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Abstract 

Seaports are particularly vulnerable to coastal hazards such as hurricanes and flooding due to their 

location. Sea level change (SLC) can magnify the impacts of those coastal hazards, threatening the 

resilience of ports. Engineers must design port infrastructure that is adequately prepared for the amount of 

SLC expected within the design life of the structure. However, uncertainty of SLC projections coupled 

with the long service lives of port infrastructure present unique challenges to do so. Through an online 

survey of 85 U.S. port and maritime infrastructure engineers, this research reflects the U.S. engineering 

community’s attitude and approach to planning for SLC for maritime infrastructure projects. Only 29% of 
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respondents indicated their organization had an internal SLC policy, design, or planning document. 

Furthermore, results show the lack of regulatory design standards in this area leads to engineers and their 

clients disregarding SLC more frequently. There is a clear need for collaboration among stakeholders to 

develop practical design methods for designing resilient port infrastructure. 

Introduction 

Sea level rise increases risks to wharves, docks, piers, and other maritime infrastructure (Asariotis and 

Benamara 2012). As sea level rises (NRC 2012; Parris et al. 2012; IPCC 2013), port engineers will need 

to design more resilient structures that considers SLC projections (Esteban et al. 2013; Becker et al. 

2015). Resilient ports and maritime structures are those that are able to “bounce back” after hurricanes, 

coastal storms, flooding, and other coastal hazards. SLC has a measureable effect on the severity of these 

coastal hazards, and requires engineers to anticipate and proactively prepare for it. The uncertainty of 

SLC projections, along with a variety of guidelines and recommendations for managing SLC, presents a 

new challenge for engineers (Becker et al. 2015). But, incorporating SLC projections into port structure 

design is critical due to the long working life of such structures, which sometimes can exceed 100 years. 

There are strong economic and social incentives for seaports to provide long-term resilience against 

coastal hazards. Billions of dollars in damages and service disruptions (Haveman and Shatz 2006) affect 

the livelihoods of those who depend on the port (Becker et al. 2013). Currently, the U.S. has no standard 

nationwide guidance for how to incorporate SLC projections into design (Toilliez 2018). This leaves 

engineers to make subjective decisions based on inconsistent guidance and information.  

 To better understand how different firms, organizations, and individual engineers incorporate 

SLC into the design of port infrastructure, and to identify industry needs to improve the resilience of 

ports, the researchers conducted an online survey of U.S. port and maritime infrastructure engineers to 

address the following questions: 

1. In what capacity are port infrastructure designers incorporating a sea level change projection 

into their design specifications for large-scale port engineering projects? 



2. Where do incentives and disincentives originate for U.S. engineering firms to incorporate sea 

level change into the design specifications of large-scale port engineering projects? 

3. For engineering firms that are incorporating sea level change, what strategies are the port 

infrastructure designers in those firms implementing in the design specifications of large-

scale port engineering projects to cope with the scientific uncertainty of sea level change? 

 

Previous research suggests the importance (Becker et al. 2013; Becker et al. 2015) and the difficulty 

(Milly et al. 2008; Ahern 2011; Olsen 2015) of designing more resilient infrastructure, but there is little 

understanding of the current state of the practice. Surveys have targeted port directors and other port 

operations personnel to gauge climate change planning efforts more generally (Bierling and Lorented 

2008; Becker et al. 2012), but while port directors play a role in planning for SLC, port engineers often 

make final determinations about how to incorporate SLC into infrastructure design. Thus, the survey 

described in this paper focuses on engineers and their decision making processes to assess how SLC is 

currently considered in the design of port and maritime infrastructure. The findings discussed throughout 

this paper build upon preliminary work focused on identifying incentives and barriers to designing port 

infrastructure for SLC (Sweeney, 2019). By conducting a first-of-its-kind assessment of the current level 

at which engineers consider SLC in the design of port and maritime infrastructure, the industry can better 

evaluate the link between SLC research and engineering implementation, and determine strategies to 

increase the effectiveness of that link. Additionally, this research points to areas where intervention can 

occur to effectively promote better resilience design methods. The baseline data resulting from this 

research can also be used for tracking how engineers change their approach to incorporating SLC into 

design over time, as SLC research advances and design standards change. 



Background 

SLC threatens U.S. maritime infrastructure 

Temperature records from 1850-2016 provide evidence of a long-term global warming trend (WMO 

2018). Near-surface ocean temperature and salinity data suggest increasing ocean heat content (Dieng et 

al. 2017), which in turn raises average global sea level due to thermal expansion coupled with melting ice 

sheets (Dieng 2017). Global mean sea level rise projections (GMSLR) range from 0.3 to 2.5 meters by 

2100 (IPCC 2013; Jevrejeva et al. 2016; Sweet et al. 2017), but regional and local scale SLC is less 

understood (Bilbao et al. 2015). SLC projections vary across coastal regions of the U.S., with parts of 

Alaska projected to experience a sea level decrease due to land uplift, while the Louisiana coast may have 

a higher relative rise due to land subsidence. 

The rate of SLC depends on which greenhouse gas emission pathway the world tracks along 

(Church et al. 2013) and is also subject to the variability in glacial melting, changes in land water storage, 

and coastal erosion (Rahmstorf 2007; DeConto and Pollard 2016). While SLC uncertainty over the next 

few decades (2030-2060) is relatively minor, uncertainty increases substantially around 2080 (Church et 

al. 2013) and should be appropriately and transparently accounted for in planning and design (Stephens et 

al. 2017) in order to avoid an underestimation of flood risks (Ruckert et al. 2017).  

