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Abstract
Historical text normalization often relies on
small training datasets. Recent work has
shown that multi-task learning can lead to
significant improvements by exploiting syn-
ergies with related datasets, but there has
been no systematic study of different multi-
task learning architectures. This paper eval-
uates 63 multi-task learning configurations
for sequence-to-sequence-based historical text
normalization across ten datasets from eight
languages, using autoencoding, grapheme-to-
phoneme mapping, and lemmatization as aux-
iliary tasks. We observe consistent, significant
improvements across languages when training
data for the target task is limited, but mini-
mal or no improvements when training data
is abundant. We also show that zero-shot
learning outperforms the simple, but relatively
strong, identity baseline.

1 Introduction

Historical text normalization is the task of map-
ping variant spellings in historical documents—
e.g., digitized medieval manuscripts—to a com-
mon form, typically their modern equivalent.
The aim is to make these documents amenable
to search by today’s scholars, processable by
NLP tools, and accessible to lay people. Many
historical documents were written in the absence
of standard spelling conventions, and annotated
datasets are rare and small, making automatic
normalization a challenging task (cf. Piotrowski,
2012; Bollmann, 2018).

In this paper, we experiment with datasets in
eight different languages: English, German, Hun-
garian, Icelandic, Portuguese, Slovene, Spanish,
and Swedish. We use a standard neural sequence-
to-sequence model, which has been shown to be
competitive for this task (e.g., Korchagina, 2017;
Bollmann, 2018; Tang et al., 2018). Our main fo-
cus is on analyzing the usefulness of multi-task

learning strategies (a) to leverage whatever super-
vision is available for the language in question
(few-shot learning), or (b) to do away with the
need for supervision in the target language alto-
gether (zero-shot learning).

Bollmann et al. (2017) previously showed that
multi-task learning with grapheme-to-phoneme
conversion as an auxiliary task improves a
sequence-to-sequence model for historical text
normalization of German texts; Bollmann et al.
(2018) showed that multi-task learning is particu-
larly helpful in low-resource scenarios. We con-
sider three auxiliary tasks in our experiments—
grapheme-to-phoneme mapping, autoencoding,
and lemmatization—and focus on extremely low-
resource settings.

Our paper makes several contributions:

(a) We evaluate 63 multi-task learning configu-
rations across ten datasets in eight languages,
and with three different auxiliary tasks.

(b) We show that in few-shot learning scenarios
(ca. 1,000 tokens), multi-task learning leads
to robust, significant gains over a state-of-
the-art, single-task baseline.1

(c) We are, to the best of our knowledge, the
first to consider zero-shot historical text nor-
malization, and we show significant improve-
ments over the simple, but relatively strong,
identity baseline.

While our focus is on the specific task of his-
torical text normalization, we believe that our re-
sults can be of interest to anyone looking to apply
multi-task learning in low-resource scenarios.

1We note that 1,000 tokens is more instances than is typ-
ically considered in few-shot learning; e.g., Kimura et al.
(2018) use up to 200 instances. We argue that for structured
prediction it is reasonable to assume more data, yet we also
consider scenarios down to as little as 100 instances.



105

Dataset/Language Tokens (Dev)

DEA German (Anselm) 45,996
DER German (RIDGES) 9,712
EN English 16,334
ES Spanish 11,650
HU Hungarian 16,707
IS Icelandic 6,109
PT Portuguese 26,749
SLB Slovene (Bohorič) 5,841
SLG Slovene (Gaj) 20,878
SV Swedish 2,245

Table 1: Historical datasets used in our experiments
and the size of their development sets. (Size of the
training sets is fixed in all our experiments.)

Datasets We consider ten datasets spanning
eight languages, taken from Bollmann (2019).2

Table 1 gives an overview of the languages and
the size of the development set, which we use for
evaluation.

2 Model architecture

We use a standard attentional encoder–decoder ar-
chitecture (Bahdanau et al., 2014) with words as
input sequences and characters as input symbols.3

Following the majority of previous work on this
topic (cf. Sec. 5), we limit ourselves to word-by-
word normalization, ignoring problems of contex-
tual ambiguity. Our model consists of the follow-
ing parts (which we will also refer to using the
bolded letters):

• Source embedding layer: transforms input
characters into dense vectors.

• Encoder: a single bidirectional LSTM that
encodes the embedded input sequence.

