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In this work the extended Hubbard models with pair hopping interaction (at the atomic limit)
are investigated within the variational approach, which treats the on-site interaction term exactly
and the intersite interactions within the mean-�eld approximation (exact in d→ +∞). We analyze
mutual stability of the superconducting (SC) phase and charge (CO) or (ferro/antiferro-)magnetic
(M) orderings as well as homogeneous mixed phases. Our preliminary results for U = 0 show that
the SC phase can coexist with the CO or M phases only in states with electron phase separation.

PACS numbers:
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71.10.Hf � Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems
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I. INTRODUCTION

The phase separation (PS) phenomenon involving su-
perconductivity (SC) is under intense investigation and
has been evidenced in broad range of currently investi-
gated materials including iron pnictides, cuprates, bis-
mutates, organic conductors and heavy-fermion systems
(for review see e.g. Refs. [1�20] and references therein).
The e�ective model considered has a form of extended

Hubbard model at the atomic limit (t = 0):
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where n̂iσ = ĉ+iσ ĉiσ, n̂i =
∑
σ n̂iσ, ρ̂

+
i = (ρ̂−i )† = ĉ+i↑ĉ

+
i↓,

ŝzi = (1/2)(n̂i↑ − n̂i↓) and ŝ+i = (ŝ−i )† = ĉ+i↑ĉi↓. ĉ
+
iσ and

ĉiσ denote the creation and annihilation operators, re-
spectively, of an electron with spin σ (σ =↑, ↓) at site
i. Interactions U , I, W , Jz, Jxy between the nearest
neighbors (NN) are e�ective model parameters (assumed
to include all the possible contributions and renormaliza-
tions) and µ is the chemical potential.
The analysis has been performed within a variational

approach (VA) [2�7], which treats the U term exactly
and the intersite interactions within the mean-�eld ap-
proximation (MFA), which is a rigorous treatment of the
intersite terms in the limit of in�nite dimensions d→ +∞
or large coordination number (number of NN) z.
We introduce order parameters de�ned as:

∆~q = 1
N

∑
i exp (i~q · ~ri)〈ρ̂−i 〉, n~q = 1

N

∑
i exp (i~q · ~ri)〈n̂i〉,
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mα
~q = 1

N

∑
i exp (i~q · ~ri)〈ŝαi 〉 for two sublattice orderings

on the alternate lattices, where N is the total number of
lattice sites. The model exhibits a symmetry between
I > 0 (SC with s-pairing, ∆~0 6= 0) and I < 0 (SC with

η-pairing, ∆~Q 6= 0, ~Q is a half of the smallest reciprocal

lattice vector) cases [3, 4]. Analogical symmetry occurs
for spin orderings in both direction (α = z,±) between
ferro- (with mα

~0
6= 0) and antiferro- (with mα

~Q
6= 0)

magnetic (M) phases (for general case of both Jxy and
Jz nonzero that symmetry is only for VA results). The
boundary between M phases with ordering in z-direction
and xy-direction is for |Jxy/Jz| = 1 (within VA). Thus
we de�ne |J | = Max{|Jz|, |Jxy|} and |J0| = z|J |. In
the presence of �nite single electron hopping t 6= 0 the
symmetries are broken in the general case and the
e�ects of t 6= 0 have been also discussed in Refs. [11�20].
In the charge-ordered (CO) phase n~Q 6= 0. n ≡ n0 is

electron concentration in the system. Notice that phase
diagrams obtained are symmetric with respect to n = 1
(µ̄ = 0, µ̄ = µ − U/2 − W0, W0 = zW ) because of the
particle-hole symmetry of the model.
In this paper we particulary focus on the interplay and

competition between pair hopping (I) interaction and in-
tersite magnetic (J) or density-density (W ) interactions.
The impact of on-site term U will not be analyzed, thus
we restrict ourselves to U = 0 case. Names of transition
orders used are consistent with our earlier works [3�8].

II. RESULTS AND DISCUSSION FOR U = 0

Let us consider the U = 0 case of the model ana-
lyzed. In such a case, for |W |, |J | < |I| only the second-
order transition SC�NO occurs with increasing temper-
ature T and only the SC phase can be stable in low

mailto:konrad.kapcia@amu.edu.pl


2

FIG. 1. Phase diagram for |W |, |J | < |I|, U = 0, I0 = zI.

