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ARTICLE

Southern Africa crustal anisotropy reveals coupled
crust-mantle evolution for over 2 billion years
H. Thybo 1,2,3*, M. Youssof4 & I.M. Artemieva 5

The long-term stability of Precambrian continental lithosphere depends on the rheology of

the lithospheric mantle as well as the coupling between crust and mantle lithosphere, which

may be inferred by seismic anisotropy. Anisotropy has never been detected in cratonic crust.

Anisotropy in southern Africa, detected by the seismological SKS-splitting method, usually is

attributed to the mantle due to asthenospheric flow or frozen-in features of the lithosphere.

However, SKS-splitting cannot distinguish between anisotropy in the crust and the mantle.

We observe strong seismic anisotropy in the crust of southern African cratons by Receiver

Function analysis. Fast axes are uniform within tectonic units and parallel to SKS axes,

orogenic strike in the Limpopo and Cape fold belts, and the strike of major dyke swarms.

Parallel fast axes in the crust and mantle indicate coupled crust-mantle evolution for more

than 2 billion years with implications for strong rheology of the lithosphere.
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An enigmatic feature of Precambrian continental litho-
sphere is its long-term stability1 after formation and
amalgamation more than 2 billion years ago. The stability

of the lithosphere system of crust and mantle depends primarily
on the rheology of the lithospheric mantle2,3 as the part of
the lithosphere directly affected by mantle flow, and also on
the degree of coupling between the crust and mantle since
cratonisation.

The early-to-late Archaean cratons in southern Africa con-
stitute a natural laboratory for studies of the formation of
cratons and their retention for billions of years. Surface geologic
mapping and chronology, together with results from isotope
studies on xenoliths, show that the cratonic crust of southern
Africa formed and stabilised in the Archaean4 and that it was
reworked by a series of Proterozoic and Phanerozoic tectono-
magmatic events5.

The depth extent of the southern African cratons has been
studied by several methods that indicate substantially different
estimates for the thickness of the lithosphere. Seismic body-wave
tomography, by assuming an isotropic mantle, indicates litho-
sphere thicknesses of up to 250 km by application of ray-theory
methods6 and up to 350 km by application of finite-frequency
methods7, respectively. Seismic surface wave tomography indi-
cates that the lithosphere thickness is around 175 km when
possible anisotropy is not taken into account8. Surface wave
inversion taking anisotropy into account indicates that the upper
crust is highly anisotropic in the Limpopo Belt, and that both the
mantle lithosphere and the asthenosphere are anisotropic with
different directions of the fast axes9.

Anisotropy is direction-dependent seismic velocity. It is
most often detected by the so-called SKS-splitting method that
identifies the accumulated anisotropy between the Earth’s core
and the surface by measuring the travel-time difference
between the horizontally (SH) and vertically (SV) polarised
waves. This method cannot provide depth control, and it is
mostly assumed that the main anisotropy resides in the litho-
spheric mantle or the asthenosphere10. The causes of aniso-
tropy are alternating isotropic layers with different elastic
properties11, alignment of joints or microcracks filled with
water or melts12–14, foliated metamorphic rocks15 and lattice
preferred orientation (LPO) of anisotropic minerals. Olivine
minerals are highly anisotropic and develop preferred
lattice orientation as response to finite strain, such that mantle
peridotite often exhibits strong anisotropy16–19.

Seismic studies provide insight into the structure of the cra-
tonic mantle20–23 but also introduce some controversy regarding
the evolution of the lithosphere. Earlier seismic studies infer
deformation below the lithosphere by mantle flow with the fast
direction of seismic anisotropy being parallel to present plate
motion23 or anisotropy frozen into the lithospheric mantle21,24.
Earlier observations of strong crustal anisotropy have been
restricted to tectonically young areas25–28.

We present the first observation of strong anisotropy in
cratonic crust from analysis of seismic data from southern
Africa. We analyse the nature of the evolved cratonic litho-
sphere by evaluating seismic anisotropy in the crust and cor-
relating it with crustal terranes29, major dyke swarms30 and
anisotropy determined by SKS splitting21. We find that the fast
axes of the anisotropy are homogeneous within the main tec-
tonic units, and that they are parallel to the fast axes deter-
mined by SKS analysis, to the orogenic strike in the Limpopo
and Cape fold belts, and to the strike of major dyke swarms.
Parallel fast axes in the crust and mantle indicate that the crust
and mantle have been coupled since the amalgamation 2 billion
years ago, which requires strong rheology of the whole
lithosphere.

