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Abstract

In the thesis is developed an invariant quantization procedure of classical Hamil-
tonian mechanics. The procedure is based on a deformation quantization theory,
which is used to introduce quantization in arbitrary canonical coordinates as well as
in a coordinate independent way. In this approach to quantization a classical Poisson
algebra of a classical system is deformed to an appropriate non-commutative alge-
bra of smooth functions on a phase space. The non-commutative product from this
quantum Poisson algebra is called a star-product. In addition to the star-product,
on the quantum Poisson algebra is introduced a deformed Poisson bracket and an
involution being a deformation of the complex-conjugation of functions. To each
measurable quantity corresponds a function from the quantum Poisson algebra,
self-conjugated with respect to the quantum involution, i.e. quantum observable.
Thus, a quantization is �xed by a choice of a deformation of the classical Poisson
algebra, and an assignment to measurable quantities quantum observables. It is
discussed that for a given classical system its quantization is not speci�ed uniquely
and there may exist many di�erent quantizations. A notion of equivalent quan-
tizations is introduced, which allows for a systematic characterization of di�erent
quantizations.

The developed formalism of quantum mechanics uses a mathematical language
similar to that of classical Hamiltonian mechanics. This allows to introduce in
quantum theory analogs of many concepts from classical theory. For instance, in the
thesis are introduced quantum canonical (Darboux) coordinates and transformations
between them. Moreover, a notion of almost global coordinates is de�ned. These
are the only coordinates in which it is meaningful to consider quantum systems.

For particular examples of phase spaces are introduced canonical star-products.
In particular, on a cotangent bundle to a general Riemannian manifold is de�ned a
two-parameter family of star-products, which reproduces most of the results received
by di�erent approaches to quantization found in the literature. The introduced star-
products were written in a covariant form. Moreover, it was proved that for a given
coordinate system, which is at the same time classical and quantum canonical, a
general star-product on a general phase space is equivalent with the Moyal product.

The operator representation of quantum mechanics is constructed for a general
quantization and arbitrary canonical coordinates. A very general family of order-
ings of operators of position and momentum (containing all orderings found in the
literature) is introduced. It is shown that for di�erent quantizations and canonical
coordinates correspond di�erent orderings. This fact allowed to construct an op-
erator representation of quantum mechanics in a consistent way for any canonical
coordinates as well as in a coordinate independent way. The construction is illus-
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vi ABSTRACT

trated with examples of quantum mechanical operators corresponding to observables
linear, quadratic and cubic in momenta. Moreover, as an another example, a quan-
tization of the hydrogen atom is presented.

Finally, using the developed formalism, a quantum analog of classical trajectories
in phase space is introduced. Quantum trajectories are de�ned as integral curves
of quantum Hamiltonian vector �elds. A quantum action of a quantum �ow on
observables, which is a deformation of the respective classical action, is presented
in an explicit form. Then, it is shown that a set of quantum �ows has a structure
of a group with multiplication being a deformation of the ordinary composition of
�ows. The theory of quantum trajectories is illustrated with examples of quantum
systems.



Streszczenie � Abstract in Polish

W pracy rozwijana jest niezmiennicza procedura kwantowania klasycznych ukªadów
hamiltonowskich. Procedura ta bazuje na teorii kwantyzacji deformacyjnej, która
zostaªa u»yta do wprowadzenia kwantyzacji w dowolnych wspóªrz¦dnych kanonicz-
nych, jak równie» w sposób niezale»ny od ukªadu wspóªrz¦dnych. W tym podej±ciu
do kwantyzacji klasyczna algebra Poissona ukªadu klasycznego jest deformowana
do odpowiedniej niekomutatywnej algebry funkcji gªadkich na przestrzeni fazowej.
Niekomutatywny iloczyn z tej kwantowej algebry Poissona nazywany jest gwiazdka-
iloczynem. Poza gwiazdka-iloczynem na kwantowej algebrze Poissona wprowadzany
jest zdeformowany nawias Poissona i inwolucja b¦d¡ca deformacj¡ sprz¦»enia zespo-
lonego funkcji. Ka»dej wielko±ci mierzalnej odpowiada funkcja z kwantowej algebry
Poissona, samosprz¦»ona ze wzgl¦du na kwantow¡ inwolucj¦, tzn. kwantowa ob-
serwabla. Tak wi¦c kwantyzacja jest zadana poprzez wybór deformacji klasycznej
algebry Poissona oraz przyporz¡dkowania wielko±ciom mierzalnym obserwabli kwan-
towych. Dyskutowane jest, »e dla danego ukªadu klasycznego jego kwantyzacja nie
jest okre±lona jednoznacznie i mo»e istnie¢ wiele ró»nych kwantyzacji. Ponadto
wprowadzone zostaªo poj¦cie równowa»nych kwantyzacji, pozwalaj¡ce na systema-
tyczn¡ charakteryzacj¦ ró»nych kwantowa«.

O strukturze algebraicznej kwantowej algebry Poissona mo»na my±le¢ jak o wy-
znaczaj¡cej kwantow¡ geometri¦ przestrzeni fazowej, podobnie jak klasyczna algebra
Poissona wyznacza klasyczn¡ przestrze« fazow¡. Ponadto struktura kwantowej al-
gebry Poissona u»yta zostaªa do zde�niowania stanów kwantowych oraz ewolucji
czasowej ukªadów kwantowych, poprzez analogi¦ z przypadkiem klasycznym.

Rozwijany formalizm mechaniki kwantowej u»ywa j¦zyka matematyki podobnego
do tego opisuj¡cego klasyczn¡ mechanik¦ hamiltonowsk¡. Pozwala to wprowadzi¢
w teorii kwantów analogi wielu poj¦¢ z teorii klasycznej. Przykªadowo w pracy
wprowadzone zostaªy kwantowo kanoniczne wspóªrz¦dne (kwantowe wspóªrz¦dne
Darboux) oraz transformacje pomi¦dzy nimi. Ponadto zde�niowane zostaªo poj¦cie
prawie globalnego ukªadu wspóªrz¦dnych. S¡ to jedyne wspóªrz¦dne, w których ma
sens rozpatrywa¢ ukªady kwantowe.

Dla szczególnych przykªadów przestrzeni fazowych skonstruowane zostaªy kano-
niczne gwiazdka-iloczyny. Jako pierwszy przykªad rozpatrzona zostaªa przestrze«
R2N z gwiazdka-iloczynem Moyala zde�niowanym na niej. Nast¦pnie wi¡zka ko-
styczna do przestrzeni Euklidesowej, na której wprowadzona zostaªa rodzina gwiazd-
ka-iloczynów. W dalszej kolejno±ci rozwa»ona zostaªa wi¡zka kostyczna do pªaskiej
rozmaito±ci Riemanna z kanonicznym gwiazdka-iloczynem zadanym poprzez konek-
sj¦ liniow¡ Levi-Civita. Ostatecznie, dla wi¡zki kostycznej do ogólnej rozmaito-
±ci Riemanna wprowadzona zostaªa dwu-parametrowa rodzina gwiazdka-iloczynów,
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która odtwarza wi¦kszo±¢ rezultatów otrzymanych ró»nymi podej±ciami do kwan-
tyzacji spotykanymi w literaturze. Skonstruowane gwiazdka-iloczyny zostaªy zapi-
sane w postaci kowariantnej. Ponadto udowodniono, »e dla ukªadu wspóªrz¦dnych,
który jest jednocze±nie klasycznie i kwantowo kanoniczny, ogólny gwiazdka-iloczyn
na ogólnej przestrzeni fazowej jest równowa»ny z iloczynem Moyala.

W dalszej cz¦±ci pracy skonstruowana zostaªa operatorowa reprezentacja dla
ogólnej kwantyzacji i dowolnych wspóªrz¦dnych kanonicznych. Punktem wyj±cia
byªa konstrukcja operatorowej reprezentacji w przestrzeni Hilberta nad przestrzeni¡
fazow¡. Pozwoliªo to uzyska¢ w naturalny sposób bardzo ogóln¡ rodzin¦ uporz¡d-
kowa« operatorów poªo»enia i p¦du (zawieraj¡c¡ wszystkie porz¡dki spotykane w
literaturze). W nast¦pnym kroku zaprezentowana zostaªa konstrukcja operatorowej
reprezentacji w przestrzeni Hilberta nad przestrzeni¡ kon�guracyjn¡. Odtworzony
zostaª w ten sposób standardowy opis mechaniki kwantowej w uj¦ciu przestrzeni Hil-
berta. Pokazane zostaªo, »e ró»nym kwantowaniom i wspóªrz¦dnym kanonicznym
odpowiadaj¡ ró»ne porz¡dki operatorów poªo»enia i p¦du. Ten fakt pozwoliª na
konstrukcj¦ operatorowej reprezentacji mechaniki kwantowej w spójny sposób, dla
dowolnych wspóªrz¦dnych kanonicznych. Mianowicie operatory odpowiadaj¡ce da-
nej obserwabli kwantowej zapisanej w dwóch ró»nych kanonicznych ukªadach wspóª-
rz¦dnych b¦d¡ unitarnie równowa»ne. Ponadto uzyskane rezultaty wyra»one zostaªy
w sposób niezale»ny od ukªadu wspóªrz¦dnych. Konstrukcja zilustrowana zostaªa
przykªadami kwantowo-mechanicznych operatorów odpowiadaj¡cych obserwablom
liniowym, kwadratowym i kubicznym w p¦dach. Co wi¦cej, jako kolejny przykªad,
zaprezentowana zostaªa kwantyzacja atomu wodoru.

Na zako«czenie, u»ywaj¡c rozwijanego formalizmu, wprowadzony zostaª kwan-
towy analog klasycznych trajektorii na przestrzeni fazowej. Kwantowe trajektorie
zde�niowane zostaªy jako krzywe caªkowe kwantowych pól hamiltonowskich. Za-
prezentowana zostaªa posta¢ kwantowego dziaªania kwantowych potoków fazowych
na obserwable, które jest deformacj¡ klasycznego dziaªania. Nast¦pnie pokazane zo-
staªo, »e zbiór kwantowych potoków fazowych posiada struktur¦ grupy z mno»eniem
b¦d¡cym deformacj¡ zwykªego skªadania potoków. Teoria trajektorii kwantowych
zilustrowana zostaªa ró»nymi przykªadami ukªadów kwantowych.
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Chapter 1

Introduction

Quantum mechanics proved to be a proper theory to describe physical systems in
a micro scale. However, after over 100 years of development there is still lack of a
consistent quantization procedure of classical systems. The most common approach
to quantum theory is the Hilbert space approach. In this approach we associate
with every measurable quantity a self-adjoint operator de�ned on a Hilbert space.
If we have some classical system and we would like to quantize it, then �rst we have
to �nd a correspondence between classical observables and operators on a certain
Hilbert space. In a Hamiltonian description of classical mechanics observables are
de�ned as real-valued functions on a phase space, and the passage to quantum
mechanics is done using Weyl quantization rule. The Weyl quantization rule states
that to functions on a phase space one associates operators by formally replacing
qi and pj coordinates in classical observable with operators q̂i, p̂j of position and
momentum, and symmetrically ordering them. By such procedure one can quantize
every classical Hamiltonian system. Note however, that this procedure works only
for systems whose phase space is R2N . Moreover, quantization has to be performed in
Cartesian coordinates. Even in that well recognized case a natural question appears:
whether the Weyl quantization is a unique choice? In other words, whether there
are other quantization procedures which are consistent with physical experiments.

The proper quantization procedure should be possible to perform for a system
de�ned on a general phase space and in any coordinate system. However, if we would
take a classical system and naively perform a quantization according to the Weyl
quantization rule, for two di�erent canonical coordinates, then in general we would
not get equivalent quantum systems. As an example let us consider a hydrogen
atom which Hamiltonian in Cartesian coordinates is given by the formula

H(x, y, z, px, py, pz) =
p2
x + p2

y + p2
z

2m
− 1

4πε0

e2√
x2 + y2 + z2

.

In accordance to the Weyl quantization rule to this function will correspond the
following operator

H(q̂x, q̂y, q̂z, p̂x, p̂y, p̂z) = − ~2

2m
∆− 1

4πε0

e2√
x2 + y2 + z2

,

where ∆ = ∂2
x + ∂2

y + ∂2
z is the Laplace operator in the Cartesian coordinates. If we

will now consider this system in spherical polar coordinates then the Hamiltonian

1



2 CHAPTER 1. INTRODUCTION

H takes the form

H(r, θ, φ, pr, pθ, pφ) =
1

2m

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)
− 1

4πε0

e2

r
,

and operators of position and momentum corresponding to spherical polar coordi-
nates are given by

q̂r = r, q̂θ = θ, q̂φ = φ,

p̂r = −i~
(
∂r +

1

r

)
, p̂θ = −i~

(
∂θ +

1

2 tan θ

)
, p̂φ = −i~∂φ.

The function H of symmetrically ordered operators q̂r, q̂θ, q̂φ, p̂r, p̂θ, p̂φ of position
and momentum will not be an operator unitarily equivalent with the operator
H(q̂x, q̂y, q̂z, p̂x, p̂y, p̂z) derived for Cartesian coordinates.

As we will show later on this apparent inconsistency of quantization can be solved
by a proper choice of quantum observables in new coordinates, i.e. by performing
an appropriate deformation of classical observables written in new coordinates, or
alternatively by using di�erent ordering rules of position and momentum operators
for di�erent coordinates. The situation gets even more complicated when we con-
sider non-�at con�guration spaces. In such case there are very few experiments
which could distinguish quantization rules.

The problem of quantization in arbitrary coordinates on a con�guration space
was evident in early days of quantum mechanics. The majority of e�orts was related
to an invariant quantization of Hamiltonians quadratic in momenta. The construc-
tion of a quantum Hamiltonian in �at and non-�at cases was considered by many
authors (see for example several relevant papers [1�9]). Much less results concern an
invariant quantization of Hamiltonians cubic in momenta [10, 11]. However, to our
knowledge, there does not exist general solution valid for any classical observable
and canonical coordinates.

Possibility of considering quantum systems in di�erent canonical coordinates is
connected with the theory of canonical transformations in quantum mechanics. The
development of the theory of canonical transformations of coordinates in quantum
mechanics is mainly contributed to Jordan, London and Dirac back in 1925 [12�18]
and it is still an area of intense research.

In the usual approach to canonical transformations in quantum mechanics one
identi�es canonical transformations with unitary operators de�ned on a Hilbert
space. Such approach was used by Mario Moshinsky and his collaborators in a series
of papers [19�23]. Also other researchers used such approach [24�26]. Worth noting
are also papers of Anderson [27, 28] where an extension of canonical transformations
to non-unitary operators is presented. Nevertheless, after so many years of e�orts,
there is still lack of a general theory of coordinate transformations in quantum
mechanics, including a satisfactory complete theory of canonical transformations.

Although, the usual Hilbert space approach to quantum mechanics is very pop-
ular it is not the best approach for developing a theory of quantization in any
canonical coordinate systems and to characterize di�erent quantizations. It seems
that the bast approach to quantum theory to achieve these tasks is the phase space
quantum mechanics. This approach is also very natural for introducing quantization
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and is described by a mathematical language similar to that of a classical Hamil-
tonian mechanics. This allows to introduce many concepts from classical theory to
its quantum counterpart, like coordinate systems, coordinate transformations and
trajectories on phase space. The standard Hilbert space approach to quantum me-
chanics is then reproduced as an appropriate operator representation of phase space
quantum mechanics.

The theory of trajectories on phase space plays an important role in a descrip-
tion of time evolution of classical systems. From the very beginning of quantum
physics, e�orts have been taken to formulate some kind of an analogue of phase
space trajectories in quantum mechanics [18]. The most common approaches to
quantum dynamics are the de Broglie-Bohm approach [29�33] and the average value
approach [34, 35]. Worth noting is also the paper [36] written by Rie�el where he
considers a classical limit of a quantum time evolution in the framework of a strict
deformation quantization.

Furthermore, the phase space approach to quantum mechanics makes it possi-
ble to introduce, in a natural way, an analog of classical trajectories in quantum
mechanics (see [37, 38] and references therein). In this approach one considers the
Heisenberg evolution of fundamental observables of position and momentum, being
~-deformation of the classical Hamiltonian evolution. Moreover, the deformation to
an arbitrary order can be calculated by an ~-hierarchy of recursive �rst order linear
partial di�erential equations [37�39]. The time evolution of observables cannot be
given as a simple composition of observables with a quantum �ow. For this reason
Dias and Prata [37], and Krivoruchenko and Faessler [38] considered observables
as ?-functions and a quantum phase space as a plane of non-commuting variables.
Then the action of a �ow on observables was given as a ?-composition.

The thesis is organized as follows. In Chapter 2 we review classical Hamiltonian
mechanics. The theory is described in a language of di�erential geometry. The
de�nitions of basic objects of the theory are given including a phase space, Poisson
algebra, observables, states, and canonical coordinates. We present characteriza-
tion of states which will be used when de�ning quantum states. Also we introduce a
concept of almost global coordinates which will be intensively used during a quan-
tization process. Moreover, the thorough description of time evolution of classical
systems is presented including a de�nition of trajectories on a phase space which
quantum counterpart will be developed in Chapter 5.

In Chapter 3 we present the general theory of quantization base on deforma-
tion of classical Hamiltonian mechanics. Although the deformation approach to
quantization is not new and has a long history, usually in the literature one does
not �nd quantum mechanics introduced in a fully invariant form. The deformation
quantization is considered either from purely mathematical perspective, or in some
particular coordinates, usually Cartesian on R2N . In the thesis we develop a fully
invariant deformation quantization procedure of classical mechanics.

In the �rst section of Chapter 3 we review the theory of deformations of sym-
plectic manifolds. A symplectic manifold represents a phase space of the system.
The geometric structure of a symplectic manifold M is fully speci�ed by its Pois-
son algebra C∞(M). By deforming the algebra C∞(M) to some non-commutative
algebra we can think of it as describing a non-commutative symplectic manifold
(non-commutative phase space). By a deformation of the Poisson algebra C∞(M)
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is understood a space C∞(M)[[ν]] of formal power series in ν with coe�cients in
C∞(M), together with a non-commutative product ?, called a star-product, which
in the limit ν → 0 reduces to the ordinary point-wise product of functions. In
addition, on the space C∞(M)[[ν]] we introduce a deformed Poisson bracket given
by

[[f, g]]? =
1

ν
(f ? g − g ? f) = {f, g}+ o(ν),

and an involution ∗ which in the limit ν → 0 reduces to the complex-conjugation of
functions. As the deformation parameter ν is taken i~. The deformation of a phase
space is the main ingredient of the process of quantization.

A star-product on a given symplectic manifold is not de�ned uniquely. This
is one of the sources of the existence of di�erent quantizations of a given classical
system. However, some star-products are equivalent in the sense that there exists a
morphism S on C∞(M)[[ν]] intertwining them.

Section 3.2 contains a detailed description of a quantization procedure. A quan-
tization of a given classical Hamiltonian system is performed �rst by deforming a
phase space of the system to a non-commutative phase space in accordance to the
theory of deformations of symplectic manifolds described in the previous section.
That is, the classical Poisson algebra AC(M) = (C∞(M), ·, { · , · }, )̄ is deformed to
a quantum Poisson algebra AQ(M) = (C∞(M)[[~]], ?, [[ · , · ]], ∗). The second step of
the quantization process is assignment to every measurable quantity an element of
C∞(M)[[~]] self-adjoint with respect to the involution ∗ from AQ(M), i.e. an observ-
able. Usually in the literature as observables are taken the same functions as in the
classical case, even when the involution ∗ is not the complex-conjugation. However,
we use a di�erent approach and take as quantum observables ~-deformations of clas-
sical observables. This crucial innovation allowed to characterize quantizations in
a concise way. In particular, equivalent star-products can give equivalent quanti-
zations if we appropriately assign to measurable quantities elements of C∞(M)[[~]].
Also, as an interesting consequence, for some involutions ∗ observables may be
complex-valued functions.

Quantum states and time evolution of a quantum system are de�ned in an ana-
logical way as in the classical case. The point-wise product · of functions and the
Poisson bracket { · , · } have to be replaced by the ?-product and the deformed Pois-
son bracket [[ · , · ]]. This is a consequence of the fact that the algebraic structure of
the algebra of observables (Poisson algebra) de�nes states and time evolution.

The mathematical language used to introduce quantum mechanics is similar to
that of classical Hamiltonian mechanics. As a consequence we can introduce to
quantum theory coordinate systems and coordinate transformations in a straight-
forward way. All this is described in Section 3.3. Moreover, in this section are
introduced quantum canonical coordinates and transformations in a total analogy
with the classical case.

In Section 3.4 are constructed canonical star-products on particular examples
of symplectic manifolds. We start with a simplest symplectic manifold, R2N , and
introduce on it a Moyal star-product. It is well known how in this simplest case
create an operator representation of a quantum system. We also prove that a wide
family of star-products on a general symplectic manifold is equivalent with the
Moyal product, for a given classical and quantum canonical coordinate system. This
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observation and the fact that the operator representation for the Moyal product is
known is a key point for introducing an operator representation of a general quantum
system for arbitrary canonical coordinates.

Next we move to a symplectic manifold in the form of a cotangent bundle T ∗EN

to an Euclidean space EN and introduce on it a family of star-products. Each
star-product is parametrized by a sequence of pair-wise commuting vector �elds
X1, . . . , XN , Y1, . . . , YN from a decomposition of a Poisson tensor P on T ∗EN

P =
N∑
i=1

Xi ∧ Yi.

One of the star-products from this family is distinguished, namely the one for which
the vector �elds Xi, Yj in Cartesian coordinates are coordinate vector �elds. We
then write this canonical star-product in a covariant form. The covariant form of
the star-product is given in terms of a linear connection on EN .

The equation for the star-product on T ∗EN written in the covariant form can
be generalized in a straightforward way to a case of a symplectic manifold T ∗Q over
a �at Riemannian manifold Q. That way we introduced a canonical star-product
on T ∗Q. We also derived the form (to the second order in ~) of the equivalence
morphism S intertwining this star-product with the Moyal product, for a given
classical and quantum canonical coordinate system.

Finally, we consider a general symplectic manifold T ∗Q over a non-�at Rieman-
nian manifold Q and propose a two-parameter family of star-products de�ned on it.
In this general case there is no single distinguished star-product, which shows that
in the non-�at case there is a problem of choosing a physically admissible quan-
tization. In Section 4.3 we show that for this general case to functions quadratic
in momenta correspond operators with an extra term added to the potential and
dependent on the curvature tensor. The form of this operator, for particular val-
ues of the quantization parameters, was received by many authors using di�erent
approaches to quantization. The approach to quantization developed in the thesis
reproduces all results present in the literature.

In Chapter 4 we describe the construction of an operator representation of quan-
tum mechanics for an arbitrary canonical coordinate system, as well as, in a coor-
dinate independent way. In the �rst section of this chapter we consider a quantum
system over a phase space R2N with the Moyal product de�ned on it. We construct
a representation of the algebra AQ(R2N) = (C∞(R2N)[[~]], ?M) in the Hilbert space
L2(R2N) according to the formula

f 7→ f ?M .

We show that operators f ?M can be written as functions f of symmetrically ordered
operators q̂i?M = qi ?M , p̂?M j = pj ?M of position and momentum in accordance to
a Weyl correspondence rule:

f ?M = f(q̂?M , p̂?M ).

Next we propose a generalization of the ordering of operators of position and mo-
mentum. The introduced generalization covers all orderings found in the literature,
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including symmetric, normal, and anti-normal orderings, as well as a wide family
of orderings considered by L. Cohen. But it also extends to types of orderings not
considered before. Using this general concept of the ordering we show that for every
?-product on R2N operators f ? can be written as appropriately ordered functions
f of operators of position and momentum. As a result every star-product on R2N

gives rise to an ordering of operators q̂i?, p̂?j and a quantization can be �xed either
by choosing a star-product on a phase space R2N or equivalently, on a level of the
operator representation, by choosing an ordering.

Section 4.2 contains a description of the λ-Weyl correspondence rule for a case
of a symplectic manifold T ∗Q over a general Riemannian manifold Q, and for a
Hilbert space L2(Q, dωg). The results received in this section are used in the next
section when introducing an operator representation of quantum mechanics in the
Hilbert space L2(Q, dωg).

In Section 4.3 we present a detailed description of the operator representation of
quantum mechanics over a con�guration space. We start with a Moyal quantization
of a system de�ned over a phase space T ∗U where U is some open subset of RN .
First we construct a tensor product ⊗W of the Hilbert space L2(T ∗U) in terms of
Hilbert spaces (L2(U, dµ))∗ and L2(U, dµ). Then we show that for every element f
of C∞(R2N)[[~]] and state ρ the operators f ?M and ρ ?M take the form

f ?M = 1̂⊗W f(q̂, p̂),

ρ ?M = 1̂⊗W ρ̂,

where q̂i, p̂j are canonical operators of position and momentum, and ρ̂ is a density
operator. This way we received an operator representation in the Hilbert space
L2(U, dµ):

f 7→ f(q̂, p̂), ρ 7→ ρ̂.

Next we move to a general quantum system. Using the fact that such system
in some classical and quantum canonical coordinates is equivalent with the Moyal
quantization of the corresponding classical system we received the operator repre-
sentation of the given quantum system. Similarly as in the operator representation
over a phase space also in this case the symmetric ordering had to be replaced by
some other ordering of operators q̂i, p̂j. The received theory allowed to describe
quantum mechanics in the Hilbert space formalism in a consistent way for any co-
ordinate system on the con�guration space, something which was not done before.
Furthermore, an invariant form of the operator representation is presented.

We end up this chapter with examples of quantum mechanical operators cor-
responding to observables linear, quadratic and cubic in momenta. Moreover, the
developed theory of quantization is illustrated with an example of the hydrogen
atom.

Finally, Chapter 5 presents a theory of quantum trajectories based on the de-
veloped formalism. The quantum trajectories are de�ned, in an analogy with the
classical case, as integral curves of quantum Hamiltonian vector �elds. We present
in explicit form a quantum action of a quantum �ow on observables, which is a
deformation of the respective classical action. The resulting time dependence of
observables gives an appropriate solution of a quantum time evolution equation for
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observables (Heisenberg's representation on a phase space). Then, we show that a
set of quantum symplectomorphisms (quantum �ows) has a structure of a group with
multiplication (quantum composition) being a deformation of the ordinary compo-
sition considered as a multiplication in a group of classical symplectomorphisms
(classical �ows). The explicit form of the quantum composition law is presented.
Such approach to quantum trajectories have a bene�t in that it is not needed to
calculate the form of observables as ?-functions, but only a quantum action of a
given trajectory needs to be found.

In Chapter 6 is given a summary of the thesis and an outlook on a further
development of the received results.

Throughout the thesis we will use the Einstein summation convention over any
twice repeated index if it appears once as a subscript and once as a superscript. By
Latin letters i, j, k, . . . we will denote indices ranging from 0 to N and by Greek
letters α, β, γ, . . . indices ranging from 0 to 2N . The complex-conjugation of f will
be denoted by f̄ . Often partial derivatives ∂qi of tensors t

k...l
m...n will be denoted by

tk...lm...n,i and covariant derivatives ∇i by t
k...l
m...n;i.

The results presented in Chapters 3�5 are published in our papers [40�45].





Chapter 2

Classical mechanics

2.1 Phase space

The theory of classical Hamiltonian mechanics is described in an elegant language
of di�erential geometry. The central role in this description is played by a sym-
plectic manifold. The symplectic manifold represents a phase space of the system,
which points are interpreted as states of the system. More details about classical
Hamiltonian mechanics the reader can �nd in [46, 47].

De�nition 2.1.1. A symplectic manifold is a smooth manifold M endowed with a
2-form ω which is closed (dω = 0) and non-degenerate.

It can be proved that every symplectic manifold (M,ω) is necessarily even-
dimensional.

Let us denote by C∞(M) the space of all smooth complex-valued functions de-
�ned on a manifold M . On C∞(M) we can introduce a point-wise product of
functions

(f · g)(x) ≡ (fg)(x) = f(x)g(x), (2.1.1)

which will make from C∞(M) a commutative algebra.
The symplectic structure distinguishes a class of vector �elds on a symplectic

manifold. Namely, for every f ∈ C∞(M) we de�ne a vector �eld ζf , called a
Hamiltonian �eld, by the formula

ω(ζf ) = df, (2.1.2)

(here ω is treated as a map X(M) → Ω1(M), where X(M) and Ω1(M) denote the
spaces of all smooth vector �elds and 1-forms on M respectively, which is given by
the formula V 7→ ω( · , V ), i.e. V µ 7→ ωµνV

ν). On the space C∞(M) can be de�ned
a bilinear map { · , · }, called a Poisson bracket, by the formula

{f, g} = ω(ζg, ζf ) = df(ζg) = ζgf. (2.1.3)

The Poisson bracket satis�es the following properties:

{f, g} = −{g, f} (antisymmetry), (2.1.4a)

{f, gh} = {f, g}h+ g{f, h} (Leibniz's rule), (2.1.4b)

0 = {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} (Jacobi's identity). (2.1.4c)

9
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Property (2.1.4a) is a consequence of the antisymmetry of the symplectic form ω.
Property (2.1.4b) follows from the fact that ζf is a derivation of the algebra C∞(M).
Property (2.1.4c) is a consequence of the closedness of the symplectic form ω. Prop-
erties (2.1.4a) and (2.1.4c) state that the Poisson bracket is a Lie bracket on C∞(M).
The space C∞(M) together with the point-wise product of functions, the Poisson
bracket, and an involution being the complex-conjugation of functions f 7→ f̄ , will
be denoted by AC(M) and called a Poisson algebra.

In the theory of classical Hamiltonian mechanics to every measurable quantity,
like energy, momentum, position, etc., corresponds a smooth real-valued function
in C∞(M). Thus, elements of the Poisson algebra AC(M), self-conjugated with
respect to the involution in AC(M), are called observables.

Note, that Hamiltonian �elds satisfy the following properties

ζf+const = ζf , (2.1.5a)

ζf + λζg = ζf+λg, (2.1.5b)

[ζf , ζg] = ζ{g,f}, (2.1.5c)

for f, g ∈ C∞(M) and λ ∈ C. Thus a space Ham(M) of all Hamiltonian �elds is a
Lie algebra and the map ζ : AC(M)→ Ham(M), f 7→ ζf is a homomorphism of Lie
algebras whose kernel being constituted by the constant functions on M . Moreover,
observe that Hamiltonian �elds preserve the symplectic form ω:

Lζfω = 0, (2.1.6)

where Lζf denotes a Lie derivative in the direction ζf .
The symplectic form ω on a manifold M induces a two-times contravariant an-

tisymmetric and non-degenerate tensor �eld P through the formula

P ◦ ω = 1̂ i.e. in local coordinates Pαγωγβ = δαβ , (2.1.7)

(here P is treated as a map Ω1(M) → X(M) given by the formula α 7→ P( · , α),
i.e. αµ 7→ Pµναν). Thus, P is the inverse of the symplectic form ω and often the
components Pαβ of the tensor �eld P will be denoted by ωαβ. The tensor P satis�es
the equality

LζfP = 0 (2.1.8)

and is called a Poisson tensor. In general, a two-times contravariant antisymmetric
tensor �eld P satisfying (2.1.8) is called a Poisson tensor and a smooth manifold
M endowed with a Poisson tensor is called a Poisson manifold. Note, that there is
a one-to-one correspondence between symplectic forms and non-degenerate Poisson
tensors on a given manifold M .