• Attention layer: calculates attention from the
encoded inputs and the current decoder state
using a multi-layer perceptron (as in Bah-
danau et al., 2014).

• Target embedding layer: transforms output
characters into dense vectors.

• Decoder: a single LSTM that decodes the en-
coded sequence one character at a time, using

2The datasets are available from:
https://github.com/coastalcph/histnorm

3Our implementation uses the XNMT toolkit (Neubig
et al., 2018, https://github.com/neulab/xnmt).

the attention vector and the embedded previ-
ous output characters as input.

• Prediction layer: a final feed-forward layer
that linearly transforms the decoder output
and performs a softmax to predict a distribu-
tion over all possible output characters.

Hyperparameters We tuned our hyperparame-
ters on the English development section. We use
randomly initialized embeddings of dimensional-
ity 60, hidden layers of dimensionality 300, a
dropout of 0.2 and a batch size of 30. We train
the model for an unspecified number of epochs,
instead relying on early stopping on a held-out
validation set. Since we experiment with vary-
ing amounts of training data, we choose to derive
this held-out data from the given training set, using
only 90% of the tokens as actual training data and
the remaining 10% to determine early stopping.

3 Multi-task learning

Multi-task learning (MTL) is a technique to im-
prove generalization by training a model jointly
on a set of related tasks. We follow the com-
mon approach of hard parameter sharing sug-
gested by Caruana (1993), in which certain parts
of a model architecture are shared across all tasks,
while others are kept distinct for each one. Such
approaches have been applied successfully to a va-
riety of problems, e.g., machine translation (Dong
et al., 2015), sequence labelling (Yang et al.,
2016; Peng and Dredze, 2017), or discourse pars-
ing (Braud et al., 2016).

Auxiliary tasks We experiment with the follow-
ing auxiliary tasks:

• Autoencoding. We use data extracted from
Wikipedia4 and train our model to recreate
the input words. In the normalization task,
large parts of the input words often stay the
same, so autoencoding might help to rein-
force this behavior in the model.

• Grapheme-to-phoneme mapping (g2p).
This task uses the data by Deri and Knight

4Whenever possible, we used the dumps provided by
the Polyglot project: https://sites.google.com/
site/rmyeid/projects/polyglot
Since an Icelandic text dump was not available from Poly-
glot, we generated one ourselves using the Cirrus Extractor:
https://github.com/attardi/wikiextractor
All dumps were cleaned from punctuation marks.

https://github.com/coastalcph/histnorm
https://github.com/neulab/xnmt
https://sites.google.com/site/rmyeid/projects/polyglot
https://sites.google.com/site/rmyeid/projects/polyglot
https://github.com/attardi/wikiextractor
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(2016) to map words (i.e., sequences of
graphemes) to sequences of phonemes.
Bollmann et al. (2017) previously showed
that this task can improve historical nor-
malization, possibly because changes in
spelling are often motivated by phonological
processes, an assumption also made by other
normalization systems (Porta et al., 2013;
Etxeberria et al., 2016).

• Lemmatization. We use the UniMorph
dataset (Kirov et al., 2018)5 to learn map-
pings from inflected word forms to their lem-
mas. This task is similar to normalization in
that it maps a set of different word forms to
a single target form, which typically bears a
high resemblance to the input words.

Since we train separate models for each histori-
cal dataset, we always use auxiliary data from the
same language as the dataset.

Training details When training an MTL model,
we make sure that each training update is based
on a balanced combination of main and auxiliary
task inputs; i.e., for each batch of 30 tokens of the
historical normalization task, the model will see
10 tokens from each auxiliary task. Epochs are
still counted based on the normalization task only.
This way, we try to make up for the imbalanced
quantity of different auxiliary datasets.

3.1 Experiment 1: What to share?
In previous work on multi-task learning, there is
no clear consensus on which parts of a model
to share and which to keep separate. Bollmann
et al. (2017) share all parts of the model except for
the final prediction layer, while other multi-task
sequence-to-sequence models keep task-specific
encoders and decoders (cf. also Sec. 5). In prin-
ciple, though, the decision to share parameters be-
tween tasks can be made for each of the encoder–
decoder components individually, allowing for
many more possible MTL configurations.

