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Abstract

In this PhD thesis I am presenting the results of investigation of spin wave properties
in periodic ferromagnetic structures (one-dimensional magnonic crystals). The main
attention of research was put on developement of numerical methods and analysis
of spin waves properties that are important for designing a functional device. Three
subjects of spin waves properties were studied and they can be classi�ed as: i)
in�uence of damping on standing spin wave formation ii) metamaterial properties for
electromagnetic waves propagating through magnonic crystal and iii) nonreciprocal
dispersion of spin waves. In particular I have shown the analysis of the in�uence
of the damping factor on the spectrum of ferromagnetic resonance, the in�uence of
metallic overlayer on the damping, in�uence of structural parameters of magnonic
crystals on the magnetic permeability function of metamaterial based on the crystal.
I have also presented a detailed analysis of symmetry breaking of the dispersion
relation of spin waves propagating in the ferromagnetic �lms in contact with metal.
The numerical calculation were confronted with measured data, when available, and
agreement between them was shown.
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Streszczenie

W pracy doktorskiej pod tytuªem "Particular Properties of Spin Waves in Magno-
nic Crystals: Negative Refractive Index, Nonreciprocity and Damping (Szczególne
wªa±ciwo±ci fal spinowych w krysztaªach magnonicznych: ujemny wspóªczynnik za-
ªamania, nieodwracalno±¢ oraz tªumienie)«apisanej w j¦zyku angielskim, prezen-
tuje rezultaty moich bada« prowadzonych nad wªa±ciwo±ciami fal spinowych roz-
chodz¡cych si¦ w periodycznych strukturach ferromagnetycznych. Fala spinowa jest
to koherentna precesja momentów magnetycznych, która mo»e by¢ wzbudzona po-
przez oscyluj¡ce mikrofalowe zewn¦trzne pole magnetyczne. Procesuj¡ce momenty
magnetyczne wzbudzone lokalnie, np. w cienkiej warstwie lub krysztale magno-
nicznym, b¦d¡ oddziaªywaªy z s¡siaduj¡cymi momentami magnetycznymi poprzez
oddziaªywania dipolowe oraz wymienne. Dla pewnego zakresu cz¦stotliwo±ci oscy-
luj¡cego zewn¦trznego pola magnetycznego, le»¡cego w okolicach cz¦stotliwo±ci rezo-
nansowej, mog¡ by¢ wzbudzone propaguj¡ce fale spinowe. Zale»no±¢ cz¦stotliwo±ci
od wektora falowego tych fal jest opisywany poprzez relacje dyspersji. Badanie
relacji dyspersji jest istotnym elementem pracy doktoranckiej.

W rozprawie doktorskiej rozwa»anymi strukturami ferromagnetycznymi s¡ cien-
kie warstwy ferromagnetyczne oraz jednowymiarowe krysztaªy magnoniczne. Krysz-
taª magnoniczny mo»e by¢ np. zªo»ony z naprzemiennie rozmieszczonych pasków
materiaªów ferromagnetycznych i jego struktura opisywana jest poprzez periodycz-
nie powtarzaj¡c¡ si¦ komórk¦ elementarn¡. Do rozwi¡zania zagadnienia brzegowego
oraz zwi¡zanego z nim równania ró»niczkowego cz¡stkowego, które opisuje fale spi-
nowe stosuj¦ analityczne oraz numeryczne metody. Obliczenia s¡ wykonywane dla
struktur umieszczonych w zewn¦trznym polu magnetycznym, które przyªo»one jest
równolegle do powierzchni warstwy i jest wystarczaj¡co silne aby wszystkie momenty
magnetyczne w strukturze (w stanie podstawowym) byªy skierowane wzdªu» kie-
runku tego pola. Poniewa» dla fal spinowych amplitudy dynamicznych skªadowych
momentu magnetycznego (prostopadªych do zewn¦trznego pola magnetycznego) s¡
znacznie mniejsze od warto±ci magnetyzacji nasycenia, mo»e by¢ stosowane przy-
bli»enie liniowe. Ponadto rozwi¡zania s¡ zakªadane w postacie fali monochroma-
tycznej i rozwi¡zania poszukiwane s¡ w dziedzinie cz¦stotliwo±ci.

W pracy doktorskiej skoncentrowaªem si¦ na badaniach, które mo»na podzieli¢
na trzy zagadnienia: i) wpªyw tªumienia na formowanie si¦ fal stoj¡cych w kryszta-
ªach magnonicznych, ii) meta-materiaªowe wªasno±ci (w tym ujemny wspóªczynnik
zaªamania) dla fal elektromagnetycznych rozchodz¡cych si¦ poprzez krysztaª magno-
niczny, iii) zjawisko nieodwracalnej dyspersji fal spinowych. Praca doktorska skªada
si¦ z 6 rozdziaªów.

Wprowadzenie teoretyczne zostaªo zawarte w rozdziale pierwszym. Rozdziaª
ten zawiera opis gªównych poj¦¢ potrzebnych do opisu fal spinowych w krysztaªach
magnonicznych. Analityczne obliczenia dyspersji zostaªy zaprezentowane dla jedno-
rodnej warstwy ferromagnetycznej z polem przyªo»onym wzdªu» warstwy. Ponadto
wpªyw oddziaªywa« wymiennych oraz podstawowe wªa±ciwo±ci periodycznych struk-
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tur ferromagnetycznych (krysztaªów magnonicznych) zostaªy omówione. Zagadnenia
zaprezentowane w tym rozdziale b¦d¡ przydatne do opisu wyników prezentowanych
w dalszej cz¦±ci pracy.

Rozdziaª drugi przedstawia przegl¡d podstawowych metod eksperymentalnych
stosowanych do badania wzbudze« fal spinowych. Opisane s¡ techniki do±wiadczalne
takie jak: rezonans ferromagnetyczny, rozpraszanie Brillouina czy pomiary absorp-
cji i transmisji poprzez fale spinowe wzbudzane antenami. Wyniki pomiarów tymi
metodami byªy wykorzystywane bezpo±rednio w pracy lub byªy u»ywane do spraw-
dzenia metod numerycznych.

Rozdziaª nr. 3 zawiera opis metod numerycznych u»ywanych do oblicze«
widma fal spinowych. W pierwszej cz¦±ci zostaªa opisana metoda fal pªaskich a
w drugiej, metoda elementów sko«czonych. Zaimplementowanie metody elementów
sko«czonych do oblicze« dyspersji fal spinowych w krysztaªacj magnonicznych jest
wa»nym osi¡gni¦ciem prezentowanym w pracy. Metoda ta daje du»¡ swobod¦ w
de�nicji geometrii struktury i pozwoliªa na przeprowadzenie szeregu oblicze« przed-
stawianych w dalszej cz¦±ci pracy.

Kolejny rozdziaª (nr. 4) prezentuje wyniki oblicze« modów stoj¡cych za po-
moc¡ metody elementów sko«czonych. Wyniki te zostaªy zaprezentowane dla jed-
nowymiarowych krysztaªów magnonicznych skªadaj¡cych si¦ z warstw kobaltu oraz
permaloju o grubo±ci 50 nm. Period rozwa»anych krysztaªów magnonicznych byª
rz¦du kilku mikrometrów. Dane eksperymentalne z pomiaru rezonansu ferromagne-
tycznego otrzymane od wspóªpracowników z grupy do±wiadczalnej zostaªy porów-
nane z obliczeniami numerycznymi. Dzi¦ki rozwini¦tej metodzie numerycznej oraz
danych o tªumieniu uzyskanym z danych do±wiadczalnych mo»na zinterpretowa¢
powstaj¡ce fale stoj¡ce i odtworzy¢ widmo rezonansowe. W rezultacie tych bada«
wyja±niono obserwowane linie absorpcyjne w widnie rezonansu jako pochodz¡ce od
fali spinowej zlokalizowanej w materiale kobaltu lub permaloju. Pomimo wi¦kszego
tªumienia dla modów fal spinowych wy»szego rz¦du, sprz¦»enie stoj¡cych fal spino-
wych z fal¡ elektromagnetyczn¡ jest dostatecznie du»e i mo»e by¢ wykorzystywane
do konstrukcji urz¡dze«, do czego nawi¡zuje nast¦pny rozdziaª.

�ci±le zwi¡zane z badaniem widma rezonansowego jest przeprowadzona w roz-
dziale pi¡tym, analiza struktur mog¡cych posiada¢ ujemny wspóªczynnik zaªamania
±wiatªa. Proponowana struktura jest zªo»ona z oddzielonych od siebie jednowy-
miarowych krysztaªów magnonicznych w których fale stoj¡ce s¡ odpowiedzialne za
wyst¦powanie ujemnej podatno±ci magnetycznej. Badania prezentowane w tym roz-
dziale zostaªy przeprowadzone za pomoc¡ metody fal pªaskich oraz analitycznych
oblicze« podatno±ci magnetycznej dla jednorodnych warstw. Analiza rozmieszcze-
nia amplitudy fali spinowej w strukturze pozwoliªa na oszacowanie sprz¦»enia wzbu-
dze« fal spinowych z fal¡ elektromagnetyczn¡ w zakresie setek gigaherców. Dodat-
kowo pokazany zostaª wpªyw parametrów strukturalnych krysztaªu magnonicznego
na funkcje podatno±ci magnonicznej.

W rozdziale szóstym przedstawiona zostaªa analiza wpªywu warstwy metalicz-
nej na dyspersj¦ fal spinowych. Ze wzgl¦du na brak symetrii modów fal spinowych
propaguj¡cych si¦ w cienkiej warstwie prostopadle do zewn¦trznego pola magnetycz-
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nego (przyªo»onego wzdªu» warstwy) mo»na zde�niowa¢ struktur¦ dla których fala
spinowa propaguj¡ca si¦ w okre±lonym kierunku b¦dzie posiadaªa ro»n¡ dyspersje od
fali propaguj¡cej si¦ w przeciwnym kierunku. W cz¦±ci 6.1 opisany jest wpªyw me-
talu o sko«czonej przewodno±ci na jednorodn¡ warstw¦ ferromagnetyczn¡. Dokªadna
analiza wpªywu parametrów na zakres wektora falowego wyst¦powania nieodwracal-
nej dyspersji zostaªa równie» tam zamieszczona. W tej cz¦±ci jest równie» zawarte
wyprowadzenie przybli»onej formuªy analitycznej na relacj¦ dyspersji oraz analiza
tªumienia indukowanego przez warstw¦ metaliczn¡.

Przykªad krysztaªu magnonicznego posiadaj¡cego nieodwracaln¡ dyspersj¦ zo-
staª zaprezentowany w cz¦±ci 6.2. Zªamanie symetrii w tego typu strukturach ma
wpªyw na fale spinowe i prowadzi do wyst¦powania nowych efektów. Nieodwra-
calno±¢ prowadzi mi¦dzy innymi do pojawienia si¦ sko±nych przerw magnonicznych.
W tej samej cz¦±ci zaprezentowane s¡ obliczenia dla dwóch krysztaªów magnonicz-
nych zªo»onym z warstw o grubo±ci rz¦du kilkudziesi¦ciu (o maªym oraz znacz-
nym kontra±cie magnetyzacji) w kontakcie z idealnym metalem. Analiza amplitudy
fal spinowych pozwaliªa na zrozumienie mechanizmu powstawania niesymetrycznej
struktury pasmowej.

W tym samym rozdziale, w cz¦±ci 6.3, opisany zostaª kolejny krysztaª ma-
gnoniczny w kontakcie z metalem. Krysztaª ten skªadaª si¦ z jednorodnej warstwy
granatu itrowo-»elazowego o grubo±ci rz¦du kilku mikrometrów z naci¦tymi row-
kami o periodyczno±ci 150 mikrometrów. Tak zde�niowana struktura pozwaliªa na
do±wiadczalne zbadanie przerw magnonicznych w pomiarach transmisji fal spino-
wych. Dane eksperymentalne potwierdzaj¡ wskazane przez numeryczne obliczenia
podwy»szenie cz¦stotliwo±ci przerwy magnonicznej dla krysztaªu w kontakcie z me-
talem.

Podsumowanie wyników prezentowanych w pracy doktorskiej zawarte jest w
ostatnim rozdziale, nr. 7.
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Preface

This PhD thesis presents results of investigations on particular properties of spin
wave (SW) excitations in thin ferromagnetic structures. A spin wave is a physical
phenomenon widely investigated in various magnetic structures and it is a coherent
precession of magnetic moments. An alternating external magnetic �eld can serve as
a source of spin wave excitation in uniform ferromagnetic �lms or one dimensional
magnonic crystal (1D MC). The precession of magnetic moments is induced locally.
Neighboring magnetic moments start to precess due to dipole and exchange interac-
tions that exist in the system. At speci�c frequencies, the excitation will be formed
as traveling wave, with wavevector determined by the aforementioned interactions.
A study of frequency-wavevector relation (dispersion relation) is one of the main
task solved in the thesis.

The structures under consideration are homogeneous magnetic �lms and peri-
odically arranged magnetic elements, i.e., magnonic crystals. The analytical and
numerical methods are used to solve partial di�erential equations that govern the
magnetization precession in such structures. The study is made under the in�u-
ence of in-plane bias magnetic �eld (e.g, along the z-axix), su�ciently strong to
saturate magnetization in the same direction. The distortion of the magnetization
vector from its equilibrium orientation is assumed small (x and y components of
a magnetization are much smaller than the z component), so the oscillation might
be described under the assumption of constant z component of the magnetization
(i.e., in linear approximation). Further, the solutions are looked for in the form of
monochromatic waves allowing for analysis of SWs eigen-excitation in the frequency
domain.

The following particular properties of SWs in such structures are investig-
ated in details: damping, negative refractive index (NRI) and nonreciprocity. The
analysis of the in�uence of the intrinsic damping on the FMR spectra is made. In
addition, the metal induced damping is studied for uniform ferromagnetic �lms with
various structural parameters. The NRI properties are theoretically studied for 1D
MCs. The studied structures are considered as potentially possessing the negative
permeability at sub-THz frequency range. Nonreciprocal dispersion properties are
extensively studied in the metalized structures and potential applications of this
property are listed. The theoretical results are partially confronted with measured
experimental data.
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2 Preface

The dissertation is composed of six chapters. In the �rst chapter, the intro-
duction to the theory of SWs excitations in thin ferromagnetic �lms and magnonic
crystals is given. The equations and assumption that are used to describe harmonic
and coherent oscillation of magnetization are listed. The analytical procedure of
obtaining the SW dispersion relation is presented for uniform magnetic �lm under
the in�uence of an in-plane bias magnetic �eld in magnetostatic approximation. In
addition, the in�uence of exchange interaction is discussed. A brief introduction to
magnonic crystals is given. In the chapter, the summary of the recent trends in
SWs research and their potential applications as part of functional devices is also
outlined.

The detailed theoretical description is followed by the overview of the experi-
mental methods used to characterize SWs (chapter 2). The experimental techniques
such as: Ferromagnetic Resonance (FMR), Brillouin Light Scattering (BLS) and
measurements in the absorption and transmission modes with Vector Analyzers are
described. The results of measurements from described methods are either used
directly within the thesis or serve to verify the numerical methods of calculations.

In chapter 3 the numerical procedures that are used to calculate SW dispersion
relation presented in the dissertation are described. The �rst part of the chapter
addresses the Plane Wave Method (PWM), whereas the second part deals with the
Finite Element Method (FEM).

Chapter 4 reports the results of FEM calculations and comparison of these
results with FMR measurements for one-dimensional MCs composed of alternating
Co and Py stripes of depth of tens of nanometers and a periodicity of a few micro-
meters. Also the structures composed of slabs of Co and Py separated by dielectric
slab underwent investigation. It is shown that with established calculation method
complemented with the damping analysis it is possible to understand the formation
of standing spin waves in MCs and to explain the FMR data. The analysis is made
for two �eld con�gurations, when the bias magnetic �eld is along the stripes and
perpendicular to the stripes.

In chapter 5, the PWM together with analytical formulas is used to de�ne the
e�ective permeability tensor of a metamaterial. The investigation is made for thin
slabs of one-dimensional MCs in order to obtain a structure that possesses negat-
ive permeability at elevated frequencies. The analysis of the spatial dependency of
amplitudes of dynamic magnetization components is conducted in order to demon-
strate the strong coupling of high order magnonic modes with electromagnetic wave
from the microwave part of the spectrum. It is found that the coupling between
electromagnetic waves and magnonic modes can be signi�cantly enhanced for the
speci�c design of the magnonic structure as a result of the lateral quantization of
SWs. These results suggest that magnonic crystals are therefore promising candid-
ates for the negative refractive index metamaterials. The negative permeability at
frequencies close to 100 GHz can be achieved in structures feasible for fabrication
with present technology.

In the chapter 6 an analysis of the in�uence of metal overlayer on the SW dis-
persion is made. Due to nonreciprocal character of SWs propagating perpendicular



Preface 3

to the bias magnetic �eld, it is possible to de�ne structure with di�erent dispersions
for waves propagating in opposite directions. Speci�c conditions for the appearance
of nonreciprocal dispersion are discussed in the subsection 6.1. A detailed discussion
of the metal in�uence on the spin waves in uniform magnetic �lm is presented as well
as analysis of metal induced damping. The approximated analytical formulation of
the SW dispersion relation for a uniform �lm is given.

The analysis and example of magnonic structures composed of slabs of thick-
ness in range of tens of nanometers with nonreciprocal dispersion are presented
in the subsection 6.2. The nonreciprocal property of propagation has signi�cant
consequences for dynamical properties of MCs and new e�ects are analyzed. In par-
ticular, nonreciprocity leads to the appearance of indirect magnonic band gaps in
magnonics crystals with both low and high magnetization contrast. A nonrecipro-
city in low contrast magnonic crystals leads to appearance of several magnonic band
gaps located within the �rst Brillouin zone for waves propagating along a metallized
surface. The analysis of spatial distribution of dynamic magnetization amplitudes
allows to explain the mechanism of magnonic bands formation in structures with
nonreciprocal properties.

In the same chapter, a special case of nonreciprocal structure is investigated
further in subsection 6.3, i.e., a magnonic crystal composed of micrometer thick
yttrium iron garnet with a metal overlayer characterized by �nite conductivity. A
structure of this kind is closer to physical realization than perfect electric conductors.
The theoretical investigation is compared with the results of experiment, con�rming
the expected e�ects of metal on the SW dispersion.

The summary of the results reported in the dissertation are presented in
chapter 7.



