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Chromatin architecture is highly dynamic during different phases of cell cycle to
accommodate DNA-based processes. This is particularly obvious during mitotic exit,
where highly condensed rod-like chromatids need to be rapidly decondensed. Such
chromatin structural transitions are tightly controlled and organized as any perturbance in
this dynamic process can lead to genome dysfunction which may culminate in loss of
cellular fitness. However, the mechanisms underlying cell cycle-dependent chromatin
structural changes are not fully understood. In this mini review, we highlight our current
knowledge of chromatin structural organization, focusing on mitotic exit. In this regard, we
examine how nuclear processes are orchestrated during chromatin unfolding and
compartmentalization and discuss the critical importance of cell cycle-controlled
chromatin landscaping in maintaining genome integrity.
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INTRODUCTION

The cell cycle of proliferating cells is defined by two major events, first, error-free duplication of
the genome during synthesis phase and second, faithful transmission of genetic material into the
daughter cells during mitosis. Since genetic material is packaged in the form of chromatin, the
proper execution of nuclear processes is critically dependent on cell cycle regulated chromatin
organization and restructuring (Ma et al., 2015). This process is orchestrated by a variety of factors
notably histone PTMs (posttranslational modifications) and chromatin protein complexes
(Antonin and Neumann, 2016). In this mini review, we highlight how daughter cells inherit
proper chromatin structure and discuss its importance in the execution of genome-wide
nuclear functions.
CHROMATIN STRUCTURE IN INTERPHASE

The fundamental repeating unit of chromatin is the nucleosome, which is formed by ~147 bp of
DNA wrapped around an octamer histone core (Luger et al., 1997). Individual nucleosomes are
connected by linker DNA and organized into long linear arrays, which interact with nucleosomes in
the neighboring arrays to create a chromatin fiber (Luger et al., 2012; Belmont, 2014; Hansen et al.,
2018). Interactions among adjacent chromatin fibers may contribute to increased folding, finally
reaching the maximal degree of compaction (∼10,000 fold) observed in the metaphase chromosome
(Tremethick, 2007; Batty and Gerlich, 2019). It is now widely established that chromosome
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territories/domains are positioned in a non-random manner
within the nucleus where gene density, chromosome size and
morphology play a major determining role in their organization
(Nagano et al., 2017; Nozaki et al., 2017; Finn et al., 2019; Mirny
et al., 2019). Gene-rich areas tend to locate at the center of the
nucleus whereas gene-poor regions tend to be located at the
periphery where they are associated with the nuclear lamina
(NL) (Nunez et al., 2009; Van Steensel and Belmont, 2017; Lochs
et al., 2019; Sivakumar et al., 2019).

High-throughput sequencing based approaches have
markedly advanced the understanding of chromatin folding
patterns and their relevance to nuclear functions. In particular,
different versions of chromosome conformation capture-based
methods (Denker and De Laat, 2016; Sati and Cavalli, 2017; Han
et al., 2018) were developed to measure the frequency at which
two genomic loci physically associate in 3D space (Sati and
Cavalli, 2017). The most recent of such methods termed Hi-C
measures frequencies of all the possible genomic contacts (all-
versus-all). This method has been used to identify three primary
landscapes of chromatin folding: i) loops, ii) TADs (topologically
associating domains) and, iii) compartments (Denker and De
Laat, 2016; Beagrie and Pombo, 2017; Nagano et al., 2017).
Chromatin loops are formed when two small genomic regions
typically 100 to 750 kb (kilobases) apart come in close
proximation through association with CTCF (the CCCTC-
binding factor) (Rao et al., 2014). Hi-C mapping at a higher
resolution has annotated ~2,000 sharply defined regions as TADs
(Dixon et al., 2012). TADs are relatively isolated genomic regions
around 100 kb to 2 Mb (megabases) in size that exhibit
preferential intra-domain contacts. Finally, at the Mb scale,
chromosomes are segregated into A-type (active) and B-type
(inactive) compartments that are defined by their transcriptional
activity (Simonis et al., 2006) (Figure 1A). In the context of this
review, we focus on the major components of the B-type
compartment, including LADs (lamina-associated domains),
NADs (nucleolar-associated domains), as described in Box 1.
CHROMATIN STRUCTURE DYNAMICS
AROUND MITOSIS