Setup We explore the effect of different shar-
ing configurations. The architecture described in
Sec. 2 leaves us with 2

6
= 64 possible model con-

figurations. When all parameters are shared, this is
identical to training a single model to perform all
tasks at once; when none are shared, this is iden-
tical to a single-task model trained on historical

5https://unimorph.github.io/

0% 20% 40% 60% 80%

SEADP
SEATD
SADP

SEATP
SED

ETDP
SETP
SETD
⋯

No MTL
⋯

AT
ST
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ATD

Figure 1: Normalization accuracy on the English-1k
dataset, trained jointly with all three auxiliary tasks;
letters indicate which model components (cf. Sec. 2)
are shared between tasks.

normalization only. We identify an MTL configu-
ration using letters (cf. the bold letters from Sec. 2)
to indicate which parts of the model are shared;
e.g., an “SE” model would share the source em-
beddings and the encoder, an “SEATD” model
would share everything except the final prediction
layer, and so on.

In Experiment 1, we only use the first 1,000 to-
kens of the English historical dataset for training.
We combine this with all three auxiliary tasks (us-
ing their full datasets) and train one MTL model
for each of the 64 different sharing configurations.

Results Figure 1 shows an excerpt of the re-
sults, evaluated on the dev set of the English
dataset. The best MTL model achieves a normal-
ization accuracy of 75.9%, while the worst model
gets 58.6%. In total, 49 configurations outperform
the single-task model, showing the general effec-
tiveness of the MTL approach. Sharing more is
generally better; nine out of the top ten configu-
rations share at least four components. Figure 2
visualizes the accuracy distribution by the number
of shared components in the MTL model, support-
ing this conclusion.

3.2 Experiment 2: Which auxiliary tasks?
In the previous experiment, we trained the mod-
els using all three auxiliary tasks at the same time.
However, not all of these tasks might be equally
helpful for learning the normalization task. While
Bollmann et al. (2017) show the effectiveness of

https://unimorph.github.io/
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1 2 3 4 5

60%

65%

70%

75%

Figure 2: Quartiles of the normalization accuracies (on
English-1k) by the number of shared components in the
MTL model; bottom dashed line indicates no shared
components (= single-task), top dashed line indicates
all (= 6) shared components.

the grapheme-to-phoneme task, they only evaluate
on German, and autoencoding and lemmatization
have so far not been evaluated at all for improving
historical text normalization.

Setup We want to investigate the improvements
from each auxiliary task in isolation compared
to (a) the single-task baseline and (b) the pre-
vious approach of training with all three auxil-
iary tasks simultaneously. For this, we select
the best MTL configuration from Sec. 3.1, which
is to share everything except the target embed-
dings (“SEADP”), and train one single-task model
and four MTL models per dataset: one for each of
the three auxiliary tasks, and one that uses all three
tasks at the same time.

As before, we only use the first 1,000 tokens of
each historical dataset. This also makes the results
more comparable across datasets, as the size of the
training set for the main task can affect the useful-
ness of multi-task learning.6

Results Figure 3 shows the error reduction of
the MTL models compared to the single-task
setup. For most datasets, MTL improves the re-
sults; the main exception is Hungarian, where
all three auxiliary tasks lead to a loss in accu-
racy. The results show that not all auxiliary tasks

6The same is true, of course, for the size of the auxiliary
datasets. We try to balance out this factor by balancing the
training updates as described in Sec. 3 “Training details”, but
we also note that we do not observe a correlation between
auxiliary dataset size and its effectiveness for MTL in Fig. 3.

DEA DER EN ES HU IS PT SLB SLG SV

-10%

0%

10%

20%

30% Auxiliary task
Autoencoding
Grapheme-to-phoneme
Lemmatization

Figure 3: Error reduction for the SEADP configuration
by auxiliary task, using 1,000 tokens from the historical
datasets for training.

are equally beneficial. Autoencoding provides
the largest error reduction in most cases, while
lemmatization is often slightly worse, but pro-
vides the best result for German (Anselm) and
Swedish. The grapheme-to-phoneme task, on the
other hand, performs worst on average, yielding
much less benefits on German (Ridges) and En-
glish, and even increases the error on Swedish.

Table 2a shows the accuracy scores for all
datasets and models. The full MTL model—
training jointly on all tasks—only achieves the
best performance on four of the datasets. Since
the dev sets used for this evaluation vary strongly
in size, we also calculate the micro-average of the
accuracy scores, i.e., the accuracy obtained over
the concatenation of all datasets. Here, we can see
that using only autoencoding as an auxiliary task
actually produces the highest average accuracy.