The de�nition of the Hamiltonian �elds and the Poisson bracket can be restated
in terms of the Poisson tensor:

ζf = P(df), (2.1.9)

{f, g} = P(df, dg). (2.1.10)

On a symplectic manifold (M,ω) there exists another useful structure, namely a
distinguished volume form Ωω de�ned, up to a multiplicative constant, as an N -fold
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exterior product of the symplectic forms ω

Ωω ≡ Ω = (−1)N(N+1)/2 1

N !
ω ∧ · · · ∧ ω︸ ︷︷ ︸

N

. (2.1.11)

The volume form Ωω is called a Liouville form or phase volume form.
An example of a symplectic manifold, on which we will mainly focus in the rest

of the thesis, is a cotangent bundle to a smooth manifold. Let Q be a smooth
N -dimensional manifold, then we de�ne a set

T ∗Q =
⋃
q∈Q

T ∗qQ. (2.1.12)

Each point x in T ∗Q can be parametrized by a pair (q, p) for some q ∈ Q and
p ∈ T ∗qQ. We can also de�ne a canonical projection π : T ∗Q → Q, x 7→ q for
x = (q, p). The set T ∗Q can be naturally endowed with a structure of a smooth
2N -dimensional manifold. Indeed, an atlas on Q naturally induces an atlas on
T ∗Q. If (O, ψ), ψ : q 7→ (q1, . . . , qN) is a chart on Q, then for every x = (q, p) in
Ô = π−1(O) we can decompose p ∈ T ∗qQ with respect to the coordinate basis

p = pi dq
i
∣∣
q
, (p1, . . . , pN) ∈ RN (2.1.13)

and a map ψ̂ : x 7→ (q1, . . . , qN , p1, . . . , pN) is a chart on Ô ⊂ T ∗Q induced by the
chart ψ on O ⊂ Q. The chart (Ô, ψ̂) is called a canonical coordinate system on
T ∗Q and the manifold T ∗Q is called a cotangent bundle to the manifold Q.

On T ∗Q we can de�ne a canonical 1-form θ by the formula

〈θx, w〉 = 〈p, dπ(x)w〉 (2.1.14)

for w ∈ TxT ∗Q and x = (q, p). The form θ in canonical coordinates on T ∗Q reads

θ = pi dq
i. (2.1.15)

Moreover, on T ∗Q there exists a natural exact symplectic form ω given by ω = dθ
or in canonical coordinates on T ∗Q

ω = dpi ∧ dqi. (2.1.16)

Thus, T ∗Q is always a symplectic manifold. Usually in classical mechanics as the
manifold Q is taken a Riemannian manifold. The manifold Q represents a con�gu-
ration space of the system.

If (q1, . . . , qN) and (q′1, . . . , q′N) are two coordinate systems on Q, (qi, pj) and
(q′i, p′j) are two corresponding canonical coordinate systems on T ∗Q, and a map

φ : (q′1, . . . , q′N) 7→ (q1, . . . , qN) is a transformation between the two coordinate
systems on Q, then a corresponding transformation T : (q′i, p′j) 7→ (qi, pj) between
the canonical coordinate systems on T ∗Q is of the form

qi = φi(q′),

pi = [(φ′(q′))−1]jip
′
j,

(2.1.17)

where [(φ′(q′))−1]ji denotes an inverse matrix to the Jacobian matrix [φ′(q′)]ij =

∂φi

∂qj
(q′) of φ. The transformation T is called a point transformation.
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Example 2.1.1. Let us take as the manifold Q an Euclidean space EN . An N -di-
mensional Euclidean space EN is de�ned as a non-empty set EN together with an
N -dimensional real vector space V endowed with a scalar product ( · , · ), and an
operation (called addition or translation)

EN × V 3 (q, v) 7→ q + v ∈ EN , (2.1.18)

satisfying the following conditions

(i) for q ∈ EN and v, w ∈ V holds the equality

(q + v) + w = x+ (v + w), (2.1.19)

(ii) for q1, q2 ∈ EN there exists exactly one vector v ∈ V such that q2 = q1 + v.

The space V is called a space of free vectors of EN .
On an Euclidean space EN we can introduce a Cartesian coordinate system. Let

us choose a point q0 ∈ EN and an orthonormal basis e1, . . . , eN on a space V of free
vectors of EN . De�ne a map ψ : RN → EN by the formula

ψ(q1, . . . , qN) = q0 + qiei. (2.1.20)

The map ψ is called a Cartesian coordinate system on the Euclidean space EN . The
point q0 is called an origin, and the vectors e1, . . . , eN axis vectors of the coordinate
system.

An Euclidean space EN is naturally endowed with a structure of an N -dimen-
sional Riemannian manifold. Indeed, a set of all Cartesian coordinate systems (de-
�ned for di�erent origins q0 ∈ EN and axis vectors e1, . . . , eN ∈ V ) constitutes a
smooth atlas on EN . Moreover, the scalar product ( · , · ) on the space V of free vec-
tors induces a metric tensor g on EN . Note, that tangent spaces TqE

N are naturally
isomorphic to the space V of free vectors. Thus, the tangent and cotangent bundles
TEN and T ∗EN can be identi�ed with Cartesian products EN × V and EN × V ∗
respectively.

Let ψ be a Cartesian coordinate system on EN with an origin q0 ∈ EN and
axis vectors e1, . . . , eN ∈ V . A canonical coordinate system on T ∗EN = EN × V ∗
induced by ψ is a map ψ̂ : T ∗EN → R2N , x = (q, p) 7→ (q1, . . . , qN , p1, . . . , pN), for
q = q0+qiei and p = pie

i where e1, . . . , eN is a dual basis to e1, . . . , eN . The canonical
coordinate system ψ̂ will be called a Cartesian coordinate system on T ∗EN .

2.2 Coordinate systems

On a symplectic manifold (M,ω) there exists a distinguished class of coordinate
systems, namely local coordinates (q1, . . . , qN , p1, . . . , pN) in which the symplectic
form takes the canonical form

ω = dpi ∧ dqi i.e. (ωµν) =

(
0N −IN
IN 0N

)
. (2.2.1)

These coordinates are called canonical coordinates or Darboux coordinates and they
always exist on a symplectic manifold, which is guaranteed by the Darboux theorem.
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In canonical coordinates all objects introduced in the previous section take the form

P =
∂

∂qi
∧ ∂

∂pi
=

∂

∂qi
⊗ ∂

∂pi
− ∂

∂pi
⊗ ∂

∂qi
, (2.2.2a)

ζf =
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi
, (2.2.2b)

{f, g} =
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, (2.2.2c)

Ωω = dq1 ∧ · · · ∧ dqN ∧ dp1 ∧ · · · ∧ dpN . (2.2.2d)

Note, that canonical coordinates on a cotangent bundle T ∗Q to a manifold Q are
example of canonical coordinates in the sense of the de�nition in this section.

Canonical coordinates can be equivalently de�ned in the following way. Coordi-
nates (x1, . . . , x2N) = (q1, . . . , qN , p1, . . . , pN) are canonical i�

{xα, xβ} = J αβ, (2.2.3)

where

(J αβ) =

(
0N IN
−IN 0N

)
(2.2.4)

or equivalently
{qi, qj} = {pi, pj} = 0, {qi, pj} = δij. (2.2.5)

The functions qi and pj are observables of position and momentum associated with
the coordinate system (q1, . . . , qN , p1, . . . , pN).

In classical statistical mechanics appear integrals over a phase space (cf. Sec-
tion 2.3), which cannot be considered in arbitrary local coordinates, since doing
this would change the values of integrals. For example, if ψ : M ⊃ O → R2N ,
ψ : x 7→ (x1, . . . , x2N) is some coordinate chart, then in general∫

M

f dΩ 6=
∫
ψ(O)

f(ψ−1(x)) dx (2.2.6)

where f is some function de�ned onM and dΩ is a measure induced by the Liouville
form Ωω. These integrals will be equal only whenM \O is of measure zero. For this
reason we introduce the following de�nition. A coordinate system ψ : M ⊃ O →
R2N on a symplectic manifold (M,ω) is called almost global if M \ O is of measure
zero with respect to the measure dΩ. Similarly, if (Q, g) is a Riemannian manifold
representing a con�guration space, then by an almost global coordinate system on
Q we mean a coordinate system de�ned on an open subset U ⊂ Q such that Q\U is
of measure zero with respect to the measure induced by the metric volume form ωg.
It can be proved that an almost global coordinate system on Q induces a canonical
coordinate system on T ∗Q with the same property. In what follows we will mainly
focus on almost global coordinate systems and consider only such manifolds which
admit such coordinates.

Example 2.2.1. Let Q = E3 and consider on E3 a Cartesian coordinates (x, y, z).
Consider also on E3 a spherical polar coordinates (r, θ, φ) related to the Cartesian
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coordinates by a transformation φ : (0,∞) × (0, π) × (0, 2π) → O, where O =
R3 \ {(x, y, z) ∈ R3 | x ≥ 0, y = 0}, φ : (r, θ, φ) 7→ (x, y, z),

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ.

(2.2.7)

In the Cartesian coordinates (x, y, z) the metric volume form ωg on E3 is equal
dx ∧ dy ∧ dz, and the corresponding measure dωg takes the form of the Lebesgue
measure dx dy dz. It can be seen that a set R3 \ O is of Lebesgue-measure zero,
hence the spherical polar coordinates (r, θ, φ) are almost global on E3.

Let (x, y, z, px, py, pz) be canonical coordinates on T ∗E3 induced by the Carte-
sian coordinates (x, y, z) on E3. In accordance to (2.1.17) canonical coordinates
(r, θ, φ, pr, pθ, pφ) on T ∗E3 induced by the spherical polar coordinates (r, θ, φ) are re-
lated to the Cartesian coordinates (x, y, z, px, py, pz) by a transformation T : (0,∞)×
(0, π)× (0, 2π)× R3 → Ô = O × R3, T : (r, θ, φ, pr, pθ, pφ) 7→ (x, y, z, px, py, pz),

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

px =
rpr sin2 θ cosφ+ pθ sin θ cos θ cosφ− pφ sinφ

r sin θ
,

py =
rpr sin2 θ sinφ+ pθ sin θ cos θ sinφ+ pφ cosφ

r sin θ
,

pz =
rpr cos θ − pθ sin θ

r
.

(2.2.8)

In the Cartesian coordinates (x, y, z, px, py, pz) the Liouville form Ωω on T ∗E3 is
equal dx ∧ dy ∧ dz ∧ dpx ∧ dpy ∧ dpz, and the corresponding measure dΩ takes the

form of the Lebesgue measure dx dy dz dpx dpy dpz. It can be seen that a set R6 \ Ô
is of Lebesgue-measure zero, hence the canonical coordinates (r, θ, φ, pr, pθ, pφ) are
almost global on T ∗E3.

2.3 Classical states

The points in a phase space (M,ω) represent states of the system. Each point in
M can be interpreted as generalized positions and momenta of particles composing
the classical system. Values of generalized positions and momenta of the particles
can be extracted from a point in M by writing this point in canonical coordinates
(qi, pj). Then, q

i are values of generalized positions and pj are values of generalized
momenta.

When the exact state of the system is not known, but only a probability that
the state is in a given region of the phase space, then there is a need to extend the
concept of a state to take into account such situation. The most natural way to do
this is to de�ne states as probabilistic measures µ de�ned on a σ-algebra B(M) of
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Borel subsets of M . In such setting points x of the phase space can be identi�ed
with Dirac measures δx

δx(E) =

{
1 for x ∈ E
0 for x /∈ E

, E ∈ B(M). (2.3.1)

Dirac measures will be called pure states and other probabilistic measures mixed
states.

Some probabilistic measures µ can be written in a form dµ = ρ dΩ, where ρ is
some integrable function on M satisfying∫

M

ρ dΩ = 1 (normalization), (2.3.2a)

ρ ≥ 0 (positive-de�niteness), (2.3.2b)

and thus can be identi�ed with functions ρ. In what follows every probabilistic
measure µ we will formally write in the form dµ = ρ dΩ. In particular, for Dirac
measures we will use a notation dδx(y) = δ(x, y) dΩ(y).

Observe, that states can be alternatively de�ned as those �functions� ρ which
satisfy

(i) ρ = ρ̄ (self-conjugation),

(ii)

∫
M

ρ dΩ = 1 (normalization),

(iii)

∫
M

f̄ · f · ρ dΩ ≥ 0 for f ∈ C∞0 (M) (positive-de�niteness),

where C∞0 (M) denotes a space of all smooth functions with compact support de�ned
on M . Indeed, (iii) is equivalent with ρ ≥ 0.

Classical states form a convex set. Pure states can be de�ned as extreme points
of the set of states, i.e. as those states which cannot be written as convex linear
combinations of some other states. In other words ρpure is a pure state if and only
if there do not exist two di�erent states ρ1 and ρ2 such that ρpure = pρ1 + (1− p)ρ2

for some p ∈ (0, 1). It can be proved that such characterization of pure states is
equivalent with the de�nition of pure states as Dirac measures.

For a given observable A ∈ C∞(M) and state µ (dµ = ρ dΩ) the expectation
value of the observable A in the state µ is de�ned by

〈A〉µ =

∫
M

A dµ =

∫
M

A · ρ dΩ. (2.3.3)

Note, that the expectation value of the observable A in a pure state δx is equal A(x).
Indeed,

〈A〉δx =

∫
M

A(y)δ(x, y) dΩ(y) = A(x). (2.3.4)
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2.4 Time evolution of classical systems

One of the observables in the algebra AC(M) has a special purpose, namely a
Hamiltonian H. This is some distinguished real valued smooth function on M and
it corresponds to the total energy of the system. The phase space (M,ω) together
with the Hamiltonian H is called a classical Hamiltonian system.

The Hamiltonian H governs the time evolution of the system. Indeed, H gener-
ates a Hamiltonian �eld ζH . Integral curves x(t) of the vector �eld ζH , i.e. curves
on M satisfying

ẋ(t) = ζH(x(t)), (2.4.1)

represent positions of points x ∈M for every instance of time t, which is interpreted
as the time development of pure states. Integral curves of a Hamiltonian �eld ζH
generate a map ΦH

t : M → M (called a phase �ow or a Hamiltonian �ow) by a
prescription: for each point x ∈M a curve

x(t) = ΦH
t (x) (2.4.2)

is an integral curve of ζH passing through the point x at time t = 0. Equation (2.4.1)
is called a Hamilton equation and integral curves of the Hamiltonian �eld are called
classical trajectories. In canonical coordinates (qi, pj), using formula (2.2.2b), the
Hamilton equation takes a form

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.4.3)

An equation of motion of mixed states can be derived from the probability
conservation law. From this law follows that every probabilistic measure µ (mixed
state) should be constant along any trajectory in the phase space, i.e.

µ(t)(E) = µ(t+ ∆t)(ΦH
∆t(E)), E ∈ B(M), (2.4.4)

which can be written in terms of the pull-back of a measure

µ(t) = (ΦH
∆t)
∗µ(t+ ∆t). (2.4.5)

From the above equation it follows that

0 = lim
∆t→0

(ΦH
∆t)
∗µ(t+ ∆t)− µ(t)

∆t
=

d

ds
(ΦH

s )∗µ(t+ s)

∣∣∣∣
s=0

=
d

ds
(ΦH

0 )∗µ(t+ s)

∣∣∣∣
s=0

+
d

ds
(ΦH

s )∗µ(t)

∣∣∣∣
s=0

, (2.4.6)

which implies that
∂µ

∂t
+ LζHµ = 0, (2.4.7)

where LζHµ denotes a Lie derivative of the measure µ in the direction of the vector
�eld ζH . Equation (2.4.7) is called a Liouville equation and it describes the time
development of the state µ.
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Let us check if for a pure state δx(t) the Liouville equation (2.4.7) is equivalent
to the Hamilton equation (2.4.1). From (2.4.7) it follows that

0 =
∂δx(t)

∂t
+

d

ds
(ΦH

s )∗δx(t)

∣∣∣∣
s=0

=
∂δx(t)

∂t
+

d

ds
δΦH−s(x(t))

∣∣∣∣
s=0

. (2.4.8)

From the above equation we get

0 = ẋ(t)− d

ds
ΦH
s (x(t))

∣∣∣∣
s=0

= ẋ(t)− ζH(x(t)), (2.4.9)

which is just the Hamilton equation (2.4.1).
If a mixed state µ can be written in a form dµ = ρ dΩ for a smooth function ρ,

then the Liouville equation (2.4.7) can be written in a di�erent form. Indeed, from
(2.4.7) we get

0 =
∂

∂t
(ρ(t)Ω) + LζH (ρ(t)Ω) =

(
∂ρ

∂t
(t) + LζHρ(t)

)
Ω, (2.4.10)

where the fact that LζHΩ = 0, following from (2.1.6), was used. The above equation
implies that

0 =
∂ρ

∂t
+ LζHρ =

∂ρ

∂t
+ ζHρ =

∂ρ

∂t
+ {ρ,H}. (2.4.11)

Hence, the following time evolution equation for the function ρ corresponding to the
state µ was received

∂ρ

∂t
− {H, ρ} = 0. (2.4.12)

Until now the states undergo the time development whereas the observables do
not. This corresponds to the Schrödinger picture in quantum mechanics. There is
also a dual point of view (which, in turn, corresponds in quantum mechanics to the
Heisenberg picture), in which states remain still whereas the observables undergo
the time development. A pull-back of the Hamiltonian �ow UH

t = (ΦH
t )∗ = etLζH

is, for every t, an automorphism of the algebra of observables AC(M) (it preserves
the linear structure as well as the point-wise product and the Poisson bracket). Its
action on an arbitrary observable A ∈ AC(M) is interpreted as the time development
of A

A(t) = UH
t A(0) = etLζHA(0) = etζHA(0) = e−t{H, · }A(0). (2.4.13)

Di�erentiating equation (2.4.13) with respect to t we receive the following time
evolution equation for an observable A

dA

dt
(t)− {A(t), H} = 0. (2.4.14)

Let qi, pj be observables of position and momentum corresponding to a canonical
coordinate system (qi, pj), i.e. q

i(x, 0), pj(x, 0) are coordinates of a point x ∈ M .
From (2.4.14) we get the following system of equations

dqi

dt
(t)− {qi(t), H} = 0,

dpi
dt

(t)− {pi(t), H} = 0, (2.4.15)
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which are just the Hamilton equations (2.4.3) written in a di�erent form. Indeed, a
solution of (2.4.15) is of a form qi(x, t) = qi(t) and pi(x, t) = pi(t) where qi(t) and
pi(t) are solutions of the Hamilton equations (2.4.3).

Both presented approaches to the time development yield equal predictions con-
cerning the results of measurements, since

〈A(0)〉µ(t) =

∫
M

A(0) dµ(t) =

∫
M

A(0) d
(
(ΦH
−t)
∗µ(0)

)
=

∫
M

(ΦH
t )∗A(0) dµ(0)

=

∫
M

A(t) dµ(0) = 〈A(t)〉µ(0). (2.4.16)



Chapter 3

Quantization of classical mechanics

3.1 Deformation theory of symplectic manifolds

One of the approaches to quantization is deformation quantization developed by
Bayen et al. [48, 49, 50]. In this approach quantum mechanics is formulated as a
deformation of classical mechanics. Such procedure results in a quantum theory
described in a geometric language similar to that of its classical counterpart. This
allows introduction in quantum mechanics many concepts from the classical the-
ory, like coordinate systems. Moreover, the formalism of deformation quantization
gives a smooth passage from classical to quantum theory, which makes it easy to
investigate the classical limit of quantum mechanics.

The main ingredient of deformation quantization is a formal deformation of a
Poisson algebra C∞(M) of smooth complex-valued functions de�ned on a phase
space M (symplectic manifold). The procedure of formal deformation is based on
the Gerstenhaber's theory of deformations of rings and algebras [51]. For a recent
review on a subject of deformation quantization refer to [52]. Let C[[ν]] denote
the ring of formal power series in the parameter ν with coe�cients in C and let
C∞(M)[[ν]] be the space of formal power series in ν with coe�cients in C∞(M).
The space C∞(M)[[ν]] is a C[[ν]]-module.

De�nition 3.1.1. A star-product on a symplectic manifold (M,ω) is a bilinear map

C∞(M)× C∞(M)→ C∞(M)[[ν]], (f, g) 7→ f ? g =
∞∑
k=0

νkCk(f, g), (3.1.1)

which extends C[[ν]]-linearly to C∞(M)[[ν]]× C∞(M)[[ν]], such that

(i) Ck are bidi�erential operators,

(ii) (f ? g) ? h = f ? (g ? h) (associativity),

(iii) C0(f, g) = fg, C1(f, g)− C1(g, f) = {f, g},

(iv) 1 ? f = f ? 1 = f .

One also de�nes a deformed Poisson bracket by the formula

[[f, g]]? =
1

ν
[f, g]? =

1

ν
(f ? g − g ? f), (3.1.2)

19
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and a formal involution as an antilinear map

C∞(M)→ C∞(M)[[ν]], f 7→ f ∗ =
∞∑
k=0

νkBk(f), (3.1.3)

which extends C[[ν]]-antilinearly to C∞(M)[[ν]], where

(i) Bk are antilinear operators,

(ii) (f ? g)∗ = g∗ ? f ∗,

(iii) (f ∗)∗ = f ,

(iv) B0(f) = f̄ .

From the above de�nitions it is clear that the ?-product, deformed Poisson bracket
[[ · , · ]]?, and involution ∗ are deformations of the point-wise product of functions ·,
Poisson bracket { · , · }, and complex-conjugation:

f ? g = fg + o(ν),

[[f, g]]? = {f, g}+ o(ν),

f ∗ = f̄ + o(ν).

(3.1.4)

The associativity of the ?-product implies that the bidi�erential operators Ck
satisfy the equations

k∑
n=0

(
Cn(Ck−n(f, g), h)− Cn(f, Ck−n(g, h))

)
= 0, k = 1, 2, . . . . (3.1.5)

The deformation of the Poisson algebra C∞(M) can be though of as a defor-
mation of a geometrical structure of the symplectic manifold M . The symplectic
manifold M is fully described by the Poisson algebra C∞(M). Thus by the defor-
mation of C∞(M) to some non-commutative algebra we can think of it as describing
a non-commutative symplectic manifold.

The existence of a star-product on any symplectic manifold was �rst proved in
1983 by De Wilde and Lecomte [53]. Later Fedosov [54] gave a recursive construction
of a star-product on a symplectic manifold using the framework of Weyl bundles.
Independently, Omori et al. [55] gave an alternative proof of the existence of a
star-product on a symplectic manifold, also using the framework of Weyl bundles.
Finally, in 1997, Kontsevich [56] proved the existence of a star-product on any
Poisson manifold.

Let ? and ?′ be two star-products on a symplectic manifold (M,ω). These star-
products are said to be equivalent if there exists a series

S =
∞∑
k=0

νkSk, S0 = id, (3.1.6)

where Sk are di�erential operators on C
∞(M), such that

S(f ? g) = Sf ?′ Sg. (3.1.7)
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Alternatively, having a star-product on (M,ω) and a series (3.1.6) one can de�ne
a new star-product on (M,ω) by the formula (3.1.7). It can be easily checked that
the new star-product indeed will satisfy conditions (i)�(iv) from the de�nition of a
star-product.

The study of equivalences of star-products is best performed in the language
of Hochschild cohomologies [51]. The relation of equivalence of star-products is an
equivalence relation, thus the set of all star-products on a given symplectic mani-
fold is divided into disjoint equivalence classes. The following result, �rst received
by Nest and Tsygan [57], Bertelson et al. [58], and Deligne [59], characterizes the
equivalence classes of star-products.

Theorem 3.1.1. The equivalence classes of star-products on a symplectic manifold
M are parametrized by formal series of elements in the second de Rham cohomology
space of M , H2(M ;C)[[ν]].

In particular, on a symplectic manifold M for which the second de Rham coho-
mology space H2(M ;C) vanishes all star-products are equivalent.

3.2 General theory of quantization

In this section we discuss a general theory of quantization of classical Hamiltonian
mechanics. Let (M,ω,H) be a classical Hamiltonian system. Such a system can be
quantized in the framework of deformation quantization. According to this frame-
work the classical Poisson algebra AC(M) = (C∞(M), ·, { · , · }, )̄ is deformed to
a quantum Poisson algebra AQ(M) = (C∞(M)[[~]], ?, [[ · , · ]], ∗), where as the de-
formation parameter ν is taken i~ (~ being the Planck's constant). Elements of
C∞(M)[[~]], self-adjoint with respect to the involution ∗ from AQ(M) are observ-
ables of the quantum system. To every measurable quantity corresponds some
observable. The correspondence between measurable quantities and self-adjoint el-
ements of C∞(M)[[~]] is �xed by the choice of quantization and can vary depending
on the chosen quantization. In particular, quantum observables do not have to be
the same functions as in the classical case; they will be an ~-deformations of classical
observables. They do not even have to be real valued if the involution from AQ(M)
is not the complex-conjugation. So an explicit choice of quantization of a classical
Hamiltonian system is �xed by a choice of both, the ?-product and the form of
quantum observables. Note that to each classical observable corresponds the whole
family of quantum observables which will reduce to the same classical observable
in the classical limit. That is to say, if fC is a classical observable then quantum
observables corresponding to it are of the form

f = fC +
∞∑
k=1

~kfk (3.2.1)

for some functions fk ∈ C∞(M). In other words, it seems that in the quantum world
there are more quantities which can be measured than in the classical world. In the
classical limit di�erent measurable quantities will reduce to the same measurable
quantity.
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It seems that there is no way of telling which assignment of measurable quantities
to elements of C∞(M)[[~]] is appropriate for a given star-product � this can be only
veri�ed through experiment. On the other hand, there is very restrictive number
of known physical quantum systems, being counterparts of some classical systems.
They are mainly described by so called natural Hamiltonians with �at metrics

H(q, p) =
1

2m
gij(q)pipj + V (q), (3.2.2)

where gij is a �at metric tensor on a con�guration space. The knowledge of quan-
tization of such systems is not enough to �x uniquely the quantization and is the
source of ambiguities. In consequence, one meets in literature various versions of
quantizations which coincide for the class of natural �at Hamiltonians.

If we consider two quantizations of a classical Hamiltonian system (M,ω,H),
given by two star-products ? and ?′, and two assignments of measurable quantities
to elements of C∞(M)[[~]], then we say that these two quantizations are equivalent if
there exists a series S (3.1.6) such that (3.1.7) holds and which has the property that
if A is an observable from the �rst quantization scheme, corresponding to a given
measurable quantity, then A′ = SA is an observable from the second quantization
scheme corresponding to the same measurable quantity. Note, that in the limit
~→ 0 both observables A and A′ will reduce to the same classical observable.

In what follows we will focus on star-products of the form

f ? g =
∞∑
k=0

(
i~
2

)k
Ck(f, g), (3.2.3)

which provided the conditions (i)�(iv) from De�nition 3.1.1 satisfy also the following
properties:

(i) Ck(f, g) = (−1)kCk(g, f),

(ii) Ck(f, g) = Ck(f̄ , ḡ),

(iii)

∫
M

Ck(f, g) dΩ = 0 for f, g ∈ C∞0 (M) and k = 1, 2, . . . ,

where C∞0 (M) denotes the space of smooth compactly supported functions on M ,
and dΩ is the Liouville measure induced by the Liouville form Ωω. Conditions (i)
and (ii) imply that the complex-conjugation is an involution for this star-product,
and from condition (iii) follows that the ?-product under the integral sign reduces
to the ordinary point-wise product:∫

M

f ? g dΩ =

∫
M

fg dΩ, f, g ∈ C∞0 (M). (3.2.4)

However, we will not limit ourselves only to star-products of the form (3.2.3) and we
will also consider, as illustrative examples, other star-products, in particular, those
for which the complex-conjugation is not an involution.
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In what follows let dl(x) =
dΩ(x)

(2π~)N
be the normalized Liouville measure and

L2(M, dl) a Hilbert space of functions de�ned on the phase space M and square
integrable with respect to the measure dl, with the scalar product given by

(f, g) =

∫
M

f(x)g(x) dl(x). (3.2.5)

So far we considered a quantum Poisson algebra as a formal algebra. That way
we did not had to worry about the convergence of formal series appearing during
the process of formal quantization. However, such approach is not entirely physical
� observables should be functions on a phase space not formal power series. A
complete quantum theory require to investigate the convergence of formal series.

Let us give some remarks about the convergence of formal power series appearing
in the de�nition of star-products. Let ? be a star-product on (M,ω). In general
it is not possible to �nd a topology on C∞(M) such that the ?-product will be
convergent for every pair of smooth functions. Thus we have to search for some
subspace A ⊂ C∞(M) with appropriately chosen topology on which the ?-product
will be convergent. Note, that functions in A can depend implicitly on ~. Moreover,
we will require that there exists a subalgebra F ⊂ A such that F is a dense subset
of L2(M, dl), and for f, g ∈ F there holds

‖f ? g‖ ≤ ‖f‖‖g‖. (3.2.6)

From (3.2.6) it follows that the ?-product is continuous on the subspace F ×F with
respect to the L2-topology and consequently uniquely extends to the continuous
star-product de�ned on the whole space L2(M, dl) and satisfying (3.2.6) for every
f, g ∈ L2(M, dl), which is a direct consequence of the fact that F is dense in
L2(M, dl).

In the rest of the thesis we will not be dealing with the problem of �nding the
subspace A and its topology. In what follows we will tacitly assume that, wherever
it is needed, all formal series are convergent. More on the convergence of defor-
mation quantization the reader can �nd in [60�62], where the authors study the
convergence in the framework of C∗-algebras (this is usually referred to as strict de-
formation quantization). In addition in [63, 64] is studied a non-formal deformation
quantization developed in the framework of Fréchet-Poisson algebras. Worth noting
are also papers [65, 66] where the convergence of a Moyal product on suitable spaces
of functions is investigated.

Note, that the star-product (3.2.3) treated as a formal deformation of the point-
wise product is local, i.e. if we choose some x ∈ M then (f ? g)(x) ∈ C[[~]] is fully
speci�ed by the values of functions f and g in an arbitrarily small neighborhood of
x. This is a direct consequence of the fact that the bidi�erential operators Ck are
local. However, if we will consider the convergence of the formal series (3.2.3), in
general, we end up with a star-product which is not local. In other words for some
x ∈ M the value (f ? g)(x) ∈ C takes into account values of functions f and g in
points far away from x. Examples of star-products with such property can be found
in Section 3.4.