Chromatin Condensation During Mitosis
The massive structural reorganization of chromatin during
mitosis is mediated by the eukaryotic members of SMC
(structural-maintenance-of-chromosomes) protein complexes,
namely condensins and cohesins (Belmont, 2006; Wood et al.,
2010; Houlard et al., 2015; Piskadlo and Oliveira, 2017). Together
with topoisomerase II and other non-histone proteins,
condensins and cohesins help orchestrate higher order
chromatin folding and chromosome-wide compaction leading
to cytologically distinct and longitudinally compacted
chromosomes (Hirano, 2012; Antonin and Neumann, 2016;
Piskadlo and Oliveira, 2017; Schalbetter et al., 2017). Whereas
condensins organize and condense large-scale chromosome
rearrangements by loop formation and lateral/axial compaction,
histone PTMs generally promote inter-nucleosomal association
Frontiers in Genetics | www.frontiersin.org 2
and hence, drive close-range chromosome compaction (Antonin
and Neumann, 2016). Among the various histone PTMs,
phosphorylation of several of the histone H3 amino acid
residues surge during different stages of mitosis (Sawicka and
Seiser, 2012; Wang and Higgins, 2013), however, the exact
mechanism by which they contribute to mitotic chromosome
condensation in mammalian cells remains elusive.

In addition to histone H3 phosphorylation, different
methylation states of histone H4 lysine 20 (H4K20me1/2/3)
have also been implicated in chromatin compaction (Houston
et al., 2008; Oda et al., 2009). However, the mechanistic details of
their role in chromosome condensation are not well understood.
SET8, the enzyme responsible for genome-wide deposition of
H4K20 monomethylation, is tightly regulated during the cell
cycle and peaks around G2 phase (Tardat et al., 2010; Jorgensen
et al., 2013). Majority of H4K20me1 is subsequently converted
into H4K20me2 and H4K20me3 by the action of SUV4-20H1
and SUV4-20H2 enzymes during M and G1 phases (Nishioka
et al., 2002). However, about 10% of H4K20me1 persists and is
found to be significantly enriched in the gene bodies of highly
transcribing genes (Barski et al., 2007; Van Nuland and Gozani,
2016). The presence of H420me1 in transcriptionally active and
hence, more open chromatin regions suggest that chromatin
compaction functions are most likely regulated by H4K20me2
and H4K20me3 states. These observations support the idea that
both SMC and histone PTM-mediated chromosome structural
changes may function in parallel, albeit at different levels of
chromosome architecture. It is highly likely that mitotic
chromosome condensation requires a cross-talk between both
these mechanisms (Figure 1B).

Chromatin Decondensation After Mitosis
Mitotic exit is characterized by two major nuclear events, first,
the nuclear envelope is reformed to provide an enclosed space for
the segregated genomic material. Second, the re-establishment of
functional interphase chromatin within the nuclear envelope,
where rod-shaped chromatids rapidly decondense into more
loosely arranged, non-random structures, fully competent for
DNA-based processes. Indeed, simulation on a mitotic
chromosome-like polymer shows that the large-scale 3D
organization of TADs and A/B compartments during mitotic
exit occurs simply as a result of partial decondensation in an
inflation-like process (Kumar et al., 2019). In this regard, while
TADs and loops are established rapidly following mitotic exit,
the larger A/B compartments form more slowly and continue to
grow as cells advance through the cell cycle (Abramo et al., 2019).