Results
Seismic observations of anisotropy. Analysis of SKS wave
motion is a frequently used technique for determination of azi-
muthal anisotropy, yielding high lateral resolution of the total
anisotropy along ray paths but without depth control. For ana-
lysis of anisotropy in the crust, we instead apply the receiver
function (RF) technique for determination of P- to S-wave (Ps)
conversions at interfaces based on the high-quality data of the
Southern African Seismic Experiment (SASE) (Fig. 1). In contrast
to earlier assumptions of weak crustal anisotropy (less than a
quarter of the total anisotropy along the whole ray path for core
phases) for the earlier analysed half of the SASE stations21, our
results show that the crustal contribution to the total anisotropy is
significant at all SASE stations. It is on average 30% (reaching
>50% at some stations) of the total SKS splitting, and the direc-
tion of the fast axis (φ) for the crustal anisotropy is uniform
within each tectonic block (Fig. 1).

The current analysis is based on 6198 RFs from 220 teleseismic
events (Mw ≥ 5.5) with broad distribution of azimuth and
distance (Fig. 2). The SASE seismic data21 were acquired by 55
broadband instruments deployed at 82 locations during the
period from April 1997 to July 1999. Average spacing between
stations is ca. 100 km in a ca. 2000-km-long SW–NE striking
corridor across the Kalahari Craton (Fig. 1). We calculate the RFs
by using the LQT method31,32, which suppresses the almost
vertical P-wave motion energy by decomposing the seismic
wavefield into the L, Q, and T components, i.e., the compressional
wave (P), the vertically polarised S-wave (SV) and the
horizontally polarised S-wave (SH) (cf. Methods section).

Observation of energetic transverse (PSH-RF) phases and
different travel times of radial (PSV) and transverse (PSH) RFs
(Fig. 3) shows that earlier assumptions of an isotropic crust21,33,34

cannot explain the seismic data. In the following, we use the terms
PSV-RF phases for the radial component in the plane of the back
azimuth and the vertical direction and PSH-RF phases for the
transverse-component phases as inherent in the LQT method and
the software used for calculation of synthetic RFs35. Our calculated
RFs show azimuthally dependent features within the first 5 s,
including periodic amplitude variation of the Ps phase, polarity
reversals and Ps delay undulation (Fig. 4), which are the
discriminators for crustal anisotropy36. Stacks of the RFs in
back-azimuth bins from all stations within individual tectonic
units of the cratons29 demonstrate that the RF observations are
related to crustal anisotropy and not determined by local structure
at the individual stations (Supplementary Figs. 1–4).

Quantifying anisotropy by modelling. Azimuthal anisotropy is
indicated by the time delay (δt) between the radial (SV) and
transverse (SH) converted waves13. The average δt between PSV
and PSH generated at the base of the lower cratonic crust (Fig. 3)
is 0.19 s for the Archaean cratonic areas (smallest in the Limpopo
Belt, 0.16 s) and 0.34 s in the Cape and Namaqua–Natal post-
Archaean fold belts (Supplementary Table 1). These delay times
originate in the crust and amount to at least 30–55% of the
S-wave splitting of 0.62 s measured on SKS phases in the Kaap-
vaal and Zimbabwe cratons21. This is remarkable as the crust is
only 40 km thick in comparison with the >160-km-thick litho-
spheric mantle. This is the first observation ever made of strong
anisotropy in Archaean cratonic crust. Crustal anisotropy is
usually considered negligible in interpretations of the observed
shear-wave splitting of SKS phases for determination of aniso-
tropy in the upper mantle21,23. Our new observation suggests that
this assumption may not be true, not even in cratonic regions.