The Hilbert space L2(M, dl) together with the ?-product has a structure of an
algebra, denoted hereafter by L. It is clear that for the algebra L = (L2(M, dl), ?)
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the complex-conjugation is an involution in this algebra and that under the integral
sign the star-product of two functions from L2(M, dl) reduces to the point-wise
product. Moreover, there holds

(g, f ? h) = (f̄ ? g, h), f, g, h ∈ L2(M, dl). (3.2.7)

If f ∈ A and D(f) is a subspace of A dense in L2(M, dl) such that for every
ρ ∈ D(f), f ? ρ ∈ L2(M, dl) then we can associate to f a densely de�ned operator
f ? on the Hilbert space L2(M, dl), which domain is equal D(f) and which satis�es

(f ? )† = f̄ ? . (3.2.8)

Let us de�ne a trace functional by the formula

tr(f) =

∫
M

f(x) dl(x) (3.2.9)

for f ∈ L1(M, dl). The ?-product in the algebra L obey the following property: the
ideal L1 = L ? L is a subset of L1(M, dl) and

tr(f̄ ? g) = (f, g) (3.2.10)

for any f, g ∈ L2(M, dl).

Remark 3.2.1. In this thesis the star-products were introduced as formal series of
bidi�erential operators. Then, using an appropriate topology on the space of smooth
functions, these series could be made convergent. That way we can introduce a
star-product on some subspace of C∞(M) and then transfer it to the Hilbert space
L2(M, dl). There is however other way of introducing star-products [67]. One can
�rst de�ne a star-product on some subspace F ⊂ C∞(M) of smooth functions, which
is at the same time required to be a dense subspace in L2(M, dl). The subspace
F should be endowed with some topology. Moreover, the star-product should be
continuous in F as well as in L2(M, dl), and it is usually de�ned by some integral
formula. From there it can be easily extended to a continuous star-product on the
whole space L2(M, dl). Denote by F ′ the space of continuous linear functionals
on F . The elements of F ′ are distributions and the space F is the space of test
functions. We can identify functions f ∈ F with distributions given by

〈f, g〉 =

∫
M

f(x)g(x) dl(x), for every g ∈ F . (3.2.11)

Hence, we can write F ⊂ F ′. For f ∈ F ′ and g ∈ F we can de�ne their ?-product
by

〈f ? g, h〉 = 〈f, g ? h〉, 〈g ? f, h〉 = 〈f, h ? g〉, for every h ∈ F . (3.2.12)

Denote by F? the following subset:

F? = {f ∈ F ′ | f ? g ∈ F and g ? f ∈ F for every g ∈ F}. (3.2.13)
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In particular, F ⊂ F?. If the set F? obeys the property

〈f, h ? g〉 = 〈g, f ? h〉, for every f, g ∈ F? and h ∈ F , (3.2.14)

then F? is endowed with the algebra structure

〈f ? g, h〉 = 〈f, g ? h〉, for every f, g ∈ F? and h ∈ F , (3.2.15)

which is consistent with the involution f ? g = ḡ ? f̄ . In such case F is called a
normal subalgebra.

Note that the unity function 1 does not belong to F or L2(M, dl), but is auto-
matically an element of F? and 1 ? f = f ? 1 = f , for every f ∈ F?. So, F? is an
involutive algebra with unity.

In the case M = R2N the Schwartz space S(R2N), i.e. the space of rapidly de-
creasing functions on R2N , is the normal subalgebra for the Moyal product, cf. Sec-
tion 3.4 and [65].

3.2.1 Quantum states

From de�nition, through an analogy with the classical case (cf. Section 2.3), quan-
tum states are those functions ρ ∈ L2(M, dl) which satisfy the following conditions

(i) ρ = ρ̄ (self-conjugation),

(ii)

∫
M

ρ dl = 1 (normalization),

(iii)

∫
M

f̄ ? f ? ρ dl ≥ 0 for f ∈ C∞0 (M) (positive-de�niteness),

or equivalently

(i') ρ = ρ̄ (self-conjugation),

(ii') tr(ρ) = 1 (normalization),

(iii') tr(f̄ ? f ? ρ) ≥ 0 for f ∈ C∞0 (M) (positive-de�niteness).

Quantum states form a convex subset of the Hilbert space L2(M, dl). Pure states
are de�ned as extreme points of the set of states, i.e. as those states which cannot
be written as convex linear combinations of some other states. In other words ρpure
is a pure state if and only if there do not exist two di�erent states ρ1 and ρ2 such
that ρpure = pρ1 + (1− p)ρ2 for some p ∈ (0, 1). A state which is not pure is called
a mixed state.

For certain symplectic manifolds M (cf. Proposition 4.3.6) pure states can be
alternatively characterized as functions ρpure ∈ L2(M, dl) which are self-conjugated,
normalized, and idempotent:

ρpure ? ρpure = ρpure. (3.2.16)
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Mixed states ρmix ∈ L2(M, dl) can be characterized as convex linear combinations,
possibly in�nite, of some families of pure states ρ(λ)

pure

ρmix =
∑
λ

pλρ
(λ)
pure, (3.2.17)

where pλ ≥ 0 and
∑
λ

pλ = 1.

The interpretation of pure and mixed states is similar as in classical mechanics.
When we have the full knowledge of the state of the system then the system is
described by a pure state. If we only know that the system is in some state with
some probability then the system must be described by a mixed state.

For a given observable A ∈ C∞(M)[[~]] and state ρ the expectation value of the
observable A in the state ρ is de�ned by

〈A〉ρ =

∫
M

A ? ρ dl =

∫
M

Aρ dl = tr(A ? ρ). (3.2.18)

3.2.2 Time evolution of quantum systems

The time evolution of a quantum system is governed by a Hamilton function H ∈
C∞(M)[[~]] which is, similarly as in classical mechanics, some distinguished observ-
able, being a deformation of a classical Hamilton function HC . As in classical theory
there are two dual points of view on the time evolution: Schrödinger picture and
Heisenberg picture. In the Schrödinger picture states undergo time development
while observables do not. An equation of motion for states, through an analogy to
the Liouville equation (2.4.12), takes the form

∂ρ

∂t
(t)− [[H, ρ(t)]] = 0. (3.2.19)

The formal solution of (3.2.19) takes the form

ρ(t) = U(t) ? ρ(0) ? U(t), (3.2.20)

where

U(t) = e
− i

~ tH
? =

∞∑
k=0

1

k!

(
− i
~
t

)k
H ? · · · ? H︸ ︷︷ ︸

k

(3.2.21)

is a unitary function as H is self-conjugated:

U(t) ? U(t) = U(t) ? U(t) = 1. (3.2.22)

Hence, the time evolution of states can be alternatively expressed in terms of the
one parameter group of unitary functions U(t).

In the Heisenberg picture states remain still whereas observables undergo the
time development. The time evolution of an observable A ∈ C∞(M)[[~]] is given by
the action of the unitary function U(t) from (3.2.21) on A:

A(t) = U(t) ? A(0) ? U(t) = e−t[[H, · ]]A(0), (3.2.23)
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where

e−t[[H, · ]] :=
∞∑
k=0

1

k!
(−t)k [[H, [[H, . . . [[H, · ]] . . .]]]]︸ ︷︷ ︸

k

. (3.2.24)

Di�erentiating (3.2.23) with respect to t results in the following evolution equation
for A:

dA

dt
(t)− [[A(t), H]] = 0. (3.2.25)

Equation (3.2.25) is the quantum analogue of the classical equation (2.4.14).
Both presented approaches to the time development yield equal predictions con-

cerning the results of measurements, since

〈A(0)〉ρ(t) =

∫
M

A(0) ? ρ(t) dl

=

∫
M

A(0) ? U(t) ? ρ(0) ? U(t) dl

=

∫
M

U(t) ? A(0) ? U(t) ? ρ(0) dl

=

∫
M

A(t) ? ρ(0) dl = 〈A(t)〉ρ(0). (3.2.26)

3.3 Coordinate systems

The geometrical language which was used to quantize classical systems allowed
for quantization to be performed in a coordinate independent way. However, in
full analogy with classical mechanics, it is possible to consider quantum theory in
some coordinate system. Let M ⊃ U → V ⊂ R2N , x 7→ (x1(x), . . . , x2N(x)) be
a coordinate system on a phase space M . In analogy with the classical case this
coordinate system is called quantum canonical if there holds

[[xα, xβ]] = J αβ, (3.3.1)

where

(J αβ) =

(
0N IN
−IN 0N

)
. (3.3.2)

We will denote a quantum canonical coordinate system (x1, . . . , x2N) by

(q1, . . . , qN , p1, . . . , pN) ≡ (qi, pj). (3.3.3)

Then the quantum canonicity condition (3.3.1) takes the form

[[qi, qj]] = [[pi, pj]] = 0, [[qi, pj]] = δij. (3.3.4)

The functions qi and pj are observables of position and momentum associated with
the coordinate system (qi, pj). Note that in the limit ~ → 0 a quantum canoni-
cal coordinate system reduces to a classical canonical coordinate system. If (qi, pj)
and (q′i, p′j) are two quantum canonical coordinate systems then the transforma-

tion (qi, pj) 7→ (q′i, p′j) between these two coordinate systems is called a quantum
canonical transformation [42, 68�71].



28 CHAPTER 3. QUANTIZATION OF CLASSICAL MECHANICS

Let us derive the condition on a coordinate system (x1, . . . , x2N), which has to
be satis�ed to make it a classical and quantum canonical coordinate system.

Theorem 3.3.1. A coordinate system (x1, . . . , x2N) is classical and quantum canon-
ical i�

C1(xα, xβ) = J αβ, (3.3.5a)

Ck(x
α, xβ) = 0, k = 3, 5, . . . , (3.3.5b)

for every α, β = 1, . . . , 2N , where Ck are bidi�erential operators in the expansion
(3.2.3) of the ?-product.

Proof. From (2.2.3) and (iii) from De�nition 3.1.1 we get (3.3.5a). In accordance
with (3.3.1) a coordinate system (x1, . . . , x2N) is a quantum canonical coordinate
system i�

[xα, xβ] = xα ? xβ − xβ ? xα = i~J αβ. (3.3.6)

The above condition can be written in the form

∞∑
k=0

(
i~
2

)k (
Ck(x

α, xβ)− Ck(xβ, xα)
)

= i~J αβ. (3.3.7)

The above equation is equivalent with the following system of equations

1

2

(
C1(xα, xβ)− C1(xβ, xα)

)
= J αβ, (3.3.8a)

Ck(x
α, xβ) = Ck(x

β, xα), k = 2, 3, . . . . (3.3.8b)

Equation (3.3.8a) is satis�ed due to classical canonicity of the coordinate system.
Equation (3.3.8b) due to property (i) of Ck in the expansion (3.2.3) of the ?-product
can be rewritten in the form

Ck(x
α, xβ) = (−1)kCk(x

α, xβ). (3.3.9)

The above formula is automatically satis�ed for even k, and for odd k we get the
condition (3.3.5b).

If (x1, . . . , x2N) is a coordinate system on M then we can write elements of
C∞(M)[[~]] in this coordinates receiving formal power series in C∞(V )[[~]] where

V ⊂ R2N . In particular, if f =
∞∑
k=0

~kfk is an element of C∞(M)[[~]] then by writing

each fk ∈ C∞(M) in the coordinates (x1, . . . , x2N) we receive a formal power series
in C∞(V )[[~]]. Analogically, we can write a ?-product on M in the coordinates
(x1, . . . , x2N) receiving a star-product on a subset V ⊂ R2N . We will denote such
star-product by ?(x).

Note, that if (x1, . . . , x2N) is a purely quantum canonical coordinate system, i.e.
it is not at the same time classical canonical, then it must depend on ~ and, in fact,
will be a deformation of some classical canonical coordinate system. The components
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ωαβ of the symplectic form ω for such purely quantum canonical coordinate system
will also depend on ~ and can be expanded in the following series

ωαβ = Jαβ + ~ω(1)
αβ + ~2ω

(2)
αβ + o(~3). (3.3.10)

In consequence, the bidi�erential operators Ck from the expansion (3.2.3) of the
?-product written in the coordinates (x1, . . . , x2N) will depend on ~. Expanding Ck
in the power series of ~ allows to write the ?(x)-product in the form

f ?(x) g =
∞∑
k=0

(
i~
2

)k
C ′k(f, g), (3.3.11)

where C ′k are new bidi�erential operators which are independent on ~, satisfy con-
ditions (i)�(iii) on page 22, and moreover, in accordance to (3.3.10)

C ′1(f, g) = J αβ(∂xαf)(∂xβg). (3.3.12)

Thus we can show, similarly as in the proof of Theorem 3.3.1, that

C ′1(xα, xβ) = J αβ, (3.3.13a)

C ′k(x
α, xβ) = 0, k = 3, 5, . . . . (3.3.13b)

As a result the ?(x)-product can be considered as a coordinate representation, with
respect to a classical and quantum canonical coordinate system, of some star-product
on a symplectic manifold di�erent than (M,ω).

Let us make some remarks about domains of coordinate systems. If one is in-
terested only in the investigation of a geometry of a classical Hamiltonian system
(M,ω,H), then one can consider coordinate systems de�ned on arbitrary open sub-
sets U of a phase space M . However, for quantum systems this does not remain
true since star-products, considered in a non-formal setting, are not local.

The same thing happens when one wishes to investigate integrals over the phase
space, e.g., to calculate expectation values of observables, then one cannot do this in
an arbitrary coordinate system. The reason for this is that, in general the values of
integrals will change if the integration will be performed over some subset U ⊂ M .
This argument applies both to classical and quantum theory. The only coordinate
systems in which it is meaningful to consider integration are almost global coordinate
systems (cf. Section 2.2).

3.4 Natural star-products on symplectic manifolds

3.4.1 Moyal star-product on R2N

Let us take as a phase space M the symplectic vector space (R2N , ω), where ω is
a symplectic matrix which components in a canonical basis e1 = (1, 0, . . . , 0), e2 =
(0, 1, . . . , 0), . . . , e2N = (0, 0, . . . , 1) on R2N are equal

(ωµν) =

(
0N −IN
IN 0N

)
. (3.4.1)
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On such symplectic manifold there exists a natural star-product which in canonical
coordinates x = xαeα 7→ (x1, . . . , x2N) is given by the formula

f ?M g = f exp

(
i~
2
ωµν
←−
∂ xµ
−→
∂ xν

)
g

=
∞∑
k=0

1

k!

(
i~
2

)k
ωµ1ν1 · · ·ωµkνk(∂xµ1 · · · ∂xµkf)(∂xν1 · · · ∂xνkg), (3.4.2)

where ωµν is an inverse matrix to the symplectic matrix ωµν . The star-product
(3.4.2) was �rst considered by Groenewold [72], Moyal [73], and Berezin [74] and is
usually called a Moyal product.

Proposition 3.4.1. The Moyal product (3.4.2) is associative.

Proof. The Moyal product can be written in a form

(f ?M g)(x) = exp

(
i~
2
ωµν∂yµ∂zν

)
(f(y)g(z))

∣∣∣∣
y=z=x

. (3.4.3)

Derivatives ∂xα are derivations for the ?M -product, which can be stated as

∂xα(f ?M g)(x) = (∂yα + ∂zα) exp

(
i~
2
ωµν∂yµ∂zν

)
(f(y)g(z))

∣∣∣∣
y=z=x

. (3.4.4)

Thus

((f ?M g) ?M h)(x) = exp

(
i~
2
ωµν∂vµ∂wν

)
((f ?M g)(v)h(w))

∣∣∣∣
v=w=x

= exp

(
i~
2
ωµν(∂yµ + ∂zν )∂wν

)
exp

(
i~
2
ωµ
′ν′∂yµ′∂zν′

)
(f(y)g(z)h(w))

∣∣∣∣
y=z=w=x

= exp

(
i~
2
ωµν(∂yµ∂wν + ∂zµ∂wν + ∂yµ∂zν )

)
(f(y)g(z)h(w))

∣∣∣∣
y=z=w=x

= (f ?M (g ?M h))(x). (3.4.5)

Proposition 3.4.2. For elements f, g of the space C∞0 (R2N) of compactly supported
functions on R2N ∫

R2N

f ?M g dx =

∫
R2N

fg dx. (3.4.6)

Proof. Let

Ck(f, g) =
1

k!
ωµ1ν1 · · ·ωµkνk(∂xµ1 · · · ∂xµkf)(∂xν1 · · · ∂xνkg). (3.4.7)

Then, using integration by parts we get for k = 1, 2, . . .∫
R2N

Ck(f, g) dx = −
∫
R2N

1

k!
ων1µ1ωµ2ν2 · · ·ωµkνk(∂xν1∂xµ2 · · · ∂xµkf)

× (∂xµ1∂xν2 · · · ∂xνkg) dx

= −
∫
R2N

Ck(f, g) dx. (3.4.8)
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Thus ∫
R2N

Ck(f, g) dx = 0, (3.4.9)

which proves (3.4.6).

In the rest of the thesis we will use the following conventions concerning the
Fourier transform. We will de�ne the Fourier transform of a function f on R2N by
the formula

(Ff)(ξ) =
1

(2π~)N

∫
R2N

f(x)e−
i
~ ξµx

µ

dx

=

∫
R2N

f(x)e−
i
~ ξµx

µ

dl(x) (3.4.10)

and the inverse Fourier transform by

(F−1f)(x) =
1

(2π~)N

∫
R2N

f(ξ)e
i
~ ξµx

µ

dξ

=

∫
R2N

f(ξ)e
i
~ ξµx

µ

dl(ξ). (3.4.11)

The Fourier transform has the following properties

F (∂xµf)(ξ) =
i

~
ξµFf(ξ), (3.4.12)

F (f · g) = Ff ∗Fg, (3.4.13)

where ∗ is a convolution of functions de�ned by

(f ∗ g)(x) =

∫
R2N

f(y)g(x− y) dl(y) =

∫
R2N

f(x− y)g(y) dl(y). (3.4.14)

As an illustrative remark let us give an example of a subspace A of C∞(R2N),
with an appropriate topology on which the Moyal product is convergent. Let A =
F (E ′) be the Fourier image of the space of distributions with compact support E ′.
The space E ′ is a dual space to the Fréchet space E = C∞(R2N) equipped with
a standard topology of uniform convergence on compact subsets of R2N , together
with all derivatives. E ′ carries the strong dual topology, i.e. the topology of uniform
convergence on bounded sets in E , whereas A carries the topology induced by F
from E ′. By the Paley-Wiener theoremA is the space of smooth functions on R2N for
which each derivative is polynomially bounded and which extend to entire functions
on C2N of exponential type. That is f : R2N → C is an element of A if and only if
f extends to an entire function f : C2N → C satisfying for all z ∈ C2N

|f(z)| ≤ C(1 + |z|)ner|Im(z)| (3.4.15)

for some constants C > 0, r > 0 and n ∈ N. Note that all polynomials belong to A.

Theorem 3.4.1. For f, g ∈ A the series f ?M g is convergent in A. Thus A is an
algebra with respect to the Moyal product ?M .
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The proof of the above theorem can be found in [65]. Worth noting is paper [66]
where author introduces slightly di�erent family of subspaces of smooth functions
on which the Moyal product is also convergent.

Let F = F (C∞0 (R2N)). Then F is a subspace of A as well as the Schwartz space
S(R2N), i.e. the space of rapidly decreasing functions on R2N . Moreover, F is dense
in S(R2N) and L2(R2N).

Theorem 3.4.2. For f, g ∈ F the Moyal product can be written in the following
integral form

(f ?M g)(x) =
1

(π~)2N

∫
R2N

∫
R2N

f(x+ u)g(x+ v)e−
2i
~ ωµνu

µvν du dv. (3.4.16)

Proof. Using the properties (3.4.12) and (3.4.13) of the Fourier transform the Moyal
product can be written in the following form

(f ?M g)(x) = F−1F (f ?M g)(x) =
1

(2π~)N

∫
R2N

F (f ?M g)(ξ)e
i
~ ξµx

µ

dξ

=
1

(2π~)2N

∫
R2N

∞∑
k=0

1

k!

(
i~
2

)k
ωµ1ν1 · · ·ωµkνk

∫
R2N

F (∂xµ1 · · · ∂xµkf)(η)

×F (∂xν1 · · · ∂xνkg)(ξ − η)e
i
~ ξµx

µ

dη dξ

=
1

(2π~)2N

∫
R2N

∞∑
k=0

1

k!

(
i~
2

)k
ωµ1ν1 · · ·ωµkνk

∫
R2N

i

~
ηµ1 · · ·

i

~
ηµkFf(η)

× i

~
(ξν1 − ην1) · · ·

i

~
(ξνk − ηνk)Fg(ξ − η)e

i
~ ξµx

µ

dη dξ

=
1

(2π~)2N

∫
R2N

∫
R2N

∞∑
k=0

1

k!

(
−i
2~

)k (
ωµνηµ(ξν − ην)

)k
×Ff(η)Fg(ξ − η)e

i
~ ξµx

µ

dη dξ

=
1

(2π~)2N

∫
R2N

∫
R2N

Ff(η)Fg(ξ − η)e−
i
2~ω

µνηµ(ξν−ην)e
i
~ ξµx

µ

dη dξ.

(3.4.17)

Performing the change of variables

ηµ → ηµ,

ξµ → ξµ + ηµ
(3.4.18)

we get

(f ?M g)(x) =
1

(2π~)2N

∫
R2N

∫
R2N

Ff(η)Fg(ξ)e
i
~ (xµ+ 1

2
ωµνην)ξµe

i
~ηµx

µ

dη dξ

=
1

(2π~)N

∫
R2N

Ff(η)g(x+ 1
2
ωη)e

i
~ηµx

µ

dη

=
1

(2π~)2N

∫
R2N

∫
R2N

f(y)g(x+ 1
2
ωη)e

i
~ηµx

µ

e−
i
~ηµy

µ

dy dη. (3.4.19)
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After performing another change of variables

yµ → xµ + uµ,

ηµ → 2ωµνv
ν (3.4.20)

we receive the result.

The integral form of the Moyal product is also valid for f, g ∈ S(R2N). Moreover,
it can be shown that ?M is continuous on S(R2N) and that for f, g ∈ S(R2N),
f ?M g ∈ S(R2N) and

‖f ?M g‖ ≤ ‖f‖‖g‖, (3.4.21)

see e.g. [40, 65]. The extension of the Moyal product from F to a continuous star-
product on S(R2N) is unique since F is dense in S(R2N). Hence the Schwartz space
S(R2N) is an algebra with respect to the Moyal product. The subspace F is also
an algebra with respect to ?M , which is a direct consequence of the fact that the
Fourier transform F is an automorphism of S(R2N). From (3.4.21) follows that the
Moyal product is continuous with respect to the L2-topology and so can be uniquely
extended to a continuous star-product on L2(R2N).

It is not di�cult to check that the integral form (3.4.16) of the Moyal product
can be written in the following way

(f ?M g)(q, p) =

∫
RN

∫
RN
f̃(q + 1

2
u, v)g̃(q − 1

2
v, u)e−

i
~ (ui+vi)pi du dv, (3.4.22)

where f̃ denotes the Fourier transform of f in the momentum variable

f̃(q, u) =
1

(2π~)N

∫
RN
f(q, p)e

i
~piu

i

dp. (3.4.23)

Note, that the Moyal product on the algebra A is not local, which can be seen
from the integral form (3.4.16) of the Moyal product � for a �xed x ∈ R2N the
value of the integral in (3.4.16) depends on the values of functions f and g far away
from x.

The Moyal product (3.4.2) is also a valid star-product on symplectic manifold
M = T ∗U = U × RN , where U is some open subset of RN . This is a direct con-
sequence of the fact that the Moyal product is a series of bidi�erential operators
which are local operators. For f, g ∈ C∞0 (M) the integral form (3.4.16) of the Moyal
product still makes sense, since f and g can be uniquely extended to smooth func-
tions de�ned on the whole space R2N with the same supports as f and g respectively
(just by putting the functions f and g equal 0 outside U × RN). In such case the
expression (3.4.16) still can be formally expanded to the series (3.4.2). Denote by
F the space of smooth functions which momentum Fourier transforms are smooth
functions with compact support. For f, g ∈ F formula (3.4.22) makes sense and
de�nes the Moyal product of functions f and g. Taking the Fourier transform of
(3.4.22) in the momentum variable we receive

(f ?M g)∼(q, u) =

∫
RN
f̃(q + 1

2
v, u− v)g̃(q − 1

2
(u− v), v) dv. (3.4.24)
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From (3.4.24) and the fact that the convolution of compactly supported smooth
functions is also a compactly supported smooth function follows that (f ?M g)∼ has
compact support and is smooth. Moreover, it is not di�cult to see that f ?M g
is smooth. Hence f ?M g ∈ F , i.e. F is an algebra with respect to ?M . Formula
(3.4.24) de�nes actually a twisted convolution of f̃ and g̃.

Let now (M,ω) be a general symplectic manifold and ? a star-product on M of
the form (3.2.3). If we choose on M some coordinate system M ⊃ U → V ⊂ R2N ,
x 7→ (x1, . . . , x2N) = (q1, . . . , qN , p1, . . . , pN) which is at the same time classical and
quantum canonical, then in this coordinates the symplectic form ω takes the form
(3.4.1) and we receive on the subset V a star-product ?(x). However, on V we can
also de�ne a Moyal product (3.4.2) associated to the same symplectic form ω. It
happens that these two star-products are always equivalent.

Theorem 3.4.3. For any coordinate system (x1, . . . , x2N) on the symplectic mani-
fold (M,ω), which is at the same time classical and quantum canonical, there exists

a unique series S =
∞∑
k=0

~kSk of the form (3.1.6), such that

S(f ?
(x)
M g) = Sf ?(x) Sg, (3.4.25a)

Sxα = xα, (3.4.25b)

Sf = Sf̄ , (3.4.25c)

where ?(x)
M is a star-product which in the coordinates (x1, . . . , x2N) is of the form of

the Moyal product. The series S will satisfy (3.4.25) if and only if

[S2k, x
α] =

k∑
l=1

(
−1

4

)l
Aα2lS2(k−l), (3.4.26a)

[S2k, ∂
α] =

k∑
l=1

(
−1

4

)l
Aα2l+1S2(k−l), (3.4.26b)

and S2k−1 = 0 for k = 1, 2, . . . , where ∂α = ωαβ∂xβ and Aαkf = Ck(x
α, f).

The proof of the above theorem is given in Appendix A. Equations (3.4.26) can
be used to recursively calculate the series S order by order in ~. The general solution
of (3.4.26) is of the form

S2k =
∞∑
n=1

1

n!
[xα1 , . . . , [xαn−1 , Fαn ]]∂α1 · · · ∂αn , (3.4.27)

where Fα =
k∑
l=1

(
−1

4

)l
Aα2lS2(k−l). Indeed, it is enough to solve (3.4.26a), since the

solution of (3.4.26a) is speci�ed up to an additive function which has to be equal
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zero by virtue of (3.4.25b). We have that

[S2k, x
α] = −

∞∑
n=1

1

n!
[xα, [xβ1 , . . . , [xβn−1 , F βn ]]]∂β1 · · · ∂βn

+
∞∑
n=1

1

(n− 1)!
[xβ1 , . . . , [xβn−1 , Fα]]∂β1 · · · ∂βn−1

= −
∞∑
n=1

1

n!
[xβ1 , . . . , [xβn , Fα]]∂β1 · · · ∂βn

+
∞∑
n=0

1

n!
[xβ1 , . . . , [xβn , Fα]]∂β1 · · · ∂βn = Fα. (3.4.28)

Note, that since Aαk are di�erential operators of �nite order the sum in (3.4.27) will
be �nite.

From Theorem 3.4.3 follows that a quantization of a classical system given by a
star-product of the form (3.2.3) and some assignment of measurable quantities to
elements A ∈ C∞(M)[[~]], locally is equivalent with a Moyal quantization given by
the Moyal product (3.4.2) and an assignment of measurable quantities to elements
A′ = SA. This fact is of fundamental importance for introducing an operator
representation of quantum mechanics.

Remark 3.4.1. Note, that Theorem 3.4.3 is also valid for a purely quantum canoni-
cal coordinate system (x1, . . . , x2N) since, in accordance to Section 3.3, the ?(x)-prod-
uct can be considered as a coordinate representation, with respect to a classical and
quantum canonical coordinate system, of some star-product on some other symplec-
tic manifold.

In what follows we will consider only such ?-products for which, for every almost
global classical and quantum canonical coordinate system M ⊃ U → V ⊂ R2N ,
x 7→ (x1, . . . , x2N), the associated series S giving the equivalence with a Moyal
product has the property that for every f ∈ C∞0 (V ) the series S(f) is convergent to
an element of L2(V, dl) and∫

V

Sf dl =

∫
V

f dl, f ∈ C∞0 (V ). (3.4.29)

From (3.4.29) it follows that

(Sf, Sg) = (f, g), f, g ∈ C∞0 (V ). (3.4.30)

Indeed,

(Sf, Sg) =

∫
V

SfSg dl =

∫
V

Sf̄ ?(x) Sg dl

=

∫
V

S(f̄ ?
(x)
M g) dl =

∫
V

f̄ ?
(x)
M g dl = (f, g). (3.4.31)

The above property imposed on the series S guaranties that S can be uniquely
extended to a unitary operator de�ned on the whole Hilbert space L2(V, dl) and
satisfying

S(f ?
(x)
M g) = Sf ?(x) Sg, f, g ∈ L2(V, dl). (3.4.32)
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3.4.2 Family of star-products on T ∗EN

Let us consider an N -dimensional Euclidean space EN . The cotangent bundle T ∗EN

to this space is a 2N -dimensional manifold naturally endowed with a symplectic
structure ω, as was discussed in Section 2.1. Let us choose some Cartesian coor-
dinate system (q1, . . . , qN) on EN . This coordinate system extends to a Cartesian
coordinate system (q1, . . . , qN , p1, . . . , pN) = (x1, . . . , x2N) on the symplectic mani-
fold T ∗EN (see Section 2.1). In this coordinates the symplectic form ω takes the
form dpi ∧ dqi. Also the Poisson tensor P = ω−1 related to the symplectic form ω
can be written in the form

P = J µν∂xµ ⊗ ∂xν = ∂qi ∧ ∂pi . (3.4.33)

Equation (3.4.33) shows that the Poisson tensor P can be decomposed into a wedge
product of pair-wise commuting vector �elds. However, such decomposition is not
unique. There are di�erent sequences of commuting vector �elds D1, . . . , D2N such
that

P = J µνDµ ⊗Dν =
N∑
i=1

Xi ∧ Yi, (3.4.34)

where Xi = Di and Yi = DN+i for i = 1, . . . , N .

In what follows we will de�ne a family of star-products on the symplectic mani-
fold T ∗EN . Let (Dµ) be a sequence of pair-wise commuting global vector �elds from
the decomposition (3.4.34) of the Poisson tensor P . De�ne a star-product by the
formula

f ? g = f exp

(
1

2
i~J µν←−Dµ

−→
Dν

)
g. (3.4.35)

From the commutativity of vector �elds Dµ follows the associativity of the star-
product. The proof of this fact is analogical as the proof of Proposition 3.4.1. As
was pointed out earlier the sequence (Dµ) is not uniquely speci�ed by the Poisson
tensor, thus we can de�ne the whole family of star-products related to the same
Poisson tensor.

In particular, if Aνµ is a symplectic matrix with constant coe�cients i.e. ATJA =

J or equivalently J µνAαµA
β
ν = J αβ, then vector �elds D′µ = AνµDν also pair-wise

commute and satisfy P = J µνD′µ ⊗D′ν . Both sequences (Dµ) and (D′µ) de�ne the
same star-product, as can be checked by a direct computation. Thus the introduced
family of star-products is parametrized by elements of the space of sequences (Dµ)
modulo the symplectic group Sp(2N).