In the context of this review, we focus on how the major B-
type compartment components i.e. LADs and NADs, are
organized at mitotic exit. During interphase, LADs interact
dynamically with the NL however, they move only within a
layer <1 µm thick (Kind et al., 2013). Furthermore, there is a
degree of both cooperativity and stochasticity in the positioning
of LADs within individual cells (Jurisic et al., 2018). Intriguingly,
the nuclear positioning of majority of LADs is not inherited
following mitosis but instead some LADs (termed facultative
LADs or fLADs) are stochastically reshuffled between other
repressive environments. However, around 30% of LAD
February 2020 | Volume 11 | Article 103
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regions, termed cLADs (constitutive LADs) appear to be cell-
type invariant in their association with the nuclear periphery and
may serve to anchor chromosomes to the NL (Kind et al., 2015).
Anchoring of cLADs, that display the highest NL contact
Frontiers in Genetics | www.frontiersin.org 3
frequencies and form the most stable NL contacts, likely
contributes to the overall organization of interphase chromatin
after mitotic exit (Falk et al., 2019). In this regard, H3K9me2
(histone H3 lysine 9 dimethyl) has recently been shown to be
FIGURE 1 | Chromatin structural organization during interphase and mitosis. (A) Levels of chromatin structural organization. At the most basic level, an histone
octamer makes a nucleosome with ~147 bp of DNA resembling a beads-on-a-string structure, which is then folded with neighbouring nucleosomes to make a
chromatin fiber. Individual fibers help establish structural chromatin loops through co-anchorage with CTCF and cohesion by means of loop extrusion. Self-interacting
chromatin loops then assemble together into TADs (topologically associating domains). Several TADs then spatially organize to become specific nuclear
compartments i.e., the A-type (active) enriched in active genes or the B-type (inactive) compartments that mainly comprise of repressed genomic regions including
but not limited to LADs (lamina-associated domains) and NADs (nucleolar associated domains). (B) Chromatin structure transition from mitosis to G1 phase of the
cell cycle. At the onset of mitosis, interphase chromatin is organized into highly condensed rod-shaped chromatids organized by SMC complexes (condensins and
cohesins) and several phosphorylation events on histone H3. At the mitotic exit chromosomes rapidly decondense into more loosely packed, non-random interphase
chromatin structures. The phosphatase PP1 plays a major role in dephosphorylation of H3S10 residue and this is deemed critical for decondensation. Nuclear
targeting of actin filaments by Cofilin-1 also facilitates nuclear volume expansion presumably through structural reorganisation of the nuclear compartment.
Additionally, RuvB-like ATPases are required for chromatin decondensation through as yet unknown mechanism. Finally, eviction of Aurora B kinase by the p97
ATPase is essential for chromosome decompaction as cells enter the next cell cycle.
February 2020 | Volume 11 | Article 103
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preserved across mitosis and is required for the re-establishment
of LADs in the daughter cells (Poleshko et al., 2019).

NADs are also found to locate in the proximity of NL in a
subset of cells. In this regard, there may be a substantial overlap
between NADs and LADs with some studies showing that these
loci could switch positions following mitotic exit (Van
Koningsbruggen et al., 2010; Kind et al., 2013; Ragoczy et al.,
2014). A recent study identified two distinct classes of NADs in
mouse embryonic fibroblasts, which differ primarily in their
frequency to associate with the nucleolar periphery and with
the NL (Vertii et al., 2019). While type I NADs display
characteristics of constitutive heterochromatin and associate
with both nucleolar periphery and NL, type II NADs are more
specifically associated with the nucleolus. Considering a
substantial overlap between type I NADs and LAD regions,
their mode of inheritance is expected to be largely the same
(Kind et al., 2013; Vertii et al., 2019). However, it is unclear at the
moment how type II NADs are inherited in the daughter cells.