Chapter 1

Introduction

The periodically arranged magnetic materials form a magnonic crystal, novel mater-
ial possessing not observed before properties. The dispersion relation of spin waves
is signi�cantly di�erent from homogeneous material, e.g., forbidden frequency gaps
can exists. This di�erence can cause that the MCs will be widely used in the ap-
plication in the close future as photonic crystals are used now [1, 2]. Also molding
the �ow of plasmons, elastic or acoustic waves is under development. Although the
research of MCs begin in more or less at the same time as photonic crystals, the
experimental attempts to realize the magnonic crystal based devices had lower suc-
cess. The prototypes has been proposed in the macroscopic scale [3, 4]. The existing
obstacles to implement MCs in technology such as high damping, low propagation
length or complex electrical excitation and detection of SWs needs to be overcome.

Nevertheless, the knowledge of this �eld of study expands. Advanced analyt-
ical and numerical model together with manufacture and experimental techniques
continuously develops [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. One of the branches, mag-
nonics, brought a special attention, where SWs are used for carrying and processing
the information [15, 16, 17, 18]. The potential advantages of magnonic devices are
such as: miniaturization below the size of device where the electromagnetic wave is
used, low energy consumption, fast operation rates compared with electronic devices
[17, 19] or easy tunability (controlled with the external magnetic �eld). The disper-
sions of spin waves in the MCs depends on the arrangement of the magnetization
vector. The reprogramability can be achieved by controlling the direction of the
magnetization, leading to applications such as magnetic logic devices [20, 21, 22].
The MCs might be also suitable in the interdisciplinary study, e.g., linked with
semiconductor technology or spintronics.

The classi�cation of MCs can be made based on the structural size [22]. Thus
the classes of �nite thickness and bulk MCs are di�erentiated. For both classes,
MCs can be classi�ed with one (1D), two (2D) or three-dimensional (3D) transla-
tional symmetry. In this thesis, the research e�ort are put solely on the 1D �nite
thickness MCs. It contains the investigation of the particular properties of the SWs
in magnonic crystals, i.e., interaction of SWs and EM wave, nonreciprocal properties

4



1.1. Spin Waves 5

of SWs and damping.
The presented �ndings important for implementation of MCs are supported by

comparison of calculated FMR spectra with the experiment in the chapter 4. The
strong absorption due to the standing spin waves leads to the idea of metamaterial
with negative refractive index or close to zero refractive index at elevated frequencies.
The permeability function of metamaterial is de�ned theoretically in the chapter 5
in order to de�ne the interaction of SW with EM. It is possible to design the op-
timal response of the metermaterial, if the in�uence on the structural and physical
parameters of element composing the metamaterial is known. At the moment there
are few ideas in the NRI research, e.g., split ring resonators [23]. However the exper-
imental realization at elevated frequencies requires structural miniaturisation which
is di�cult for the device basing on the complicated geometry. The metamaterial
described in this thesis is based on the simple geometry, the structures of similar
parameters are possible to manufacture nowadays.

Another direction of research in the SW subject is related to the property of
nonreciprocal dispersion. The SWs propagating in perpendicular direction to the
bias magnetic �eld in the thin �lm posses a nonreciprocal distribution of amplitude
across the �lm thickness. Breaking the symmetry of the thin �lm might lead to the
nonreciprocal dispersion. In the chapter 6 the conditions for observing the nonrecip-
rocal dispersion are discussed and discussion of MCs with nonreciprocal dispersion is
made. The device based on the MCs with nonreciprocal dispersion has been already
proposed and studied experimentally, i.e., as sensitive magnetic �eld sensor [24]. In
addition, the nonreciprocal dispersion might be employed in miniaturized microwave
elements, such as isolators or circulators, where its anisotropic properties might be
exploited.

1.1 Spin Waves

The magnetic moment in solids associated with electrons is related either to orbital
angular momentum µl or the intrinsic angular magnetic moment, spin µs. They are
related due to kinetics of electrons by :

µl = −µB

~
l, (1.1)

µs =
geµB

~
s = −γes, (1.2)

where l is angular momentum, s spin angular momentum, ge is electron spin g-
factor and characterize magnetic moment of electron, µB is Bohr magneton and ~
is reduced Planck constant, γe is gyromagnetic ratio of an isolated electron.

For light atoms and weak magnetic �elds, the total angular momentum j might
express the total magnetic moment µ:

µ = −gjµB

~
j, (1.3)



6 Chapter 1. Introduction

where gj is Landé g factor, j is total angular momentum, j = l+ s.
The concept of spin waves as collective excitations of the magnetic moments

was introduced by Felix Bloch [25]. A spin wave is an assembly of precessing mag-
netic moments about the e�ective magnetic �eld (He�) direction. In the discrete
lattice of magnetic moments the neighboring spins precess with constant phase dif-
ference (see Fig. 1.1) and their amplitude may vary, depending upon structural
parameters. The origin of this movement will be discussed further in this chapter.

Figure 1.1: The dynamical components of the magnetic moment vectors (these
perpendicular to the direction of the e�ective magnetic �eld) µs,x(r, t) and µs,y(r, t)
components at some �xed time t. The precession of neighboring spins is realized with
constant phase di�erence around direction of the e�ective magnetic �eld pointing
perpendicular to the cross section plane..

Forces acting on the magnetic moment under external magnetic �eld can be
considered. Magnetic moments of the electrons in ferromagnets tend to align along
the external magnetic �eld to minimize the energy. However, the magnetic angular
moment of electrons under applied �eld result in torque that is acting perpendicular
to the magnetic moment and applied �eld. If only contribution from the spin angular
momentum is considered (the orbital angular momentum is usually quenched in
solids [26]), the moment of force can be de�ned as:

Γs = −µs × µ0He�, (1.4)

where µ0 is the vacuum permeability. This should equal to derivative of angular
momentum with respect to time:

Γs =
ds

dt
=
dµs

γdt
. (1.5)

The torque equation takes the form:

dµs

γdt
= −µs × µ0He�, (1.6)

where the e�ective magnetic �eld might be assumed to have contribution from the
external magnetic �eld and the dynamic magnetic �eld:

He�(r, t) = H0(r) + h(r, t), (1.7)

where r is a position vector. The h = (hx, hy) are dynamic components of the
e�ective magnetic �eld.
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The Eq. 1.6 can be generalized to the equation describing macroscopic mag-
netization 1.9, since:

M(r, t) =
N

V
µs, (1.8)

where V is a volume, and N is the number of magnetic moments in the sample. The
quantity N

V
is also de�ned as n, the density of magnetic moments. The Eq. 1.6 can

be transformed to:

∂M(r, t)

∂t
= −γµ0M(r, t)×He�(r, t). (1.9)

This equation describe the precession of the magnetization in a ferromagnetic ma-
terial in external magnetic �eld. It was introduced by Landau and Lifshitz (LL)
[27].

The LL equation written in the form 1.9 describes the processional movement
of the magnetization around the direction of the magnetic �eld, see Fig. 1.2. Since
there is no energy dissipation, the precession will be not damped. An additional
term, the phenomenological Gilbert term [28], is added in order to take into account
the dissipation of energy:

∂M(r, t)

∂t
= −γµ0M(r, t)×He�(r, t)−

αµ0

MS

M(r, t)× ∂M(r, t)

∂t
, (1.10)

where α is a damping coe�cient. This equation is known as Landau-Lifshitz-Gilbert
equation. Damping is a loss of energy of the macroscopic magnetization (magnetic
moment per unit volume). There are few damping mechanism leading to this transfer
of energy, e.g., it can be due to eddy currents, lattice vibrations, scattering on strains
or scattering on defects [28]. The e�ect of damping on the precessional motion of
the magnetization is a reduction of the angle of precesion up to stabilization of the
magnetization vector along the direction of the e�ective magnetic �eld Fig. 1.2.

-M H×
eff

M

M dM /dt×H
eff

Figure 1.2: The terms of the Landau-Lifshitz-Gilbert equation: precession (blue
arrow) and damping (red). The trajectory of the magnetization with zero damping
is shown by dashed circle.

The uniform ferromagnetic resonance can be considered as an example of spin
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wave excitation with in�nitely long wavelength (zero wavevector) Fig. 1.3. It means
also that the phase shift between neighboring oscillating magnetic moments is ab-
sent.

H0

MS

y

x
z

Figure 1.3: The uniform oscillation of the magnetic moments under the applied bias
magnetic �eld in a �lm of ferromagnetic material.

A spin wave with �nite wavevector might also exists in the magnetic body. A
propagating spin wave appears due to the existing interactions between spins, i.e.,
dipole and exchange interactions. Dipole interactions originate from the magnetic
�eld distribution around magnetic moment. Exchange interaction is a quantum
e�ect, appearing due to the Pauli principle and electrostatic interactions.

The propagating spin waves can exists in the magnetic material naturally due
to the thermal excitations or they can be induce by the external �elds. For in-
stance the microwave antennas can induced locally the precession of the magnetic
moments. Neighboring magnetic moments start to precess, due to dipole and ex-
change interactions that exist in system. At speci�c frequencies of external harmonic
microwave �eld, the excitation in the ferromagnetic �lm is formed in the form of
traveling wave, with wavevector determined by the dispersion relation. A study of
frequency-wavevector relation (dispersion relation) is one of the main task solved in
my thesis.

1.2 Dipole Spin Waves

The analytical approach often used for calculating the SW dispersion relation in
uniform thin �lms is based on solving the LL equation 1.9 and Maxwell equation
for magnetostatic potential in the magnetostatic approximation. [29] The magneto-
static potential is de�ned separately for each material (i.e., for the ferromagnetic
material and its nonmagnetic surrounding) and linked together by the electromag-
netic boundary conditions. This leads to a system of secular equations which can be
solved analytically in some cases, but in general the numerical solutions are required.
The dispersion relation of SWs in a magnetic material surrounded by a dielectric,
in contact with a perfect conductor[30] or separated from a perfect conductor by a
dielectric of �nite width can be determined in this way too.[31] In a similar manner
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the dispersion relation has been obtained for SWs propagating in various geometries,
[29, 32] with the exchange interaction taken into account,[33, 34] or in a ferromag-
netic �lm surrounded by a magnetic wall.[35] The in�uence of the �nite conductivity
of the magnetic �lm on the SWs was studied with the use of Green's functions.[36]

The con�guration in which the external magnetic �eld H0 is applied in the
plane of the thin �lm and the wave vector of the propagating SW is perpendicular
to this �eld is referred to as the Damon-Eshbach (DE) geometry. [29] If the wave
vector of the propagating SW is parallel to the �eld, the excitation is refereed to as
Backward Volume(BV) geometry.

It is important for physical phenomena discussed in the thesis to present the
analytical calculation given in [29] for in plane magnetized ferromagnetic �lm and
in plane propagating spin waves. The results of those calculations will be referred
throughout the thesis.

The Maxwell equations in the magnetostatic approximation for nonconductive
materials are:

∇×He� = 0, (1.11)

∇ · (He� +M) = 0. (1.12)

In magnetostatic approximation, the time dependance of the electric �eld vector E
is neglected in the Maxwell equations. The electric �eld can be calculated from the
third equation:

∇× E =
∂(He� +M)

∂t
. (1.13)

Figure 1.4: Approximation of constant Mz = MS component magnetization vector
is valid if mx and my components ful�ll: mx, my << MS.

Under the in�uence of external magnetic �eld, if H0 is strong enough to satur-
ate the ferromagnetic �lm, the magnetization vector can be decomposed into static
(parallel to H0) and dynamical components from the perpendicular plane:

M(r, t) = Mz(r) +m(r, t). (1.14)

The magnetization and magnetic �eld are linearized, by assumption time inde-
pendence of the z component of the magnetization vector, see Fig. 1.4. The
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m = (mx,my), h = (hx, hy) are dynamic components assumed in the form of
monochromatic wave: ∼ exp(−iωt), where ω is a angular frequency of SW. The
spatial distribution of these dynamic components characterize the pro�le of this SW
excitation.

If the exchange and anisotropy is neglected, only dipolar interaction will be
responsible for forming spin wave. From the Eq. 1.9 the following equations are
de�ned: (

i ω
γµ0

mx

i ω
γµ0

my

)
=

(
myH0 −MShy
MShx −mxH0

)
(1.15)

and transformed to: (
hy
hx

)
=

(
i ω
MSγµ0

mx +
H0

MS
my

H0

MS
mx − i ω

MSγµ0
my

)
. (1.16)

That allows to de�ne the relation between dynamical components of the magnetic
�eld and magnetization:

h =

(
H0

MS
−i ω

MSγµ0

i ω
MSγµ0

H0

MS

)
m. (1.17)

The relation between the dynamic m and h components is:

m =

(
κ −iν
iν κ

)
h, (1.18)

where:

κ =
ΩH

Ω2
H − Ω2

, ν =
Ω

Ω2
H − Ω2

(1.19)

and

Ω =
ω

γµ0MS
, ΩH =

H0

µ0MS
. (1.20)

Neglecting the dynamic electric �eld and currents in Eq. 1.11 allows to de�ne
the magnetic �eld by the magnetostatic potential, ψ:

h = ∇ψ. (1.21)

The Eqs 1.12 and 1.21 leads to:

∇2ψ +∇m = 0, (1.22)

which leads to following equations for magnetostatic potential inside the ferromag-
netic material, (internal, ψi), and outside (external, ψe):

(1 + κ)(
∂2ψi

∂x2
+
∂2ψi

∂y2
) +

∂2ψi

∂z2
= 0, (1.23)
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∇2ψe = 0. (1.24)

The electromagnetic boundary conditions require continuity of the normal
component of the magnetic induction �eld B and tangential component of H �eld.
Setting the center of ferromagnetic �lm at the origin of the x, y, z Cartesian coordin-
ating system (so the edges of the �lm characterized by the thickness d are located
at x = ±d

2
) gives:

(1 + κ)
∂ψi(±d

2
)

∂x
− iν

∂ψi(±d
2
)

∂y
=
∂ψe(±d

2
)

∂x
, (1.25)

ψi(±d
2
) = ψe(±d

2
). (1.26)

The solutions of the Eq. 1.23 and 1.24 with the boundary conditions 1.25 and
1.26 can be looking for with the separation variables method. In this method the
magnetostatc potential is written in the form:

ψ(x, y, z) = X(x)Y (y)Z(y), (1.27)

To ful�ll the Eq. 1.26 and due to homogeneity in the �lm plane, only the function
X(x) varies when moving from inside to outside of the ferromagnetic �lm:

ψi(x, y, z) = X i(x)Y (y)Z(y), (1.28)

ψe(x, y, z) = Xe(x)Y (y)Z(y). (1.29)

The exponential or sinusoidal functions of x, y and z are acceptable solutions.
The function X is required to disappear at ∞ and −∞, thus:

Xe(x) = (b1e
kexx), x < −d

2
, (1.30)

Xe(x) = (a3e
−kexx), x >

d

2
, (1.31)

where b1 and a3 are unknown coe�cients and kex is real number. Inside the sample
the solution is assumed in the form:

X i(x) = (a2 sin k
i
xx+ b2 cos k

i
xx), (1.32)

where a2 and b2 are unknown coe�cients and kex can be real or imaginary number.
We require that the ky and kz are real arguments. The Y and Z should remain

�nite as y and z tends to in�nity, the Y and Z should be sinusoidal function with
arbitrary origin. Thus the equation 1.25 require that Y must be [29, 37]:

Y (y) = eikyy (1.33)
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and the Z is taken in the form:

Z(z) = cos kzz. (1.34)

Inserting these forms of magnetostatic potential functions in Eqs. 1.23 and 1.24
will de�ne the wave vector components along x, inside and outside the ferromagnetic
�lm, kex and kix as:

kex =
√
k2y + k2z , (1.35)

kix =
√

−k2y − k2z/(1 + κ). (1.36)

Using the boundary conditions allow to de�ne 4 equations with 4 unknown
variables (b1, a2, b2, a3), that after elimination of b1 and a3 can be written in form
of the matrix multiplication:

M

(
a2
b2

)
=

(
m11 m12

m21 m22

)(
a2
b2

)
= 0, (1.37)

where:

m11 = (1 + κ)

√
−k2y −

k2z
(1 + κ)

cos
1

2

√
−k2y −

k2z
(1 + κ)

d+ (
√
k2y + k2z − kyν) sin

1

2

√
−k2y −

k2z
(1 + κ)

d, (1.38)

m12 = ((−
√
k2y + k2z + kyν) cos

1

2

√
−k2y −

k2z
(1 + κ)

d+ (1 + κ)

√
−k2y −

k2z
(1 + κ)

sin
1

2

√
−k2y −

k2z
(1 + κ)

d),

(1.39)

m21 = (1 + κ)

√
−k2y −

k2z
(1 + κ)

cos
1

2

√
−k2y −

k2z
(1 + κ)

d+ (
√
k2y + k2z + kyν) sin

1

2

√
−k2y −

k2z
(1 + κ)

d, (1.40)

m22 = −(−(
√
k2y + k2z + kyν) cos

1

2

√
−k2y −

k2z
(1 + κ)

d+ (1 + κ)

√
−k2y −

k2z
(1 + κ)

sin
1

2

√
−k2y −

k2z
(1 + κ)

d).

(1.41)
The nontrivial solutions are found from the equation: det(M)= 0. Leading to char-
acteristic equation that can be solved numerically (e.g., with the Newton iterations):

2(1 + κ)
√
k2y + k2z

√
−k2y −

k2z
(1 + κ)

cot

√
−k2y −

k2z
(1 + κ)

d+ ((2 + κ)k2z + k2y(2 + 2κ+ κ2 − ν2)) = 0. (1.42)

The results of the calculations for 30 nm �lm of Co: d = 30 nm, MS =
1.2 · 106 A/m, γ = 176 GHz/T, µ0H0 = 0.1 T are presented in the Fig. 1.5. The
characteristic positive group velocity of waves propagating perpendicular to the
�eld (DE geometry) and negative group velocity for waves propagating in parallel
direction (BV geometry) can be seen. The dispersion relation is shown in two
equivalent dependence: as a frequency in dependence on the wave vector with the
�xed external magnetic �eld (a), and as an external (resonance) magnetic �eld in
dependence on k with the �xed frequency (b). These to kinds dispersion relation
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are characteristic for VNA-FMR and FMR measurements described in the chapter
2, respectively.
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Figure 1.5: The dispersion relation of the uniform �lm characterized by: d = 30 nm,
MS = 1.2 ·106 A/m, γ = 176 GHz/T, (a) Frequency as a function of the wave vector,
f(k) function for µ0H0 = 0.1 T, (b) Magnetic resonance �eld in dependence on k
µ0H0(k) for �xed f = 9.8 GHz . The dashed line shows the dispersion perpendicular
to the in-plane external magnetic �eld (DE geometry), continuous line presents the
dispersion along the bias �eld (BV geometry).

