L. In fact, since p(W —Pr(u)) is a convex function
of W [16], it is easy to check convexity of (22), which can
be equivalently recast as a semidefinite program (SDP) by
introducing a scalar variable + to bound p(W — Pr (), as:

S
subject to  —I X W —Pry) 211
W =
Prw) = Pr() 23)
wW=w" 2w
0<~y<pB<1

w;; =0 forall (4,5) ¢ €&

where the symbol =< denotes matrix inequality, i.e., X <Y
means Y — X is positive semidefinite. Thus, the global optimal
solution of (23) can be found efficiently using standard SDP
solvers, which are very efficient at least for small or medium
size problems [52]. Finally, since W € RV*¥ is a symmetric
matrix, one can resort to its half-vectorization form, i.e.,
w = vech(W) € RN(N+1/2 (which contains only the lower
triangular part of W), and recast problem (23) in terms of w,
thus removing redundant unknowns due to symmetry.

Necessary conditions for feasibility of V. In what follows,
we derive necessary conditions for the existence of a solution
of problem (23). We start by recasting the set W in (23) as:

(@) p(W—=Pruy) <p<1
(b) WPR(U) = PR(U)
(c) W=wWT"

(d) w;; =0 forall (i,5) ¢ E.
Now, following the arguments in Appendix A and letting K =

|€| be the number of edges in the graph, conditions (b)-(d) in
(24) can be rewritten in the following compact form:

Fz=0b,

W= (24)

(25)

where z € RVTX is the vector of variables collecting the
non-null elements of W; whereas b = vec(U) € RN,



F 2 BME e RVXWHK) with B £ U @ Iy,

M € RN XN(N+1)/2 peing the duplication matrix, and
E ¢ RVWHD/2xX(N+K) haying on each column all zeros
entries, except for the row index corresponding to the i-th
non-null element of w (which is set equal to 1) (cf. Appendix
A). Let also define F = BME € RV-"Nx(N+K) = with
B 2 U? @1y, where U; € RV*N=7 has columns that span
the subspace orthogonal to R(U) (cf. Appendix B). Then,
resorting to basic theory for linear systems of equations [53],
in the following proposition, we state necessary conditions for
the feasibility of W.

Proposition 2: Given the optimization set W in (24), the
following statements hold true:

i) The set of possible solutions is given by W =1 — L,
where L is any (non-trivial) matrix whose vectorized
form £ is such that F€ = 0;

ii) W is feasible if the following necessary conditions are
both satisfied:

rank(F) < N + K and rank(F) = N + K; (26)
iii) if rank(F) = rN, (26) implies that the average node

degree d := 2K /N has to respect the inequality

d>2(r—1).

Proof. See Appendix B. |

The previous proposition, although providing only necessary
conditions for the set WV to be feasible, unveils an interesting
interplay between signal subspace dimension and network
connectivity: It shows that the average degree has to increase
with the dimension of the signal subspace.

IITI. DISTRIBUTED SUBSPACE PROJECTED OPTIMIZATION

In this section, we derive a distributed solution method for
the class of problems in (2). To this end, letting x[k] be the
guess of variable x at time k, a possible starting point might
be to implement a (centralized) projected gradient descent
algorithm to solve (2), which reads as:

— Pru) [@lk] — ulk]of (z[k))],

where u[k] > 0 is a step-size sequence, and O f (x) denotes the
(sub)gradient of f(x;y)". The straightforward implementation
of (27) requires a centralized mechanism. The challenging
question now is how to implement (27) using a decentralized
approach, where each node does not have access to the full
matrix U and it can only share information with its neighbors.
To find a distributed solution of (2), we exploit the convergence
properties of the projection matrix W that we designed in the
previous section. In particular, note that, from conditions (C1)
and (C2), the constraint € R(U) in (2) can be equivalently
recast as @ € Null(I — W), or, equivalently, (I — W)x = 0.
Then, to derive a distributed implementation, we proceed as in
penalty optimization methods [54], converting the constrained

[k + 1] 27

To simplify the notation, from now on we omit the dependency of Of
from the known vector parameter y.

Algorithm 1: Distributed Subspace Projected Optimization

Data: z,[0] chosen at random for all i; {w;;};; satisfying
(C1)-(C3); step-size sequence {u[k]}r. Then, for each time
k >0 and for each node ¢ = 1,..., N, repeat:

S wiy k] — (k0 i lk])

JEN;U{i}

ik +1] = (30)

optimization in (2) into a sequence of penalized unconstrained
problems, which at time k write as:2
1

mmin flx;y) + 2l xT(1- W)z (28)
where {p[k]}x is a positive non-increasing sequence of scalar
parameters, which helps us to force the constraint &
Null(I — W), as k — oo. In our implementation, at each
iteration k, we use one step of (sub)gradient algorithm applied
to (28), where {u[k]}x takes the role of a step-size sequence,
thus obtaining the following recursive rule:

@[k +1] = Walk] — u[k|0f (x[k]).