3.3 Experiment 3: How much training data?

All previous experiments have used 1,000 tokens
from each historical dataset for training. Bollmann
et al. (2018) show that the benefits of multi-task
learning depend on training data quantity, so it is
unclear whether the findings generalize to smaller
or larger datasets.

Setup We analyze the benefit of MTL depend-
ing on the amount of training data that is used for
the main task. We do this by training MTL models
(using all three auxiliary tasks, as in Sec. 3.1) with
varying amounts of historical training data, rang-
ing from 100 tokens to 50,000 tokens. Different
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Dataset Single Multi-task

Autoenc Lemma g2p ALL 3

DEA 54.84 56.41 56.55 55.99 56.52
DER 56.72 65.05 63.79 60.25 64.49
EN 66.95 76.94 73.84 68.72 72.01
ES 74.68 77.87 76.97 78.45 79.09
HU 42.44 40.39 40.49 40.07 38.64
IS 63.40 67.31 67.02 66.31 68.51
PT 72.23 76.28 73.89 74.27 75.55
SLB 74.06 74.44 74.54 75.59 74.39
SLG 86.34 87.86 86.15 87.40 89.45
SV 69.98 70.29 72.34 65.97 73.05

Micro-Avg 64.46 67.46 66.47 65.79 67.04

(a) Single-task vs. multi-task models

Dataset Best in (a) from Bollmann (2019)

Norma SMT NMT

DEA 56.55 61.27 58.60 52.74
DER 65.05 73.62 75.04 60.61
EN 76.94 84.53 83.81 66.93
ES 79.09 86.21 85.89 76.32
HU 42.44 55.75 53.00 40.52
IS 68.51 70.86 72.30 62.80
PT 76.28 82.94 82.00 71.43
SLB 75.59 78.97 82.90 73.83
SLG 89.45 84.36 90.00 86.31
SV 73.05 74.54 78.51 66.43

Micro-Avg 68.13 73.30 73.07 63.80

(b) Comparison to previous work

Table 2: Normalization accuracy on dev sets after training on 1,000 tokens. Best results highlighted in bold.

sharing configurations might conceivably give dif-
ferent benefits based on the training set size. We
therefore evaluate each of the top three MTL con-
figurations from Sec. 3.1, as well as the single-task
model, across different data sizes.

Results Figure 4 shows learning curves for all of
our historical datasets. The quantity of improve-
ments from MTL differs between datasets, but
there is a clear tendency for MTL to become less
beneficial as the size of the normalization train-
ing set increases. In some cases, using MTL with
larger training set sizes even results in lower accu-
racy compared to training a single-task model to
do normalization only. This suggests that multi-
task learning—at least with the auxiliary tasks
we have chosen here—is mostly useful when the
training data for the main task is sparse.

Since the accuracy scores of the different mod-
els are often within close range of each other, Fig-
ure 5 visualizes the three MTL configurations in
terms of error reduction compared to the single-
task model, averaged over all ten datasets. This
again highlights the decreasing gains from MTL
with increasing amounts of training data.

3.4 Comparison to previous work
Bollmann (2019) compares normalization models
when trained with different amounts of data, in-
cluding a setting with 1,000 tokens for training,
allowing us to directly compare our results with
those reported there.7 These results are shown in
Table 2b. Comparing our single-task system with

7Bollmann (2019) only shows graphical plots for
these results, but the exact figures were released at:
https://github.com/coastalcph/histnorm/
blob/master/appendix_tab6.pdf

their NMT model (which is very similar to ours),
we see that the scores are overall comparable, sug-
gesting that our implementation is sound. At the
same time, our best scores with MTL are still far
below those produced by SMT or the rule-based
“Norma” tool. This, unfortunately, is a negative
result for the neural approach in this low-resource
scenario, and the diminishing gains from MTL
that were shown in Sec. 3.3 suggest that our pre-
sented approach will not be sufficient for elevating
the neural model above its non-neural alternatives
for this particular task.

3.5 Experiment 4: Zero-shot learning

Most previous work on historical text normaliza-
tion has focused on a supervised scenario where
some labeled data is available for the target do-
main, i.e., the particular historical language you
are interested in. Since spelling variation is highly
idiosyncratic in the absence of normative spelling
guidelines, models are not expected to general-
ize beyond specific language stages, or sometimes
even manuscript collections. This means that
many historical text normalization projects require
resources to annotate new data. This paper is the
first to experiment with a zero-shot learning sce-
nario that leverages existing data from other lan-
guages, but assumes no labeled data for the target
language.