Properties of the Damon-Eshbach Excitation

A SW excitation propagating perpendicular to the applied magnetic �eld (ky ̸= 0,
kz = 0) posses an interesting spatial distributions of dynamic magnetizations across
the magnetic �lm. To plot the relative amplitudes, the normalization is made by
assuming b2 = 1 (it means that the value of magnetostatic potential is 1 at the
center of the �lm), the value of a2 is searched:

m11a2 +m12b2 = 0, (1.43)

sincem11 is imaginary number andm12 is real (see the Eqs. 1.38 and 1.39 for kz = 0),
the a2 will be imaginary. In the considered case also imaginary is the kix = i|ky|,
thus in the chosen basis the X i function is real and might be written in the form of
exponential function using Euler's formula:

X i(x) = (a2 sin k
i
xx+ b2 cos k

i
xx) = c2e

ikixx + d2e
−ikixx. (1.44)

The c2 and d2 are coe�cients, that can be also calculated with the use of Euler's
formula:

c2e
ikixx + d2e

−ikixx = c2(cos k
i
xx+ i sin kixx) + d2(cos k

i
xx− i sin kixx)

= (c2 + d2) cos k
i
xx) + i(c2 − d2) sin k

i
xx.

(1.45)

Thus:
b2 = c2 + d2, (1.46)
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a2 = i(c2 − d2). (1.47)

For ky = 1 · 107 1/m, the value of coe�cients are: c2 = −1.04 and d2 = 2.04. These
values and equations shows that the magnetostatic potential inside the material is
composed of two exponential functions with di�erent coe�cient, thus a localization
is present at one of the edges, see Fig. 1.6. Further analysis of a2 functions show
that it is even function, a2(ky) = a2(−ky), leading to symmetric sweep of c2 and d2
(if the value of potential is normalized to the same value at the center of the �lm),
what is seen when changing sign in Eq. 1.47. Thus for ky = −1 · 107 1/m, the value
of coe�cients are: c2 = 2.04 and d2 = −1.04, the localization switch to opposit edge
of the �lm. The a2 for large ky and −ky is converging to 1 and -1 respectively. In
that cases either c2 or d2 is 0 and due to the Eq. 1.44, the decay is de�ned by one
exponential function.
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Figure 1.6: The magnetostatic potential as a function of x (thickness) ot the fer-
romagnetic �lm for the SW propagating perpendicular to the direction of the ex-
ternal magnetic �eld. The uniform function is characterized by following parameters:
d = 30 nm, MS = 1.2 · 106 A/m, γ = 176 GHz/T, µ0H0 = 0.1 T. The wavevector of
spin wave is ky = 1 · 107 1/m. The dashed lines indicate the ferromagnetic-dielectric
boundaries.

Using the relations de�ned by the Eqs. 1.17 and 1.21, it can be found that
also the magnetization will decrease exponentially:

mx = κ(kix(a2 cos k
i
xx− b2 sin k

i
xx)) + νky(a2 cos k

i
xx+ b2 sin k

i
xx)

= ikixκ(c2e
ikixx − d2e

−ikixx) + νky(c2e
ikixx + d2e

−ikixx)

= (ikixκ+ νky)(c2e
ikixx)− (ikixκ− νky)d2e

−ikixx,

(1.48)

my = ikyκ(a2 cos k
i
xx+ b2 sin k

i
xx) + iν(kix(a2 cos k

i
xx− b2 sin k

i
xx))

= ikyκ(c2e
ikixx + d2e

−ikixx)− ν(kix(c2e
ikixx − d2e

−ikixx)

= (ikyκ− ν(kix)c2e
ikixx + (ikyκ+ ν(kix)d2e

−ikixx.

(1.49)

The excitation of this type is called magnetostatic surface wave (or Damon-Eshbach
wave), the localization edge is dependent upon the sign of ky. In the chosen basis (b2
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real), the my is imaginary number. In the Fig. 1.7 the |mx| and |my| for ky = 1 · 107
1/m is shown, and con�rm SW amplitude localization.

Distance x (nm)
-10 0 10 3020

A
m

p
li

tu
d
e

(a
rb

. 
u
n
.)

0

4

2

6

8

-20-30

Figure 1.7: Themx (blue line),my (purple line) as a function of x for a ferromagnetic
�lm for SW propagating perpendicular to H0. The uniform �lm is characterized by
following parameters: d = 30 nm, MS = 1.2 · 106 A/m, γ = 176 GHz/T, µ0H0 = 0.1
T. The wavevector of spin wave is ky = 1 · 107 1/m.

1.3 Dipole-Exchange Spin Waves

The exchange interactions in�uence the solution of the SW excitation spectra. Ad-
ditional term to the e�ective �eld He�, exchange �eld describing the exchange inter-
actions, Hex needs to be added:

Hex =
2

µ0MS

(
∇ · Aex

MS
∇m

)
, (1.50)

where Aex is exchange constant which de�ne the interaction strength coe�cient.
The governing equations (Eqs. 1.9 and 1.12, where the e�ective �eld contribu-

tions are H0 and Hex) can be solved with the use of numerical methods. Under the
assumption of the dynamic components and magnetostatic potential in the form of
propagating waves (φ(x, y) = φ′(x)ei(kyy+kzz), where φ′ = m′

x, m
′
y and ψ′

x) leads to
the following:

(
i2πf
γµ0

H0 − k2yMS(
2Aex

MSµ0
)− k2zMS(

2Aex

MSµ0
)−MS

∂
∂x
( 2Aex

MSµ0

∂
∂x
) ikyMS

−H0 + k2yMS(
2Aex

MSµ0
) + k2zMS(

2Aex

MSµ0
)−MS

∂
∂x
( 2Aex

MSµ0

∂
∂x
) i2πf

γµ0
−MS

∂
∂x

∂
∂x

iky −k2y − k2z +
∂2

∂x2

)(
m′

x

m′
y

ψ′

)
= 0.

(1.51)
This set of equations can be solved with the use of �nite element method, described
further in the chapter 3.

The results of calculations for the 30 nm Co �lm with taken exchange inter-
action into account is plotted in the Fig. 1.8 (d = 30 nm, MS = 1.2 · 106 A/m,
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Figure 1.8: The dispersion relation for a uniform �lm characterized by paramet-
ers: d = 30 nm, MS = 1.2 · 106 A/m, γ = 176 GHz/T and µ0H0 = 0.1 T. The
exchange constant is varied Aex = 2.8 · 10−11 J/m (dots) amd Aex = 0 J/m (solid
lines). Blue line and blue dots shows BV geometry without and with exchange
interaction respectively. Purple line and purple dots shows DE geometry without
and with exchange interaction respectively. The grid lines divide the dispersion
into three regions: i) long wavelength k < 0.35 · 108 1/m, where dipole interac-
tions are determining the dispersion relation, ii) intermediate wavelength, 0.35 · 108
1/m< k < 1.55 · 108 1/m, where dipole and exchange are of similar strength, iii)
short wavelength k > 1.55 · 108 1/m, where exchange interactions are determining
the dispersion relation.

Aex = 2.8 · 10−11 J/m, γ = 176 GHz/T, µ0H0 = 0.1 T) and in the Fig. 1.9 (for
d = 60 nm). If these dispersions are compared with the dispersions obtained without
taking the exchange interactions into account, the exchange shift is present in both
directions of propagation. In addition, 3 regions can be di�erentated, dipole (range
of k wavevectors where the exchange has no signi�cant in�uence), dipole exchange
(where both interactions are comparable), exchange (where dispersion takes charac-
teristic parabolic exchange form).

Additional in�uence of exchange is appearing for standing modes (quantized
modes across the thickness of the �lm). The interaction of standing and main
mode might be present, providing the hybridization between these two modes. The
exponential decay of the DE mode is modi�ed and can be even changed if the
interaction with standing modes is strong. The spatial distribution of |m′

x| and
|m′

y| of main dispersion branch is also changing when the exchange interactions
are included into calculations.. It might even change the localization near region
interacting with quantized modes as was reported in the Ref. [38].

1.4 Magnonic Crystals

In analogy to the electronic structures and photonic crystals (PCs are materials that
possesses periodic index of refraction), a magnonic crystals might be de�ned. By
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Figure 1.9: The dispersion relation for a uniform �lm characterized by paramet-
ers: d = 60 nm, MS = 1.2 · 106 A/m, γ = 176 GHz/T and µ0H0 = 0.1 T. The
exchange constant is varied Aex = 2.8 · 10−11 J/m (dots) amd Aex = 0 J/m (solid
lines). Blue line and blue dots shows BV geometry without and with exchange
interaction respectively. Purple line and purple dots shows DE geometry without
and with exchange interaction respectively. The grid lines divide the dispersion
into three regions: i) long wavelength k < 0.35 · 108 1/m, where dipole interac-
tions are determining the dispersion relation, ii) intermediate wavelength, 0.35 · 108
1/m< k < 1.55 · 108 1/m, where dipole and exchange are of similar strength, iii)
short wavelength k > 1.55 · 108 1/m, where exchange interactions are determining
the dispersion relation. The inset shows the interaction of dipole and perpendicular
standing spin wave.

MC it is meant arti�cially made structures composed of periodically arranged fer-
romagnetic materials (it can be of various magnetizations or structural parameters)
with its in�uence on the collective spin-wave dynamics [39]. In periodic structures,
a new physical phenomenons arise, i.e., spatial con�nement, localization of modes or
completely prohibited propagation of wave at some range of frequencies, i.e., band
gaps. The MCs have been subject of the intensive theoretical, experimental and
application studies in solid state physics and magnetism for last years.

The research in MCs is an important part of magnonics, a sub-�eld of con-
densed matter physics which explores spin waves in magnetic materials. The vast
spectrum of applications of magnonics devices includes, among others, non-volatile
magnetic storage devices that will bring closer to the construction of programmable
devices with sub-nanosecond re-programming time.[15, 40, 41] Magnonics technology
is also regarded as an alternative to the silicon-based logic-gate technology. [3, 42, 43]
These potential applications are followed by the design of magnonic devices that will
allow the control of spin waves and information processing as spin-wave interfero-
meters of the Mach-Zehnder type, [44, 45] enhancement of the signal-to-noise ratio,
reduction or suppression of high-power signals, and power-dependent phase shift.[46]

Another important part of the research in magnonics is focused on the in-
teraction of spin waves with electromagnetic waves especially in the microwave re-
gime. Magnonic crystals can be used as materials with a negative refractive index
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Figure 1.10: The 1D MC composed of alternating ferromagnetic slabs characterized
by the saturation magnetizationsM1 and M2. The dashed rectangular indicates the
unit cell that is taken in the numerical calculations.
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Figure 1.11: The dispersion relation of 1D MC composed of two materials with the
saturation magnetizations M1 = 1.15 · 106 A/m and M2 = 1.25 · 106 A/m. The
lattice constant is a = 500 nm, the �lm thickness d = 30 nm, the stripe widths
w = 250 nm, the exchange coe�cient Aex = 2.88 · 10−11 J/m. In addition, solid line
shows the dispersion of uniform �lm with saturation magnetizationMavrg = 1.2 ·106
A/m.

(NRI) for electromagnetic waves in the high-frequency regime, or as zero refract-
ive index medias, i.e., MCs can be regarded as metamaterials for electromagnetic
waves.[47, 48, 49] The properties of NRI materials and their potential application
in cloaking devices or perfect lenses are studied extensively.[50, 51] Materials with
a refractive index close to zero could be used for squeezing electromagnetic energy
into an ultra-narrow channel.[52]

The various numerical methods have been implemented for calculations of the
SW dynamics in periodic structures. In this thesis, it is considered a special case
of MCs, i.e., an one-dimensional MC composed of alternating ferromagnetic slabs
with �nite thickness and width, see Fig. 1.10. In results presented in this thesis, the
plane wave method and �nite element method (FEM) have been used to solve the
problem in the frequency domain. In both cases, the solution of SWs is assumed in
the form of monochromatic Bloch wave:

ϕ(r) = ϕ′(r)eik·r (1.52)
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Figure 1.12: The distribution of the |my| component of the magnetization vector
at x = d

2
along the y direction. The localization at low/high magnetic potentials is

seen for low/high frequency modes, f1 and f2 marked in the dispersion relation in
Fig. 1.11.

where ϕ = mx,my,ψ. This allows to de�ne a set of equations with ϕ′(r) eigen
functions and ω eigenvalues. According with the Bloch theorem ϕ′(r) functions
are periodic functions of the position vector which allows for performing e�cient
calculation in the unit cell with periodic boundary conditions (PBC), see Fig. 1.10.

The results of calculation shown in Fig. 1.11, presents the common e�ects
known for dispersion relation in periodic structures, i.e., band folding, band gap
opening and in analogies to nearly free electron model, localization of a wave amp-
litude in low/high potential wells for the modes near the band gap edges (Fig. 1.12).
These properties are useful for designing functional devices, �lters, circulators. Some
of these properties will be discussed further within the dissertation according with
the objectives of my thesis, i.e., observation of standing spin waves or design of
metamaterials with e�ective properties due to these quantization.



Chapter 2

Experiment

Among the experimental methods aiming to measure the SWs and characterize their
properties, we can di�erentiate such as: ferromagnetic resonance (FMR), vector
analysis or Brillouin ligh scattering spectroscopy (BLS). These examples of meas-
urement techniques are either compared with numerical results presented in the
thesis or were used to verify the models. Each of the method is complementary
and provide various data for analysis. The FMR setup is used to characterize the
interaction of SWs with electromagentic wave at GHz range and measure standing
spin waves frequencies and the damping parameter that are analyzed in the chapter
4. The vector network analyzer is a technique used for measuring transmission of
the signal, it is widely use for studying forbidden gaps in micrometer size MCs. A
BLS can characterize full dispersion of the thin �lms. The full Brillouin zone of MC
can be characterized, if the periodicity is below nanometers. This chapter describes
these techniques in details.

2.1 Ferromagnetic Resonance

An FMR spectrometer is use to characterize the absorption of the electromagnetic
(EM) wave of the ferromagnetic material as function of the external static magnetic
�eld [53]. The schema of the FMR measurement setup is depicted in the Fig. 2.1.
The main elements of the device are the microwave source, microwave cavity, magnet
and detector.

The microwave source is operating at �xed frequency at microwave range,
i.e., at frequency of the cavity resonant excitation. The wave is transported by
transmission line to the cavity, passing by the circulator. At the �xed frequency
standing EM wave is formed within the cavity, since the size of the cavity is choose
accordingly with the wavelength of generated wave. The EM �eld emitted by the
cavity is passing back by the circulator to detector. The induced voltage in the
transmission is analyzed and the power of absorption might be measured.

The magnetic external �eld is controlled and swept in the experiment. If the

20
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Figure 2.1: The schema of the FMR measurement setup.

frequency of EM wave and the external �eld correspond to the frequency of the
mode that is e�ectively excited, the spin wave mode absorbs the energy from the
EM �eld. In general EM in the cavity can excite standing spin wave oscillations if
the overlapping integral of oscillating EM �eld and spin wave mode is nonzero.

To determine the response of the magnonic structure to an external uniform
alternating magnetic �eld b(t) the problem of coupling of this �eld to the eigen-
modes is considered. The spatial distribution of the dynamic components of the
magnetization vector of the spin wave modes allows to calculate the relative in-
tensity of the corresponding absorption peaks. The time-averaged absorption power
Pn(r) associated with the n-th mode at a particular point r is given by:

Pn(r) = − 1

T

∫ T

0

m∗
n(r, t) ·

db(t)
dt

dt, (2.1)

wheremn is an amplitude of the dynamic magnetization compontent of the standing
spin wave, T is the period of the magnetic �eld oscillations. By averaging Pn(r) over
the entire of the ferromagnetic material the absorbed power by the the excitation is
obtained:

⟨P (r)⟩ = 1

V

∫
V

Pn(r) dV, (2.2)

where V denotes the volume of the magnetic material. Thus, the relative e�ciency
of the interaction of the external uniform alternating magnetic �eld with the spin
waves can be de�ned for each mode.

The excitation of spin precession results in absorption of the EM wave, thus
observed as a change by the detector. Although optimization of cavities, this signal
is weak. In order to increase signal to noise ration, lock-in ampli�er is used [53] and
supplemented with small modulations of external magnetic �eld.

The small modulating bias �eld component might be applied in addition to
constant �eld:

H(t) = H0 +Hacos(ωt) (2.3)

where ω is certain frequency at range of hundreds KHz. The reference voltage signal
Vref is:

Vref = cos(ωt+ ϕ). (2.4)
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The Taylor expansion at H0 of the FMR voltage signal VFMR is:

VFMR(H) = VFMR(H0) +
dVFMR

dH

∣∣∣∣
H=H0

Hacos(ωt) + ... (2.5)

The product:

VFMR(H)Vref = VFMR(H0)cos(ωt+ ϕ) +
dVFMR

dH

∣∣∣∣
H=H0

Hacos(ωt)cos(ωt+ ϕ)

= VFMR(H0)cos(ωt+ ϕ) +
1

2

dVFMR

dH

∣∣∣∣
H=H0

Hacos(ϕ) +
1

2

dVFMR

dH

∣∣∣∣
H=H0

Hacos(2ωt+ ϕ)

(2.6)

Applying low pass �lters, only the second term is nonzero. These result in presenting
the derivation of the signal in respect to swept �eld. The example of measurement
data for a thin bicomponent ferromagnetic �lm (Co and Py) is presented in the Fig.
2.2 and will be analyzed in details in the chapter 4. The value of damping parameter
characteristic for speci�c material can be extracted from the measured data. It is
related with the halfwidth of the peak in absorption intensity-�eld characteristic,
see chapter 4.3.

(a) (b)

Figure 2.2: (a) An example of the FMR derivative signal. The data measured and
shared by V. K. Sakharov from Kotelnikov Institute of Radio Engineering and Elec-
tronics, Saratov branch, Russian Academy of Sciences. (b) Calculated dependence
of the spin wave frequency as a function of the external magnetic �eld (f(H0)) of
k = 0 modes for corresponding MCs, that will be described in the chapter 4.

2.2 Network Analysis

A spin waves can be excited and investigated by the network analysis. The network
analysis is a complex instrument developed for characterization of passive and active
elements of devices, e.g., �lters, couplers, circulators, waveguides or resonators [54,
55]. The attenuation of the signal passing through a device, might be measured with
Scalar Network Analyzer, SNA. However, in some cases, in addition to information
about the attenuation of the magnitude of the signal, the phase information is
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needed. A device that is able to measure both magnitude and phase of signal is
Vector Network Analyzer (VNA). The phase measurements requires the comparison
of signal passing through the device under test (DUT) and the reference signal, see
Fig. 2.3.

