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Abstract

The objective of this thesis is to use machine learning and deep learning techniques

for the quality assurance of metal casting processes. Metal casting can be defined as a

process in which liquid metal is poured into a mold of a desired shape and allowed to

solidify. The process is completed after ejection of the final solidified component, also

known as a casting, out of the mold. There may be undesired irregularities in the metal

casting process known as casting defects. Among the defects that are found, porosity is

considered to be a major defect, which is di�cult to detect, until the end of the man-

ufacturing cycle. When there are small voids, holes or pockets found within the metal,

porosity defect occurs. It is important to control and alleviate porosity below certain

permissible thresholds, depending on the product that is being manufactured. If the

foundry process can be modeled using machine learning approaches, to predict the state

of the casting prior to completion of the casting process, it would save the foundry the

inspection and testing of the casting, which requires specific attention of the sta↵ and

expensive machinery for testing. Moreover, if the casting fails the quality test, then it

would be rendered useless. This is one of the major issues for the foundries today. The

main aim of this project, is to make predictions about the quality of metal cast com-

ponents. We determine whether under certain given conditions and parameters, a cast

component would pass or fail the quality test. Although this thesis focuses on porosity

defects, machine learning and deep learning techniques can be used to model any other

kinds of defects such as shrinkage defects, metal pouring defects or any metallurgical

defects. The other important objective is to identify the most important parameters

in this casting process, that are responsible for the porosity control and ultimately the

quality of the cast component. The challenges faced during the data analysis while

dealing with a small sized, unbalanced, heterogeneous and semi-supervised dataset, such

as this one, are also covered. We compare the results obtained using di↵erent machine

learning techniques in terms of F1 score, precision and recall, among other metrics, on

unseen test data post cross validation. Finally, the conclusions and scope for the future

work are also discussed.
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Executive Summary

The main objective of this thesis is to make predictions about the quality of metal

cast components. We determine whether under certain given conditions and parameters,

a cast component would pass or fail the quality test. Moreover, we identify the most im-

portant parameters in this casting process, that are responsible for porosity control and

ultimately the quality of the cast component. The main challenges in dealing with data

sets such as this one, are that they are unbalanced, semi-supervised and heterogeneous.

There are very few parts that fail the quality test, as compared to the ones that pass.

The foundry makes an assumption about the quality label of some of the components,

based on the underlying conditions, without manually testing each part. However, it is

essential that we verify using machine learning and deep learning approaches, whether

the components that the foundry assumes to be good quality are indeed good quality.

The other challenge is that the foundry collects the data in stages, during di↵erent phases

of the manufacturing cycle and the processing data is in silos. For example, there is the

process data which includes the di↵erent parameters of the process such as densities,

temperatures in di↵erent zones and then the chemistry data, that includes the elemental

compositions of the cast components. It is important that the siloed data is merged,

integrated and analyzed, in order for the foundries to understand it better and improve

their decision making process with the ultimate aim of reducing scrap rates.

This executive summary provides an overview of the challenges that are found in

such data sets and our approach in trying to overcome each of the challenges, in order

to add value to the operations of a foundry.

In one of the novelties of the study, we implement a generative adversarial network

(GAN), which is a deep learning approach to generate synthetic data, that is similar to

the real data in terms of its distribution. This demonstrates the use of deep learning
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models for data augmentation in case of small and unbalanced datasets. We implemented

a variation of a regular GAN in a semi-supervised setting. We do this to leverage the

unlabeled data present in the dataset, along with the labeled data. The details of the

GAN architecture and its working will be covered in the chapter on data augmentation.

This study provides novel contributions, by performing an in depth analysis of the

above model using hyperparameter tuning and shows that GANS have a limitation and

show a potential of overfitting. There is a limit to the amount of data that can be

generated, where after a certain point, the generator generates the same data points.

This increases the accuracy on the training data, however, it fails to generalize on the

unseen test data.

The GAN was implemented to address the challenge of having a small sized and semi

supervised dataset, by way of data augmentation.

Another challenge in dealing with metal casting datasets, is that they are heteroge-

neous and multimodal and often times have quite a few missing values. The missing

values could be due to either a technical reason such as faulty sensors or human errors

during the data collection phase. We address this issue, by implementing masked het-

erogeneous autoencoder and masked variational autoencoder models for missing data

imputation, and show that the imputed data using our model matches the performance

of the original data in terms of the area under a precision recall curve, even when the

missing rate goes up to as high as 0.6.

We observed that the HMVAE model is better than the former and has a better

reconstruction capability as compared to the other model across di↵erent missing rates.

This can be seen in the figure shown below. The details of the loss functions, architecture

and working of these models will be discussed in the chapter on missing data imputation.

Lastly, the dataset is also highly imbalanced. We implemented a number of resam-

pling strategies to give higher weight to the minority or the failed class, which is the more

important one in this context. We also tried di↵erent resampling ratios and classification

schemes for the dataset.

The imbalanced data has minority class as only 6% of the total dataset. The details

of the implementations will be covered in the chapter on balancing techniques. However,

it is important to note that the size of the dataset is very small and more data is needed

to validate the above models.
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Chapter 1

Introduction

1.1 Motivation

Modern foundries have the capability of capturing large amounts of data during the

metal casting manufacturing process. This data includes the casting process data, the

molten metal preparation details data, simulation data, part geometry data and non-

destructive testing data. However, the data is collected during di↵erent stages of the

casting process. This data is kept in silos and their utility is often limited until they are

integrated together. Unless there is a way to integrate, fuse and analyze the data, this

would be a lost opportunity for the foundry. Figure 1.1 shows the various processing

data in silos.

The cast component could have a number of irregularities. Among the defects that

are found, porosity is considered to be a major defect, which is not easy to detect [10].

The below figure shows the defects that are found in metal casting processes. It can

be seen that around 35% of the casting defects are caused by porosity. Also, about

65% of the defects are related to porosity. Many a times, the porosity defect is located

internally in the casting and will not be exposed until the casting is machined, which

makes it hard to identify. At this point in the cycle, the cast component has already

accumulated significant amount of operation cost and if the casting is bad quality, then it

would have to be rejected and the producers have to pay for the high rejection cost [10].

Porosity is primarily caused by solidification shrinkage or gas bubbles trapped within

the casting. Moreover, when there are small voids, holes or pockets found within the
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Figure 1.1: Manufacturing data is collected at di↵erent stages of the manufacturing

cycle. The siloed data is shown in this figure [1].

metal, porosity defect occurs. It is important to control and alleviate porosity below

certain permissible thresholds, depending on the product that is being manufactured. It

is critical to find out the key factors that are responsible for porosity formation in the

production. The Figure 1.3 shows an example of the porosity defect in a cast bronze bar

stock [11].

The objective of this research is to overcome such challenges in the metal casting

manufacturing process, so as to create a knowledge-based approach for the foundries

and to improve their process cognition. Foundries as of today, have no means to analyze

process data and correlate it with quality data. It is essential to assist in the overall

understanding of the root cause of porosity formation and enhance this casting process

at the foundries and throughout the casting supply chain.

Machine Learning based approaches have shown to deeply impact such data heavy

industries. This thesis covers some of the approaches that can be exploited to build a

system that could help have better control over the metal casting process and create

value for the foundries. This in turn, could enhance data driven decision making for the



5

Figure 1.2: This figure shows the defects present in the metal casting process [2].

Figure 1.3: This figure shows porosity defect in a cast bronze bar stock [3].

foundries.

Furthermore, the work done in this thesis demonstrates that machine learning and

deep learning approaches can provide significant improvements to the metal casting pro-

cess and yields. The aim is to develop a framework that would transform the chemistry
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and the process related data into knowledge, which can be leveraged by the foundries.

The inputs would be raw data sets that would be pre-processed. The outputs would

be predictions of the part quality along with identifying the most important parameters

that are responsible for porosity levels of the cast parts and ultimately the quality of

the metal cast components. The results can be verified with the domain experts who

have knowledge of the entire casting process. This work relies on and promotes both the

machine learning aspect as well as the human learning process. Moreover, anomalous

parts can be determined based on their processing conditions. By reducing the defective

parts and ultimately the scrap rate, it would eventually lead to creating smart foundries

as part of the age of Industry 4.0. The figure below shows an example of the metal

casting process dataset.

Figure 1.4: This figure shows an example of a metal casting dataset.

1.2 Challenges

The main challenges in trying to convert the metal casting data into knowledge are

mainly as follows:

• Unbalanced dataset:

The part quality data is extremely unbalanced. Handling unbalanced data for

machine learning is a growing research area and numerous studies have been carried

out to handle the skewed data set issue, since a large number of real-world datasets

are highly imbalanced. Successful foundries have a large-scale production of defect
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free components. Owing to this, the defect free or good quality parts produced

are significantly higher than the failed parts. Furthermore, it is very expensive

to perform the quality inspection of all products. As a result of this, it is easy

to measure most of the processing data of each casting, however to generate the

quality data of the casting can be quite challenging. The below plot shows an

example of the imbalance ratio of the classes.