The constructed family of star-products consists of equivalent star-products,
which is a direct consequence of Theorem 3.1.1.

Example 3.4.1. Let us consider the Poisson manifold T ∗R ∼= R2 with the standard
Poisson tensor P . Assume that (q, p) is a Darboux coordinate system. Consider the
following vector �elds

X = ∂q, Y = ∂p,

X ′ = q2∂q − 2qp∂p, Y ′ = q−2∂p.
(3.4.36)
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It can be checked that [X, Y ] = 0, [X ′, Y ′] = 0 and

P = X ∧ Y = X ′ ∧ Y ′. (3.4.37)

Star-products induced by vector �elds X, Y and X ′, Y ′ are equivalent and the mor-
phism S giving this equivalence is represented by the formula

S = id +
~2

4

(
2q−2∂2

p + q−2p∂3
p − q−1∂q∂

2
p

)
+ o(~4). (3.4.38)

Note that vector �elds X, Y and X ′, Y ′ are related by a canonical transformation
T : (q, p) 7→ T (q, p) = (−q−1, q2p):

(Xf) ◦ T = X ′(f ◦ T ), (Y f) ◦ T = Y ′(f ◦ T ), (3.4.39)

for f ∈ C∞(R2).

For a given sequence of vector �elds (Dµ) from the decomposition (3.4.34) of the
Poisson tensor P there exists a global coordinate system (x1, . . . , x2N) in which Dµ

are coordinate vector �elds, i.e. Dµ = ∂xµ . Such coordinate system is of course a
Darboux coordinate system associated with the symplectic form ω. In this coordi-
nates the star-product (3.4.35) takes the form of the Moyal product (3.4.2). The
coordinate system (x1, . . . , x2N) will be called a natural coordinate system of the
?-product.

The structure of the symplectic manifold T ∗EN distinguishes one product from
the presented family of star-products, namely the one for which the natural co-
ordinate system is the Cartesian coordinate system. Such star-product is indeed
uniquely de�ned since coordinate vector �elds of Cartesian coordinate systems are
related to each other by linear symplectic transformations and such transformations
do not change the star-product (3.4.35) as pointed out earlier. This distinguished
star-product will be called a canonical star-product on T ∗EN .

In what follows let us write the canonical star-product on T ∗EN in a di�erent
form. To do this let us �rst write it in a Darboux coordinate system induced from
an arbitrary curvilinear coordinates on EN . Let φ : (q′1, . . . , q′N) 7→ (q1, . . . , qN)
be a change of coordinates from arbitrary curvilinear coordinates (q′1, . . . , q′N) to
Cartesian coordinates (q1, . . . , qN). The transformation φ on EN induces a canon-
ical transformation (q′, p′) 7→ T (q′, p′) = (q, p) on the symplectic manifold T ∗EN

according to the formula (2.1.17).
The canonical star-product in Cartesian coordinates takes the form of a Moyal

product (3.4.2). The Moyal product (3.4.2) under the point transformation T trans-
forms to the following star-product:

f ?(q′,p′) g = f exp

(
1

2
i~J µν←−−Dx′µ

−−→
Dx′ν

)
g, (3.4.40)

where

Dq′i = [(φ′(q′))−1]ji
(
∂q′j + Γrjl(q

′)p′r∂p′l
)
,

Dp′i
= [φ′(q′)]ij∂p′j

(3.4.41)
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is a transformation of Cartesian coordinate vector �elds ∂qi , ∂pi to a new coordinate

chart, and Γijk(q
′) = [(φ′(q′))−1]ir[φ

′′(q′)]rjk ([φ′′(q′)]ijk =
∂2φi

∂q′j∂q′k
(q′) is the Hessian of

φ). Note that the symbols Γijk(q
′) are the Christo�el symbols for the (q′1, . . . , q′N)

coordinates, associated to the standard linear connection ∇ on the con�guration
space EN . Formula (3.4.40) can be written in the form

f ?(q′,p′) g =
∞∑

n,m=0

1

n!m!
(−1)m

(
i~
2

)n+m

(Dj1...jm
i1...in

f)(Di1...in
j1...jm

g), (3.4.42)

where operators Dj1...jm
i1...in

are given recursively by

Dj1...jm
i1...in+1

f = Din+1(D
j1...jm
i1...in

f)− Γki1in+1
Dj1...jm
k...in

f − · · · − Γkinin+1
Dj1...jm
i1...k

f

+ Γj1kin+1
Dk...jm
i1...in

f + · · ·+ Γjmkin+1
Dj1...k
i1...in

f, (3.4.43a)

D
j1...jm+1

i1...in
f = Djm+1(Dj1...jm

i1...in
f), (3.4.43b)

Dif = ∂q′if + Γkijp
′
k∂p′jf, (3.4.43c)

Djf = ∂p′jf, (3.4.43d)

where {Di, D
j} is a so called adopted frame on T ∗EN [75]. Note that the upper

indices in the operatorDj1...jm
i1...in

commute with the lower indices, i.e. it does not matter

if, when calculating Dj1...jm
i1...in

f , we �rst use formula (3.4.43a) and then (3.4.43b) or
vice verse.

Equation (3.4.42) takes the form

f ?(q′,p′) g =
∞∑
k=0

1

k!

(
i~
2

)k k∑
n=0

(
k

n

)
(−1)k−n(∇̃ · · · ∇̃︸ ︷︷ ︸

k

f)i1...inj̄1...j̄k−n

× (∇̃ · · · ∇̃︸ ︷︷ ︸
k

g)ī1...̄inj1...jk−n , (3.4.44)

where ī = N + i and ∇̃ is a linear connection on the symplectic manifold T ∗EN ,
which components in the frame {Di, D

j} are equal

Γ̃ijk = Γijk, Γ̃īj̄k = −Γjik (3.4.45)

with the remaining components equal zero. Equation (3.4.44) can be written in the
form

f ?(q′,p′) g =
∞∑
k=0

1

k!

(
i~
2

)k k∑
n=0

(
k

n

)
Aµ1ν1 · · ·AµnνnBµn+1νn+1 · · ·Bµkνk

× (∇̃ · · · ∇̃︸ ︷︷ ︸
k

f)µ1...µk(∇̃ · · · ∇̃︸ ︷︷ ︸
k

g)ν1...νk , (3.4.46)

where

A =

(
0N IN
0N 0N

)
, B =

(
0N 0N
−IN 0N

)
. (3.4.47)
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Equation (3.4.46) takes the form

f ?(q′,p′) g =
∞∑
k=0

1

k!

(
i~
2

)k
(A+B)µ1ν1 · · · (A+B)µkνk(∇̃ · · · ∇̃︸ ︷︷ ︸

k

f)µ1...µk

× (∇̃ · · · ∇̃︸ ︷︷ ︸
k

g)ν1...νk . (3.4.48)

Introducing

ω = A+B =

(
0N IN
−IN 0N

)
(3.4.49)

we �nally receive

f ?(q′,p′) g =
∞∑
k=0

1

k!

(
i~
2

)k
ωµ1ν1 · · ·ωµkνk(∇̃ · · · ∇̃︸ ︷︷ ︸

k

f)µ1...µk(∇̃ · · · ∇̃︸ ︷︷ ︸
k

g)ν1...νk . (3.4.50)

Since Di∧Dj = ∂q′i ∧∂p′j , ω
µν are components of the Poisson tensor in the Darboux

frame {∂q′i , ∂p′j} as well as in the adopted frame {Di, D
j}.

The Christo�el symbols of the linear connection ∇̃ in the Darboux coordinate
frame take the form

Γ̃ijk = Γijk, Γ̃īj̄k = −Γjik, Γ̃ījk̄ = −Γkji,

Γ̃ījk = pl(Γ
r
jkΓ

l
ri + ΓrikΓ

l
rj − Γlij,k),

(3.4.51)

with the remaining components equal zero. From the construction it follows that ∇̃
is symplectic, i.e. ∇̃ω = 0. Moreover, from �atness of the con�guration space EN

follows that ∇̃ is �at and torsionless.
Thus we wrote the canonical star-product on T ∗EN in a covariant form (3.4.50),

where ∇̃ is a connection induced from a standard Levi-Civita connection on EN .
Other star-products on EN also can be written in a covariant form (3.4.50). As a
linear connection ∇̃ one has to take a connection which components in a natural
coordinate system vanish. However, such connection is not related to a standard
Levi-Civita connection on EN .

Equation (3.4.51) de�nes a lift of the Levi-Civita connection on EN to a symplec-
tic connection on T ∗EN . It is possible to de�ne a lift of the Levi-Civita connection
Γijk on a general Riemannian manifold Q to a symplectic and torsionless connec-

tion Γ̃αβγ on the cotangent bundle T ∗Q. The resulting connection in the Darboux
coordinate frame is given by the formulas

Γ̃ijk = Γijk, Γ̃īj̄k = −Γjik, Γ̃ījk̄ = −Γkji,

Γ̃ījk = pl(Γ
r
jkΓ

l
ri + ΓrikΓ

l
rj − Γlij,k − 1

3
Rl
ijk − 1

3
Rl
jik),

(3.4.52)

with the remaining components equal zero. In the adopted frame {Di, D
j} the

connection Γ̃αβγ takes the form

Γ̃ijk = Γijk, Γ̃īj̄k = −Γjik, Γ̃ījk = −1

3
pl(R

l
ijk +Rl

jik), (3.4.53)
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with the remaining components equal zero. Straightforward but tedious calculations
lead to the following components R̃α

βγδ for the curvature tensor of the symplectic

torsionless connection ∇̃ given by (3.4.52)

R̃i
jkl = Ri

jkl, R̃ī
jkl̄ =

2

3
Rl

(ij)k,

R̃ī
jkl = −1

3
pr
(
Rr
jkl;i +Rr

ikl;j − 6Γrs(iR
s
j)kl + 4Rs

(ij)[kΓ
r
l]s

)
,

(3.4.54)

with all remaining independent components equal zero, where ( · , · ) and [ · , · ] stand
for the symmetrization and anti-symmetrization, respectively. From (3.4.54) it is
possible to calculate the components of the Ricci curvature tensor, R̃αβ = R̃γ

αγβ,
receiving

R̃ij =
2

3
Rij, R̃ij̄ = R̃īj = R̃īj̄ = 0. (3.4.55)

As we will see later, on a symplectic manifold endowed with a symplectic torsion-
less connection it is possible to distinguish a family of star-products. In the majority
of physically interesting cases as the symplectic manifold is taken the cotangent bun-
dle to a con�guration space being a Riemannian manifold. In such case there exists
a distinguished connection and thus a family of star-products which can be used to
introduce quantization. More about lifts of connections can be found in [75, 76].

Remark 3.4.2. The star-product (3.4.35) is also a valid star-product on more gen-
eral symplectic manifolds. Let us consider a symplectic manifold M whose Poisson
tensor can be written in the form (3.4.34). In addition, let us assume that the �rst
de Rham cohomology class H1(M) vanishes. This will guarantee the existence of
global natural coordinate systems associated to the star-products (3.4.35). On such
symplectic manifold M the product (3.4.35) is a valid star-product, which can also
be written in a covariant form (3.4.50) with an appropriate linear connection ∇̃.
However, in this case there is no distinguished star-product from the family of prod-
ucts (3.4.35). To distinguish a star-product we have to distinguish a sequence of
commuting vector �elds (Dµ) from the decomposition (3.4.34) of the Poisson tensor,
or equivalently, by distinguishing a �at torsionless symplectic linear connection ∇̃
on M .

3.4.3 Canonical star-product on T ∗Q with a �at base

manifold Q
We can distinguish a star-product on more general symplectic manifolds. Let Q
be an N -dimensional �at Riemannian manifold, and let us take as a symplectic
manifold M the cotangent bundle to Q, M = T ∗Q. By virtue of (3.4.51) we can lift
a �at Levi-Civita connection ∇ on Q to a �at torsionless symplectic connection ∇̃
on M . In analogy to (3.4.50) we can de�ne a canonical star-product on M by the
following formula

f ? g =
∞∑
k=0

1

k!

(
i~
2

)k
ωµ1ν1 · · ·ωµkνk(∇̃ · · · ∇̃︸ ︷︷ ︸

k

f)µ1...µk(∇̃ · · · ∇̃︸ ︷︷ ︸
k

g)ν1...νk . (3.4.56)
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It can be proved that the star-product (3.4.56) is associative (see [49]), thus it is
a proper star-product on M . Note, that in a case of a non-�at connection ∇̃ the
star-product (3.4.56) in general fails to be associative.

The star-product (3.4.56) can be written in a di�erent form. Let ẽxp : TM →M
be an exponential map of the connection ∇̃. For every x ∈ M there exists a
neighborhood U ⊂ M of x on which ẽxpx is a di�eomorphism of an open subset
V of the tangent space TxM onto U . ẽxpx can be used to locally represent each
function f ∈ C∞(M) as a smooth function de�ned on the vector space TxM . On
each vector space there exists a canonical star-product, namely the Moyal product
?M , thus it is natural to de�ne on M a star-product by the following formula

(f ? g)(x) = (ẽxp∗xf ?M ẽxp∗xg)(0), (3.4.57)

where ẽxp∗xf = f ◦ ẽxpx. Using the formula

∂k

∂yµ1 · · · ∂yµk
f(ẽxpx(y))

∣∣∣∣
y=0

= (∇̃ · · · ∇̃︸ ︷︷ ︸
k

f)µ1...µk(x) (3.4.58)

one can easily see that the star-product (3.4.57) is equal to (3.4.56).
For certain manifolds Q the star-product (3.4.56) can be written in an integral

form. A Riemannian manifold (Q, g) will be called geodesically simply connected if
every pair of points in Q is connected by a unique geodesic. A Riemannian manifold
(Q, g) will be called almost geodesically simply connected if for every q ∈ Q there
exists a neighborhood U ⊂ Q of q such that Q \ U is of measure zero with respect
to the measure induced by the metric volume form ωg, and every point in U can
be connected with q by a unique geodesic. Similarly we de�ne the notion of an
(almost) geodesically simply connected symplectic manifold (M,ω) equipped with a
torsionless symplectic connection. In that case we replace in the de�nition the metric
volume form ωg with the Liouville volume form Ω. If Q is (almost) geodesically
simply connected then T ∗Q has the same property. An example of geodesically
simply connected Riemannian manifold is the Euclidean space, and an example of
almost geodesically simply connected Riemannian manifold is the sphere.

If M = T ∗Q is almost geodesically simply connected then for every x ∈ M
exists a neighborhood U ⊂ M such that M \ U is of measure zero and ẽxpx is a
di�eomorphism of an open subset V ⊂ TxM onto U . If f ∈ C∞0 (M) is a smooth
function with compact support then ẽxp∗xf ∈ C∞0 (V ) is also a smooth function
with compact support. The function ẽxp∗xf can be uniquely extended to a smooth
function de�ned on the whole tangent space TxM with the same support as ẽxp∗xf ,
just by putting the function ẽxp∗xf equal 0 outside V . Thus by virtue of (3.4.57)
and the integral form of the Moyal product (3.4.16) it follows that for f, g ∈ C∞0 (M)
the ?-product can be written in the following integral form

(f ? g)(x) =
1

(π~)2N

∫
TxM

∫
TxM

f(ẽxpx(u))g(ẽxpx(v))e−
2i
~ ωx(u,v) du dv. (3.4.59)

Note, that the assumption that M \U is of measure zero guaranties that the above
integral form of the ?-product indeed expands to the series (3.4.56).

Let (x1, . . . , x2N) be a coordinate system on M which is at the same time clas-
sical and quantum canonical. In accordance with Theorem 3.4.3 the ?(x)-product is
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equivalent with the Moyal product for the coordinates (x1, . . . , x2N). In what fol-
lows we will derive the form of the respective equivalence morphism S to the second
order in ~. By virtue of Theorem 3.4.3 it follows that only terms with even powers
in ~ are non-zero, thus we only have to calculate S2. To �nd the form of S2 we have
to solve the following system of equations

[S2, x
α] = −1

4
Aα2 , (3.4.60a)

[S2, ∂
α] = −1

4
Aα3 , (3.4.60b)

where

Aαkf =
1

k!
ωµ1ν1 · · ·ωµkνk(∇̃ · · · ∇̃︸ ︷︷ ︸

k

xα)µ1...µk(∇̃ · · · ∇̃︸ ︷︷ ︸
k

f)ν1...νk . (3.4.61)

Theorem 3.4.4. The solution to (3.4.60) is of the form

S2 = − 1

24
Γ̃αβγ∂

α∂β∂γ +
1

16
Γ̃µναΓ̃νµβ∂

α∂β, (3.4.62)

where Γ̃αβγ = ωαδΓ̃
δ
βγ.

The proof of the above theorem is given in Appendix B. Note that the condition
that ∇̃ has vanishing torsion can be restated as

Γ̃αβγ = Γ̃αγβ, (3.4.63)

and the condition that ∇̃ is symplectic (ωµν;α = 0, ωµν;α = 0) in Darboux coordinates
can be restated as

ωδβΓ̃αβγ = ωαβΓ̃δβγ, (3.4.64a)

ωδαΓ̃αβγ = ωβαΓ̃αδγ. (3.4.64b)

From conditions (3.4.63) and (3.4.64b) we get that ∇̃ is symplectic and torsionless
i� Γ̃αβγ is symmetric with respect to indices α, β, γ [76].

Remark 3.4.3. The ?-product (3.4.56) can be also de�ned on a general symplec-
tic manifold (M,ω) equipped with a �at torsionless symplectic connection ∇̃. In
such general case formula (3.4.57), considerations about the integral form of the
?-product, and the form of the morphism S (3.4.62) remain the same.

3.4.4 Family of star-products on T ∗Q with a non-�at base

manifold Q
In this section we will describe a procedure of introducing star-products on a sym-
plectic manifold M = T ∗Q over a non-�at Riemannian manifold (Q, g). In such
general case we will use a connection ∇̃ on T ∗Q, induced from a Levi-Civita con-
nection ∇ on Q, to de�ne a star-product. However, a star-product in the form
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(3.4.56) for a curved linear connection ∇̃ is not a proper star-product (it is not asso-
ciative). Thus we have to change the star-product (3.4.56) in such a way that for a
curved linear connection ∇̃ it would remain associative. Moreover, we would like it
to be equivalent with the Moyal product for every classical and quantum canonical
coordinate system.

The general way of de�ning on a symplectic manifold M a star-product equiva-
lent with the Moyal product is as follows. As in the general case there is no single
global coordinate chart, in order to de�ne a product, which will be equivalent with
the Moyal product, it is necessary to do this locally for every classical and quantum
canonical coordinate chart. Let us take an atlas of classical and quantum canonical
coordinate charts (x1

α, . . . , x
2N
α ) de�ned on open subsets Uα of the symplectic mani-

fold M . Moreover, let us take some family of linear automorphisms Sα of C∞(Uα)
with the property: two morphisms Sα and Sβ when acted on the Moyal products

?
(xα)
M and ?

(xβ)
M give star-products, which on the intersection Uα ∩ Uβ, are related to

each other by the change of variables (x1
α, . . . , x

2N
α ) 7→ (x1

β, . . . , x
2N
β ). Every such

automorphism Sα can be used to de�ne a star-product on C∞(Uα) by acting on

the Moyal product ?
(xα)
M . All these star-products are consistent on the intersections

Uα∩Uβ and hence glue together to give a global star-product on C∞(M). The ques-
tion whether such family of automorphisms Sα always exists is nontrivial. Moreover,
in the case when such family exists it is not speci�ed uniquely.

In what follows we will use the above procedure to de�ne on M = T ∗Q a family
of star-products. We will present the construction to the third order in ~. Let us
take the admissible morphisms Sα in the similar form as for the �at case (see formula
(3.4.62))

S = id +~2

(
− 1

24
Γ̃αβγ∂

α∂β∂γ +
1

16
(Γ̃µναΓ̃νµβ + 3aR̃αβ)∂α∂β

)
+ o(~4), (3.4.65)

where a is some real parameter and R̃αβ is the Ricci curvature tensor. Then we will
receive the one-parameter family of star-products in the form

f ?a g =
∞∑
k=0

1

k!

(
i~
2

)k
ωµ1ν1 · · ·ωµkνk

(
(∇̃ · · · ∇̃︸ ︷︷ ︸

k

f)µ1...µk(∇̃ · · · ∇̃︸ ︷︷ ︸
k

g)ν1...νk

+Bµ1...µkν1...νk(f, g)
)
, (3.4.66)

where Bµ1...µkν1...νk are bilinear operators given by

B0(f, g) = 0,

Bµ1ν1(f, g) = 0,

Bµ1µ2ν1ν2(f, g) = −3aR̃µ1µ2(∇̃ν1f)(∇̃ν2g),

Bµ1µ2µ3ν1ν2ν3(f, g) = −R̃ν1ν2ν3αω
αβ(∇̃∇̃∇̃f)µ1µ2µ3(∇̃βg)

− R̃µ1µ2µ3αω
αβ(∇̃βf)(∇̃∇̃∇̃g)ν1ν2ν3 −

9

2
aR̃µ1µ2;µ3(∇̃ν3f)(∇̃∇̃g)ν1ν2

+
9

2
aR̃µ1µ2;µ3(∇̃∇̃f)ν1ν2(∇̃ν3g) + 9aR̃µ2ν3(∇̃∇̃f)µ1µ3(∇̃∇̃g)ν1ν2

+ R̃µ1µ2µ3αR̃ν1ν2ν3γω
αβωγδ(∇̃βf)(∇̃δg),

(3.4.67)
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and R̃αβγδ = ωαλR̃
λ
βγδ is the curvature tensor. Analogical considerations as in

the previous section (see the proof of Theorem 3.4.4) prove that the star-products
(3.4.66) with the four �rst operators Bµ1...µkν1...νk given by (3.4.67) are equivalent
with the Moyal product, up to third order in ~. Clearly for the �at linear connection
∇̃ the products (3.4.66) reduces to (3.4.56).

In a special case a = 0 the star-product (3.4.66) reduces to

f ? g =
∞∑
k=0

1

k!

(
i~
2

)k
ωµ1ν1 · · ·ωµkνk(Dµ1...µkf)(Dν1...νkg), (3.4.68)

where Dµ1...µk are linear operators mapping functions to k-times covariant tensor
�elds given by

D0f = f, (3.4.69a)

Dµ1f = ∇̃µ1f, (3.4.69b)

Dµ1µ2f = (∇̃∇̃f)µ1µ2 , (3.4.69c)

Dµ1µ2µ3f = (∇̃∇̃∇̃f)µ1µ2µ3 − R̃µ1µ2µ3αω
αβ∇̃βf. (3.4.69d)

A direct calculation, with the help of the Ricci identity

R̃αβγδ + R̃αγδβ + R̃αδβγ = 0, (3.4.70)

shows that operators (3.4.69) are symmetric with respect to indices µ1, µ2, . . . . Note,
that the star-product (3.4.68) up to at least third order in ~ is a Fedosov star-product
associated with the Weyl curvature form Ω = ω [54]. It should be noted that for
a 6= 0 the star-product (3.4.66) is not a Fedosov star-product.

From the presented construction it is clear that when the con�guration space
Q is curved there is no single natural star-product on T ∗Q but the whole family
of natural star-products. In the considered case (see formula (3.4.65)) the natural
star-products are parametrized by a real number a. Also the Fedosov construction
of star-products has freedom in taking di�erent Weyl curvature forms Ω.

Remark 3.4.4. The presented construction of the star-products on a symplectic
manifold T ∗Q can be generalized, in a straightforward way, to a general symplectic
manifold M endowed with a symplectic torsionless linear connection ∇̃. Formulas
(3.4.65)�(3.4.67) remain the same.

Let us extend the introduced family of star-products on M = T ∗Q. Using
(3.4.52) and (3.4.55) the formula (3.4.65) can be rewritten in the form

S = id +
~2

4!

(
3
(
ΓiljΓ

l
ik + aRjk

)
∂pj∂pk + 3Γijk∂qi∂pj∂pk

+
(
2ΓinlΓ

n
jk − Γijk,l

)
pi∂pj∂pk∂pl

)
+ o(~4). (3.4.71)

Let us generalize the formula (3.4.71) in the following way

S = id +
~2

4!

(
3
(
ΓiljΓ

l
ik + aRjk

)
∂pj∂pk +3Γijk∂qi∂pj∂pk +

(
2ΓinlΓ

n
jk − Γijk,l

)
pi∂pj∂pk∂pl

− 3b∂pj(∂qj + Γijlpi∂pl)∂pk(∂qk + Γrknpr∂pn)
)

+ o(~4), (3.4.72)
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where b is some real parameter. For a symplectic manifold T ∗EN and Cartesian
coordinates (qi, pj) all Christo�el symbols Γijk = 0 and the morphism S (3.4.72)
takes the form

S = id−~2

8
b∂qj∂pj∂qk∂pk + o(~4), (3.4.73)

and can be considered as the expansion of the following morphism

S = exp

(
−~2

8
b∂qj∂pj∂qk∂pk

)
. (3.4.74)

The morphism S (3.4.74) induces a star-product which takes the form

f ?b g = f exp

(
1

2
i~
←−
∂qi
−→
∂pi −

1

2
i~
←−
∂pi
−→
∂qi +

1

8
b~2(
←−
∂qi
←−
∂pi
←−
∂qj
←−
∂pj +

−→
∂qi
−→
∂pi
−→
∂qj
−→
∂pj)

− 1

8
b~2(
←−
∂qi +

−→
∂qi)(
←−
∂pi +

−→
∂pi)(
←−
∂qj +

−→
∂qj)(
←−
∂pj +

−→
∂pj)

)
g. (3.4.75)

In general, the star-product induced by the morphism S (3.4.72) for a = 1 and b = 1
leads to what was called in the paper [11] a �minimal� quantization. Moreover,
the same quantization was used in [77�79] in order to investigate the quantum
integrability and quantum separability of classical Stäckel systems.

3.4.5 Example of non-canonical star-products on T ∗EN

In what follows we will present a family of star-products on the symplectic manifold
T ∗EN , which are not in the form (3.2.3) and for which the complex-conjugation is
not the involution. Let X1, . . . , XN ,Y1, . . . , YN be a sequence of pair-wise commuting
global vector �elds from the decomposition (3.4.34) of the Poisson tensor P . De�ne
a star-product by the formula

f ?λ,α,β g = f exp

(
i~λ

∑
i

←−
X i
−→
Y i − i~(1− λ)

∑
i

←−
Y i
−→
X i

+ ~α
∑
i

←−
X i
−→
X i + ~β

∑
i

←−
Y i
−→
Y i

)
g, (3.4.76)

where λ, α, β ∈ R. The star-product (3.4.76) is equivalent with the star-product
(3.4.35) corresponding to the same sequence (Xi, Yj) of vector �elds. A morphism
(3.1.6) giving this equivalence is of the form

Sλ,α,β = exp

(
−i~

(
1

2
− λ
)∑

i

XiYi +
1

2
~α
∑
i

XiXi +
1

2
~β
∑
i

YiYi

)
. (3.4.77)

The involution for the ?λ,α,β-product takes the form

f ∗ = exp

(
−i~(1− 2λ)

∑
i

XiYi

)
f̄ . (3.4.78)
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Equation (3.4.78) indeed de�nes a proper involution. To see this �rst note that

the involution (3.4.78) can be written in the form f ∗ = Sλ,α,βS
−1
λ,α,βf . Then from

(3.1.7) and the fact that the complex-conjugation is the involution for the ?-product
(3.4.35) we get

(f ?λ,α,β g)∗ = Sλ,α,βS
−1
λ,α,β(f ?λ,α,β g) = Sλ,α,β(S−1

λ,α,βf ? S
−1
λ,α,βg)

= Sλ,α,β(S−1
λ,α,βg ? S

−1
λ,α,βf) = (Sλ,α,βS

−1
λ,α,βg) ?λ,α,β (Sλ,α,βS

−1
λ,α,βf)

= g∗ ?λ,α,β f
∗. (3.4.79)

From (3.4.78) it is evident that for λ 6= 1
2
the involution for the ?λ,α,β-product is

di�erent than the complex-conjugation and functions self-adjoint with respect to it
can be in general complex.

As an example let us consider a quantization given by the ?λ,α,β-product for a
one-dimensional case (N = 1) and in a natural coordinate system when X = ∂q and
Y = ∂p. Consider complex function A(q, p) = qp2 + ~βq − i~(1 − 2λ)p. A direct
calculation shows that A represents an observable, as it is self-adjoint with respect
to the involution ∗ (3.4.78). Moreover, it is equivalent to an observable A(q, p) = qp2

for the Moyal quantization in the same coordinate system.



Chapter 4

Operator representation of quantum

mechanics

4.1 Operator representation over a phase space

4.1.1 The case of a phase space R2N

Let us take as a phase space M the symplectic vector space (R2N , ω), where ω
is a standard symplectic form. Moreover, let us consider on M a star-product
which in canonical coordinates x = xαeα 7→ (x1, . . . , x2N), where e1, . . . , e2N is a
canonical basis on R2N , is in the form of the Moyal product (3.4.2). To elements
of C∞(R2N)[[~]] we can associate operators de�ned on the Hilbert space L2(R2N , dl)
by the prescription

f 7→ f ?M . (4.1.1)

Formula (4.1.1) gives us a representation of the quantum Poisson algebraAQ(R2N) =
(C∞(R2N)[[~]], ?M) in the Hilbert space L2(R2N , dl). In what follows we will investi-
gate the form of the operators f ?M . We will need a notion of a symplectic Fourier
transform. For a function f ∈ L1(R2N) we de�ne a symplectic Fourier transform of
f by the formula

Fωf(x) =
1

(2π~)N

∫
R2N

f(y)e−
i
~ω(x,y) dy, (4.1.2)

where ω is a standard symplectic form on R2N given by ω(x, y) = Jαβxαyβ where

(Jαβ) =

(
0N −IN
IN 0N

)
. (4.1.3)

Note that Fωf(x) = Ff(J Tx).

Theorem 4.1.1. Let f be an element of the space S(R2N) of Schwartz functions.
The operator f ?M can be written in the following form

f ?M =
1

(2π~)N

∫
R2N

Fωf(q, p)e
i
~ (piq̂

i
?M
−qip̂?Mi) dq dp, (4.1.4)

where q̂i?M = qi ?M = qi +
1

2
i~∂pi and p̂?M i = pi ?M = pi −

1

2
i~∂qi are operators of

position and momentum.