Now, assuming the objective function to be separable as
in (14), each element of the (sub)gradient in (29) depends
only on its corresponding variable, i.e., Of(xz[k];y) =
[0f1(z1[k]), ..., 0fn(zn[k])]T. Exploiting this property and,
thanks to the sparsity of matrix W, the recursion (29) is
amenable for the distributed implementation illustrated in
Algorithm 1, where each node interacts (directly) only with
its neighbors. From now on, we shall refer to Algorithm 1 as
Distributed Subspace Projected Optimization (DiSPO). DiSPO
requires that each node ¢ combines its local estimate x;[k]
with those of its spatial neighbors, i.e., {z;[k]};en;, using the
weighting coefficients {w;;}. Then, (sub)gradient information
of the local loss function is exploited in order to drive the algo-
rithm toward the optimal solution of (2). Algorithm 1 has very
low complexity: it requires only |A;|+1 scalar multiplications
and sums per iteration. From a communication point of view,
each node needs to exchange only one scalar parameter with its
neighbors per iteration. As previously mentioned, this makes
a sharp difference with respect to consensus-based methods,
whose per-node computational and communication burdens
typically increase with the dimension 7 of the signal subspace.
This improvement is obtained thanks to the exploitation of in-
network subspace projections, which represent the building
block of the proposed DiSPO algorithm.

(29)

A. Convergence Analysis

In this section, we illustrate the convergence properties of
the proposed DiSPO Algorithm. Our goal is to develop an
algorithm that converges to stationary solutions of Problem (2)
while being implementable in the above distributed setting.

Proposition 3: A point * € R(U) is a stationary solution
of Problem (2) if a (sub)gradient 0f(x*) exists such that

2If (C1)-(C3) hold, p(W) = 1 and T — W is positive semidefinite.



Proof. From the minimum principle, any stationary solution
x* of (2) must satisfy

x* = Pru)lz” — df(z")].

Since Pr(u) is a matrix multiplication and Pru)z* = z*,
equation (32) leads immediately to (31). |

(32)

Let S be the set of stationary solutions of (2). We con-
sider the following assumptions on problem (2), which will
characterize the solution set S .

Assumption A [On function f in (2)]: f is continuous and
it satisfies a proper combination of the following properties,
where (A1-1) and (A1-2) have to be considered as alternative,
i.e., f satisfies either (Al-1) or (A1-2). (A2) can be used in
combination with (Al-1) or (A1-2) [cf. Theorems 4 and 5].
(A3) holds true in any case.

(Al-1) f is a nondifferentiable, convex function;
(A1-2) f is a differentiable, (possibly) nonconvex function,
with Lipschitz continuous gradient, i.e.,

[0f(x) — 0f(y)|| < Ll —yl, forall z, y;

(A2) f has bounded (sub)gradients, i.e., there exists G > 0
such that ||0f(x)| < G for all x;
(A3) f is proper (i.e., not everywhere infinite) and coer-
cive, i.e., lim f(x) = +oo.
||| —o0
Assumption A is standard and satisfied by many practical
problems. Under (Al-1), S is the set of globally optimal
solutions of (2); otherwise, if (Al1-2) holds, S is the set
of stationary points of (2). (A2) is a technical assumption
typically used in several papers to prove convergence of
distributed optimization algorithms, see, e.g., [17]-[19], [33],
[34], [36]. Assumption (A3), together with the continuity of
f, guarantees the existence of a global minimizer of problem
(2). Finally, in this paper, we consider two alternative choices
for the step-size sequence {u[k]}y in Algorithm 1, which are
illustrated in the following assumption.

Assumption B [On the step-size]: The step-size sequence
{p[k]} is chosen as:

(B1) a constant, i.e., u[k] = p > 0 for all k;
(B2) a diminishing sequence, see, e.g., [55], chosen such
that p[k] > 0, for all k,

oo

ulk] = oo and Zu[k]Q < 0.
k=0 k=0

We are now ready to illustrate the convergence properties of
DiSPO, which are summarized in the two following Theorems.

Theorem 4: Let {x[k]}; be the sequence generated by
Algorithm 1, and {Z[k]}, £ {Pr(u)z[k]}x be its projection
onto the subspace R(U); let also {x [k]}r = {x[k] —T[k]}-
Suppose that conditions (A2), (A3) and (C1)-(C3) hold. Then,
the following results hold.

(a) [subspace projection]: Under (B1), the se-
quence {x [k]} satisfies:

Jim [l k][ = O(); (33)

if (B2) holds, the sequence {x[k]}, asymptotically
converges to the subspace R(U), i.e.,

lim ||z [k]|| = 0; (34)

k—o0

(b) [Convergence for nondifferentiable
convex functions]: Under (Al-1), let x* € S
be a a global optimum of (2); let f* = f(x*) and

fbest[k] — 7j1nf kf(:z:[n]) Under (B1), we have:
2,2
fbest[k] — < <|a:[0} —x*|? + %(k +1)
2l g, )

and, consequently,

lim fP ] — £ = Ou),

k—o00

(36)

with convergence rate O (#), under (B2), we get:

k+1
Jim foestik] = f; (37)
. . 1 .
Finally, if plk] = \/ﬁ’ we obtain:
2(9
Cy + Mlog(k +1)
Frest k] — fr < , (38)

vk+1

where C; < oo is a given constant, i.e., (37) hold
log(k-+1)

with a convergence rate O ( )

Proof. See Appendix D. |

The next Theorem presents the results for the differentiable,
(possibly) nonconvex case. To this aim, let us introduce the
Lyapunov potential function [cf. (28)]:

