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ABSTRACT 

Estimates of the time-varying standard deviation of the surface EMG signal (EMGσ) 

are extensively used in the field of EMG-torque estimation. The use of a whitening 

filter can substantially improve the accuracy of EMGσ estimation by removing the 

signal correlation and increasing the statistical bandwidth. However, a subject-specific 

whitening filter which is calibrated to each subject, is quite complex and inconvenient. 

To solve this problem, we first calibrated a 60th-order “Universal” FIR whitening filter 

by using the ensemble mean of the inverse of the square root of the power spectral 

density (PSD) of the noise-free EMG signal. Pre-existing data from elbow contraction 

of 64 subjects, providing 512 recording trials were used. The test error on an EMG-

torque task based on the “Universal” FIR whitening filter had a mean error of 4.80% 

maximum voluntary contraction (MVC) with a standard deviation of 2.03% MVC. 

Meanwhile the subject-specific whitening filter had performance of 4.84±1.98% MVC 

(both have a whitening band limit at 600 Hz). These two methods had no statistical 

difference. 

Furthermore, a 2nd-order IIR whitening filter was designed based on the magnitude 

response of the “Universal” FIR whitening filter, via the differential evolution 

algorithm. The performance of this IIR whitening filter was very similar to the FIR 

filter, with a performance of 4.81±2.12% MVC. A statistical test showed that these two 

methods had no significant difference either.  

Additionally, a complete theory of EMG in additive measured noise contraction 

modeling is described. Results show that subtracting the variance of whitened noise by 

computing the root difference of the square (RDS) is the correct way to remove noise 

from the EMG signal. 
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CHAPTER 1 – INTRODUCTION AND BACKGROUND 

For this part, a contribution part will briefly introduce the whole teamwork research 

project and my work in this project. The background and goal of this thesis is introduced. 

Also, some biomedical knowledge related to this thesis is mentioned, some signal 

processing techniques is introduced. The method for data collection is shown. And then, 

the final section summarizes my MS work and briefly introduce the main content of 

following chapters. 

 

I. EMG BASICS 

Structure of Muscle and Motor Unit  

There are two basic kinds of human muscle fibers, slow twitch fibers (Type 1) and fast 

twitch fibers (Type 2). Slow twitch fibers can generate low level force for a long period 

without fatigue; fast twitch fibers are capable of generating quicker, more powerful 

contraction, but this kind of contraction cannot last a long period and people can easily 

fatigue. Different kinds of movements can be achieved by using these two kinds of 

muscle fibers together. Figure 1 shows the structure of skeletal muscle. The muscle 

structure always includes parallel muscle fascicles. These fascicles are a collection of 

parallel muscle fibers which are innervated by attached neurons. Figure 2 shows the 

structure of one muscle unit which is formed by one motor nerve and all innervated 

muscle fibers. All muscle fibers in the same motor unit have the same type. When 

contraction happens, all innervated muscle fibers in one motor unit subsequently 

contract, this is called “all or nothing” rule. A group of motor units build up one muscle, 

these motor units work together to coordinate different kinds of contractions.  
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Fig. 1: The structure of skeletal muscle [1] 

 

Fig. 2: The structure of muscle unit [2] 

 

Muscle Electrical Activity and Its Engineering Model  

Muscle fibers are electro-chemically activated by motor neurons when the central nerve 

system sends commands to motor neurons. Fibers will depolarize once they are 

activated, and the fibers will repolarize to a rest state after depolarization. This whole 

electrical process generates an electromagnetic field.  

The electromagnetic field can be recorded within muscle (indwelling EMG) or on the 

skin surface (surface EMG). Indwelling EMG requires electrical needles/wires 

penetrating human skin; surface EMG is a non-invasive method to collect EMG signals. 
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Figure 3 shows the whole process of depolarization-repolarization in one motor unit. 

When muscle fibers are at rest state, the rest potential is around –70 mV, which is based 

on the concentration of ions in body cells and fluid. When muscle fibers are activated 

and depolarize, the action potential peaks go up to around +30 mV. The duration of one 

action potential is usually 2 –4 ms or longer. Different motor units usually have different 

potential shapes with different action potentials. Different number of motor units are 

required when different movements are performed. Firing rate is the frequency of motor 

unit to discharge. When a motion with more force is performed, more activated motor 

units are required, and the firing rate of each motor unit will increase. The process of 

activating more motor units is called the recruitment of motor units. The force level is 

measured by percent maximum voluntary contraction (%MVC) level. Usually, the 

firing rate is about 5 –10 pulses per second when initially recruited and can be up to 

20+ pulses per second at the highest force levels 

 

Fig. 3: Electrical activity of a motor unit [3] 
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Fig. 4: Schematic representation of the generation of the motor unit action potential [4]  

 

Fig. 5: Schematic for the motor unit action potential train [4] 
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Fig. 6: Complete engineering model of motor unit action potential [4] 

Figure 5 shows that one motor unit always generates a very similar shape; this shape 

may vary because of muscle fatigue or disease. For different contraction force levels, 

different number of motor units will discharge and activate at the same time. Figure 4 

shows this case as the superposition of potentials from individual fibers.  

Nerve commands a series of stimuli which can be treated as an impulse train to the 

innervated muscle fibers, the output can be treated as an impulse response train. The 

EMG recording is the summation of all the impulse response trains when motor units 

discharge at the same time. So, the EMG recording looks like a random Gaussian 

process. Figure 6 shows the total engineering model. 

Basic EMG Signal Processing Methods  

Raw EMG signal contains lots of noise and interference. As mention before, the EMG 

signal is the summation of multiple impulse response trains and can be regarded as an 
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amplitude modulated, zero-mean, random Gaussian process 

𝑚[𝑛] = 𝑠[𝑛] ∙ 𝑣[𝑛]          (1), 

where n is the discrete time sample index, 𝑚[𝑛] is raw EMG signal, 𝑠[𝑛] is the EMG 

standard deviation (EMGσ) and 𝑣[𝑛] is a random process with unit variance. EMGσ 

is the useful information which can be used to estimate force. Studies have been 

developed to improve the estimation of EMGσ [6, 7 , 8, 9] Figure 7 shows EMGσ from 

raw EMG signal. 

 

Fig. 7: Diagram of EMG amplitude estimation [5] 

There are two basic EMG estimators: moving average root mean square (MARMS) 

processor and moving average mean absolute value (MAMAV) processor, 

MARMS processor: 

�̂�𝑅𝑀𝑆 = √
1

𝐿
∙ ∑ 𝑚2[𝑘]𝑛

𝑘=𝑛−𝐿+1     (2) 

MAMAV processor: 

�̂�𝑀𝐴𝑉 = 
1

𝐿
∙ ∑ |𝑚[𝑘]|𝑛

𝑘=𝑛−𝐿+1       (3) 

where L is the window length. 

These two estimators can be thought of as the cascade of a non-linear detector, a 

smoother (low-pass filter) and a linearizer (return signal to proper units). Figure 8 

shows this cascade. 
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Fig. 8: EMG estimator cascade 

The detector and linearizer can be replaced by a rectifier if d = 1. 

For a single site EMG signal, there are several techniques that can help improve the 

estimation of EMGσ [6, 7]. A 2nd-order notch filter at 60 Hz and its harmonics is applied 

to remove the powerline interference. A 4th-order highpass filter with cutoff frequency 

at 15 Hz is applied prior to RMS or MAV estimator to attenuate motion artifact; a higher 

cutoff frequency may lead to loss of EMG signal. Since EMG signal is highly correlated, 

a whitening filter is applied to remove the correlation and increase the statistical 

bandwidth. The original subject-specific whitening filter includes two stages [6] : a 

fixed whitening shape and an adaptive noise canceler. This thesis will mainly focus on 

improving and simplifying this original whitening filter to make it easier to implement. 

Figure 9 shows the complete process of single site EMG processing. 

 

Fig. 9: Single site EMG signal processing 
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Studies on multiple channel EMG signal [5, 10, 11, 12] show that by combining EMG 

signal recorded by different electrodes placed adjacent to each other, the performance 

of EMGσ estimation can be significantly improved. A normalization process is needed 

to eliminate the gain difference between channels. Figure 10 shows the complete 

process of multi-channel EMG processing. 

 

Fig. 10: Six stages multi-channel EMG processor [8] 

 

II. INTRODUCTION OF REMAINING CHAPTERS 

The remaining chapters will include all of my MS work in detail in the form of 

published, submitted journal or conference manuscripts and also description of work 

that is not mentioned in the manuscripts which will be presented in a traditional thesis 

formation.  

Chapters 2 and 3 introduce “Universal” whitening filter. In Chapter 2, the “Universal” 

FIR whitening filter is briefly introduced. This chapter was published as a conference 

paper. Chapter 3 describes the “Universal” IIR filter. This chapter is presented in 

traditional thesis formation. A differential evolution method will be introduced to 

calibrate this IIR whitening filter. 

Chapter 4 and appendix I is about EMG noise signal modeling and root difference of 

squares (RDS) computation to subtract noise. Chapter 4 was submitted as a journal 
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paper. Appendix I shows the details that are not covered in Chapter 4 including some 

results and analysis. 

Appendix II shows the detail of data used in this thesis including all the subject numbers, 

trial numbers, replaced trial numbers and substituted trial numbers.  
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CHAPTER 2 – SIMPLIFIED IMPLEMENTATION OF 

OPTIMIZED WHITENING OF THE ELECTROMYOGRAM 

SIGNAL 

 

This chapter has been published in 2019 Northeast Bioengineering Conference as He 

Wang, Kiriaki J. Rajotte, Haopeng Wang, Chenyun Dai, Ziling Zhu, Moinuddin 

Bhuiyan, Edward A. Clancy, “Simplified Implementation of Optimized Whitening of 

the Electromyogram Signal.” 

 

Introduction: The surface electromyogram (EMG) signal is well modeled as an 

amplitude modulated, correlated random process. The amplitude modulation, defined 

as the time-varying standard deviation (EMGσ) of the signal, is used in various 

applications as a measure of muscle effort, e.g., EMG-force models, prosthesis 

control, clinical biomechanics and ergonomics assessment. EMGσ can be estimated 

by rectifying the EMG and then lowpass filtering (cutoff ~1 Hz). However, it has long 

been known that the correlated nature of EMG reduces the statistical efficiency of the 

EMGσ estimate, producing a large variance. 

To combat this problem, a whitening filter can be used prior to the rectifier. Whitening 

removes signal correlation—while preserving signal standard deviation—producing a 

substantially improved EMGσ. The advantages of whitening filters have been known 

since at least 1974 [3]—yet, few researchers use them. A key limitation to widespread 

use is that most whiteners are “calibrated” to each subject, making them cumbersome 

to implement. 