47
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Proof. Let ρ ∈ L2(R2N). Using the identity

ey
i∂xiρ(x) = ρ(x+ y), (y1, . . . , y2N) ∈ R2N (4.1.5)

and the Baker-Campbell-Hausdor� formula we receive that

e
i
~ (p′iq̂

i
?M
−q′ip̂?Mi)ρ(q, p) = e−

i
2~ q
′ip′ie

i
~p
′
iq̂
i
?M e−

i
~ q
′ip̂?Miρ(q, p)

= e−
i
2~ q
′ip′ie

i
~p
′
i(q

i+ 1
2
i~∂pi )e−

i
~ q
′i(pi− 1

2
i~∂qi )ρ(q, p)

= e−
i
2~ q
′ip′ie

i
~p
′
iq
i

e−
1
2
p′i∂pie−

i
~ q
′ipie−

1
2
q′i∂qiρ(q, p)

= e
i
~ (p′iq

i−q′ipi)e−
1
2
p′i∂pie−

1
2
q′i∂qiρ(q, p)

= e
i
~ (p′iq

i−q′ipi)ρ(q − 1
2
q′, p− 1

2
p′). (4.1.6)

From the above result we get that

1

(2π~)N

∫
R2N

Fωf(q′, p′)e
i
~ (p′iq̂

i
?M
−q′ip̂?Mi) dq′ dp′ρ(q, p) =

=
1

(2π~)N

∫
R2N

Fωf(q′, p′)ρ(q − 1
2
q′, p− 1

2
p′)e

i
~ (p′iq

i−q′ipi) dq′ dp′

=
1

(2π~)2N

∫
R2N

∫
R2N

f(q′′, p′′)ρ(q − 1
2
q′, p− 1

2
p′)

× e
i
~ (p′i(q

i−q′′i)−q′i(pi−p′′i )) dq′ dp′ dq′′ dp′′. (4.1.7)

After the following change of variables under the integral sign

q′i → −2q′i, q′′i → qi + q′′i,

p′i → −2p′i, p′′i → pi + p′′i ,
(4.1.8)

the above equation can be written in a form

1

(2π~)N

∫
R2N

Fωf(q′, p′)e
i
~ (p′iq̂

i
?M
−q′ip̂?Mi) dq′ dp′ρ(q, p) =

=
1

(π~)2N

∫
R2N

∫
R2N

f(q + q′′, p+ p′′)ρ(q + q′, p+ p′)e−
2i
~ (q′ip′′i −p′iq′′i) dq′ dp′ dq′′ dp′′,

(4.1.9)

which is the integral form (3.4.16) of the star-product f ?M ρ.

Let us now consider on (R2N , ω) the following star-product

f ?λ g = f exp
(
i~λ
←−
∂qi
−→
∂pi − i~(1− λ)

←−
∂pi
−→
∂qi
)
g, (4.1.10)

for λ ∈ [0, 1], which is a particular example of the star-product (3.4.76). Using
similar considerations as in the proofs of Theorems 3.4.2 and 4.1.1 the following
theorem can be proved.
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Theorem 4.1.2. Let f be an element of the space S(R2N) of Schwartz functions.
The operator f ?λ can be written in the following form

f ?λ =
1

(2π~)N

∫
R2N

Fωf(q, p)e
i
~ (piq̂

i
?λ
−qip̂?λi)+( 1

2
−λ)qipi) dq dp, (4.1.11)

where q̂i?λ = qi ?λ = qi + i~λ∂pi and p̂?λi = pi ?λ = pi − i~(1 − λ)∂qi are operators
of position and momentum.

The right hand sides of equations (4.1.4) and (4.1.11) are symmetric and λ-or-
dered functions of operators q̂i?λ , p̂?λj in accordance to a λ-Weyl correspondence rule.

In general, for a Hilbert space H and self-adjoint operators q̂i, p̂j on H (where
i, j = 1, 2, . . . , N) satisfying the following commutation relations

[q̂i, q̂j] = [p̂i, p̂j] = 0, [q̂i, p̂j] = i~δij, i, j = 1, 2, . . . , N, (4.1.12)

the λ-Weyl correspondence rule is a procedure of assigning operators de�ned on the
Hilbert space H, to functions de�ned on a symplectic manifold (R2N , ω). It was
�rst proposed by Weyl [80] for the symmetric ordering and formally it works by
substituting for the variables qi, pj the operators q̂i, p̂j and appropriately ordering
them. The λ-ordered function f of the operators q̂i, p̂j will be denoted by fλ(q̂, p̂)
and is given by the formula

fλ(q̂, p̂) =
1

(2π~)N

∫
R2N

Fωf(x)T̂λ(x) dx, (4.1.13)

where
T̂λ(q, p) = e

i
~ (piq̂

i−qip̂i+( 1
2
−λ)qipi) = e

i
~piq̂

i

e−
i
~ q
ip̂ie−

i
~λq

ipi (4.1.14)

is the modi�ed Heisenberg operator and λ ∈ [0, 1] is a parameter describing di�erent
orderings. T̂λ(x) is a unitary operator for every x ∈ R2N and λ ∈ [0, 1].

In what follows we will investigate on which class of functions the formula (4.1.13)
makes sense. Let

ρϕψ(x) = (ϕ, T̂λ(x)ψ), ϕ, ψ ∈ H. (4.1.15)

It can be easily checked that

|ρϕψ(x)| ≤ ‖ϕ‖‖ψ‖ (4.1.16)

for every x ∈ R2N . Let Ff ∈ L1(R2N) and

Λ(ϕ, ψ) =
1

(2π~)N

∫
R2N

Fωf(x)ρϕψ(x) dx (4.1.17)

be a bilinear form on H. We calculate that

|Λ(ϕ, ψ)| ≤ 1

(2π~)N

∫
R2N

|Fωf(x)ρϕψ(x)| dx ≤ 1

(2π~)N

∫
R2N

|Ff(x)| dx‖ϕ‖‖ψ‖.

(4.1.18)
Thus Λ is bounded and there exists a unique bounded linear operator fλ(q̂, p̂) such
that [81]

(ϕ, fλ(q̂, p̂)ψ) = Λ(ϕ, ψ). (4.1.19)
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That way we gave sense to formula (4.1.13) for f such that Ff ∈ L1(R2N).
Equation (4.1.13) makes sense also for wider class of functions f . In such case

it has to be treated distributionally. Let f ∈ A = F (E ′) be the Fourier image of a
distribution with compact support, and let

D = {ψ ∈ H | ρϕψ ∈ C∞(R2N) for every ϕ ∈ H}. (4.1.20)

Then we can de�ne a bilinear form Λ: H×D → C by the formula

Λ(ϕ, ψ) = 〈Fωf, ρϕψ〉. (4.1.21)

It is not di�cult to show that

|∂αx ρϕψ(x)| ≤ Cα
ψ(x)‖ϕ‖ (4.1.22)

for every multi-index α ∈ N2N , ϕ ∈ H, ψ ∈ D and x ∈ R2N , where Cα
ψ(x) is

some �nite constant independent on ϕ. Indeed, using the Baker-Campbell-Hausdor�
formula the operator T̂λ(q, p) can be written in a form

T̂λ(q, p) = e−
i
~λq

ip̂ie
i
~piq̂

i

e−
i
~ (1−λ)qip̂i . (4.1.23)

Hence, using the Leibniz's formula we get

∂qi1 · · · ∂qin∂pj1 · · · ∂pjm T̂λ(q, p) =

(
− i
~

)n(
i

~

)m n∑
k=0

(
n

k

)
λk(1− λ)n−kp̂i1 · · · p̂ik

× e−
i
~λq

ip̂i q̂j1 · · · q̂jme
i
~piq̂

i

p̂ik+1
· · · p̂ine−

i
~ (1−λ)qip̂i , (4.1.24)

and consequently

|∂qi1 · · · ∂qin∂pj1 · · · ∂pjmρϕψ(q, p)| ≤ ‖ϕ‖
∥∥∥∥(− i~

)n(
i

~

)m n∑
k=0

(
n

k

)
λk(1− λ)n−k

× p̂i1 · · · p̂ike−
i
~λq

ip̂i q̂j1 · · · q̂jme
i
~piq̂

i

p̂ik+1
· · · p̂ine−

i
~ (1−λ)qip̂iψ

∥∥∥∥. (4.1.25)

From (4.1.22) we get that

‖ρϕψ‖K,α = sup
x∈K
|∂αx ρϕψ(x)| ≤ sup

x∈K
Cα
ψ(x)‖ϕ‖ = MK,α(ψ)‖ϕ‖ (4.1.26)

for every compact subset K ⊂ R2N , multi-index α ∈ N2N , ϕ ∈ H, and ψ ∈ D,
whereMK,α(ψ) is some �nite constant independent on ϕ. From continuity of Ff in
E = C∞(R2N) there exists compact set K ⊂ R2N , C > 0, and multi-index α ∈ N2N

such that

|Λ(ϕ, ψ)| = |〈Fωf, ρϕψ〉| ≤ C‖ρϕψ‖K,α ≤ CMK,α(ψ)‖ϕ‖. (4.1.27)

Thus there exists a unique linear operator fλ(q̂, p̂) with domain D such that [81]

(ϕ, fλ(q̂, p̂)ψ) = Λ(ϕ, ψ). (4.1.28)
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Note, that if there exist a dense subspace D ⊂ H such that q̂i : D → D and
p̂j : D → D for i, j = 1, 2, . . . , N then the subspace de�ned by (4.1.20) is equal to
this subspace D. In this case for every f ∈ A we get a densely de�ned operator
fλ(q̂, p̂) with domain D.

It can be calculated that the adjoint of the operator T̂λ(x) is given by

T̂λ(x)† = T̂1−λ(−x). (4.1.29)

From this follows that
fλ(q̂, p̂)

† = f̄1−λ(q̂, p̂) (4.1.30)

on D. As a consequence, in a spacial case λ = 1
2
, to real valued functions correspond

self-adjoint operators.

Theorem 4.1.3. For f(q, p) = Ki1...in(q)pi1 · · · pin, where Ki1...in is some symmetric
complex tensor �eld on RN , we get

fλ(q̂, p̂) =
n∑
k=0

(
n

k

)
λk(1− λ)n−kp̂i1 · · · p̂ikKi1...in(q̂)p̂ik+1

· · · p̂in . (4.1.31)

Proof. From (4.1.13) we get

fλ(q̂, p̂) =
1

(2π~)2N

∫
R2N

∫
R2N

Ki1...in(q′)p′i1 · · · p
′
ine
− i

~ (piq
′i−qip′i)T̂λ(q, p) dq′ dp′ dq dp

=
1

(2π~)2N

∫
R2N

∫
R2N

Ki1...in(q′)
(

(−i~)n∂qi1 · · · ∂qine−
i
~ (piq

′i−qip′i)
)

× T̂λ(q, p) dq′ dp′ dq dp

=
1

(2π~)2N

∫
R2N

∫
R2N

Ki1...in(q′)e−
i
~ (piq

′i−qip′i)
(

(i~)n∂qi1 · · · ∂qin T̂λ(q, p)
)

× dq′ dp′ dq dp. (4.1.32)

Using the Baker-Campbell-Hausdor� formula the operator T̂λ(q, p) can be written
in a form

T̂λ(q, p) = e−
i
~λq

ip̂ie
i
~piq̂

i

e−
i
~ (1−λ)qip̂i . (4.1.33)

From (4.1.33) and the Leibniz's formula we get

(i~)n∂qi1 · · · ∂qin T̂λ(q, p) = (i~)n∂qi1 · · · ∂qine−
i
~λq

ip̂ie
i
~piq̂

i

e−
i
~ (1−λ)qip̂i

=
n∑
k=0

(
n

k

)
λkp̂i1 · · · p̂ike−

i
~λq

ip̂ie
i
~piq̂

i

(1− λ)n−kp̂ik+1
· · · p̂ine−

i
~ (1−λ)qip̂i . (4.1.34)

Substituting (4.1.34) into (4.1.32) and performing integration we get the result.

From (4.1.31) we get for monomial qjpj the operator

(q̂j p̂j)λ = (1− λ)q̂j p̂j + λp̂j q̂
j. (4.1.35)

Thus λ parametrizes di�erent orderings, and so for λ = 0 we get normal ordering,
for λ = 1 anti-normal ordering, and for λ = 1

2
symmetric ordering. In the rest of
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the thesis we will mainly focus on the case λ = 1
2
. In such case we will often omit

the symbol λ in fλ(q̂, p̂) and simply write f(q̂, p̂).
Formula (4.1.13), by virtue of (3.4.12), can be written in a form

fλ(q̂, p̂) =
1

(2π~)N

∫
R2N

FωS
−1
λ f(x)T̂1/2(x) dx = (S−1

λ f)(q̂, p̂), (4.1.36)

where
Sλ = exp

(
−i~(1

2
− λ)∂qi∂pi

)
. (4.1.37)

Using this result we will generalize the concept of the ordering in the following way.
For a series S of di�erential operators in the form

S = id +
∞∑
k=1

~kSk (4.1.38)

we de�ne an S-ordered function of the operators q̂i, p̂j by the formula

fS(q̂, p̂) = (S−1f)(q̂, p̂) =
1

(2π~)N

∫
R2N

FωS
−1f(x)T̂1/2(x) dx. (4.1.39)

Note, that if on (R2N , ω) we have some ?-product equivalent with the Moyal
product, where the equivalence morphism S satis�es

Sqi = qi, Spi = pi, (4.1.40)

then the operator f ? is of the form

f ? = fS(q̂?, p̂?), (4.1.41)

where q̂i? = qi ? and p̂?i = pi ? . Indeed, from (4.1.40) we get that

Sq̂i?MS
−1 = S(qi ?M )S−1 = Sqi ? = qi ? = q̂i? (4.1.42)

and similarly Sp̂?M iS
−1 = p̂?i. Thus,

f ? = S(S−1f ?M )S−1 = S(S−1f)(q̂?M , p̂?M )S−1

= (S−1f)(Sq̂?MS
−1, Sp̂?MS

−1) = fS(q̂?, p̂?). (4.1.43)

By virtue of Theorem 3.1.1 every star-product on R2N is equivalent with the
Moyal product. Moreover, the equivalence morphism can always be chosen so that
(4.1.40) is satis�ed, and this requirement uniquely speci�es the morphism. Hence,
every star-product on R2N gives rise to an ordering of operators q̂i?, p̂?j. Consequently
a quantization can be �xed either by choosing a star-product on a phase space R2N

or equivalently, on a level of the operator representation, by choosing an ordering.
As we will see in Section 4.3 in an operator representation over a con�guration
space to a given star-product on R2N corresponds the same ordering, of canonical
operators q̂i, p̂j of position and momentum de�ned on the Hilbert space L2(RN), as
in the operator representation over a phase space.
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Remark 4.1.1. The S-ordering rule (4.1.39) is very general and contains as special
cases all ordering rules found in the literature. In particular, for a special case of a
series S such that

S−1 = F (−i~∂q, i~∂p), (4.1.44)

where F : R2N → C is some general analytic function such that F (0) = 1, the
S-ordered function of the operators q̂i, p̂j reads

fS(q̂, p̂) =
1

(2π~)N

∫
R2N

Fωf(q, p)e
i
~ (piq̂

i−qip̂i)F (q, p) dq dp. (4.1.45)

The above formula was �rst considered by Cohen [82]. Thus, it is clear that the
very broad family of orderings considered by Cohen and others is a special case of
the introduced family of orderings.

In general the morphisms S are not of the form (4.1.44). As an example in a
two-dimensional case (N = 1) the following three parameter family of morphisms
may serve

S = exp
(
−i~a∂q∂p + i~bq∂2

p − ~2c∂3
p

)
, (4.1.46)

where a, b, c ∈ R. This shows that the family of quantizations considered in the
thesis is more general than the broad family of quantizations considered by Cohen
and others. To illustrate the S-ordering rule let us consider a function f(q, p) =
1

2
p2 +

1

6
p3 +

1

2
q2. Then, one �nds that

(S−1f)(q, p) =
1

2
p2 +

1

6
p3 +

1

2
q2 − i~bq(1 + p) + ~2

(
1

2
ab+ c

)
(4.1.47)

and that

fS(q̂, p̂) =
1

2
p̂2 +

1

6
p̂3 +

1

2
q̂2 − i~b

(
q̂ +

1

2
q̂p̂+

1

2
p̂q̂

)
+ ~2

(
1

2
ab+ c

)
=

1

2
p̂2 +

1

6
p̂3 +

1

2
q̂2 − bq̂p̂q̂ + bp̂q̂2 −

(
1

2
ab+

1

2
b+ c

)
q̂p̂q̂p̂

+

(
1

2
ab− 1

2
b+ c

)
q̂p̂2q̂ +

(
1

2
ab+

1

2
b+ c

)
p̂q̂2p̂−

(
1

2
ab− 1

2
b+ c

)
p̂q̂p̂q̂.

(4.1.48)

Remark 4.1.2. Let us consider a two-dimensional phase space M = R2 and the
following star-product de�ned on it

f ?λ g = f exp

(
1

2
i~
←−
∂q
−→
∂p −

1

2
i~
←−
∂p
−→
∂q + ~

2λ− 1

2ω

←−
∂q
−→
∂q + ~ω

2λ− 1

2

←−
∂p
−→
∂p

)
g, (4.1.49)

for λ ∈ [0, 1] and ω > 0, which is a particular example of the star-product (3.4.76).
In holomorphic coordinates

a(q, p) =
ωq + ip√

2ω
, ā(q, p) =

ωq − ip√
2ω

(4.1.50)
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the ?λ-product takes the form

f ?λ g = f exp
(
~λ
←−
∂a
−→
∂ā − ~(1− λ)

←−
∂ā
−→
∂a

)
g. (4.1.51)

Moreover, the operators f ?λ can be written in a form

f ?λ = fλ(â, â
†) =

1

π~

∫
Ff(w, w̄)e~

−1(wâ†−w̄â+( 1
2
−λ)|w|2) d2w, (4.1.52)

where â = a ?λ , â
† = ā ?λ are operators of annihilation and creation, and

Ff(w, w̄) =
1

π~

∫
f(z, z̄)e~

−1(zw̄−z̄w) d2z, (4.1.53)

where d2z = d(Re z) d(Im z), is the symplectic Fourier transform in holomorphic
coordinates. The star-product (4.1.51) and the operator function fλ(â, â

†) are widely
used in quantum optics.

4.1.2 The case of a general phase space

First, let us consider a phase space in the form of a cotangent bundle T ∗U to an
open subset U ⊂ RN . On such phase space we can introduce the Moyal product
(3.4.2) or, more generally, the ?λ-product (4.1.10). If for self-adjoint operators q̂

i, p̂j
de�ned on some Hilbert space H and satisfying the commutation relations (4.1.12),
and for a function f on T ∗U polynomial in momenta we de�ne the corresponding
λ-ordered function of the operators q̂i, p̂j by the formula (4.1.31), then it can be
proved that the operator f ?λ is of the form

f ?λ = fλ(q̂?λ , p̂?λ), (4.1.54)

just like in the case of a phase space R2N .
Let us now consider a general phase space in the form of a cotangent bundle T ∗Q

to a Riemannian manifold Q, and a general ?-product (3.2.3) de�ned on it. For any
canonical coordinates (qi, pj) on T

∗Q the ?(q,p)-product is equivalent with the Moyal
product, in accordance to Theorem 3.4.3. Using the corresponding equivalence
morphism S and analogical considerations as in the proof of (4.1.41) we get for a
function f polynomial in momenta

f ?(q,p) = fS(q̂?, p̂?). (4.1.55)

Note, that for star-products considered in Section 3.4 the action S−1f of the mor-
phism S on a function f polynomial in momenta is again a function polynomial in
momenta. Thus, to a general star-product on T ∗Q written in canonical coordinates
corresponds an S-ordering of operators of position and momentum.

4.2 Operator calculus

In the following section we will consider the λ-Weyl correspondence rule for a par-
ticular example of the Hilbert space H and the self-adjoint operators q̂i, p̂j de�ned
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on it. Moreover, we will present a generalization to a case of a symplectic manifold
T ∗Q for a general Riemannian manifold Q. Let the Hilbert space H be the space
L2(RN) of square integrable functions on RN , and let q̂i = qi be the operator of
multiplication by variable qi and p̂j = −i~∂qj be the operator of di�erentiation.
Note that the operators q̂i, p̂j are properly de�ned on the Schwartz space S(RN)
and q̂i : S(RN) → S(RN), p̂j : S(RN) → S(RN). Thus the domain D of operators
fλ(q̂, p̂), de�ned by (4.1.20), is equal S(RN). In such special case of the Hilbert
space H the formula (4.1.13) de�ning operators fλ(q̂, p̂) can be written in a di�erent
form.

Theorem 4.2.1. For ψ ∈ S(RN) there holds

fλ(q̂, p̂)ψ(q) =
1

(2π~)N

∫
RN

∫
RN
f(q + λu, p)e−

i
~u

ipiψ(q + u) du dp, (4.2.1)

where the integral is to be understood in a distributional sense.

Proof. From (4.1.13) we get

fλ(q̂, p̂)ψ(q) =
1

(2π~)N

∫
R2N

Fωf(u, v)e
i
~viq

i

e−u
i∂qiψ(q)e−

i
~λu

ivi du dv. (4.2.2)

From the identity

e−u
i∂qiψ(q) = ψ(q − u), (4.2.3)

which can be easily proved by expanding in a Taylor series the exponent on the left
and ψ on the right hand side, we get

fλ(q̂, p̂)ψ(q) =
1

(2π~)N

∫
R2N

Fωf(u, v)ψ(q − u)e
i
~ (qi−λui)vi du dv

=
1

(2π~)2N

∫
R2N

∫
R2N

f(q′, p′)e−
i
~ (viq

′i−uip′i)e
i
~ (qi−λui)vi

× ψ(q − u) dq′ dp′ du dv

=
1

(2π~)N

∫
R2N

∫
RN
f(q′, p′)δ(q′ − q + λu)e

i
~u

ip′iψ(q − u) dq′ dp′ du

=
1

(2π~)N

∫
RN

∫
RN
f(q − λu, p′)e

i
~u

ip′iψ(q − u) du dp′. (4.2.4)

Note that (4.2.1) can be written in a form

fλ(q̂, p̂)ψ(q) =

∫
RN
f̃(q − λu, u)ψ(q − u) du, (4.2.5)

where f̃ denotes the Fourier transform (3.4.23) of f in the momentum variable.
Let us now move to the more general case of the symplectic manifold M . Let

M = T ∗U = U ×RN where U is some open subset of RN . In such case for a general
Hilbert space H and operators q̂i, p̂j to function f polynomial in momenta, f(q, p) =
Ki1...in(q)pi1 · · · pin , from de�nition will correspond operator given by (4.1.31). For
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general function f it is di�cult to assign an operator since formula (4.1.13) is no
longer properly de�ned. However, for certain Hilbert spaces H it is possible to give
a formula for an operator fλ(q̂, p̂) associated to a general function f .

Endow U with some metric tensor g making from U a Riemannian manifold.
Let us take as the Hilbert space H the space L2(U, dµ) of functions on U square
integrable with respect to a measure dµ(q) = g1/2(q) dq induced by the metric
volume form ωg on U (g(q) = |det[gij(q)]| is the determinant of the metric tensor
g). In such case for ψ ∈ C∞0 (U) we can generalize formula (4.2.1) in the following
way

fλ(q̂, p̂)ψ(q) =
1

(2π~)N

∫
RN

∫
RN
f(q + λu, p)e−

i
~u

ipiψ(q + u)ρ(q, u) du dp

=

∫
RN
f̃(q − λu, u)ψ(q − u)ρ(q,−u) du, (4.2.6)

where ρ(q, u) = g1/4(q + u)g−1/4(q). Note that since ψ has compact support it
does not matter that f and g are not de�ned on the whole spaces R2N and RN ,
respectively.

Note that for such Hilbert space operators q̂i and p̂j are given by

q̂i = qi, p̂j = −i~
(
∂qj +

1

2
Γkjk

)
, (4.2.7)

where Γijk are Christo�el symbols of the Levi-Civita connection on U . In fact, for
functions f polynomial in momenta (4.1.31) holds.

Theorem 4.2.2. For f(q, p) = Ki1...in(q)pi1 · · · pin, where Ki1...in is some symmetric
complex tensor �eld on U , formula (4.1.31) holds for operators q̂i and p̂j given by
(4.2.7).

Proof. From (4.2.6) we get

fλ(q̂, p̂)ψ(q) =
1

(2π~)N

∫
RN

∫
RN
Ki1...in(q + λu)pi1 · · · pine−

i
~u

ipiψ(q + u)ρ(q, u) du dp

=
1

(2π~)N

∫
RN

∫
RN
Ki1...in(q + λu)

(
(i~)n∂ui1 · · · ∂uine−

i
~u

ipi
)
ψ(q + u)

× ρ(q, u) du dp

=
1

(2π~)N

∫
RN

∫
RN

(−i~)n∂ui1 · · · ∂uin
(
Ki1...in(q + λu)ψ(q + u)ρ(q, u)

)
× e−

i
~u

ipi du dp

= (−i~)n∂ui1 · · · ∂uin
(
Ki1...in(q + λu)ψ(q + u)ρ(q, u)

) ∣∣∣∣
u=0

. (4.2.8)

By virtue of the identity

∂ui
(
g(q+ λu)h(q+ u)

)
= (∂vi + ∂wi)

(
g(q+ λv)h(q+ λv+ (1− λ)w)

)∣∣∣∣
v=w=u

(4.2.9)
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valid for any functions g and h, (4.2.8) can be written in a form

fλ(q̂, p̂)ψ(q) = (−i~)n
n∑
k=0

(
n

k

)
∂ui1 · · · ∂uik∂vik+1 · · · ∂vin

(
Ki1...in(q + λu)

× ψ(q + λu+ (1− λ)v)g1/4(q + λu+ (1− λ)v)g−1/4(q)
)∣∣∣∣
u=v=0

. (4.2.10)

Using the formula
∂g

∂qj
= 2gΓkjk (4.2.11)

we calculate that

− i~∂qj(ψg1/4) = −i~
(
∂ψ

∂qj
g1/4 +

1

2
ψΓkjkg

1/4

)
= (p̂jψ)g1/4. (4.2.12)

From this and (4.2.10) we receive

fλ(q̂, p̂)ψ(q) =
n∑
k=0

(
n

k

)
(−i~)k(1− λ)n−k∂ui1 · · · ∂uik

(
Ki1...in(q + λu)

× (p̂ik+1
· · · p̂inψ)(q + λu+ (1− λ)v)g1/4(q + λu+ (1− λ)v)

× g−1/4(q)
)∣∣∣∣
u=v=0

=
n∑
k=0

(
n

k

)
λk(1− λ)n−kp̂i1 · · · p̂ikKi1...in(q̂)p̂ik+1

· · · p̂in . (4.2.13)

Remark 4.2.1. Formula (4.2.6) can be generalized for symplectic manifolds M =
T ∗Q, whereQ is an almost geodesically simply connected Riemannian manifold. Let
L2(Q, dωg) be a Hilbert space of functions on Q square integrable with respect to a
measure dωg induced by the metric volume form ωg. For some function f : T ∗Q → C
we can de�ne an operator on L2(Q, dωg) given, for every ψ ∈ C∞0 (Q), by the formula
[8]

f̂λψ(q) =
1

(2π~)N

∫
TqQ

∫
T ∗q Q

f(expq(λu), A(λu)p)e−
i
~ 〈p,u〉ψ(expq(u))ρ(q, u) du dp,

(4.2.14)
where ρ(q, u) = g1/4(expq(u))g−1/4(q) det(expq∗(u)), A(u) = exp∗q(u)−1 : T ∗qQ →
T ∗expq(u)Q, expq : TqQ → Q is an exponential map of the Levi-Civita connection on

Q, and expq∗(u) : TqQ → Texpq(u)Q is the derivative of expq at point u. Note, that
since ψ has compact support and expq is the di�eomorphism taking values in the
almost whole manifold Q, (4.2.14) is properly de�ned.

If f(q, p) = Kij(q)pipj where K
ij is a smooth symmetric complex contravariant

tensor �eld on Q, then

f̂λ = −~2

(
(1− λ)2Kij∇i∇j + 2λ(1− λ)∇iK

ij∇j + λ2∇i∇jK
ij

− 2λ2 + 1

6
KijRij

)
, (4.2.15)
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where ∇i is the covariant derivative with respect to the Levi-Civita connection and
Rij is the Ricci curvature tensor. The proof of this formula can be found in [8]. In
a special case of the symmetric ordering (λ = 1

2
) equation (4.2.15) takes the form

f̂1/2 = −~2

(
∇iK

ij∇j +
1

4
Kij

;ij −
1

4
KijRij

)
, (4.2.16)

where Kij
;kl denotes the second covariant derivative of Kij.

4.3 Operator representation over a con�guration

space

In this section we will present a construction of a natural operator representation of
quantum mechanics, which reproduces the usual Hilbert space approach to quantum
mechanics. We will be dealing with quantum systems de�ned on a phase space M
in the form of a cotangent bundle T ∗Q to a Riemannian manifold Q. The manifold
Q plays the role of a con�guration space of the system. The representation will be
constructed in a Hilbert space L2(Q, dωg) of functions on Q square integrable with
respect to a measure dωg induced by the metric volume form ωg. The elements of
L2(Q, dωg) are interpreted as wave functions describing the states of the quantum
system.

4.3.1 The case of a Moyal quantization

First, let us consider the phase space M = T ∗U , where U is an open subset of RN

endowed with some metric tensor g. Moreover, we will consider a classical system
de�ned on M and its quantization by means of the Moyal product on M . The �rst
step in construction of the operator representation for such quantum system is an
observation that the Hilbert space L2(T ∗U, dl) can be written as a tensor product
of the Hilbert space L2(U, dµ) and the space dual to it. In what follows we present
the construction of this tensor product.

In accordance to the Riesz representation theorem the Hilbert space (L2(U, dµ))∗

dual to L2(U, dµ) is anti-isomorphic to the Hilbert space L2(U, dµ) and can be
naturally identi�ed with L2(U, dµ) itself [81]. After such identi�cation the anti-
linear isomorphism ∗ : L2(U, dµ) → (L2(U, dµ))∗ takes the form of the complex-
conjugation. Denote by L2(TU) the Hilbert space of functions de�ned on the tangent
bundle TU = U × RN and square integrable with respect to the Lebesgue measure
on U × RN . Let us introduce a bilinear map of Hilbert spaces W̃ : (L2(U, dµ))∗ ×
L2(U, dµ)→ L2(TU), which on vectors ϕ, ψ ∈ C∞0 (U) is de�ned by

W̃ (ϕ∗, ψ)(q, u) = ϕ(q − 1
2
u)ψ(q + 1

2
u)ρ̄(q, u), (4.3.1)

where ρ̄(q, u) = g1/4(q − 1
2
u)g1/4(q + 1

2
u). For ϕ1, ψ1, ϕ2, ψ2 ∈ C∞0 (U) there holds

(W̃ (ϕ∗1, ψ1), W̃ (ϕ∗2, ψ2)) = (ϕ∗1, ϕ
∗
2)(ψ1, ψ2). (4.3.2)
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Indeed,

(W̃ (ϕ∗1, ψ1), W̃ (ϕ∗2, ψ2)) =

∫
U×RN

W̃ (ϕ∗1, ψ1)(q, u)W̃ (ϕ∗2, ψ2)(q, u) dq du

=

∫
U×RN

ϕ1(q − 1
2
u)ψ1(q + 1

2
u)ϕ2(q − 1

2
u)ψ2(q + 1

2
u)

× g1/2(q − 1
2
u)g1/2(q + 1

2
u) dq du. (4.3.3)

Note that since ϕ1, ψ1, ϕ2, ψ2 have compact support, we can extend integration in
(4.3.3) to the whole space RN × RN . After performing the following change of
variables

q1 = q − 1
2
u,

q2 = q + 1
2
u,

(4.3.4)

equation (4.3.3) takes the form

(W̃ (ϕ∗1, ψ1), W̃ (ϕ∗2, ψ2)) =

∫
RN
ϕ2(q1)ϕ1(q1)g1/2(q1) dq1

∫
RN
ψ1(q2)ψ2(q2)g1/2(q2) dq2

= (ϕ∗1, ϕ
∗
2)(ψ1, ψ2). (4.3.5)

From property (4.3.2) follows that W̃ is continuous on C∞0 (U)×C∞0 (U). Thus, from
the fact that C∞0 (U) is dense in L2(U, dµ), it can be uniquely extended to a bilinear
map de�ned on the whole space (L2(U, dµ))∗ × L2(U, dµ) and satisfying (4.3.2).