Figure 1.5: This figure shows the population of casting in each quality class. It can be

seen that the dataset is highly imbalanced.

This setting makes the metal casting data fall into the category of an unbalanced

and semi-supervised learning problem, which is challenging even for the state-of-

the-art machine learning algorithms. The minority class features are particularly

underrepresented in this case which leads to a poor performance while applying

traditional machine learning algorithms. By using resampling techniques, the al-

gorithms can learn from the structure of the failed or the minority class in the

original data set and then generate new data points from this class such that the
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population of the failed parts will be balanced with the pass class. This way, the

population of all classes can be equal to each other and can improve minority class

detection.

The figure below shows a snapshot of a semi-supervised data set, where only some

of the instances are labeled and some are unlabeled.

Figure 1.6: Semi-supervised dataset. We have the response variable only for a few parts,

and do not know the quality of the other parts.

To deal with the imbalance, small size and semi supervised learning scenarios, two

approaches were mainly used:

1. Data level approaches and Algorithm level approaches: In the data level re-

sampling approaches, the minority or majority classes are either up-sampled

or down-sampled respectively in order to create equal number of instances

in both the classes, in order to balance the proportions. In algorithm level

approaches, the algorithm is itself modified to bias the predictions towards

the minority class by giving more weight to this class [12].

2. Deep learning is popularly being used these days for data augmentation of

small and unbalanced datasets. In particular, generative adversarial networks

(GAN) is a popular deep learning technique, used for synthetic data genera-

tion in this study. We implement a variation of a GAN in a semi-supervised

setting, which can also leverage the fact that the data consists of unlabeled
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data. The detailed implementation of these techniques and their comparison,

will be covered in the further sections [13].

• Another challenge in dealing with metal casting datasets, is that they are hetero-

geneous and multimodal and often times have quite a few missing values. The

missing values could be due to either a technical reason such as faulty sensors or

human errors during the data collection phase. We address this issue, by imple-

menting heterogeneous denoising and variational autoencoder models for missing

data imputation, and show that the imputed data using our model matches the

performance of the original data in terms of the area under a precision recall curve,

even when the missing rate goes up to as high as 0.6. The figure below shows the

various processing data in silos, which represent the multimodal, heterogeneous

nature of the dataset. The details of the model will be covered further in the

section on missing data imputation.

Figure 1.7: This figure shows the siloed data implying the heterogeneous and multimodal

nature of the dataset [1].

1.3 Thesis Contributions

This thesis possesses the following contributions to the field of Data Science and

Metal casting:

• Novel contributions to the field of metal casting by using Generative Adversarial

Networks (GAN) for synthetic data generation. The generated data being notably

similar to the original data belonging to both the good and the bad quality part

data. The need for additional data is vital because of a very small size of such

data sets.
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While GANS are being popularly used nowadays for generating synthetic image

data, to the best of our knowledge, this is the first study which implements a GAN

in a semi-supervised setting on a manufacturing dataset such as metal casting. We

have successfully been able to generate synthetic data faithful to the original data

distribution and also observed that the GAN classifier gives better performance

in terms of F1score as compared to other classifiers on a balanced dataset. This

setup eliminates the need for having a separate classifier for supervised learning,

since the discriminator itself is used as a classifier.

• Although there have been studies earlier that have used GAN in a semi-supervised

context on image datasets, we also perform an in depth analysis using hyperpa-

rameter tuning on the semi-supervised GAN model and demonstrate its potential

for overfitting across multiple training epochs and changing model architectures.

• We implemented a HMAE and HMVAE using an indicator matrix to mask random

fraction of values in the dataset and reconstruct those values using backpropoga-

tion. Our results validate the success of our models by comparing them to naive

techniques such as mean imputation. The performance using the autoencoder

scheme almost matches that of the original data, even when the missing data rate

goes up to as high as 0.6. This will help us deal with datasets with a high propor-

tion of missing values, by not discarding the samples with incomplete information,

and not reducing the size of the dataset for analysis. We demonstrate the supe-

riority of our model on both, an open source toy dataset for regression as well as

the metal casting dataset for classification.

• We use neural networks, with stratified cross validation to find and save the best

weights for the model that minimizes the validation loss. We weigh the classes

based on the frequency of samples of each class present in the dataset. This reduces

the bias towards the majority class by giving more weight to the minority class of

the unbalanced dataset. We then use the saved weights to test the performance

on testing data. This model shows improved performance on the testing data in

terms of the recall on the minority class, as compared to any other resampling

techniques used for balancing the data. We target models with a high recall on

the minority class, which is the more important class in this context.
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• Robust combinations of techniques to find important features responsible for pre-

dicting the quality of the metal cast component were implemented. The features

found using these techniques have been verified with the foundry engineers and are

in agreement with the most important features, based on their domain knowledge.
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Chapter 2

Data pre-processing

2.1 Merging the raw data sets

This research consists of analysis on two metal casting data sets, described as follows:

• The first data set is a marine engine block data set. As can be seen in the image

below, the raw data, consisted of two sheets. The first sheet consisted of 19 columns

and 176 rows. The second sheet consisted of 11849 rows and 11 columns. The two

sheets needed to be merged in such a way that, every instance in the final merged

sheet would contain information about one particular cast component based on

the serial number and date combination from the original two sheets for that

component.

• The first sheet consisted of information for the component, for the molten metal

treatment and casting process along with the response variable i.e. quality pass

or fail. The second sheet consisted of the cycle information for each component

from sheet 1. Each cast component has a di↵erent cycle time, depending on its

composition. Cycle time here refers to the total time that it takes a particular

component to go from the liquid molten phase to the solidification state when the

final cast part is ejected. For consistency, in terms of the dimensions of the final

merged sheet, the cycle time was chosen as 450 seconds for each component with

each reading for temperature being taken every 10 seconds. In the second sheet,

the start of the cycle time is given by B and the end of the cycle time is given as
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E.

The below image shows the snapshot of the merging process for this dataset.

Figure 2.1: This figure shows the merged data from the two raw sheets.

The dimensions of the final merged sheet were 452 rows and 256 columns. The label

prediction in this data set being a binary classification problem. The total number of

samples that were tested were 224. Out of these, 205 passed the quality test whereas,

only 19 failed the test. The rest of the samples were not tested and were assumed to

be good quality parts. However, since the 228 parts were based on an assumption of

passing the test without actually being tested, the quality of these parts were predicted

using machine learning techniques, in order to ensure that they were indeed good quality

parts. Moreover, if the company is shipping out the product to their customer, under

the assumption that it is a good quality part and it fails after being delivered, it would

have a tremendous impact on the company not only in terms of finances, but it would

also put the company reputation at stake. Also, the ratio of the 2 part qualities shows

that the actual tested parts that failed, are a meager 0.09 percent of the total number

of parts in the final merged data set.

The second dataset is that of a silicon wafer ion implantation system, obtained from a

foundry in Palmer, MA. The raw data, once again consisted of 2 sheets with the process

and the chemistry parts respectively. We merged the 2 sheets based on serial number and

date combinations to obtain the final merged sheet. The final merged sheet consisted of

565 rows and 20 features. The response variable consisted of 5 part qualities. Although
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it is a multi-class classification scheme, we implemented a number of di↵erent schemes

including binary using the most common and the least common classes as well one-vs-all

schemes to validate the performance of our models. The quality is in terms of porosity

levels where class 1 is the best or good quality parts in terms of porosity and class 5 is

the worst and samples of this class will need to be scraped immediately. The proportion

of castings in the dataset belonging to each class is shown in the figure below:

Figure 2.2: Data Imbalance

The total number of items of each class are as follows:

• Class 1: 254

• Class 2: 213

• Class 3: 30

• Class 4: 7

• Class 5: 2

As can be seen, class three, four and five are in the minority. Once again only 30, 7

and 2 samples to learn from which is very less for machine learning to give good precision

or recall on these classes.
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For this report, in order to be consistent and avoid repetition, we discuss results

implemented only on the second dataset.

2.2 Z-Score

The first pre-processing step on the original merged data was to normalize it. We

used a Z-score to standardize the data because the various features are measured on

widely di↵erent scales. This gives us a transformation of the original data that has a

mean of zero and standard deviation of 1. The Z-score is defined as given below [14]:

Zx =
Xi � X̄

Sx
(2.1)

where,

Zi represents the Z-transformed sample observations, Xi are the original values of the

sample, X̄ represents the mean of the observations for every column and Sx is the sample

standard deviation. The Z-score transforms the data such that it becomes comparable

by measuring the observations in multiples of the standard deviation of that sample.

This facilitates the interpretation of a single observation [14].

For deep learning models, we also tried other kinds of normalization and scaling

methods such as min-max scaling, to see the impact on model performance using di↵erent

techniques. Min-max scaling is given by:

Xi �Xmin

Xmax �Xmin
(2.2)

Here, Xi refers to the dataframe at hand. The Xmin and Xmax refer to the minimum

and the maximum values found in every column of the dataset respectively. This helps

us restrict the values of the dataset to a fixed range such as between 0 and 1 or -1 and

1, which the Z-transform does not guarantee [15].