Since EMG whitening filters have low gain at low frequencies and higher gain at high 

frequencies, Potvin [4] implemented simple whitening via a fixed, low-order, FIR, 

highpass filter that was not calibrated to individual subjects. This approach was not 

compared to the established technique of subject-specific whitening filters. 

Our work reported herein describes development of a simplified whitening technique 

that relies only on EMG magnitude normalization (a measure that is already common). 

We compare this technique to state-of the art subject-specific whitening. 
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Experimental Methods: Pre-existing data from 64 subjects [5] were used and did not 

require human studies supervision per the WPI IRB. Four electrodes over the biceps 

and four over the triceps muscles were acquired during three trials of 30-s duration, 

constant-posture, force-varying elbow contractions in which subjects followed a target 

displaying a 1 Hz bandlimited, uniform and random process, spanning 50% maximum 

voluntary contraction (MVC) flexion to 50% MVC extension. Using our existing 

subject-specific technique to form whitening filters for each electrode (calibrated from 

additional 5-s rest recordings and constant-effort 50% MVC trials, and limited to 600 

Hz in frequency [6,7]), we related EMGσ to force. This EMGσ-force model used each 

of the eight EMGσ values as inputs, a 15th-order dynamic FIR model per EMGσ, 

additionally included the squared value of each EMGσ at the 15 time lags (to model the 

EMG-force non-linearity), and was trained from two trials using least squares. The 

average ± std. dev. test error on the distinct third trials was 4.84±1.98% flexion MVC 

(%MVCF). This error served as our “baseline” performance. 

 

Fig. 1.  Two-stage adaptive whitening filter [6]. 

Analysis Methods and Results: Our whitening filters (Fig. 1) are comprised of a fixed 

whitening filter followed by an adaptive noise canceller (with variance preservation). 

The first stage is a fixed linear filter whose magnitude response is the inverse of the 

square root of the power spectral density (PSD) of the noise-free EMG signal (estimated 

by subtracting the 0% MVC PSD from the 50% MVC PSD). This filter has low gain at 

low frequencies and higher gain at high frequencies—the opposite of the spectral 
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content of EMG. The second stage cancels high frequency noise, above the dominant 

frequency of EMG. This filter is a time-varying lowpass filter, with a cut-off frequency 

that is lower at lower effort levels. The time adaptation is set via a first-pass unwhitened 

EMGσ estimate. The gain of this stage preserves the overall power of the noise-free 

signal, so that the full whitening process does not alter EMGσ. 

We contrasted subject-specific whitening filter calibration to “universal” calibration. 

Each EMG was gain normalized, to account for gain variations between channels. 

Thereafter, the 0% MVC PSDs and (separately) the 50% MVC PSDs were ensemble-

averaged across the 512 calibration recordings (64 subjects x 8 electrodes/subject). The 

one, ensemble-averaged 0% MVC and the one, ensemble-averaged 50% MVC were 

then used to form a single “universal” two-stage whitening filter. This filter was then 

similarly evaluated on the EMG-force data, producing an average ± std. dev. test error 

of 4.80±2.03 %MVCF—the same as that of subject-specific whiteners. 

Conclusions: Our work, combined that of Potvin [4], suggest that the PSD of EMG is 

sufficiently consistent subject-to-subject that subject-specific calibration of PSDs for 

EMG whitening may not be necessary (for noise cancellation). Only a gain 

normalization may be needed per channel. Note that PSD shapes are known to vary 

with inter-electrode distance [1] and might vary muscle-to-muscle. Also, this set of 

dynamic contractions may not be particularly sensitive to the magnitude of the noise 

power, since few of the active-trial contractions were near 0% MVC. (Noise is most 

impactful at low contraction levels.) 

References: 

1. Hogan N et al. IEEE TBME. 1980;27:396–410. 

2. Clancy EA et al. IEEE TBME. 1995;42:203–211. 
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5. Dai et al. IEEE TNSRE. 2017;25:1529–1538. 

6. Clancy et al. IEEE TBME. 2000;47:709–719. 

7. Dasog et al. IEEE TNSRE. 2014;22:664-670. 
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CHAPTER 3 – STUDY AND IMPLEMENTATION OF 

“UNIVERSAL” IIR FILTER 

I. INTRODUCTION  

In Chapter 2, a 60th-order FIR universal whitening filter was introduced. However, 

from Potvin [1], we know that an IIR highpass filter is enough to take the role of 

whitening. Such being the case, there will be no need to implement a more complex 

FIR filter with inefficient coefficients.  

Compared to Potvin [1], who had a limited number of subjects, we are provided with a 

huge number of valuable data, 64 subjects with 512 trials. Since we already calibrated 

a FIR whitening filter in Chapter 1, we can use the properties of this filter to calibrate 

an IIR filter. 

In this chapter, the method to calibrate an IIR whitening filter will be introduced. To 

evaluate the performance the IIR whitening filter, we also show the performances of 

original whitening filter which is calibrated to each subject and FIR whitening filter.  

It is hypothesized that by implementing a “Universal” IIR whitening filter which is 

close enough to the “Universal” FIR whitening filter that has been proven feasible, 

estimating surface-based EMG to toque will be much more convenient and achievable.  

Designing an IIR filter always has some obstacles [2, 3, 4]. The first is that the filter 

may become unstable; limiting the coefficients can solve this problem. Another 

problem is that the error surface may have multiple minima [5], thus basic conventional 

methods can easily get stuck at a local minima and fail to find the global minima. To 

solve this problem, several algorithms have been introduced such as ant colony 

optimization (ACO) [6], simulated annealing (SA) [7, 8, 9] and genetic algorithm (GA) 

[10, 11, 12 ,13, 14, 15]. Among these algorithms, GA is the one applied most when 

designing an IIR filter. 

However, GA is not good at local search ability and the convergence can be premature. 

Such being the case, a differential evolution (DE) is introduced [16]. Previous work [5] 

has shown that DE has a better performance than GA when designing an IIR filter. 
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Hence, DE algorithm was implemented to design the “Universal” IIR whitening filter. 

II. METHODS 

In this section, methods to calibrate the “Universal” IIR whitening filter will be 

introduced. Also, methods to evaluate this filter will be shown. 

Differential Evolution Algorithm 

DE is a global optimization algorithm and stochastic direct search. This algorithm 

maintains a certain number of population, for each iteration, recombination, evaluation 

and selection will optimize each candidate of the population. After certain number of 

iteration or other criteria are met, an optimized solution will be given. For IIR filter 

design, it is believed that the solution has a global minimum error in the error surface. 

Basic DE algorithm is shown below. 

ALGORITHM 1: Basic DE algorithm 

To begin with, a population of NP is randomly created. Each candidate in the population 

consists of D parameters and is represented as a D-dimensional vector. In our case, each 

candidate is a pair of D-dimensional vectors which include b coefficients and a 

coefficients. The magnitude response of the “Universal” FIR whitening filter is used to 

evaluate the candidates. During the iteration, each candidate in the population will go 

through mutation, crossover, evaluation and selection to approach the target. 

 

Initialization 

Evaluation 

REPEAT 

        Mutation 

        Crossover 

        Evaluation 

        Selection 

UNTIL (Criteria are met) 
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⚫ Mutation 

For parameter j of a candidate vector 𝐶𝑖 , where j = 1, 2, …, D., a mutant parameter is 

produced by 

𝑃𝑗,𝑚,𝑖 =  𝑃𝑗,𝑖 + 𝐾(𝑃𝑗,𝑟,1 − 𝑃𝑗,𝑖) + 𝐹 (𝑃𝑗,𝑟,2 − 𝑃𝑗,𝑟,3),     (1) 

where 𝑃𝑗,𝑟,1, 𝑃𝑗,𝑟,2 and 𝑃𝑗,𝑟,3 are parameters of candidates randomly selected from the 

population, such that all the candidates involved should not be identical to each other. 

K is the combination factor and F is the scaling factor which affects  (𝑃𝑗,𝑟,2 − 𝑃𝑗,𝑟,3). 

⚫ Crossover 

The mutant candidate vector is mixed by the parent parameter and mutant parameter 

𝑃𝑗,𝑐,𝑖 = {
𝑃𝑗,𝑚,𝑖, 𝑖𝑓(𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅) 𝑜𝑟 𝑗 = 𝑐𝑢𝑡𝑝𝑜𝑖𝑛𝑡

𝑃𝑗,𝑖, 𝑖𝑓(𝑟𝑎𝑛𝑑𝑗 > 𝐶𝑅) 𝑎𝑛𝑑 𝑗 ≠ 𝑐𝑢𝑡𝑝𝑜𝑖𝑛𝑡
 ,   (2) 

where CR is the cross-rate which is less than 1 and greater than 0 and cut-point is a 

random number in the range of 1 to D, 𝑟𝑎𝑛𝑑𝑗  ∈ [0,1]. When the index j is equal to the 

cut-point or a crossover is triggered (a random number is less than or equal to cross-

rate), mutant parameter is used, otherwise the parent parameter is used. b coefficients 

and a coefficients are going through this process separately. Hence, after this process a 

pair of mutant b and a coefficients is created. 

⚫ Evaluation 

To evaluate the performance of IIR filters designed, the magnitude response of the 

“Universal” FIR whitening filter, 𝐻𝐹𝐼𝑅, is compared to the magnitude response of IIR 

filters, 𝐻𝐼𝐼𝑅(𝑏, 𝑎), by computing the RMSE. 

In our method, a lowpass filter with cutoff frequency F Hz is implemented to the 

whitening band limit filter. Compared with achieving a global minimum RMSE, 

achieving a RMSE at low level in the first F Hz while maintaining an overall RMSE 

that can be accepted is optimal in our case. Such being the case, the cost function is 

separated into two parts 

 

𝐸𝑖 = 𝑤1√
1

𝑁1
∑ (𝐻𝐹𝐼𝑅,𝑘 − 𝐻𝐼𝐼𝑅,𝑘(𝑏, 𝑎))2𝑁1

𝑘=1 +
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𝑤2√
1

𝑁−𝑁1
∑ (𝐻𝐹𝐼𝑅,𝑗 − 𝐻𝐼𝐼𝑅,𝑗(𝑏, 𝑎))2𝑁

𝑙=𝑁1+1 ,         (3) 

where N is the number of samples of the magnitude response, 𝑤1 is the weight of the 

first 𝑁1 samples, 𝑤2 is the weight of the remaining 𝑁 − 𝑁1 samples. 