Setup For the zero-shot experiments, we use the
same model as for the single-task baseline; in
other words, all layers are shared between all tasks
and languages. Instead, to allow the model to
discern between languages and tasks, we prepend
two extra symbols to all model inputs: a lan-

https://github.com/coastalcph/histnorm/blob/master/appendix_tab6.pdf
https://github.com/coastalcph/histnorm/blob/master/appendix_tab6.pdf
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Hungarian Icelandic Portuguese
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Slovene (Bohorič)
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Slovene (Gaj)
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Spanish
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Figure 4: Learning curves for all datasets, showing the normalization accuracy of a single-task and three multi-task
learning models in relation to the training set size; note that the x-axis is log-scaled.
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0%
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20%

30% SEATD
SEADP
SADP

Figure 5: Error reduction for three MTL configurations
by training set size, (micro-)averaged over all datasets.

guage identifier and a task identifier. For each lan-
guage, we then train a single model on all tasks—
normalization, lemmatization, autoencoding, and
grapheme-to-phoneme transduction—and all lan-
guages, except for the normalization task of the
target language. This way, the model can observe
data from the normalization task (albeit in other
languages) and from the target language (albeit
from auxiliary tasks only), but does not see any
normalization data from the target language. In
those cases where there are two datasets from the
same language, we leave out both of them from
the training step. The model is similar to pre-
vious work on zero-shot neural machine transla-
tion (Johnson et al., 2016).

As before, we include only 1,000 tokens from
each historical dataset for training. In each train-
ing update, we use an equal number of samples
from each dataset/task combination, and define an
epoch to consist of 1,000 samples from each of
these combinations. Since we do not want to feed
the model any normalization data from the tar-
get language during training, we cannot use early
stopping, but instead train for a fixed number of
10 epochs.

Results Table 3 shows the accuracy of zero-shot
normalization compared to the naive identity base-
line, i.e., the accuracy obtained by simply leaving
the input word forms unchanged. The zero-shot
approach improves over this baseline for half of
the datasets, sometimes by up to 12 percentage
points (DER). Micro-averaging the results shows
an overall advantage for zero-shot learning.

Dataset Identity Zero-shot

DEA 30.16 40.94
DER 43.57 55.92
EN 75.47 56.31
ES 72.29 64.39
HU 17.81 20.58
IS 47.77 42.95
PT 65.18 67.64
SLB 39.84 50.21
SLG 85.58 84.99
SV 59.24 50.65

Micro-Avg 50.17 52.96

Table 3: Normalization accuracy on dev sets for zero-
shot experiments. Best results highlighted in bold.

4 Analysis

The experiment in Sec. 3.2 has shown that not all
auxiliary tasks are equally useful; furthermore, au-
toencoding is, on average, the most useful auxil-
iary task of the three, closely followed by lemmati-
zation. This gives rise to the hypothesis that MTL
mostly helps the model learn the identity map-
pings between characters.

To analyze this, we feed the historical data into
the auxiliary models; i.e., we treat them as if
they were a historical text normalization model.
We then correlate their normalization accuracy
with the error reduction over the baseline of the
MTL model using this auxiliary task. Figure 6a
shows a strong correlation for the autoencoding
task, suggesting that the synergy between autoen-
coding and historical text normalization is higher
when the two tasks are very related. Figure 6b
shows the same correlation for lemmatization.

We can also compare the error reduction from
MTL to the identity baseline (cf. Tab. 3). Figure 7
shows the correlation of these scores for the full
MTL model trained with all three auxiliary tasks.8

The strong correlation suggests that the regular-
ization effect introduced by MTL is particularly
helpful with tasks where there is a strong similar-
ity between input and output; or, in other words,
that multi-task learning prevents the model from
over-generalizing based on the training data.

The previous correlation scores only consider
the performance of models trained on 1,000 tokens
of historical data. Sec. 3.3 showed that the benefit
of MTL diminishes when the size of the historical
training sets gets larger. Figure 8 presents learning

8The correlation is similar when using longest common
subsequence or Levenshtein distance instead of accuracy.
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(a) Autoencoding
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(b) Lemmatization

Figure 6: Correlations (with 95% confidence intervals) between the performance of an auxiliary task model applied
to normalization data and the error reduction when using this task in a multi-task learning setup.
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Figure 7: Correlation (with 95% confidence interval)
between the identity baseline and the error reduction of
the full MTL model with all three auxiliary tasks.

curves that have been micro-averaged over all ten
datasets, but evaluated on different subsets of the
data: (a) tokens that have been seen during train-
ing (“knowns”) or not (“unknowns”); and (b) to-
kens that stay identical in the reference normaliza-
tion or not. On average, the performance of the
MTL models is comparable to that of the single-
task model for known tokens and non-identity nor-
malizations. In other words, most of the gain
from MTL comes from helping the model learn
the identity mappings, which becomes less rele-
vant the more historical training data is available.