The image below shows a snapshot of the dataset, after min-max scaling.
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Figure 2.3: This figure shows the data after min-max scaling.

2.3 Exploratory Data Analysis

2.3.1 Principal Component Analysis

Many real-world data sets have low intrinsic dimensionality, although being embed-

ded in a high dimensional space. This has made dimensionality reduction, a growing

area of research in machine learning. It is important to recover the hidden structure of

the dataset. Specific mathematical methods are needed to recover and understand the

low dimensional representation of the dataset. [16]

Principal component analysis (PCA) is an unsupervised machine learning method

that projects data from a high dimensional space onto a lower dimension subspace. This

is helpful so as to plot and understand the data, since human beings cannot visualize data

in more than three dimensions. This helps us learn the underlying representation of the

data [17]. Compressing the data to a lower dimension can also help save the computation

and time for very high dimensional datasets. PCA is a linear transformation of the

original dataset. The principal components are linear combinations of the columns of

the original dataset. The principal components are chosen in a way such that we do

not lose out on information and the direction of the chosen principal components covers

the maximum variation of the original dataset in that direction. The first principal

component has the highest singular value, meaning that it covers the maximum variation

in the data, the second principal component covers the second highest variation in the

original dataset and so on [18].
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2.3.2 Methodology

In this section, we discuss the steps taken to perform dimensionality reduction using

PCA. PCA essentially transforms the original variables in the dataset that are corre-

lated into a smaller number of variables that are uncorrelated. These are known as the

principal components. It projects the original data onto a subspace or coordinate system

where it maximizes the amount of variance explained in the original dataset [19].

The first and foremost important step before implementing PCA is to normalize

the dataset. This is essential because each of the columns of the original data set are

measured on di↵erent scales. If the transformation is not performed, then the columns

that have higher values will be given larger weights and will end up dominating the

principal components and contribute the most to the explained variance. We transform

the dataset by subtracting the mean of the column and dividing by the standard de-

viation. It is the same as the Z-score covered earlier. The standardized matrix here

will be denoted by Z. This also has additional benefits such as faster learning for neural

networks.

The next step is to find a covariance matrix of the dataset. Moreover, the covariance

matrix will be calculated on the standardized dataset. This can be done by performing

a matrix multiplication of ZT and Z by normalizing with 1/n-1, here n is the number of

features in the dataset. The final matrix obtained after the transformation has n rows

and m columns where n and m are the original rows and columns in the dataset [13].

Each of the values on the diagonal of the covariance matrix corresponds to vari-

ance explained by each dimension. Every non diagonal element explains the covariance

between two features. [20]

The final step would be to perform what is known as the eigen value decomposition,

and find the eigen values of the covariance matrix. The final matrix has the eigen values

on the diagonal in decreasing order. Here the eigen vector matrix is denoted by V.

Moreover, the eigen vector matrix has the columns V1, V2, V3 and so on. These columns

represent the first, second and third principal components and so on with the last element

representing the last principal component corresponding to the total number of columns

in the original data set. Each of the vectors are orthogonal to each other and are ordered

in the decreasing order of variance explained.
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The steps of the algorithm can be summarized as below:

• Standardize the data. Usually a Z transform as explained earlier, given by sub-

tracting mean and dividing by standard deviation. This is given by Z.

• Find the Covariance Matrix Zc =
ZT .Z

n� 1
.

• Eigen value decomposition which is given by U
P

V T , basically has
P

as the

diagonal matrix of interest that carries the eigen values in decreasing order.

The total number of rows in the data set remains the same as original, only the

number of columns in the data set are reduced from M to L after implementing

PCA [21].

The below plot shows the two-dimensional PCA plot of the Palmer Foundry data

set. It is colored by the quality response variable.

Figure 2.4: Two dimensional PCA plot - Palmer Foundry dataset. It is colored by the

quality response column.

The second plot is also called as a scree plot. This plot is used to show the amount

of variance that is explained by each of the principal components. The X-axis is the

number of principal components and the Y-axis is the cumulative amount of variance
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Figure 2.5: Scree plot showing cumulative variance explained using PCA.

explained by each component. The amount of variance explained can also be calculated

by the eigenvalue in terms of the ratio of the total sum of the eigenvalues [22].

Plotting and understanding the scree plot is critical, before drawing conclusions about

the dataset. As can be seen in the scree plot above, the first two principal components

only cover about 50 % variation in the original dataset. This shows that the underlying

structure of the data could actually be quite di↵erent from what is seen in the compressed

representation here. We are losing almost 50% of the variation in the original dataset.

Hence, we cannot rely on using the first two components. We also tried using more

dimensions, about 8 or 9 principal components, which cover about 85 to 90% variation

in the original data, for making predictions using this data with di↵erent classifiers.

However, the best performance of the classifiers was observed using all the features in

the original dataset and without using dimensionality reduction.

A drawback of PCA, is that it only uses linear transformation of the data for di-

mensionality reduction. However, if the relationship between the features is non-linear,

PCA fails to capture the relationships between them. In such a situation, an alterna-

tive to this dimensionality reduction is autoencoders. Manifold learning or non-linear

dimensionality reduction is essential to understand the intrinsic dimensionality of most

real world data sets.
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Autoencoders are a deep learning technique that are used to learn to perform non

linear transformations using di↵erent activation functions. An autoencoder with a linear

activation function is essentially similar to PCA [23].

Furthermore, Autoencoders are used to extract features from the data set and the

extracted feature vectors can be used for di↵erent tasks such as clustering, classification

and regression. The raw data is fed to the input layer. The hidden layer of the neural

network is used to learn the features of the data set and extract the most useful features

that are required to predict the label or output. It captures useful and interesting

relations of the input [23].

In this case, it is a regular feed forward neural network where the inputs are the

same as the outputs and can be used for optimal representation of the features [21].

The below figure shows the two dimensional comparison of the PCA and Autoencoder

models on one of the datasets.

Figure 2.6: This figure shows a comparison between the PCA and Autoencoder tech-

niques for dimensionality reduction.

Autoencoders take an input X 2 Rd, which is an input in a d-dimensional space,

and map it using an encoder to a hidden representation y 2 Rk through a mapping, as

given by the form: y = f✓(x) = s(W.XT + b). Here s can be any non linear activation

function such as a sigmoid or a tanh, depending on the application. In the second part

of the network, also known as the decoder, y is mapped back into a reconstruction X̄

of the input. Here, X̂ = f✓(X) = s(W T .X + b) and it follows a mapping similar to the

encoding part of the network. The weights here are updated during training in a way
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such that the mean reconstruction error is minimized. The loss function is as shown

below, which is essentially the frobenius norm of the original and the reconstructed

inputs. L(X̂,X) = min ||X̂ �X||2

The hidden layer captures the reduced compressed representation of the input data.

We can keep adding multiple hidden layers such that the autoencoder can keep learning

multiple hidden compressed representations of the input data. This leads to higher and

higher levels of feature representations or feature abstractions.

The lower dimensional representation of a PCA or autoencoder can be used to feed

to any classification algorithms to get predictions about the quality or the response

variable. The best way to assess which one of these techniques fits the data better, is by

plotting it and using it along with a classification algorithm to evaluate the performance.

In case of this dataset, the autoencoder model worked very well for missing data

imputation and reconstruction. However, using the hidden layer representation of the

autoencoder to make classification predictions did not yield optimal results as compared

to the original dataset features. This could also be due to the small size of the dataset

and we need more data to confirm the results.

It is important to note that, it is not necessary that an autoencoder will always

outperform a simpler technique like the PCA. Moreover, if a linear transformation is

good enough to learn the dataset at hand, without any loss of information, then a

complicated deep learning network like an autoencoder may not be necessary [21]. The

chapter on missing data imputation discusses the implementation on autoencoders in

depth.

2.3.3 Feature Selection

Often in data science we have hundreds or even millions of features and we want a

way to create a model that only includes the most important features. This has mainly

three benefits. First, we make our model simpler to interpret by reducing the number

of variables included in the analysis. Second, we can reduce the variance of the model,

and therefore over fitting. Finally, we can reduce the computational cost (and time) of

training a model. The process of identifying only the most relevant features is called

feature selection.
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The Figure 2.7 shows feature importance using an algorithm known as XGBOOST,

short for extreme gradient boosting. Xgboost is a library for gradient boosting algo-

rithms. Boosting algorithms work on the principle of using multiple weak learners and

converting them to strong learners. It is an iterative technique where the model works

in a sequential manner by adjusting weights of the weak learners as training progresses.

This is e↵ective in terms of bias reduction and improvement of accuracy [24] . The

plot 2.7 shows the important features in the dataset using this technique, in terms of

the f-score. The f-score here indicates the number of times that a particular feature is

used at a split in the decision tree. The more the number of times a feature is used, the

more important it is for predictions.

Figure 2.7: This figure shows the important features in the dataset using the XGBoost

algorithm and a f-score criterion.

The feature importance score using a combination of di↵erent algorithms is seen in

Figure 2.8. This is a more robust approach as compared to using only Random Forest or

any other algorithm by itself, so that we can verify the results obtained using multiple

algorithms to see if they are in agreement. This is especially true when the size of the

dataset is extremely small, such as this one.