At the nucleosomal level, the chromatin landscaping at
mitotic exit is marked primarily by reappearance of histone
acetyl marks and loss of histone phosphorylation (Wang and
Higgins, 2013). The phosphatase PP1 plays an essential role in
removing mitotic H3 phosphorylation, including H3T3p,
H3S10p, H3T11p, and H3S28p. In this regard, Repo-Man, the
principal PP1-recruiting factor is targeted to anaphase
chromosomes and is required for timely removal of H3T3p
and H3T11p (Qian et al., 2011; Vagnarelli et al., 2011).
Al though Repo-Man is dispensable for chromat in
decondensation at mitotic exit, it has been shown to play a
role in nuclear envelope reformation in a PP1-independent
manner (Vagnarelli et al., 2011). In this regard, the nucleolar
protein Ki-67 might function redundantly with Repo-Man to
target PP1 onto anaphase chromosomes (Booth et al., 2014).
Further into mitosis, PNUTS, the PP1 nuclear targeting subunit
localizes PP1 to the reforming nuclei and its loading onto
chromatin has been linked to decondensation (Landsverk et al.,
2005). However, as this occurs following dephosphorylation of
Frontiers in Genetics | www.frontiersin.org 4
H3S10, the exact mechanism by which PNUTS facilitates
chromosome decompaction is not currently understood.
Removal of H3S10p leads to the dissociation of the
chromosome passenger complex and promotes re-
establishment of HP1 (heterochromatin protein 1) binding to
H3K9me3 (histone H3 lysine 9 trimethyl) to maintain
heterochromatin at mitotic exit. Establishment of the
H3K9me3-HP1 axis facilitates loading of cohesin by the
histone H4K20 methyltransferase SUV4-20H2 that is itself
targeted through HP1 binding. This initial loading of cohesin
seems to be crucial for the establishment of pericentromeric
heterochromatin as cells enter interphase (Hahn et al., 2013).
Furthermore, H4K20 methylation is in itself important for
finetuning chromatin compaction states during mitotic exit. In
this context, we have uncovered that loss of H4K20me leads to
abnormal chromatin decompaction in cells exiting mitosis,
which has significant functional implications in terms of DNA
replication and genome stability during the next cell cycle
(discussed below) (Shoaib et al., 2018).

Additional protein complexes have also been shown to play a
role in chromatin decondensation at the mitotic exit. Firstly,
removal of the mitotic kinase Aurora B from the chromatin
seems to be a prerequisite for chromatin decondensation and
nuclear envelope reformation. This is carried out by the
hexameric ATPase p97 that binds to the ubiquitylated form of
Aurora B and evicts it from the chromatin thereby, facilitating
chromatin decondensation (Ramadan et al., 2007). Apart from
p97, a second class of ATPases, RuvBL1 and RuvBL2, seems to be
essential for chromatin decondensation. Using purified
chromatin and Xenopus egg extracts to recapitulate mitotic
exit events in a cell free system, Magalska et al. showed that
decompaction of metaphase chromosomes is an active process
that requires the activity of these AAA-ATPases (Magalska et al.,
2014). Finally, nuclear actin filament (F-actin) polymerization
during early G1 phase of the cell cycle is thought to aid nuclear
volume expansion and chromatin decondensation (Baarlink
et al., 2017). In this context, the nuclear targeting of actin-
disassembl ing factor Cofi l in-1 during mitot ic exi t
spatiotemporally controls the assembly and turnover of F-actin
polymers in turn regulating chromatin reorganization and
nuclear architecture of the newly formed daughter cells
(Figure 1B).

Establishing proper ‘ground state’ chromatin structure entails
massive structural reorganization of the chromatin. Using single-
cell Hi-C analysis, Nagano et al. compared chromatin structure
in different cell cycle phases, starting from mitotic exit (Nagano
et al., 2017). As the cells exit mitosis, a dramatic expansion
of TADs containing active genes was observed, which
subsequently decreases as cells enter S phase. On the contrary,
compartmentalization increases as the cells progress through the
cell cycle and reaches its peak before next mitosis (Nagano et al.,
2017). More recently, detailed Hi-C mapping at defined time
points following mitotic exit was presented to describe the
reorganization of chromatin landscape specifically at the M-G1
transition (Abramo et al., 2019; Zhang et al., 2019). Similar to
Nagano et. al., the authors observed that TADs and A/B
BOX 1
Lamina-associated domains (LADs)
Condensed chromatin regions corresponding to B-type domains that lie in
proximity to the nuclear lamina (NL) are termed as lamina-associated domains
(LADs) (Van Steensel and Belmont, 2017). There are approximately 1,000–
1,500 LADs, typically 0.1–10 Mb in size that cover more than one-third of the
genome and are distributed along all chromosomes (Guelen et al., 2008). LADs
have sharply defined borders enriched for active promoters leading away from
the LADs, CpG islands and CTCF binding sites.