⚫ Selection 

The cost of the original pair of b and a coefficients (before mutation), 𝐸𝑜, and the cost 

of mutant pair of b and a coefficients, 𝐸𝑚, are computed. If 𝐸𝑜 < 𝐸𝑚 , the original pair 

will be kept and the mutant pair will be discarded; if 𝐸𝑜 ≥ 𝐸𝑚, then the mutant pair 

will replace the original pair. 

After certain number of iterations, the pair with minimum E will be selected as the final 

solution. 

Performance Evaluation Method 

To begin with, the selection of number of iterations is very important. Apparently, if the 

number of iterations is too small, the final solution can certainly be improved. If the 

number of iterations is too huge, running the whole process will be extremely time 

consuming, yet the performance of the optimal solution will only have tiny change after 

uncertain number of iterations depending on the random initialized population. So, it is 

necessary to determine an appropriate number of iterations. To solve this problem, 

several numbers of iterations were tested, and the results are shown in the following 

section. 

To evaluate the performance of the desired “Universal” FIR whitening filter, the EMG-

force method introduced in Chapter 2 was used, except that the original whitening filter 

or the “Universal” FIR whitening filter was replaced by the “Universal” IIR filter. The 

results are presented as mean ± std. dev of the RMSE between real torque and estimated 

torque. 

III. IMPLEMENTATION AND RESULTS 

DE Algorithm Implementation 

A 2nd-order IIR highpass filter was designed, so each candidate (b and a coefficients) 
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has 3 parameters (although 𝑎0 = 1), which is D = 3. To implement the DE algorithm, 

parameters were selected as following: the number of population is 100, K = 0.8, F = 

0.8, cross-rate = 0.5, F = 600 Hz (the same as Chapter 2), 𝑤1 = 0.8, 𝑤2 = 0.2. 

To determine the number of iterations, several numbers were selected. From 20 

iterations to 300 iterations with an increment of 20 were tested. Each number of 

iterations was tested 10 times then computed the mean ± std. dev of the RMSE between 

the magnitude response of the achieved IIR filter and the “Universal” FIR whitening 

filter. The table below shows all the results. 

TABLE I 

THE PERFORMANCES OF 2
ND

-ORDER IIR FILTER DESIGNED BY DIFFERENT NUMBER OF ITERATIONS BY USING 

DE ALGORITHM. 

Number of Iterations RMSE (mean±std) 

20 6.7781±1.8726 

40 3.7391±0.6530 

60 3.1199±0.3431 

80 3.0033±0.5336 

100 2.8448±0.3157 

120 2.7722±0.0712 

140 2.7700±0.1039 

160 2.7387±0.0824 

180 2.7176±0.0441 

200 2.8943±0.3423 

220 2.7585±0.0928 

240 2.6960±0.0057 

260 2.6971±0.0056 

280 2.6955±0.0009 

300 2.7043±0.0105 

The table shows that the average RMSE decreases rapidly when the number of 

iterations is small (20 - 60), and doesn’t change relativly when the number goes beyond 

100. The figure below shows the results more graphically. 
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Fig. 1: The average RMSE + standard deviation between the magnitude response of optimal 

2nd-order IIR filter designed by different number of iterations and the magnitude response of 

“Universal” FIR whitening filter. 

From the results, chosing 280 as the number of iterations is reasonable. The figure 

below shows the magnitude response of the designed IIR whitening filter (optimal after 

280 iteraions) and the “Universal” FIR whitening filter. 
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Fig.2: The magnitude response of “Universal” 2nd-order IIR and 60th-order FIR whitening 

filters. 

IIR Filter Performances and results 

To test the performance of the “Universal” IIR whitening filter, the whitening band limit 

frequency was varied from 200 Hz to 1400 Hz with an increment of 200 Hz; also 500 

Hz and 700 Hz were tested because 600 Hz whitening band is the default value [17, 18] 

and performance around this value should be investigated.  

The original adaptive whitening filter includes two major parts: stage 1, the fixed 

whitening shape; stage 2, adaptive noise canceler which is related to the noise [17]. So, 

the methods to test IIR whitening filter and compare it to the subject-specific whitening 

filter and FIR whitening filter are: replace the fixed whitening shape by using the 

magnitude response of IIR or FIR filter (replace stage 1) and replace stage 2 using 

average noise spectrum calibrated by using 64 subjects’ 5 s noise data to replace the 

subject-specific noise. 

Table below shows each method’s EMG-force error (%MVC) results with different 
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whitening band limit frequencies. 

TABLE II 

THE PERFORMANCES OF DIFFERENT METHODS BY USING DIFFERENT WHITENING BAND LIMIT FREQUENCY. 

Whitening band limit (Hz) Method RMSE (mean±std) 

 

 

 

 

200 

Original Whitened 5.48%±2.45% 

Unwhitened 5.5%±2.5% 

Universal FIR Whitened 

stage1 only 

5.38%±2.38% 

Universal FIR whitened, 

stage1+average noise 

5.37%±2.38% 

Universal IIR Whitened 

stage1 only 

5.52%±2.41% 

Universal IIR whitened, 

stage1+average noise 

5.48%±2.41% 

 

 

 

 

400 

Original Whitened  5.03%±2.11% 

Unwhitened 5.5%±2.5% 

Universal FIR Whitened 

stage1 only 

4.90%±1.93% 

Universal FIR whitened, 

stage1+average noise 

4.92%±2.05% 

Universal IIR Whitened 

stage1 only 

5.02%±2.18% 

Universal IIR whitened, 

stage1+average noise 

4.96%±2.17% 

 

 

 

 

500 

Original Whitened  4.92%±1.98% 

Unwhitened 5.5%±2.5% 

Universal FIR Whitened 

stage1 only 

4.86%±1.96% 

Universal FIR whitened, 

stage1+average noise 

4.86%±2.02% 

Universal IIR Whitened 

stage1 only 

4.93%±2.07% 

Universal IIR whitened, 

stage1+average noise 

4.88%±2.14% 

 

 

 

 

600 

Original Whitened  4.84%±1.98% 

Unwhitened 5.5%±2.5% 

Universal FIR Whitened 

stage1 only 

4.81%±1.99% 

Universal FIR whitened, 

stage1+average noise 

4.80%±2.03% 

Universal IIR Whitened 

stage1 only 

4.84%±2.01% 

Universal IIR whitened, 4.81%±2.12% 
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stage1+average noise 

 

 

 

 

700 

Original Whitened  4.82%±2.02% 

Unwhitened 5.5%±2.5% 

Universal FIR Whitened 

stage1 only 

4.81%±2.01% 

Universal FIR whitened, 

stage1+average noise 

4.81%±2.07% 

Universal IIR Whitened 

stage1 only 

4.83%±2.02% 

Universal IIR whitened, 

stage1+average noise 

4.81%±2.14% 

 

 

 

 

800 

Original Whitened  4.82%±2.06% 

Unwhitened 5.5%±2.5% 

Universal FIR Whitened 

stage1 only 

4.80%±2.04% 

Universal FIR whitened, 

stage1+average noise 

4.80%±2.08% 

Universal IIR Whitened 

stage1 only 

4.81%±2.04% 

Universal IIR whitened, 

stage1+average noise 

4.80%±2.16% 

 

 

 

 

1000 

Original Whitened  4.77%±2.08% 

Unwhitened 5.5%±2.5% 

Universal FIR Whitened 

stage1 only 

4.75%±2.04% 

Universal FIR whitened, 

stage1+average noise 

4.77%±2.11% 

Universal IIR Whitened 

stage1 only 

4.75%±2.02% 

Universal IIR whitened, 

stage1+average noise 

4.78%±2.20% 

 

 

 

 

1200 

Original Whitened  4.75%±2.07% 

Unwhitened 5.5%±2.5% 

Universal FIR Whitened 

stage1 only 

4.74%±2.06% 

Universal FIR whitened, 

stage1+average noise 

4.74%±2.12% 

Universal IIR Whitened 

stage1 only 

4.76%±2.05% 

Universal IIR whitened, 

stage1+average noise 

4.79%±2.19% 

 

 

Original Whitened  4.75%±2.10% 

Unwhitened 5.5%±2.5% 
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1400 

Universal FIR Whitened 

stage1 only 

4.75%±2.05% 

Universal FIR whitened, 

stage1+average noise 

4.74%±2.11% 

Universal IIR Whitened 

stage1 only 

4.79%±2.08% 

Universal IIR whitened, 

stage1+average noise 

4.80%±2.19% 

 

 

 

 

1600 

Original Whitened  4.76%±2.14% 

Unwhitened 5.5%±2.5% 

Universal FIR Whitened 

stage1 only 

4.74%±2.06% 

Universal FIR whitened, 

stage1+average noise 

4.73%±2.07% 

Universal IIR Whitened 

stage1 only 

4.78%±2.10% 

Universal IIR whitened, 

stage1+average noise 

4.79%±2.17% 

To summarize all the results, several figures were made. Figures 3 and 4 are 

comparisons between subject-specific adaptive whitening filter (original whitening 

filter), FIR whitening filter and IIR whtiening filter. Figures 5, 6 and 7 are comparisons 

between whitening filters with different compositions: FIR whitening filter with 

universal shape only and universal shape plus average noise; IIR whitening filter with 

universal shape only and universal shape plus average noise. 
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Fig. 3: Performances (mean RMSE of 64 subjects) comparison between subject-specific 

adaptive whitening filter and FIR filter only with universal shape and IIR filter only with 

universal shape. 
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Fig. 4: Performances (mean RMSE of 64 subjects) comparison between subject-specific 

adaptive whitening filter and FIR filter with universal shape & average noise and IIR filter 

with universal shape & average noise. 
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Fig. 5: Performances (mean + std. dev. RMSE of 64 subjects) of subject-specific adaptive 

whitening filter. 

 

Fig. 6: Performances (mean + std. dev. RMSE of 64 subjects) between FIR filter with 

universal shape & average noise and FIR filter with universal shape only. 
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Fig. 7: Performances (mean + std. dev. RMSE of 64 subjects) between IIR filter with 

universal shape & average noise and IIR filter with universal shape only. 

For statistical testing, the Shapiro-Wilk test was used to check whether the RMSEs 

formed a normal distribution. The results showed that all RMSEs from 5 different 

methods (original subject-specific whitening, “Universal” FIR whitening, universal 

shape with/without average noise spectrum, “Universal” IIR whitening, universal shape 

with/without average noise spectrum) are not parametric (p < 0.05). Such being the case, 

we chose Kruskal-Wallis H test (one-way ANOVA on ranks) which is commonly used 

when testing non-parametric data. The test results showed that there was no statistically 

significant difference in RMSE between the 5 methods used.  We found 𝜒2(4) =

  0.181, p = 0.996, with a mean rank RMSE 160.69 for FIR whitening filter with stage 

1 only, 158.89 for FIR whitening filter with both stage 1 and average noise spectrum, 

162.16 for IIR whitening filter with stage 1 only, 157.31 for IIR whitening filter with 

both stage 1 and average noise spectrum and 163.45 for original subject-specific 

whitening filter. 
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IV. DISCUSSION 

From results given above, the “Universal” IIR whitening filter designed by using DE 

algorithm has very similar performance compared with both subject-specific adaptive 

whitening filter and “Universal” FIR whitening filter. 