A schematic overview of the VNA is shown in the Fig. 2.3. An input mi-
crowave current is produced in the port 1, generating the electromagnetic �eld in its
surrounding. The transmission properties of the �eld through the DUT is analyzed
by the port 2, where the �eld induce microwave current. The scattering parameters
S are introduced in order to de�ne the transmission or re�ection coe�cients. At the
same time they allow to avoid measurements of total voltage and current.

A source of microwave generates a microwave signal at the measurement fre-
quency. The signal is split into two: the reference signal and the signal directed
to the DUT (at port 1 or 2). The local oscillator is locked with the frequency of
the measurement. The received signal at detector is mixed with the reference signal
and down-converted to low intermediate frequency. Then the magnitude and phase
di�erence is analyzed (taking into account delay due to di�erence in path lengths).
However, in the experiment the di�erence between cycles of wave cannot be made,
thus phase frequency characteristic is reduced to ±180 deg.

Source Splitter DUT Detector

Loc. Osc.

P
o
rt

 1
/2

P
o
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/`

Figure 2.3: The schema of the Vector Network Analyser measurment setup.

Solutions of the equations governing the voltage and current characteristic in
the transmission line can be written in the form of the propagating waves [56]:

Vi(x) = V +
i e

−γx + V −
i e

γx, (2.7)

Ii(x) = I+i e
−γx + I−i e

γx, (2.8)

where V +
i , V −

i , I+i and I−i are amplitudes of voltage and current wave respectively.
The γ is a propagation constant. Thus, incident and re�ected power waves are
de�ned as [57]:

ai =
1

2

Vi + ZCiIi√
|Re(ZCi)|

, (2.9)

bi =
1

2

Vi − Z∗
CiIi√

|Re(ZCi)|
, (2.10)

where ZCi is the characteristic impedance:

ZCi =
V +
i

I−i
. (2.11)
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The ai and bi are depicted on the Fig. 2.4.
The S parameters de�nes the relation between incident and re�ected power

waves: (
b1
b2

)
=

(
S11 S12

S21 S22

)(
a1
a2

)
. (2.12)

DUT

a
1

b
1

b
2

a
2

Figure 2.4: The incident and re�ected waves passing through the Device Under Test
(DUT).

If the port 2 is terminated with a load that impedance is equal to the impedance
of the system, a2 is zero and:

S11 =
V −
1

V +
1

(2.13)

is the input port voltage re�ection coe�cient

S21 =
V −
2

V +
1

(2.14)

is the reverse voltage gain.
If the port 1 is terminated with a load that impedance is equal to the impedance

of the system, a1 is zero and:

S12 =
V −
1

V +
2

(2.15)

is the forward voltage gain

S22 =
V −
2

V +
2

(2.16)

is the output port voltage re�ection coe�cient.
Two important transmission lines are used in the measurements of transmission

due to SW excitations, i.e., microstripe antenna and coplanar antenna, see Fig. 2.5.
The �eld produced by these two kinds of antennas is signi�cantly di�erent. In case of
microstripe antenna the conducting plate is separated by dielectric from the ground
plate. In case of coplanar antenna, the ground stripes are in the same plane as
conductor.

An example of the measurements done with microstripe antennas are plotted
in the Figs 2.6. The increase of transmission signal is observed above frequency
f ≈ fFMR indicating that excited SW are responsible for enhanced transmission. In
addition, narrow ranges of frequency above fFMR are observed where transmission
is not enhanced. The measured sample is a MC, and the low transmission ranges
are due to the presence of frequency band gap. The analysis of phase-frequency
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Figure 2.5: The crosssection of transmission lines (a) microstripe line and (b) co-
planar waveguide.

characteristic, PFC allow for estimation of dispersion relation, con�rming that gap
in transmission is present at wavevector corresponding to Brillouin zone border of
measured MCs. Further about comparison of the VNA measurements with theoret-
ical calculation will be presented in the chapter 6
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Figure 2.6: An example of the measured enhanced transmission due to the SW
excitation. The data measured and shared by S. L. Vysotskii from Kotelnikov In-
stitute of Radio Engineering and Electronics, Saratov branch, Russian Academy of
Sciences. The measured data is compared with the calculated dispersion.

2.3 Brillouin Light Scattering

The fore-mentioned measurements setup in GHz regime are strongly supplemented
byt the results of the Brillouin Light Scattering measurements [58, 59]. This method
allows for measuring the frequencies as a function of the wavevector values. In
addition, the excitation of spin waves is not necessary, thermal excitations can be
measured. The spatial resolution is high, determined by the size of the laser focus
beam 30− 50 µm [58]

The principle of BLS experiment is following, the generated photons interact
with spin waves. The scattered photon can gain/loose energy and momentum due
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to the spin wave annihilation/creation:

~ωP,S = ~(ωP,I ± ωSW ), (2.17)

~kP,S = ~(kP,I ± kSW ), (2.18)

where ωSW , ωP,I and ωP,S are frequencies of spin wave, incident and scattered photon
respectively. The kSW , kP,I and kP,S are wavevectors of spin wave, incident and
scattered photon respectively. The Fig. 2.7 shows the scattering of photon and spin
wave annihilation/creation.

kP,I

ωP,I

kSW

ωSW

kP,S

ωP,S

Figure 2.7: The annihilation/creation of the magnon in light scattering process.

The source of the light is usually the green line of an Ar+ laser of 514.5 nm
wavelenght. Only the in-plane components of the wavevectors undergo the conser-
vation condition, for the light scattered on the �lm. If kP,I = −kP,S (back-scattering
geometry), the parallel wavevector of SW is de�ned by the incident angle θ:

k|| = 2kP,Isin(θ). (2.19)

The perpendicular component of the photon wavevector k⊥ is not well de�ned due to
the symmetry of the structure, the uncertainty is negligible if (kSW − kP,I)d >> 2π,
where d is the thickness of the �lm.

Changing the incident angle θ, the determined value of spin wave wavevector
k|| is varied also. The frequency absorption characteristic might be collected in
the BLS measurement for various wavevectors, showing peaks at frequencies of SW
modes. The full dispersion characteristic of SW in thin �lms can be measured.
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Numerical Methods

The band structure of excitations in materials with discrete translational symmetry,
including electronic, photonic, phononic and magnonic crystals, can be calculated
with the similar nuerical calculations methods. These methods are applicable for
various geometries and are applicable to any type of periodic arrangement structures.
[60, 61, 62, 7, 63] Most of these numerical methods has also been used to calculate
spin-wave spectra of 1D and 2D MCs of �nite thickness. [64, 65, 66]

A global coordinate system is de�ned, in which the y- and z-axes de�ne the
plane of the MC, and the x-axis is normal to its surface. In the continuous medium
approach, the spin-wave dispersion relation is determined from the Landau-Lifshitz
Eq. 1.9. MC is assumed to be magnetized to saturation and time dependance of
parallel to �eld magnetization component is neglected (linearization, see Eq. 1.14).

E�ective magnetic �eldHe� acting on the magnetization in an MC is the sum of
several components, such as external, exchange, demagnetizing or anisotropy �elds.
However, here only three should be considered: a uniform and constant applied
magnetic �eld H0 (along the z-axis), the exchange �eld Hex and the magnetostatic
�eld Hms. The latter two �elds, i.e., the exchange �eld and the magnetostatic �eld,
are space-dependent:

He�(r, t) = H0 +Hex(r, t) +Hms(r, t). (3.1)

The exchange �eld in uniform materials has the well known form.[67, 68] But
in MCs the magnetization changes abruptly at interfaces and a reformulation of
the exchange �eld term is required to spectral methods. In the literature di�erent
formulations of the exchange �eld were proposed for calculations of the SW spectra
in MCs so far.[69, 70, 7] Each formulation introduces di�erent boundary conditions
on dynamical components of the magnetization vector, so can describe di�erent
physical situations on interfaces. The exchange �eld is assumed to have the form
that can be obtained directly from the exchange-energy functional in the linear

27



28 Chapter 3. Numerical Methods

approximation with sharp interfaces:

Hex(r, t) =
1

MS

(
∇ · 2Aex(r)

µ0MS(r)
∇
)
m(r, t). (3.2)

In magnetically inhomogeneous materials, the spatial inhomogeneity of both the
exchange constant Aex(r) and the spontaneous magnetization MS(r) must be taken
into account in the de�nition of the exchange �eld.

The last component of the e�ective magnetic �eld in the Eq. 3.1, the mag-
netostatic �eld is calculated by decomposing this �eld into the static and dynamic
components, Hdem(r) and h(r, t), respectively. When the magnetic stripes are in-
�nitely long Hdem(r) = 0. The time dependence of the dynamic magnetostatic �eld
has the same form as that of the dynamic component of the magnetization vector:
h(r, t) = h(r)eiωt.

Using the linear approximation, the following system of equations from (1.9)
is derived:

i
ω

γµ0

mx(r) +

(
∇ · 2Aex(r)

µ0MS(r)
∇
)
my(r)−my(r)H0 +MS(r)hy(r) = 0, (3.3)

i
ω

γµ0

my(r)−
(
∇ · 2Aex(r)

µ0MS(r)
∇
)
mx(r) +mx(r)H0 −MS(r)hx(r) = 0. (3.4)

Aex and MS are periodic functions of y for 1D MC with the periodicity along y
and constant across the �lm thickness. In MCs composed of two materials, each of
these material parameters can be expressed by two values, AA, AB and MS,A, MS,B,
corresponding to each constituent material.

3.1 Plane Wave Method

To solve the system of equations (3.3)-(3.4), the Bloch's theorem is applied:

m(y) =
∑
G

mk(G)e
i(k+G)y, (3.5)

where G denotes a reciprocal lattice vector along direction of periodicity: G = 2π
a
ny;

ny is an integer. Bloch wave vector k refers to those spin waves that, according to
Bloch's theorem, can be limited to the �rst Brillouin Zone (1BZ). Already in Eq.
3.5 limits the solutions to the uniform ones across the �lm thickness.

In the next step, the Fourier transformation is performed to map the periodic
functions MS and

2Aex(y)
µ0MS(y)

to the reciprocal space, as

MS(y) =
∑
G

MS(G)e
iGy,

2Aex(y)

µ0MS(y)
=
∑
G

2Aex(G)

µ0MS(G)
eiGy. (3.6)
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In the 1D case, the Fourier components of the saturation magnetization MS(G) and
the 2Aex(y)

µ0MS(y)
can be calculated analytically:

MS(G) = −1

a

∫ a

0

MS(y)e
−iGydy, (3.7)

2Aex(G)

µ0MS(G)
= −1

a

∫ a

0

2Aex(y)

µ0MS(y)
e−iGydy. (3.8)

The formula for the dynamic demagnetizing �elds, hx(y, x) and hy(y, x) is
needed. According to the idea presented in Ref. [71], for a slab of a 2D magnonic
crystal with a uniform magnetization along its thickness (its static and dynamic
components) Maxwell's equations can be solved in the magnetostatic approximation
with the electromagnetic boundary conditions at both surfaces of the slab, i.e., at
x = −d/2 and x = d/2 (d is a thickness of the MC). For the considered structure,
in�nite in the (y, z) plane, analytical solutions in the form of Fourier series can be
obtained for dynamic demagnetizing �elds:

hy(y, x) =
∑
G

[
imx,k(G) sinh (|k +G|x)e−|k+G|d/2 (3.9)

− my,k(G)
(
1− cosh (|k +G|x)e−|k+G|d/2)] ei(k+G)y;

hx(y, x) =
∑
G

[
imy,k(G) sinh (|k +G|x)e−|k+G|d/2

− mx,k(G) cosh (|k +G|x)e−|k+G|d/2] ei(k+G)y. (3.10)

Represented in the reciprocal space for the in-plane components, these formulas
for the demagnetizing �elds are x-dependent, i.e., vary with position across the
thickness of the slab. However, when the slab is thin enough (which is the case for
the discussed MC, with d = 5 nm), the nonuniformity of the demagnetizing �elds
across its thickness can be neglected, and the respective �eld values calculated from
equations (3.9)-(3.10) for x = 0 can be used in the PWM calculations. Because of
its Fourier series form, the solution found for the demagnetizing �elds can be used
directly in the equations (3.3)-(3.4), together with the Bloch theorem, Eq. 3.5.

The substitution of equations (3.5)-(3.10) into (3.3)-(3.4) leads to the algebraic
eigenvalue problem with eigenvalues iω/γµ0H0:

M̂mk = i
ω

γµ0H0

mk, (3.11)

where the eigenvector is mT
k = [mx,k(G0), · · · ,mx,k(GN),my,k(G0), · · · ,my,k(GN)]

and a �nite number N of reciprocal lattice vectors is used in Fourier series (3.5) and
(3.6). The elements of matrix M̂ are de�ned as:

M̂ =

(
M̂xx M̂xy

M̂yx M̂yy

)
. (3.12)
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The submatrices in Eq. 3.12 are de�ned as:

M̂xx
ij = −M̂yy

ij = −i 1

H0
S(k +Gj)MS(Gi −Gj), (3.13)

M̂xy
ij = δij +

∑
l

(k +Gj)(k +Gl)

H0

l2ex(Gl −Gj)MS(Gi −Gl)

+
1

H0
(1− C(k +Gj, x))MS(Gi −Gj), (3.14)

M̂yx
ij = −δij −

∑
l

(k +Gj) · (k +Gl)

H0

l2ex(Gl −Gj)MS(Gi −Gl)

− 1

H0
C(k +Gj, x)MS(Gi −Gj), (3.15)

where indexes of the reciprocal lattice vectors i, j, l are integer numbered reciprocal
lattice vectors. The additional functions used in above equations are de�ned as
follows:

S(k, x) = sinh (|k|x)e−|k|d/2;

C(k, x) = cosh (|k|x)e−|k|d/2. (3.16)

The system of Eqs. 3.11 is solved by standard numerical procedures designed
for solving complex matrix eigenvalue problems. All the eigenvalues found by these
procedures must be tested for convergence, though. A satisfactory convergence
of numerical solutions of Eq. 3.11 for all the structures considered proves to be
assured by the use of 101 reciprocal lattice vectors. The model presented here has
been validated by comparison with other numerical simulations and experimental
results for MCs composed of Co and permalloy stripes, for details see Ref. [64].

The PWM will be used in the chapter 5. It is an e�ective method in the cases
where the uniform excitation across the thickness of the �lm can be assumed. In
next section, the FEM will be presented.

3.2 Finite Element Method

The FEM method is a tool that leads to approximate solutions of di�erential prob-
lem. It allow for calculation of structures that nonuniformity over the thickness of
the �lm is strong and also for calculations of structures that are nonuniform across
the thickness. The backdraw of this calculation as compare to PWM calculation
is the computational time. Another dimension required to de�ne structure expand
largely the degrees of freedom

Although the 1D problem can be de�ned and solved with the use of program-
ming environment (C++, MatLab, Mathematica). The 2D and 3D geometries will
most probably required implementation of advanced techniques (e.g. unstructured
grid, high order polynomial discretionary, iterative methods to solve matrix), thus



3.2. Finite Element Method 31

specialized software is common to use. Here the COMSOL software for that purpose
is used.

The procedure of FEM might be de�ned as follows:

• De�ning a physical problem

• De�ning the governing equations in the weak formulation

• Discretization

• Setting up the matrix

• De�ning the boundary conditions

• Solving the matrix

In this part only the physical problem will be de�ned for magnonic calculations.
The following steps of FEM procedure are presented for simply example of 1D
photonic crystal in the Appendix A.

The e�ective magnetic �eld in the Eq. 1.9 is de�ned as:

He� = H0 +Hex +Hms, (3.17)

where H0 is the external static magnetic �eld; Hms is the magnetostatic �eld with
two components: a static demagnetizing component: Hdem (present only in BV
geometry) and dynamic components that are perpendicular to H0: hdem,x, hdem,y (in
DE geometry) and hy, hz (in BV geometry); Hex is the exchange �eld. In the DE
and BV geometries the exchange �eld is:

Hex, DE =

 Qx

Qy

0

 and Hex, BV =

 0
Qy

Qz

 , (3.18)

where:

Qx =
2

µ0MS

(
∇ · Aex

MS
∇mx

)
, (3.19)

Qy =
2

µ0MS

(
∇ · Aex

MS
∇my

)
, (3.20)

Qz =
2

µ0MS

(
∇ · Aex

MS
∇mz

)
.1 (3.21)

After linearization the Eq. 1.9 in the DE geometry can be written as:(
i ω
γµ0

mx

i ω
γµ0

my

)
=

(
my(H0 +Hdem)−MS(hy +Qy)
MS(hx +Qx)−mx(H0 +Hdem)

)
. (3.22)

1Here, di�erent de�nition of the e�ective exchange �eld is used to simplify the calculation. For
parameters considered throughout the thesis, there is no discrepancy in results as it was shown in
[72].
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In order to �nd the dynamic components of the demagnetizing �eld (hx and
hy) the Gauss equation is employed: ∇ · (Hdem + M) = 0, in which Hdem can be
expressed as the gradient of the scalar potential function, so that ∇ × Hdem = 0
is always satis�ed. In the linear approximation the static component and dynamic
components of the demagnetizing �eld can be regarded as independent. The static
demagnetizing �eld will be calculated separately, the Gauss equation can be split
into two equations:

∇2ψ =
∂mx

∂x
+
∂my

∂y
, ∇2ψdem =

∂MS

∂z
, (3.23)

where ψ is the magnetostatic potential related to the dynamic components of the
demagnetizing �eld and ψdem is the magnetostatic potential related to the static
component of the demagnetizing �eld; ψdem is zero (Hdem = 0) in the DE geometry
because of the homogeneity of the sample in the z direction (i.e. along the stripes).