Nucleolar-associated domains (NADs)
Nucleolar-associated domains (NADs) are heterochromatic regions that
associate with the nucleolus (Nemeth et al., 2010; Van Koningsbruggen et al.,
2010). NADs are relatively gene-poor, enriched in satellite repeats and
approximately 0.1–10 Mb in size. NADs are formed by active processes
through tethering proteins in addition to mere physical proximity to the
nucleolus (Potapova and Gerton, 2019). There is substantial overlap between
NADs and LADs with some studies showing that these loci could switch
positions following mitotic exit (Kind et al., 2013; Ragoczy et al., 2014).
Additionally, NADs are also found to locate near to the NL in a subset of cells.
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compartments establish rapidly after mitosis and continue to
strengthen through the cell cycle. Local compartmentalization is
accompanied by contact domain formation in a “bottom-up”
manner where smaller sub-TADs are the first to form followed
by their convergence into multi-domain TAD structures.
Interestingly, Zhang et al. found that CTCF is strongly retained
at a significant proportion of its binding sites in mitotic
chromosomes, whereas, cohesin is completely evicted during
mitosis and is only loaded onto chromatin with delayed kinetics.
Intriguingly, cohesin binding is followed by the formation of
structural chromatin loops co-anchored with CTCF.
Furthermore, the authors showed that chromatin loops can
also be formed through contact between cis-regulatory
elements (promotor-enhancer loops). These data suggest that a
dynamic hierarchical network of mutually influential, yet distinct
forces drive post-mitotic chromatin landscaping.
CHROMATIN LANDSCAPING AT MITOTIC
EXITS MEETS NUCLEAR FUNCTION

The large-scale spatial segregation of locally folded loops, TADs,
compartments that define interphase 3D chromatin organization
is largely absent in mitotic chromosomes (Nagano et al., 2017;
Abramo et al., 2019). Thus, during mitotic exit, chromatin is not
simply decondensed but also needs to be landscaped into
hierarchically folded chromatin domains. Additionally, the de
novo establishment of functional chromatin domains needs to be
well coordinated with the genome-wide execution of DNA-based
processes in particular transcription and replication. In this
regard, it is unclear at the moment whether nuclear functions
(transcription, replication etc.) drive chromatin domain
unfolding or vice versa. Below we discuss how cells coordinate
chromatin reorganization and nuclear processes during their
transition to the next cell cycle.

Coordinated Transcription Around Mitosis
To achieve maximum chromatin condensation during mitosis,
the landscape of interphase chromatin including intra- and inter-
chromosomal contacts is lost. In this regard, many chromatin
modifiers and transcription factors are dissociated from
chromatin, facilitating segregation of genomic material into the
daughter nuclei (Kadauke and Blobel, 2013; Naumova et al.,
2013; Festuccia et al., 2017; Raccaud and Suter, 2018; Zaidi et al.,
2018). In contrast to previous reports that all bound proteins are
evicted from chromatin during mitosis, the histone H3K4
methyltransferase MLL1 (Mixed Lineage Leukemia 1) seems to
retain its chromatin association during mitosis and its loss
impairs the rapid reactivation of its target genes (Blobel et al.,
2009; Black et al., 2016). Thus, a comprehensive analysis of
mitotic chromosome bound proteome is required to identify
whether other chromatin modifying complexes similar to MLL1
remain on the mitotic chromosome and facilitate inheritance of
transcriptional competence in the daughter cells.

