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We show that N ¼ 4 supersymmetric-Yang-Mills (SYM) theory on R × S3 with gauge group SUðNÞ is
described in a near-BPS limit by a simple lower-dimensional nonrelativistic field theory with SUð1; 1Þ ×
Uð1Þ invariant interactions. In this limit, a single complex adjoint scalar field survives, and part of its
interaction is obtained by exactly integrating out the gauge boson of the SYM theory. Taking into account
normal ordering, the interactions match the one-loop dilatation operator of the SUð1; 1Þ sector, establishing
the consistency of the limit at the quantum level. We discover a tantalizing field-theoretic structure,
corresponding to a (1þ 1)-dimensional complex chiral boson on a circle coupled to a nondynamical gauge
field, both in the adjoint representation of SUðNÞ. The successful construction of a lower-dimensional
nonrelativistic field theory in the SU(1,1) near-BPS limit provides a proof of concept for other BPS bounds.
These are expected to lead to richer field theories in nonrelativistic corners of N ¼ 4 SYM that include
fermions, gauge fields, and supersymmetry and can provide a novel path towards understanding strongly
coupled finite-N dynamics of gauge theories.

DOI: 10.1103/PhysRevLett.124.171602

Introduction.—Through the AdS=CFT correspondence,
type IIB string theory on an AdS5 × S5 background is
conjectured to possess a dual description in terms ofN ¼ 4
supersymmetric-Yang-Mills (SYM) theory with gauge
group SUðNÞ and coupling g. In principle, solving the
gauge theory would provide the full dynamics of strings and
thus reveal the emergence of gravity and black holes from a
quantum theory. In practice, this daunting task calls for a
more feasible approach. One possibility is to take the planar
limit N → ∞ while keeping the ’t Hooft coupling λ ¼ g2N
fixed. Here, one can find the full spectrum by employing a
beautiful integrable structure [1]. Another possibility is to
explore the theory at weak ’t Hooft coupling, while keeping
N finite [2,3]. Either approach, however, has important
limitations. In the planar limit, the geometry is fixed and
gravity can at best be taken into account perturbatively
through 1=N corrections. Regimes of strong gravity, in
particular black holes, become inaccessible. At weak
coupling, on the other hand, finite N contributions are
simpler to compute, but the dual string theory ceases to be
geometrical, at least in the semiclassical sense.
In this Letter, we explore an alternative idea. In a

nonrelativistic limit of the AdS=CFT correspondence
[4–7], both strong dynamics of gravity and a semiclassical
geometry can be retained, but the quantum field theory side

may still simplify sufficiently to enable a direct quantitative
study of its strongly coupled finite-N regime.
We take a major step in this direction by considering

near-BPS corners of N ¼ 4 SYM in which the dynamics
becomes explicitly nonrelativistic. At the hand of a con-
crete example, we demonstrate that N ¼ 4 SYM on a
three-sphere close to a particular BPS bound is effectively
described by the Hamiltonian of a lower-dimensional
nonrelativistic field theory. Only a subset of the degrees
of freedom contribute and an emergent U(1) global
symmetry corresponds to the conservation of particle
number, in accordance with the nonrelativistic nature of
the theory. In addition, the interactions are invariant under
an additional global SUð1; 1Þ symmetry, characterizing the
concrete bound we are considering.
The BPS bound considered in this Letter is

E ≥ Q1 þ S1; ð1Þ
where E is the energy, Q1 one of the R charges and S1 one
of the angular momenta of N ¼ 4 SYM on a three sphere.
We explore the near-BPS limit

λ → 0; with
E −Q1 − S1

λ
finite; N fixed: ð2Þ

That this type of limit, known as a Spin Matrix theory limit,
reveals nontrivial dynamics close to BPS bounds was
discovered and examined in [8]. In this Letter, we find
the first clear evidence of a nonrelativistic field-theoretic
structure emerging from the near-BPS limit associated with
(1). Importantly, we chose the specific bound (1) mainly to
provide an accessible representative for a proof of concept.
All major subtleties of the constructions are captured,
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allowing one to readily generalize our methods to other
near-BPS limits.
We can illustrate our approach by the commutative

diagram displayed below.
On the one hand, we can take the limit by considering the

classical field theory of N ¼ 4 SYM compactified on a
three sphere. We do this in the first part of this Letter, which
includes a nontrivial contribution to the interactions from
integrating out the gauge field degrees of freedom. In this
way, we find a classical Hamiltonian Hc that describes a
lower-dimensional nonrelativistic field theory. Quantizing
it and deriving nontrivial normal-ordering terms leads to the
quantum Hamiltonian Hq.
On the other hand, one can start by quantizing N ¼ 4