In the BV geometry (1.9) can be written in the form:(
i ω
γµ0

my

i ω
γµ0

mz

)
=

(
mz(H0 +Hdem)−MS(hz +Qz)
MS(hy +Qy)−my(H0 +Hdem)

)
. (3.24)

In general, in the BV geometry even if only the y component of the magnetiza-
tion is nonzero within the sample in the static case, the demagnetizing �eld will have
nonzero components beyond the y direction because of the �nite thickness of the
sample. The x component of the demagnetizing �eld will result in a magnetization
rotation near the edges of the stripes. However, this e�ect is neglected here, and
consequently, the x component of the static demagnetizing �eld at the interfaces.
Thus, the static demagnetizing �eld will be collinear with the external �eld in the
calculations. The rotation of the static demagnetizing �eld (and of the magnetiza-
tion vector) near the edges of the stripes at low magnetic �elds can be critical for
analyzing edge modes, which, however, are not the subject of this study. Finally,
the magnetostatic potential is calculated from the equations:

∇2ψdem =
∂MS

∂y
, ∇2ψ =

∂my

∂x
+
∂mz

∂z
. (3.25)

The term hz in Eq. 3.24 and the term ∂mz

∂z
in Eq. 3.25 are zero because of the

homogeneity of the sample in the z direction.
The periodic boundary conditions along the y direction are employed, thus the

solutions according to Bloch's theorem for the DE geometry are following:

mx(x, y) = m′
x(x, y)e

iky,

my(x, y) = m′
y(x, y)e

iky, (3.26)

ψ(x, y) = ψ′(x, y)eiky
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and for the BV geometry:

mx(x, y) = m′
x(x, y)e

iky, (3.27)

mz(x, y) = m′
z(x, y)e

iky,

ψ(x, y) = ψ′(x, y)eiky,

where m′
x, m

′
y, m

′
z and ψ

′ are periodic functions of y dependent on x and y; k is a
Bloch wavevector, which can be limited to the �rst Brillouin zone, i.e. to the range
from -π/a to π/a (a is the period of the lattice). The solutions in the form of Eqs.
3.26 and 3.27 are substituted to the system of governing equations the Eqs. 3.22,
3.23 and the Eqs. 3.24, 3.25 for the DE and BV geometries respectively, to obtain the
eigenvalue problem. The eigenvalue problem can be de�ned so that the eigenvalues
are either frequencies or resonance magnetic �eld values. The eigenvectors represent
the spatial distribution of the dynamic components of the magnetization vector.

The eigenvalue problem is written in the weak form [73], obtained by multiply-
ing it by the test function v and integrating over the domain. In the next steps the
unstructured grid is generated. The values of parameters are assigned for each grid
element. Assuming solution, e.g. in the quadratic form and taking test function in
the quadratic form, taking into account boundary conditions leads to creation of a
matrix. That is solved by default in COMSOL with Arnoldi iterations method. The
Arnoldi iteration method is a way of solving general eigenvalue problem for speci�ed
number of eigenvalues around de�ned eigenvalue.

Procedure of solving eigenvalue problem is executed with the use of COM-
SOL 4.2. The solutions satisfy electromagnetic boundary conditions on the inter-
faces between magnetic materials and dielectric (i.e. tangential h component and
normal b components are continuous). On the interfaces between magnetic materi-
als dynamic magnetizations (m′

i) and
∂m′

i

∂y
Aex

MS
are continuous functions [11, 70]. The

eigenvalue solution from the solver does not dependanct on the choice of a linear-
ization point of matrix for general linear and quadratic eigenvalue problems. The
solution is dependant on the linearization point for nonlinear eigenvalue problem.



Chapter 4

Damping of Standing Spin Waves in

MCs1

Numerous samples of one-dimensional MCs have been produced to date, many spin-
wave spectrum measurements and other experimental investigations performed and
supported by theoretical studies. Three basic 1D MC structures are considered:
periodic lattices of grooves in a ferromagnetic material,[74, 75, 76, 77] systems of
thin ferromagnetic stripes periodically arranged on a dielectric substrate,[78] or bi-
component MCs composed of thin stripes of two ferromagnetic materials.[79] More
complicated structures have been studied as well,[80] including periodic stripes of
di�erent width of the unit cell [81] or ferromagnetic stripes on a metallic or ferro-
magnetic substrate. Studies of 1D MCs are rich in new physics originating in the
complex SW dispersion in plain �lms, the shape anisotropy and the hysteresis his-
tory of the magnetization/remagnetization process. The angular dependence of the
spectrum and the propagation losses has been investigated for magnetostatic spin
waves in MCs based on yttrium-iron-garnet (YIG).[82] The angular dependence of
the SW frequency in an in-plane external �eld has been examined in MCs formed
by permalloy stripes. Hybridization of edge-localized modes has been observed in
ferromagnetic resonance spectra.[83]

Many theoretical methods of predicting the properties of MCs have been de-
veloped, including micromagnetic simulations,[84] the �nite element analysis[11, 85]
or the plane wave method,[64] the latter also adapted to thin �lms of MC with a
metallic overlayer.[86] In this study a FEM (section 3.2) is used to calculate the
dispersion relation and the FMR absorption spectrum of a thin �lm of 1D MC in an
external magnetic �eld parallel to the �lm plane. A two particular con�gurations of
the external magnetic �eld with respect to the periodicity direction in the MC are
distinguished. In one con�guration the external �eld is oriented along the magnetic
stripes (the z direction in Fig. 4.1); (Damon-Eshbach DE). In the other con�gura-
tion, the �eld is perpendicular to the stripes, i.e. oriented along the x (backward

1Based on the [66]

34
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volume BV). The calculations presented in the chapter allows to predict the re-
sponse of the magnetic metamaterial to electromagnetic waves. Thus, makes it a
useful tool for designing devices based on MCs and interacting with electromagnetic
waves (more about it in chapter 5).[49, 50, 51, 47, 87, 88] A numerical model is used
for analyzing the data obtained from the FMR measurements of samples prepared
by magnetron sputtering, photolithography and ion etching by V. K. Sakharov from
Kotelnikov Institute of Radio Engineering and Electronics, Saratov branch, Russian
Academy of Sciences. Three samples with di�erent structures are studied: a peri-
odic array of Co stripes, a periodic lattice of Py stripes, and a bi-component MC
that is the superposition of the other two. These three structures are schematically
depicted in Fig. 4.1. The Co stripes are 6.6 µm wide, the Py stripes are 3.4 µm
wide, and the lattice constant is 10 µm in all three structures. The samples are
50 nm thick. An important output of this study is a detailed analysis of standing
spin waves and the conditions of their formation in the considered structures and
geometries, including possible challenges in the observation of standing spin waves
in the BV geometry due to attenuation.

Figure 4.1: Magnonic crystals investigated in this chapter. Left: periodic lattice
of 6.6 µm wide Co stripes with a lattice constant of 10 µm. Center: periodic
lattice of 3.4 µm wide Py stripes with a lattice constant of 10 µm. Right: bi-
component MC of alternate 3.4 µm wide Py stripes and 6.6 µm Co stripes in direct
contact. Two geometries are considered: the magnetostatic surface wave geometry
with the bias magnetic �eld oriented along the stripes (z-axis), and the backward
volume magnetostatic wave geometry with the �eld oriented along the direction of
periodicity (y-axis). In both geometries the spin waves propagate along the direction
of periodicity.

4.1 Experiment

The structures were fabricated by magnetron sputtering, photolithography and ion
etching by the Kotelnikov Institute of Radio Engineering and Electronics group.
The bi-component MC (Fig. 4.1(c)) was produced by combining the fabrication of
a periodic lattice of Co stripes by the etching technique with the fabrication of a
periodic lattice of Py stripes by the lift o� method using a single photolithography
process. In the �rst step a 50 nm �lm of Co was deposited on an Si substrate by DC
magnetron sputtering. Next, a mask of resist in the form of a striped structure was



36 Chapter 4. Formation and Damping of the Standing Spin Waves in MCs

created by photolithography on top of the Co �lm. A positive lithography process
was used for AZ5214E resist along with a photomask that had opened for irradiation
windows in the form of 3.4 µm wide stripes with a period of 10 µm on an area of
5 mm × 5 mm. Photolithography was followed by ion etching of the Co �lm and
the deposition of a 50 nm thick Py �lm through the same photoresist mask by DC
sputtering and resist lift o� by acetone in ultrasonic bath. Periodic lattices of Co
and Py stripes (Fig. 4.1(a) and (b)) were fabricated separately by the etching and
lift o� techniques, respectively.

The thickness of the Co and Py �lms was controlled by the deposition time with
a constant deposition rate assumed. The deposition rate had been found by growing
a few test samples at the same conditions through a shadow mask and measuring
their thickness by means of an atomic force microscope (AFM). Similarly, the etching
time for Co had been determined by etching test samples and AFM measurements
of their thickness.

The geometry of the fabricated structures was checked by the AFM. Figure 4.2
shows an AFM image of the bi-component structure. The geometry of the fabricated
bi-component MC was as desired in general, but had two kinds of imperfections. The
level of Py was ca. 20 nm lower than that of Co, which could be due to overetching
rather than di�erent thickness of the deposited �lms, since the accuracy of the
determined deposition rates was signi�cantly higher than that of the etching rate.
The other kind of imperfection consisted in regular defects in the form of vertical
�akes on the edges between Co and Py stripes. These defects were probably caused
by the deposition of Py on the sidewalls of the photoresist mask.

In order to eliminate the e�ect of the plain magnetic �lms beyond the struc-
tured regions of the samples, for FMR measurements the 2 mm × 2 mm squares
cut from the middle of each fabricated structure was used. The FMR measurements
were performed at a �xed frequency of 9.8 GHz by the conventional cavity method
with modulation of the bias �eld and signal detection using a lock-in ampli�er. In
this case the FMR signal represents the derivative dP/dH of the absorbed power as
a function of the bias �eld (see, for example, Fig. 4.8 (g)-(i)). To make the com-
parison between the theoretical and experimental data more clear and to represent
the actual absorption curves the experimental FMR signal curves were integrated
numerically.

4.2 Formation of Standing Spin Waves

Before presenting the results of the calculations and measurements the expected
behavior of the SWs will be discussed in the considered arrays of Co and Py stripes
and in the bi-component MC. The predictions will be based on analytical solutions
for a plain ferromagnetic thin �lm in two �eld con�gurations: DE and BV spin wave
wave geometry. Two models will be of use for the interpretation of the results. One
is based on the assumption of almost independent oscillations in the stripes and can
be regarded as analogous with the electronic tight binding model. The other model
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Figure 4.2: AFM image of the fabricated bi-component structure. Measured with
the us of Atomic Force Microscope Solver P-47 NT-MDT by Kotelnikov Institute of
Radio Engineering and Electronics group.

is based on the Bloch theorem and the magnonic band structure folding to the �rst
Brillouin zone, and is analogous with the nearly free electron model. These models
will be used depending on the con�guration and the SW spectrum.

Figure 4.3 presents the wavevector dependence of the resonance magnetic �eld
for SWs in plain �lms of Co and Py (dashed and solid lines, respectively) in the
DE and BV geometries (left and right from the point k = 0, respectively) for a
resonance frequency of 9.8 GHz. In the DE geometry the �rst excitation (counting
from high magnetic �elds) in the bi-component MC is expected to be concentrated
in Py stripes. At magnetic �elds below the FMR �eld of the plain Py �lm (0.114 T)
and above the FMR �eld of the plain Co �lm (0.065 T), i.e. in the range between the
two horizontal lines in Fig. 4.3, no states are allowed to SWs in Co. Thus, SWs will
be re�ected from the boundaries between Py and Co, and standing SW modes are
expected to form in the Py stripes, as they would do in an isolated Py stripe. For
lower magnetic �elds (below 0.065 T) the excitations will spread over both materials
instead of being solely con�ned to Py. The formation of standing spin waves will be
possible due to magnonic band structure folding.

Also in the BV geometry �eld ranges in which waves can propagate solely in
Py or in both materials can be distinguished. However, the dispersion relation and
the pro�les of dynamic magnetization are expected to be more complex in the BV
geometry than in the DE geometry, since the dispersion relation for a plain �lm
itself is not monotonic. For certain resonance �elds SWs in a bi-component MC
composed of Co and Py can have two or three possible values of the wavevector
at a �xed frequency. For �elds between 0.114 T and 0.15 T two wavevectors are
available in a plain Py �lm and none in a plain �lm of Co, but for magnetic �elds
from 0.065 T to 0.08 T there are two allowed states in Co and one in Py (Fig. 4.3).
However, it must be remembered that this is only a qualitative estimation since the
nonuniform internal magnetic �eld in the MCs in the BV geometry will a�ect the
dispersion curves observed in measurements.
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Figure 4.3: Resonance magnetic �eld versus wavevector in a 50 nm thick uniform
�lm of Py (solid lines) and Co (dashed lines) at a frequency of 9.8 GHz. The blue
lines on the left refer to the DE geometry, and the red lines on the right to the
BV geometry. Points i and ii correspond to the wavevector values k indicated by
vertical grid lines in Fig. 4.13(d)-(f).

The condition of occurrence of standing SWs can also be determined by ana-
lyzing the group velocity Vg and the propagation length L in the limit of k → 0 in
uniform Co and Py �lms, which allows to elucidate the e�ects of damping, too. The
propagation length is de�ned as:

L = Vgτ ≈ Vg
γµ0∆H

, (4.1)

where τ is the lifetime of SWs and ∆H is the half-width of the resonance line. The
∆HPy = 0.001 T for Py and ∆HCo = 0.005 T for Co, as observed in experiments.[89]
The group velocities V DE

g and V BV
g in the DE and BV geometries, respectively, for

k = 0 have the analytical form:[90]

V DE
g =

ω2
Md

4
√
ω0(ω0 + ωM)

, (4.2)

V BV
g = − ωMω0d

4
√
ω0(ω0 + ωM)

, (4.3)

where ωM = γµ0MS and ω0 = γµ0H0. Figure 4.4 shows the group velocity Vg and the
propagation length L for SWs with k = 0 versus the bias magnetic �eld in plain Co
(dashed lines) and Py (solid lines) �lms, as calculated from Eqs. (4.1)-(4.3). Both Vg
and L decrease with increasing bias magnetic �eld in the DE geometry (Fig. 4.4(a)
and (c)) and increase with the bias magnetic �eld in the BV geometry (Fig. 4.4(b)
and (d)). The values of Vg and L are signi�cantly (more than 10 times) lower in
the BV geometry than in the DE geometry. This indicates that the observation of
SWs in the BV geometry will be more challenging, especially if the width of the Co
stripes exceeds the propagation length.

The plots in Fig. 4.4 clearly indicate that even though the group velocity is
larger in Co than in Py the propagation length is signi�cantly shorter in Co. This
is due to higher spin wave damping in Co. For example, for magnetic �elds larger



4.3. Numerical Results 39

(b) BV Geometry(a) DE Geometry

(c) DE Geometry (d) BV Geometry

Figure 4.4: (a), (b) Group velocity and (c), (d) propagation length of uniform
(k = 0) SWs in plain Py (solid lines) and Co (dashed lines) thin �lms of thickness
d = 50 nm versus bias magnetic �eld in two geometries: (a), (c) DE and (b), (d)
BV. Highlighted points correspond to uniform �lm excitations at a frequency of 9.8
GHz.

than 0.06 T the SWs are seen to penetrate Co to a distance shorter than 20 µm
in the DE geometry. In the BV geometry in the range of the bias magnetic �eld
considered in this chapter L is up to 1.2 µm in Co (and less than 4.2 µm in Py). This
means that coherent coupling of SWs can be suppressed if the width of the Co (Py)
stripes is larger than 1 µm (4.2 µm) in the BV geometry. This analysis brings to the
conclusion that damping can lead to the suppression of coherent Bragg re�ections
and, consequently, coherent SW excitations throughout the bi-component MC[70,
91] if the propagation length is shorter than the linear size of the ferromagnetic
inclusions. For the same reason damping can suppress the formation of standing
SWs in an array of spaced stripes if the stripe width is larger than L. In the samples
the Py and Co stripes are 3.4 µm and 6.6 µm wide, respectively. According to the
results shown in Fig. 4.4(c) and (d) such a situation can be expected to occur in the
array of Co stripes and in the bi-component MC in the BV geometry.

4.3 Numerical Results

The FMR spectra of periodic arrays of air-spaced Py and Co stripes and a bi-
component Co/Py MC in the DE and BV geometries (see Fig. 4.1) was calculated
and compared with measured data. The analysis and discussion of the results is
presented in two subsections devoted to the two geometries considered. Paramet-
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ers used in the numerical calculations are following: gyromagnetic ratio γ = 182.2
GHz/T, Co saturation magnetization MCo = 1.35 × 106 A/m, Py saturation mag-
netization MPy = 0.705 × 106 A/m, Co exchange constant ACo = 2.88 × 10−11

J/m and Py exchange constant APy = 1.11 × 10−11 J/m. The general qualitative
agreement between the numerical results and the experimental data con�rms that
the pronounced peaks in the FMR spectra occur due to in-plane quantization of
standing SWs.

Figure 4.5: Dispersion relation, i.e. plot of frequency versus wavevector in the �rst
Brillouin zone for the bi-component MC composed of alternate 3.4 µm wide Py
stripes and 6.6 µm wide Co stripes (with a periodicity a = 10 µm) in magnetic �eld
µ0H0 = 0.05 T. The �eld is oriented along the stripes; the spin waves propagate in
the plane of the MC orthogonally to the bias �eld, i.e. in the DE geometry.

DE spin waves geometry

Figure 4.5 shows the frequency plotted versus wavevector in the �rst Brillouin zone
for the bi-component Co/Py MC in the DE geometry. The group velocity is seen to
be low but di�erent from zero for the �rst few bands, which con�rms the collective
character of SWs in the bi-component structure. Also, one can see that the multiple
SW resonances that occur at k = 0 can be regarded as a consequence of the period-
icity of the structure. The properties of SWs with a zero wavevector, k = 0, strongly
coupled to the external alternating �eld and observed in the FMR experiment will
be investigated further. For an in-depth explanation of the magnonic band structure
shown in Fig. 4.5 the plot of the amplitude of the SWs is presented. Figure 4.6(a)
and (b) presents color maps of the SW amplitude over the (x, y) plane; Fig. 4.6 (c),
(d) shows a linear plot of the amplitude along the periodicity direction (y-axis) at
the mid-thickness of the MC. The pro�les of SWs from the two lowest-frequency
bands are calculated for k = 0. Quantization of SW modes is seen to occur in the
Py stripes. The �rst mode does not have a nodal line in Py (Fig. 4.6(c)), and the
second mode has one nodal line (Fig. 4.6(d)). In both modes the oscillations are
suppressed in the Co stripes. These SWs have an almost uniform amplitude across
the �lm thickness.
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Figure 4.6: Pro�les of two lowest-frequency SW modes in the bi-component MC
in the DE geometry. (a), (b) Color map of the amplitude of the y component my

of the dynamic magnetization vector in the plane de�ned by the thickness and the
periodicity direction. (c), (d) The amplitude of my in the unit cell along the y-axis
at the mid-thickness of the MC. The pro�les are as calculated for µ0H0 = 0.05 T
and k = 0, i.e. in the center of the BZ in Fig. 4.5.

(b) (c)(a)

Figure 4.7: Spin wave frequency versus bias magnetic �eld for: (a) an array of Co
stripes (6.6 µm wide), (b) an array of Py stripes (3.4 µm wide), (c) a bi-component
Co/Py MCs (with a period of 10 µm) in the DE geometry for k = 0. All the
three structures have equal thickness d = 50 nm and periodicity a = 10 µm. The
horizontal solid line marks the resonance frequency of 9.8 GHz. The colored vertical
grid lines indicate the position of the most intensive modes, the pro�les of which are
plotted in Fig. 4.8 with the corresponding numbers and colors.