Infrastructure development decisions often come with long-term commitments that can be climate 

sensitive (Hallegatte 2009). For example, the engineered design life of port structures is typically 30-50 

years (depending on the type of structure), but these structures will often remain in service for 80-100 

years (Becker et al. 2015; Taneja et al. 2012; UNCTAD 1985). Thus, many structures designed and built 

today will face different environmental hazards and risk levels in 2100. However, a survey of port 

administrators (Becker et al. 2012) found that capital planning cycles at ports are typically only 5 to 10 

years. The mismatch between planning, infrastructure working life, and uncertainty in future 

environmental conditions presents unique challenges for port planning (Becker et al. 2012). 



A 2012 survey conducted by the American Association of Port Authorities (AAPA) showed that 

U.S. ports planned to spend at least $46 billion in improvements and upgrades through 2016 (AAPA 

2012). Remarkably, due to a projected increase in shipping combined with the need to replace aging 

infrastructure, a follow-up port infrastructure investment survey in 2016 found that U.S. ports plan to 

spend nearly $155 billion in port-related improvements and upgrades through 2020 (AAPA 2016). This 

shows that infrastructure spending from 2016-2020 is expected to triple that of 2012-2016. While portions 

of this investment will be dedicated to dredging and navigational improvements, the 2016 survey found 

that key investments are being planned for terminals, berths, piers, equipment, expansion, facility 

rehabilitation, and road and rail connections (AAPA 2016).  

Seaports and port infrastructure will be especially vulnerable to SLC because they do not have the 

option to relocate, as their functionality depends on their coastal location (Asariotis and Benamara 2012). 

Researchers predict that rising sea levels will affect 79 European ports by 2100 (Christodoulou et al. 

2018). Officials from the Port of Virginia are expecting a sea level rise increase of a foot and a half within 

the next 30 years, triggering them to invest in raising electrical power stations and moving data servers 

farther away from the water’s edge (Phillips 2019). Changes in sea level will also have a direct effect on 

other coastal hazards such as storm surge (Neumann et al. 2015), which adds to the importance of making 

planning decisions based on the best available sea level rise science. 

SLC uncertainty challenges engineers 

Ports provide both private-sector profits and public services, resulting in a wide variety of stakeholders 

that extend beyond shipping companies, insurers, local governments, and local residents. Thus, maritime 

engineers and designers must consider not only their clients’ needs, but also the needs of other 

stakeholders dependent on port services (Becker et al. 2015). The inadequate design of port infrastructure 

can result in negative consequences for these stakeholders, including indirect damage to economic supply 

chains or environmental damages (Becker et al. 2013). The uncertainty of regional SLC projections over 

the design or working life of port infrastructure can challenge engineers to make appropriate design 



decisions. Furthermore, changes in the local geomorphology due to climate change can add to that 

uncertainty (Becker et al. 2015). The standards, codes, and regulations that govern infrastructure design 

are typically slower to respond to such changes (Olsen 2015). This adds to the difficulty of answering the 

primary question: What level of SLC should maritime infrastructure engineers design for?  

Industry efforts address the risks of SLC 

Federal agencies recognize the need to incorporate climate change and coastal hazard factors such as SLC 

into infrastructure design, but most design changes occur for structures that are being rebuilt after being 

damaged or completely destroyed (Savonis et al. 2014). Both the U.S. Army Corps of Engineers 

(USACE) and the Environmental Protection Agency (EPA) have advocated that SLC be incorporated in 

the design of all federally funded projects, thus far however, the U.S. has adopted no mandates or policies 

to this effect (Headland et al. 2011). In 2015, the Obama administration issued Executive Order 13690 

which proposed a new Federal Flood Risk Management Standard (FFRMS) which required federally 

funded infrastructure projects to utilize one of three design alternatives: use data and methods informed 

by best-available science, build two feet above the 100-year flood elevation, or build to the 500-year flood 

elevation [80 Fed. Reg. 13690 (January 30, 2015)]. The FFRMS would have ensured that federally 

funded structures were designed for future climate hazards. The Trump administration in 2017, however, 

issued Executive Order 13807 revoking Obama’s Executive Order 13690 [82 Fed. Reg. 13807 182 

(August 15, 2017).].  

 Numerous federal agencies such as U.S. Department of Transportation Federal Highway 

Administration (FHWA), USACE, and the National Oceanic and Atmospheric Administration (NOAA), 

along with state and local governments, have developed SLC guidance. However, they use different 

scales, projections, and uncertainties of SLC (FHWA 2012; NRC 2012; OPC-SAT 2018). USACE has 

published technical guidance for adaptation to SLC (USACE 2014) and developed publicly available 

tools such as the Sea-Level Change Curve Calculator and the Sea Level Tracker. The Sea-Level Change 

Curve Calculator offers a way to visualize the USACE and other SLC scenarios for specific locations in 



the U.S. based on NOAA tide gauge data. Furthermore, the COMET Program has recently produced an 

online educational tool that introduces the Sea-Level Change Curve Calculator and how it can be applied 

to scenario-based planning for SLC (COMET 2019). In addition to providing information on USACE 

resources, the lesson also presents NOAA’s sea level trends and the NOAA Sea Level Rise Viewer where 

engineers and designers can access site-specific projections (COMET 2019).  