It can be proved that �nite linear combinations of vectors W̃ (ϕ∗, ψ) for ϕ, ψ ∈
L2(U, dµ) create a dense subset of L2(TU). Thus W̃ is a tensor product of Hilbert
spaces (L2(U, dµ))∗ and L2(U, dµ).

Now, let us take the inverse Fourier transform of W̃ (ϕ∗, ψ) in momentum vari-
able. That way we receive a bilinear map of Hilbert spaces W : (L2(U, dµ))∗ ×
L2(U, dµ)→ L2(T ∗U, dl), which on vectors ϕ, ψ ∈ C∞0 (U) takes the form

W (ϕ∗, ψ)(q, p) =

∫
RN
W̃ (ϕ∗, ψ)(q, u)e−

i
~u

ipi du

=

∫
RN
ϕ(q − 1

2
u)ψ(q + 1

2
u)ρ̄(q, u)e−

i
~u

ipi du. (4.3.6)

Since the Fourier transform in momentum variable is an isomorphism of the Hilbert
space L2(T ∗U, dl) onto the Hilbert space L2(TU), W is also a tensor product of
Hilbert spaces (L2(U, dµ))∗ and L2(U, dµ). We will denote this tensor product by
⊗W . In a case U = RN with a standard metric tensor g, (4.3.6) is a well known
Wigner transform [83, 84].

In what follows we will prove couple properties of the tensor product ⊗W .

Theorem 4.3.1. For ϕ, ψ ∈ L2(U, dµ) there holds

ϕ∗ ⊗W ψ = ψ∗ ⊗W ϕ, (4.3.7)∫
T ∗U

(ϕ∗ ⊗W ψ) dl = (ϕ, ψ). (4.3.8)
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Proof. Formula (4.3.7) is an immediate consequence of the de�nition (4.3.6). To
prove (4.3.8) it is enough to consider ϕ, ψ ∈ C∞0 (U) since the general case will
follow from the continuity of the tensor product ⊗W and the integral, and the fact
that C∞0 (U) is dense in L2(U, dµ). From (4.3.6) we have that

1

(2π~)N

∫
U×RN

(ϕ∗ ⊗W ψ)(q, p) dq dp =
1

(2π~)N

∫
U×RN

∫
RN
ϕ(q − 1

2
u)ψ(q + 1

2
u)

× e−
i
~u

ipig1/4(q − 1
2
u)g1/4(q + 1

2
u) du dq dp

=

∫
U

∫
RN
ϕ(q − 1

2
u)ψ(q + 1

2
u)g1/4(q − 1

2
u)g1/4(q + 1

2
u)δ(u) du dq

=

∫
U

ϕ(q)ψ(q)g1/2(q) dq = (ϕ, ψ). (4.3.9)

Theorem 4.3.2. Let ρ1 = ϕ∗1 ⊗W ψ1 and ρ2 = ϕ∗2 ⊗W ψ2 for ϕ1, ψ1, ϕ2, ψ2 ∈
L2(U, dµ). Then

ρ1 ?M ρ2 = (ϕ1, ψ2)(ϕ∗2 ⊗W ψ1). (4.3.10)

Proof. To prove (4.3.10) it is enough to consider ϕ1, ψ1, ϕ2, ψ2 ∈ C∞0 (U) since the
general case will follow from the continuity of the Moyal product ?M , tensor product
⊗W and scalar product, and the fact that C∞0 (U) is dense in L2(U, dµ). From
(3.4.22) we have that

(ρ1 ?M ρ2)(q, p) =

∫
RN

∫
RN
ρ̃1(q + 1

2
u, v)ρ̃2(q − 1

2
v, u)e−

i
~ (ui+vi)pi du dv

=

∫
RN

∫
RN
ϕ1(q + 1

2
u− 1

2
v)ψ1(q + 1

2
u+ 1

2
v)g1/4(q + 1

2
u− 1

2
v)

× g1/4(q + 1
2
u+ 1

2
v)ϕ2(q − 1

2
v − 1

2
u)ψ2(q − 1

2
v + 1

2
u)

× g1/4(q − 1
2
v − 1

2
u)g1/4(q − 1

2
v + 1

2
u)e−

i
~ (ui+vi)pi du dv. (4.3.11)

After performing the change of variables

w = u+ v,

q′ = q + 1
2
u− 1

2
v,

(4.3.12)

we get

(ρ1 ?M ρ2)(q, p) =

∫
RN
ϕ1(q′)ψ2(q′)g1/2(q′) dq′

∫
RN
ϕ2(q − 1

2
w)ψ1(q + 1

2
w)e−

i
~w

ipi

× g1/4(q − 1
2
w)g1/4(q + 1

2
w) dw

= (ϕ1, ψ2)(ϕ∗2 ⊗W ψ1)(q, p). (4.3.13)

Let {ϕi} be an orthonormal basis in L2(U, dµ), then {ρij} = {ϕ∗i ⊗W ϕj} is an
orthonormal basis in L2(T ∗U, dl). From (4.3.7), (4.3.8), and (4.3.10) we get that
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the basis functions ρij have the following properties:

ρ̄ij = ρji, (4.3.14a)∫
T ∗U

ρij dl = δij, (4.3.14b)

ρij ?M ρkl = δilρkj. (4.3.14c)

Using the basis {ρij} the following characterization of quantum states can be proved.

Theorem 4.3.3. Function ρ ∈ L2(T ∗U, dl) is a quantum state, i.e. it satis�es

(i) ρ = ρ̄,

(ii)
∫
T ∗U

ρ dl = 1,

(iii)
∫
T ∗U

f̄ ?M f ?M ρ dl ≥ 0 for f ∈ C∞0 (T ∗U),

if and only if ρ is in the form

ρ =
∑
λ

pλ(ϕ
∗
λ ⊗W ϕλ), (4.3.15)

where ϕλ ∈ L2(U, dµ), ‖ϕλ‖ = 1, pλ ≥ 0, and
∑
λ

pλ = 1.

Proof. Function ρ can be written in a form

ρ =
∑
i,j

cijρij, (4.3.16)

where cij ∈ C and {ρij} = {ϕ∗i⊗W ϕj} is an induced basis in L2(T ∗U, dl) by the basis
{ϕi} in L2(U, dµ). Properties (i)�(iii) are equivalent to saying that the matrix č of
the coe�cients cij is hermitian (č = č†), normalized (tr č = 1), and positive de�ne
(cii ≥ 0). Indeed, hermiticity and normalization easily follow from (4.3.14a) and
(4.3.14b). To prove positive de�nite note that (iii) is valid for every f ∈ L2(T ∗U, dl)
since C∞0 (T ∗U) is dense in L2(T ∗U, dl). Thus in particular for basis functions ρkk
and with the help of (4.3.14) we get

0 ≤
∫
T ∗U

ρkk ?M ρkk ?M ρ dl =

∫
T ∗U

ρkk ?M ρ dl =
∑
i,j

cij

∫
T ∗U

ρkk ?M ρij dl

=
∑
i,j

cij

∫
T ∗U

δkjρik dl =
∑
i

cik

∫
T ∗U

ρik dl =
∑
i

cikδik = ckk (4.3.17)

for every k.
Since the matrix č is hermitian it can be diagonalized, i.e. there exist an unitary

matrix Ť such that cij =
∑
k,l

T †ik(pkδkl)Tlj =
∑
k

T ∗kipkTkj for some pk ∈ R. Hence, ρ
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takes the form

ρ =
∑
i,j,k

T ∗kipkTkj(ϕ
∗
i ⊗W ϕj) =

∑
k

pk

((∑
i

Tkiϕi

)∗
⊗W

(∑
j

Tkjϕj

))
=
∑
k

pk(ψ
∗
k ⊗W ψk), (4.3.18)

where ψk =
∑
i

Tkiϕi. The conditions that cii ≥ 0 and tr č = 1 give that 0 ≤ pk ≤ 1

and
∑
k

pk = 1.

From the above theorem follows that pure states are in the form

ρpure = ϕ∗ ⊗W ϕ, (4.3.19)

for some normalized ϕ ∈ L2(U, dµ). Conversely, every function ρ of the form (4.3.19)
is a pure state. Moreover, from (4.3.10) follows that every pure state is idempotent:

ρpure ?M ρpure = ρpure. (4.3.20)

The following theorem states that the inverse is also true.

Theorem 4.3.4. Every function ρ ∈ L2(T ∗U, dl) which satis�es

(i) ρ = ρ̄,

(ii)
∫
T ∗U

ρ dl = 1,

(iii) ρ ?M ρ = ρ,

is a pure state.

Proof. Function ρ can be written in a form

ρ =
∑
i,j

cijρij, (4.3.21)

where cij ∈ C and {ρij} = {ϕ∗i ⊗W ϕj} is an induced basis in L2(T ∗U, dl) by the
basis {ϕi} in L2(U, dµ). Properties (i)�(iii) are equivalent to saying that the matrix
č of the coe�cients cij is hermitian (č = č†), normalized (tr č = 1), and idempotent
(č2 = č). Since the matrix č is hermitian it can be diagonalized, i.e. there exist an

unitary matrix Ť such that cij =
∑
k,l

T †ik(akδkl)Tlj =
∑
k

T ∗kiakTkj for some ak ∈ R.

Hence, ρ takes the form

ρ =
∑
i,j,k

T ∗kiakTkj(ϕ
∗
i ⊗W ϕj) =

∑
k

ak

((∑
i

Tkiϕi

)∗
⊗W

(∑
j

Tkjϕj

))
=
∑
k

ak(ψ
∗
k ⊗W ψk), (4.3.22)



4.3. OPERATOR REPRESENTATION OVER A CONFIGURATION SPACE 63

where ψk =
∑
i

Tkiϕi. The conditions that č
2 = č and tr č = 1 give that a2

k = ak and∑
k

ak = 1. Hence ak = δk0k for some k0, from which follows that ρ = ψ∗k0 ⊗W ψk0 .

Thus ρ is a pure state.

As was noted above pure states ρ ∈ L2(T ∗U, dl) are of the form ρ = ϕ∗⊗W ϕ for
normalized ϕ ∈ L2(U, dµ). Thus there is a one to one correspondence between pure
states and normalized vectors in L2(U, dµ). In what follows we will show that there
is in fact a one to one correspondence between states ρ ∈ L2(T ∗U, dl) and density
operators ρ̂ on L2(U, dµ).

First, note that vectors f ∈ L2(T ∗U, dl) can be considered as operators f ?M on
L2(T ∗U, dl) given by the formula

(f ?M )ρ = f ?M ρ, ρ ∈ L2(T ∗U, dl). (4.3.23)

From (3.4.21) follows that operators f ?M are bounded with the norm ‖f ?M ‖ ≤ ‖f‖.
In what follows we will prove that operators f ?M can be naturally identi�ed with
Hilbert-Schmidt operators on L2(U, dµ).

For a Hilbert space H a bounded operator Â ∈ B(H) is called a Hilbert-Schmidt
operator if tr(Â†Â) <∞. The space of all Hilbert-Schmidt operators will be denoted
by B2(H) and it happens to be a Hilbert space with a scalar product given by [85]

(Â, B̂)2 = tr(Â†B̂), Â, B̂ ∈ B2(H). (4.3.24)

From the well known relation between the Hilbert-Schmidt norm and the usual
operator norm [85]

‖Â‖ ≤ ‖Â‖2, Â ∈ B2(H) (4.3.25)

it follows that the inclusion B2(H) ⊂ B(H) is continuous.

Proposition 4.3.1. For every ρ ∈ L2(T ∗U, dl)

ρ ?M = 1̂⊗W ρ̂, (4.3.26)

where ρ̂ ∈ B2(L2(U, dµ)) is some Hilbert-Schmidt operator de�ned on the Hilbert
space L2(U, dµ). Conversely, for every ρ̂ ∈ B2(L2(U, dµ)) the operator 1̂⊗W ρ̂ is of
the form ρ ?M for some ρ ∈ L2(T ∗U, dl).

The following properties are ful�lled:

(i) for ρ = ϕ∗ ⊗W ψ, ρ̂ = (ϕ, · )ψ,

(ii) ρ̄ ?M = 1̂⊗W ρ̂†,

(iii) tr(ρ) ≡
∫
T ∗U

ρ dl = tr(ρ̂),

(iv) for ρ1, ρ2 ∈ L2(T ∗U, dl) and ρ̂1, ρ̂2 ∈ B2(L2(U, dµ)) such that ρ1 ?M = 1̂⊗W ρ̂1

and ρ2 ?M = 1̂⊗W ρ̂2

(ρ1, ρ2) = (ρ̂1, ρ̂2)2, (4.3.27)
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(v)
∫
T ∗U

f̄ ?M f ?M ρ dl ≥ 0 for f ∈ C∞0 (T ∗U) if and only if (ϕ, ρ̂ϕ) ≥ 0 for

ϕ ∈ L2(U, dµ).

Proof. First let us prove (i). From (4.3.10) for basis functions ρij = ϕ∗i ⊗W ϕj it
follows that

ρ ?M ρij = (ϕ∗ ⊗W ψ) ?M (ϕ∗i ⊗W ϕj) = (ϕ, ϕj)(ϕ
∗
i ⊗W ψ) = ϕ∗i ⊗W (ρ̂ϕj)

= (1̂⊗W ρ̂)ρij, (4.3.28)

which proves (i).
Now, note that for a basis {ϕi} in L2(U, dµ) the operators ρ̂ij = (ϕi, · )ϕj form

a basis in the Hilbert space B2(L2(U, dµ)) of Hilbert-Schmidt operators. From (i)
for basis functions ρij = ϕ∗i ⊗W ϕj we have that

ρij ?M = 1̂⊗W ρ̂ij. (4.3.29)

The general ρ ∈ L2(T ∗U, dl) can be written in the form ρ =
∑
i,j

cijρij for some

cij ∈ C. In accordance to (4.3.29) the corresponding Hilbert-Schmidt operator ρ̂ is

of the form ρ̂ =
∑
i,j

cij ρ̂ij. This proves the �rst part of the theorem.

It is enough to prove properties (ii)�(iv) for basis functions ρij. Property (ii)

follows from (4.3.14a) and the fact that ρ̂†ij = ρ̂ji. Property (iii) is a consequence of
(4.3.14b) and the identity tr(ρ̂ij) = δij. Property (iv) follows from the equality

(ρij, ρkl) =

∫
T ∗U

ρ̄ijρkl dl =

∫
T ∗U

ρji ?M ρkl dl =

∫
T ∗U

δjlρki dl = δjlδik

= tr(ρ̂†ij ρ̂kl) = (ρ̂ij, ρ̂kl)2. (4.3.30)

To prove (v) let us expand ρ and ρ̂ in the corresponding basis: ρ =
∑
i,j

cijρij

and ρ̂ =
∑
i,j

cij ρ̂ij. The property follows from the observation that the positive-

de�niteness of ρ and ρ̂ is equivalent with the inequality ckk ≥ 0 for every k.

From Proposition 4.3.1 immediately follows that the Hilbert spaces L2(T ∗U, dl)
and B2(L2(U, dµ)) are naturally isomorphic. The natural isomorphism ρ 7→ ρ̂ is
given by ρ ?M = 1̂⊗W ρ̂. The isomorphism ρ 7→ ρ̂ is in fact a representation of the
algebra L = (L2(T ∗U, dl), ?M) in the Hilbert space L2(U, dµ) since it satis�es

f̂ ?M g = f̂ ĝ, ˆ̄f = f̂ †, tr(f) = tr(f̂). (4.3.31)

The last property is restricted to the subspace L1 = L ?M L.
Moreover, from Proposition 4.3.1 follows that there is a one to one correspon-

dence between quantum states ρ ∈ L2(T ∗U, dl) and density operators on L2(U, dµ),
i.e. trace class operators ρ̂ satisfying

(i) ρ̂† = ρ̂,
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(ii) tr(ρ̂) = 1,

(iii) (ϕ, ρ̂ϕ) ≥ 0 for every ϕ ∈ L2(U, dµ).

The density operators represent quantum states in the operator representation of
quantum mechanics.

In what follows we will show that observables f ∈ C∞(T ∗U)[[~]] can be naturally
identi�ed with operators de�ned on the Hilbert space L2(U, dµ). Moreover, the
presented identi�cation will be in agreement with the Weyl correspondence rule.

Proposition 4.3.2. Let f ∈ C∞(T ∗U)[[~]] and ρ = ϕ∗ ⊗W ψ for ϕ, ψ ∈ C∞0 (U).
Then

f ?M ρ = ϕ∗ ⊗W f(q̂, p̂)ψ, (4.3.32a)

ρ ?M f = (f(q̂, p̂)†ϕ)∗ ⊗W ψ, (4.3.32b)

where f(q̂, p̂) is a symmetrically ordered function of canonical operators of position
q̂i = qi and momentum p̂j = −i~(∂qj + 1

2
Γkjk), acting in the Hilbert space L2(U, dµ).

Proof. From (3.4.22) we get that

(f ?M ρ)(q, p) =

∫
RN

∫
RN
f̃(q + 1

2
u, v)ρ̃(q − 1

2
v, u)e−

i
~ (ui+vi)pi du dv

=

∫
RN

∫
RN
f̃(q + 1

2
u, v)ϕ(q − 1

2
v − 1

2
u)ψ(q − 1

2
v + 1

2
u)

× g1/4(q − 1
2
v − 1

2
u)g1/4(q − 1

2
v + 1

2
u)e−

i
~ (ui+vi)pi du dv. (4.3.33)

After the following change of variables

u→ u− v,
v → v

(4.3.34)

and using (4.2.6) we receive

(f ?M ρ)(q, p) =

∫
RN

∫
RN
f̃(q + 1

2
u− 1

2
v, v)ϕ(q − 1

2
u)ψ(q + 1

2
u− v)g1/4(q − 1

2
u)

× g1/4(q + 1
2
u− v)g1/4(q + 1

2
u)g−1/4(q + 1

2
u)e−

i
~u

ipi du dv

=

∫
RN
ϕ(q − 1

2
u)(f(q̂, p̂)ψ)(q + 1

2
u)g1/4(q − 1

2
u)g1/4(q + 1

2
u)e−

i
~u

ipi du

= (ϕ∗ ⊗W f(q̂, p̂)ψ)(q, p) (4.3.35)

which proves (4.3.32a).
To prove (4.3.32b) we can use (4.3.7) and (4.3.32a) receiving

ρ ?M f = f̄ ?M ρ̄ = ψ∗ ⊗W f̄(q̂, p̂)ϕ = (f̄(q̂, p̂)ϕ)∗ ⊗W ψ. (4.3.36)
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Note, that the star-products f ?M ρ and ρ ?M f are properly de�ned by (3.4.22),
even though f̃ has no compact support and is not de�ned on the whole space
RN × RN , since ρ is in the form ϕ∗ ⊗W ψ for ϕ and ψ with compact support.

From Proposition 4.3.2 follows that operators f ?M can be written as

f ?M = 1̂⊗W f(q̂, p̂). (4.3.37)

Equation (4.3.37) is an analog of (4.3.26) for functions f ∈ C∞(T ∗U)[[~]] and it
allows to naturally identify functions f with operators f(q̂, p̂). That way the Weyl
correspondence rule naturally appears in the operator representation of quantum
mechanics.

The map f 7→ f̂ = f(q̂, p̂) have the following properties

f̂ ?M g = f̂ ĝ, ˆ̄f = f̂ † (4.3.38)

for functions f, g ∈ C∞(T ∗U)[[~]], thus it is a representation of the quantum Poisson
algebra AQ(T ∗U) = (C∞(T ∗U)[[~]], ?M) in the Hilbert space L2(U, dµ).

Theorem 4.3.5. Let f ∈ C∞(T ∗U)[[~]] and ρ ∈ L2(T ∗U, dl). If f ?M ρ ∈ L1(T ∗U, dl)
then ∫

T ∗U

f ?M ρ dl = tr(f(q̂, p̂)ρ̂). (4.3.39)

In particular, if ρ = ϕ∗ ⊗W ψ for ϕ, ψ ∈ C∞0 (U) then∫
T ∗U

f ?M ρ dl = (ϕ, f(q̂, p̂)ψ). (4.3.40)

Proof. Let {ϕi} be a basis in L2(U, dµ) such that ϕi have compact support. From
Proposition 4.3.2 and (4.3.8) we have that∫

T ∗U

fρij dl =

∫
T ∗U

f ?M ρij dl = (ϕi, f(q̂, p̂)ϕj) (4.3.41)

for ρij = ϕ∗i ⊗W ϕj. The function ρ can be expanded in the basis ρij, ρ =
∑
i,j

cijρij.

Using this expansion we get that∫
T ∗U

f ?M ρ dl =

∫
T ∗U

fρ dl =
∑
i,j

cij

∫
T ∗U

fρij dl =
∑
i,j

cij(ϕi, f(q̂, p̂)ϕj)

=
∑
i,j

cij tr(f(q̂, p̂)ρ̂ij) = tr(f(q̂, p̂)ρ̂). (4.3.42)

From Theorem 4.3.5 follows that the expectation value of an observable f ∈
C∞(T ∗U)[[~]] in a state ρ ∈ L2(T ∗U, dl) in the operator representation of quantum
mechanics is expressed by the formula

〈f〉ρ = tr(f(q̂, p̂)ρ̂). (4.3.43)

Moreover, in the operator representation to time evolution equation (3.2.19) corre-
sponds the following equation

i~
∂ρ̂

∂t
(t)− [H(q̂, p̂), ρ̂(t)] = 0 (4.3.44)

called the von Neumann equation.
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4.3.2 The case of a general quantization

Let us consider a con�guration space Q in the form of an N -dimensional almost
geodesically simply connected Riemannian manifold, and a phase space M = T ∗Q.
Moreover, we will consider a classical system de�ned on M and its quantization
by means of a ?-product on M . We will begin with constructing the operator
representation for some coordinate system on Q. Let Q ⊃ U → V ⊂ RN , q 7→
(q1, . . . , qN) be an almost global coordinate system on Q. From the assumption that
Q is almost geodesically simply connected such coordinate system always exists. The
coordinate system (q1, . . . , qN) induces on M an almost global classical canonical
coordinate system T ∗U → T ∗V = V × RN , x 7→ (q1, . . . , qN , p1, . . . , pN). We will
assume that this coordinate system is at the same time quantum canonical. For
star-products from Section 3.4 this is the case. The quantum system can be written
in the coordinates (qi, pj). Note, that although ?-product is not local it still can
be written in the coordinates (qi, pj) since this coordinate system is almost globally
de�ned.

The idea behind introducing the operator representation lies in the observation
that the quantum system in coordinates (qi, pj) is equivalent with a system quantized
by the Moyal product, cf. Theorem 3.4.3. If S is a morphism giving this equivalence
then S is a unitary operator on the Hilbert space L2(T ∗V, dl). Let us introduce a
tensor product ⊗S : (L2(V, dµ))∗ × L2(V, dµ)→ L2(T ∗V, dl) by the formula

ϕ∗ ⊗S ψ = S(ϕ∗ ⊗W ψ), ϕ, ψ ∈ L2(V, dµ) (4.3.45)

and a function f of S-ordered operators q̂i, p̂j

fS(q̂, p̂) = (S−1f)(q̂, p̂). (4.3.46)

Using Theorem 3.4.3 and property (3.4.29) it can be easily proved that all previous
formulas and theorems for the case of a Moyal quantization also hold true for a
general quantum system in (qi, pj) coordinates, provided that the tensor product
⊗W will be replaced by ⊗S and operators f(q̂, p̂) by fS(q̂, p̂). In particular, there
holds.

Proposition 4.3.3. Let f ∈ C∞(T ∗V )[[~]] and ρ = ϕ∗ ⊗S ψ for ϕ, ψ ∈ C∞0 (V ).
Then

f ?(q,p) ρ = ϕ∗ ⊗S fS(q̂, p̂)ψ, (4.3.47a)

ρ ?(q,p) f = (fS(q̂, p̂)†ϕ)∗ ⊗S ψ, (4.3.47b)

where fS(q̂, p̂) is an S-ordered function of canonical operators of position q̂i = qi

and momentum p̂j = −i~(∂qj + 1
2
Γkjk), acting in the Hilbert space L2(V, dµ).

Proof. From Theorem 3.4.3 and Proposition 4.3.2 we get that

f ?(q,p) ρ = SS−1(f ?(q,p) ρ) = S(S−1f ?
(q,p)
M S−1ρ) = S

(
ϕ∗ ⊗W (S−1f)(q̂, p̂)ψ

)
= ϕ∗ ⊗S fS(q̂, p̂)ψ (4.3.48)

which proves (4.3.47a). Equation (4.3.47b) can be proved analogically.
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From Proposition 4.3.3 follows that operators f ?(q,p) can be written as

f ?(q,p) = 1̂⊗S fS(q̂, p̂). (4.3.49)

Equation (4.3.49) allows to naturally identify functions f ∈ C∞(T ∗V )[[~]] with op-
erators fS(q̂, p̂). Moreover, the map f 7→ f̂ = fS(q̂, p̂) is a representation of the
algebra AQ(T ∗V ) = (C∞(T ∗V )[[~]], ?(q,p)) in the Hilbert space L2(V, dµ).

Similarly, the analog of Proposition 4.3.1 holds true, which gives us a represen-
tation ρ 7→ ρ̂ of the algebra L = (L2(T ∗V, dl), ?(q,p)) in the Hilbert space L2(V, dµ)
given by ρ ?(q,p) = 1̂⊗S ρ̂.

Furthermore, the following analog of Theorem 4.3.5 can be proved.

Theorem 4.3.6. Let f ∈ C∞(T ∗V )[[~]] and ρ ∈ L2(T ∗V, dl). If f ?(q,p) ρ ∈
L1(T ∗V, dl) then ∫

T ∗V

f ?(q,p) ρ dl = tr(fS(q̂, p̂)ρ̂). (4.3.50)

In particular, if ρ = ϕ∗ ⊗S ψ for ϕ, ψ ∈ C∞0 (V ) then∫
T ∗V

f ?(q,p) ρ dl = (ϕ, fS(q̂, p̂)ψ). (4.3.51)

Proof. Let {ϕi} be a basis in L2(V, dµ) and {ρij} = {ϕ∗i ⊗S ϕj} an induced basis in

L2(T ∗V, dl). Function ρ can be expanded in the basis {ρij} resulting in ρ =
∑
i,j

cijρij.

From Theorems 3.4.3 and 4.3.5, and property (3.4.29) we get that∫
T ∗V

f ?(q,p) ρ dl =

∫
T ∗V

SS−1(f ?(q,p) ρ) dl =

∫
T ∗V

S−1f ?
(q,p)
M S−1ρ dl

=
∑
i,j

cij

∫
T ∗V

S−1f ?
(q,p)
M S−1ρij dl =

∑
i,j

cij(ϕi, fS(q̂, p̂)ϕj)

=
∑
i,j

cij tr(fS(q̂, p̂)ρ̂ij) = tr(fS(q̂, p̂)ρ̂). (4.3.52)

Note, that for a general quantization the operator representation corresponding
to some coordinate system gives us the correspondence rule f 7→ fS(q̂, p̂) which in
general is di�erent than the Weyl correspondence rule. The Weyl correspondence
rule is associated only with the Moyal quantization and the Cartesian coordinate
system. To create an operator representation of the general quantum system in gen-
eral coordinates in a consistent way it is needed to use di�erent orderings of position
and momentum operators (instead of using Weyl ordering for any quantization and
coordinate system we have to use S-orderings).

Let Q ⊃ U → V ⊂ RN , q 7→ (q1, . . . , qN) and Q ⊃ U ′ → V ′ ⊂ RN ,
q 7→ (q′1, . . . , q′N) be two almost global coordinate systems on Q, and T ∗U →
T ∗V = V × RN , x 7→ (q1, . . . , qN , p1, . . . , pN) and T ∗U ′ → T ∗V ′ = V ′ × RN ,
x 7→ (q′1, . . . , q′N , p′1, . . . , p

′
N) induced canonical coordinate systems on T ∗Q. A map

φ : (q′1, . . . , q′N) 7→ (q1, . . . , qN) is then a transformation of coordinates on the con-
�guration space Q and a map T : (q′1, . . . , q′N , p′1, . . . , p

′
N) 7→ (q1, . . . , qN , p1, . . . , pN)
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is a canonical transformation of coordinates on the phase space T ∗Q. The transfor-
mation T is given by the formula (2.1.17).

In what follows we will investigate how the operator representation of quan-
tum mechanics behaves after changing the coordinates. First, note that a map
ÛT : L2(V, dµ)→ L2(V ′, dµ′) given by

(ÛTψ)(q′) = ψ(φ(q′)) (4.3.53)

is an isomorphism of Hilbert spaces. Moreover, a map L2(T ∗V, dl) → L2(T ∗V ′, dl)
given by

f 7→ f ◦ T (4.3.54)

is also an isomorphism of Hilbert spaces. Let ⊗S and ⊗S′ be tensor products corre-
sponding to star-products ?(q,p) and ?(q′,p′) respectively. The following theorem can
be proved.

Theorem 4.3.7. For ϕ, ψ ∈ L2(V, dµ) there holds

(ϕ∗ ⊗S ψ) ◦ T = (ÛTϕ)∗ ⊗S′ ÛTψ. (4.3.55)

From Theorem 4.3.7 follows that operator representations of quantum mechanics
corresponding to di�erent coordinate systems are unitarily equivalent. In particular,
we get that operators, corresponding to a function f ∈ C∞(T ∗Q)[[~]] written in
di�erent coordinate systems, are unitarily equivalent:

Theorem 4.3.8. For f ∈ C∞(T ∗V )[[~]] there holds

f ′S′(q̂
′, p̂′) = ÛTfS(q̂, p̂)Û−1

T , (4.3.56)

where f ′ = f ◦T and q̂i = qi, p̂j = −i~(∂qj+
1
2
Γkjk) and q̂

′i = q′i, p̂′j = −i~(∂q′j+
1
2
Γ′kjk)

are operators of position and momentum corresponding to the coordinates (qi, pj) and
(q′i, p′j) respectively.

Proof. Let ρ = ϕ∗ ⊗S ψ. From Proposition 4.3.3 and Theorem 4.3.7 we get from
one side

(f ?(q,p) ρ) ◦ T = f ′ ?(q′,p′) (ρ ◦ T ) = (ÛTϕ)∗ ⊗S′ f ′S′(q̂′, p̂′)ÛTψ (4.3.57)

and from the other side

(f ?(q,p) ρ) ◦ T = (ϕ∗ ⊗S fS(q̂, p̂)ψ) ◦ T = (ÛTϕ)∗ ⊗S′ ÛTfS(q̂, p̂)ψ

= (ÛTϕ)∗ ⊗S′ ÛTfS(q̂, p̂)Û−1
T ÛTψ. (4.3.58)

Comparison of the above two formulas implies the result.