For IIR filter with universal shape only, the overall performance becomes better as the 

whitening band limit frequency increases from 200 Hz to 1000 Hz, this trend is very 

similar to the performance of FIR filter with universal shape only and the subject-

specific adaptive whitening filter [18]. However, when the whitening band limit is 

greater than 1000 Hz, the performance drops. Due to the weights selected in the cost 

function, the magnitude response beyond 600 Hz is given too much attention, so the 

drop of performance is expected. Hence, 600 Hz to 1000 Hz will be better choice for 

whitening band limit when implementing an IIR whitening filter. 

IIR filter with universal shape and average noise has very similar performance 

compared to IIR filter with universal shape only. Using IIR filter with universal shape 

and average noise can simplify the traditional subject-specific adaptive whitening filter 

a lot with no loss in the performance. To be specific. A length of 60 order FIR filter 

requires 60 multiplies per sample, however, a second order IIR only requires 5 

multiplies per sample. 
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CHAPTER 4 – OPTIMAL ESTIMATION OF EMG 

STANDARD DEVIATION (EMG𝝈  REQUIRES NOISE 

SUBTRACTION IN THE POWER DOMAIN: MODEL-BASED 

DERIVATIONS AND THEIR IMPLICATIONS 

 

This chapter has been accepted as: Haopeng Wang, Kiriaki J. Rajotte, He Wang, 

Chenyun Dai, Ziling Zhu, Moinuddin Bhuiyan, Xinming Huang and Edward A. Clancy, 

“Optimal Estimation of EMG Standard Deviation (EMGσ) in Additive Measurement 

Noise: Model-Based Derivations and their Implications”, IEEE Transactions on Neural 

Systems and Rehabilitation Engineering 

 

Abstract—Typical electromyogram (EMG) processors estimate EMG signal 

standard deviation (EMGσ  via moving average root mean suuare (RMS  or mean 

absolute value (MAV) filters, whose outputs are used in force estimation, 

prosthesis/orthosis control, etc. In the inevitable presence of additive 

measurement noise, some processors subtract the noise standard deviation from 

EMG RMS (or MAV). Others compute a root difference of squares (RDS)—

subtract the noise variance from the square of EMG RMS (or MAV), all followed 

by taking the square root. Herein, we model EMG as an amplitude-modulated 

random process in additive measurement noise. Assuming a Gaussian (or, 

separately, Laplacian) distribution, we derive analytically that the maximum 

likelihood estimate of EMGσ reuuires RDS processing. Whenever that subtraction 

would provide a negative-valued result, we show that EMGσ should be set to zero. 

Our theoretical models further show that during rest, approximately 50% of 

EMGσ estimates are non-zero. This result is problematic when EMGσ is used for 

real-time control, explaining the common use of additional thresholding. We 

tested our model results experimentally using biceps and triceps EMG from 64 

subjects. Experimental results closely followed the Gaussian model. We conclude 

that EMG processors should use RDS processing and not noise standard deviation 

subtraction. 
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Index Terms—Biological system modeling, biomedical signal processing, 

electromyogram, electromyogram (EMG) amplitude estimation, 

electromyography, myoelectric signal processing. 

 

 

I. INTRODUCTION 

HE surface electromyogram (EMG) interference pattern has commonly been 

processed by the cascade operations of highpass filtering (to remove DC offsets and 

attenuate motion artifacts); optional pre-whitening [1-3]; and then taking its moving 

average root mean square (RMS), moving average mean absolute value (MAV), or by 

rectifying the signal followed by lowpass filtering. If EMG is modeled as an amplitude-

modulated random process, then these schemes estimate its time-varying standard 

deviation (EMGσ). For constant-force, non-fatiguing contractions, it has been shown 

that RMS processing is the optimal estimate of EMGσ if the noise-free EMG signal is 

modeled as Gaussian distributed [2, 4-6], and that MAV processing is optimal if the 

noise-free EMG signal is modeled as Laplacian distributed [7]. EMGσ has been used 

to estimate torque [8-13] and mechanical impedance about a joint [14-19], in motor 

control research [20], and in applications including prosthesis control [21-23], 

ergonomics [24, 25] and biomechanics [26, 27]. 

However, EMG is always measured in the presence of additive measurement noise, i.e., 

noise that exists independent of the level of muscle effort. This noise arises from the 

measurement apparatus (thermal and active device noise), radiated electromagnetic 

interference, electrode-to-skin contact resistance [28], unrelated electrophysiological 

activity, etc. [29]. This noise has an average RMS intensity that is 1.1–4.5% of the RMS 

EMG at maximum voluntary contraction (MVC) [3, 8, 9, 30-34]. Consequently, the 

signal to noise ratio (SNR) is low at low contraction levels. 

Thus, researchers have proposed alterations to their EMG processors and/or models to 

include noise. Kaiser and Peterson [1] found that the shape of their whitening filter 

should be a function of the contraction level, with lower high-frequency gain during 

T 
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low contraction levels. Parker et al. [35-37] modeled noise as an additive (white 

Gaussian) process when solving for an optimal multistate EMG classifier, and when 

analyzing (but not solving) EMGσ estimators. This additive noise model is now 

common (e.g., [3, 38-40]). Clancy and Farry [3] whitened the raw EMG, then attenuated 

additive noise using an adaptive Wiener filter. A Weiner filter is the optimal linear filter 

for attenuating additive noise, but is not necessarily the optimal filter overall. Many 

papers within the ergonomics literature routinely subtract the standard deviation of the 

background noise from RMS (or MAV) estimates [41]. However, it has been 

theoretically argued [42, 43] that the root difference of squares (RDS) [i.e., subtracting 

the noise variance from the square of EMG RMS (or MAV), all followed by taking the 

square root] is the correct approach. An experimental comparison found that RDS 

processing performs better than standard deviation subtraction [44]. 

The argument for RDS processing is based on the fact that if the signal and noise are 

independent, then their variances add—in theory. However, to our knowledge, this 

proposed processor has not been derived (i.e., solved for, based on a model) as a 

statistical estimator in the published literature (although one unpublished preliminary 

result appears in [45]). Solution via an estimator can demonstrate the optimality (or lack 

thereof) of a processor and expose its statistical properties. Herein, we provide this 

derivation, some of its properties and experimental evaluation of the derived optimal 

results, all for the case of constant-effort contraction. 

 

II. MATHEMATICAL MODELS OF EMG IN ADDITIVE NOISE 

Consider an amplitude modulated model of the measured EMG signal, m[n], during 

constant-effort contraction as [2, 5, 35-37]: 

𝑚[𝑛] = 𝑠 ∙ 𝑥[𝑛] + 𝑣[𝑛],    0 ≤ 𝑛 < 𝑁  (1) 

where n is the discrete-time sample index, 𝑠 ≡ 𝐸𝑀𝐺𝜎 is the standard deviation (i.e., 

modulation) of the noise-free EMG, (𝑠 ∙ 𝑥[𝑛]) is the noise-free EMG signal and 𝑣[𝑛] 

is additive noise. Let 𝑥[𝑛]  be zero mean, unit-variance, wide-sense stationary, 
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correlation-ergodic and have independent samples (i.e., via pre-whitening). Let 𝑣[𝑛] 

be similarly specified, but of variance equal to 𝑞2 and independent of 𝑥[𝑛]. Let 𝑚, 𝑥 

and 𝑣 be vectors comprised of N samples of each respective random variable.  

Gaussian Model—EMGσ Estimate [45, 46] 

Let both 𝑥 and 𝑣 be jointly Gaussian. Then, 𝑚 is jointly Gaussian with zero mean 

and covariance matrix: 𝐾𝑚𝑚 = 𝜎𝑚
2  𝐼, where 𝜎𝑚

2 = 𝑠2 + 𝑞2 and I is the identity matrix. 

Thus, the probability density function (PDF) for 𝑚, given that the standard deviation 

of the noise-free EMG is 𝑠 ≡ 𝐸𝑀𝐺𝜎, is: 

𝑝𝑚|𝑠(𝑀|𝑠) =
𝑒

−𝑀𝑇 𝐾𝑚𝑚 
−1  𝑀

2

(2𝜋)𝑁/2 |𝐾𝑚𝑚|
1/2 =

𝑒

−∑ 𝑀2[𝑛]𝑁−1
𝑛=0

2(𝑠2+𝑞2)

[2𝜋(𝑠2+𝑞2)]𝑁/2,       (2) 

where 𝑀 denotes an instance of the random vector 𝑚 . 

 The maximum likelihood (ML) estimate of 𝑠 is the value �̂� which maximizes the 

above PDF. A monotonic transformation of the PDF does not alter the location of the 

maximum. Thus, taking the natural logarithm yields: 

ln[𝑝𝑚|𝑠(𝑀|�̂�)] = −
𝑁

2
 ln(2𝜋) −

𝑁

2
 ln(�̂�2 + 𝑞2) −

∑ 𝑀2[𝑛]𝑁−1
𝑛=0

2(�̂�2+𝑞2)
.  (3) 

Differentiating the above with respect to �̂� gives: 

𝜕 ln[𝑝𝑚|𝑠(𝑀|�̂�)]

𝜕 �̂�
= −

𝑁

2
 

2�̂�

�̂�2+𝑞2 +
�̂� ∑ 𝑀2[𝑛]𝑁−1

𝑛=0

(�̂�2+𝑞2)2
.           (4) 

Setting this derivative to zero and manipulating leads to a quadratic equation for �̂�2, 

the square root of which provides our intermediate result. The quadratic equation has 

two solutions. But, one of these solutions is not real-valued, so can be eliminated. The 

retained intermediate result, written as a discrete-time filter, is: 

�̂�[𝑛] = √(
∑ 𝑀2[𝑛−𝑖]𝑁−1

𝑖=0

𝑁
) − 𝑞2.   (5) 

The parenthesized term within the square root is the mean square value. Hence, the 

noise correction is made via RDS processing. 