Several industry leaders are also developing tools, updating guidance, and investing their 

resources into helping ports become more resilient. The American Society of Civil Engineers (ASCE) 

Ports and Harbors Committee published recommendations to assist port and maritime infrastructure 

engineers navigate the difficulties of designing structures for SLC (Becker et al. 2015). ASCE’s 

Committee on Adaptation to a Changing Climate also published a manual of practice on the design of 

climate-resilient infrastructure (ASCE 2019).  With so many tools, guidelines, and information sources, 

this research ascertain what information the engineering community utilizes and how strong of a link 

exists between coastal hazards research, implementing research into design and port operations. 

Methods 

An online survey was developed to target engineers from consulting firms, port authorities, and 

government agencies with experience working on U.S. port infrastructure projects. 

Survey distribution 

The sample approach focused primarily on members of ASCE’s Coasts, Oceans, Ports, and Rivers 

Institute (COPRI). Participation was voluntary, and no compensation was provided. The Institutional 

Review Board (IRB) of the University of Rhode Island approved this study. In September 2018, the 

researchers distributed the survey to all members of COPRI’s Ports and Harbors Committee through 

SurveyMonkey, an online service for conducting surveys. This approach allowed the researchers to cost-

effectively reach engineers and designers across the U.S. COPRI also included a link to the survey in their 

October 2018 newsletter and the link was shared in the “Environmental, Coasts, Oceans and Water 



Infrastructure” forum within ASCE Collaborate. It was also posted to the Coastal List (Center for Applied 

Coastal Research 2019) and shared through LinkedIn. Furthermore, a snowball sampling approach 

(Atkinson and Flint 2001) encouraged survey recipients to distribute the survey throughout their own 

professional networks. The survey distribution plan helped achieve a robust sample size that represents 

practicing port and maritime infrastructure engineers in the U.S. 

Online survey instrument 

The online survey instrument was created with input from a five-person project steering committee 

consisting of members from COPRI’s Sea Level Change Subcommittee. Steering committee members 

were all Professional Engineers working in the U.S. port industry, and therefore fit the survey target 

population criteria. This helped to ensure the survey questions were appropriate for their colleagues in the 

industry. Steering committing meetings were convened throughout the development of the survey to 

capture the expertise of those on the steering committee and receive guidance on questions to ask and 

response options to those questions. Prior to distributing, an additional five members of the Ports and 

Harbors Committee (i.e., retired professional engineers, engineering professors, and regulatory engineers) 

pilot tested the survey to further vet the language of each question and the response options. The 20-item 

survey was designed for practicing engineers in the U.S. and estimated to take 10-15 minutes to complete 

(see Fig. S1 for survey instrument). The survey was broken down into four sections, as follows: 

• Respondent Profile and General Information asked questions regarding level of experience with 

port infrastructure projects and the type of organization the respondent works for.  

• Sea Level Change Design Considerations assessed the capacity at which projects that respondents 

have played a role in have incorporated SLC and explored specific details regarding their 

experience, such as types of structures respondents work on and the geographic locations they 

have engineering experience in.  

• Incorporating Sea Level Change into Design explores how SLC is incorporated into design and 

the design decisions being made at the engineering level.  



• Not Incorporating Sea Level Change into Design asked about potential barriers to incorporating 

SLC and personal support or opposition to incorporating SLC into design.  

 

Nine out of the 20-items are presented in this paper in order to answer the three research questions. The 

nine questions are as follows:  

• In the past 5 years, about how many port infrastructure projects have you played a role in 

engineering and/or designing? (Q6);  

• Of the port infrastructure projects you have worked on over the past 5 years, about how many 

have incorporated sea level change? (Q7);  

• For which types of structures does your organization incorporate/consider sea level change during 

the design phase? (Q8);  

• Does your organization use a policy/planning document that communicates how future sea level 

change should be incorporated into port infrastructure design projects? (Q10);  

• What factors cause your organization to add a sea level change design component to a project? 

(Q12);  

• When incorporating future sea level change into the design of port infrastructure, where does 

your organization obtain sea level change projections from? (Q13);  

• How confident are you in the accuracy of the sea level change projections that are being 

incorporated into projects your organization designs? (Q14);  

• In cases where sea level change is not incorporated into the design of port infrastructure projects, 

what are the potential reasons why? (Q17);  

• From the list above, what are the three most common reasons why sea level change may not be 

incorporated into a project? (Q18).  



Data overview 

In total, 118 responses to the survey were received, and 85 of the responses were useable. Of the 118 

responses received, 12 respondents indicated having no professional engineering and/or design experience 

working on port infrastructure projects, and there were 21 responses with no questions answered for the 

final three of four sections of the survey. Therefore, those 33 responses were excluded. Partially complete 

responses, however, were included in the analysis. Some highlights of the responses follow: 

• 60 respondents worked for private design consulting firms 

• 16 respondents worked for port authorities 

• nine respondents worked for government agencies  

• Of the 85 responses, 62 respondents voluntarily provided the name of the organization they 

worked for. Of these:  

o 31 different private consulting firms were represented 

o Nine private consulting firms had more than one respondent from their firm: 

▪ six firms had two respondents,  

▪ two firms had three respondents,  

▪ one firm had four respondents.  

o 11 different port authorities were represented 

• 59% of respondents had over 15 years of experience 

• 81% self-identified as a project manager or someone who makes final design decision on projects 

at their organization 

• 54% indicated having professional experience in more than one geographic region.  

o The region with the greatest number of respondent experience was the Gulf Coast (42), 

followed by Alaska (38), then the Southeast (36) and Mid-Atlantic (36), Northwest (33), 

Southern California (31), Northern California (30), Northeast (26), Hawaii (20), and with 

the least respondents, Great Lakes (18). 