Remark 4.3.1. If q̂i, p̂j are operators of position and momentum de�ned on the
Hilbert space L2(V, dµ) and corresponding to the coordinate system (qi, pj), and
if T−1(q, p) = (Q1(q, p), . . . , QN(q, p), P1(q, p), . . . , PN(q, p)) is a transformation to
the coordinate system (q′i, p′j), then the maps Qi, Pj are observables of position
and momentum on the phase space T ∗V corresponding to the coordinate system
(q′i, p′j). To the maps Qi, Pj we can relate operators Qi

S(q̂, p̂), (Pj)S(q̂, p̂) which are
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operators of position and momentum de�ned on the Hilbert space L2(V, dµ) and
corresponding to the coordinate system (q′i, p′j). From Theorem 4.3.8 we get that

q̂′i = ÛTQ
i
S(q̂, p̂)Û−1

T , (4.3.59a)

p̂′j = ÛT (Pj)S(q̂, p̂)Û−1
T . (4.3.59b)

Equation (4.3.59a) is a statement of the fact that the unitary operator ÛT gives a
position representation of the quantum system for the operators Qi

S(q̂, p̂), i.e. the
unitary operator ÛT writes the operators Qi

S(q̂, p̂) as operators of multiplication by
a coordinate variable.

4.3.3 Invariant form of the operator representation

So far we introduced the operator representation of quantum mechanics correspond-
ing to some coordinate system on the con�guration space. In what follows we will
use the developed formalism to introduce an operator representation in a coordinate
independent way. Let φ : Q ⊃ U → V ⊂ RN be an almost global coordinate system
on the con�guration space Q and Φ: T ∗U → T ∗V = V ×RN a related almost global
canonical coordinate system on the phase space T ∗Q. Since the coordinate system
φ is almost globally de�ned it de�nes an isomorphism Û : L2(Q, dωg) → L2(V, dµ)
of the Hilbert spaces given by

Ûψ = ψ|U ◦ φ−1. (4.3.60)

Indeed, the restriction |U is a natural isomorphism of L2(Q, dωg) onto L2(U, dµ) since
for ψ ∈ L2(Q, dωg), ψ and ψ|U are equal almost everywhere and Hilbert spaces of
square integrable functions are constituted of equivalence classes of functions equal
almost everywhere. Similarly, the coordinate system Φ de�nes an isomorphism of
the Hilbert space L2(T ∗Q, dl) onto the Hilbert space L2(T ∗V, dl). We can now de�ne
a tensor product ⊗ : (L2(Q, dωg))∗ × L2(Q, dωg)→ L2(T ∗Q, dl) by the formula

ϕ∗ ⊗ ψ = ((Ûϕ)∗ ⊗S Ûψ) ◦ Φ, ϕ, ψ ∈ L2(Q, dωg), (4.3.61)

where ⊗S : (L2(V, dµ))∗×L2(V, dµ)→ L2(T ∗V, dl) is a tensor product corresponding
to the coordinate system Φ. The de�nition of the tensor product ⊗ is independent
on the choice of a coordinate system. Indeed, if φ′ : Q ⊃ U ′ → V ′ ⊂ RN is an
another almost global coordinate system on Q, Φ′ : T ∗U ′ → T ∗V ′ = V ′ × RN a
related almost global canonical coordinate system on T ∗Q and Û ′ : L2(Q, dωg) →
L2(V ′, dµ′) a Hilbert space isomorphism induced by φ′ then T = Φ ◦ Φ′−1 is a
canonical transformation of coordinates and ÛT = Û ′Û−1 a related unitary operator
(4.3.53). Then from Theorem 4.3.7 follows that

ϕ∗ ⊗ ψ = ((Ûϕ)∗ ⊗S Ûψ) ◦ T ◦ Φ′ = ((ÛT Ûϕ)∗ ⊗S′ ÛT Ûψ) ◦ Φ′

= ((Û ′ϕ)∗ ⊗S′ Û ′ψ) ◦ Φ′. (4.3.62)

The tensor product ⊗ inherits all properties of the tensor products ⊗S. In
particular, the following theorems hold.
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Proposition 4.3.4. For every ρ ∈ L2(T ∗Q, dl)

ρ ? = 1̂⊗ ρ̂, (4.3.63)

where ρ̂ ∈ B2(L2(Q, dωg)) is some Hilbert-Schmidt operator de�ned on the Hilbert
space L2(Q, dωg). Conversely, for every ρ̂ ∈ B2(L2(Q, dωg)) the operator 1̂⊗ ρ̂ is of
the form ρ ? for some ρ ∈ L2(T ∗Q, dl).

The following properties are ful�lled:

(i) for ρ = ϕ∗ ⊗ ψ, ρ̂ = (ϕ, · )ψ,

(ii) ρ̄ ? = 1̂⊗ ρ̂†,

(iii) tr(ρ) ≡
∫
T ∗Q

ρ dl = tr(ρ̂),

(iv) for ρ1, ρ2 ∈ L2(T ∗Q, dl) and ρ̂1, ρ̂2 ∈ B2(L2(Q, dωg)) such that ρ1 ? = 1̂ ⊗ ρ̂1

and ρ2 ? = 1̂⊗ ρ̂2

(ρ1, ρ2) = (ρ̂1, ρ̂2)2, (4.3.64)

(v)
∫
T ∗Q

f̄ ? f ? ρ dl ≥ 0 for f ∈ C∞0 (T ∗Q) if and only if (ϕ, ρ̂ϕ) ≥ 0 for ϕ ∈

L2(Q, dωg).

Proposition 4.3.5. Let f ∈ C∞(T ∗Q)[[~]] and ρ = ϕ∗⊗ψ for ϕ, ψ ∈ C∞0 (Q). Then

f ? ρ = ϕ∗ ⊗ f̂ψ, (4.3.65a)

ρ ? f = (f̂ †ϕ)∗ ⊗ ψ, (4.3.65b)

where f̂ is some operator acting in the Hilbert space L2(Q, dωg). Furthermore, if
(q1, . . . , qN) is some almost global coordinate system on Q, (q1, . . . , qN , p1, . . . , pN) a
related canonical coordinate system on T ∗Q, and Û a corresponding unitary operator
given by (4.3.60), then

Û f̂ Û−1 = fS(q̂, p̂). (4.3.66)

Theorem 4.3.9. Let f ∈ C∞(T ∗Q)[[~]] and ρ ∈ L2(T ∗Q, dl). If f ?ρ ∈ L1(T ∗Q, dl)
then ∫

T ∗Q
f ? ρ dl = tr(f̂ ρ̂). (4.3.67)

In particular, if ρ = ϕ∗ ⊗ ψ for ϕ, ψ ∈ C∞0 (Q) then∫
T ∗Q

f ? ρ dl = (ϕ, f̂ψ). (4.3.68)

From Proposition 4.3.4 follows that the map ρ 7→ ρ̂ is a representation of the
algebra L = (L2(T ∗Q, dl), ?) in the Hilbert space L2(Q, dωg). Furthermore, from
Proposition 4.3.5 follows that functions f ∈ C∞(T ∗Q)[[~]] can be naturally identi�ed
with operators f̂ through the formula

f ? = 1̂⊗ f̂ . (4.3.69)
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Moreover, the map f 7→ f̂ is a representation of the quantum Poisson algebra
AQ(T ∗Q) = (C∞(T ∗Q)[[~]], ?) in the Hilbert space L2(Q, dωg). By virtue of Theo-
rems 4.3.3 and 4.3.4 we get the following characterization of quantum states.

Proposition 4.3.6. Pure states can be alternatively characterized as functions
ρpure ∈ L2(T ∗Q, dl) which are self-conjugated, normalized, and idempotent:

ρpure = ρ̄pure, (4.3.70a)∫
T ∗Q

ρpure dl = 1, (4.3.70b)

ρpure ? ρpure = ρpure. (4.3.70c)

Mixed states ρmix ∈ L2(T ∗Q, dl) can be characterized as convex linear combinations,
possibly in�nite, of some families of pure states ρ(λ)

pure

ρmix =
∑
λ

pλρ
(λ)
pure, (4.3.71)

where pλ ≥ 0 and
∑
λ

pλ = 1.

Remark 4.3.2. If φ : Q ⊃ U → V ⊂ RN is an almost global coordinate system on
the con�guration space Q, Φ: T ∗U → T ∗V = V ×RN a related almost global canon-
ical coordinate system on the phase space T ∗Q, and Û : L2(Q, dωg)→ L2(V, dµ) an
isomorphism of the Hilbert spaces given by (4.3.60), then the maps qi = Φi and
pj = Φj+N (i, j = 1, 2, . . . , N) are observables of position and momentum corre-
sponding to the coordinate system Φ. To the maps qi, pj we can relate operators
q̂i, p̂j de�ned on the Hilbert space L2(Q, dωg). The operators q̂i = φi are of the
form of multiplication operators by coordinate functions φi and they constitute a
complete set of commuting observables. Thus they can be used to create a represen-
tation corresponding to the coordinate system φ. In this representation operators
q̂i take the form of the multiplication operators by a coordinate variable, which
are de�ned on the Hilbert space L2(V, dµ). In accordance to (4.3.66) the unitary
operator giving this representation is equal Û .

4.3.4 Examples of quantum mechanical operators

In what follows we will consider such quantization of a classical system on T ∗Q for
which the morphism S giving the equivalence with the Moyal quantization is in the
form (3.4.72) for any classical and quantum canonical coordinate system. We will
derive the form of operators corresponding to functions linear, quadratic and cubic
in momenta. Note, that the terms of order higher or equal to ~4 in (3.4.72) are at
least of the fourth order in ∂pj so the formula (3.4.72) is enough to calculate the
action of S on functions that are up to cubic in momenta. First, let us consider
a function H on T ∗Q linear in momenta, which in some canonical coordinates on
T ∗Q takes the form

H(q, p) = Ki(q)pi, (4.3.72)
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where Ki are components of some vector �eld K de�ned on Q. The action of the
morphism S on H leaves the function H unchanged:

(S−1H)(q, p) = Ki(q)pi. (4.3.73)

From this and (4.1.31) to H will correspond the following self-adjoint operator

HS(q̂, p̂) =
1

2
Ki(q̂)p̂i +

1

2
p̂iK

i(q̂). (4.3.74)

By virtue of (4.2.7) the above equation can be written in the form

HS(q̂, p̂) = −i~
2

(
2Ki∂qi +Ki

,i + ΓkikK
i
)

= −i~
2

(
2Ki∂qi +Ki

;i

)
. (4.3.75)

Finally, we can write the above equation in the following invariant form

HS(q̂, p̂) = −i~
2

(
2Ki∇i +Ki

;i

)
= −i~

2

(
Ki∇i +∇iK

i
)
. (4.3.76)

Now, let us consider a function H on T ∗Q quadratic in momenta, which in some
canonical coordinates on T ∗Q takes the form

H(q, p) =
1

2
Kij(q)pipj + V (q), (4.3.77)

where Kij are components of some symmetric tensor �eld K de�ned on Q and V is
a smooth function on Q. The action of the morphism S on H results in the following
function

(S−1H)(q, p) =
1

2
Kij(q)pipj + V (q)− ~2

2

(
1

4
Kij

,k(q)Γ
k
ij(q) +

1

4
Kij(q)Γkli(q)Γ

l
kj(q)

− 1

4
bKij

;ij(q) +
1

4
aKij(q)Rij(q)

)
. (4.3.78)

From this and (4.1.31) to H will correspond the following self-adjoint operator

HS(q̂, p̂) =
1

2

(
1

4
Kij(q̂)p̂ip̂j +

1

2
p̂iK

ij(q̂)p̂j +
1

4
p̂ip̂jK

ij(q̂)

)
+ V (q̂)

− ~2

2

(
1

4
Kij

,k(q̂)Γ
k
ij(q̂) +

1

4
Kij(q̂)Γkli(q̂)Γ

l
kj(q̂)−

1

4
bKij

;ij(q̂) +
1

4
aKij(q̂)Rij(q̂)

)
.

(4.3.79)

By virtue of (4.2.7) the above equation can be written in the form

HS(q̂, p̂) = −~2

2

(
Kij∂qi∂qj+K

ijΓljl∂qi+K
ij
,i∂qj+

1

2
KijΓljl,i+

1

4
KijΓkikΓ

l
jl+

1

2
Kij

,iΓ
l
jl

+
1

4
Kij

,ij +
1

4
Kij

,kΓ
k
ij +

1

4
KijΓkliΓ

l
kj −

1

4
bKij

;ij +
1

4
aKijRij

)
+ V. (4.3.80)
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Using the equality Kij
,k = −KrjΓirk −KriΓjrk + Kij

;k the above equation simpli�es
to

HS(q̂, p̂) = −~2

2

(
Kij∂qi∂qj+K

ijΓljl∂qi+K
ij
,i∂qj+

1

4
(1−b)Kij

;ij−
1

4
(1−a)KijRij

)
+V.

(4.3.81)
Note, that (4.3.81) can be written in the following invariant form

HS(q̂, p̂) = −~2

2

(
∇iK

ij∇j +
1

4
(1− b)Kij

;ij −
1

4
(1− a)KijRij

)
+ V, (4.3.82)

where ∇iK
ij∇j = ∆K is the pseudo-Laplace operator. For a special case when K

is the standard metric tensor g on the con�guration space, the function H has the
form of a natural Hamiltonian (3.2.2), and equation (4.3.82) reduces to

HS(q̂, p̂) = −~2

2

(
gij∇i∇j −

1

4
(1− a)R

)
+ V. (4.3.83)

Observe, that ∇ig
ij∇j = gij∇i∇j = ∆ is the Laplace-Beltrami operator. Note, that

for a �at metric tensor g the family of morphisms S depends only on the parameter
b and consequently we have one-parameter family of quantizations which, according
to (4.3.83), coincide for a class of natural Hamiltonians (3.2.2).

Finally, Let us consider a function H on T ∗Q, which in some canonical coordi-
nates on T ∗Q is cubic in momenta (we skip the lower terms in momenta):

H(q, p) = Kijk(q)pipjpk, (4.3.84)

whereKijk are components of some symmetric tensor �eldK de�ned onQ. Similarly
as in the previous case we can derive the form of the corresponding self-adjoint
operator:

HS(q̂, p̂) =
1

2
i~3

(
∇iK

ijk∇j∇k +∇i∇jK
ijk∇k +

1

4
(1− b)∇kK

ijk
;ij

+
1

4
(1− b)Kijk

;ij∇k −
3

4
(1− a)∇iK

ijkRjk −
3

4
(1− a)KijkRjk∇i

)
. (4.3.85)

Note, that the received operators are de�ned on the Hilbert space L2(V, dµ) and
correspond to a given canonical coordinate system (qi, pj). These operators are writ-
ten in an invariant form and consequently they can be treated as operators de�ned
on the Hilbert space L2(Q, dωg). Indeed, using the unitary operator Û related to
the coordinate system (qi, pj) and given by (4.3.60) we can receive, in accordance
to the formula (4.3.66), operators de�ned on the Hilbert space L2(Q, dωg).

4.3.5 Example of the hydrogen atom

Let us consider a quantum system of the hydrogen atom. A con�guration space of
such system is the 3-dimensional Euclidean space E3. It represents the position in
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space of an electron of the hydrogen atom. A phase space of the system is T ∗E3

and a Hamiltonian H in Cartesian coordinates takes a form

H(x, y, z, px, py, pz) =
p2
x + p2

y + p2
z

2m
− 1

4πε0

e2√
x2 + y2 + z2

. (4.3.86)

As a star-product on T ∗E3 is taken the canonical ?-product which in the Cartesian
coordinates takes a form of the Moyal product. In the operator representation in the
Cartesian coordinate system the Hilbert space of states takes the form of the space
L2(R3) of functions on R3 square integrable with respect to the Lebesgue measure.
The canonical operators of position and momentum take the standard form

q̂x = x, q̂y = y, q̂z = z,

p̂x = −i~∂x, p̂y = −i~∂y, p̂z = −i~∂z,
(4.3.87)

and the Hamilton operator, being a symmetrically ordered function H of the oper-
ators of position and momentum, takes a form

H(q̂x, q̂y, q̂z, p̂x, p̂y, p̂z) = − ~2

2m
∆− 1

4πε0

e2√
x2 + y2 + z2

, (4.3.88)

where ∆ = ∂2
x + ∂2

y + ∂2
z is the Laplace operator in the Cartesian coordinates.

Now, let us consider the quantum system and its operator representation in the
spherical polar coordinates. The Moyal product in the Cartesian coordinates, under
the point transformation to spherical polar coordinates (2.2.8), transforms to a star-
product of the form (3.4.40). In accordance to Theorem 3.4.3 this star-product is
equivalent to the Moyal product, where the equivalence morphism S, by virtue of
(3.4.71), is equal

S = id +
~2

4

(
1

r2
∂2
pr +

(
1

2 tan2 θ
− 1

)
∂2
pθ
− ∂2

pφ
+

1

r tan θ
∂pr∂pθ +

1

r2
pθ∂

2
pr∂pθ

− 1

2
pr∂pr∂

2
pθ

+
2

r tan θ
pφ∂pr∂pθ∂pφ −

(
1

2
pr sin2 θ +

1

r
pθ sin θ cos θ

)
∂pr∂

2
pφ
− 1

3
pθ∂

3
pθ

+
1

tan2 θ
pφ∂

2
pθ
∂pφ −

1

2
pθ∂pθ∂

2
pφ
− 1

3
pφ∂

3
pφ

+
1

r2
pφ∂

2
r∂pφ −

1

2
r∂r∂

2
pθ
− 1

2
r sin2 θ∂r∂

2
pφ

+
1

r
∂θ∂pr∂pθ −

1

2
sin θ cos θ∂θ∂

2
pφ

+
1

r
∂φ∂pr∂pφ +

1

tan θ
∂φ∂pθ∂pφ

)
+ o(~4). (4.3.89)

The Hamilton function (4.3.86) in the spherical polar coordinates takes a form

H(r, θ, φ, pr, pθ, pφ) =
1

2m

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)
− 1

4πε0

e2

r
, (4.3.90)

and the action of the morphism S on the transformed Hamilton function (4.3.90)
results in the following function

(S−1H)(r, θ, φ, pr, pθ, pφ) =
1

2m

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)
− 1

4πε0

e2

r

− ~2

8mr2

(
1

sin2 θ
+ 1

)
. (4.3.91)
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Note the extra term in (4.3.91) dependent on ~. Thus, the quantum system in the
spherical polar coordinates can be described by the Hamiltonian (4.3.90) and the
star-product in the form (3.4.40), or equivalently by the Hamiltonian (4.3.91) and
the Moyal star-product.

In the operator representation in the spherical polar coordinates the Hilbert
space of states is equal L2(V, dµ), where V = (0,∞)×(0, π)×(0, 2π) and dµ(r, θ, φ) =
r2 sin θ dr dθ dφ, and the operators of position and momentum take a form

q̂r = r, q̂θ = θ, q̂φ = φ,

p̂r = −i~
(
∂r +

1

r

)
, p̂θ = −i~

(
∂θ +

1

2 tan θ

)
, p̂φ = −i~∂φ.

(4.3.92)

The Hamilton operator is calculated as an S-ordered Hamilton function (4.3.90) of
the operators of position and momentum (4.3.92), or equivalently as a symmetrically
ordered function (4.3.91) of these operators:

HS(q̂r, q̂θ, q̂φ, p̂r, p̂θ, p̂φ) = (S−1H)(q̂r, q̂θ, q̂φ, p̂r, p̂θ, p̂φ)

= − ~2

2m

[
∂2
r +

2

r
∂r +

1

r2

(
∂2
θ +

1

tan θ
∂θ +

1

sin2 θ
∂2
φ

)]
− 1

4πε0

e2

r
. (4.3.93)

Note, that the expression in square brackets is just the Laplace operator written in
spherical coordinates. A direct computation shows that the operators (4.3.88) and
(4.3.93) are unitarily equivalent, where a unitary operator giving this equivalence is
equal

ÛT : L2(R3)→ L2(V, dµ), (ÛTψ)(r, θ, φ) = ψ(r sin θ cosφ, r sin θ sinφ, r cos θ).
(4.3.94)

Note, that the property that the spherical polar coordinates are almost global is
crucial to get the unitarity of ÛT . Since the operators (4.3.88) and (4.3.93) are
unitarily equivalent they have the same spectra, and solving the eigenvalue problem
of one of these operators gives the solution for the other operator.
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Quantum trajectories

5.1 Preliminaries

We will consider the Moyal quantization of a classical Hamiltonian system (M,ω,H),
where a phase space M = R2N , symplectic form ω = dpi ∧ dqi, and Hamiltonian
H ∈ C∞(M) is an arbitrary real function.

The solution of quantum Hamiltonian equations

Q̇i(t) = [[Qi(t), H]], Ṗj(t) = [[Pj(t), H]], (5.1.1)

whereQi(q, p, 0) = qi and Pj(q, p, 0) = pj, i.e., the Heisenberg representation (3.2.25)
for observables of position and momentum, generates a quantum �ow Φt in phase
space according to an equation

Φt(q, p; ~) = (Q(q, p, t; ~), P (q, p, t; ~)). (5.1.2)

For every instance of time t the map Φt is a quantum canonical transformation
(quantum symplectomorphism) from the coordinates qi, pj to new coordinates q′i =
Qi(q, p, t; ~), p′j = Pj(q, p, t; ~). In other words Φt preserves the quantum Poisson

bracket: [[Qi(t), Pj(t)]] = δij (this can be easily seen from (5.1.8) and the fact that

[[Qi(0), Pj(0)]] = [[qi, pj]] = δij).
The �ow Φt, as every other quantum canonical transformation, can act on ob-

servables and states as a simple composition of maps. Such classical action can
also be used to transform the algebraic structure of the quantum Poisson algebra so
that the action will be an isomorphism of the initial algebra and its transformation.
A star-product ?t being the Moyal ?-product transformed by Φt is de�ned by the
formula

(f ? g) ◦ Φ−1
t = (f ◦ Φ−1

t ) ?t (g ◦ Φ−1
t ), f, g ∈ C∞(R2N)[[~]]. (5.1.3)

The ?t-product takes the form of the Moyal product but with derivatives ∂qi , ∂pi
replaced by some other derivations Dqi , Dpi of the algebra C

∞(R2N):

f ?t g = f exp

(
1

2
i~
←−
Dqi
−→
Dpi −

1

2
i~
←−
Dpi

−→
Dqi

)
g, (5.1.4)

where derivations Dqi , Dpi are transformations of the derivatives ∂qi , ∂pi :

(∂qif) ◦ Φ−1
t = Dqi(f ◦ Φ−1

t ), (∂pif) ◦ Φ−1
t = Dpi(f ◦ Φ−1

t ). (5.1.5)

77
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The crucial point of our construction is the observation that for quantum �ows the
?t-product is equivalent to the Moyal product (see Theorem 3.4.3 and Remark 3.4.1).
Strictly speaking, to a quantum �ow Φt there corresponds a unique isomorphism St
of the form (3.1.6) satisfying

St(f ? g) = Stf ?t Stg, (5.1.6a)

Stq
i = qi, Stpj = pj, (5.1.6b)

Stf̄ = Stf. (5.1.6c)

A formal solution of the time evolution equation (3.2.25) for an observable A ∈
C∞(R2N)[[~]] can be expressed by the formula

A(t) = e−t[[H, · ]]A(0) = e
i
~ tH
? ? A(0) ? e

− i
~ tH

? . (5.1.7)

In particular, the solution of (5.1.1) takes the form

Qi(t) = e−t[[H, · ]]Qi(0) = e
i
~ tH
? ? Qi(0) ? e

− i
~ tH

? , (5.1.8a)

Pj(t) = e−t[[H, · ]]Pj(0) = e
i
~ tH
? ? Pj(0) ? e

− i
~ tH

? , (5.1.8b)

which for a �xed initial condition Qi(q, p, 0) = qi and Pj(q, p, 0) = pj represents a
particular quantum trajectory.

A time evolution of an observable A ∈ C∞(R2N)[[~]] should be alternatively
expressed by an action of the quantum �ow Φt on A. The composition of Φt with
observables (the classical action of Φt on observables) does not result in a proper time
evolution of observables. Thus it is necessary to deform this classical action. We will
prove that a proper action of the quantum �ow Φt on functions from C∞(R2N)[[~]]
(a pull-back of Φt) is given by the formula

Φ∗tA = (StA) ◦ Φt, (5.1.9)

where St is an isomorphism associated to the quantum canonical transformation
Φ−1
t . Indeed, (5.1.9) can be proved �rst by noting that

Φ∗tQ
i(0) = (StQ

i(0)) ◦ Φt = Qi(0) ◦ Φt = Qi(t) = e−t[[H, · ]]Qi(0) (5.1.10)

and similarly
Φ∗tPj(0) = e−t[[H, · ]]Pj(0), (5.1.11)

where the fact that Stq
i = qi and Stpj = pj was used, which on the other hand was

a consequence of the quantum canonicity of Φt. Secondly, Φ∗t given by (5.1.9) is an
automorphism of AQ(R2N) as

Φ∗t (A ? B) = (St(A ? B)) ◦ Φt = (StA ?t StB) ◦ Φt = ((StA) ◦ Φt) ? ((StB) ◦ Φt)

= Φ∗tA ? Φ∗tB, (5.1.12)

where ?t denotes a star-product transformed by Φ−1
t . Thus

Φ∗t = e−t[[H, · ]] (5.1.13)
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holds true since every function in C∞(R2N)[[~]] can be expressed as a ?-power series.
In a complete analogy with classical theory one can de�ne a quantum Hamil-

tonian vector �eld by ζH = [[ · , H]]. Then (5.1.13) states that Φt is a �ow of the
quantum Hamiltonian vector �eld ζH . Also in an analogy with classical mechanics
{Φt} is a one-parameter group of quantum canonical transformations with respect
to a multiplication de�ned by

Φt1Φt2 = (St2Φt1) ◦ Φt2 , (5.1.14)

where St2Φt1 denotes a map R2N → R2N given by the formula

St2Φt1 = (St2Q
1(t1), . . . , St2PN(t1)), (5.1.15)

where Φt1 = (Q1(t1), . . . , QN(t1), P1(t1), . . . , PN(t1)). Multiplication de�ned in such
a way satis�es properties similar to their classical counterparts:

Φ0 = id, Φt1Φt2 = Φt1+t2 , (5.1.16)

proving that {Φt} is a group. Further on we will call it a quantum composition.
The quantum composition rule given by (5.1.14) is properly de�ned since it respects
the quantum pull-back of �ows:

(Φt1Φt2)
∗ = Φ∗t2 ◦ Φ∗t1 . (5.1.17)

Indeed, it is enough to show (5.1.17) for an arbitrary ?-monomial. For simplicity we
will present the proof for a two-dimensional case and for a ?-monomial q ? p. Using
the fact that Stq = q and Stp = p for every t, following from quantum canonicity of
the �ow Φt, one calculates that

(Φ∗t2 ◦ Φ∗t1)(q ? p) = Φ∗t2
(
(St1(q ? p)) ◦ Φt1

)
= Φ∗t2

(
(q ?t1 p) ◦ Φt1

)
= Φ∗t2

(
Q(t1) ? P (t1)

)
=
(
St2(Q(t1) ? P (t1))

)
◦ Φt2

=
(
St2Q(t1) ?t2 St2P (t1)

)
◦ Φt2 = (q ?t2,t1 p) ◦ St2Φt1 ◦ Φt2 ,

(5.1.18)

where ?t1 , ?t2 , denote Moyal products transformed, respectively, by transformations
Φ−1
t1
, Φ−1

t2
, and ?t2,t1 denotes the ?t2-product transformed by (St2Φt1)

−1. Now, from
the relation ST1◦T2 = ST1,T2ST1 valid for any quantum canonical transformations
T1, T2 de�ned on the whole phase space (ST1◦T2 is an isomorphism intertwining
star-products ? and ?T1◦T2 , ST1,T2 intertwines ?T1 with ?T1◦T2 , and ST1 intertwines
? with ?T1 , where ?T1 and ?T1◦T2 are Moyal products transformed, respectively, by
transformations T1 and T1 ◦ T2), one receives that

S(Φt1Φt2 )−1(q ? p) = SΦ−1
t2
,(St2Φt1 )−1St2(q ? p) = SΦ−1

t2
,(St2Φt1 )−1(q ?t2 p) = q ?t2,t1 p.

(5.1.19)
Hence

(Φ∗t2 ◦ Φ∗t1)(q ? p) = S(Φt1Φt2 )−1(q ? p) ◦ St2Φt1 ◦ Φt2 = (Φt1Φt2)
∗(q ? p). (5.1.20)

In the limit ~→ 0, (5.1.8) reduces to classical phase space trajectories

Qi(t) = e−t{H, · }Qi(0), Pj(t) = e−t{H, · }Pj(0),

Qi(q, p, 0) = qi, Pj(q, p, 0) = pj,
(5.1.21)
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which are formal solutions of classical Hamilton equations

Q̇i(t) = {Qi(t), H}, Ṗj(t) = {Pj(t), H}. (5.1.22)

In more explicit form classical trajectories are represented by a �ow (di�eomor-
phism)

Φt(x, p) = (Q(x, p, t), P (x, p, t)), (5.1.23)

which is an ~ → 0 limit of the quantum �ow (5.1.2). Di�eomorphism (5.1.23) is a
classical symplectomorphism. An action of the classical �ow Φt on functions from
AC(R2N) (a pull-back of Φt) is just a simple composition of functions with Φt, being
an ~→ 0 limit of (5.1.9)

Φ∗tA = A ◦ Φt. (5.1.24)

{Φt} forms a one-parameter group of canonical transformations, preserving a clas-
sical Poisson bracket: {Qi(t), Pj(t)} = δij, with a multiplication being an ordinary
composition of maps

Φt1Φt2 = Φt1 ◦ Φt2 , (5.1.25)

which is the ~→ 0 limit of (5.1.14).

5.2 Examples

5.2.1 Example 1: Harmonic oscillator

In this example we will consider quantum trajectories of the harmonic oscillator.
The Hamiltonian of the harmonic oscillator is given by the equation

H(q, p) =
1

2

(
p2 + ω2q2

)
. (5.2.1)

It happens that in such case the quantum trajectory coincides with the classical
one. Indeed, one can show that

Q(t) = e−t[[H, · ]]Q(0) = e−t{H, · }Q(0), (5.2.2a)

P (t) = e−t[[H, · ]]P (0) = e−t{H, · }P (0) (5.2.2b)

and in explicit form classical/quantum trajectory Φt = (Q(t), P (t)) of the harmonic
oscillator is

Q(q, p, t) = q cosωt+ ω−1p sinωt, (5.2.3a)

P (q, p, t) = p cosωt− ωq sinωt. (5.2.3b)

Observe that the classical action (composition) of Φt on the algebra of observ-
ables preserves the Moyal product, i.e.,

(f ? g) ◦ Φt = (f ◦ Φt) ? (g ◦ Φt), f, g ∈ C∞(R2N)[[~]]. (5.2.4)

Thus in accordance with (5.1.6) the unique isomorphism St associated with Φt is
equal St = id. This means that the action of the �ow Φt on observables (5.1.9) as
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well as the quantum composition rule (5.1.14) for the �ow is equal to the classical
composition. In other words the time evolution of observables is the same as in
classical case. The di�erence between the classical and quantum system is in the
admissible states which evolve along the �ow. In classical case states are probabilis-
tic distribution functions, whereas in quantum case states are quasi-probabilistic
distribution functions. In particular, classical pure states are Dirac distribution
functions, however, quantum pure states will no longer be of such form due to the
Heisenberg uncertainty principle.