Additionally, recent evidence indicates ongoing transcription
of many genes during mitosis albeit at low levels, with a transient
Frontiers in Genetics | www.frontiersin.org 5
surge at the mitotic exit (Palozola et al., 2017). The initial
transcriptional activity following mitosis primarily relates to
the genes that are involved in growth and restoration of
daughter cells besides establishing the transcriptional
amplitude to be later maintained during interphase.
Intriguingly, around 50% of active genes exhibit this
transcriptional spike, which constitutes the maximum
transcriptional output per DNA copy observed at any point
during the cell cycle (Blobel et al., 2009; Black et al., 2016). In
terms of histone modifications, mitotic levels of histone H3
lysine 27 acetylation at the individual loci best predict the
transcriptional spike seen during the M-G1 transition. These
observations support the idea of ‘mitotic bookmarking’, where
retention of key chromatin factors during mitosis contributes to
maintenance of epigenetic memory for rapid establishment of
transcriptional and structural states of the genome in the
daughter cells (Kadauke and Blobel, 2013; Wang and Higgins,
2013; Ma et al., 2015; Zaidi et al., 2018). It is yet to be established
how these bookmarking factors drive the formation of TADs and
facilitate compartmentalization into active and inactive
compartments at the mitotic exit.

Establishing adequate chromatin compaction during G1
phase is also necessary for preventing unregulated
transcription. Using DNMT (DNA methyltransferase) and
HDAC (histone deacetylase) inhibitors, Brocks et al. showed
that disruption of repressive chromatin environment induces
cryptic transcription start sites encoded within long terminal
repeat retrotransposons (Brocks et al., 2017). Recent work has
further shown that condensed chromatin may not necessarily
impair transcription initiation but instead leads to inefficient
elongation resulting in accumulation of RNA polymerase II at
transcription site (Vankova Hausnerova and Lanctot, 2017a).
Upon decompaction, release of the RNA polymerase II leads to a
transient increase in transcriptional activity. This transient
outburst of transcription in cells undergoing mitotic exit
occurs likely as a result of the rapid decondensation of
chromatin before cells establish ground state chromatin
(Vankova Hausnerova and Lanctot, 2017b). Hence, controlled
decompaction during mitotic exit critically prevents increased
&/or untoward transcriptional activity until cells have advanced
further into the interphase (Figure 2A). This is in line with the
notion that regulated chromatin decompaction during M-G1
transition is essential to ensure well-controlled DNA-based
processes and thereby critical to maintainance of genomic
stability (Nair et al., 2017).

Chromatin Decondensation at Mitotic Exit
Is Coupled to DNA Replication Licensing
DNA replication is a tightly controlled chromatin process that
ensures faithful duplication of genetic material once per cell
cycle. Replication is temporally divided into two-steps, where
first the future replication origins are ‘licensed’ by loading of pre-
RC (pre-replication complex) starting in late telophase and
continued through G1 phase, followed by ‘firing’ of origins at
the start of S phase (Remus and Diffley, 2009; Fragkos et al., 2015;
Yeeles et al., 2015). Pre-RC assembly starts with loading of
February 2020 | Volume 11 | Article 103
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ORC1-6 (origin recognition complex subunits 1-6), whose
binding in higher eukaryotes is largely sequence independent
(Mechali et al., 2013). Later, CDC6 (Cell Division Cycle 6) and
CDT1 (Chromatin Licensing and DNA Replication Factor 1) act
Frontiers in Genetics | www.frontiersin.org 6
to recruit the replicative helicase MCM2-7 (minichromosome
maintenance protein complex 2-7) to ORC-bound genomic loci.
Since the assembly of ORC complex starts in late mitosis, it needs
to be coupled with chromosome decondensation and chromatin
FIGURE 2 | Regulated decompaction at M-G1 transition preserves genome stability. (A) A transient spike in transcriptional output from annotated TSSs
(transcription start sites) is observed during M-G1 transition while chromatin undergoes regulated decompaction and before cells enter interphase. However,
increased decompaction at this point could lead to dysregulation of gene activity wherein unplanned transcription at cryptic promoters or non-annotated TSSs could
lead to replication-transcription collisions in turn causing replication stress and genomic instability further into the cell cycle. (B) Regulated decompaction at M-G1
transition facilitates restricted licensing of origins in preparation for DNA replication during the following S phase. However, in case of abnormal decompaction,
increased chromatin accessibility is accompanied by over-licensing that can lead to replication stress and genome instability arising from aberrant origin firing at the
start of subsequent S phase.
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reorganization into functional territories and domains. The exact
mechanism of recruitment of ORC complex to chromatin is not
yet elucidated, however, it has been shown that ORC1, the largest
subunit of ORC complex, is the first subunit to bind to mitotic
chromosomes at the start of mitosis, followed by the rest of the
subunits in late mitosis (Kara et al., 2015). The absence of DNA
sequence specific binding of ORC complex allows a more
chromatin-regulated recruitment and loading process (Cayrou
et al., 2015). In this regard, the N-terminal BAH domain of
ORC1 has been shown to specifically recognize H4K20me2,
which in itself is being established on histone H4 around late
mitosis and early G1 phase (Kuo et al., 2012). ORC complex has
also been shown to interact with three repressive chromatin
marks namely, H3K9me3, H3K27me3 and H4K20me3 (Bartke
et al., 2010; Vermeulen et al., 2010). These findings strongly
argue for a key role of specific chromatin environment that
stabilizes ORC1 at human replication origins during mitosis and
early G1 phase. However, it is not clear at the moment if ORC
complex loading and eventually pre-RC loading is dictated or
affected by chromatin loops and TADs in the daughter nuclei.