Results and Discussion 

The results and discussion section describes survey respondents’ perceptions of the state of the practice 

for designing port infrastructure for SLC, including organizational policies, sources of scientific data on 

SLC, SLC implications for design life, and reasons that projects do or do not consider SLC. This section 

uses the results of the survey to provide evidence addressing the three research questions. 

In what capacity are port infrastructure designers incorporating a SLC projection into their 

design specifications for large-scale port engineering projects?  

This overarching question aimed to identify the current level at which engineers consider SLC and to 

produce baseline data to track how the state of the practice changes in the future. Respondents were asked 

the total number of port infrastructure projects they worked on in the past five years (Q6) and the number 

of those projects that had incorporated SLC (Q7). On average, respondents played a role in designing 11.1 

(SD: 9.9) port infrastructure projects in the past five years. Further analysis suggests that on average, 43% 

(SD: 39%; Median: 30%) of port infrastructure projects that respondents worked on over the past five 

years have incorporated SLC. Because engineers with more SLC design experience may have been more 

likely to respond to this survey and skew the results, 43% may not be an accurate nationwide indicator of 

the capacity in which port infrastructure design incorporates SLC. It is likely that 43% is optimistic due to 

the potential sample bias.  

To explore how organizations approach SLC design, respondents were asked if their organization 

has a policy or planning document that communicates how future SLC should be incorporated into port 

infrastructure projects (Q10). As shown in Figure 1a, 64% of respondents indicated that their organization 

did not have a policy or planning document, with only 29% having a document, and of those respondents, 

9% use it for all projects, 16% use it for only some projects, and 4% use it rarely. The remaining 7% were 

unsure whether their organization had a SLC design document.   

 The responses to this question were then used to assess whether or not having a policy or 

planning document (Q10) had an effect on the number of projects that incorporated SLC (Q7) (Figure 



1b). There were 25 respondents (18 of which represented private consulting firms) in the “Have Policy 

Document” group and 60 in the “Don’t Have Policy Document or Not Sure” group. Within each group, 

the average percent of SLC incorporated projects that respondents worked on in the past five years was 

calculated. A difference between the two groups was found where the average percentage of projects that 

have incorporated SLC is 30% higher for respondents that work for an organization with a policy 

document (Mean: 65%; SD: 35%; Median: 67%) than those who do not (Mean: 35%; SD: 36%; Median: 

20%). 

 

 

Perhaps engineers working at organizations with a formal document have received training or 

other information about how to make decisions on designing for SLC, which allows them to recommend 

design changes to a client or an in-house design team. Formal policies or documents can lend credibility 

and provide the basis for recommendations. Conversely, engineers without the documented support from 

their organization may be less willing to take the personal and professional risk that comes with making 

subjective decisions. If an organization has not developed a formal policy or guidance document, its staff 

Figure 1. a) Utilization of a policy document that guides SLC design decision making. b) Effect of a policy document on the 
frequency of incorporating SLC into design. 



engineers may be less likely to incorporate SLC in their structure designs as they may not have the 

necessary protocols or tools to do so.  

Having a policy or planning document at the organization level could also become a selling point 

for the organization in competing with other private consulting firms for a contract. Port authorities are 

beginning to require SLC considerations in the design and redesign of port infrastructure more frequently. 

In 2018, for example, the Port Authority of New York and New Jersey (PANYNJ) sent out a request for 

proposal (RFP) for the replacement of numerous wharf structures, which required the bid to provide best 

practice wharf design concepts that take into account sea level rise (PANYNJ 2018). As these projects 

and practices become more prevalent, private consulting firms that have a clear and specified approach to 

designing for SLC could have a market advantage. 

Researchers also examined the capacity in which SLC was incorporated across different types of 

port infrastructure projects (Q8). Respondents were asked how frequently their organization considers 

and/or incorporates SLC into the design of 17 different types of port infrastructure. To make comparisons 

between structure types that are similar in functionality, the 17 infrastructure types were grouped into six 

different subgroups: protection structures, berthing structures, cargo storage structures, connectivity 

infrastructure, electrical and operations, and water flow structures.  

Figure 2 shows how often respondents believed their organization incorporates SLC for each 

structure type. The researchers grouped responses into three frequency categories. The y-axis shows the 

percentages of responses for each category. The structure type is on the x-axis, and the number of 

respondents with design experience for each structure type (n) is indicated in parenthesis next to or below 

the structure type. 



 

Structure types that are the closest to, and in most cases directly abutting, the waterfront had the 

highest percentage of either always or often incorporating SLC in their design. This applies to Protection 

Structures (berms, breakwaters, and seawalls) and Vessel Berthing Structures (dock structures and wharf 

structures). Conversely, port hinterland connections such as roads and railways, which are typically 

Figure 2. Structure types which respondents acknowledged incorporating SLC during design. 



located further away from the waterfront, had two of the four highest percentages for either rarely or 

never incorporating SLC. Understandably, these findings suggest that the closer to the water a structure is 

located, the more likely the design of that structure will incorporate SLC. 

 

Where do incentives and disincentives originate for U.S. engineering firms to incorporate SLC 

into the design specifications of large-scale port engineering projects? 