T . The kBT/|I0| vs. n phase diagram of the model is
shown in Fig. 1 (I0 = zI). The analytical result for the
SC�NO boundary as a function of n can be obtained
as kBTSC/|I0| = (n− 1) ln−1 (n/(2− n)) [2, 3] (n < 1).
The structure of the diagram as a function of µ is the
same as of the diagram obtained for W = 0 and J = 0
[3]. For W = 0 and any J , on the SC�NO transition line
the relation µ̄/I0 = n− 1 occurs (generally always in the
SC phase), but for W 6= 0 the relation µ(n) is not so
simple (cf. Refs. [3, 8, 9, 21�24]).

A. Superconductivity and magnetism

First, let us discuss the competition between I and
J interactions. Following discussion of phase diagrams
is valid for |W |/|I| < 1, but W 6= 0 changes the ther-
modynamical characteristics and the locations of phase
boundaries only on diagrams as a function of µ (not as
a function of n).
In particular, the phase diagrams for |J |/|I| = 1.1

(W = 0) are shown in Fig. 2. For that case there are three
homogeneous phases (SC, M, NO) on the phase diagrams.
The transitions SC�NO and M�NO with increasing tem-
perature are second-order ones and their temperatures
decrease with increasing |µ̄| and |n− 1|. The analytical
equations for temperatures TSC and TM of these transi-
tion, respectively, as a function of n can be derived (in
their ranges of occurrence): for TSC it was given above in
the beginning of Sec. II, whereas for TM it is obtained as
kBTM/|J0| = n(2− n)/2. The SC�M transition is �rst-
order (for �xed µ) and thus the PS:SC/M state is stable
in the de�ne range of n. The �rst-order SC�M as well as
the �third-order� SC�PS and PS�M transition tempera-
tures increase with |µ̄| and |1−n|, respectively. All transi-
tion lines merge at a bicritical point, denoted as B on the
diagrams. Notice that the MIX1:SC/M phase (a coexis-
tence of SC and M in homogeneous phase, ∆~q,m

α
~q 6= 0)

does not appear on the diagrams at any T ≥ 0.
For |J |/|I| = 1 the SC and M phases are degenerated

for n = 1 (µ̄ = 0), whereas for n 6= 1 the SC phase is

FIG. 2. Phase diagrams for |J |/|I| = 1.1 (U = 0, W = 0,
µ̄ = µ− U/2). Details in text.

stable. The case of n = 1 for arbitrary U/|I0| has been
analyzed in Ref. [25], whereas the behaviour of the system
at T = 0 have been investigated in Ref. [9]. With increas-
ing |J |, the B-point moves along the SC�NO boundary
toward larger |µ̄| (|1 − n|). The region of the M phase
stability is extended, whereas the region of the SC phase
occurrence is reduced by increasing the ratio |J |/|I|. The
location of the B-point can be determined from the equa-
tion TSC = TM . Moreover, for higher |J |/|I| the struc-
ture of the diagram can also change. Exemplarily, for
|J |/|I| & 1.34 the M�NO transition can also be �rst-order
(if it occurs at kBT/|J0| < 1/3, for �xed µ) [25], the
multicritical point changes its type (there can be more
than one multicritical point on the diagram), and the
PS:M/NO state can also occur (cf. also [26�28]). For
|J |/|I| > 2 the region of the SC phase occurrence van-
ishes totally. The detailed analyses of this problem will
be explored further in a subsequent publication.

B. Superconductivity and charge orderings

Next, we will discuss the diagrams of the model for
|W |/|I| > 1 and |J | < |I|. The examples of the phase
diagrams for W/|I| = 1.1 and |J | < |I|) are presented in
Fig. 3. For the case W/|I| > 1 there are three homo-
geneous phases (SC, CO, NO) on the phase diagrams
and the structures of the diagrams are similar to those
discussed in previous section. The transitions to the
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FIG. 3. Phase diagrams for W/|I| = 1.1 and |J |/|I| < 1
(U = 0, µ̄ = µ− U/2−W0, W0 = zW ). Details in text.