Chromatin enforces specificity of replication initiation by
restricting non-specific ORC binding to origins (Devbhandari
et al., 2017; Kurat et al., 2017). Thus, tightly regulated
chromatin compaction threshold limits replication licensing
at the M/G1 transition. In particular, recent data from our
group showed that the H4K20me pathway plays a key role in
establishment of ground-state chromatin compaction upon
mitotic exit (Shoaib et al., 2018). In the absence of proper
H4K20me levels, aberrant loading of ORC and MCM2-7
complexes promotes single-stranded DNA formation and
DNA damage in the ensuing S phase. Importantly, restoration
of chromatin compaction at the cellular transition from mitosis
to G1 restricts uncontrolled replication licensing and thus
preserves genome stability. In line with this, Kurat et al.
previously showed that while chromatin does not completely
inhibit assembly of CMG (CDC45/MCM/GINS) complex, DNA
synthesis is strongly restricted due to the presence of chromatin
and requires additional factors for replisome progression (Kurat
et al., 2017). Additionally, “open chromatin” can induce
replication stress by facilitating activation of dormant
replication origins further threatening the fidelity of DNA
replication (Conti et al., 2010) (Figure 2B). Finally, re-
establishment of interphase chromatin domains is important
for maintaining replication timing. TADs represent stable
regulatory units of replication timing in a cell-type specific
manner and follow characteristics of active and repressed
compartments of the genome (Pope et al., 2014). In this
regard, DNA replication is synchronized with transcription,
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initiating within the TADs permissive for transcription and
later advance into repressive TAD regions. Aberrant chromatin
reorganization at mitotic exit could effectively abolish TAD
boundaries and hence, may endanger genomic integrity
through replication-transcription conflicts.
CONCLUSIONS/PERSPECTIVES

To coordinate and regulate various nuclear functions, chromatin
inherited by the daughter cells during mitotic exit maintains the
structural organization of their predecessor. It is an important
mechanism for cells to maintain their cellular identity. This
inevitably requires highly regulated chromatin decondensation,
which is dictated by both chromatin modifications and non-
histone chromatin structural proteins. The molecular events
leading to reversal of highly condensed chromosomes into loosely
organized interphase chromatin are not fully elucidated. In this
regard, several key questions require further investigations. A
comprehensive analysis of chromatin factors that remain on
mitotic chromosomes during cell division is lacking. Also, it is
unresolved at the moment how much mitotic bookmarking
contributes to reestablishment of interphase chromatin states and
how extensive it is throughout the genome. For certain genomic
regions such as LADs, there is a de novo establishment of chromatin
state (cLADs vs fLADs) at mitotic exit. It is unclear how cells push
certain LAD regions to the nuclear periphery while others remain in
the nuclear interior. The question remains if chromatin landscaping
at mitotic exit is largely a stochastic process or there is a method to
this randomness. By employing high throughput ‘omics’ approaches,
future studies will shed light on chromatin landscaping at mitotic
exit and how it regulates nuclear processes thereby maintaining
genome integrity and cell identity.
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