All sections show phase reversal of the transverse PSH-RF
component with a back-azimuthal period of 2π (Fig. 4) as
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predicted for an anisotropic medium36,37. Stacking is required to
accurately determine the time delay δt but will lead to
insignificant energy in the stacked trace due to the polarity
change if applied directly to the RFs. We therefore stack only
positive polarity radial PSV- and transverse PSH-RFs, which
provides sufficient signal/noise ratio to identify the phases instead
of attempting to make phase reversals before stack, because such
correction may affect the results. This approach is justified by the
fact that we stack signals with a period of about 1.5 s and
the determined time delay δt is generally <0.5 s, which makes the
widening effect insignificant on the stacked signals with slightly
different travel times. The small observed undulations in arrival
time of the phases due to anisotropy are insignificant compared
with the period of the waveform, and this allows for direct
stacking without prior alignment. Therefore, by this approach, we
obtain a robust estimate of the minimum delay time caused by
crustal anisotropy.

Our RFs (Fig. 3) include two converted phases from the top of
the lower crust (labelled LC) and from the Moho (labelled M)
that both show evidence for anisotropy. The azimuthal amplitude
variation of these phases is sinusoidal with a phase difference of π,
which we model with synthetic RFs (Fig. 4, Supplementary
Figs. 1–4) calculated by a ray-based algorithm35 that incorporates
both dipping anisotropy and independently dipping interfaces. By
visual inspection and comparison, we conclude that average
anisotropic velocity models (Table 1) explain the main features of
the observed RFs from Kaapvaal and Limpopo, although the
determined parameters are non-unique due to uncertainties and
nonlinearity. The signal-to-noise ratio is too low to permit
application of quantitative measures of the correlation between
synthetic and observed seismograms as also found in studies of
tectonically young regions25–28. The modelled relative velocity
between the fast and slow axes is very high (10%) in Kaapvaal
lower crust and 7% in the whole crust of the Limpopo Belt.

For the Kaapvaal and eastern Zimbabwe cratons, the transverse
PSH-RF (Fig. 4a) identifies a polarity change at a back azimuth of
40° (and 220°) ± 20° for the strong phase M from the Moho and at
100° ± 20° for the weak phase LC from the top of the lower crust
(Fig. 4a), which indicates the directions of the fast polarisation axes
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Fig. 1 Anisotropy variation in southern Africa: fast polarisation direction for a crustal anisotropy from from surface to Moho based on RFs, b total anisotropy
determined from SKS splitting21 (another scale than in (a)), c sign of difference in arrival times of transverse SH and radial SV phases (dt) where size of
station symbols indicates quality of the determined difference. Abbreviations: ZC Zimbabwe Craton, LB Limpopo Belt, KC Kalahari Craton, NNFB
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abbreviated FB. h Map shows the study area. All the 82 stations from the SASE experiment are analysed for crustal anisotropy.

SASE stations
PRFs events

Fig. 2 Event distribution for the calculation of receiver functions. Red stars:
seismic events, blue area: region covered with seismic stations during the
SASE experiment. The events cover all back-azimuth directions with a
broad distribution of epicentral distances.
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(φ) in the lower and upper crust. The 2π periodicity of the LC and
M phases and the π/2 phase lag between the radial PSV and
transverse PSH components of the LC phase show that the
symmetry axis of the anisotropy cannot be horizontal36–38. In
western Zimbabwe Craton, the direction of the fast polarisation
axes is less uniform between 50 and 70° (Supplementary Table 1).
The direction of the fast axes in the Limpopo Belt and the Cape
Fold Belt (Fig. 4b) is 70° ± 20° for the crust, which is distinctively
different from the Kaapvaal and Zimbabwe cratons (Fig. 1a).

Discussion
It is characteristic for the Limpopo Belt and western Zimbabwe
Craton that the transverse PSH component arrives earlier than the
radial PSV component, whereas the opposite is the case in other
areas, although with some scatter (Fig. 1c, Supplementary
Table 1). This observation can be explained by the dip of the fast
axis, which we model to be 50° from vertical in most of Kaapvaal

and 35° in the Limpopo and Cape fold belts (Table 1). Sensitivity
analysis (Supplementary Fig. 5) indicates that the uncertainties of
the determined anisotropy are around ±4% for the strength and
±10° for the plunge angle around the chosen best parameters by
assuming a standard deviation of δt= ± 0.1 s. However, the
strong nonlinearity of the relations between strength, plunge
angle and δt makes direct estimation of uncertainties non-unique,
cf. Supplementary Figs. 5 and 6.