Feature Engineering is one of the most critical pre-processing steps for implementing

e↵ective machine learning. Feeding the algorithm with the right information is crucial.

Choosing the right parameters of the data set and taking into account multiple factors

such as the composition of the alloys, environmental conditions in the foundry, changes
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Figure 2.8: Feature Importance using a combination of techniques such as Random For-

est and SVC is shown below. It works by finding the most important features individually

and then taking a majority vote to find the final features that are important.

in temperature during the entire process etc. and deciding which of these are most

important in terms of quality prediction is crucial for e↵ective process control. Feeding

the algorithm with the right information and communicating the results to the foundry

is important for improving their process cognition.

There are a number of decisions to be made, such as:

• How should the chemical composition data be represented to be comparable with

the environmental and temperature data?

• How frequently should the temperature be measured?

• Is providing the ambient humidity important?
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Some of these decisions are relatively easier to make as compared to the others.

Feature selection is important to link the features together and help in answering such

questions. The above techniques help select the features that are most important to

answer the question at hand.

In this study, feature selection techniques were used for dimensionality reduction be-

fore implementing classification algorithms. However, across di↵erent algorithms, over-

all, it was observed that feature selection did not significantly improve performance as

compared to using the original features in the dataset for classification. [1]

2.4 Cross Validation

Cross Validation is an important step before implementing any machine learning.

Splitting the data set into training, testing and validation is an e↵ective way to improve

the accuracy of predictions and can be used while evaluating the performance of the

algorithms. The algorithm needs to be tested in a manner that is faithful to how it will

be used in a real world scenario. Cross Validation used for the datasets in this study

was K-fold and stratified K-fold, as explained below:

TestTrainTrain

Train Test Train Train

Train TrainTrainTest

Train

TestTrainTrainTrain

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Figure 2.9: K-fold Cross Validation [4].

Cross Validation is a common practice used for machine learning, to prevent over

fitting of a training dataset. It is important that the classifier performs well on data

that it has not seen earlier and has a good generalization performance on parts that are
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being rolled o↵ of an assembly line. The idea is to divide the entire data into multiple

folds. We train the data set on K-1 out of the K folds and validate it on the Kth fold.

This technique was used for hyper parameter tuning of the algorithms. For example, in

a Random Forest algorithm, we need to find the optimal number of trees to be used in

the Forest, the optimal number of parameters to be used or considered while splitting

at each node of the tree.

We have done this using K-fold cross validation. Each time, a di↵erent fold out of

the K folds is used for validation and the remaining K-1 folds are used for training.

We can do this K times, which is usually 5 or 10 [25]. This way, we can change the

parameters while training and validating multiple times on di↵erent folds, in order to

find the parameters that give us the best performance in terms of the metric that we

are trying to maximize. Once we find these optimal parameters using cross validation or

a grid search, we can use these same set of parameters to make predictions about new

unseen testing data. For this study, we used a similar approach. The data was split as

70 % into training and validation and 30 % as testing data.

Another approach known as stratified K-fold cross validation was also implemented

because the dataset is highly imbalanced. Stratified K-fold is a variation of K-fold cross

validation in which the folds are split in such a way that the ratio of the classes is

representative of that in the entire data set. For example, in a binary classification

problem, if a data set has roughly half instances of each of the classes, then every

fold in the K-folds will have roughly half instances of each class. Stratified K-fold is

therefore better in case of data sets that are unbalanced. Owing to this reason, stratified

sampling gave better results on the imbalanced classification schemes, as compared to

using only regular cross validation. Using cross validation, we test the performance on

multiple subsets of the data and take the average of the metric across all the folds as the

final measure of performance. We used a number of di↵erent metrics includingF1score,

precision and recall to measure performance [26]. We have used both, K-fold cross

validation as well as stratified K-fold cross validation in this study and the further

sections would specify the technique used for di↵erent algorithms.
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2.5 Pearson Correlation

The below table shows a correlation matrix heatmap of the dataset. This is Pear-

son’s Correlation matrix. The Pearson product moment correlation coe�cient shows the

strength of the linear relationship between any two quantitative variables. However, this

is only for linear relationship between variables. If it is not a linear relationship, then this

coe�cient cannot be used or rather does not strongly represent the relationship between

the two variables [27]. This is denoted by r and in order to understand whether this

can be used as a measure or not, can be decided based on whether the two continuous

variables or the relationship between the response and the predictors is a linear one.

This can be seen by using scatter plots and using the correlation coe�cient if a linear

relationship is seen between the two variables. The response variable is usually drawn

on the y-axis where as the predictor is on the x-axis. The nearer the scatter points

are to a straight line the better the strength of the linear relationship is and higher the

association between the variables is. This is irrespective of the measurement units that

are used in the data. It can be seen that features like RH Floor and Gr Floor are highly

correlated. In such situations, we can eliminate one of the two highly correlated features

and then perform analysis. This is owing to the fact that we are not adding value to the

analysis by including both the features that are highly correlated. We used either one of

RH Floor and Gr Floor during classification. It was seen that eliminating one of these

features slightly improved the classification performance of the algorithms, although not

significantly [27].

The Figure 2.11 image shows the distribution of the features in the Palmer foundry

dataset . We can check the amount of overlap in the distributions of the good and

the bad classes in order to find the features that are the most important in terms of

quality prediction. These show the marginal contributions of the features to the part

quality. Although there is a lot of overlap and we cannot readily spot the di↵erences,

we can still identify a few trends such as, for example, values of riser density below a

certain threshold clearly increases the fraction of bad quality parts, whereas, above the

threshold, increases the fraction of good quality parts. It is critical that the foundry

maintains the values of the variables in the range that reduces the fraction of bad parts.
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Figure 2.10: This figure shows the correlation matrix based on Pearson’s correlation

between variables in the dataset. This shows the strength of linear relationship between

the features of the dataset.

Figure 2.11: This figure shows the marginal distributions of the features in the dataset

in terms of the quality. It can be seen that some of the features are more important in

terms of separating the good and the bad quality parts as compared to the others.
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Chapter 3

Methods for treating small,

semi-supervised and imbalanced

data

This chapter provides information on the resampling techniques and other approaches

that were used in this study to deal with the small sized and imbalanced nature of the

problem. These techniques are a combination of over-sampling and under-sampling tech-

niques as well as cost sensitive learning. As mentioned earlier, deep learning approaches

such as generative adversarial networks (GANs) have also been used in this study for

data augmentation. However, the semi-supervised GAN shows optimal performance

when the dataset is balanced. The minority classes, in particular, classes 3, 4 and 5 have

very few samples for the network to learn the underlying structure of the data from, and

make predictions on the unseen test data.

Moreover, as will be discussed in the section on GANS, the semi-supervised GAN

outperforms other classifiers when we use a binary and balanced one-vs-all classification

scheme, where class 1 refers to good quality parts and classes 2, 3, 4 and 5 are all

combined to form the bad part quality class. We show a comparison in terms of the

F1score using the GAN along with other classifiers. The GAN has a higher median value

in the box plot and it is also more consistent across multiple folds of cross validation as

compared to any of the other classifiers. The sections below detail each of the techniques
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that were implemented.

3.1 Random oversampling and undersampling

We used random oversampling and undersampling techniques to balance the class

proportions. However, in random oversampling, the algorithm has a high potential to

overfit because it does not generate additional synthetic datapoints, but only duplicates

the existing data points. Similarly, random undersampling has a drawback that while

randomly downsampling the majority class, we could be throwing away important in-

formation in the dataset. Owing to these reasons, we implement the SMOTE technique,

which will be described below [12].

3.2 Synthetic Minority Oversampling(SMOTE)

An example of the SMOTE balancing technique two dimensional PCA plot for the

Palmer foundry dataset is as shown below [12]:

The SMOTE algorithm generates synthetic samples of the minority class, such that

they are equal to or nearly equal to the number of samples of the majority class. It takes

an instance of the minority class and randomly chooses from one of its nearest neighbors

and takes a linear combination of these to generate synthetic data. We can manually

change the number of neighbors that it considers while interpolating between two points

of the minority class.

However, SMOTE has a drawback such that it reduces the variance in between the

samples and introduces correlation between them. This could impact the classification

algorithms that depend on the assumption of independence of samples. Most of the

variable selection methods assume that the samples are independent [28].

The below equation can be used to describe the SMOTE technique.

s = Z + u⇥ (ZS � Z), with 0  u  1 (3.1)

Here ZS is amongst the nearest neighbors of the minority class sample under consid-

eration. The number of nearest neighbors to be used while generating synthetic data for
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Figure 3.1: SMOTE two dimensional, colored by quality

a particular minority class sample can be changed and the best number can be selected

for a particular dataset.

We also implemented variations of SMOTE such as borderline SMOTE, in which we

focus on the borderline examples of the majority and the minority class while resam-

pling because the samples at the borderline are more prone to misclassification errors as

compared to the ones away from the border.