SYM. The spectrum of two-point functions is described by
the dilatation operator D [9–11]. One can then follow the
Spin Matrix theory limit procedure of [8] withD as starting
point, and take the near-BPS limit in which only the one-
loop contribution to D survives, and the Hilbert space
reduces to the SUð1; 1Þ subsector. We show in this Letter
that this matches perfectly with Hq. This implies that the
highly nontrivial quantum field theory computation that
leads to the relevant part of the one-loop dilatation operator
[12], are captured by simple normal-ordering contributions
to our classical Hamiltonian Hc.
Classical theories from sphere reduction.—The first step

towards closing the diagram shown in Fig. 1 is by reducing
classical N ¼ 4 SYM in the near-BPS limit on the three
sphere. We consider the bound (1) in the purely bosonic
sector, and set all fermion fields to zero. Moreover, we
introduce complex combinations of the real scalar fields
that transform in the 6 of SU(4), Φa ≡ ϕ2a−1 þ iϕ2a, with
a ¼ 1, 2, 3. Canonically normalizing the gauge field, the
relevant part of the Lagrangian on the three sphere with unit
radius is

L ¼
Z
S3
tr

�
−
1

4
F2
μν − jDμΦaj2 − jΦaj2

−
g2

2

X
a;b

ðj½Φa;Φb�j2 þ j½Φa; Φ̄b�j2Þ
�
; ð3Þ

where bars denote hermitian conjugation. Here, Fμν ¼
∂μAν − ∂νAμ þ ig½Aμ; Aν�, DμΦa ¼ ∂μΦa þ ig½Aμ;Φa�,

and both the gauge field Aμ and the scalars transform in
the adjoint representation of SUðNÞ. From Eq. (3) we derive
the Hamiltonian and determine the relevant propagating
degrees of freedom from the quadratic part alone. To this
end, we adopt Coulomb gauge in order to eliminate unphys-
ical degrees of freedom but keep track of the interactions
between scalars that are mediated by the longitudinal and
temporal gluons.Aswewill see, taking the limit (2) allowsus
to explicitly integrate out even the transverse gluons, giving
rise to an effective theory for a single complex scalar.
Fields are decomposed into spherical harmonics on the

S3, as reviewed in detail, e.g., in [13]. Scalars are written as
Φa ¼

P
J;M ΦJM

a YJM, while vectors decompose into vector
spherical harmonics as Ai ¼

P
JM

P
1
ρ¼−1 A

JM
ðρÞYJMρ;i, with

ρ ¼ 0;�1 labeling the longitudinal and transverse har-
monics, respectively. Here, M≡ ðm; m̃Þ, with m and m̃
running from −J to J for scalar spherical harmonics. For
vectors, they run from −Q to Q and −Q̃ to Q̃, respectively,
where Q ¼ J þ ð1þ ρÞρ=2 and Q̃ ¼ J − ð1 − ρÞρ=2.
Since the harmonics YJM�1;i are transverse, the
Coulomb gauge condition ∇iAi reduces to AJM

ðρ¼0Þ ¼ 0,

and both the temporal and longitudinal gluon can be
directly integrated out. The resulting Hamiltonian is

H ¼ tr
X
J;M

�
1

2
ðjΠJM

ðρÞ j2 þ ω2
A;JjAJM

ðρÞ j2Þ

þ jΠJM
a j2 þ ω2

JjΦJM
a j2 þ 1

8JðJ þ 1Þ jj
JM
0 j2

− 4g
X
Ji;Mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1ðJ1 þ 1Þ

p
DJ2M2

J1M1;JMρA
JM
ðρÞ ½ΦJ1M2

a ; Φ̄J2M2
a �

þ g2

2

����
X
Ji;Mi

CJ2M2

J1M1;JM
½ΦJ1M1

a ; Φ̄J2M2
a �

����
2
�
; ð4Þ

with the scalar charge density

jJM0 ¼ ig
X
Ji;Mi

CJ2M2

J1M1;JM

× ð½Φ̄J2M2
a ; Π̄J1M1

a � þ ½ΦJ1M1
a ;ΠJ2M2

a �Þ: ð5Þ

Here, Πa is the momentum conjugate to Φa and ΠðρÞ to
AðρÞ, ωJ ≡ 2J þ 1, ωA;J ≡ 2J þ 2 and bars denote hermi-
tian conjugation. Doubly occurring indices a and ρ ¼ �1
are summed over. The coefficients C and D are Clebsch-
Gordan coefficients that couple three scalar, or one scalar
and its derivative with a vector spherical harmonic, respec-
tively, derived for example in [13,14]. They read