The fast directions for the crustal and the SKS anisotropy are
generally parallel (Figs. 1a, b and 5) although the anisotropy is
much less coherent in the SKS-splitting results than in our crustal
results from RF (Figs. 1, 5, 6 and Supplementary Fig. 7), parti-
cularly in the Cape and Namaqua–Natal fold belts and western
Kaapvaal. A study of shear-wave splitting based on seismological
data from a dense array around Kimberley has shown that mantle
anisotropy may vary at shorter wavelength than the spacing
between the stations of the SASE array39.
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A recent study of primarily upper mantle anisotropy, based on
analysis of surface waves, indicates similar direction of the fast
axis in the asthenosphere and the direction measured by SKS-
splitting analysis, whereas the results indicate substantial devia-
tion for the lithospheric anisotropy24. The surface waves have
some depth resolution and the authors observe parallel fast axes
in the asthenosphere, which are parallel to the plate motion. The
observed strong anisotropy in both the lithospheric and asthe-
nospheric mantle generally has parallel fast axes, except for those
in the Zimbabwe craton and to some degree in the Limpopo Belt,
where surface waves indicate a more east–west-directed fast axis
in the asthenosphere than the SKS results9.

Although the SKS direction may be affected by the crustal
anisotropy by rotating the splitting fast axis along the ray paths40,
the observed coherence is surprising because the SKS fast-
propagation direction may not necessarily be the same in all
depth intervals of the crust, and lithospheric and sublithospheric
mantle9,23,24. We interpret the similar anisotropy directions in
the Kaapvaal and Zimbabwe cratons that geologically developed
independently until 2.7 Ga, as an indication that the anisotropy
was frozen into the lithosphere during the collision between these
cratons at ca. 2.7 Ga when the Limpopo belt was deformed such
that it today has different anisotropy fast axes. The coherence of

the crustal and the SKS anisotropy directions in the two cratons
may further provide indication for this interpretation, although
the SKS-splitting results are affected by the crustal anisotropy40.
This conclusion is further supported by the observations of a
surprising coherence between the crustal anisotropy directions in
the cratons and the orientations of major dyke swarms except for
the Zimbabwe Craton (Fig. 1), and between the crustal and SKS
anisotropy directions in the intervening Limpopo Belt where the
fast directions are subparallel to the strike of the collisional belt
(Figs. 5, 6).

We suggest that lattice-preferred orientation (LPO), alignment
of anisotropic minerals and structural anisotropy (SPO) asso-
ciated with dyke intrusions may account for the modelled S-wave
perturbation (δVs%, Table 1) in the crust. As such, the causes for
crustal anisotropy may be more complex than for mantle ani-
sotropy, which is believed to primarily originate from LPO of
olivine aggregates10,19. The azimuthal anisotropy observed in the
brittle upper crust may be related to upper crustal fine layering
or aligned cracks (confined to depths <5–10 km), but this
mechanism cannot explain our observations entirely because
such anisotropy usually is weak41 (up to 5%). However, the fast
axes are also parallel to the large dyke swarms in the Limpopo
Belt, Kaapvaal Craton and the Namaqua–Natal and Cape fold
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belts (Fig. 1, Supplementary Fig. 7), which indicates a generic
connection. We notice that the swarms consist of a large number
of individual thin dykes that may generate a structural type of
anisotropy (SPO) with fast axis parallel to the dyke direction42.
Unlike mantle dykes, the seismic velocity of mafic dykes in the
upper crust is usually much higher than in the surrounding host
rock of granitic origin43. Possible presence of several dyke gen-
erations in each swarm and incomplete sampling for isotope
dating44 precludes precise dating of the dykes. However, a
striking contrast between the orientation of the ~180Ma Oka-
vango dyke swarm45 and the fast axis in the Zimbabwe Craton
(Fig. 1d) suggests that the anisotropy is pre-Jurassic in this
region.