3.3 Generative Adversarial Networks(GAN)

Generative adversarial networks(GANS) are a popular deep learning technique used

for data augmentation. This set of networks originally belong to the field of unsupervised

learning, as they do not require the labels or response variable for the generation of the

synthetic data. They are generative models that learn the underlying distribution or

structure of the data without specifying the target value. GANs learn the intrinsic
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distribution of the classes in the data set, that has multiple classes, such that they

generate the synthetic data for all the classes that belong to the original dataset, so long

as we have large number of samples belonging to each of the classes [5].

3.3.1 Evaluation Metrics

The two most commonly used metrics for the comparison of GAN performance, are

the Kullback-Leibler Divergence(KL divergence) and the Jensen Shannon Divergence(JS

divergence). The KL divergence is essentially a measure of how one probability distri-

bution P diverges from the other Q. It is given by the following:

KL(P ||Q) = �
X

P log(P )/ log(Q), (3.2)

The KL divergence is not symmetric, whereas, the JS divergence is symmetric. The

places where the distribution of P is zero and Q is non-zero, the e↵ect gets disregarded.

This could be problematic when we have two distributions that we are trying to compare

where both are equally important. It is important that for the regions where P has a

non null mass, Q also has a non null mass. There is an integral term in the equation for

the KL divergence which explains that if the distribution Q is chosen to minimize the

KL metric, it is unlikely that Q will assign a lot of mass to regions where P is close to

zero. JS Divergence on the other hand behaves in a similar manner for small values of

P or Q [29].

The architecture of a GAN is as summarized below:

Figure 3.2: This figure shows the architecture of a vanilla GAN model [5].
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It has two neural networks working against each other, namely the generating network

and the discriminating network. The discriminator D has the objective of identifying the

images as real or fake. The adversarial generating network has the goal of tricking the

discriminating network into believing that the fake images are real. During training, the

discriminator is trained on random images of real data along with an equal proportion

of images generated by the generator. The task of the discriminator is to distinguish

between the real and the synthetic images. It outputs a probability between 0 and 1,

where 0 meaning that the image is identified as fake, 1 meaning that the discriminator

thinks that the image is real. Anything in between gives us a probability that the

image is real. Depending on the outcome of the discriminator, both the networks try

to optimize their own parameters by fine tuning their networks and becoming better at

their objective. If the discriminator is easily able to discriminate between the real and

the generated images, the generator does a better job creating artificial images, making it

harder for the discriminator to be able to distinguish between them, in the next iteration.

After training for a su�ciently long period of time, there would come a time when the

discriminator outputs a probability of 0.5, meaning that it is no longer able to distinguish

between the real and synthetic data. This would be the ideal situation, meaning that

the generator is generating very realistic looking data, such that the discriminator is not

able to tell it apart from the real data. At this point, both the networks cannot improve

anymore and have converged.

This is a mini-max game with the value function V (G,D) which is given below:

minG,maxD V (D,G) = Ex⇠pdata [logD(x)] + Ez⇠pz(Z)[log(1�D(G(Z)))] (3.3)

It has two loops, the outer loop is trying to minimize the equation with respect to

the generators parameters alone and the inner loop is trying to maximize the equation

with respect to the discriminator’s parameters alone. It can be seen, based on the log

values, that the two networks are in an adversarial mode where they have opposing tasks

in the game which they try to satisfy until convergence [30].

Furthermore, if the discriminator is not able to classify the real and synthetic images,

it will update its parameters in order to do a better job in the next iteration. The total

reward for the discriminator is the total number of correct predictions that it makes and
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the reward for the generator is the total number of discriminator’s errors. This process

continues until the parameters are optimized and equilibrium is achieved. Moreover, the

discriminator weights are updated in such a manner that they maximize the probability

of a real data sample x being classified as belonging to the real data set. On the other

hand, the discriminator minimizes the probability that a fake sample is classified as

belonging to the real data set. The loss or error function used maximizes the function

D(x) and also minimizes the D

✓
G(z)

◆
.The log probability is used in the loss functions

instead of raw probabilities, since a log loss heavily penalizes the incorrect classifications

of an algorithm that is confident about its predictions. This can be seen in the log graph

as shown below.

Figure 3.3: Log plot [6].

The generators distribution P (g) is given over data X.D(x; ✓) outputs a single scalar.

D(x) is the discriminating network and it gives a probability value between 0 and 1

expressing the probability that x is coming from the original data and not the generating

network. The generating network G is trained to minimize log

✓
1 � D(G(Z))

◆
. The

discriminator loss is given by Eq.(3.4):
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LD =
�Ex⇠pdata log[(D(x))]� Ez⇠pz(Z)[log(1�D(G(Z)))]

2
(3.4)

The generator loss is given by the Eq.(3.5):

LG = E[� log (D(G(Z))] (3.5)

LG = E[log (1�D(G(Z)))]

The generator network tries to maximize the probability that the fake sample is

classified as real by the discriminator network. One of the biggest issues with training

a GAN is not having su�cient training data. It is very expensive and tedious to collect

data. This is especially true in the metal casting context. This makes it di�cult for the

GAN to learn the underlying structure of the data from only a few examples. There are

very few bad quality parts in the metal casting data set. This makes it challenging for

the GAN to learn the underlying structure of the data from very few data points, unless

the dataset is balanced.

Generative models can also be used for classification tasks, where the discriminator

distinguishes between real and fake data and also outputs the probability of the class of

the data, if it is a real sample. This is a part of a semi supervised learning architecture

of a GAN as mentioned earlier. The architecture of the semi-supervised GAN is shown

in the figure 4.11. The architecture of a semi-supervised GAN is as shown below:

Generative models try to model the real data distribution such that the real samples

have as high a probability as possible. Maximum Likelihood estimation is used for the

same purpose. Maximizing the maximum likelihood estimation is same as minimizing

the KL divergence metric mentioned above. The loss of the generator can be given as

the negative of the loss of the discriminator L(G) = �L(D).

If the discriminator is trained on an equal number of samples of the generated data

and the real data, the loss function or the expected absolute error of the discriminator

will be given as below:

E(G,D) =
1

2
Ex⇠px [1�D(x)] +

1

2
Ez⇠pz [D(G(Z))] (3.6)
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Figure 3.4: This figure shows the architecture of a semi-supervised GAN. It can be seen

that this is a variation of a regular GAN in which along with the real and fake problem,

the discriminator can also be used as a supervised classifier, where we have K classes,

representing the real data and an additional class is added for the data coming from the

generator [7].

The ultimate goal of the generator is to trick the discriminator and try and make

the discriminator output real for fake images and vice versa. Hence, when training

the generator, we try to maximize, the same error metric for the generator that we

try to reduce for the discriminator. Finally, for a good performing GAN, the equation

that a discriminator is trying to minimize is the one given above. The details of the

semi-supervised network will be detailed in the next section.

3.4 Semi Supervised GAN

GANs are generative models that are known to work very well in case of high dimen-

sional probability distributions, which is the case for many real world data applications.

In the metal casting context, GANS have proven to be e↵ective in semi supervised learn-

ing scenarios, where we have a mix of both labelled as well as unlabelled data points.

GANS model di↵erent modes of a data set and learn multiple modes for data genera-

tion. This is also useful for example in cases where one instance in a data set may have

multiple classes [5].

The purpose of using the architecture shown above is two fold. It can be used

as a classifier and eliminates the need for a separate classifier. It also is proven to
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produce better quality data as compared to a regular GAN, in a shorter period of time.

Here we have the generator G and discriminator D which is also the classifier C. The

three networks are working in co-ordination with each other and the feedback from

one network, improvises the performance of the other. The discriminator feed forward

layer final output layer has one single sigmoid unit that indicates whether a particular

sample is drawn from a data generating distribution. We use softmax as the final layer

unit activation for getting the class probabilities in case of multi-label datasets. The

discriminator will have in this case, K+1 output units, where we have K corresponding

to the number of classes in the training data and one additional class is added for the

synthetic samples coming from the generator. [7]

The discriminator/classifier network are trained to reduce the negative log likelihood

of the samples w.r.t. their labels and on the other hand, the generator is trained to max-

imize it. Di↵erent weight parameter initializations and other architectures are compared

to see the quality of the fake data that is generated by these generative models.

Di↵erent parameters, in terms of the batch size, learning rates, activation functions

and optimizers were tried for the semi-supervised GAN model using cross validation.

The best performance in terms of a weighted average F1score for both the classes, was

obtained using Adam optimization, and using a learning rate of 0.002 and an average

batch size of 200. The activations used were Relu and LeakyRely except for Tanh in

the last layer of the generator. This was done because we wanted data to be generated

between �1 and 1, same as our original min-max scaled data.

This type of classification scheme takes a small portion of the labeled data and a

much larger portion of unlabeled data. We can specify the amount of unlabeled data

that we want to use to see how the performance changes as the percentage of labeled

data for training changes.

For the regular GAN problem, the discriminator tries to maximize the probability of

the fake samples to be zero and for the real samples, it tries to maximize their probability

close to 1. Depending on the feedback of the discriminator, the generator updates its

parameters in such a way that it improves and produces more realistic looking samples

in the next epoch.