5 Related work

On previous approaches to historical text normal-
ization, Bollmann (2019, Sec. 2) gives an exten-
sive overview. Common approaches include rule-
based algorithms—with either manually crafted

or automatically learned rules—or distance met-
rics to compare historical spellings to modern lex-
icon forms (Baron and Rayson, 2008; Bollmann,
2012; Pettersson et al., 2013a). Finite-state trans-
ducers are sometimes used to model this, but also
to explicitly encode phonological transformations
which often underlie the spelling variation (Porta
et al., 2013; Etxeberria et al., 2016).

Character-based statistical machine transla-
tion (CSMT) has been successfully applied to nor-
malization on many languages (Pettersson et al.,
2013b; Scherrer and Erjavec, 2016; Domingo and
Casacuberta, 2018); neural encoder–decoder mod-
els with character-level input can be seen as
the neural equivalent to the statistical MT ap-
proach (Bollmann et al., 2017; Tang et al., 2018)
and have been shown to be competitive with
it (Robertson and Goldwater, 2018; Hämäläinen
et al., 2018), although Bollmann (2019) suggests
that they are still inferior to CSMT in low-resource
scenarios.

All these methods rely on individual word
forms as their input; there is almost no work
on incorporating sentence-level context for this
task (but cf. Jurish, 2010).

MTL architectures In Sec. 3.1, we explored
what to share between tasks in our multi-task ar-
chitecture. A common approach is to share only
the first layers (e.g., Yang et al., 2016; Peng and
Dredze, 2017). Multi-task encoder–decoder mod-
els will often keep the whole encoder and decoder
task- or language-specific (Dong et al., 2015; Lu-
ong et al., 2015). Firat et al. (2016) explore the
effect of sharing the attentional component across
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Figure 8: Learning curves, micro-averaged over all datasets, for different subsets of the data.

all languages, while Anastasopoulos and Chiang
(2018) compare both parallel and cascading model
configurations.

A different MTL approach is to share all parts
of a model, but prepend a task-specific symbol to
the input string to enable it to learn task-specific
features (cf. Sec. 3.5). Milde et al. (2017) use
this approach for grapheme-to-phoneme conver-
sion; Kann et al. (2017) apply it to morphological
paradigm completion.

Auxiliary tasks for MTL For which auxiliary
task(s) to use (Sec 3.2), few systematic studies ex-
ist. Most approaches use tasks that are deemed
to be related to the main task—e.g., combining
machine translation with syntactic parsing (Kiper-
wasser and Ballesteros, 2018)—and justify their
choice by the effectiveness of the resulting model.
Bingel and Søgaard (2017) analyze beneficial task
relations for MTL in more detail, but only consider
sequence labelling tasks. For zero-shot learning
(Sec. 3.5), we use an architecture very similar to
Johnson et al. (2016), also used for grapheme-to-
phoneme mapping in Peters et al. (2017).

6 Conclusion

We performed an extensive evaluation of a neu-
ral encoder–decoder model on historical text nor-

malization, using little or even no training data for
the target language, and using multi-task learn-
ing (MTL) strategies to improve accuracy. We
found that sharing more components between
main and auxiliary tasks is usually better, and au-
toencoding generally provides the most benefit for
our task. Analysis showed that this is mainly be-
cause MTL helps the model learn that most char-
acters should stay the same, and that its beneficial
effect vanishes as the size of the training set in-
creases. While our models did not beat the non-
neural models of Bollmann (2019), we believe our
work still provides interesting insights into the im-
pact of MTL for low-resource scenarios.
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Eva Pettersson, Beáta Megyesi, and Jörg Tiedemann.
2013b. An SMT approach to automatic annotation
of historical text. In Proceedings of the Workshop
on Computational Historical Linguistics at NODAL-
IDA 2013, NEALT Proceedings Series 18, pages 54–
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