We speculate that pre-existing lithosphere weakness fabric
both determine the fast anisotropy direction and also may have
guided the direction of the dykes. The overall weakness fabric

determines anisotropy to large depths. The dykes contribute to
the total anisotropy with fast axis parallel to the horizontal
component of the original fast axes, thereby contributing con-
structively to the crustal anisotropy amplitude. The initial ani-
sotropy in the host rock is maintained with a dip component of
the fast direction. Therefore, our modelled dip of the fast axis may
be more horizontal than the initial direction of the fast axis due to
the effect of the later dyke swarms.

Mica schist, tonalitic gneiss and amphibolite are the main
candidates for producing strong LPO anisotropy in the middle-
to-lower crust42,46. Geochronology indicates that the cratonic
crust has experienced a dynamic metamorphic history since its
formation around 3.2 Ga5,47. The lower crust may consist of a
granite gneiss domain composed of massive-to-foliated meta-
morphosed granitoid above a gneiss complex with an intrusive,
transitional contact zone4,48. Biotitic gneisses display significant

Table 1 Preferred anisotropic velocity models based on >400 test models, suggesting that the 20-km-thick lower crust is highly
anisotropic (δVs > 10%) in the Kaapvaal and Zimbabwe cratons, and moderately anisotropic (7% throughout the crust) in the
Limpopo Belt. The difference in plunge angle explains variation in relative arrival time between radial SV and transverse SH
phases: SH is faster than SV in Limpopo Belt and SV is the fastest in the cratons.

Thickness km Density,
g cm−3

Vp, km
s−1

Vs, km
s−1

S-anisotropy % Fast
direction degree

Plunge
angle degree

Layer
strike degree

Layer
dip degree

Kaapvaal Craton
0.7 2.6 5.85 3.32 0 0 0 0 0
5.1 2.7 6.15 3.48 1 55 20 0 0
11.2 2.8 6.45 3.66 2 35 50 0 0
20.5 2.86 6.73 3.82 10 35 50 0 0
0 3.3 8.2 4.65 0 0 0 0 0
Limpopo Belt
0.5 2.6 5.9 3.45 0 0 0 0 0
9 2.79 6.3 3.7 4 75 5 60 2
35 2.86 6.8 4 7 75 33 60 2
0 3.3 8.2 4.6 0 0 0 0 0
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Fig. 5 Difference between fast axis directions for SKS and RF-determined anisotropy. a Divided into ten tectonic units. Red lines mark average difference,
and pink shading marks standard deviation in the rose diagrams, where zero difference corresponds to the north direction. b All differences plotted in the
same rose diagram. The SKS- and RF directions are generally parallel, except for the Cape Fold Belt and to some degree the northern part of the Zimbabwe
Craton around the Great Dyke. Abbreviations: CFB—Cape Fold Belt, NNB—Namaqua–Natal Belt, KB—Kheis Belt, OB—Okwa Belt, KCw—West Kaapvaal
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Great Dyke.
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anisotropy (ΔV ~0.3 km/s) with polarisation planes related to the
tectonic fabric49. We envisage that past deformation modified the
lower crust by aligning the fast axes of the gneiss texture with
steeply inclined features.

Independent studies indicate craton-wide events between 3.1
and 2.7 Ga involving magmatism, thrusting and metamorphism
that may imply structural and thermal remobilisation of the
lithosphere50. These episodes may be key to the creation of the
observed lithospheric anisotropy. Transient thermal pulses are
observed in cratonic sapphirine granulite xenoliths from Kaap-
vaal dated5 to 2.723 Ga, which may be associated with the Ven-
tersdorp flood basalt and lithospheric thinning47.

Our analysis demonstrates the presence of unexpected, strong
crustal anisotropy and indicates that the anisotropy in the
depleted Archaean cratonic mantle21,51 may be up to 30–55%
weaker than that previously believed. Determination of the rela-
tive strength of the anisotropy between crust and mantle from
comparison of SKS- and RF-splitting parameters depends on the
relative difference in directions of the fast axes in the two layers.
The effect of the strong crustal anisotropy is both to rotate the
observed fast axis in SKS-splitting studies towards the crustal
direction and to weaken the strength of the total anisotropy.
Therefore, the total mantle anisotropy may be relatively larger
than that indicated by this upper limit if the orientations deviate
substantially. However, the close agreement in fast axes orienta-
tion determined from RF and SKS splitting indicates that the
difference between fast axes in the crust and mantle lithosphere is
small. The overall similarity in fast polarisation direction between

the anisotropy determined from SKS splitting21 and the crustal
anisotropy of the cratons (this study), therefore, indicates that the
crust and mantle have been coupled since the anisotropy formed.
This indicates stability of the lithosphere since the time of the last
tectonomagmatic events, and provides independent support to
xenolith studies5 for long-term stability of the upper 150 km of
the lithosphere in the Kalahari Craton.