The frequency of a magnonic excitation depends on the bias magnetic �eld.
Figure 4.7 (a), (b) and (c) shows this dependence calculated for k = 0 for the
three structures considered: an array of Py stripes, an array of Co stripes, and a
bi-component Co/Py MC, respectively. The frequencies of all the modes increase
with the bias magnetic �eld. An interesting feature of the bi-component structure
(Fig. 4.7(c)) is the crossing and anti-crossing of some lines in the �eld dependence.
This is because some modes have steeper slopes than others. The frequencies of these
modes are around 6 GHz (third or forth mode in (c)) and around 8 GHz (seventh
mode) at µ0H0 = 0 T, and match with the frequencies of the �rst two modes in
the array of Co stripes (see Fig. 4.7 (a)). Also, as it is seen in Fig. 4.6, the �rst
two modes in the bi-component MC at µ0H0 = 0.05 T are related to excitations
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in the Py stripes. This, along with the di�erent slopes, indicate that in the bi-
component MC low-frequency modes with the amplitude concentrated in di�erent
parts of the MC can be distinguished, i.e. in Py or collectively in Py/Co stripes.
Using Eq. (2.2) the intensity of the relative absorption can be calculated, which can
be compared with the FMR absorption. In the FMR experiment nonzero-absorption
modes are expected to appear at a frequency of 9.8 GHz for di�erent magnetic �elds
corresponding to the points indicated by the crossing of the vertical grid lines with
the horizontal line in Fig. 4.7(a)-(c). The calculated absorption spectra and the
experimental data are compared directly in Fig. 4.8(d)-(f).

The Lorentzian function characteristic of each resonance absorption peak is
determined by 3 parameters: the resonance magnetic �eld, the amplitude and the
half-width of the peak. These parameters are obtained from the FMR signal in
both the DE and BV geometries (solid lines in Fig. 4.8(g)-(i) and Fig. 4.10(g)-(i),
respectively) by �tting with derivatives of the Lorentzian functions. The �rst two
parameters can be obtained also from the solutions of the eigenvalue problem de�ned
in (3.22) (or (3.24)). The half-width is directly related to the damping parameter
was used for comparison of the numerical data with the experimental results the
halfwidth values obtained from the FMR signal. The summation of the Lorent-
zian functions de�ned in this way yields a set of absorption spectra (dashed lines
in Fig. 4.8(d)-(f) and Fig. 4.10(d)-(f)), which can be compared with the experi-
mental FMR absorption (solid lines in the same Figures). The experimental FMR
absorption spectra were calculated numerically by integrating the FMR signal. The
calculation results can also be compared directly with the measured FMR signal by
using the derivative of the calculated Lorentzian functions, as shown in Fig. 4.8(g)-
(i) for the DE geometry and in Fig. 4.10(g)-(i) for the BV geometry; the dashed line
represents the theoretical curve.

Spin waves propagating in air-spaced stripes of Co and Py are e�ectively re-
�ected on the edges of the stripes. The propagation length for the uniform mode in
the DE geometry is several times larger than the stripe width (see Fig. 4.4(c)); this
enables the formation of standing waves. Since the spacing between the stripes is
relatively large, all the measured lines are attributed to standing SW modes in the
isolated Co or Py stripe. In Fig. 4.8(d) and (g) the results of the numerical calcula-
tions (dashed lines) are compared with the experimental data (solid lines) regarding
the FMR absorption and the FMR signal, respectively, in the array of Co stripes.
The experimental and numerical results for resonance �elds are in good agreement,
also in the case of Py stripes (Fig. 4.8(e) and (h)). Figure 4.9(a) and (b) presents
the pro�les at the mid-thickness of the sample for the most intensive excitations in
the array of Co and Py stripes, respectively. However, the relative absorption values
are overestimated for some modes, see Fig. 4.8(d) and (e), modes II and III. This
overestimation can be attributed to the irregularities in the samples, especially at
the edges of the stripes, inevitable in the fabrication process (see Sec. 4.1). These
irregularities can suppress the conditions of formation of higher-order standing SWs
and the FMR absorption. The damping of SWs can contribute to this e�ect as
well. Spin wave modes with a higher number of nodes along the stripe width have
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(a) (b) (c)

(d) (e)
(f)

(g) (h)
(i)

Figure 4.8: Results of numerical calculations and experimental data in the DE geometry

for: (a), (d), (g) the array of Co stripes; (b), (e), (h) the array of Py stripes; (c), (f), (i) the

bi-component Co/Py MC. (a)-(c) Amplitudes of relative absorption calculated numerically

from Eq. (2.2). (d)-(f) FMR absorption spectra obtained by numerical integration of the

experimental FMR signal (solid lines) and from calculations (dashed lines). (g)-(i) Ex-

perimental FMR signal (solid lines) and numerical curves (dashed lines). Colored vertical

lines in (a)-(i) indicate the position of the most intensive modes, the pro�les of which are

plotted in Fig. 4.9(a)-(d) with the corresponding labels (I - IV) and colors (black, red and

blue). Experimental data was measured by V. K. Sakharov from Kotenikov Institute of

Radio Engineering and Electronics, Saratov branch, Russian Academy of Sciences.

a nonzero wavevector and a penetration length signi�cantly reduced with respect to
the uniform mode in the DE geometry. This is because the group velocity decreases
with increasing k.[90] It can be estimated on the basis of an analysis similar to that
presented above in Sec. 4.2 for plain thin �lms, but for wavevectors di�erent from
zero. this estimation was performed to �nd that L for the second standing SW
(mode II in Fig. 4.9(b)) will be reduced by ∝ 60% with respect to its value for k =
0. This means that the conditions of formation of standing modes will be suppressed
to a signi�cant extent and, as a consequence, the FMR absorption will be weaker
than in an ideal damping-free medium. Also the e�ect of band bending will play an
important role in the reduction of the group velocity and the propagation length in
the MCs. It has been shown theoretically that in a 1D MC the propagation length
for magnetostatic spin waves decreases signi�cantly with increasing wavevector and
mode number.[92]

In the bi-component Co/Py MC a shift of the calculated resonance �elds to
higher values with respect to the experimental data (Fig. 4.8(c) and (f)) is observed.
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Figure 4.9: Amplitude of the y component of the magnetization vector for the most

pronounced absorption peaks in: (a) the array of Co stripes; (b) the array of Py stripes;

(c), (d) the bi-component Co/Py MC. The position of the peaks is indicated by colored

vertical lines in Fig. 4.8(a)-(i) with corresponding labels (I - IV) and colors (black, red and

blue).

The rise is of ca. 6% for all the peaks (lines I to IV). From the possible reasons of
this shift one should exclude a small gap between the Co and Py stripes since the
conductivity measured along the stripes and along the periodicity direction is almost
equal, which means that Co and Py are in direct contact. Neither would a change
in the boundary conditions at the interfaces of Co and Py a�ect the resonance �eld
value signi�cantly. This observation excludes also the e�ect of the irregularities
on the interfaces. However, the interface irregularities can explain the increased
absorption intensity of modes II to IV in the calculated spectra with respect to the
FMR measurements, as discussed in the case of arrays of Co and Py stripes. The
higher frequency obtained from the calculations can be attributed to an increased
anisotropy �eld in the bi-component sample or a slight di�erence in the saturation
magnetization value in Co and Py. The parameter values can vary with sample,
since, as discussed above in Sec. 4.1, the samples were fabricated individually.

Figure 4.9(c) and (d) presents a magnetization pro�les for the bi-component
MC. Two kinds of pro�les can be distinguished, depending on the resonance magnetic
�eld: in the pro�les of one kind the propagation of the wave is seen to be con�ned
to Py; in the pro�les of the other kind the wave can propagate in both materials.
This is in agreement with the discussion presented in Sec. 4.2. Spin waves with
resonance �elds higher than the FMR �eld of Co will have a signi�cant amplitude of
magnetization in Py stripes (see Fig. 4.3). A similar dependence has already been
observed in 1D bi-component Co/Py MCs with smaller lattice constants in Brillouin
light scattering experiments.[11, 85, 64] These results con�rm also the interpretation
provided.
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BV spin waves geometry

Measurements and calculations have been performed for the considered structures
in the BV geometry, too. In this con�guration the dispersion relation in a plain
magnetic �lm is not monotonic and the slope of this function (i.e. the group velocity)
is much lower than in the case of DE geometry within the range of external magnetic
�eld used in the experiment (see Figs. 4.3 and 4.4). for the sample with lattice
constant of 10 µm the border of the �rst Brillouin zone is at 3.14 × 105 1/m). A
consequence of these characteristics of the dispersion relation and Brillouine zone
size is high number of solutions of the eigenvalue problem within a given range of
magnetic �eld in con�ned or periodic structures, such as stripes or 1D MCs. The
numerous solutions form a dense band of SW modes. Thus, the plot of the SW
frequency vs. the magnetic �eld for k = 0, similar to that discussed above for the
DE geometry and shown in Fig. 4.7, presents a challenge because of computational
limitations. Therefore the investigation should be con�ned to the resonance �eld
values at a �xed frequency, namely the frequency of 9.8 GHz used in the FMR
measurements. In the BV geometry the group velocity in a plain �lm is lower than
in the DE geometry; consequently, the SW propagation length is much shorter (see
Fig. 4.4), comparable with the width of the Co or Py stripe (see Fig. 4.4(d)). This
means that the e�ect of damping on the SW spectrum of the arrays of stripes and
the bi-component MC should be more pronounced than in the DE geometry. In
the BV geometry the bias magnetic �eld crosses the edges and interfaces in the
arrays of Co or Py stripes and in the bi-component MC, respectively. This results
in a strongly inhomogeneous static internal magnetic �eld and, consequently, more
complex SW spectra.

Figure 4.10(a), (d), (g) and Fig. 4.11(a) present the experimental and numer-
ical results for the array of Co stripes; the results obtained for the array of Py
stripes are shown in Fig. 4.10(b), (e), (h) and Fig. 4.11(b). The resonance �eld of
the quasi-uniform mode (mode I in the respective panels of Fig. 4.10) in the Co and
Py stripes is higher than in the DE geometry. This is a direct consequence of the
occurrence of a demagnetizing �eld that reduces the internal magnetic �eld in the
stripes. The calculated internal magnetic �eld is plotted in Fig. 4.12(a) and (b) for
the array of Co stripes and the array of Py stripes, respectively, and in Fig. 4.12(c)
for the bi-component MC. The internal magnetic �eld is discontinuous at the inter-
faces, with a step equal to the saturation magnetization di�erence. Narrow wells
are seen to form near the edges of the ferromagnetic stripes in the arrays and at the
interfaces within Co in the bi-component MC. These wells enable the formation of
modes referred to as edge-localized modes. At the frequency of 9.8 GHz the FMR
�elds of these modes are relatively high; e.g., the resonance �eld for edge modes in
the bi-component MC is above 0.24 T. Also, the FMR absorption of the edge modes
is predicted to be very low, and therefore not observable experimentally. For these
reasons the edge modes are excluded from consideration.

Several pronounced peaks are predicted by the numerical calculations for the
array of Co stripes and the bi-component MC in the BV geometry, but not observed
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Figure 4.10: Numerical results and measurement data for the considered structures in the

BV geometry: (a), (d), (g) the array of Co stripes; (b), (e), (h) the array of Py stripes; (c),

(f), (i) the bi-component Co/Py MC. (a)-(c) Amplitudes of relative absorption calculated

numerically from Eq. (2.2). (d)-(f) FMR absorption spectra (solid lines) obtained by nu-

merical integration of the experimental FMR signal and the absorption spectra obtained

from calculations (dashed lines). (g)-(i) Experimental FMR signal (solid lines) and numer-

ical curves (dashed lines). Colored vertical lines in (a)-(i) indicate the position of the most

intensive modes, the pro�les of which are plotted in Fig. 4.11(a)-(d) with corresponding

labels (I - VI) and colors (black, red and blue). Experimental data was measured by V. K.

Sakharov from Kotelnikov Institute of Radio Engineering and Electronics, Saratov branch,

Russian Academy of Sciences.

in the measurements, see Fig. 4.10 (a), (c) and (d), (f). However, in the FMR
absorption function plotted with the use of the calculated resonance frequencies,
absorption intensities and half-width estimated on the basis of the FMR resonance
line the resonance peaks with contributions from di�erent SW modes overlap with
the main quasi-uniform peak and appear as a single broad absorption peak seen in
Fig. 4.10(d) for the array of Co stripes and in Fig. 4.10(f) for the bi-component MC.
The di�erence between the frequency position of the �rst two numerically calculated
SWs in the Co stripes (modes I and II) and in the bi-component MC (modes III and
IV) is of 0.0028 T and 0.0023 T, respectively. In the array of Py stripes, narrower
than the Co stripes, the split of the peaks (0.0057 T between modes I and II) is
large enough to observe a separate excitation (see Fig. 4.10(e) and (h)). Also, ∆H
in Co is signi�cantly higher than in Py: ∆HPy = 0.001 T and ∆HCo = 0.005 T in
plain ferromagnetic �lms, respectively; as a result the peaks broaden and become
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Figure 4.11: Amplitude of the y component of the dynamic magnetization vector for the

most pronounced absorption peaks for: (a) the array of Co stripes; (b) the array of Py

stripes; (c), (d) the bi-component Co/Py MC. The position of the peaks is indicated in

Fig. 4.10(a)-(i) by colored vertical lines with corresponding labels (I - VI) and colors (black,

red and blue).

(c)(b)(a)

Figure 4.12: Internal magnetic �eld in (a) an array of 6.6 µm wide Co stripes with a
3.4 µm air spacing; (b) an array of 3.4 µm wide Py stripes with a 6.6 µm air spacing;
(c) a bi-component MC composed of alternate 3.4 µm wide Py stripes and 6.6 µm
wide Co stripes. All the stripes are 50 nm thick and are fully saturated along the
y-axis. Calculations were performed for µ0H0 = 0.05 T.

harder to distinguish in the FMR measurements.
In another possible mechanism the occurrence of a single broad resonance line

in the spectrum of the array of Co stripes or the bi-component MC might be due
to high attenuation of SWs and a low propagation length in the BV geometry. The
width of the Co stripes is 6.6 µm and the propagation length is below 1 µm, as
can be estimated from Fig. 4.4(d). This means that the condition of formation of
standing modes, including the �rst standing mode, is not ful�lled. This can also
explain the di�erence in the position of the resonance line in the spectrum of the
array of Co stripes obtained from the calculations and from the FMR measurements
(see Fig. 4.10(d) and (g)). When the propagation length is much shorter than the
wavelength a uniform SWmode, rather than the standing mode shown in Fig. 4.11(a)
(mode I), will be excited under a uniform alternating magnetic �eld. If so, the
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resonance �eld should be close to the FMR �eld of the plain �lm. The highlighted
point in Fig. 4.3 corresponds to a �eld of approximately 0.065 T, very close to the
value obtained from the FMR measurements, shown in Fig. 4.10(d). The other
modes (i.e. II and III) will not be formed at all with such a small propagation
length.

In the array of Py stripes the pro�les of the most intensive modes (Fig. 4.11(b))
result from the formation of standing SWs in separate stripes. The experimental
spectra shown in Fig. 4.10(h) include one intensive line from mode I and lower-
intensity signals from modes II and III in higher �elds because of the BV geometry
and the negative group velocity. In Py the propagation length is above 3.5 µm for
magnetic �elds of ∝ 0.12 T (see the full dot on the dashed line in Fig. 4.4(d)).
This means that the condition of formation of the �rst standing wave is approx-
imately ful�lled; thus, the di�erence between the resonance �eld values obtained
from measurements and from damping-free calculations should not be large. This is
con�rmed by Fig. 4.10(e). The formation of standing waves of higher order will be
more suppressed due to the reduced group velocity and the consequent reduction of
the propagation length.

Figure 4.13: Pro�les of the y component of the dynamic magnetization in di�erent
regions of the bi-component MC: (a) in Co stripes, without the demagnetizing �eld,
(b) in Py stripes, without the demagnetizing �eld, (c) in Py stripes with the de-
magnetizing �eld taken into account. Plots (d)-(f) show the spectra obtained from
the Fourier analysis of the respective pro�les (a)-(c). Vertical grid lines indicate the
value of the wavevector in plain �lms of Co or Py in the exchange region of the dis-
persion; see Fig. 4.3, points i and ii for Co and Py, respectively. The corresponding
frequency in the plain �lm is equal to the frequency of the uniform SW.

However, the rapid oscillations in the pro�les of the main excitations in the bi-
component MC, depicted in Fig. 4.11(c), are rather surprising. The solutions were
found to be physical. Their character stems from that of the SW dispersion in the BV
geometry. The dispersion of SWs in a plain ferromagnetic thin �lm is not monotonic
and has a minimum for k ̸= 0. Thus, for certain magnetic �eld values two solutions
are possible, one of which, with a low value of k, forms an envelope for the rapid
oscillations of the other, with a higher wavevector value (see Fig. 4.3).The Fourier
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analysis is used for veri�cation of this interpretation of the pro�les calculated for this
MC. The results are shown in Fig. 4.13(d)-(f). The wavelength (wavevector) of the
rapid oscillations is found to depend on the exchange constant of the material and
correspond very closely to the wavelength of the solution for the uniform material,
indicated by the vertical dashed line in Fig. 4.13(d)-(f). This con�rms that the
obtained pro�les are the superposition of two solutions that correspond to the same
magnetic �eld but have di�erent wavevectors.

The Fourier analysis of the pro�les has been performed both for the simpli�ed
case without the demagnetizing �eld (Fig. 4.13(a) and (b)) and for the more realistic
case with the demagnetizing �eld fully taken into account (Fig. 4.13(c)). When the
demagnetizing �eld is not taken into account only two Fourier components occur
(see Fig. 4.13(d) and (e) for modes in Co and Py, respectively). The incorporation of
the demagnetizing �eld results in the addition of other components (see the pro�le
shown in Fig. 4.13(c)), since the inhomogeneity of the internal �eld allows for the
propagation of waves with di�erent wavevectors at the edges of the sample. Also
without the demagnetizing �eld similar oscillations are seen to occur in Co with the
second wavevector dependent of the exchange constant ACo. As a result of incor-
porating the demagnetizing �eld the fast oscillations in Co are attenuated and their
contribution becomes minor (see the pro�les in Fig. 4.11(d)). The demagnetizing
�eld also attenuates the oscillations in isolated Co and Py stripes. The shape of
the internal �eld has a direct e�ect on the proportional contributions of the two
solutions with di�erent wavelength to the dynamic magnetization pro�les. When a
potential well occurs the contribution of the oscillations with a large k is very small,
but increases drastically upon switching o� the demagnetizing �eld or changing its
sign in the numerical experiment.