The second derivative of (3) with respect to �̂� , evaluated at the location of the 

intermediate result specified by (5) is: 
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𝜕2 ln[𝑝𝑚|𝑠(𝑀|�̂�)]

𝜕 �̂�2
= [

2 𝑁3

(∑ 𝑀2[𝑛 − 𝑖]𝑁−1
𝑖=0 )2

] [𝑞2 −
∑ 𝑀2[𝑛 − 𝑖]𝑁−1

𝑖=0

𝑁
]. 

(6) 

This second derivative is less than or equal to zero, indicating a local maximum (and 

not a minimum), when 
1

𝑁
∑ 𝑀2[𝑛 − 𝑖]𝑁−1

𝑛=0  exceeds the noise variance 𝑞2 . This 

condition is almost always satisfied during active muscle contraction, but not during 

low-level contractions or rest. When the condition is not satisfied, maximization with 

respect to �̂� of the PDF occurs at the boundary constraint where �̂� = 0 [47]. Hence, 

the complete solution for this ML estimate is: 

�̂�RMS[𝑛] = √max [0, (
∑ 𝑀2[𝑛−𝑖]𝑁−1

𝑖=0

𝑁
) − 𝑔2𝑞2], (7) 

where “max” denotes the maximum value operator and the “RMS” subscript 

emphasizes the use of an RMS processor. Constant scaling factor g has been inserted 

into this solution, since some applications prefer to artificially inflate the noise 

threshold. For example, in myoelectric prosthesis control, g > 1 helps to insure that the 

prosthesis is not actuated during rest. For the optimum ML estimate, g = 1.  

Denote the term in the rounded parenthesis of (7) (i.e., the mean square value of the 

measured EMG signal) as y. This random variable is Gamma distributed as: 

𝑝𝑦(𝑌) =
𝑌

𝑁
2

−1
 𝑒

−𝑌∙𝑁

2𝜎𝑚
2

(𝜎𝑚√
2

𝑁
)

𝑁

 Γ(
𝑁

2
)

 𝜇(𝑌),                   (8) 

where Γ(∙) is the Gamma function and 𝜇(∙) is the step function. Its cumulative 

density function (CDF) is: 

𝑃𝑦≤(𝑌) = 1 − ∑
(

𝑁

2 𝜎𝑚
2 )

𝑘

 𝑌𝑘 𝑒

−𝑌∙𝑁

2𝜎𝑚
2

𝑘!
 𝜇(𝑌)

𝑁

2
−1

𝑘=0 , 𝑁 even.    (9) 

When the muscle is at rest, the true EMGσ is zero (𝑠 = 0) and the variance of the 

measured EMG signal is 𝜎𝑚
2 = 𝑞2. A fraction of the EMGσ estimates—but not all—

will be zero (due to the noise variance subtraction). This probability of estimating a 

zero value during rest is the CDF of y, evaluated at 𝑌 = 𝑔2𝑞2  (with 𝑠 = 0). This 

probability, for N even, is: 
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𝑃𝑦≤𝑔2𝑞2,𝑅𝑒𝑠𝑡(𝑌) =

[
 
 
 

1 − ∑
(
𝑁
2)

𝑘

 𝑔2𝑘 𝑒
−𝑔2𝑁

2

𝑘!

𝑁
2
−1

𝑘=0
]
 
 
 

 𝜇(𝑌).     (10) 

Note that this probability is not a function of the noise variance and is only a function 

of N and g. Fig. 1 shows this probability as a function of N for four possible values of 

g. Equation 10 and Fig. 1 show that for 𝑔 > 1, a negative-valued subtraction result 

within (7) is more likely, producing a higher probability of estimating �̂� = 0 . 

Conversely, for 𝑔 < 1, a negative-valued subtraction result is less likely, producing a 

lower probability of estimating �̂� = 0. 

Laplacian Model—EMGσ Estimate [7, 45, 46] 

MAV processing has been shown to be the ML estimate of EMGσ if the PDF is 

Laplacian [7]. So that the additive noise model has a Laplacian PDF, we directly model 

the measured EMG samples m[n] as being independent and of a Laplacian PDF—

without explicit specification of the PDFs of x[n] and v[n]. (Note that if x[n] and v[n] 

are each modeled as Laplacian, then their sum is not Laplacian.) Nonetheless, if x[n] 

and v[n] are assumed independent, then their variances again add. Thus, the measured 

EMG again has variance: 𝑠2 + 𝑞2, and the PDF for sample m[n] is [48]: 

𝑝𝑚[𝑛]|𝑠(𝑀[𝑛]|𝑠) =
√2

2
∙
𝑒

−√2

(𝑠2+𝑞2)
1

2⁄
 |𝑀[𝑛]|

(𝑠2+𝑞2)
1

2⁄
.                 (11) 

Since the samples of the EMG vector 𝑚 are independent, its joint PDF is the product 

of the N individual PDFs, which simplifies to: 

𝑝𝑚|𝑠(𝑀|𝑠) = [
√2

2 (𝑠2+𝑞2)
1

2⁄
]
𝑁

𝑒

−√2

(𝑠2+𝑞2)
1

2⁄
 ∑ |𝑀[𝑛]|𝑁−1

𝑛=0

.        (12) 

Similar to the Gaussian case above, maximum likelihood estimation of 𝑠 is found by 

taking the natural logarithm of the PDF, differentiating with respect to �̂�, setting this 

derivative to zero and solving for �̂�. Again, the second derivative proves this result to, 

in fact, be a minimum, subject to the same boundary constraint where �̂� = 0. The 

complete filter for this estimator, again inserting a scaling factor 𝑔 for the noise, is: 
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�̂�𝑀𝐴𝑉[𝑛] = √max [0, {(
√2 

𝑁
 ∑ |𝑀[𝑛 − 𝑖]|𝑁−1

𝑖=0 )
2

} − 𝑔2𝑞2].   (13) 

Denote the term in the curly brackets of (12) as w. The PDF for this random variable 

is: 

𝑝𝑤(𝑊) =
𝑒

−
𝑁√𝑊
𝜎𝑚

2
∙ [∑  ({

𝑁

𝜎𝑚 √𝑊
−

(𝑁−1−𝑘)

𝑊
} ∙ ∏ {

𝑁 √𝑊

𝜎𝑚 𝑝
}𝑁−1−𝑘

𝑝=1 )𝑁−1
𝑘=0 ]  𝜇(𝑊).            

(14) 

Its CDF is: 

𝑃𝑤≤(𝑊) =  {1−𝑒
−

𝑁√𝑤

𝜎𝑚 [∑  (∏
𝑁 √𝑊

𝜎𝑚 𝑝

𝑁−1−𝑘
𝑝=1 )𝑁−1

𝑘=0 ]}  𝜇(𝑊).  (15) 

The probability of estimating a zero value during rest is the CDF evaluated at 𝑊 =

𝑔2𝑞2 (with 𝑠 = 0): 

𝑃𝑤≤𝑔2𝑞2,𝑅𝑒𝑠𝑡(𝑊) =  {1−𝑒−𝑁𝑔 [∑  (∏
𝑁𝑔

𝑝

𝑁−1−𝑘
𝑝=1 )𝑁−1

𝑘=0 ]}  𝜇(𝑊).   (16) 

Again, the probability of a zero value is only related to N and g. Fig. 1 shows this 

probability as a function of N for four possible values of g.  
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Fig. 1.  Probability of estimating a zero EMGσ value during rest for theoretical Gaussian 

model (moving average RMS processing; solid blue) and Laplacian model (moving average 

MAV processing; dashed red) as a function of number of independent samples N, for four 

different noise gain values “g”. 

 

III. EXPERIMENTAL EVALUATION OF THE MODELS 

Experimental Data Set 

Data from 64 subjects acquired during four prior experiments with overlapping 

protocols were used for this study [3, 8, 30, 33]. Re-analysis of these data was exempted 

from human studies supervision by the WPI Institutional Review Board. Subjects had 

no known neuromuscular deficits of the right shoulder, arm or hand. In each experiment 

(see Fig. 1 in [8] for a photograph of the most recently used experimental apparatus), a 

subject was seated and secured with seat belts. Their right shoulder was abducted 90o, 

elbow flexed 90o, and hand supinated perpendicular to the floor. Their wrist was cuffed 

to a load cell to measure constant-posture elbow torque. 

The skin above the triceps and biceps muscles was scrubbed with an alcohol wipe. 

Gel was applied in the latter two studies. Four bipolar EMG electrode-amplifiers were 

secured over each of the triceps and biceps muscles, in a tightly-spaced transverse row 

centered on the muscle mid-line, midway between the elbow and the midpoint of the 

upper arm. Each electrode-amplifier had stainless steel, hemispherical contacts of 

diameter 4 or 8 mm, separated 10 mm edge-to-edge, oriented along the long axis of the 

muscle. A reference electrode was secured alongside the active electrodes. Each EMG 

channel had selectable gain, a CMRR ≥ 90 dB at 60 Hz, a 10 or 15 Hz highpass filter 

(second or fourth order), and a 1800 or 2000 Hz lowpass filter (fourth order). EMG and 

load cell data were sampled at 4096 Hz at 16-bit resolution. Achieved force was fed 

back in a real-time display, along with a force target. 

After a brief warm-up, separate elbow flexion and extension maximum voluntary 

contraction (MVC) forces were measured, without the use of force feedback. At least 
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20–30 minutes had elapsed between the time at which the electrodes were mounted and 

the completion of these MVC measurements. Then, constant-force 50% MVC 

extension trials, 50% MVC flexion trials and 0% MVC trials (arm at rest, removed from 

the wrist cuff) were acquired for 5 s each, using force feedback. (Only one of each type 

of trial was used in our analysis.) Two or three minutes of rest was provided between 

trials to avoid cumulative fatigue. Each of the eight, 5-s duration EMG signals from a 

trial was defined as an “epoch.” Before any further use off-line, each epoch was 

highpass filtered (15 Hz cut-off, fourth-order Butterworth); IIR notch filtered at 60 Hz 

and its harmonics (second-order); when selected, adaptively pre-whitened [3, 49]; and 

bandlimited to 600 Hz [50] (fourth-order Butterworth lowpass). Then the first 500 ms 

of each epoch was omitted to account for filter start-up transients. 

Evaluating Model Assumptions—EMG PDF 

We evaluated the model assumptions related to the first-order PDF of EMG, both at 

rest and during 50% MVC trials, with and without whitening. During 50% extension 

trials, only the four epochs from triceps electrodes were examined; during 50% flexion 

trials, only the four epochs from biceps electrodes were examined. A total of 512 epochs 

(64 subjects x 8 electrodes/subject) were available at 0% (rest) and at 50% MVC 

(combining extension and flexion). Each EMG epoch was normalized to a sample 

variance of one and a histogram PDF estimate formed (500 bins, equally spaced over 

the range from –5 to +5). The ensemble histogram sample means and standard 

deviations are shown in Fig. 2. 