Previous studies based on the same seismic data did not
recognise or model the crustal anisotropy21–23, assuming that it is
a negligible component of the total anisotropy. We propose that
much of the crustal anisotropy was acquired during craton for-
mation and evolution involving collisional tectonics, magmatic
activity and thermal recycling. These reworking processes chan-
ged the chemistry of the lower crust to increase the anisotropy
and produce metamorphosed bands (mica-foliated gneiss) with
intermediate (granitoid gneiss) composition.

The present plate motion direction is parallel to the fast axes
determined for the crust by our RF study and SKS- splitting
results21 for a large part of the Kalahari Craton, but they sig-
nificantly deviate in the Limpopo Belt and especially in the Cape
Fold Belt. Inversion of the SASE data for the depth variation of S-
wave anisotropy in the Limpopo Belt indicates that the fast
direction changes from ca. 90° to ca. 40° at around 160-km
depth23. The deep fast direction is close to the present plate
motion direction, and the authors infer that this coincidence is
caused by present deformation in the sublithospheric mantle,
whereas the shallow direction corresponds to frozen-in aniso-
tropy in the mantle lithosphere23.

90
a b

c

CFB
LB

ZC

120

KC-E

NN

KC-W

60

C
ru

st
al

 fa
st

 p
ol

ar
iz

at
io

n 
(d

eg
)

C
ru

st
al

 fa
st

 p
ol

ar
iz

at
io

n 
(d

eg
)

T
ot

al
 fa

st
 p

ol
ar

iz
at

io
n 

(d
eg

)

30

0

90

60

30

0

90

60

–60

–36 –32 –28

Latitude (deg)

x = y

Latitude (deg)

–24 –20 –16

–60 –30

Total fast polarization (deg)

–36 –32 –28 –24 –20 –16

30

–30

0

120

Tectonic provinces

Cape FB

Namaqua-Natal FB

Kheis & Okwa

Kaapvaal-W

Kaapvaal-E

Limpopo Belt

Zimbabwe Craton

9060300

Fig. 6 Observed fast polarisation directions (φ) versus latitude for a crustal anisotropy (our results), and b total anisotropy (from SKS splitting21); c cross-
plot of φ for crustal anisotropy from RF and for SKS analysis. Colours indicate tectonic province. Abbreviations as in Fig. 5.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13267-2 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5445 | https://doi.org/10.1038/s41467-019-13267-2 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


The SKS-splitting results21 indicate very weak anisotropy in the
Cape Fold Belt and the Namaqua–Natal Fold Belt, whereas our
analyses show strong anisotropy in the crust (Fig. 1). One may
speculate that the weak SKS anisotropy may be due to a highly
heterogeneous depth distribution of the fast direction in the
mantle, which would tend to reduce the total SKS-splitting ani-
sotropy40. It also indicates that plate motion parallel anisotropy in
the asthenosphere may not be dominant in southern Africa
because, otherwise, strong SKS splitting would be observed also in
these fold belts.

However, the parallel fast axes for the crust and from SKS-
splitting analyses indicate that the major part of the measured SKS
splitting originates in the lithosphere, whereas the contribution
from the asthenosphere is smaller. This interpretation is also
supported by the observation that the SKS-splitting directions21

deviate substantially from the plate motion direction in the Lim-
popo Belt and the Cape Fold Belt. The overall coincidence in fast
axes between the crustal and the SKS-splitting anisotropy within
each tectonic block indicates long-term coupling between crust
and mantle lithosphere, with the indication that crust and mantle
lithosphere have remained one solid entity since cratonisation.
This finding may have fundamental implications for the degree to
which mantle flow can affect lithosphere deformation, for the
rheological structure at the lithosphere–asthenosphere transition,
and for the strength of the lithospheric crust and mantle.