The FMR spectra of fabricated periodic arrays of Co stripes and Py stripes
and bi-component 1D MC composed of alternating stripes of Co and Py was studied.
The performed numerical calculations have been compared with the results of meas-
urements. The calculations have been done in the frequency domain by the �nite
element method for two geometries, with an in-plane bias magnetic �eld oriented
along the stripes (DE spin waves geometry) or along the periodicity direction (BV
spin waves geometry). The calculated resonance frequencies and relative intensities
of the FMR absorption peaks are in a good agreement with the measured data. In
both �eld con�gurations the group velocity and the propagation length to formulate
the conditions of standing spin waves formation in magnonic crystal was analyzed.

Numerical calculations of the spatial distribution of the dynamic components
of the magnetization vector con�rm that the excitations in the FMR spectra are due
to spin wave quantization. This strong absorption peaks suggest existing of a strong
interaction of light and standing spin waves. The decrease of the absorption peaks
due to the damping is not critical, thus the metamaterial based on the e�ect of lateral
quantization will be described in the next chapter. In the BV geometry rapid os-
cillations modulated by a long-wavelength envelope oscillations have been observed.
A Fourier analysis of these rapidly oscillating dynamic magnetization components
has shown that their occurrence is related to the non-monotonic character of the
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dispersion relation in the BV geometry. The experimental and theoretical results
con�rms that the presented method of calculation can be of use for the investigation
of the properties of MCs.



Chapter 5

Negative Refractive Index

Metamaterial1

In recent years negative refractive index metamaterials have attracted wide atten-
tion of researchers.[93] Materials possessing simultaneously negative electric per-
mittivity and negative magnetic permeability [94, 95, 96] and therefore also the
negative refractive index (NRI)[50] are desirable due to their unusual electromag-
netic properties[51, 97] that open ways for creating new potential applications, such
as perfect lensing, electromagnetic cloaking, modulators for terahertz radiation or
compact waveguides.[98, 51, 99, 100, 101] Various methods of realization of metat-
materials have been proposed, e.g., based on arrays of split ring resonators[102] or
ferromagnetic resonance (FMR) in a magnetic material, where the coupling of light
is su�ciently strong to obtain negative permeability in the vicinity of the resonance.
[103, 48]

The negative refraction of electromagnetic waves due to ferromagnetic reson-
ance has been studied in recent years. It was shown that for the metallic system
with large imaginary part of the dielectric permittivity the negative permeability is
a su�cient condition to obtain a negative refraction. For example, the negative re-
fraction was observed in L2/3 Ca1/3MnO3 �lms at 150 GHz and 90 GHz frequencies,
under very strong external magnetic �eld of over 5 T and 3 T, respectively.[104]
In ferromagnetic dielectrics, like an yttrium iron garnet, YIG slabs implanted with
metallic wires have been investigated as a NRI (left handed) metamaterial operating
in the microwave band.[99] The experimental data were successfully compared with
�nite element simulations for systems operating in microwave bands from 8 to 18
GHz.[105] Also the periodic structure of interacting nanowires was proposed in Ref.
[106] as a metamaterial. The calculations were performed on the basis of an e�ective
permeability tensor for uniform spin-wave excitations, i.e., for FMR conditions.

The FMR in ferromagnetic materials appears usually at GHz frequencies,[103]
thereby restricting the possible applications of metamaterials based on this e�ect to

1Based on the [49]

51
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Figure 5.1: Magnonic crystals: one-dimensional MC of thickness d formed by long
stripes of ferromagnetic metals Co and permalloy, arranged with the period a. Bias
magnetic �eld H0 saturates both materials along z axis.

microwaves. Spin wave resonance (SWR) can extend this limit to frequencies of up
to hundreds of GHz and composites with SWR in THz frequencies are already con-
sidered for applications in THz communication. Maxwell equations simultaneously
with the Landau-Lifshitz equation for the magnetization have been solved to obtain
the transmission coe�cients for the array of nanowires.[107] Extrema in the trans-
mission function have been found due to spin-wave resonance and antiresonance
modes.

A novel design of negative refractive index metamaterial working at sub-THz
frequencies was proposed in the recent paper by Mykhaylovskiy et al. [48]. The
system composed of thin ferromagnetic layers separated by nonmagnetic dielectric
material was considered. The signi�cant increase of the resonant frequencies was
predicted due to the pinning of the spins on the surfaces of ferromagnetic layers.
Here, a di�erent structure to obtain a similar e�ect is proposed. Replacing the uni-
form ferromagnetic layer by a thin plate of a MC (see Fig. 5.1) will introduce the
in-plane quantization of spin-waves. As a consequence, multiple resonances will be
observed in the SWR spectrum in addition to the fundamental uniform excitation.
A electromagnetic wave traveling along the x-axis (with such polarization that an
alternating magnetic �eld component b is along y-axis) can be coupled with the
hy component of the standing spin wave. This e�ect can be used to obtain neg-
ative permeability, if the coupling of light to the higher order SWR excitation is
strong enough. The method of calculating the scalar permeability function of the
extraordinary wave is presented in the case of in plane magnetization for metamater-
ials consisting of one-dimensional magnonic crystals (Fig. 5.1). The calculations are
based on the plane wave method (PWM) and analytical formulas for permeability
of an e�ectively uniform magnetic �lm.[48]

Since the NRI is obtained by SW resonance, the electromagnetic properties of
structures proposed in this chapter will be dependent upon the external magnetic
�eld. The frequency range in which the negative refraction is observed might be
tuned by the external magnetic �eld in a broad frequency range. Structures un-
der consideration will o�er some advantages over other NRI meta-materials, and
the simplicity, diversity, and versatility of their design might be some of them. A
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Figure 5.2: The dispersion relations of SWs propagating in a 1D MC composed of
Co and Py stripes under bias magnetic �eld µ0H0 = 0.01 T are shown for lattice
constant of (a) 500 nm and (b) 50 nm.

unique functional property of MCs is their re-programmability, i.e., a possibility to
obtain the MC in ferromagnetic or antiferromagnetic con�guration by manipulation
of the bias magnetic �eld. Then the response of the device will be di�erent in each
con�guration.[108, 109] The intrinsic loss is a factor that migh limit the applica-
tions of metamaterials[110, 111]. However the metamaterial proposed here might
also �nd an application for developing a zero refractive index materials.[52, 112]
At frequencies larger than the resonance frequency, the magnetic permeability goes
from negative to positive values through zero, the latter point called antiresonance
condition.[107] Because zero of permeability property appear the antiresonance con-
dition occurs at frequencies shifted further away from resonant frequencies as com-
pared to NRI, the associated absorption decreases.

5.1 Stationary Solutions in 1D Magnonic Crystals

All calculations were performed for MC composed of two materials, i.e., cobalt
and permalloy. The parameters of permalloy are taken following: magnetization of
saturationMS = 0.86·106 A/m and exchange constantA = 1.1·10−11 J/m; for cobalt:
MS = 1.3 · 106 A/m and A = 2.8 · 10−11 J/m. This choice of constituent magnetic
materials is not accidental. Recently, there appeared in literature a few papers on
theoretical and experimental investigation of spin-waves in thin �lm MCs composed
of Co and Py stripes with lattice constant 500 nm.[11, 85, 64] The parameters chosen
here are taken from the Ref. [11] where anisotropy �eld was neglected, as it is here.
This shows also that realization of such MC is feasible.

The investigation is limited to the Damon-Eshbach con�guration, i.e., when
the wave vector and H0 are perpendicular to each other.[29] The SW's propagation
along the y axis with bias magnetic �eld pointing in the z direction is considered,
see Fig. 5.1. An important property of SWs is that their dispersion relation is not
scalable with the lattice constant, since the relative strength of the exchange and
dipolar interactions depends on the lattice constant value and on the wave vector.
For small lattice constants, the onset of the domination of the exchange interaction is
expected in the �rst BZ already, while for large lattice constants the magnetostatic
interaction can dominate in the whole 1st BZ. The exchange interaction is also
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Figure 5.3: The dispersion relation of SW propagating in a thin uniform magnetic
�lm under bias �eld µH0 = 0.1 T for Co�dashed line and Py�continuous line.
The grid lines indicate the values of the wavevector (in logarithmic scale) at the
2nd Brillouin zone edge of an lattice constant of 500 nm (k = 1.26 · 107 1/m)and
50 nm (k = 1.26 · 108 1/m). Values of frequencies at this points are in the range
of frequencies of the 2nd order mode, appearing due to the periodicity, in MC.
This explains the increase of the SW modes frequencies with decrease of the lattice
constant of the magnonic crystal observed in Fig. 5.2 and Fig. 5.4.

responsible for increasing frequency of SW with decreasing the lattice constant. The
dispersion relations of SWs calculated with PWM for 1D MCs of 5 nm thickness and
lattice constants of 500 and 50 nm are shown in Fig. 5.2(a) and (b), respectively. It
is clear that for small a the Brillouin zone is wider and consequently the frequencies
of SWs reach higher values.

In Fig. 5.3, the dispersions of SWs in uniform �lms of Co (dashed line) and Py
(continuous line) are presented as calculated according to analytical formula from
Ref. [5]. On the same graph, the vertical dashed lines indicate the BZ edges oc-
curred for the MC with the periodicity of a = 50 and 500 nm. One can see that,
for small a, e.g., 50 nm, the dispersion has parabolic shape for wavevectors at the
edge of BZ, while for large a, e.g., 500 nm, it is almost linear. The SW resonances
at high frequencies in the center of BZ appear due to introducing the periodicity, as
it was described in the chapter 4. Band folding for SWs with dominating exchange
interactions will appear at large wavevectors. It means that for high frequency ap-
plications the MCs with small lattice constant are more convenient, see in Fig. 5.4.
The frequency of SWs in 1D MC with the wavevector equal to 0 are plotted as a
function of the lattice constant. The frequency of the �rst band is only weakly de-
pendent on a while frequencies of higher bands signi�cantly increase with frequency,
e.g., 2nd band for 50 nm lattice constant has frequency already close to 40 GHz.

The relative amplitude of SWR calculated for Co/Py MC is shown in the
Fig. 5.5(a). The intensity was calculated with the use of 2.2. The relatively high
intensity of the 3rd resonant mode is visible. The reason of its high intensity could be
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Figure 5.4: Dependence of the frequency of SWs on the lattice constant of 1D MC.
The frequencies of spin waves at the center of the 1st BZ are shown. m indicates
the mode number. The structure is composed of alternating cobalt and permalloy
stripes of 5 nm thickness with the width varied from 10 to 100 nm, i.e., lattice
constant vary from 20 to 200 nm. The frequencies of modes above the �rst one
increase as the lattice constant decreases. This e�ect is crucial and indicates the
importance of using the MC with small lattice constants.

understood by looking at the pro�les of SWs shown in Fig. 5.5(b). The distribution
of the dynamical component of the magnetization is not symmetric among Co and
Py. The highest amplitude of the my component is localized within the permalloy
stripes for the �rst mode, whereas within the cobalt stripes for the 3th mode. In the
case of the 2nd and 4th mode, the distribution has an antysymmetrical character, so
they do not couple with the electromagnetic wave.

5.2 E�ective Parameters and Permeability of 1D

MC

In the long wavelength limit when the length of the material modulation is much
shorter than the wavelength of SWs, the magnonic crystal appears to have properties
of a uniform material. In this limit, such e�ective parameters as the magnetization
saturation, exchange coe�cient and magnetic �eld can be assigned to the magnonic
metamaterial and describe SWs in it. The proper assignment of the e�ective para-
meters is not a simple task because it depends on the scale and the structure of
the MC. In the 2D case of MC formed by antidot lattice, it was shown that long
SWs behave either as in e�ective waveguides or as in uniform thin �lm.[113, 114]
This depends on the symmetry of the antidot lattice and on the �lling fraction, i.e.,
the relative space occupied by antidots in a magnetic material. In MC formed by
ferromagnetic materials only, the SW should behave as in a uniform thin �lm with
e�ective values of the magnetization saturation and e�ective exchange constant in
the long-wave limit.
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Figure 5.5: The analysis of the resonant modes of 1D magnonic crystal composed of
alternating cobalt and permalloy stripes of 25 nm width each and 5 nm thickness.
The graphs show: a) The relative absorption intensities. b)-d) The distribution of
the y component of dynamic magnetization for modes with m = 1, 3, and 4.

The e�ective parameters could be extracted from a dispersion relation so that
when they are applied in the analytical formula for dispersion relation, the function
is reconstructed. [115, 116, 117] The value of the e�ective saturation magnetization
can be also obtained by �tting the spin wave frequency to the following analytical
formula as a function of the bias magnetic �eld, H0, in the homogeneous thin �lm,
i.e., the Kittel formula:[90]

ω(H0) = γµ0

√
(H0(H0 +Me�)) (5.1)

with numerical results of the PWM obtained by solving Eq. (3.11). In Eq. (5.1),Me�

is the e�ective saturation magnetization. In Fig. 5.6, the continuous line represents
function ω(H0) obtained from numerical solution of Eq. (3.11). By �ttingMe� in Eq.
(5.1), the e�ective magnetization Me� = 1.0 · 106 A/m is found. This value is very
close to the weighted average of magnetization in Co and Py, Mav = 1.08 · 106 A/m.
The dependence of the �rst resonance frequency upon the bias magnetic �eld given
by Eq. (5.1) with the �tted value of the e�ective magnetization is superimposed
on the PWM results and marked by dots. The relative error is small and does not
exceed 1.5% in the range of bias magnetic �elds from 0 to 0.2 T.

Using the results from PWM, a metamaterial with negative permeability is
proposed. The idea is based on the model developed by Mikhaylovskiy et al. [48]
where a stack of thin ferromagnetic �lms separated by nonmagnetic dielectric layers
was proposed as a metamaterial. The e�ective negative permeability was obtained
in the proximity of the SWR frequencies in a sub-THz range. The relatively high
frequencies resulted from standing waves formed across the thickness of the thin
ferromagnetic �lms. Here, another way of shifting SWR to higher frequencies by
introducing thin MC slabs instead of the uniform thin �lms is proposed. A schem-
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Figure 5.6: The �rst resonant frequency of the 1D MC composed of alternating
cobalt and permalloy stripes of 25 nm width each (5 nm thicknesses) is plotted as
a function of the external magnetic �eld using the analytical formula, where the
e�ective magnetization is a parameter (continuous line), and from the results of
PWM for Co/Py magnonic crystal (dots).

atic drawing of the proposed structure is shown in Fig. 5.7(a). The SWR resonance
at high frequencies is achieved now due to the lateral (in-plane) quantization of
spin-waves, while uniform excitations are assumed across the thickness. Below, the
idea is described in detail together with estimations of the permeability of such a
structure. According to the PWM results the values of the higher resonant frequen-
cies are expected to increase with the decrease of the lattice constant, Fig. 5.4.
This dependence gives an opportunity to design the structure of MC according to a
required frequency range of negative permeability.

Having Me� at hand the permeability as a function of frequency can be ploted
by using the analytical solution derived in Ref. [48] for the material that is character-
ized by this e�ective magnetization. This analytical solution for the µ(ω) in vicinity
of the frequency of the 1st resonance can be �tted with the resonance formula:[118]

µ(ω) = 1 +
A1

ω1 − ω + iωα
, (5.2)

where: A1 is a �tting parameter and ω1 is the �rst SWR frequency. In order to �nd
the absolute value of an absorbed power at higher resonant frequencies their relative
intensities (found in PWM) can be normalized to A1, so the relative intensities of
the �rst 3 modes for MC of 50 nm lattice constant are now:

A1 = 0.0058, A2 = 1.16 · 10−13 · A1 ≈ 0, A3 = 0.45 · A1. (5.3)

The permeability function can be obtained now by using frequencies and intensities
from the normalized absorption of peaks calculated with the PWM and the �tting
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formula for the resonances:

µ(ω) = 1 +
N∑
j=1

Aj

ωj − ω + iωα
, (5.4)

where Aj are the parameters that describe the intensities of the permeability function
already found in Eq. (5.3) and ωj are the resonant frequencies of the 1D MC (known
from PWM calculations). N is the number of modes, which is restricted to 3. The
resulting real part of function µ(ω) is shown in Fig. 5.7 (b) by a solid line. The
value of the damping factor, α, is taken as α = 0.01. The same composition of the
metamaterial is taken as in Ref. [48] but instead of the uniform ferromagnetic �lms
the 1D MCs is included. The MC occupies 25% of the volume, while the rest is
nonmagnetic dielectric (see Fig. 5.7 (a)).

This solution is obtained for the geometry where external magnetic �eld is
applied in plane of the magnetic �lm. The propagating wave is linearly polarized,
perpendicular to the magnetic �eld (see the Fig. 5.7 (a) for the orientation of
the AC magnetic �eld and wave propagating direction). The wavelength of the
electromagnetic wave is much longer than the thickness of the �lm, and so, the
electromagnetic �eld is assumed to be uniform in single �lm made of 1D MC. In the
MC, due to the periodicity in the structure the band folding e�ect is observed, and
many resonances might be observed at higher frequencies for k = 0.

The Fig. 5.7 (b) shows that the relative absorption intensity of the higher
modes of the thin slab of magnonic crystal can be comparable with that of the �rst
mode and thus lead to a signi�cant absorption due to the spin wave resonances.
As a result the proposed metamaterial can have a negative permeability at elevated
frequencies as shown in Fig. 5.7 (b).

The frequency of SWR can be increased and the frequency of NRI band more
by applying higher external magnetic �eld or by decreasing a lattice constant. In
Fig. 5.4 was shown the increase of SWR frequencies (for m > 1) with decreasing
lattice constant. In Fig. 5.7 (b) by dashed line the permeability is shown in function
of frequency for MC composed of Co and Py stripes of 12.5 nm width. The band of
negative permeability connected with 2nd mode still exists at frequencies above 80
GHz.