Best matching between the ensemble vs. theoretic Gaussian/Laplacian PDFs did not 

occur when using theoretic PDFs of unit variances. Thus, the absolute error difference 

between each ensemble and theoretic PDF was computed for theoretic PDF standard 

deviations between 0.5 and 2 (increment of 0.01). The minimum area and its 

corresponding theoretic PDF standard deviation are shown in Table I (see also Fig. 2). 

In all cases, the data more closely followed the Gaussian model. Kolmogorov-Smirnoff 

tests between the experimental ensemble PDFs and each of the Gaussian and Laplacian 

PDFs were not sensitive, finding no statistically significant differences using either the 
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Gaussian model (p > 0.99) or the Laplacian model (p > 0.31), for the four combinations 

of effort level (0% MVC, 50% MVC) and whitening. Thus, we computed the absolute 

area difference between each of the 512 histogram PDF estimates vs. the 

Gaussian/Laplacian PDFs, finding the best fit standard deviation for each. Paired sign 

tests (Bonferroni corrected) found the Gaussian PDF to be a better fit (𝑝 < 10−6) for 

each of the four combinations. 

 

Fig. 2.  Top shows ensemble-average (±1 std. dev.) PDF estimates of unwhitened EMG during 

0% MVC (left) and 50% MVC (right), as well as best-fit theoretic Gaussian and Laplacian PDFs. 

Bottom shows corresponding PDF estimates from whitened EMG. N = 512 recordings from 64 

subjects. 

TABLE I 

ABSOLUTE AREA DIFFERENCES BETWEEN EXPERIMENTAL ENSEMBLE PDFS AND GAUSSIAN/LAPLACIAN 

PDFS. PARENTHESES LIST STANDARD DEVIATION AT WHICH AREA DIFFERENCE WAS ASSESSED. 

EMG  

Processing 

Gaussian Model Laplacian Model 

0% MVC 50% MVC 0% MVC 50% MVC 

Unwhite 0.0241 (0.97) 0.0530 (0.93) 0.1981 (1.26) 0.1730 (1.20) 

White 0.0188 (0.97) 0.0749 (0.89) 0.2035 (1.26) 0.1532 (1.16) 

Evaluating Estimates of EMGσ 

Historically, quantitative evaluation of constant-effort EMGσ has used the ratio of the 

estimate mean to its standard deviation (the inverse of the coefficient of variation), 

denoted the SNR. With this definition, variations about the mean of EMGσ are 
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considered as “noise.” This definition was convenient, as knowledge of neither the “true” 

EMGσ value nor the EMGσ-force relationship was necessary, and the measure is 

invariant to signal gain. However, that definition is not as indicative of EMGσ estimate 

performance once additive noise is modeled. In particular, the noise can cause the 

EMGσ estimate to incorrectly coalesce about the wrong mean value. In this case, SNR 

would measure the variation of the processed signal plus noise; and not the desired error 

with respect to the true (noise-free) EMGσ—which is more appropriate for this study.  

Thus, root mean square error between the true and estimated EMGσ value was used 

as the error measure. However, the true value is not known when assessing with real 

EMG data. Thus, we pursued an approach similar to [41]. Our available 50% MVC 

trials assume that muscle effort—and therefore EMGσ—is not changing during the 

contraction. So, we optionally whitened each EMG epoch, then normalized each 0% 

and, separately, each 50% MVC epoch to have a standard deviation of one. We treated 

each 50% MVC epoch as the “true” EMG signal and its 0% MVC epoch from the 

corresponding electrode as noise. We then multiplied each normalized 50% MVC EMG 

epoch point-by-point by a ramp (1 s zero, 3 s ramping from 0 to 0.1, 1 s at 0.1). To this 

signal, we added 0.02 times the respective, normalized 0% MVC epoch. This addition 

gave a SNR of 5, which is representative of measured EMG [3, 8, 9, 30-34]. We then 

computed the EMGσ estimate using a 200 ms duration centered (non-causal) window, 

only using RMS processing (since the Gaussian model was a much better fit to our data), 

with and without RDS processing. The root mean square error between the EMGσ 

estimate and the “true” EMGσ (i.e., the ramp pattern) was computed at times 1.0, 1.5, … 

4.0 s across the 512 epochs (64 subjects x 8 electrodes per subject). Fig. 3 shows 

summary results. Due to non-normality of the data, we computed paired sign tests 

(separately for each time) between the root mean square error of all six unique paired 

combinations of the four factors: unwhitened data, whitened data, without RDS 

processing, and with RDS processing (Bonferroni corrected). Comparing each method 

with RDS processing to each method without RDS processing (four comparisons) 

always resulted in significantly lower errors with RDS processing for times ≤ 2.5 s 
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(𝑝 < 10−5), and no differences for times ≥ 3 s (𝑝 > 0.1) . When unwhitened vs. 

whitened processors were compared without RDS processing (one combination), there 

were no statistical differences (𝑝 > 0.1) , except at 1.5 s (𝑝 = 10−4)—likely an 

anomoly. When unwhitened vs. whitened processors were compared with RDS 

processing (one combination), whitening had lower error for times ≤ 1.5 s (𝑝 < 10−5), 

and was not significantly different for times ≥ 3.0 s (𝑝 > 0.1). 

 

Evaluating Probability of a Zero Value at Rest 

The theoretical results predict that the probability of estimating a zero value for 

EMGσ during rest is a function of the window length and the noise gain factor “g”. We 

experimentally evaluated this result using the 512 0% MVC epochs. We again limited 

analysis to RMS processing. We computed the fraction of zero-valued estimates when 

using RDS processing for all combinations of: unwhitened vs. whitened processing, 

window length values ranging from N=2–400 ms, and g values of 0.95, 1, 1.05 and 1.2. 

The sample variance of each rest epoch was computed (after removing a 400 ms startup 

transient) and used as the noise variance 𝑞2 to compute its respective RMS estimate of 

EMGσ. 

With this method, the selected window length is misleading for comparison to the 

theoretical results shown in Fig. 1, because the experimental EMG signal is correlated 

(i.e., has finite bandwidth). To resolve this conflict, Bendat and Piersol [4, 51] list the 

number of effective independent samples for a correlated Gaussian process as: 𝑁𝐸𝑓𝑓 =

2𝐵𝑆𝑇, where 𝐵𝑆 is statistical bandwidth (Hz) and 𝑇 is the window duration (s). Thus, 

we used the method of [52] to estimate statistical bandwidth from the PSD estimate of 

each 0% MVC epoch, separately with and without whitening (Welch method, 

Hamming window, 50% overlap, 614-length DFT). Without whitening we found the 0% 

MVC bandwidth to be 𝐵𝑆,𝑈𝑛𝑤ℎ𝑖𝑡𝑒 = 118 ± 72 𝐻𝑧, and with whitening we found the 

0% MVC bandwidth to be 𝐵𝑆,𝑊ℎ𝑖𝑡𝑒 = 329 ± 157 𝐻𝑧. Fig. 4 plots the fraction of zero 

values during rest as a function of 𝑁𝐸𝑓𝑓 and “g”. 
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Fig. 3.  Top shows ensemble averaged unwhitened EMGσ estimates along the ramp 

contraction, with and without noise subtraction. Symbols and one-sided error bars show mean 

and one standard deviation at times 1.0, 1.5, 2.0, …, 4.0. Bottom shows corresponding results 

for whitened EMGσ estimates. 

IV. DISCUSSION 

Maximum Likelihood Estimates of EMGσ 

There has been debate in the literature as to the best way in which to suppress the 

influence of additive noise when estimating EMGσ. While RDS processing has been 

suggested (as well as other approaches), no model-derived optimal solution has been 

peer-review published. Herein, we analytically derived, using maximum likelihood 

estimation, that constant-effort EMG, modeled as either a Gaussian or Laplacian 
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random process, requires RDS processing when additive noise is modeled [equations 

(7) and (13), respectively, with 𝑔 = 1 ]. Further, our work shows that when the 

particular instance of the EMG signal is such that RDS processing would result in a 

negative value within the square root, then EMGσ should be estimated as EMGσ = 0. 

While these formulae are derived with constant-effort assumptions, existing EMG 

processors assume a quasi-stationary EMG signal, even during highly dynamic 

contractions [30, 53-56]. Thus, a moving average window assumes a constant EMGσ 

within that window, but an EMGσ that slowly varies between adjacent windows. Hence, 

these RDS processing results remain valid.   

EMG Probability Density Function 

It does not appear that the PDF of rest EMG has previously been reported. We found 

this PDF to closely match the Gaussian PDF. 

But, the literature has variously reported the PDF of active EMG as Gaussian or as 

more peaked near zero than Gaussian (e.g., Laplacian), mostly in small sample size 

studies. Roesler [57] (sample size not listed, perhaps one subject; biceps, triceps and 

forearm muscles) found the EMG PDF to be precisely Gaussian across a range of 

isometric contraction levels. Parker et al. [35] (sample size not listed, likely one trial 

reported; intramuscular fine wires within the long head of the biceps brachii) found the 

EMG PDF to be Gaussian during an ~25% MVC and a just perceptible contraction. 

Hunter et al. [58] (one subject; biceps brachii muscle) found 30% MVC to have a PDF 

that is more peaked than Gaussian, as did Bilodeau et al. [59] for 20% MVCs (16 

subjects; biceps brachii and brachioradialis muscles). Nazarpour et al. [60] (four 

subjects; abductor pollicis brevis and flexor carpi radialis muscles) found evidence that 

the PDF was more peaked (i.e., closer to Laplacian) at low level contractions, but more 

bell-shaped/Gaussian at higher contraction levels. They postulated that, since more 

motor unit firings contribute to the EMG during higher contraction levels, the 

interference signal more closely obeys the central limit theorem—resulting in a more 

Gaussian shape. 

Our own prior work [7] (24 subjects; all distinct from the subjects in the present study) 
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found the PDF from biceps and triceps muscle EMG to be closer to Gaussian than 

Laplacian, for 10, 25, 50 and 75% constant-force MVCs, using apparatus and methods 

quite similar to that of the present study. However, this work found that MAV 

processing produced a higher SNR than RMS processing. A simulation study of 

constant-effort EMG confirmed that as the EMG PDF is progressively varied from 

Laplacian to Gaussian, there exists a region wherein the data are more Gaussian in 

distribution, but MAV processing performs better than RMS. 