1
(@) = fl@y) + 5 2 T-W)e, (39)
and the performance metric
glk] = 0f @[K]) 3. o, (40)

which quantifies proximity to a stationary solution of (2) [cf.
(31)]. Also, let g***![k] = _ilnf . g[n]. The eigenvalues of W

are ordered as 1 = A\ (W) > )\Q(W) > ... > An(W) > -1

Theorem 5: [Convergence for differentiable
nonconvex functions].Suppose that conditions (Al-2),
(A3), and (C1)-(C3) hold. Then, the following results hold. If
0<pu< L1+ Ay(W)), the sequence {x[k]}) converges
to a stationary point of (39), i.e.,

lim o8J(x[k]) =0. 41)
k—o0
Let also (A2) hold true. Then, under (B1), we have:
_ LG||x, [0 L
et < (saiop + ZEEEII L 2k gy
LG?1? 1
k+1)) —— 42



and, consequently,

khm g"*t k] = O(p), (43)
—00
with convergence rate O ( i +1> if ulk] = \/klﬁ’ we get:
2(3 —
Cy+ wmg(k +1)
gbest[k] S ( _k/B—z - , (44)

where C; < oo is a given constant, i.e., hm g**'k] = 0

with a convergence rate O <1°g(k+1 ) ﬁnally, if (B2) holds,

lim g[k] =0, (45)
k—o00

i.e., {ZT[k]}x converges to a stationary solution of (2).

Proof. See Appendix E. |

Remark: Interestingly, the convergence rates obtained for the
convex and nonconvex cases have very similar expressions,
which depend on the network topology, the subspace constraint
R(U), the properties of the objective function, and the adopted
step-size [cf. (35) with (42), and (38) with (44)]. To the best
of our knowledge, this is a novel result that does not have
a direct counterpart in the literature of distributed consensus
optimization, see, e.g., [36, Table 1]. In general, using a
fixed step-size, DiSPO converges to a point in the O(u)-
neighborhood of a solution to (2) [cf. (43)]. On the other hand,
properly letting p[k] to vanish asymptotically [cf. (B2)], it is
possible to enable exact convergence, i.e., {x[k]}) converges
to the exact solution [cf. (34), (45)]. However, reducing p[k]
causes slower convergence, as it will be shown numerically in
Section IV. In the next section, we will show how to modify
DiSPO to achieve exact convergence using constant step-sizes.

B. Exact Distributed Subspace Projected Optimization

As illustrated in Theorem 5, [cf. (41)], with a fixed (and
sufficiently small) step-size, DiSPO has inexact convergence,
i.e., the sequence {x[k]} converges to the set of stationary
points of the Lyapunov function J in (39), which in general
does not coincide with the solution set S* of (2). To see this,
let °° be the limit of {x[k]} as k — oo, and consider

0J (™) =0f (™) + (I - W)x™.

Left multiplying (46) by Pz (u), since Prwu)(I - W) = 0,
we obtain:

(46)

Pru)of(x “47)

which is the optimality condition of problem (2) stated in
Proposition 3 [cf. (31)]. However, since for fixed step-sizes
> is not guaranteed to belong to R(U) [cf. (33)], condition
(47) alone does not guarantee optimality of x>

In the sequel, proceeding as in [21], we will modify the
DiSPO method in order to guarantee exact convergence also
when using a constant step-size. Let us consider the DiSPO
updating rule over two consecutive iterations:

xlk+2) = Walk+ 1] — pof(z[k + 1))
[k + 1] = W alk] — pdf (k)

OO):O7

(48)
(49)

Algorithm 2: Exact Distributed Subspace Projected
Optimization

Data: z;[0] chosen at random for all i; {w;;};; satisfying
(C1~(C3); {w;;}i,; as in (50); (small) step-size p > 0; set

Z w”xj — 0 fi(x;[0])

JEN:U{i}

for all 7. Then, for each time k > 1 and for each node i =
., IN, repeat:

zilk+2 =mk+ 1+ Y wyzlk+1]

JEN;U{i}
= > Wikl - plofi(xilk +1]) -
JEN;U{i}

(52)

Ofi(zilk])]

where (48) uses the mixing matrix W, while (49) uses

I+ W
Wo -

(50)

The Exact Distributed Subspace Optimization (EDiSPO) rule
is obtained subtracting (49) from (48):

z[k+2) = (I+W)z[k+1] — Walk]
— u[0f (x[k +1]) — O f (x[k])].

Due to the sparsity of matrices W and W and the separability
of function f [cf. (14)], the EDiSPO recursion (51) enjoys the
distributed implementation illustrated in Algorithm 2. EDiSPO
requires that each node ¢ combines its local estimate with
those of its spatial neighbors at two consecutive times k + 1
and k using a different set of weights, i.e., {w;;};; and
{w;; } . respectively. Then, the difference of (sub)gradient
information of the local loss function at two consecutive
times is exploited in order to enable exact convergence of
the algorithm toward the optimal solution of (2). Algorithm 2
has very low complexity: it requires only 2(JA;| + 1) scalar
multiplications and sums per iteration. From a communication
point of view, each node needs to exchange only one scalar
parameter with its neighbors per iteration.

On the convergence of EDiSPO. We will now illustrate the
exact convergence property of EDiSPO by showing that, if
Algorithm 2 converges, then its limit point must be a stationary
solution of problem (2). To this end, let us assume that {x[k]}
generated by Algorithm 2 converges to x® as k — oco. Let
us also assume that df is continuous. Then, considering the
EDiSPO rule (51) at convergence, using (50), and multiplying
by 2 both sides of the equation, we have:

2(W—-W)z™ = (I-W)

(S

> = 0. (53)

Therefore, °° € Null(I — W) or, equivalently, > € R(U)
[cf. (C1) and (C2)]. Now, using (51) and then applying
telescopic cancelation, we obtain:

[k +2] = Walk + 1] — pof(xlk + 1))

k
+ D (W = W)zfl]. (54)
=0
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Fig. 1: Normalized Mean Squared Error versus iteration index,
for different selection of the step-size.