CJMJ1M1J2M2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J1 þ 1Þð2J2 þ 1Þ

2J þ 1

r
× CJm

J1m1J2m2
CJm̃
J1m̃1J2m̃2

;

ð6Þ

FIG. 1. Commutative diagram illustrating that quantizing N ¼
4 SYM at one-loop and subsequently taking a near-BPS limit is
equivalent to considering the same limit on an S3 and quantizing
the resulting effective theory.
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DJM
J1M1J2M2ρ2

¼ð−1Þ−1=2þJþJ1þJ2ð2J1þ1Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J2þ1Þð2J2þ3Þ

2Jþ1

r � J1 J1 1

J2−
ρ−1
2

J2þ ρþ1
2

J

�
; ð7Þ

where fg is a Wigner 6 − j symbol, CJm
J1m1J2m2

are ordinary
SU(2) Clebsch-Gordan coefficients and the latter expression
is explicitly valid for ρ ¼ �1. The first interaction inH is the
Coulomb term between scalar charges, while the other two
are the scalar-gluon and scalar-scalar interaction present in
theN ¼ 4 Hamiltonian. The theory is supplemented with a
gauge singlet constraint that arises from integrating out the
ðJ;MÞ ¼ ð0; 0Þ-mode of the temporal gauge field.
The rotation generator S1 reads

S1 ¼ i
X
JM

ðm̃ −mÞtr
�
ΦJM

a ΠJM
a − Φ̄JM

a Π̄JM
a

þ 1

2
ðAJM

ðρÞΠ
JM
ðρÞ − ĀJM

ðρÞ Π̄
JM
ðρÞ Þ

	
; ð8Þ

while the relevant SU(4) R charge is given by

Q1 ¼ i
X
JM

trðΦJM
1 ΠJM

1 − Φ̄JM
1 Π̄JM

1 Þ: ð9Þ

The propagating degrees of freedom can be deduced by
demanding H − S1 −Q1 ¼ OðgÞ for g → 0, which in
particular requires the Oðg0Þ contributions to vanish.
Defining Δm≡m − m̃, we obtain for these

H − S1 −Q1jg¼0 ¼ tr
X
JM

�
1

2
ðjΠJM

ðρÞ − iΔmĀJM
ðρÞ j2

þ ðω2
A;J − Δm2ÞjAJM

ðρÞ j2Þ
þ jΠJM

a þ iðδa1 − ΔmÞΦ̄JM
a j2

þ ðω2
J − ðδa1 − ΔmÞ2ÞjΦJM

a j2
	
: ð10Þ

Given the form of ωJ and ωA;J, it is not hard to derive the
following set of constraints on AðρÞ and two of the scalar
fields:

Φ2 ¼ Φ3 ¼ Π2 ¼ Π3 ¼ OðgÞ;
AJM
ðρÞ ¼ OðgÞ; ΠJM

ðρÞ − iΔmĀJM
ðρÞ ¼ OðgÞ: ð11Þ

For Φ1, one finds for J ¼ −m ¼ m̃

ΠJ;−J;J
1 þ iωJΦ̄J;−J;J

1 ¼ OðgÞ; ð12Þ

and for all other m, m̃

ΦJM
1 ¼ ΠJM

1 ¼ OðgÞ: ð13Þ

Each of these constraints eliminates a propagating degree
of freedom; the right-hand sides of Eqs. (11)–(13) depend
on the field equations and can be deduced by demanding
consistency with the full Hamiltonian evolution. All of
these vanish, except for AJM

ðρÞ , since it is the only field that

appears linearly in Eq. (4). There, one obtains

AJM
ðρÞ ¼

X
Ji;Mi

4g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1ðJ1 þ 1Þp

ω2
A;J − Δm2

×DJ2M2

J1M1;JMρ½ΦJ1M2

1 ; Φ̄J2M2

1 �:

ð14Þ

The dynamics of the theory close to the bound can now
be derived by solving the constraints. The only surviving
contribution to the kinetic term comes from Φ1, whose
angular momenta are moreover constrained by the con-
dition m̃ ¼ −m ¼ J. The nonrelativistic nature of the
resulting dynamics arises from Eq. (12), which relates
the canonical momentum to the complex conjugate field,
just like in a nonrelativistic field theory. For convenience,
we introduce a new field variable

Φ̄s ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ sÞ

p
Φs=2;−s=2;s=2

1 ; ð15Þ

where s is now integer valued and not to be confused with
the SU(4) index, which no longer appears below. The
choice of normalization guarantees a canonical Dirac
bracket, whose nontrivial entry is derived from Eq. (12),
suppressing matrix indices,

fΦs; Φ̄s0 g ¼ iδss0 : ð16Þ

A similar notation for the Clebsch-Gordan coefficients is
adopted later.
We obtain for the quadratic piece of the effective