The present study likely reports the largest sample size to-date. Our EMG exhibited 

a distribution that closely matched the Gaussian PDF, with a poorer fit to the Laplacian 

PDF. Since our data were from 50% MVCs (a high contraction level), this result is 

consistent with the findings of Nazapour et al. [60]. Future comparison to data at lower 

contraction levels (in which [60] found a more peaked PDF) may be appropriate. The 

similarity in PDF shapes to our own prior work [7] may be due to the similarity in 

equipment and use of the identical contraction level. In the end, various factors may 

influence the EMG PDF, including: electrode shape, size and inter-electrode distance; 

contraction level; and muscle studied. 

 

EMGσ Estimates 

Our root mean square error results from the amplitude-modulated ramp contractions 

show that noise correction is most important at the lowest contractions levels. RDS 

processing has the advantage of being progressively less noticeable as effort level 

increases. For example, once the true EMGσ is four times that of the noise standard 

deviation, the RDS adjustment is only one sixteenth of the true EMGσ. Once the true 

EMGσ is five times the noise standard deviation, RDS adjustment is only one 25th the 

true EMGσ. Etc. 
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Fig. 4.  Symbols show fraction of EMGσ values equal to zero during rest contractions for 

unwhitened (top) and whitened (bottom) experimental moving average RMS estimates as a 

function of effective number of samples NEff, for four different noise gain values “g”. Solid 

lines show corresponding theoretic probabilities of zero values (same as Fig. 1), for 

comparison. Dash line show 0.5 probability. 

Estimator Performance During Rest 

For the ML estimate (c.f., g = 1 in Fig. 1 and Fig. 4), we have shown that 

approximately 50% of EMGσ estimates will be zero, based on either the Gaussian or 
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Laplacian model (excluding unrealistically small NEff values). Accordingly, nearly half 

of all EMGσ estimates will be greater than zero during rest! In some applications, this 

result is problematic. For example, the pose of myoelectrically-controlled prostheses, 

orthoses and exoskeletons would slowly drift at rest, producing an undesired and 

potentially dangerous action. Thus, we suggest that undesired non-zero EMGσ 

estimates during rest be eliminated by accentuating the noise standard deviation (i.e., 

setting g > 1). Fig. 1 shows that even modest increases in the gain factor g result in 

much lower probability of a non-zero value. Indeed, it is common to include threshold 

subtraction in a prosthesis EMG processor (with zero as the boundary condition), 

although it is currently applied by subtracting the noise standard deviation from EMG 

RMS (or MAV) and not via RDS processing [61, 62]. 

Note that many biomechanics studies in which the subject is active most of the time 

might not want to increase the gain factor “g”. Doing so might create a bias in EMGσ-

force estimates. 

Limitations 

Our theoretical models assumed independent samples, which are approximated in 

experimental analysis via whitening. However, since signal and noise have some 

distinctions in their spectral shape (noise exhibits a lower span of power across 

frequency [3]), one filter cannot precisely whiten both the noise-free EMG signal and 

the noise. In particular, whitening filters calibrated to active EMG may contain 

excessive high frequency gain [45]. Thus, some signal correlation will remain. This 

dissonance may place practical limits on the bandwidth of whitening filters [50], and 

might argue for the use of RDS processing in concert with other noise mitigation 

techniques such as adaptive whitening [3] —in which an adaptive Wiener filter provides 

lowpass filtering with a progressively lower cutoff at lower EMGσ levels. 

When evaluating the fraction of zero EMGσ values during a rest contraction, we used 

that same rest contraction to estimate the noise variance (𝑞2). In practice, 𝑞2 may 

vary over time; thus, so would the fraction of zero EMGσ values during rest. Hence, 

setting the noise gain factor “g” above one might help to mitigate unmeasured changes 
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in 𝑞2. 

V. CONCLUSION 

Using established stochastic models for EMG in the presence of additive noise, we 

derived that RDS processing represents the ML estimate of EMGσ, under both Gaussian 

and Laplacian PDF assumptions. We concomitantly showed that EMGσ should be set 

to zero whenever RDS processing produces a negative-valued result. Further, we 

showed that the ML estimate at rest produces zero EMGσ estimates only 50% of the 

time (for all but short-duration smoothing windows). Experimentally, our biceps-triceps 

EMG data more closely followed a Gaussian PDF than a Laplacian PDF. Our EMGσ 

estimates closely followed theoretical predictions, both during ramp and rest 

contractions. This work definitively argues that EMG processors should use RDS 

processing rather than subtracting the noise standard deviation from EMG RMS (or 

MAV).  
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CONCLUSION 

By using the ensemble-averaged 512 subject-specific whitening filter shape and 

normalized average noise signal spectrum, a 60th-order “Universal” FIR whitening filter 

was calibrated. Compared to the original subject-specific whitening filter, the 

performance of this universal filter had no significant difference in a statistical test. 

However, since the whitening shape and noise input are fixed, calibration time can be 

saved, which is much more convenient and simpler. 

The whitening filter is very close in shape to a highpass filter. Potvin [1] found that a 

low-order, fixed IIR highpass filter was implemented to function as a whitening filter. 

Thus, to further simplify the “Universal” FIR whitening filter, a 2nd-order “Universal” 

IIR whitening filter was designed by using a differential evolution algorithm and the 

universal whitening shape as the input of the cost function. The performance of this IIR 

filter is very similar to the FIR whitening filter. However, with much less coefficients, 

this IIR filter is even more convenient to implement. Thus, we simplified the 60th-order 

subject-specific FIR whitening filter method, which is very time consuming, to a 2nd-

order IIR whitening filter. 

Under both Gaussian and Laplacian PDF assumptions, root-difference-square (RDS) 

processing was shown to be optimal (in the maximum likelihood sense) for estimating 

EMGσ from the EMG signal with additive noise. Also, it was proven that our biceps-

triceps EMG signal more closely followed a Gaussian PDF. Results from our “ramp” 

test and 0% MVC (rest) trials indicates that EMG processors should use RDS instead 

of subtracting the noise standard deviation from EMG RMS or MAV. This RDS 

processor was implemented with different whitening methods. Results show that with 

a proper whitening band limit frequency (~600 Hz), there is barely no loss of 

performance compared to methods without RDS. We showed that the influence of RDS 

processing is limited in high contraction levels, and it is necessary in low contraction 

levels. 

References: 

[1] Potvin et al. J Electromyo Kinesiol. 2004;14:389–399. 
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APPENDIX I 

I. INTRODUCTION  

This is the appendix for the submitted paper “Optimal Estimation of EMG Standard 

Deviation (EMGσ) Requires Noise Subtraction in the Power Domain: Model-Based 

Derivations and their Implications” (Chapter 3). This appendix will include details 

about methods, results that were not shown in the journal paper and all the necessary 

analysis and discussion of the results. 

There are two basic parts in this appendix. The first part is about the “Ramp” test. 

Details about the method will be introduced, statistical test results will be shown in a 

table, all other results will be shown in figures. The second part is about testing the 

noise subtraction using “real” data (512 trials mentioned in the Chapter 2, 3 and 4). All 

the results will be shown in tables. 

 

II. PART 1 

EMG Ramp Study Methods  

First, a 5 second “Ramp” was created. For this ramp: 0 in the first second, from 0 to 0.1 

for 2-4 seconds, 0.1 in the last one second. Then all the 512 trials were processed in the 

following method: 

⚫ Highpass (4th order, 15Hz); 

⚫ Notch filter for powerline interference and its harmonics; 

⚫ Process EMG by whitening/unwhitening (whitening band limit at 600 Hz); 

⚫ Normalize the standard deviation of both 50% and, separately, 0% MVC to 1; 

⚫ Modulate EMG by multiplying the signal by ramp and multiplying the noise by 

0.02 and adding them together; 

⚫ Process EMG by MAV/RMS estimator (For the results, we only used RMS since 

it has a much better performance); 

⚫ Omit the first 0.25 seconds and the last 0.25 seconds; 
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⚫ Noise subtraction or without noise subtraction; 

⚫ Compute the RMSE between the EMGσ and ramp; 

Overall result 

Here are the rms errors through 512 trials for all the tested methods. Without the 

adaptive noise canceller, whiten with noise subtraction is the best method we can use, 

whiten and unwhitened without noise subtraction have very similar performances. 

(RMS estimator) 

TABLE 1.  

AVERAGED RMSE FOR ALL 512 TRIALS USING RMS ESTIMATOR 

Method RMSE(mean±std) 

Unwhiten  0.0122±0.0025 

Unwhiten NS 0.0076±0.0031 

Whiten 0.0121±0.0022 

Whiten NS  0.0071±0.0030 

For MAV estimator: 

TABLE 2.  

AVERAGED RMSE FOR ALL 512 TRIALS USING MAV ESTIMATOR 

Method RMSE(mean±std) 

Unwhiten  0.0148±0.0021 

Unwhiten NS 0.0161±0.0023 

Whiten 0.0146±0.0020 

Whiten NS  0.0158±0.0022 

 

Statistical results 

To achieve a more convincing conclusion, we used paired-sign test to get the statistical 

results (due to the non-normality of our data). The results below are the p values for 

each combination at each specific time within the ramp we chose (before Bonferroni 

correction). 

TABLE 3.  

STATISTICAL TEST RESULTS FOR EACH METHOD AT SELECTED TIMES USING PAIRED-SIGN TEST. 

Time 

(s) 

Wh/Wh+NS Wh/Un Wh/Un+NS Wh+NS/Un Wh+NS/Un+NS Un/Un+NS 

0.5 7.4583e-155 0.0095 6.2585e-128 7.4583e-155 1.6452e-31 7.4583e-155 

1 7.4583e-155 0.2537 3.8261e-152 7.4583e-155 3.0624e-28 7.4583e-155 

1.5 7.8943e-118 1.2771e-

05 

2.7108e-98 7.6992e-114 9.8245e-10 6.1165e-84 

2 1.4433e-36 0.0510 1.7448e-32 1.7448e-32 0.0095 8.6218e-28 

2.5 3.1902e-10 0.0286 2.6690e-07 6.6618e-07 0.0035 1.0400e-06 
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3 0.0151 0.3454 0.0286 0.1346 0.0286 0.0286 

3.5 0.1547 0.0188 0.3454 0.5176 0.0151 0.2263 

4 0.4824 0.1547 0.0609 0.4824 0.1767 0.2537 

4.5 2.3460e-04 0.0723 0.0853 0.0075 0.0233 0.0027 

 

Other results 

Comparing Ramp with EMGσ along time. 

For RMS estimator: 

 

Fig. 1. Left shows ensemble averaged whitened EMGσ (using RMS estimator) with or 

without noise subtraction along the “Ramp”, symbols and error bars show mean and std at 

times: 0.5, 1, 1.5…..4.5. Right shows Unwhitened method results. 