NO phase with increasing temperature (i.e. SC�NO,
CO�NO) are second-order ones and their temperatures
decrease with increasing |µ̄| and |n− 1| [8]. The analyt-
ical equations for temperatures TSC and TCO of these
transition, respectively, as a function of n can be derived
(in their ranges of occurrence): for TSC it was given
above in the beginning of Sec. II, whereas for TCO it
is obtained as kBTCO/W0 = n(2− n)/2. The transition
between two ordered phases is �rst-order (for �xed µ)
and the PS:SC/CO state is stable in the de�ne range
of n. The �rst-order SC�CO as well as the �third-order�
SC�PS and PS�CO transition temperatures increase with
|µ̄| and |1 − n|, respectively. Similar as in previous case
all transitions lines merge at a bicritical point B. More-
over, at T = 0 the PS:SC/CO state is degenerated with
the MIX2:SC/CO phase (a coexistence of SC and CO in
homogeneous phase, ∆~q, n~Q 6= 0), but at any T > 0 that

degeneration is removed [8, 9, 29].
With increasing W > 0, the B-point moves along the

SC�NO boundary toward larger |µ̄| (|1−n|). Its location
can be determined from the equation TSC = TCO. The
region of the CO phase stability is extended, whereas
the region of the SC phase occurrence is reduced, by in-
creasing the ratioW/|I|. ForW = |I| there homogeneous
phases: SC, CO and MIX2 are degenerated at n = 1
[1, 8, 9], but the SC phase has a lowest energy for n 6= 1.
For W/|I| < −1 only the NO phase and the

PS:NO/NO state (in de�ne range of n) are present on
phase diagrams. The diagrams forW/|I| < −1 are shown

FIG. 4. Phase diagrams for W/|I| < −1 and |J |/|I| < 1
(U = 0, µ̄ = µ− U/2−W0, WQ = −zW ). Details in text.

in Fig. 4 (cf. also Refs. [8, 9, 24]) and they do not change
with decreasing W < 0. The �rst-order NO�NO tran-
sition line (vertical one for �xed µ̄ = 0) ends at critical
point C located at kBT/WQ = 0.5. The analytical result
for the PS:NO/NO�NO boundary as a function of n can
be obtained as kBTPS/WQ = (n− 1) ln−1 (n/(2− n))
(WQ = −zW , n < 1). For W/|I| = −1 the SC phase and
the NO phases (the PS:NO/NO state) are degenerated
for any µ̄ (for any n, respectively).

III. CONCLUSIONS AND FINAL REMARKS

In conclusions, we note that the analysis of the model
considered (U = 0) shows that the superconductivity can
coexists with magnetism (for |J |/|I| > 1) and charge or-
derings (for W/|I| > 1) in the states with phase sepa-
ration (PS:SC/CO and PS:SC/M, respectively) and the
mixed homogeneous phases (MIX1, MIX2) do not ap-
pear on the phase diagrams at T > 0. In particular,
we have derived that transitions between the supercon-
ducting phase and other ordered phases (the SC�CO and
SC�M transitions) are of the �rst order for �xed chemical
potential µ and it leads to the occurrence of the phase
separation (PS:SC/CO and PS:SC/M, respectively) in
the de�nite ranges of electron concentration n.
Notice that repulsive U > 0 [3, 5] or external magnetic

�eld [4, 6] can change the SC�NO transition into �rst-
order one (for �xed µ) and the phase separation state
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PS:SC/NO can occur in the de�ne ranges of n. More-
over, U < 0 favors the SC phase, whereas U > 0 favors
the M phase. The CO phase for W > 0 as well as the
PS:NO/NO state forW < 0 can exist for both signs of U
and su�ciently large |W |/|I| (if U � 0 these states can
be stable only for n 6= 1), cf. e.g. Refs. [21�24].
In this paper we have not considered the case of

|J | > |I| and |W | > |I|. The analysis of the interplay
between J and W interactions [30�32] is beyond the goal
of this work and will be presented elsewhere.
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