At convergence, since lim x[k] = °° and Wz™ = x>,
k— o0

from (54) we get:

k

pof () = = (W — W)z[i].

=0

(55)

Left multiplying by Pru) on botlifides of (55), and exploit-
ing (50) and (C2), since Pr)(W — W) = 1Pru(I —
W) = 0, we finally obtain Pru)df(x>) = 0, which is the
optimality condition of problem (2) stated in Proposition 1. To
summarize, if Null(I — W) = R(U) and W is chosen as in
(50), if the sequence generated by Algorithm 2 converges to a
point >, then > belongs to R(U) and is a stationary point
of problem (2). A detailed convergence analysis of EDiSPO is
beyond the aim of this paper and will be considered in a future
publication. Nevertheless, the excellent convergence properties
of EDiSPO will be illustrated numerically in Sec. IV.

IV. APPLICATIONS AND NUMERICAL RESULTS

In this section, we customize the proposed framework
to specific distributed signal processing tasks, encompassing
signal recovery in the presence of strong impulsive noise and
interpolation of graph signals. Numerical results confirm the
theoretical findings, and illustrate that DiSPO and EDiSPO
compare favorably with respect to other distributed schemes.
The Matlab codes used for simulations are available online 3.
Example #1 - Distributed Signal Recovery in the Presence
of Outliers. Let us consider a sensor network composed of
N = 60 nodes randomly scattered over a 2D domain. The
observation is composed of a smooth signal x°, modeled
as in (1), where the columns of U are the 2D Fourier
low frequency components (we used » = 5 components),
plus a very strong impulsive noise that affects a (randomly
chosen) subset of |C| = 20 nodes. The signal-to-noise ratio
in the noisy nodes is set equal to -20 dB, whereas in the
other nodes the noise is negligible. Under such a setting,
the algorithm in (11) is able to recover the useful signal
perfectly, irrespective of the noise power, using a centralized

3https://sites.google.com/site/paolodilorenzohp/publications
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Fig. 2: EM field generated by one radio transmitter over a
small area in Ottawa. Gray spots represent buildings.

approach [14], [56]. Here, we provide a distributed solution,
exploiting the theory developed before, based only on the
exchange of scalar data between neighbor nodes. We consider
a communication topology built using a small world random
graph model, having an average node degree equal to 10, and a
rewiring probability given by 0.2. The graph weighting matrix
W has been selected by solving (23) with 8 = 0.99. In Fig.
1, we illustrate the behavior of the normalized mean square
error (NMSE), i.e., ||z[k] — x°||*/||x°||*> averaged over 100
independent realizations, versus the iteration index, obtained
by the DiSPO algorithm considering different choices for the
step-size sequence {u[k]}r. As we can notice from Fig. 1,
using a constant step-size, the algorithm converges to a final
solution with an error that decreases as we select a smaller
step value, even though this comes at the cost of a slower
convergence time. On the other hand, if we use the diminishing
step-size rule p[k] = 0.1/k [which satisfies (B2)], from Fig. 1
we can observe how the algorithm keeps learning over time,
thus asymptotically converging to the true signal x°, which
represents the optimal solution of the centralized problem (11).
These numerical results are in line with the theoretical findings
of Theorem 4 in (36) and (37), respectively.

Example #2 - Distributed Interpolation of Graph Signals.
In this example, we considered the electromagnetic (EM) field
generated using the ray-tracing tool of the Wireless InSite
Prediction Software [47] applied to a small area of Ottawa,
Canada, illuminated by one radio base station. The resulting
EM spatial power distribution (in dBm) is illustrated in Fig.
2. We also assume the presence of N = 76 sensor nodes that
are scattered over the area in the way depicted in Fig. 2. The
goal of the sensor network is to recover the intensity of the
EM signal at each node via interpolation from a small number
of collected measurements. To this aim, we exploit the theory
of sampling and recovery of signals defined over graphs [13].
Thus, considering the sensor nodes as vertices of a graph,
we build edges that encode similarities among the signals at
different locations, i.e., the weight a;; associated with the 4j-
th element of the adjacency matrix of the graph is given by
wi; = exp{—[(yi —y;)?]/(20%)}, with & = 5, where y; is the
measurement collected at node 7. From now on, we will refer
to this graph as the processing graph. The EM signal turns out
to be very smooth over the processing graph. In fact, about
99.9% of the signal energy is concentrated over the first four
frequencies of the Graph Fourier Transform (GFT) computed



=l DiSPO

+ EDISPO

=©= ATC Diffusion
ADMM

== = Centralized NMSE

L RN ot

‘ ‘
0 500 1000 1500 2000
Number of scalars exchanged per node

Normalized Mean Squared Error (dB)

Fig. 3: Normalized mean squared error versus number of
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using the eigenvectors of the Laplacian matrix [12]. Then, the
network goal translates in solving the optimization problem
in (9), where U is composed of the first four eigenvectors
of the Laplacian matrix of the processing graph, whereas
the sampling operator D is built selecting only four samples
according to the MinPinv strategy proposed in [13]. The four
selected nodes are depicted as stars in Fig. 2.