Hamiltonian

H0 ¼ tr
X
s≥0

ðsþ 1ÞjΦsj2: ð17Þ

Since H0 − S1 −Q1 ¼ 0 by construction, we can now
obtain the interacting Hamiltonian in the decoupling limit
(2) as

Hint ¼ lim
g2N→0

H − S1 −Q1

g2N
: ð18Þ

We insert all constraints and make use of the symmetry
ðs1; s2Þ ↔ ðs3; s4Þ, as well as of the fact that interactions
are nontrivial only for s1 þ s3 ¼ s2 þ s4 due to angular
momentum conservation, to write the Hamiltonian as

Hint ¼
1

4N
tr

X
s1;s2≥0

X
l≥0

Vs1;s2
l ½Φ̄s1 ;Φs1þl�½Φ̄s2þl;Φs2 �; ð19Þ
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with

Vs1;s2
l ≡X

JM

�ð2þ 2s1 þ lÞð2þ 2s2 þ lÞ
8JðJ þ 1Þ Cs1þl

s1;JM
Cs2þl
s2;JM

−
X
ρ¼�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1ðs1 þ 2Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2ðs2 þ 2Þp
ω2
A;J − ðm − m̃Þ2 Ds1þl

s1;JMρD̄
s2þl
s2;JMρ

þ 1

2
Cs1þl
s1;JM

Cs2þl
s2;JM

	
: ð20Þ

Here, the short-hand notation for C and D is exactly as in
Eq. (15). Using their explicit form, Eqs. (6) and (7), the
summation over J can be performed. The individual terms
in this expression are complicated and quite nontrivial to
evaluate. However, their combination reduces to the strik-
ingly simple answer

Vs1;s2
l>0 ¼ 2

l
; ð21Þ

while the contributions for l ¼ 0 are proportional to the
SUðNÞ singlet constraint and hence vanish on all physical
states and field configurations.
We introduce the coupling g0 as the analogue of the ’t

Hooft coupling after the decoupling limit by defining the
total Hamiltonian H ≡H0 þ g0Hint. Using the SUðNÞ
charge density in Fourier space,

qs ≡
X
n≥0

½Φ̄n;Φnþs�: ð22Þ

We find the result

H ¼ tr

�X
s≥0

ðsþ 1ÞjΦsj2 þ
g0
2N

X
s>0

1

s
jqsj2

	
: ð23Þ

This is a non-relativistic field theory that describes the
effective dynamics of N ¼ 4 SYM near the SUð1; 1Þ BPS
bound. The global U(1) symmetry is evident, since phase
rotations of Φ leave the Hamiltonian invariant. This is a
manifestation of the nonrelativistic nature of the theory.
The invariance of the interaction under SUð1; 1Þ trans-
formations can be shown by considering the representation
of the SUð1; 1Þ generators on Φs,

L0 ¼ tr
X
m≥0

�
mþ 1

2

	
jΦmj2;

Lþ ¼ ðL−Þ� ¼ tr
X
m≥0

ðmþ 1ÞΦ†
mþ1Φm; ð24Þ

satisfying fL0; L�g ¼ �iL� and fLþ; L−g ¼ 2iL0. All
generators commute with the interaction part of H on the
singlet constraint surface q0 ¼ 0.
In fact, the presence of the singlet constraint implies that

the SUðNÞ symmetry of Eq. (23) remains gauged. Indeed, it
can be conveniently written by introducing an auxiliary
field Ψs as

H¼ tr
X
s≥0

�
ðsþ1ÞΦ̄sΦsþ sΨ̄sΨsþ

ffiffiffiffiffiffiffi
g0
2N

r
ðΨsq̄sþ Ψ̄sqsÞ

	
;

ð25Þ

if supplemented by the constraint ΠΨ ¼ 0 and keeping in
mind the form Eq. (16) for the bracket of Φs. Remarkably,
Ψs plays here the role of a temporal gauge field that
automatically enforces both the singlet constraint and gives
rise to the interactions. The gauge redundancy becomes
manifest when considering the Lagrangian. If it were not
for the condition s ≥ 0, we could directly obtain Eq. (25)
from an action of a local (1þ 1)-dimensional gauge theory.
Note that s ≥ 0 can be viewed as a chirality condition if one
identifies s as a momentum along a circle. We will discuss
this intriguing emergence of lower-dimensional locality in a
forthcoming work [15].
Quantization and the one-loop dilation operator.—We

now proceed to quantize Eq. (25) in order to complete the
diagram in Fig. 1. To this end, we replace the Dirac bracket
Eq. (16) by commutators, f·; ·g → i½·; ·�, where we have put
ℏ≡ 1. We introduce ladder operators as ≡Φs, a