For MAV estimator: 

 

Fig. 2. Left shows ensemble averaged whitened EMGσ (using MAV estimator) with or 

without noise subtraction along the “Ramp”, symbols and error bars show mean and std at 

times: 0.5, 1, 1.5…..4.5. Right shows Unwhitened method results. 
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For all possible methods, also computed the RMSE between ramp and EMGσ processed 

along the time (the figure is error vs time). Here, we only used the subject-specific 

adaptive whitening filter to compare with unwhitened method. 

RMS estimator: 

 

Fig. 3. Error comparison (along time) between unwhiten without noise subtraction and 

unwhiten with noise subtraction using RMS estimator. 
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Fig. 4. Error comparison between whiten and unwhiten both without noise subtraction using 

RMS estimator. 

 

Fig. 5. Error comparison (along time) between whiten with noise subtraction and unwhiten 

without noise subtraction using RMS estimator. 
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Fig. 6. Error comparison (along time) between whiten without noise subtraction and unwhiten 

with noise subtraction using RMS estimator. 

 

Fig. 7. Error comparison (along time) between whiten with noise subtraction and unwhiten 

with noise subtraction using RMS estimator. 
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Fig. 8. Error comparison (along time) between whiten without noise subtraction and whiten 

using noise subtraction using RMS estimator. 
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MAV estimator: 

 

Fig. 9. Error comparison (along time) between unwhiten without noise subtraction and 

unwhiten with noise subtraction using MAV estimator. 

 

Fig. 10. Error comparison between whiten and unwhiten both without noise subtraction using 

MAV estimator. 
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Fig. 11. Error comparison (along time) between whiten with noise subtraction and unwhiten 

without noise subtraction using MAV estimator. 

 

Fig. 12. Error comparison (along time) between whiten without noise subtraction and 

unwhiten with noise subtraction using MAV estimator. 
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Fig. 13. Error comparison (along time) between whiten with noise subtraction and unwhiten 

with noise subtraction using MAV estimator. 

 
Fig. 14. Error comparison (along time) between whiten without noise subtraction and whiten 

using noise subtraction using MAV estimator. 
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III. PART 2 

Tables below show the results tested by using 512 trials collected previously. The results 

are RMSE between the real torque and the estimated torque by using different EMG 

processing methods.  

In order to remove the second stage of whitening filter, Svv was set to “0” (see details 

in the EMG Amplitude Estimation Toolbox).  

The band limit frequency for whitening filter is varied from 200Hz to 1600Hz to see 

how it will affect the performances of different methods. 

TABLE IV 

THE PERFORMANCES OF DIFFERENT METHODS BY USING DIFFERENT WHITENING BAND LIMIT FREQUENCY. 

Whitening band limit (Hz) Method RMSE (mean±std) 

 

 

 

 

200 

Original Whitened, RDS 5.55%±2.49% 

Original Whitened, Svv = 0 5.50%±2.40% 

Original Whitened, Svv = 0, 

RDS 

5.56%±2.43% 

Universal FIR Whitened 

stage1 only, RDS 

5.42%±2.34% 

Universal FIR whitened, 

stage1+average noise, RDS 

5.38%±2.38% 

Universal FIR whitened with 

stage 1, Svv = 0 

5.39%±2.45% 

 

 

 

 

400 

Original Whitened, RDS 5.05%±2.13% 

Original Whitened, Svv = 0 5.10%±2.27% 

Original Whitened, Svv = 0, 

RDS 

5.11%±2.26% 

Universal FIR Whitened 

stage1 only, RDS 

4.94%±1.95% 

Universal FIR whitened, 

stage1+average noise, RDS 

4.92%±2.07% 

Universal FIR whitened with 

stage 1, Svv = 0 

4.93%±2.13% 

 

 

 

 

500 

Original Whitened, RDS 4.95%±2.01% 

Original Whitened, Svv = 0 5.00%±2.16% 

Original Whitened, Svv = 0, 

RDS 

5.04%±2.14% 

Universal FIR Whitened 

stage1 only, RDS 

4.89%±1.96% 

Universal FIR whitened, 

stage1+average noise, RDS 

4.86%±2.03% 
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Universal FIR whitened with 

stage 1, Svv = 0 

4.89%±2.14% 

 

 

 

 

600 

Original Whitened, RDS 4.85%±1.97% 

Original Whitened, Svv = 0 4.87%±2.11% 

Original Whitened, Svv = 0, 

RDS 

4.96%±2.21% 

Universal FIR Whitened 

stage1 only, RDS 

4.81%±1.99% 

Universal FIR whitened, 

stage1+average noise, RDS 

4.80%±2.04% 

Universal FIR whitened with 

stage 1, Svv = 0 

4.82%±2.15% 

 

 

 

 

700 

Original Whitened, RDS 4.83%±2.03% 

Original Whitened, Svv = 0 4.91%±2.13% 

Original Whitened, Svv = 0, 

RDS 

4.94%±2.15% 

Universal FIR Whitened 

stage1 only, RDS 

4.81%±2.00% 

Universal FIR whitened, 

stage1+average noise, RDS 

4.81%±2.08% 

Universal FIR whitened with 

stage 1, Svv = 0 

4.85%±2.24% 

 

 

 

 

800 

Original Whitened, RDS 4.80%±2.02% 

Original Whitened, Svv = 0 4.88%±2.06% 

Original Whitened, Svv = 0, 

RDS 

4.95%±2.05% 

Universal FIR Whitened 

stage1 only, RDS 

4.79%±2.04% 

Universal FIR whitened, 

stage1+average noise, RDS 

4.79%±2.09% 

Universal FIR whitened with 

stage 1, Svv = 0 

4.85%±2.23% 

 

 

 

 

1000 

Original Whitened, RDS 4.77%±2.07% 

Original Whitened, Svv = 0 4.93%±2.19% 

Original Whitened, Svv = 0, 

RDS 

5.04%±2.09% 

Universal FIR Whitened 

stage1 only, RDS 

4.75%±2.04% 

Universal FIR whitened, 

stage1+average noise, RDS 

4.79%±2.09% 

Universal FIR whitened with 

stage 1, Svv = 0 

4.85%±2.33% 

 Original Whitened, RDS 4.76%±2.09% 
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1200 

Original Whitened, Svv = 0 5.00%±2.20% 

Original Whitened, Svv = 0, 

RDS 

5.27%±2.21% 

Universal FIR Whitened 

stage1 only, RDS 

4.76%±2.06% 

Universal FIR whitened, 

stage1+average noise, RDS 

4.74%±2.13% 

Universal FIR whitened with 

stage 1, Svv = 0 

5.10%±2.37% 

 

 

 

 

1400 

Original Whitened, RDS 4.77%±2.12% 

Original Whitened, Svv = 0 5.19%±2.36% 

Original Whitened, Svv = 0, 

RDS 

5.70%±2.65% 

Universal FIR Whitened 

stage1 only, RDS 

4.76%±2.07% 

Universal FIR whitened, 

stage1+average noise, RDS 

4.75%±2.11% 

Universal FIR whitened with 

stage 1, Svv = 0 

5.35%±2.49% 

 

 

 

 

1600 

Original Whitened, RDS 4.77%±2.14% 

Original Whitened, Svv = 0 5.38%±2.46% 

Original Whitened, Svv = 0, 

RDS 

6.00%±3.05% 

Universal FIR Whitened 

stage1 only, RDS 

4.75%±2.06% 

Universal FIR whitened, 

stage1+average noise, RDS 

4.74%±2.08% 

Universal FIR whitened with 

stage 1, Svv = 0 

5.60%±2.52% 

Using noise subtraction may lose some performances when removing the adaptive 

noise canceller (step 2 in adaptive whitening filter, Svv = 0). However, in certain range 

of whitening band frequencies, this loss of performance is acceptable since simplifying 

the adaptive whitening filter is also an important issue. For subject-specific whitening 

method with Svv = 0 and RDS processor, setting the whitening band frequency to 

700Hz will achieve the optimal performance (4.94%± 2.15%). For universal FIR 

whitening method (Svv = 0, NS), setting the whitening band frequency to 600Hz will 

achieve the optimal performance (4.90%±2.19%). 

Results above also indicate that the original whitening method is very robust and 

reliable, the adaptive noise canceller always works well as the whitening band limit 
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varies. 

Figures below show overall results tested above. Both methods achieve optimal 

performance when the whitening band limit at 600 ~ 700 Hz when using noise 

subtraction. 

 

 

 

 

Fig. 15. The rms error + standard deviation between estimated force using original whitening 

method with noise subtraction and “real” torque along with different whitenband limit 

frequency. 
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Fig. 16. The rms error + standard deviation between estimated force using universal 

whitening method with noise subtraction and “real” torque along with different whitenband 

limit frequency. 
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APPENDIX II DETAIL OF DATA USED IN THIS THESIS 

Experiment ‘LA’ 

# '01'; '02'; '03'; '04'; '05'; '06'; '07'; '10'; '13'; '14'; '15'; '16'; '17'; '18'; '19'; '20'; '21'; 

Trial number for 0%MVC and 50% MVC extension and flexion 

Trial ‘15’ 0%MVC 

Trial ’10’ 50% Extension 

Trial ‘12’ 50% Flexion 

Subject ‘LA18’ trial ‘15’ is a bad rest recording, this trial is substituted by trial 

‘32’ of subject ‘LA18’ 

Experiment ‘LB’ 

# '02'; '03'; '05'; '07'; '08'; '09'; '10'; '12'; '13'; '16'; '17'; '18'; '19'; '20'; '21'; 

Trial number for 0%MVC and 50% MVC extension and flexion 

Trial ‘15’ 0%MVC 

Trial ’10’ 50% Extension 

Trial ‘12’ 50% Flexion 

Experiment ‘wx’ 

# '01'; '02'; '04'; '05'; '06'; '07'; '08'; '09'; '10'; '11'; '12'; '13'; '14'; '17'; '18'; '19'; '20'; 

'22'; '23'; '24'; '25' 

Trial number for 0%MVC and 50% MVC extension and flexion 

Trial ‘15’ 0%MVC 

Trial ’10’ 50% Extension 

Trial ‘13’ 50% Flexion 

Experiment ‘ww’ 

# '01'; '02'; '03'; '04'; '05'; '06'; '08'; '09'; '10'; '11'; '12'] 

Trial number for 0%MVC and 50% MVC extension and flexion 

Trial ‘15’ 0%MVC 

Trial ’10’ 50% Extension 

Trial ‘12’ 50% Flexion 

Subject ‘ww05’ trial ‘15’ is a bad rest recording, this trial is substituted by trial 
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‘39’ of subject ‘ww05’ 
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