To find a distributed solution to problem (9), we set up
a communication graph among the nodes using a k-nearest
neighbor graph, with ¥ = 15. In Fig. 3, we illustrate the
behavior of the NMSE, i.e., E{||z[k] — z°||?/|=°|*}, with
x° denoting the true graph signal, versus the number of
scalars exchanged per iteration by each node, considering four
different algorithms: the DiSPO algorithm in (30); the ATC
diffusion algorithm proposed in [57] for distributed learning
of graph signals; the ADMM algorithm from [31] aimed to
solve (9) recast as a consensus optimization problem [cf. (15)];
the EDiSPO strategy in (52). The curves are averaged over
100 independent simulations, considering an additive Gaussian
observation noise with variance equal to -50 dBm. In our
simulations we have observed that other distributed gradient-
based consensus strategies have similar performance to ATC
diffusion, and we did not report the results. Furthermore, we
have chosen the ADMM algorithm from [31], among all the
available distributed ADMM implementations, because it is
the one with less exchange of parameters among nodes per
iteration. The parameters of the selected four algorithms are
described in the sequel. The weight matrix W of DiSPO and
EDiSPO algorithms was selected solving (23) with 3 = 0.99.
The step-sizes for DiSPO and EDiSPO have been set equal to
p = 0.43 and p = 1.1, respectively. For the ATC Diffusion
algorithm we used a Metropolis weighting matrix and a con-
stant step-size equal to 15. The ADMM implementation used
a regularization parameter ¢ = 1072, The rationale underlying
our parameter selection has been the maximization of the
empirical convergence speed for all methods. In Fig. 3, the
horizontal dashed line represents the optimal NMSE obtained
solving problem (9) in a centralized fashion, as a benchmark
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Fig. 4: Normalized mean squared error versus iteration index,
for different network size IV and average degree d.
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Fig. 5: Learning rate versus network size, for different values
of average degree d.

to evaluate the performance of distributed approaches. As
we can notice from Fig. 3, all algorithms converge to the
centralized solution. For DiSPO, this comes from (41), when
we add the strongly convex structure of the objective in (9).
Furthermore, DiSPO largely outperforms the ATC diffusion
method from [57], while showing similar performance with
ADMM. Remarkably, DiSPO achieves such performance with
a very low complexity per iteration (cf. Algorithm 1), which
is much smaller than O(r?®) required by ADMM in such
implementation. Finally, we can notice how EDiSPO largely
outperforms all other methods, while having a computational
complexity per iteration similar to the DiSPO algorithm. This
very fast convergence behavior is due to the exploitation of
gradient information at two previous steps, which leads to the
exact convergence of the method.

Example #3 - The effect of network size and connectivity.
In this paragraph, we illustrate the scalability of the proposed
methods with respect to network size and connectivity. The
observation is composed of a smooth signal x°, modeled
as in (7), where the columns of U are the 2D Fourier low
frequency components (we used r = 4 components); the
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Fig. 6: Temporal behavior of the true signal, and the estimated nominal and anomalous components, considering a link with

no anomalies (left) and one with anomalies (right).

sampling operator D is chosen according to the MinPinv
strategy proposed in [13], where the number of samples is
equal to the size r of the subspace spanned by the columns
of U. Under such a setting, the solution of (9) enables
to interpolate exactly x° over the unobserved values. The
network composed of /N nodes randomly scattered over a 2D
domain. To find a distributed solution to problem (9), we set up
a communication graph among the nodes using a small world
random graph model, having an average node degree equal to
d, and a rewiring probability given by 0.25. Thus, in Fig. 4 we
illustrate the behavior of the NMSE achieved by the DiSPO
algorithm versus the iteration index, for different network sizes
N and average degrees d. The curves are averaged over 100
independent graph realizations; and the constant step-size is
chosen empirically to maximize the learning rate for each pair
N and d. As we can notice from Fig. 4, the algorithm shows
linear convergence. As expected, fixing d, the convergence
speed diminishes by increasing the network size; whereas,
interestingly, fixing N, the algorithm shows faster behavior by
increasing the average connectivity d. This behavior is further
illustrated in Fig. 5, which illustrates the learning rate (i.e., the
absolute value of the slope of the lines in Fig. 4) of the DiSPO
algorithm, averaged over 100 independent graph realizations,
with respect to the network size NV, for different values of d. As
we can notice, from Fig. 5, the learning rate tends to diminish
by increasing V; a fact that can be properly counteracted by
increasing the average network connectivity.

Example #4 - Tracking and Anomalography of Traffic
Data in IP Networks. We consider the Abilene dataset [58],
which contains aggregate flow of traffic data (i.e., the link
counts) based on measurements of origin-destination (OD)
flows on the Abilene Internet 2 network. Overall, the network
is composed of 11 nodes, 41 links, and 121 OD flows. In
this case, the observed process is defined over the edges
of the graph, and is composed by the superposition of a
smooth component (i.e., the nominal traffic data) and a sparse

component (i.e., the anomalies) as in (12). Thus, the network
goal is to distributively learn, track, and separate the two
components of the (partially) observed graph process, by
solving an online version of problem (13) with streaming
data. We assume that the nominal graph process can be
considered (approximatively) band-limited over the first six
eigenvectors of the edge Laplacian matrix. The communication
graph was selected as a k-nearest neighbor graph, with & = 12,
and the weight matrix W was selected solving (22) with
B = 0.99. Then, we apply the proposed EDiSPO method
(with o = 0.01), assuming that each link is sampled at each
time with a probability p; = 0.3, for all < € £. In Fig. 6,
we illustrate the temporal behavior of the true signal, and
the estimated nominal and anomalous components, over two
links of the network, considering absence of anomalies on the
left side, and presence of anomalies on the right side. As we
can notice from Fig. 6, the method is capable to recover and
track the dynamic signal in a totally distributed fashion, while
separating efficiently the nominal and anomalous components.