The discriminator is trained on equal size samples of the real and the generated data

, corresponding to K+1 classes, where the K classes are those from the real data and one
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is added for the generated data. We can then use it for classification on the real testing

data. The softmax output gives the probabilities of the classes. To get the predictions,

we use the maximum probability of all the real classes and exclude the last class which

corresponds to the synthetic data.

Now, the generator is trained on the outputs of the discriminator with only the

generated data of size d until convergence. To summarize the above, the tasks of the

discriminator are as follows:

• Help the generator produce realistic looking images.

• Use the generator’s images along with the labeled and unlabeled data, to help with

the classification of the real test dataset.

The sources of training data to the discriminator are as given below:

• The real data with labels

• The real data without labels

• The fake data generated by the generator.

For the labeled data, the discriminator learns to classify it like any regular supervised

learning problem.

For unlabeled real data, the discriminator learns only that it is real. The unlabeled

data from the generator, the discriminator only learns that it is synthetic. The combina-

tion of these di↵erent sources helps the classifier perform inference from a much broader

perspective. Extensive use of regularization and dropout is made in order to prevent

over fitting and help with good generalization on unseen examples [31].
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3.5 Model loss for semi-supervised GAN

Refer to figure 3.10 below which shows loss function of Semi supervised GAN dis-

criminator, which is a sum of the supervised as well as unsupervised losses:

LD = Lsupervised + Lunsupervised, (3.7)

Lsupervised = �Ex,y⇠pdata logD(y|x, y < K + 1), (3.8)

Lunsupervised = �
(
Ex⇠pdata log


1�D(y = K + 1|x)

�
+ Ez⇠pz log


D(y = K + 1|G(Z))

�)
.

(3.9)

Here G(Z) is a sample that belongs to the generated data distribution, whereas x

is a sample that comes from the real data distribution. This is essentially composed

of two parts, the sigmoid cross entropy loss function, which is used to compute the

loss for the real vs fake regular GAN problem. For real data coming from the training

set, we maximize the probabilities of being real by giving them labels of 1s. For fake

data coming from the generator, we maximize the probability of being fake by assigning

them labels of 0s. For the supervised loss, multi-class classification problem, we use the

softmax cross entropy function with real data labels, that we have available. Although

we use equal weightage on the supervised as well as unsupervised losses in this study, we

would like to use a hyperparameter lambda in the future to adjust the weights of both

the losses to see how it impacts performance.

In summary, the discriminator loss is a sum of the supervised and the unsupervised

losses, namely the sigmoid cross entropy and the categorical cross entropy loss. We

use the labeled data for training and the unlabeled data for testing. We also use a

mask variable to see the impact of masking some of the labeled data and as expected,

with decrease in the % of labeled data, the classification performance goes down. We

use binary cross entropy loss for the generator as well as discriminator since both the

real vs fake as well as supervised classification can be considered as binary classification

problems in this case.

This study shows that GANS are a helpful set of models to learn complex tasks when

we have less labeled data available [7], that we can leverage and learn from along with

the labeled data. We use cross validation on both the generator and the discriminator
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Figure 3.5: Hyperparameter Tuning

Figure 3.6: HyperparameterTuning

networks using a binary cross entropy or log loss improvement metric, to find the optimal

parameter of both the networks. The below plots show an example of hyperparameter

tuning for the GAN discriminator in terms of its loss in discriminating between real and

generated data.
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Figure 3.7: Hyperparameter Tuning

Figure 3.8: Hyperparameter Tuning

In one of the novelties of this study, we also showed that GANS show a potential to

overfit in this setting. The plot below shows the training and testing accuracy as well as

loss. It can be seen that as the training progresses, the GAN starts generating the same

data points, which leads to increase in the accuracy of the training data, however, leads



41

Figure 3.9: Hyperparameter Tuning

Figure 3.10: GAN overfitting across multiple epochs of training

to reduction in the testing data accuracy due to overfitting. Owing to this, we perform

in depth hyperparameter tuning using cross-validation and test the performance of the
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network on changing architectures.

Figure 3.11: This figure shows the most important features in terms of the validation

loss improvement using a Random Forest feature importance technique. It can be seen

that the number of nodes in the hidden layer is the most important parameter followed

by the number of hidden layers in the network.

We use early stopping criterion and stop training when the loss on training starts

increasing, however, starts decreasing on the validation set. We do this multiple times

on di↵erent cross validation folds, in order to achieve optimal performance. The higher

the value of log loss improvement, the better the parameter. Overall, we observe that

shallower and smaller networks are more suitable for this dataset, as compared to deeper

or larger networks. This is reasonable to interpret, given the small size of the dataset.

The results obtained for the supervised classification problem is compared in the box

plots below with other classifiers in terms of the weighted average of the F1score metric.

It can be seen that the the GAN is not only the highest but also the most consistent

as compared to any of the other classifiers. Figure 3.11 shows the importance of the

parameters using a Random Forest algorithm to find the most important features in
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terms of validation loss improvement. It can be seen that the number of nodes in the

hidden layer is the most important feature followed by number of hidden layers.

Figure 3.12: Comparison of classifiers in terms of the F1score. It can be seen that the

GAN model gives the best and most consistent performance in terms of the weighted

average of the F1score on a balanced binary classification dataset.
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Chapter 4

Missing data imputation of

heterogeneous multimodal

datasets

Metal casting process datasets can be categorized as heterogeneous and multimodal.

The data is collected at di↵erent stages of the manufacturing cycle, such as process data,

chemistry data, part geometry data. All of these di↵erent silos of data are individual

modalities of the dataset. A lot of times, data from some of these modalities may be

absent owing to di↵erent reasons. Due to missing values from individual modalities, the

amount of clean data available from all the modalities for making predictions is reduced

significantly. In this situation, discarding the incomplete samples that do not have all

the modalities present is not helpful because the size of the dataset is reduced even

further, which impacts the prediction accuracy of the machine learning models [32, 33].

Furthermore, in the metal casting context, the data is missing at random, meaning

that the missing values do not depend on the values of the features that are observed or

present. In such a situation, if the samples with missing modalities are simply discarded,

the model predictions would be highly biased. Furthermore, a whole block of features

can go missing at once, meaning all features from a specific modality go missing [34,35].

For example, for some of the samples, while merging the datasets, we have data from the

process data modality but do not have data from the chemistry data modality [26, 36].



45

In such situations, it is important to impute the missing modalities with appropriate

values in order to improve the prediction accuracy of the classifiers, rather than simply

discard the samples with missing data in them. In order to tackle this situation, we

implemented heterogeneous masked autoencoder and variational autoencoder [37, 38]

techniques to impute these missing values before implementing any machine learning

models for classification. Missing data imputation methods largely depend on the pattern

in which the data is missing. This study shows that, as the missing rate increases, our

imputation models using backpropogation on a masked matrix, prove to give better

performance as compared to a naive technique such as mean imputation. The basic

architecture of an autoencoder is as given below:

Figure 4.1: Architecture of an autoencoder [8]

Autoencoders [39] take an input X 2 Rd, which is an input in a d-dimensional space,

and map it using an encoder to a hidden representation y 2 Rk through a mapping, as

given by the form [40]: y = f✓(x) = s(W.x+ b). Here s can be any non linear activation

function such as a sigmoid or a tanh, depending on the application. In the second part

of the network, also known as the decoder, y is mapped back into a reconstruction x̄

of the input. Here, x̂ = f✓(x) = s(W.xT + b) and it follows a mapping similar to the

encoding part of the network. The weights here are updated during training in a way

such that the mean reconstruction error is minimized. The loss function is as shown

below, which is essentially the frobenius norm of the original and the reconstructed
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inputs. L(x, x̂) = min ||x� x̂||2

The objective is to minimize this di↵erence and if the network is successfully able to

minimize this di↵erence and reconstruct the input closely, then it has learnt a faithful

representation of the input data. The encoder compresses the input to a reduced dimen-

sion whereas the decoder reconstructs the compressed input into the original dimensions.

This way it is used as a dimension reduction technique to learn useful representations

of the data as well as an imputation technique to reconstruct missing values in the

dataset. The compressed representation of the autoencoder learns the correlations be-

tween the modalities. This allows higher order relationships in the data to be captured

e↵ectively [41]. The architecture of the autoencoder that we use in this study is as shown

below:

Figure 4.2: Architecture of the autoencoder used in this study.

Denoising Autoencoders(DAE) are a variation of the original autoencoder in which

the input is corrupted with some form of noise, and the objective is to reconstruct the

original noise-free input using a similar scheme as described above. In this thesis, we

implement a form of denoising autoencoder for missing data imputation, in which the

values that are missing can be considered as noise added to the original dataset and then

we aim to impute these values using backpropogation with the appropriate values in a

way that it minimizes the loss function. These values should be as close as possible to

the original values in the dataset. This can also be thought of as reconstructing a noise

free version of the input data. Denoising autoencoders, by using a di↵erent criterion of

denoising, are able to extract robust features of the data, as compared to the vanilla
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autoencoders [41].