First, this section discusses the variety of factors that can act as an incentive to incorporate SLC and how 

the decision can originate from several different stakeholders. Conversely, for projects that do not 

incorporate SLC, this section then addresses the disincentives that prevent engineers from incorporating 

SLC and how the development of regulatory design standards can alleviate several barriers identified by 

respondents. 

 

Incorporating SLC into design is motivated by a variety of factors 

To better understand the motivations and driving forces that lead to engineers designing port 

infrastructure for SLC, respondents were asked about the factors that cause their organization to add a 

SLC design component to a project (Q12). Since the decision to incorporate SLC could originate from 

any or even a combination of the factors presented for any given project, respondents were asked to 

indicate how often each factor plays a role in causing SLC to be incorporated into a project (Figure 3). 



 

Client requirements, engineering recommendations, and regulation requirements were the three 

leading factors that respondents suggest drive the incorporation of SLC in port infrastructure design. 

However, the Often/Always group had the highest percentage of respondents for four out of the five 

factors listed. Incorporating SLC based on a life cycle cost/benefit analysis was the only exception where 

Never/Rarely (35%) was the most common response by 1% over the Often/Always group (34%).  

Simplifying the five factors listed, one factor is client dependent (Client requirement), one factor 

is regulatory dependent (Regulation requirement), and the other three factors are decided by engineers 

(Engineer makes recommendation to the client, Design alternative presented to the client, and SLC is 

incorporated based on life cycle cost/benefit analysis). Responses to this question suggest that none of the 

three groups are leading the effort to incorporate SLC. Furthermore, responses suggest the decision to 

incorporate SLC could originate from different stakeholders from project to project.  

Although there were only slight variations in the responses, and there were no factors that stood 

out as being the least likely driver of SLC consideration, Incorporating SLC based on a life cycle 

cost/benefit analysis had the greatest percentage of respondents that said it was either Never or Rarely a 

driving factor. Perhaps engineers are not conducting a life cycle cost/benefit analysis, which would 

Figure 3. Potential factors that may cause engineers to incorporate SLC into design specifications. 



indicate a lack finances or incentives to execute long term planning, or engineers are conducting a life 

cycle cost/benefit analysis, but the results of the analysis suggest it would be more cost effective to ignore 

SLC. Further investigation into the use of life cycle cost/benefit analysis, long term planning from the 

engineering perspective, and design life challenges would shed more light on why this particular factor 

appears to play a very limited role in the decision to incorporate SLC into port infrastructure design. 

Additionally, although regulation was only the third most common factor, it is possible that regulation 

may be the leading factor in some geographic regions, such as California (“State of California Sea-Level 

Rise Guidance” 2018), but a non-existent factor in other regions, such as the Gulf Coast. The survey 

could not definitively answer this question because more than half (54%) of the respondents reported 

having engineering experience in multiple geographic regions, and therefore, responses to other questions 

could not be linked to specific locations. 

To gauge how engineers determine the level of SLC they need to design for, respondents were 

asked from where their organization obtains SLC projections (Q13) (Figure 4). As previously mentioned, 

numerous organizations have produced SLC projections with varying rates, largely due to the uncertainty 

of SLC projections. Therefore, engineers must make decisions on which projections they will rely on. 

According to respondents, the most frequently used source of SLC projection data was NOAA (65%), 

followed by USACE (49%). Although the third most commonly used source was state or local 

organizations (40%), there were an equal percentage of respondents who rarely or never use state or local 

projections (40%), which could point to the fact that not all states have developed SLC design guidance 

specific to their coastline. For five out of the seven sources shown in Figure 4, at least half of the 

respondents indicated either sometimes, often, or always using that particular source. Therefore, outside 

of the fact that NOAA and USACE are the most relied upon sources, these findings highlight that there is 

very little, if any, standardization across the approach taken by different engineers to incorporate SLC 

into design. It appears that any one engineer could use a different SLC projection for any particular 

project. This highlights the impact that the uncertainty of SLC rates has on the design process. 



Uncertainty is the ultimate reason that there are various sources with differing projections, and therefore, 

consistency across planning for SLC is difficult to achieve. 

  

 

For each of the possible sources of SLC data, respondents were asked how confident they were in 

the accuracy of the SLC projections that are being incorporated into projects that their organization 

designs (Q14). Not only are NOAA and USACE the most relied up sources to obtain SLC data, they are 

also the sources that respondents were the most confident in (Figure 5). In general, respondents were 

relatively confident in the accuracy of projections from all of the sources listed. For each SLC projection 

source identified, 12% or less of respondents reported little or no confidence in the accuracy of 

projections.  

Figure 4. Utilization of different sources of SLC projection data. 



 

Lack of design standards were a key barrier to incorporating SLC into design 

The online survey asked respondents to select which of 14 potential barriers (derived from previous 

studies and input from the ASCE experts) they have encountered during their professional career (Q17 

and Q18). Becker et al. (2015) address the lack of nationwide guidance, and Stephens et al. (2017) 

discusses the challenges of dealing with uncertain SLC projections. As previously mentioned in the 

Methods section of this paper, the researchers established a five-person project steering committee 

consisting of members from COPRI’s Sea Level Change Task Committee that were influential in 

developing this list of potential barriers.  