V. CONCLUSIONS

In this paper we have introduced DiSPO, a novel algorithmic
framework for distributed optimization and processing of
subspace-constrained signals in multi-agent networks. DiSPO
exploits (sub)gradient optimization techniques while leverag-
ing distributed projections as a mechanism to enforce subspace
constraints in a cooperative and distributed fashion. A detailed
theoretical analysis has been carried out to illustrate the
convergence properties of DiSPO, and to pave the way towards
the EDiSPO strategy, which enables faster convergence to the
optimal solutions. Then, we have customized our framework to
specific signal processing tasks over networks, thus illustrating
how the proposed methods compare favorably with respect
to existing distributed algorithms. The key feature of the
proposed methods is that the nodes need to exchange only a
scalar parameter with their neighbors, irrespective of the size



of the unknown parameter vector to be estimated. The price
paid for this advantage is that the number of neighbors tends
to increase with the size of the underlying parameter vector.
In this work, we have still assumed a centralized computation
of the weights w;; to be sent to all nodes to enable their
distributed computations. However, this is the only information
to be sent to all nodes. The nodes do not need to know the
dictionary U. A future interesting development will be to
derive decentralized mechanisms to get the mixing matrix W.

APPENDIX A
LINEAR SYSTEM ASSOCIATED WITH (b)—(d) IN (24)

Let us start from equation (b) in (24). Right multiplying
both sides by U, and using the equality U7 U =1I,., we get

WU =U. (56)

Since from (¢) W € RV*¥ is symmetric, we can exploit its
half-vectorization form, i.e., w = vech(W), which contains
only the N (N +1)/2 entries on and below the main diagonal
of W. In particular, defining M € RN’XN(N+1)/2 5 the
duplication matrix, we have

vec(W) = Mw. (57)
Now, from (56) and (57), we obtain:
vec(WU) = (UT @ Iy)vec(W) = BMw,  (58)

where B 2 UT @ Iy. We now incorporate condition (d) in
(24). Note that, letting K = |€| be the number of edges in
the communication graph, the number of nonzero elements
in w reduces to N + K, considering also the N non-zero
diagonal elements of W. Hence, introducing the matrix E €
RNN+1/2x(N+K) "having on each column all zeros entries,
except for the row index corresponding to the ¢-th non-null

element of w (which is set equal to 1), we obtain:
w = Ez, (59

where z € RN*X contains the non-null elements of w. Thus,
using (59) in (58), and exploiting (56), equations (b)-(d) in
(24) can be recast in compact form as:

Fz=0b,
with F £ BME € R"V*(V+K) and b = vec(U).

(60)

APPENDIX B
PROOF OF PROPOSITION 2

Point i): We begin observing that equation (b) in system
(24) reduces, after right multiplying both sides by U, to the
form WU = U [cf. (56)]. This last equation admits W =1
as a possible solution. We can associate with this solution its
vector form in (59), i.e., the N+ K -dimensional vector z; such
that w = vech(W) = vech(I) = Ez;. Then, z; is one of the
solutions of (25) [cf. (60)]. Then, the solution set of Fz = b is
given by z; — Null(F), where Null(F) denotes the nullspace
of F, i.e., the solution set of the homogeneous system Fz = 0
[53, Th. 2.6.3]. This implies that the set of feasible solutions in
W can be generally expressed as W = I—L, with L denoting
any matrix whose vectorization form, say £, is solution of

system F£€ = 0. Also, since W = I does not satisfy (a) in
(24), L cannot be the null matrix 0. This proves point i).

Point ii): The first condition in (26) comes from observing
that system Fz = 0 admits at least one (not-trivial) solution if
and only if the rank of F is less than the number of variables,
i.e., rank(F) < N 4 K. To prove the second condition in
(26), we need to ensure that condition (a) in (24) holds true.
To this aim, let us introduce the matrix U; € RN*XN-7,
whose columns span the subspace orthogonal to R(U). Now, a
necessary condition for having (a) in (24) is that WU # U
or, equivalently, LU # 0 by using the fact that W = I—L, as
proved in point ). It is then fundamental to investigate under
which conditions the system LU; = 0 admits no solution.
Following the same steps described in Appendix A to derive
(25), system LU = 0 reduces to the form Fz = 0, where
F € RW-"INX(N+E) writes as:

F = BME, 61)

with B 2 UX @Iy, whereas M and E are defined in Appendix
A. Then, a necessary and sufficient condition for Fz = 0 to

admit no (not-trivial) solution is that rank(F) = N + K. This
proves the second condition in (26), and also point ii).

Point iii): Assuming rank(F) = rN, since from point ii) we
have rank(F) < N 4+ K, we easily get K > N(r — 1). Thus,
the average node degree d := 2K /N must satisfy d > 2(r—1).
This concludes the proof of iii).

APPENDIX C
SOME USEFUL LEMMAS

Lemma 6: Let 0 < v < 1, and let {«[k]} and {v[k]} be
two positive scalar sequences. Then, the following hold:
(a If klim alk] = 0, then
—00

k
: k—I1 —
klingo l_zlfy all] = 0.