Methods
Receiver functions. We apply the RF method in the LQT version31,32, which is
based on classic ray theory and suppresses the almost vertical P-wave motion
energy by decomposing the seismic wavefield into the L, Q and T components.
Conversion at boundaries between different layers for both incident P- and S waves
is described by the Zoeppritz equations52. P-wave RFs are calculated by isolating
the P-to-S conversions31,53 by carrying out a deconvolution procedure of the
longitudinal components from the horizontal components. Deconvolution may be
done in the time or the frequency domain54,55. We assume incident plane tele-
seismic waves and we calculate the resulting waveform as a band-limited impulse
response at the stations as a function of slowness.

It is possible to estimate the depth to discontinuities and the average velocity
above it, if the data cover an adequate epicentral distance interval56,57 and by use of
reverberations and conversions58. The travel-time difference between the Pds phase
(the P- to S-converted wave) and the direct P wave depends on the depth and dip
of the converting discontinuity, the P- and S-wave velocity structure between the
discontinuity and the seismic station and the epicentral distance between station
and source.

The LQT method31 in the version by Yuan et al.32 is based on rotation of the
geographically oriented seismograms into ray coordinates defined by the L, Q and T
axes. This decomposes the wavefield into the L-component that is the subvertical wave
(P), the Q-component that is the radial vertically polarised shear wave (SV) and the T-
component that is the transverse horizontally polarised shear wave (SH). It is a
common assumption32 that the P and SV components are orthogonal: they are
determined by rotating the vertical and radial waveforms to obtain a minimum P-
component amplitude at the mean converted S arrival time. We use all radial and
transverse-component RFs in the analysis59. Anisotropic velocity structure leads to
different velocity for the two S phases that therefore will have different arrival times and
their waveforms will further show back-azimuthal variation, including phase reversals.

Straightforward frequency-domain deconvolution is often unstable due to
spectral holes and requires stabilisation by either pre-whitening60 or water-level53

algorithms. We choose, alternatively, to apply a stable procedure based on iterative,
time-domain spiking deconvolution59,61 with pre-whitening to stabilise the filtering
to isolate the phases. The Pds phases are further enhanced by stacking the
deconvolved signals using the appropriate moveout corrections for different
slowness32.

Iterative time-domain deconvolution is a stable procedure even for complex
signals. However, the response at the receiver will always depend on the complexity
of the structure in the medium. Simple structures generally lead to better RF
images61. In principle, the model incidence angles could be calculated directly
from, e.g., the standard IASP91 velocity structure, but we choose to determine the
real rotation angles by an iterative procedure where we minimise the P component
on the S components. We further apply band-pass filtering in various frequency
intervals to resolve different parts of the crustal structure29.

Synthetic RFs. We document for the first time that very strong anisotropy may
reside in the crust of cratonic regions by demonstrating that radial PSV and
transverse PSH RFs have distinct different arrival times. By calculating synthetic

RFs for anisotropic models, we further determine the strength and the plunge angle
for the fast axes within layers in the Earth. For this we apply the method derived by
Frederiksen and Bostock35. This method calculates synthetic RFs as functions of
back azimuth for models that include anisotropy. The models are defined by layer
thicknesses, velocities and anisotropy fast axes and strengths. We plot the synthetic
and observed RFs in sections versus back azimuth, which enables us to make a
visual comparison between synthetic and observed sections. Quantitative com-
parison is unfortunately not feasible due to the relative high noise level in the
observed RFs versus back azimuth, as has for long been accepted in the seismo-
logical community for active tectonic regions25–28,62,63. In Supplementary Figs. 1–6
we provide data from a systematic search of anisotropic models that may explain
our observations. The search demonstrates a high degree of nonlinearity between
models and observations, which show that our derived models are non-unique,
although representative.

Data availability
All seismic data used in this study are openly available at the IRIS web page http://ds.iris.
edu/ds/nodes/dmc/data/.

Code availability
All seismic codes used in this study are openly available at the IRIS web page http://ds.
iris.edu/ds/nodes/dmc/data/.
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