Of the 70 respondents to this question, 36 indicated that having no standards was a reason for not 

incorporating SLC. A lack of project funding and the client not wanting to incorporate SLC were tied as 

the second most commonly acknowledged barriers. Not surprisingly, too much uncertainty with SLC 

projections was also perceived as a top five barrier. Furthermore, 17 of the respondents indicated that 

Figure 5. Confidence in the accuracy of SLC projection data from different sources. 



there were other barriers that they felt prevented SLC from making it into final design which were not 

included in the response list within the survey. Other barriers included site constraints, operational 

implications (e.g. raising certain structures for future conditions renders them unusable during current 

tidal conditions), and difficulty incorporating SLC for retrofit, rehab, and upgrade projects on structures 

that were not originally designed for SLC. Figure 6 shows that every barrier listed as a response option 

was seen as a potential barrier by at least 10 respondents. These findings suggest engineers felt that 

numerous barriers prevent SLC from being incorporated into design.  

 

  

Over half of respondents (36) selected the barrier No Standards. Regulatory standards and codes 

remove the burden on engineers to make subjective SLC design decisions. This barrier also renders many 

of the other 13 barriers less relevant. For example, design standards would override a client’s decision to 

ignore SLC. Survey respondents reported the client input as a primary driver in the decision to 

incorporate or ignore SLC. The survey results suggest that clients hold decision making power, but design 

standards can provide consistency in SLC design specifications and requirements. Additionally, Lack of 

project funding would no longer hinder the incorporation of SLC. One respondent noted, “Lack of 

Figure 6. Potential reasons why SLC may not be incorporated into the design of port infrastructure. 



planning or vision for surrounding facilities being modified for sea level change has caused 

accommodating for sea level change to be the first item removed from scope of project to meet funding.” 

When funding is limited, SLC can be low on the priority list. However, as another respondent indicated, 

removing SLC from the scope of a project would not be an option if there are regulatory design standards 

in place, stating, “The cost differential cannot be justified, especially when it is not a regulatory 

compliance issue.”  

As previously mentioned, federal regulation has had some success under Executive Order 13690, 

establishing the FFRMS. Until it was revoked by President Trump in 2017, the FFRMS provided clear 

flood protection requirements for designing infrastructure. Although SLC is projected to be highly varied 

across coastal regions of the U.S., the FFRMS provided flexibility and allowed owners and engineers to 

select from multiple options to build for resilience. This flexibility alleviates some of the financial stress 

by not forcing a specific action onto an owner. Of course, some ports have a greater institutional capacity 

to cope with these requirements, but providing different options minimizes any strategic advantage one 

port would have over another when requiring all U.S. ports to address increased flood risk. 

What strategies are port infrastructure designers implementing to cope with the scientific 

uncertainty of SLC? 

The third and final question sought to understand what engineers are currently doing to address SLC in 

their practice. Some respondents indicated designing port infrastructure in a way that can accommodate 

future upgrades to keep pace with SLC, but results ultimately suggest that SLC uncertainty has not been a 

major consideration due to relatively short design lives, for which uncertainty is not as significant as it is 

toward the end of the century. Therefore, strategies to cope with uncertainty have not been widely 

developed or implemented.  

From Figure 7, respondents perceived the client not wanting to incorporate SLC (count=14) as 

the most common barrier. Design life not extending far enough into the future to consider SLC was the 

second most common barrier (count=8). This suggests that since these structures are determined to have 



relatively short design lives, the projected sea levels at the end of their design lives are not significant 

enough to warrant incorporating into design specifications. However, respondents also commented on the 

difficulties of incorporating SLC for retrofit, upgrade, or expansion projects that involve structures not 

originally designed for future SLC. As one responded stated, “The biggest hurdle is in retrofit wharf 

construction. The costs are prohibitively huge to raise marine deck structures.” Another wrote, “So much 

of the work is retrofit of existing docks that generally it doesn’t make financial sense to raise.” And a 

third reported, “It is hard to accommodate significant sea level rise with existing large marine terminals 

(multiple thousand feet of wharf, 200+ acres, rail, etc.) – it is not financially feasible.” This raises 

attention on how new infrastructure is designed, and highlights the importance of new infrastructure 

incorporating SLC. Alternatively, proper consideration of long-term resiliency planning during design can 

ensure that the structure is able to be augmented throughout its service life and avoid retrofit challenges 

that survey respondents are currently facing. Furthermore, these findings call into question port planning 

time frames and the rigid methodology of designing structures for a specified lifetime or “design life” 

rather than the structure’s “service life” (Figure 8). 

 

 

Figure 7. Perceived most common reasons why SLC may not be incorporated into design. 



Design life of port infrastructure varies depending on structure type, but typically ranges from 30-

50 years. However, it is not uncommon for some port infrastructure to have service lives that exceed 100 

years (Becker et al. 2015). This is a concerning disconnect when designing port infrastructure for SLC. 

For example, new infrastructure designed for the projected sea levels of 2050 could likely remain in 

service beyond 2050. Therefore, the design may be inadequate for the change in sea level between 2050 

and the end of its service life. Alternatively, the structure could be repaired, retrofit, or upgraded at the 

end of its design life, but as respondents said, it is often more difficult to design for higher sea levels after 

initial construction. The significant uncertainties in SLC rates combined with the uncertainties of service 

life make designing for SLC challenging. Nevertheless, designing port infrastructure for a theoretical 

design life hinders the opportunity for ports to be more resilient in the future. 