()  If Y77, alk]® <ocoand Y o, v[k]* < oo, then

k n
klirn z Z’y"fla[n]u[l] < 0. (63)
R
i

Proof. (a) can be found in [19]; (b) was proved in [34]. H

Lemma 7: Let {Y'[k]}, {X[k]}, and {Z[k]} be three scalar
sequences such that X[k] > 0 for all k. Suppose that
Y[k +1] <Y[k] - X[k] + Z[k], for all k,

and Y 7, Z[k] < oo. Then, either Y[k] — —oo or else
{Y'[k]} converges to a finite value, and > -, X[k] < oc.

(62)

Proof. The proof can be found in [59, Lemma 1]. |

APPENDIX D
PROOF OF THEOREM 4

Point (a): Let Pr(yyr = I — Pr(u) be the projector onto
the subspace orthogonal to R(U). We will now study the
temporal evolution of

z | [k] = Pru)rz[k] = z[k] — Pru)z[k],
——

(k]

(64)



i.e., the component of x[k] that lies in the subspace orthogonal
to R(U). To this aim, multiplying (29) from the left side by
Pr(u)-, and letting c[k] = Pr ) 0f(z[k]), we obtain:

'PR(U)L:B[IC + 1] = ,PR(U)LW.’B[,IC] - u[k]c[k] (65)

Now, since Pr(u)r W = Pr )t WPr )+ if (C1) and (C2)
hold, eq. (65) becomes:

:IZJ_[]{ + 1] = P’R(U)wal [k] - u[k:]c[k]

= (W = Pr))zL[k] — plk]clk]. (66)

Iterating recursion (66), we have:
z k] = (W - PR(U))k 1[0]

k
=Y (W = Praw)"ull = 1]efl —1]. (67
=1

Now, taking the norm of (67) and using (A2), (C3), we obtain:

k
lz (Kl < B¥lleLfo]ll +G Y B ull — 1].

=1

Then, if (B1) holds, taking the limit of (68), since Bk =0 as
k

(68)

1
m, we have:
Gu
1-p
which proves (33) [cf. (64)]. On the other side, if (B2) holds,
invoking Lemma 6(a) [cf. (62)], from (68) we conclude that:

(70)

li k*l:
k — oo and kg&;ﬂ

Jim o [kl < 7 = O, (69)

lim [z, [k]| =0,
k— o0

thus proving also (34), and completing the proof of point (a).
Point (b): We start analyzing the temporal evolution of

where (a) follows from the convexity of f [cf. (Al-1)] and
(A2); and in (b) we used (68) [cf. (64)]. Then, exploiting (73)
in (72), and using (A2), we obtain:

[k +1] — 2*|* < [|Z[k] — 2|

= 2ulk](f (@ [k]) = ) +2GPulk] Y * ull — 1]

+ 2G||a L [0]]| 8" ulk] + G u[k)?. (74)
Applying recursively inequality (74), we get:
@[k + 1] — 2" < [[&[0] — ="
k
=23 pln)(f(x[n]) - +2G2225” ‘ulnlpll = 1]
n=0 n=0 =
k k '
+2G[@ 0] > B uln] + G* Y uln)? (75)
n=0 n=0
Now, since ||Z[k + 1] — x*||* > 0 for all k, we have:
k
23 " pn)(f(z[n]) - )
n=0
< |[z[0] - mllﬁ?G“'ZZﬁ“ pll = 1]
n=0 =
k ' k
2G| [0S ] + G2 S il (76)

n=0 n=0

Finally, exploiting

k
> ulnl(f([n])

in (76), we obtain:

z(Zu )f K- ),

|k], i.e., the component of x[k] that lies in R(U). Thus,
multiplying (29) from the left side by Pr (v, and using (C2), fPes'[k] — f* < (||a;[o} x| +2G2 Z Z B ulnlull — 1]
we obtain: n=0 I=1
k k

Z(k + 1] = m[k] — plk of (x[k)). 71 n 1

zlk + 1] = z[k] — p[k]Pru)0f (x[k]) (71) +2G||$L[0]||Zﬂ N[n]+GQZM[n]2)k-
Now, exploiting recursion (71), the Euclidean distance of the n=0 n=0 92 Z 1u[n]
sequence |k + 1] to the optimal solution set S reads as: 0

(77)

@k + 1] - @ [|? = @[k — 2" | + ulk] [ Prcw) 0 (2[k)
— 2ukOf (2lk))" (k] — 2*), (72)

where we exploited the fact that both Z[k] and «* lie in the
subspace R(U). Now, summing and subtracting properly the
vector x[k], we derive a bound on the third term on the RHS
of (72). In particular, we have:

— Of (x[k)" (@[k] — " + =[k] — x[k])
= —Of(x[k)" (x[k] — ) + Of (z[k])" ([k] — Z[K])

< —(f(lk]) = ) + Gllz[k]

< —(f(@[k]) = f*) + B°G|lz L [0]]]

k
+G2Yy Bl
=1

—z[]|

(73)

Then, if (B1) holds, exploiting ZZ:O g™ <1/(1— p) for all
k, from (77) we obtain:

2G2 2
et 17 < (o = o1 + 32 e 1)
2G|l [0][[p | o 2) 1
— 4+ G(k+1 _ 78
which proves (35). Thus, from (78), it is immediate to see that
G*(3 - B)

best * < _

Jm R - T < 51 -5) " O(p), (79)

with convergence rate O (%ﬂ), which proves (36). On the
other side, under (B2), taking the limit as & — oo, it is
immediate to check that the numerator of (77) is bounded

[cf. (63), (B2)], while the denominator tends to infinity [cf.