†
s ¼ Φ̄s

that obey canonical commutation relations, i.e.,
½ðarÞij; ða†sÞkl � ¼ δilδ

k
jδrs. We directly promote Eq. (23) to

the quantum Hamiltonian,

Hq ¼ tr

�X
s≥0

ðsþ 1Þa†sas þ
g0
2N

X
s>0

1

s
q†sqs

	
: ð26Þ

We justify this choice by showing that it leads to a normal
ordered form that is fully equivalent to the one-loop
dilatation operator as originally derived in [12,16]. In fact,
this defines a procedure that allows us to straightforwardly
read off the one-loop dilatation operator in a given
subsector from the nonrelativistic Hamiltonian.
Normal ordering gives rise to self-energy corrections,

concretely

X
l>0

1

l
trðq†l qlÞ ¼

X
l>0

1

l
trð∶q†l ql∶Þ þ 2N

X∞
n¼0

hðnÞtrða†nanÞ

− 2
X∞
n¼0

hðnÞtrða†nÞtrðanÞ; ð27Þ

with the harmonic numbers hðnÞ ¼ P
n
k¼1ð1=kÞ. The above

corrections can be equivalently written in terms of a
renormalized four-point interaction. Exploiting the
SUðNÞ singlet condition, one can through simple manip-
ulations of the sums derive the interaction Hamiltonian

Hint ¼
1

4N

X∞
m¼0

Xm
k;k0¼0

trð∶½a†k0 ; ak�½a†m−k0 ; am−k�∶Þ

×

�
δk¼k0 ðhðkÞ þ hðm − kÞÞ − δk≠k0

1

jk − k0j
	
; ð28Þ
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where here the square brackets denote matrix commutators.
The second line of Eq. (28) is precisely the one-loop
dilatation operator in the bosonic SUð1; 1Þ sector [12,16]
and we have thus discovered a complementary way of
calculating the one-loop dilatation operator in a given
subsector without explicitly evaluating loop diagrams.
This completes our derivation of the diagram in Fig. 1.
We end by noting that the quantization prescription that

was hereby forced upon us is yet another hint at the
fundamental nature of the quasilocal theory defined by
Eq. (25). In a certain sense, it corresponds to treating both
Φs andΨs as fundamental quantum degrees of freedom and
imposing normal ordering on Eq. (25).
Conclusions and outlook.—We have derived a novel

interacting nonrelativistic field theory from a near-BPS limit
of N ¼ 4 SYM. The resulting theory has a global U(1)
symmetry as well as SUð1; 1Þ invariant interactions and
consists of a dynamical complex chiral scalar field interact-
ing with a nondynamical gauge boson. We have focused on
the near-BPS limit associated with the BPS bound (1) to
provide a proof of concept. Our results apply to any other
BPS bound ofN ¼ 4 SYM [17], with some small subtleties
when including fermions, which we will address in [15].
Due to its nonrelativistic nature, our novel field theory

can be studied explicitly at any coupling, and as such
should provide important insight into the workings of the
AdS=CFT correspondence. The limit that we propose can
be taken directly in string theory, giving rise to non-
relativistic string theories on U(1)-Galilean target space
[6,7,18,19] (see [20,21] for related work) and D-branes
[22]. Indeed, our work immediately opens up the route to
reexamine many renowned features of holography. This
begins with studying details of the emergence of bulk
geometry, for example from the entanglement structure
[23]. Considering other BPS bounds can elucidate the
question of how and in particular how many [24] additional
dimensions are encoded in the theory, since they are
expected to be dual to bulk configurations of different
dimension [6,7]. A thermal analysis can shed light on the
precise details of the confinement or deconfinement tran-
sition and allows for a quantitative study of the recently
suggested mechanism of partial deconfinement [25,26].
Studying temperatures above the Hawking-Page transition
is particularly interesting for the near-BPS limit with
SUð1; 2j3Þ symmetry, which is expected to contain black
holes [27]. Consequently, it should for example exhibit
maximal chaos [28]. The explicit construction presented in
this Letter will allow one to explore the nonrelativistic
corners of holography in quantitative detail.
Aside from the possible application for holography, finding

new nonrelativistic field theories from near BPS of N ¼ 4
SYM is interesting in its own right. This points to a family of
novel nonrelativistic quantum field theories, some with
supersymmetry, whose properties have yet to be explored.
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