 

 

Recommendations 

Findings suggest that to improve the resilience of port infrastructure in the long term, the engineering 

community needs to reconsider traditional engineering practices that involve designing for a specific 

design life. In planning, flexibility can bridge the gap between what is known and what should be known 

(Faludi and Hamnett 1977). However, engineers and designers have traditionally assumed that natural 

systems fluctuate within an unchanging envelope of variability, also known as stationarity (Milly et al. 

2008). Flood analysis, for example, utilizes the extent and intensity of historical flooding events in order 

to generate flood exceedance probabilities (Merz and Thieken 2004). The method applies a flood 

frequency analysis to a dataset of discharge data (Stedinger et al. 1993) and transforms the associated 

Figure 8. Definitions of "design life" and “service life" for infrastructure. 



discharge to defined return periods (e.g., the 100-year event) with an estimated inundation extent and 

depth (Apel et al. 2009). With climate change, storm frequency, duration, and intensity will likely change, 

meaning that the range of future flooding can no longer be predicted based only on observed changes in 

Earth’s climate (Milly et al. 2008). Even small climatic changes may result in large changes in storm 

intensities or patterns (Knox 2000). This new paradigm led Milly et al. (2008) to assert that “stationarity 

is dead” and can no longer serve as a default and central assumption for risk assessment and planning. A 

shift in planning, engineering, and design approaches is necessary to increase resilience in the built 

environment (Ahern 2011). As such, two major recommendations emerged from this research project and 

are described in the next sections. 

Undertake Life Cycle Cost Analysis that includes SLC 

Successfully addressing SLC and other climate related design variables will not come with a “one size fits 

all” solution for every critical piece of port infrastructure and every project site. Different types of port 

infrastructure have unique characteristics that may impact how engineers factor SLC into the design. For 

example, fixed wharves and piers have a very different intended use and importance compared to 

bulkheads and breakwaters, and therefore, design considerations, guidance, and standards should adhere 

to those differences. Similarly, each project site has a different set of conditions that SLC will have a 

unique impact on. Thus, engineers may require a greater reliance on site-specific hazard assessments in 

the future that evaluate flood risk, tolerance to flooding, and hydrodynamic forces on under deck elements 

in the case of fixed wharves and piers. Site-specific assessments, based on the best available science, can 

then lead to the effective utilization of Life Cycle Cost Analysis (LCCA).  

Engineers with expertise in other disciplines often rely on LCCA when designing for climate 

impacts. ASCE’s Structural Engineering Institute (SEI) advocates for the use of LCCA design practices 

by stating, “Structural engineering is undergoing a profound change towards a life-cycle oriented design 

philosophy where the classical point-in-time design criteria are extended to account for more 

comprehensive time-variant performance indicators over the entire service life” (Biondini and Frangopol 



2018). A study conducted by ICF International, Inc. also highlights the benefits of this approach where 

the authors support LCCA by asserting, “This methodology can be used to support decision making 

regarding climate change adaptation alternatives under compounded uncertainty. In addition, this 

methodology can be used to determine which adaptation design alternative is the most consistently 

resilient across the range of climate change and disaster event scenarios” (Rodehorst et al. 2018).  

LCCA can clearly be effective in navigating the challenges of designing for SLC, but results of 

this survey suggest there is limited use of this methodology. When failing to consider the entire service 

life of a structure, along with the anticipated rehab and retrofit actions needed throughout its service life, 

engineers run the risk of underestimating the height required for a structure to cope with future SLC. In 

some scenarios, engineers could conduct an LCCA on a structure, but still select a lower water level to 

design to. In those scenarios, the benefit of the LCCA is that it would require analysis of future SLC 

above the selected water level to determine its future resiliency and potentially lead to a design that can be 

easily upgraded in the future. Additionally, SLC design considerations are not limited to structure 

elevations, and should not be the sole focus of an LCCA. For example, SLC will also have an impact on 

the hydrodynamic forces on under deck elements, which could be more important than water level at 

some project sites. To determine which design variables have the greatest influence over the structure’s 

resilience, a site-specific assessment is a critical information gathering process that will better inform an 

LCCA.  

Collaborate to create new design standards and guidance 

The inconsistencies in approaching SLC design challenges and the lack of SLC design standards 

highlighted in this paper calls for collaboration among the engineering community, port authorities, and 

regulating bodies to improve the resilience of port infrastructure. Developing design standards 

collaboratively can help engineers overcome the barriers that currently prevent them from incorporating 

SLC. With design standards in place, many of the other barriers acknowledged by respondents would no 

longer exist. Therefore, further exploration and discussion is required to determine the most effective 



approach to implementing design standards. Should regulation be implemented at the federal level? 

Should states be the ones to develop their own design standards? Should standards be applied based on 

design life? Should standards be specific to the type of infrastructure? These questions deserve further 

dialogue as SLC becomes an increasing threat to port infrastructure. Also, the opportunity exists for 

private consulting firms that have a policy or planning document for SLC design to share resources, tools, 

and best practices with other members of the engineering community. Organizations such as ASCE have 

proven to be great facilitators of this type of knowledge sharing. Given the massive amounts of 

infrastructure spending that ports are planning in the next five years, ensuring that these investments are 

sustainable and resilient to future coastal hazards should be a top priority. 

Reestablishing the FFRMS would be a positive approach toward improving the resilience of 

seaports nationwide. However, as discussed earlier, the concept of stationarity and utilizing 100-year 

flood or 500-year flood events to guide design is an outdated one. Due to climatic changes, the return 

period probability for storm events is no longer what it once was. The entire globe is witnessing more 

intense storm events and more frequent high intensity storms, so it can no longer be accurately predicted 

what a 100-year storm brings in terms of flood extent and depth. 