(B2)]. Since by definition f*¢**[k] > f*, and the argument

above proves that klim fPest[k] < f*, it must be that under
—00

(B2) we have (37).
Finally, to prove (38), we bound (77) as:

90 k
i <Zu[n]>
n=0
that follows from setting (30)
(0] — 2 G”wf[‘”g“” <Ci<w.

k
Z % @8

< (uln)* +
exploiting in (80)

> Sl 1<

n=0 [=1

which exploit (62), and the inequality p[n]u[l —1]
ull —1]2)/2. Now, if we set ulk] = \/klﬁ
the inequalities

k
> pln] =
> w2l

>Vk+1

k k41
1
Z > / v (82)
cvVn+1 0o Vu-+
k+1

Z <1+

k+1
/ M gk +1) (83)
u

we obtain:
P Co + (;2((13_—;)) log(k +1) "
< N 5
with Cy = C; + C;Q((l?)__ﬂﬂ)) < oo, which proves (38) and
establishes the convergence rate given by O (%) This

completes the proof of point (b) and Theorem 4.

APPENDIX E
PROOF OF THEOREM 5

First, we prove (41). Under (A1l-2), invoking the descent
lemma on J in (39), and using (29) with fixed step-size
sequence u[k] = u for all k*, we get:

Ly 4

_711

Y1 — An(W)) denotes the Lipshitz

Jalk+1]) < J(alk) - (u >||6J<w[k]>||2 (85)

where Ly = L+ p~
constant of 0J. Let
L
n—u(l;u> = g(H/\N(W)*uL), (86)

which is greater than zero if 0 < pu < M Now,

applying recursively (85), since under (A3) J is bounded from
below (w.lo.g. J(x[k + 1]) > 0 for all k), we obtain:

nz 10 (2

“Note that (29) is a step of gradient descent applied to function .J.

0< J(x[k+1]) < I>.

87)

Since (87) is true for all k, we get:

Jim. ZHaJ

which implies that klim 0J (x[k]) = 0, thus proving (41).
—00
We now prove (42) and (43). Under (A1-2), invoking the
descent lemma on f and using (71), we get:

f@lk+1]) < f@[K]) - ulk]of @[K)" Preu)0f (k)

+ Sk PR IRD 7 (89)

Now, summing and subtracting the vector 9f(Z[k]) properly
in the second term on the RHS of (89), we obtain:

> < J( [0]) < oo, (88)

F@lk+ 1) < F@l) - plkI O @R + S Gk

— ulkOF @ (k) Prequ) (0F xlk]) — OF @ [K)
< F(@lH) — ulklolk) + £GPk + plkLG|2lk] — FH|
< J(@lk]) = ulklalH] + ZG2ulk + LG, 0] Bul

2
+ LG ulk] Y B ull - 1]

1=1
where in (a) we used (A2); (b) comes from (Al-2), (A2),
and (40); and in (c) we used (68) [cf. (64)]. Now, applying
recursively (90), since under (A3) f is bounded from below
(w.l.o.g., we consider f(Z[k + 1]) > 0 for all k), we obtain:

(90)

k

k
> ulnlgln] < f(@[0]) + LGl L [0]]| Y 5" uln

n=0

+LGQZZﬁ”l

n=0 (=1

(Z/L ) best[k] in (91), we get:

n=0

I k
+2Gn§_30 pll —1]. (91)

k
Using » _ p[n]g[n]
n=0
k
k] < (f(:c[OD + LGz Y Aruln] +
n=0

k
+LGQZ

n=0

I k
2 2
gG ;#[n]

1

S 1)
=t (Z u[n]>

g™ <1/(1— p) for all

92)

Then, if (B1) holds, exploiting Zi:o
k, from (92) we obtain:

et < (salop + 2R 4
LG?1? 1
)

which proves (42). Thus, from (93), it is easy to see that

est LG2(3 7 6)
gb (k] < W

(k +1)G?p?

+ (93)

lim = O(p), (94)
k— oo



with convergence rate O (k%rl), thus proving also (43).

To prove (44), we bound (93) as:
LG%*(3-3 b 1
( ) 2 : [n]2> -

) )

gtk < (03 +

n=0
where we exploited (81), and set
L
sialo) + 2T < 0 < o
Now, if u[k] = \/klﬁ’ exploiting in (95) the inequalities (82)
and (83), we obtain:
LG?*(3 -
04 + #log(k + 1)
gbest [k‘] < ( — 6) , (96)
- vk+1
LG*(3 - B)

with Cy = C3 + < 00, which proves (44) and

2(1-p)
establishes the convergence rate given by O (%
Finally, to prove (45), we apply Lemma 7 to the recursive
inequality (90) using the following identifications:

Y = @) XK = kel ©7)
ZIK) = LG ulk? + LG [0)) 3l
k
+ LGP ulk] Y Bl - 1]. (98)
=1

It is straightforward to check that X [k] > 0 for all k [cf. (B2),
(40)], and that Y .-, Z[k] < oo [cf. (B2), (C3), ||z [0]] <
0o, and (63)]. Since f(x[k]) is coercive [cf. (A3)], it follows
from Lemma 7 that f(Z[k]) converges to a finite value, and
> rey plklglk] < oo, which from (40), using (B2), leads to

lim inf (|0 @[])||py o, = 0- (99)

Using similar arguments as in [60, p.1887], we can also prove:

Jim sup [0 @ {k]) 7, = 0. (100)
In conclusion, from (99) and (100), we must have:
T [0f @ k) [p 0, =0, (101)

i.e., the sequence {Z[k|}, converges to a stationary point of
(2) [cf. (31)]. This concludes the proof of Theorem 5.
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