We implement a denoising autoencoder that is able to learn intra-modal as well as

inter-modal representations of the data, in order to predict missing modalities. The

multimodal denoising scheme has proven to be e↵ective in terms of missing modality

prediction as compared to using methods such as mean imputation or imputing with a

value of -1. It can be seen from the results of this study that, this is a robust way of

predicting missing modalities even when a significant fraction of data is missing. The

Precision-Recall AUC of the imputed data almost matches that of the original dataset,

even when as much as 70% of the data in the modalities is missing.

We implemented a number of di↵erent classification algorithms to test the perfor-

mance. Below is a plot of the PR curve with varying missing rates using RandomForest

classification. The blue line corresponds to the naive method of imputing with the

mean values, the green corresponds to the imputation using our denoising autoencoder

scheme, whereas the red corresponds to the original dataset. It can be seen that we are

able to reconstruct the original dataset and get performance close to optimal even when

a significant fraction of the data is missing.

Figure 4.3: Comparison of imputation techniques with original in terms of area under

the precision recall curve.

Foundries can leverage this fact and use this model to get accurate predictions on
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the part quality even when their system may be down or if they are not able to collect

data for a particular modality, or have measurement errors during data collection. It is

also very expensive to measure all the variables. Moreover, the data collection requires

specific attention of the sta↵. Using such models will help the foundry reduce the expense

by saving time and other resources.

As the results in the next few pages show, we have tested the e↵ectiveness of this

method on both the Palmer Foundry dataset as well as an open source power plant

dataset obtained from UCI Machine learning repository. This dataset involves a regres-

sion problem, unlike the classification problem in the Palmer dataset. We wanted to

test the e↵ectiveness of the above method on a di↵erent scheme. This would be very

useful for metal casting dataset such as the Palmer Foundry, in the future. It would

be interesting to see how the models perform when we use continuous outputs such as

the actual porosity values rather than only classifying the parts as pass or fail. The

methodology used for implementing this masked autoencoder is as given below:

We first use only the training data to get the reconstruction error on the non-missing

values. We use the trained model to obtain X-test and X-test reconstructed and use the

reconstructed values for imputation. We use the reconstruction error on the non-missing

values because in the real datasets, the missing values are unknown. For example, we

use a masking matrix such as Sx, as given below: Sn,t = 1 if Xn,t is observed and is

equal to 0, if Xn,t is missing. The final matrix would be XF = XI .Sx. The goal is to

minimize the term below:

min ||(X �XI)� (1� Sx)||2 (4.1)

We change the objective function to:

min ||(X � X̂)� Sx||2 (4.2)

Here we only include the observed values since we do not know XI , for the modes

that are missing. However, if the model does well on the data that is observed, we can

safely assume that it learns the statistical relations of the features of the data and are

good approximations of the truth. We can then use the same trained model to replace

the actual missing values. We also want to use combinations of di↵erent modalities that

are missing, and also di↵erent percentages of those combinations, to understand which
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once play the most important role in terms of the part qualities. Currently, the dataset

that this analysis involves, has about 30% of values missing from only the process data

modality. Our model can optimally recover this modality as seen in the results above.

We try to emulate the amount and structure of noise such that it is similar to that

found in the real dataset, in order to get suitable and relevant results. The loss function

is a combination of root mean squared error as well as the KL divergence between the

original and the reconstructed data. The loss function as we train across multiple epochs

is seen below for the training as well as testing data until convergence:

Figure 4.4: Model loss across epochs

The plot below shows the F1score comparison between the original, reconstructed

data and the data that is masked with an average value for each column, using di↵erent

classifiers (missing data). We get similar results as above, however, even when imputing

with -1 instead of the column average.

It can be seen that, using our multimodal denoising model, the F1score, using any of

the above classifiers almost matches the original dataset F1score, as compared to using

only mean imputation as well as imputation using -1. The above plots were generated

using a miss-rate of 0.5. It can be seen that the predictions of both the classes are

similar to the original. For some of the plots, the true positives are slightly higher than

the original using the imputation model, however, this could only be by chance.
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Figure 4.5: Comparison of models. The plot shows a comparison of the HMAE and

HMVAE models with mean imputation and the original data. It can be seen that the

HMAE and HMVAE models outperform the imputation using mean in terms of the

F1score.

We also constrained the feature space of the autoencoder to a gaussian and im-

plemented a variational autoencoder model for the same reasons as given above. The

autoencoder model makes it likely that a sampled datapoint will be from the original

distribution by constraining the feature space. It learns the features that are present

and also the patterns in the data during training, in order to predict the modalities that

are missing.

Variational autoencoder has the architecture as shown in the image below:

Upon implementation of the above models, we observed that, the variational autoen-

coders slightly improved performance as compared to the original network. Variational

autoencoders(VAE) are a popular deep learning approach that are being used widely

in research to learn complicated data distributions. Variational autoencoders are used

to get the samples from some unknown distribution and learn a model which we could

sample from in a way that this model is as close as possible to the unknown distribution.



51

Figure 4.6: Variational Autoencoder [9]

Variational autoencoders work e�ciently using backpropogation and do not make strong

assumptions about the data.

The output distribution for the VAE models is typically chosen to be Gaussian. The

equation above shows that it has a mean of f(z, ✓) and the covariance is the identity

matrix times a scalar which is a hyperparameter denoted by sigma. We can use gradient

descent or other optimizations to make f(z, ✓) approach X for some z. The main aim

is to make the training data model very likely under the given model. The idea is to

generate a distribution of k variables by taking a set of k variables that follow a normal

distribution and map them through a complicated distribution.The core of variational

autoencoders is explained by the equation below:

logP (X)�D[Q(z|X)||P (z|X)] = Ez Q[logP (X|z)]D[Q(z|X)||P (z)] (4.3)

We want to construct a Q which depends on X and makes the KL divergence be-

tween Q(Z) and P (z|X) small. This would make the distribution tractable. On the left

hand side, we want to maximize logP (X) and minimize D[Q(z|X)||P (z|X)] [42,43]. We

demonstrate that using masking of missing values with the average values and backpro-

pogation, it is possible to achieve significant improvement as compared to only mean

imputation.

We use masking noise in the form of an indicator matrix to set a random fraction
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of the inputs to zero. We also do the same using masking with the average values for

individual features and also replace with -1, similar to the methodology described earlier.

The autoencoder can be trained to impute these missing values using backpropogation

to update weights until the loss function reaches its minimum and converges. The loss

function is once again a sum of the root mean squared error and KL Divergence. We use

Root mean square error e as one of the metrics of performance, which is given as below:

ex :=

s
||(X̂ �Xc)� (1� Sx)||2

||1� Sx|| (4.4)

We also use KL divergence as the other metric for the variational autoencoder model.

KL divergence is given by:

KL(P ||Q) = �
X

P log(P )/ log(Q) (4.5)

The loss functions for the HMVAE model are a combination of both, the RMSE as well

as KL Divergence. The loss functions converge after multiple epochs of training, similar

to the plot shown above.

The network was also implemented on another dataset, as mentioned above. The

same can also be done on image datasets such as MNIST that are freely available online.

However, for imputing pixels of image data using similar autoencoder architecture is

comparatively easier to do, due to the large amount of image data being available as

well as the fact that the models can leverage adjacent pixels being highly correlated.

If we were to use a supervised learning model instead, rather than an unsupervised

deep learning approach, the amount of clean labelled data from all modalities available

for training would be significantly small, which is a major issue for such types of het-

erogeneous datasets that rely on machine learning for predictions. A lot of information

is deleted and lost in the remaining data and is wasted. In such an architecture, we can

use labelled data with missing modalities in the next phase, in order to make predictions

and we can also use unlabeled data with all modalities present for training. This way we

can leverage as much information as possible to learn from the dataset while training the

autoencoder. All features are first normalized in the range of -1 to 1 before implementing

the network. This is done by using a simple preprocessing step like min-max scaling.

Once the data is prepared, the features of a single modality are picked randomly and
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either replaced by either the mean of the features, or a value of -1, which we would use

as a baseline. We chose the average or something like -1 instead of just replacing with

0s, in order to have a fair comparison of the methods. We first train the model on the

data which has all the modalities and use that as the ground truth, noise-free input X.

Then we randomly select modalities and set them to -1 or column average values. The

model is then trained to produce the noise free X from noisy input. The below bar plot

shows a comparison between the original and the masked autoencoder networks using

di↵erent classifiers.

Figure 4.7: HMAE vs Mean vs Original [9]

The next plot shows the same comparison as above, except now we replace with a

value of -1 instead of the mean.

In both the models, the Autoencoder performs best on all the classifiers used and

the F1score almost matches that of the original dataset. The comparison of the AE and

VAE models on the power plant dataset is shown in the plot 4.9. Here we consider all

the features of the dataset as a single mode. Hence, it can be considered as a unimodal

representation.