ASCE has a unique role to play in the development and improvement of regulatory standards and 

codes. ASCE has proven to be a leader in the development of flood resistant design standards though 

ASCE/SEI 24-14 (ASCE 2014). ASCE 24 is the industry standard for flood-resistant design and 

construction, and has been adopted by building codes (ASCE 2019). However, ASCE 24 does not 

adequately address the implications that SLC can have on design flood elevations (ASCE 2014). An 

updated version of ASCE 24 that accounts for SLC would be a significant benefit toward implementing 

regulatory design standards across the nation. Just as EO 13690 was developed with input from the 

engineering community, any future federal regulation should also be crafted in a collaborative setting. In 

Canada, the engineering profession believes that engineering codes, standards, and work practices should 

consider climate change, and that state, federal, and provincial governments must collaborate with the 

engineering profession on climate change policies for the benefit of the public (Engineers Canada 2013).  



Additionally, there is also a need for design guidance, especially in the absence of design 

standards. Design standards, such as ASCE 24-14, provide minimum design requirements and 

prescriptive actions engineers must take, but may be conservative to cover a broader range of variable 

conditions. Design guidance is developed to help decision makers assess and incorporate best available 

information, but does not require the utilization of that information. In the context of SLC, design 

guidance could be developed to highlight guiding principles for enhancing resilience, provide a step-by-

step approach to incorporating SLC projections, and provide context through case study examples of 

projects that have incorporated SLC. Due to the geographic variability in SLC and other coastal hazards, 

guidance may be best established at local levels where more focus can be given to site-specific design 

variables. 

Limitations of Research 

This was the first nationwide survey of port and maritime infrastructure engineers regarding the practice 

of designing port infrastructure that is resilient to SLC. The sample originated with members of COPRI 

who have port infrastructure design experience, and expanded through snowball sampling. There were at 

least 31 different private consulting firms and 11 different port authorities represented in this sample, but 

of course, there are port infrastructure engineers at other consulting firms and port authorities across the 

country. It is difficult to determine the total number of consulting firms in the U.S. that work on port 

infrastructure projects, and therefore, difficult to gauge what portion of the entire population responded to 

the survey. Survey recipients who did not respond may not be interested in SLC design issues. Therefore, 

responses may be skewed toward engineers who are aware of the challenges brought by SLC and who 

have more experience designing port infrastructure projects for SLC.  

The researchers designed the survey to gauge the general state of the practice across the U.S. 

Therefore, the results are not indicative of engineering practice within specific regions, and are not 

indicative of engineering practice outside of the U.S. SLC impacts will vary, resulting in SLC design 

challenges to become a greater priority in some regions. The survey was not designed to identify the 



location of specific port infrastructure projects that respondents have worked on. A sample of engineers 

within specified geographic regions would provide interesting findings for future comparison. 

This survey was designed for engineers working for private consulting firms, port authorities, and 

government agencies. As a result, the researchers may have overlooked potential differences in SLC 

design approaches between these groups. Separate surveys that target each group individually could 

reveal differences in approach to designing for SLC. While additional details of engineering practices 

need to be explored in this area, the researchers feel that this study provides informative baseline data 

where key issues in the resilient design of port infrastructure can be identified and addressed.  

Bifurcated Likert scales used for presenting results is also a limitation of the survey and data 

collected. Although data analysis was conducted with and without bifurcating the data and results were 

similar in each instance, results had only slight variations when the data was bifurcated. However, due to 

the similarity in results of the non-bifurcated data and the data that was bifurcated, the researchers believe 

that bifurcating the data in this way was acceptable.   

Conclusion 

SLC design decisions made today have long-term impacts on the resilience of port infrastructure. 

Engineers must consider SLC and other coastal hazard impacts when designing port infrastructure to 

ensure that ports can continue to serve their essential role in the global economy in the coming decades. 

In serving the public interest, engineers are uniquely qualified and positioned to ensure port infrastructure 

is resilient for future sea level scenarios. However, adequately designing port infrastructure for SLC is a 

challenging task due to the uncertainty of SLC projections and the long service lives of port 

infrastructure. Only 29% of respondents indicated that their organization had an internal policy or 

planning document that communicates how to design for SLC. The inconsistencies revealed by this study 

suggest that the incentive to incorporate SLC into design is inconsistent from project to project, as are the 

barriers that prevent incorporating SLC into design. Furthermore, SLC projection data varies across 

NOAA, USACE, IPCC, state and local organizations.  



The engineering community must work with government to develop systematic and practical 

methods of incorporating SLC into design decisions. Engineers can serve as a bridge between their clients 

(often port authorities) and regulatory bodies, sharing successful design strategies, influencing the 

development of design standards and guidance, and helping to transitioning away from the traditional 

frameworks that operate with assumptions of stationarity. Knowledge sharing between organizations and 

the adoption of formal guidelines and policies can also promote consistency in the engineering 

community’s approach. In fact, findings from this study suggest that the lack of design standards can lead 

engineers to disregard SLC entirely. Finally, designing port infrastructure for a theoretical point in time 

can leave structures at risk if/when they outlive their design life. Although retrofits and upgrades can be 

implemented in the future, it is far more difficult and expensive to incorporate SLC as an afterthought.  
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