5.2.2 Example 2

In this example let us consider a two particle system described by the Hamiltonian

H(q, p) =
p2

1

2m1

+
p2

2

2m2

+ kq1p2
2, (5.2.5)

where m1 and m2 are masses of particles and k is a coupling constant. The solution
of quantum Hamilton equations (5.1.1) reads [71]

Q1(t) = q1 +
1

m1

p1t−
k

2m1

p2
2t

2, (5.2.6a)

P1(t) = p1 − kp2
2t, (5.2.6b)

Q2(t) = q2 +

(
1

m2

p2 + 2kq1p2

)
t+

k

m1

p1p2t
2 − k2

3m1

p3
2t

3, (5.2.6c)

P2(t) = p2, (5.2.6d)

which coincides again with a solution of classical Hamilton equations. However, in
accordance with (5.1.3) the received quantum �ow Φt transforms the Moyal product
to the following product

f ?t g = f exp

(
1

2
i~
←−
Dqi
−→
Dpi −

1

2
i~
←−
Dpi

−→
Dqi

)
g, (5.2.7)

where

Dq1 = ∂q1 + 2ktp2∂q2 , (5.2.8a)

Dp1 = ∂p1 +
1

m1

t∂q1 +
k

m1

t2p2∂q2 , (5.2.8b)

Dq2 = ∂q2 , (5.2.8c)

Dp2 = ∂p2 − 2ktp2∂p1 −
k

m1

t2p2∂q1 +

(
1

m2

t+ 2ktq1 − k

m1

t2p1 −
k2

m1

t3p2
2

)
∂q2 .

(5.2.8d)

Moreover, the isomorphism St associated with Φt and intertwining the Moyal prod-
uct with the ?t-product takes the form

St = exp

(
1

8
~2 k

m1

t2∂q1∂
2
q2 +

1

4
~2kt∂p1∂

2
q2 +

1

12
~2 k

2

m1

t3p2∂
3
q2

)
. (5.2.9)
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Indeed, a direct calculations show that the relations (5.1.6) are satis�ed. More
details of the construction of St the reader can �nd in [42].

As in this case St2Φt1 = Φt1 , the group multiplication for {Φt} is just a com-
position of maps, as one could expect since Φt is simultaneously the classical and
quantum trajectory. However, the action of Φt on observables and states does not
reduce in general to a composition of maps (5.1.24). This shows that the time evo-
lution of quantum observables di�ers in general from the time evolution of classical
observables.

One can check by direct calculations that the action of the quantum �ow Φt on
an observable A, given by (5.1.9), indeed describes the quantum time evolution of
A. As an example let us take A(q, p) = q1q

2
2. Then

(StA)(q, p) = q1q
2
2 +

1

4
~2 k

m1

t2 (5.2.10)

and it can be checked that

A(t) = (StA) ◦ Φt = Q1(t)(Q2(t))2 +
1

4
~2 k

m1

t2 (5.2.11)

satis�es the time evolution equation (3.2.25).

5.2.3 Example 3

In this example we will consider a system described by a Hamiltonian

H(q, p) = q2p2. (5.2.12)

The solution of quantum Hamilton equations (5.1.1) reads [37]

Q(q, p, t; ~) = sec2(~t)q exp

(
2

~
tan(~t)qp

)
, (5.2.13a)

P (q, p, t; ~) = sec2(~t)p exp

(
−2

~
tan(~t)qp

)
, (5.2.13b)

for |t| < π
2~ . This solution is a deformation of a classical one given by the limit

~→ 0

QC(q, p, t) = qe2tqp, PC(q, p, t) = pe−2tqp. (5.2.14)

The induced quantum �ow Φt is an example of a �ow for which Φt, for every t ∈
(− π

2~ ,
π
2~) \ {0}, is not a classical symplectomorphism, since

{Q(t), P (t)} = sec4(~t) 6= 1. (5.2.15)

In accordance with (5.1.3) the quantum �ow Φt transforms the Moyal product
to the following product

f ?t g = f exp

(
1

2
i~
←−
Dq
−→
Dp −

1

2
i~
←−
Dp
−→
Dq

)
g, (5.2.16)
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where

Dq = sec2(~t)
(
1 + 2ta(~t)qp

)
exp
(
2ta(~t)qp

)
∂q

− 2t sec2(~t)a(~t)p2 exp
(
2ta(~t)qp

)
∂p, (5.2.17a)

Dp = 2t sec2(~t)a(~t)q2 exp
(
−2ta(~t)qp

)
∂q

+ sec2(~t)
(
1− 2ta(~t)qp

)
exp
(
−2ta(~t)qp

)
∂p, (5.2.17b)

and a(x) =
tan(x)

x sec4(x)
. Moreover, the isomorphism St associated with Φt and inter-

twining the Moyal product with the ?t-product, up to the second order in ~, takes
the form

St = id +~2

(
1

6
(3t2q3 + 4t3q4p)∂3

q +
1

6
(3t2p3 − 4t3qp4)∂3

p

+
1

2
(−tp− t2qp2 + 4t3q2p3)∂q∂

2
p +

1

2
(tq − t2q2p− 4t3q3p2)∂2

q∂p

+ (2t2q2 + 2t3q3p)∂2
q + (2t2p2 − 2t3qp3)∂2

p + (−2t2qp)∂q∂p

)
+ o(~4). (5.2.18)

Indeed, expanding relations (5.1.6) with respect to ~ one can prove that St in the
above form satis�es these relations up to o(~2).

From the fact that Φt is a purely quantum trajectory, we deal with the quantum
group multiplication (5.1.14) for {Φt} as well as the quantum action (5.1.9) of Φt

on observables and states. Indeed, expanding (5.2.13) with respect to ~:

Q(q, p, t; ~) = QC

(
1 + ~2

(
t2 +

2

3
t3qp

))
+ o(~4), (5.2.19a)

P (q, p, t; ~) = PC

(
1 + ~2

(
t2 − 2

3
t3qp

))
+ o(~4) (5.2.19b)

and applying isomorphism St (5.2.18), it can be calculated that the quantum com-
position law

Q(t1 + t2) = St2Q(t1) ◦ Φt2 = St1Q(t2) ◦ Φt1 , (5.2.20a)

P (t1 + t2) = St2P (t1) ◦ Φt2 = St1P (t2) ◦ Φt1 (5.2.20b)

holds up to o(~2). Note also, that the �ow Φt is not de�ned for all t ∈ R but only on
an interval (− π

2~ ,
π
2~), contrary to classical �ows which are always globally de�ned.

This is an interesting result showing that in general the quantum time evolution do
not have to be de�ned for all instances of time t.





Chapter 6

Summary

In the thesis was developed an invariant quantization procedure of classical Hamil-
tonian mechanics. The main results include:

• use of deformation approach to quantization for developing an invariant de-
scription of quantum mechanics,

• construction of the two-parameter family of star-products on a cotangent bun-
dle to a general Riemannian manifold, which reproduces most of the results
received by di�erent approaches to quantization found in the literature,

• construction of the operator representation of quantum mechanics for any
coordinates on the con�guration space and in a coordinate independent way,
this includes generalization of the concept of ordering of operators of position
and momentum,

• development of the theory of quantum trajectories on a phase space.

The presented theory is a promising starting point for a further development.
Especially interesting would be to create a quantum analog of classical theories
of integrable systems such as bi-Hamiltonian systems. The received geometrical
approach to quantum mechanics, which includes coordinate transformations and
quantum trajectories, gives a potential possibility of developing such theories. Some
preliminary results were received in our papers [79, 86].

Another interesting development of the presented formalism would be an incor-
poration of spin degrees of freedom. Some results in this direction can be found
in the literature [87, 88], where the authors use a Grassmann variant of classical
mechanics.

The received theory allowed for quantizing systems de�ned on curved spaces.
This can be used to introduce quantization of systems with constrains. Moreover, it
is possible to formulate a relativistic version of the theory, which together with the
possibility of quantizing systems on curved spaces allows for introducing quantum
mechanics coupled with a classical gravitational �eld [89].

The theory of quantum trajectories can be used to investigate quantum geometry
of a phase space. In particular, it might be possible to develop a version of non-
commutative geometry in which quantum mechanics could be described. Moreover,
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the phase space formalism of quantum theory may be adopted to describe a non-
commutative quantum mechanics in which a non-commutativity of observables of
position is introduced [90].

The presented formalism could also be used as a starting point in developing a
theory of quantum �elds in the language of deformation quantization [91].



Appendix

A Proof of Theorem 3.4.3

First let us endow C∞(M)[[~]] with a topology. The space C∞(M) can be considered
as a Fréchet space with a standard topology of uniform convergence on compact
subsets in all derivatives. The space of formal power series C∞(M)[[~]] can be treated
as the Cartesian product of countable family of copies of the spaces C∞(M), i.e.

formal series
∞∑
k=0

~kfk can be identi�ed with sequences (f0, f1, f2, . . . ). We can hence

endow the space C∞(M)[[~]] with the product topology.
We will prove Theorem 3.4.3 by directly constructing the morphism S. The

proof will constitute with a series of lemmas.

Lemma A.1. Equations (3.4.25) are equivalent with the following equations

S(xα ?
(x)
M f) = xα ?(x) Sf, (A.1a)

Sxα = xα, (A.1b)

Sf = Sf̄ . (A.1c)

Proof. Indeed, if the conditions (3.4.25) are ful�lled then trivially the conditions
(A.1) are ful�lled. Assume now, that the conditions (A.1) are ful�lled. From (A.1)

it follows that (3.4.25a) will be satis�ed for every f in the form of a ?
(x)
M -polynomial.

For example when f = xα ?
(x)
M xβ then

S(f ?
(x)
M g) = S(xα ?

(x)
M xβ ?

(x)
M g) = xα ?(x) S(xβ ?

(x)
M g) = xα ?(x) xβ ?(x) Sg

= Sxα ?(x) Sxβ ?(x) Sg = S(xα ?
(x)
M xβ) ?(x) Sg = Sf ?(x) Sg. (A.2)

Every polynomial with coe�cients from C[[~]] can be written as a ?
(x)
M -polynomial.

Since the space of polynomials is a dense subspace of C∞(M) the space of polyno-
mials with coe�cients from C[[~]] is dense in C∞(M)[[~]]. The morphism S as well as

?
(x)
M and ?(x)-products are continuous as formal series of di�erential operators, hence
(3.4.25a) will be satis�ed for every f ∈ C∞(M)[[~]].

The operator xα ?
(x)
M takes the form

xα ?
(x)
M = xα +

1

2
i~∂α, (A.3)
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and the operator xα ?(x) can be written in the form

xα ?(x) = xα +
1

2
i~∂α +

∞∑
k=2

(
i~
2

)k
Aαk , (A.4)

where ∂α = J αβ∂xβ and Aαkf = Ck(x
α, f).

Lemma A.2. Let S =
∞∑
k=0

~kSk, where S0 = id. Then S will satisfy (A.1) i�

[S2k, x
α] =

k∑
l=1

(
−1

4

)l
Aα2lS2(k−l), (A.5a)

[S2k, ∂
α] =

k∑
l=1

(
−1

4

)l
Aα2l+1S2(k−l), (A.5b)

and S2k−1 = 0 for k = 1, 2, . . . .

Proof. Equation (A.1a) takes the form

∞∑
k=0

~kSkxα +
∞∑
k=0

1

2
i~k+1Sk∂

α =
∞∑
k=0

~kxαSk +
∞∑
k=0

1

2
i~k+1∂αSk

+
∞∑
k=0

∞∑
l=2

(
i

2

)l
~k+lAαl Sk. (A.6)

Regrouping terms with even and odd k and l in the last term in the above equation
we get

∞∑
k=0

~k[Sk, xα] +
1

2
i
∞∑
k=0

~k+1[Sk, ∂
α] =

∞∑
n=0

∞∑
l=1

~2n+2l

(
−1

4

)l
Aα2lS2n

+
∞∑
n=0

∞∑
l=1

~2n+2l+1

(
−1

4

)l
Aα2lS2n+1 +

1

2
i
∞∑
n=0

∞∑
l=1

~2n+2l+1

(
−1

4

)l
Aα2l+1S2n

+
1

2
i

∞∑
n=0

∞∑
l=1

~2n+2l+2

(
−1

4

)l
Aα2l+1S2n+1. (A.7)

Regrouping terms with even and odd k in the left hand side of the above formula
and replacing the summation over n and l by a summation over k = n+ l and l we
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receive

∞∑
k=0

~2k[S2k, x
α] +

∞∑
k=0

~2k+1[S2k+1, x
α] +

1

2
i
∞∑
k=0

~2k+1[S2k, ∂
α] +

+
1

2
i
∞∑
k=0

~2k+2[S2k+1, ∂
α] =

∞∑
k=1

~2k

k∑
l=1

(
−1

4

)l
Aα2lS2(k−l)

+
∞∑
k=1

~2k+1

k∑
l=1

(
−1

4

)l
Aα2lS2(k−l)+1 +

1

2
i
∞∑
k=1

~2k+1

k∑
l=1

(
−1

4

)l
Aα2l+1S2(k−l)

+
1

2
i

∞∑
k=1

~2k+2

k∑
l=1

(
−1

4

)l
Aα2l+1S2(k−l)+1. (A.8)

Comparing terms with the same order in ~ and using (A.1c) we get the following
recursive equations for Sk

[S2k, x
α] =

k∑
l=1

(
−1

4

)l
Aα2lS2(k−l), (A.9a)

[S2k, ∂
α] =

k∑
l=1

(
−1

4

)l
Aα2l+1S2(k−l), (A.9b)

and

[S1, x
α] = 0, (A.10a)

[S1, ∂
α] = 0 (A.10b)

[S2k+1, x
α] =

k∑
l=1

(
−1

4

)l
Aα2lS2(k−l)+1, (A.10c)

[S2k+1, ∂
α] =

k∑
l=1

(
−1

4

)l
Aα2l+1S2(k−l)+1, (A.10d)

for k = 1, 2, . . . . From (A.10a) and (A.10b) we get that S1 = const, and by virtue
of (A.1b) this implies that S1 = 0. Thus, from (A.10c) and (A.10d), we get that
S2k+1 = 0, k = 1, 2, . . . .

To prove Theorem 3.4.3 we have to prove that (A.5) have a solution. Before
doing this let us prove the following lemmas.

Lemma A.3. A system of equations

[B, xα] = Fα, α = 1, 2, . . . , 2N, (A.11a)

[B, ∂α] = Gα, α = 1, 2, . . . , 2N, (A.11b)
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where Fα =
∑
n≥0

fαµ1...µn(x)∂µ1 · · · ∂µn and Gα =
∑
n≥0

gαµ1...µn(x)∂µ1 · · · ∂µn are some

di�erential operators, have a solution B i�

[Fα, xβ] = [F β, xα], (A.12a)

[Fα, ∂β] = [Gβ, xα], (A.12b)

[Gα, ∂β] = [Gβ, ∂α] (A.12c)

for all α, β = 1, 2, . . . , 2N .

Proof. First let us assume that (A.11) have a solution. From Jacobi's identity we
have that

[[B, xα], ∂β] + [[xα, ∂β], B] + [[∂β, B], xα] = 0, (A.13)

from which follows that
[[B, xα], ∂β] = [[B, ∂β], xα]. (A.14)

Using (A.11) from this we receive (A.12b). Equations (A.12a) and (A.12c) can be
received analogically.

Now, let us assume that (A.12a) is satis�ed. From the form of Fα it can be
easily seen that (A.11a) for α = 1 have a solution. Assume that for some γ ≥ 1
(A.11a) have a solution for all α ≤ γ. This solution is not unique but there exists
a family of solutions such that if B and B′ are solutions of (A.11a) for all α ≤ γ
then there exists an operator H(γ) such that B′ = B + H(γ) and [H(γ), xα] = 0 for
all α = 1, 2, . . . , γ. From (A.12a) and (A.11a) we have that

[[B, xα], xγ+1] = [F γ+1, xα], α = 1, 2, . . . , γ. (A.15)

Using Jacobi's identity the above equation takes the form

[[B, xγ+1], xα] = [F γ+1, xα], α = 1, 2, . . . , γ. (A.16)

From this follows that

[B, xγ+1] = F γ+1 +H(γ), α = 1, 2, . . . , γ (A.17)

for some operator H(γ) such that [H(γ), xα] = 0 for all α = 1, 2, . . . , γ. From the
freedom of the solution B there exists B for which H(γ) = 0. Hence for all α ≤ γ+1
(A.11a) have a solution. Thus we inductively proved that (A.11a) have a solution
for all α = 1, 2, . . . , 2N .

Now, let us assume that (A.12) is satis�ed. As was shown above (A.11a) have
a solution. This solution is not unique but there exists a family of solutions such
that if B and B′ are solutions of (A.11a) then there exists an operator H such that
B′ = B +H and [H, xα] = 0 for all α = 1, 2, . . . , 2N . From (A.12b) and (A.11a) we
have that

[[B, xα], ∂1] = [G1, xα], α = 1, 2, . . . , 2N. (A.18)

Using Jacobi's identity the above equation takes the form

[[B, ∂1], xα] = [G1, xα], α = 1, 2, . . . , 2N. (A.19)
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From this follows that

[B, ∂1] = G1 +H(1), (A.20)

for some operator H(1) such that [H(1), xα] = 0 for all α = 1, 2, . . . , 2N . From the
freedom of the solution B there exists B for which H(1) = 0. Hence we have shown
that there exists a solution to the system of equations

[B, xα] = Fα, α = 1, 2, . . . , 2N, (A.21a)

[B, ∂1] = G1. (A.21b)

This solution is speci�ed up to an operator H such that [H, xα] = 0 for all α =
1, 2, . . . , 2N and [H, ∂1] = 0. Assume now that for γ ≥ 1 there exists a solution B
to the system of equations

[B, xα] = Fα, α = 1, 2, . . . , 2N, (A.22a)

[B, ∂β] = Gβ, β = 1, 2, . . . , γ, (A.22b)

speci�ed up to an operator H such that [H, xα] = 0 (α = 1, 2, . . . , 2N) and [H, ∂β] =
0 (β = 1, 2, . . . , γ). From (A.12b) and (A.11a) we have that

[[B, xα], ∂γ+1] = [Gγ+1, xα], α = 1, 2, . . . , 2N. (A.23)

Using Jacobi's identity the above equation takes the form

[[B, ∂γ+1], xα] = [Gγ+1, xα], α = 1, 2, . . . , 2N. (A.24)

From this follows that

[B, ∂γ+1] = Gγ+1 +H(γ), (A.25)

for some operator H(γ) such that [H(γ), xα] = 0 for all α = 1, 2, . . . , 2N . Moreover,
H(γ) satis�es: [H(γ), ∂β] = 0 for all β = 1, 2, . . . , γ. Indeed,

[[B, ∂γ+1], ∂β] = [Gγ+1, ∂β] + [H(γ), ∂β], β = 1, 2, . . . , γ, (A.26)

from which follows, by virtue of Jacobi's identity and (A.12c), that

[[B, ∂β], ∂γ+1] = [Gβ, ∂γ+1] + [H(γ), ∂β], β = 1, 2, . . . , γ. (A.27)

Since B satis�es (A.22b) we receive that

[H(γ), ∂β] = 0, β = 1, 2, . . . , γ. (A.28)

From the freedom of the solution B there exists B for which H(γ) = 0. Hence
(A.22) have a solution for β ≤ γ + 1. Thus we inductively proved that (A.11) have
a solution for all α = 1, 2, . . . , 2N .

From Lemma A.3 we get:
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Lemma A.4. The system of equations (A.5) for k = 1, 2, . . . have a solution i�

k∑
l=0

[Aα2l, A
β
2(k−l)] = 0, (A.29a)

k∑
l=0

[Aα2l+1, A
β
2(k−l)] = 0, (A.29b)

k∑
l=0

[Aα2l+1, A
β
2(k−l)+1] = 0, (A.29c)

for all α, β = 1, 2, . . . , 2N .

Proof. We will prove the lemma by induction. Directly from Lemma A.3 follows
that for k = 1 the assumption of the lemma is true. Assume that for k = 1, 2, . . . , K
where K ≥ 1 the assumption of the lemma holds. From Lemma A.3 the system of
equations (A.5) for k = K + 1 have a solution i�[

K+1∑
l=1

(
−1

4

)l
Aα2lS2(K+1−l), A

β
0

]
=

[
K+1∑
l=1

(
−1

4

)l
Aβ2lS2(K+1−l), A

α
0

]
, (A.30a)[

K+1∑
l=1

(
−1

4

)l
Aα2lS2(K+1−l), A

β
1

]
=

[
K+1∑
l=1

(
−1

4

)l
Aβ2l+1S2(K+1−l), A

α
0

]
, (A.30b)[

K+1∑
l=1

(
−1

4

)l
Aα2l+1S2(K+1−l), A

β
1

]
=

[
K+1∑
l=1

(
−1

4

)l
Aβ2l+1S2(K+1−l), A

α
1

]
. (A.30c)

Equation (A.30a), by virtue of the Leibniz's rule, is equivalent with the following
equation

K+1∑
l=1

(
−1

4

)l
[Aα2l, A

β
0 ]S2(K+1−l) +

K+1∑
l=1

(
−1

4

)l
Aα2l[S2(K+1−l), A

β
0 ] =

=
K+1∑
l=1

(
−1

4

)l
[Aβ2l, A

α
0 ]S2(K+1−l) +

K+1∑
l=1

(
−1

4

)l
Aβ2l[S2(K+1−l), A

α
0 ]. (A.31)

Using (A.5a) we have that

K+1∑
l=1

(
−1

4

)l
Aα2l[S2(K+1−l), A

β
0 ] =

K∑
l=1

K+1−l∑
r=1

(
−1

4

)l+r
Aα2lA

β
2rS2(K+1−l−r)

=
K+1∑
n=2

n−1∑
r=1

(
−1

4

)n
Aα2(n−r)A

β
2rS2(K+1−n). (A.32)

Using (A.32) and (A.29a) for k = 1, (A.31) can be rewritten in the form

K+1∑
l=2

(
−1

4

)l(
[Aβ0 , A

α
2l] +

l−1∑
r=1

[Aβ2r, A
α
2(l−r)] + [Aβ2l, A

α
0 ]

)
S2(K+1−l) = 0, (A.33)
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which in turn can be written as

K+1∑
l=2

(
−1

4

)l l∑
r=0

[Aβ2r, A
α
2(l−r)]S2(K+1−l) = 0. (A.34)

Using the inductive assumption the above equation reduces to

K+1∑
r=0

[Aβ2r, A
α
2(K+1−r)] = 0, (A.35)

which proves that (A.30a) is equivalent with (A.29a) for k = K + 1. Analogically
we prove that (A.30b) and (A.30c) are equivalent with (A.29b) and (A.29c). This
ends the induction.

Now we are ready to prove Theorem 3.4.3.

Proof of Theorem 3.4.3. We have to show that the system of equations (A.5) have
a solution. From Lemma A.4 it is enough to show that (A.29) holds. From (3.1.5)
we get

2k∑
l=0

Aαl (Aβ2k−lf) =
2k∑
l=0

Cl(x
α, C2k−l(x

β, f)) =
2k∑
l=0

Cl(C2k−l(x
α, xβ), f)

=
k∑
l=0

C2l(C2(k−l)(x
α, xβ), f) +

k−1∑
l=0

C2l+1(C2(k−l)−1(xα, xβ), f).

(A.36)

The second term in the last equality in (A.36) vanishes because of the classical and
quantum canonicity condition (Theorem 3.3.1). Hence, with the use of property (i)
on page 22 equation (A.36) reduces to

2k∑
l=0

Aαl (Aβ2k−lf) =
k∑
l=0

C2l(C2(k−l)(x
α, xβ), f) =

k∑
l=0

C2(k−l)(C2l(x
β, xα), f)

=
2k∑
l=0

Aβ2k−l(A
α
l f). (A.37)

Thus we get that
2k∑
l=0

[Aαl , A
β
2k−l] = 0. (A.38)

Analogically we get that
2k+1∑
l=0

[Aαl , A
β
2k−l+1] = 0. (A.39)

On the other hand from (3.1.5) we have that

k∑
l=0

Cl(Ck−l(x
β, f), xα) =

k∑
l=0

Cl(x
β, Ck−l(f, x

α)), (A.40)



94 APPENDIX

which can be rewritten in the form
k∑
l=0

(−1)lAαl (Aβk−lf) =
k∑
l=0

(−1)k−lAβl (Aαk−lf) =
k∑
l=0

(−1)lAβk−l(A
α
l f). (A.41)

Thus we get that

2k∑
l=0

(−1)l[Aαl , A
β
2k−l] = 0, (A.42a)

2k+1∑
l=0

(−1)l[Aαl , A
β
2k−l+1] = 0. (A.42b)

By adding (A.38) to (A.42a) we receive (A.29a) and by subtracting them we get
(A.29c). By adding or subtracting (A.39) to (A.42b) we receive (A.29b).

B Proof of Theorem 3.4.4

From (3.4.61) and (3.4.64a) we get that

Aα2 = −1

2
ωµ1ν1ωµ2ν2Γ̃αµ1µ2(∂ν1∂ν2 − Γ̃βν1ν2∂β)

= −1

2
Γ̃αµ1µ2∂

µ1∂µ2 − 1

2
ωµ1αΓ̃ν1µ1µ2Γ̃

µ2
ν1ν2

∂ν2 . (B.1)

On the other hand

[S2, x
α] = − 1

24
ωδαΓ̃δβγ∂

β∂γ − 1

24
ωβαΓ̃δβγ∂

δ∂γ − 1

24
ωγαΓ̃δβγ∂

δ∂β

+
1

16
ωγαΓ̃µνγΓ̃

ν
µβ∂

β +
1

16
ωβαΓ̃µνγΓ̃

ν
µβ∂

γ

=
1

8
Γ̃αβγ∂

β∂γ +
1

8
ωγαΓ̃µνγΓ̃

ν
µβ∂

β, (B.2)

which proves (3.4.60a). From (3.4.61) we can calculate that

Aα3 =
1

6
ωµ1ν1ωµ2ν2ωµ3ν3(∇̃∇̃∇̃xα)µ1µ2µ3

(
∂ν1∂ν2∂ν3 − Γ̃βν1ν2∂ν3∂β − Γ̃βν3ν1∂ν2∂β

− Γ̃βν2ν3∂ν1∂β + (∇̃∇̃∇̃xβ)ν1ν2ν3∂β

)
. (B.3)

The above equation can be rewritten in a di�erent form. To do this �rst let us prove
that

ωµ1ν1(∇̃∇̃∇̃xα)µ1µ2µ3 = ωαµ1Γ̃ν1µ2µ3,µ1 + ωαµ1R̃ν1
µ2µ3µ1

, (B.4a)

ωµ2ν2(∇̃∇̃∇̃xα)µ1µ2µ3 = ωαµ2Γ̃ν2µ1µ3,µ2 + ωαµ2R̃ν2
µ1µ3µ2

. (B.4b)

Indeed, with the help of (3.4.64) we can calculate that

ωµ1ν1(∇̃∇̃∇̃xα)µ1µ2µ3 = ωµ1ν1(−Γ̃αµ2µ1,µ3 + Γ̃βµ1µ3Γ̃
α
βµ2

+ Γ̃βµ2µ3Γ̃
α
βµ1

)

= ωµ1α(−Γ̃ν1µ2µ1,µ3 + Γ̃βµ2µ3Γ̃
ν1
βµ1

) + ωµ1βΓ̃ν1µ1µ3Γ̃
α
βµ2

= ωµ1α(Rν1
µ2µ1µ3

− Γ̃ν1µ2µ1,µ3 + Γ̃βµ2µ3Γ̃
ν1
βµ1

) + ωµ1βΓ̃ν1µ1µ3Γ̃
α
βµ2
,

(B.5)
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and that

ωµ1βΓ̃ν1µ1µ3Γ̃
α
βµ2

= ωµ1βδαγ Γ̃ν1µ1µ3Γ̃
γ
βµ2

= ωµ1βωαδωδγΓ̃
ν1
µ1µ3

Γ̃γβµ2 = ωµ1βωαδωβγΓ̃
ν1
µ1µ3

Γ̃γδµ2

= δµ1γ ω
αδΓ̃ν1µ1µ3Γ̃

γ
δµ2

= −ωδαΓ̃ν1µ1µ3Γ̃
µ1
δµ2
, (B.6)

from which follows (B.4a). (B.4b) can be proved analogically. Hence using (3.4.64a),
(B.4) and the condition

ωµ1ν1 · · ·ωµkνk(∇̃ · · · ∇̃xα)µ1...µk(∇̃ · · · ∇̃xβ)ν1...νk = 0, k = 3, 5, . . . (B.7)

following from the quantum canonicity condition (3.3.5b) of the coordinate system
(x1, . . . , x2N) we get

Aα3 =
1

6
ωαµ1

(
Γ̃ν1µ2µ3,µ1 + R̃ν1

µ2µ3µ1

)
∂ν1∂

µ2∂µ3

+
1

2
ωαµ1

(
Γ̃ν1µ2µ3,µ1 +

1

3
R̃ν1
µ2µ3µ1

+
2

3
R̃ν1
µ3µ2µ1

)
Γ̃µ2ν1ν2∂

µ3∂ν2 . (B.8)

On the other hand

[S2, ∂
α] = − 1

24
ωαδΓ̃λβγ,δ∂λ∂

β∂γ − 1

8
ωαδΓ̃νµβ,δΓ̃

µ
νλ∂

λ∂β, (B.9)

which shows that S2 in the form (3.4.62) will satisfy (3.4.60b) since from the �atness
assumption R̃α

βγδ = 0.
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O±wiadczenie

Ja, ni»ej podpisany

Ziemowit Doma«ski,
doktorant w Zakªadzie Fizyki Matematycznej Wydziaªu Fizyki

Uniwersytetu im. Adama Mickiewicza w Poznaniu

o±wiadczam, »e przedkªadan¡ rozpraw¦ doktorsk¡ pt:

Admissible invariant canonical quantizations of classical mechanics

napisaªem samodzielnie. Oznacza to, »e przy pisaniu rozprawy, poza niezb¦dnymi
konsultacjami, nie korzystaªem z pomocy innych osób, a w szczególno±ci nie zleca-
ªem opracowania rozprawy lub jej cz¦±ci innym osobom, ani nie odpisywaªem tej
rozprawy lub jej cz¦±ci od innych osób.

O±wiadczam równie», »e egzemplarz rozprawy doktorskiej w formie wydruku
komputerowego jest zgodny z egzemplarzem rozprawy doktorskiej w formie elektro-
nicznej.

Jednocze±nie przyjmuj¦ do wiadomo±ci, »e gdyby powy»sze o±wiadczenie okazaªo
si¦ nieprawdziwe, decyzja o nadaniu mi stopnia naukowego doktora zostanie cofni¦ta.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pozna«, dnia 15 grudnia 2014
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