The above plot shows that the performance of the models depends on which classifiers

are used to calculate the F1scores. The VAE outperforms the AE model if KNN or SVM

are used as classifiers. However, both the models are still better than mean imputation.
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Figure 4.8: HMAE vs -1 vs Original [9]

Figure 4.9: Comparison of models on regression dataset [9]

The loss function is similar to the one described above.

Finally, for the Palmer Foundry dataset, the below plot shows an example of a

confusion matrix comparison between the above models using K-NN as the classifier.

The diagonal elements of the HMVAE and HMAE models are closer to the original as

compared to the mean imputation.

For the Palmer Foundry dataset, the above masking technique was also tried when

using both the modalities of the autoencoder and reconstructing each of them indi-
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Figure 4.10: Comparison of models [9]

vidually. A separate autoencoder network is then trained on the concatenated shared

reconstruction of both the modalities.

Essentially, when we use both the modalities separately and they do not share their

representation, we can consider the models as Unimodal. However, at a later stage, we

concatenate reconstructions of the individual modalities in order to learn inter-modal

features and reconstruct them together. The models can now be considered as hetero-

geneous or multimodal.

The below figure 4.11 shows a comparison of the unimodal approach and it can be

seen that the VAE model outperforms the AE model in terms of the F1score, similar to

the heterogeneous or multimodal case described earlier.

The F1scores are slightly higher for both the models in the multimodal case as com-

pared to the unimodal case. This could be due to the fact that training on individual

modalities before the shared learning allows the model to learn higher order structures

in the dataset.

The equations used for inter-modal and intra-modal learning using this scheme, are

as given below:
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Figure 4.11: This figure shows a comparison of the F1scores using di↵erent classifiers.

Xm 2 RN⇥D (4.6)

Xm is the modality m with shape N,D.

Sx(n, d) = 1, ifXn,d is observed (4.7)

= 0, ifXn,d is missing (4.8)

X = Xm � Sx (4.9)

min ||(X̂ �X)� Sx||2 (4.10)

RMSE =

s
||(X̂ �X)� Sx||2

||Sx|| (4.11)

J(W, b) = ||(X̂ �X)� Sx||2 (4.12)

min Lx(X) = ||(X̂ �X)� Sx||2 (4.13)

Total loss for two modalities, X and Y .

min Lxy(X,Y ) = Lx(X) + Ly(Y ) (4.14)
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The above part represents Unimodal learning or intra-modal learning of the dataset.

The part below represents inter-modal learning of the dataset.

h = [X̂, Ŷ ] (4.15)

where X̂ and Ŷ are reconstructions of modalities X and Y respectively.

Lh(h) = 1/2N ||ĥ� h||2 (4.16)

In conclusion, using such models, we can make robust predictions on real world

datasets. We can leverage the information in noisy and missing datasets. Unlike most

other prediction models, our model shows that even when there is missing data in more

than one modality, we can recover and improve classification performance without data

loss.
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Chapter 5

Conclusion

This thesis demonstrates the potential of machine learning and deep learning ap-

proaches for the quality assurance of metal casting processes. The results from this

thesis show how foundries can leverage the algorithm predictions and make data driven

decisions to have better control over the casting process. It will also help them save time

and other resources using predictive maintenance.

5.1 Research Outcomes

• We used a semi-supervised GAN architecture which demonstrates e↵ectiveness in

synthetic data generation which is faithful to the distribution of the original data,

as well as its e↵ectiveness as a classifier. We performed in depth analysis and

hyperparameter tuning and showed the limitation of a GAN by demonstrating its

potential to overfit.

• We successfully implemented masked autoencoder networks for missing data im-

putation that almost matched the real data even when the missing rates were as

high as 0.7.

• We used a multi-layer perceptron model using class weight based on ratios and

validation loss, to overcome the imbalance data issue. This model was able to

identify all the samples of the failed class in the unseen test data with no false

positives.
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• We demonstrate the value of machine learning techniques in identifying the most

important features in the metal casting data sets. These features are in parallel to

what the domain experts believe to be the important parameters that control this

process.

5.2 Future Work

• Implement di↵erent anomaly detection techniques using deep learning, to identify

the minority class samples as anomalies or outliers. In particular, we have had

success using a classification scheme with classes 3,4 and 5 combined. However, we

want to improve precision on each of these classes considered individually as well.

• E↵orts to obtain additional data including digital X-ray images of the cast com-

ponents are being carried out. The future work would include use of deep learning

techniques such as convolutional neural network(CNN) for image processing to

analyze casting defects.

• Work on more feature engineering and extraction, with the help of domain experts

of the foundry.

• Fine tune algorithm performance on additional data and validate the models on

the unseen test data.

• We would tune the losses on the GAN discriminator in order to adjust the weights

based on a hyperparameter beta and compare the classification performance.
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Appendix A

Machine Learning Algorithms

A.1 Machine Learning Classification Algorithms

Classification Algorithms including KNN, Random Forests and SVC were used in

this study. Along with these, Ensemble learning is another approach that was tried.

Ensemble learning approach in machine learning is used because of its shown im-

provement in performance in terms of predictions. Ensemble learning uses the idea of

using several weak learners and combining them to form a strong learner. It takes a

majority vote approach in terms of classification, and this is what makes the approach

more robust as compared to using single classification algorithms independently. There

are di↵erent types of ensemble learning approaches, mainly Bagging and Boosting.

Bagging is a method in which multiple trees are being built over di↵erent subsets of

the data.These subsets are drawn from the original dataset, with replacement. Hence,

Bootstrapping is done and a model is built on each of the subsets individually. Boosting,

on a high level uses algorithms that use weighted averages to convert weak learners into

strong ones.

A.2 Results

The confusion matrix shows the diagonal elements as the true predictions of both

the classes. The higher the number, the better the predictions, the better the classifier.

The o↵ diagonal elements are the misclassifications that are predicted incorrectly by the
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classifier. Confusion matrix is a good metric to use in case of unbalanced data sets, as

compared to metrics such as accuracy, the reason being, shown with a simple example

as given below:

If suppose in a data set, there are 99 good samples and 1 bad sample, then the clas-

sifier would be biased towards the majority class and make all predictions as belonging

to the good class. If this is the case, then the accuracy of the classifier would still be 99

percent.

It is easy to tell that the classifier fails to identify the more important minority class

in this case. Similarly, in the metal casting data, identifying the parts that are going

to fail the quality test is more important than the majority or passed class samples.

The confusion matrix makes it easy for us to see the predictions of the classifier on the

minority class. The confusion matrix shows us how many samples are being identified

incorrectly. They can also show us the indexes of the components that are going to fail.

This will give us the percentage of correct and incorrect predictions instead of just give

the raw numbers of correct and incorrect predictions for a particular data set.

It can be seen that the classifier has a hard time classifying the instances of the class

3,4 and 5 because we have such few samples of the class to learn from. In the results

below, we are using a binary classification scheme, where we have all good quality parts

as class 1 and all bad quality parts as class 2 , 3, 4 and 5 combined as class 2. This is why

balancing the data set, before implementing any of the machine learning algorithms and

assessing the performance in terms of the confusion matrix is important. The results

below show the confusion matrix for the Palmer data set and the corresponding values

using di↵erent algorithms after cross validation. By far, on this balanced binary scheme,

the GAN is the most consistent in terms of F1score.

A.3 Anomaly Detection

Novelty detection is another technique to deal with imbalanced data sets. The dataset

is trained on one class(normal or majority class)and the algorithm forms a boundary

along this class. The other class is completely ignored during the training process.

Anything that is found outside of this decision boundary is classified as a novelty or

an outlier. In summary, the classifier learns the patterns of the normal class and then
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Table A.1: Confusion Matrices for di↵erent Algorithms.

Algorithms Confusion Matrix

Random Forest

2

422 5

6 14

3

5

Logistic Regression

2

422 5

9 11

3

5

SVM

2

422 5

8 12

3

5

Ensemble Learning

2

423 4

1 19

3

5

detects the patterns that are di↵erent from the normal ones and classifies them as novel

or outliers [44]. The plot showing the novelty detection performed by training on only

the majority class is shown below:

Figure A.1: Novelty Detection
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As mentioned earlier, accuracy is misleading when it comes to finding metrics for

classifier performance evaluation on an unbalanced data set. This is so because, even if

the classifier predicts all of the instances as the majority class, even then the accuracy will

be very high. However, in case of unbalanced datasets, identifying the more important

minority class is the goal. This can be tested and achieved by using balancing techniques

and using other performance metrics for classification evaluation, such as, precision,

recall, area under the ROC curve, which will be explained in the next sections. All of

these have been used in this study as part of the performance evaluation of results. The

below image shows an example of a precision recall curve that is obtained using the

Random Forest algorithm on the balanced data binary classification scheme.The area

under this curve can be used as a single number performance of the classifier on each

of the classes in the dataset. The minority or failed class in this case is defined as the

positive class, whereas, the majority or passed class is the negative class.

Figure A.2: Precision-Recall curve
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The formulas for recall, precision and F1score are as given below:

Recall =
TP

TP + FN
(A.1)

Precision =
TP

TP + FP
(A.2)

F1Score =
2⇥ Precision⇥ Recall

Precision + Recall
(A.3)
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