Finally, it is instructive to estimate the �gure of merit of the proposed metama-
terial de�ned as:

FOM = −Re(n)
Im(n)

, (5.5)

where n is de�ned according to Ref. [119], ful�lling the causality principle. Firstly,
one should �nd the e�ective permittivity of the single magnonic crystal εe�MC. In
the case of normal incidence of light the permittivity can be approximated by:[120]

1

εe�MC
=
fCo
εCo

+
fP
εP
, (5.6)
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Figure 5.7: (a) The structure of the metamaterial under investigation. The e, b
indicates the polarizations of external electric and magnetic �elds, k indicates the
direction of propagation. (b) The real part of permeability calculated according to
Eq. 5.4 (µr) as a function of a frequency for the stack of a thin layers made of
slabs of 1D MC, composed of alternating 5 nm thick cobalt and permalloy stripes
of 25 nm width (solid line) and 12.5 nm width (dashed line) under in�uence of the
external magnetic �eld of H0 = 0.2 T. The �lling fraction of the magnonic crystal
in the nonmagnetic dielectric matrix is 25%, it the same as in Ref. [48].

where fCo, εCo, fP and εP are the relative volume fraction and permittivity of cobalt
and permalloy, respectively. Structures considered here have fCo = fCo = 0.5. Then
the e�ective permittivity of the whole structure is:

εe� = (1− ρ)εh + ρεe�
MC, (5.7)

where εh is the permittivity of the host nonmagnetic dielectric and ρ denotes the
�lling factor of the magnonic plates in the metamaterial, ρ = 0.25. The εCo ≈
εPy ≈ (−1 − i) · 104 ≫ εhisassumed.[121] Thus leading to the simple estimate for
the e�ective permittivity as εe� = ρεCo(Py). The FOM for metamaterial composed
of 1D MCs with Co and Py stripes of 25 nm width is shown in Fig. 5.8 (a), the
real part of refractive index is shown in Fig. 5.8 (b). One can see that FOM in the
frequencies around negative refractive index (i.e., around 15 and 37 GHz) reaches
the value of 2.

The values of FOM found at resonant frequencies in this work are compar-
able with values found for �shnet structures proposed in Ref. [122] and lower than
those found in Ref. [123], where the coupling relationship between the electric and
magnetic resonances was studied in double bowknot shaped structures in order to
optimize losses. The authors of Ref. [124] propose a structure that does not con-
tain any metallic materials but a cubic periodic array of layered dielectric spheres,
made from low-loss high-permittivity ceramics. Since the absorption is much lower
in dielectrics, they achieve a low loss NRI material. In MC based metamaterials
considered here there are few ways for improving the FOM. Instead of the ferromag-
netic metals a dielectric ferromagnet (e.g., yttrium iron garnet) can be considered as
a basis for the proposed structures. Another way for decreasing loss is to remove one
of the magnetic metallic materials or to use two-dimensional antidot lattices (ADL)
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Figure 5.8: (a)The Figure of merit (FOM) in function of a frequency of the con-
sidered metamaterial (the stack of a thin layers made of slabs of 1D MC, composed
of alternating 5 nm thick cobalt and permalloy stripes of 25 nm width) with negative
refractive index. (b) The real part of the refractive index.

as the 1D MCs. In both cases one can expect the e�ect of periodicity and in-plane
quantization to remain.[125, 109, 113, 126] The ADLs formed by a regular lattice
of holes in thin �lm of ferromagnetic material are intensively studied recently and
formation of a magnonic band structure was experimentally proved.[10, 127, 128]

As a result, considering that the interaction of EM with laterally quantized
SWs is strong, it was possible that the negative permeability at frequencies close
to 100 GHz can be achieved in the periodic metallic magnetic structures, i.e., thin
plates of 1D magnonic crystals, being a result of the lateral quantization of SWs.
The frequencies of the resonant modes of MC were investigated as well their relative
absorption intensities in dependence on the lattice constant. The analysis of the
mode pro�les is conducted in order to demonstrate the strong coupling of high
order magnonic modes to electromagnetic wave. It was shown that for the structure
composed of the stack of thin �lms of 1D MCs of lattice constant 50 nm and 25
nm (i.e., alternating cobalt and permalloy stripes of the thickness of 5 nm and
width of 25 nm or 12.5 nm) separated with nonmagnetic dielectric, the negative
permeability can be achieved at relatively high frequencies. A further decreasing of
the lattice constant or introducing periodicity in the second dimension should shift
SWR and so bands of a negative permeability above 100 GHz. Another possibilities
for increasing the resonant frequencies of SW modes are: increasing of the �eld or
using the antidot systems. There is also a possibility for an applying the pinning
boundary conditions on the top or bottom surfaces of the thin plate of MC. In this
case the combined e�ects of the lateral and thickness quantization of SW modes
should result in increasing frequencies of SWR above 100 GHz.



Chapter 6

Nonreciprocity in Structures with

Metallic Overlayer1

In this chapter, the calculations of the dispersion of uniform �lm and MCs with con-
ductive overlayer are presented. Nonreciprocal properties of the waves of di�erent
nature can have various origin and can be manifested as the dependence of a disper-
sion relation on the wave propagation direction, i.e., ω(k) ̸= ω(−k), where ω is the
angular frequency and k is a wavenumber. The nonreciprocal properties of electro-
magnetic waves are often related with the magneto-optical interaction which re�ects
the time reversal broken symmetry in magnetic systems [131, 132, 133, 134], a ne-
cessary condition of nonreciprocity (apart from broken space inversion symmetry).
The discovery of nonreciprocity in photonic crystals (PCs) has opened new paths for
design of integrated photonic devices (like isolators and circulators) having big po-
tentials for the integration with semiconductor technology [135, 136, 137]. Thus PCs
with nonreciprocal properties are intensively studied and the accompanying e�ects
of electromagnetic unidirectionality like frozen modes and slow light phenomena
have already been explored [138]. Nonreciprocal property has also been exploited
in PCs with a topological one-way edge states [139, 140]. In these structures elec-
tromagnetic wave is transmitted in one direction and is very resistant to scattering
on defects and roughness due to prohibited propagation in the opposite direction.
More complicated photonic structures with indirect interband photonic transitions
[141], plasmonic systems [142] and metamaterials [143] were also investigated.

The spin wave in magnetostatic limit propagating in the in-plane direction of
the �lm, perpendicular to the in-plane external magnetic �eld posses nonreciprocal
property, although its dispersion relation is reciprocal [29]. The amplitude of dy-
namic component of the magnetization vector of this SW is localized near one of
the surface of the �lm, depending upon the direction of propagation. Change of the
direction of propagation (or alternatively the change of the direction of the external
magnetic �eld) will cause the localization of SW moves to the opposite surface of the

1Based on the [129, 8, 130]

61
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�lm. Any kind of asymmetry of the �lm or its surrounding should cause emerging
of nonreciprocal dispersion relation. In that sense it is an analogy with the photonic
case, where spectral nonreciprocity appears when are broken both, time and space
inversion symmetries [144].

The SWs propagating in a ferromagnetic �lm covered on one side by a per-
fect electric conductor (PEC) (i.e., a metal with in�nite conductivity) in direction
perpendicular to the in-plane bias magnetic �eld will also posses a nonreciprocal
dispersion [30]. Metallization strongly a�ects SW propagating in the direction that
have localization corresponding to the metallized surface, while SWs propagating in
opposite direction is almost una�ected. This nonreciprocal property of spin waves
still exist if �nite conductivity of the overlayer [145, 32, 38] or exchange interaction
[146] are taken into account. In the �rst case the nonreciprocal dispersion exists only
for limiting range of wave vectors, while for the second one the localization type can
change. Investigations of the nonreciprocal propagation of SWs have been developed
in various semi-in�nite ferromagnetic structures: layered, thin �lm and periodically
corrugated. Potential applications of the nonreciprocal e�ects have been discussed
in references [147, 148].

6.1 Nonreciprocity and Damping in Ferromagnets

with Conductive Overlayer
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Figure 6.1: A structure under consideration. The bias magnetic �eld H0 is in the
�lm plane and directed along the z axis. The SWs propagate along the y axis. The
rectangular unit cell used in numerical calculations is marked by dashed line. The
PBC are used along the x axis. The bottom and top border of the unit cell is far
from the structure, at these borders φ = 0.

For a uniform ferromagnetic �lm covered with a layer of a �nite-conductivity
metal an analytical solution has been obtained for the DE geometry with the �eld
H0 regarded as a function of the wave vector,[145, 149] since in this case the secular
equation leads to a quadratic polynomial formula for H0. In their case, a real set
of parameters leads to a complex value of H0. The analytical solutions for the SW
frequencies f are more complicated; numerical solutions can be obtained.[150, 151,
152]
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In this subsection, the numerical study of the uniform ferromagnetic �lm is
presented and its results analyzed. This study is important to understand the range
of wavevectors that are under the in�uence of the metal overlayer of �nite conduct-
ivity. The geometry of the structure used in the calculations is shown in Fig. 6.1.
The structure consists of �ve regions. Region I and V are nonmagnetic dielectric
surroundings, which are assumed to be in�nite thick in semi-analytical calculations
[described in Sec. 6.1] or to be very thick in �nite element calculation [see Sec. 6.1
for details]. Region II is a thin ferromagnetic �lm, characterized by the saturation
magnetizationMS and thickness d. The region IV is a nonmagnetic metal character-
ized by the conductivity σ and thickness D. Region III is a dielectric nonmagnetic
spacer, which separates the magnetic �lm from the metal overlayer and has thickness
t. The external magnetic �eld H0 is in the plane of the �lm�along z axis and the
wave propagation is assumed to be along y axis, i.e., only DE geometry is considered.
The origin of the Cartesian coordinate system is placed at the bottom surface of the
metallic �lm.

The Maxwell equations in the magnetostatic approximation (dicplacement cur-
rent is neglected but not an electric current of moving charges) will be used in the
calculations:

∇× h(r) = σne(r), (6.1)

∇× e(r) = −iµ0ω(h(r) +m(r)), (6.2)

where µ0 is the permeability of vacuum, r is the position vector and t is time. e is the
electric �eld vector, h and m are dynamic magnetic �eld and dynamic components
of the magnetization vectors, respectively. The conductivity σn is di�erent from 0
only in the region IV, i.e., σn=IV ≡ σ. In the assumed geometry only z component of
the electric �eld is related to dynamic magnetic �eld, e = (0, 0, ez). The solutions in
the form of monochromatic waves are assumed: m(r, t) ∼ exp(−iωt) and h(r, t) ∼
exp(−iωt), where ω = 2πf . Maxwell equations are complemented with the LL
equation of motion in the ferromagnetic �lm (in the region II):

−iωm(r) = γµ0M(r, t)×He�(r, t), (6.3)

where γ is a gyromagnetic ratio. He� denotes the e�ective magnetic �eld acting on
the magnetization and is de�ned as He�(r, t) = H0ẑ +∇ · ( 2Aex

µ0MS

)∇m(r, t) + h(r, t),
where Aex is the exchange constant, MS is the saturation magnetization. The bias
magnetic �eld H0 is strong enough to saturate the sample along the z axis, thus the
magnetization vector M in linear approximation can be decomposed into the static
and dynamic parts, parallel to the z-axis and laying in the plane (x, y), respectively:
M(r, t) =M0ẑ+m(r, t). M0 ≡MS,m = (mx,my, 0) and h = (hx, hy, 0) is assumed.
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FEM

To �nd the dynamical components of the magnetization vector and the dispersion
relation of SWs FEM will be used. Arti�cial periodic boundary conditions (PBC)
are imposed at surfaces parallel to the x axis at the borders of the unit cell of width a
as shown in Fig. 6.1. Use of PBC allows to de�ne �lm of in�nity length in numerical
calculations. The solutions of the coupled LL and Maxwell equations in the periodic
system can be written according to the Bloch theorem as: φ(x, y) = φ′(x, y)eiky,
where φ′ = m′

x, m
′
y, h

′
x, h

′
y and e

′
z are periodic functions of x and k is a wavenumber.

One can expect that dynamic magnetic and electric �elds should vanish at
x→ ∞. To mimic this condition in FEM, the Dirichlet boundary condition (φ′ = 0)
was used at the bottom and top border of the computational unite cell, which is
far away (150 µm from the ferromagnetic �lm) from the magnetic �lm [Fig. 6.1].
The boundary conditions for dynamic components of the magnetization vector are
imposed only via LL and Maxwell equations, these provide zero of the �rst derivative
of the dynamical magnetization with respect to the normal to the surface.[7, 66, 86]

After applying the Bloch theorem in linearized LL equation and in Maxwell
equations the following set of equations is formed:

 i2πf
γµ0

∇ · ( 2Aex
MSµ0

)∇+ 2ik∂y − ( 2Aex
MSµ0

)k2 −H0 0 MS 0

−∇ · ( 2Aex
MSµ0

)∇− 2ik∂y + ( 2Aex
MSµ0

)k2 +H0
i2πf
γµ0

−MS 0 0

i2πfµ0 0 i2πfµ0 0 ∂y + ik
0 i2πfµ0 0 i2πfµ0 −∂x
0 0 −∂y − ik ∂x −σ




m′
x

m′
y

h′x
h′y
e′z

 = 0.

(6.4)
This set of equations is solved with the use of �nite element method implemented in
COMSOL MultiPhysics software. As a result egeinvalues are obtained that gives the
dispersion relation of SWs and eigenvectors which represent the spatial distribution
of dynamical components of m′

x, m
′
y, h

′
x, h

′
y and e′z. Since the structure is periodic

in the real space with periodicity of a, the solutions (frequencies of SW) possess
the periodicity in the 1D reciprocal space characterized by the period 2π/a with
arti�cial folding to the �rst Brillouin zone. In order to investigate SWs in a uniform
�lm (so called empty lattice model) the SW frequencies for the wavevectors from the
�rst Brillouin zone are calculated and the arti�cial solutions from higher bands are
eliminated. The lattice constant a = 200 nm was chosen in all calculations, so the
computational unit cell is not large and the higher branches of empty lattice model
do not cross with the �rst branch in the considered frequencies in this chapter.

Semi-analytical method

In semi-analytical model the dynamic magnetic �eld induction:[150]

b = µ0(h+m) (6.5)
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is represented in terms of the vector potential function A:

b = ∇×A = (∂yAz,−∂xAz, ∂yAx − ∂xAy). (6.6)

With this vector potential the Gauss's law ∇ · b = 0 is identically ful�lled. From
LL equation one can de�ne magnetic permeability tensor µ̂ and express h �eld in
terms of the b �eld. When Aex = 0 it reads:

h = µ̂−1 b =

 1+κ
(1+κ)2−ν2

iν
(1+κ)2−ν2

0

− iν
(1+κ)2−ν2

1+κ
(1+κ)2−ν2

0

0 0 1
2

 b, (6.7)

where:

κ =
ΩH

Ω2
H − Ω2

, ν =
Ω

Ω2
H − Ω2

(6.8)

and

Ω =
2πf

γµ0MS
, ΩH =

H0

MS
. (6.9)

From Eqs. (6.5)-(6.7) one can see that hx, hy, mx and my are de�ned by Az compon-
ent of the vector potential. From equations (6.1) and (6.2) The following equation
for Az is obtained: (

1 + κ

(1 + κ)2 − ν2

)
∇2Az = i2πfσµ0Az. (6.10)

The total solution of the Eq. (6.10) can be found from the solutions in regions
I to V imposed into boundary conditions at interfaces along x axis and at in�nity.
The solution of Az in the region IV (metal) can be written in the following form:

Az(x, y) = (a4e
kMx + b4e

−kMx)e−iky, (6.11)

where a4 and b4 are constants. k is a wavenumber of wave propagating along y
axis and can take any real value. The wavenumber along x axis in the metal, kM is
derived from Eq. (6.10) with the use of Eq. (6.11):

kM =

√
k2 +

2i

δ20
, (6.12)

where

δ0 =

√
1

πfµ0σ
(6.13)

is a frequency dependent skin depth of the metal. For the remaining regions (regions
I - III and V, where σ ≡ 0) the Az can be taken in the form:

Az(x, y) = (ane
kx + bne

−kx)e−iky, (6.14)
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where an and bn are constants. n denotes the region: I, II, III or V. In region I and
V one can expect that the any ψ′ function decay for x → −∞ and x → ∞, thus
b1 = a5 = 0.

By imposing the solutions (6.11) and (6.14) into electromagnetic boundary
conditions, it is a continuity of tangential component of the magnetic �eld hy and
the normal component of the magnetic induction �eld bx the secular equation is ob-
tained. This equation is solved using Newton iterative method. From the condition
of existence of nontrivial solutions the dispersion relation of SW in magnetostatic
approximation can be obtained as well.

Analyzis of the Calculation Results

In Fig. 6.2(a) the e�ect of a metallization (∆f ) of the SWs propagating in thin �lm
as a function of the conductivity of the metal overlayer and the wavenumber of a SW
calculated with FEM is presented. One can de�ne the measure of the metallization
e�ect as a di�erence between frequency of SW propagating in positive y direction
in the ferromagnetic �lm with metallic overlayer and with dielectric surroundings
from both sides, i.e., ∆f (σ, k) = f(σ, k)− f(0, k).2 The calculations were performed
for the ferromagnetic �lm with the following parameters: MS = 1.2 × 106 A/m,
d = 30 nm, t = 0, D = 150 µm, Aex = 2.8 × 10−11 J/m and with the in-plane bias
magnetic �eld µ0H0 = 0.1 T.3 Conductivity values of some common metals (Ag, Cu
and Au) at room temperature are indicated by horizontal dashed lines in Fig. 6.2.
One can see that for Ag, a metal with highest conductivity, ∆f has its maximum
at k ≈ 1 × 106 1/m and ∆f extends the value of 0.8 GHz. For other metals ∆f is
smaller but always its maximal value is for the similar value of k ≈ 106 m−1.
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Figure 6.2: Color map of the metallization e�ect ∆f and the inverse of FOM
[1/FOM] as a function of the wavenumber k and the conductivity of the metal-
lic overlayer σ is shown in (a) and (b), respectively. Horizontal black dashed lines
mark the conductivity of a few common metals: Ag, Cu and Au.

2This de�nition of ∆f is related also to the di�erence between frequencies of SW propagating in
positive and negative direction in the same structure [i.e. to the nonreciprocity strength introduced
at the end of the Sec. 6.1]. It is because the propagation of the wave with amplitude localized at
the surface with dielectric is weakly a�ected by the presence of the metal on the opposite side.[8]

3The FEM results were compared with the semi-analytical results performed with neglecting
exchange interactions, showing that the value of an exchange constant does not in�uence results
in the considered here wavenumbers and frequencies.
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In Fig. 6.2(b) the reversal of the �gure of merit (FOM) de�ned as 1
FOM

= Im(f)
Re(f)

in dependence on σ and k is shown. This function describes the attenuation of
SW, it is an attenuation induced by metallization of the overlayer, because the
intrinsic damping is not considered here. Thus for parameters where the dielectrics
are on both sides of the ferromagnetic �lm FOM → ∞ (1/FOM → 0). The FOM
is an important parameter regarding the potential applications, because in order
to propagate signal for large distances, SWs need to have a long life time, i.e., the
real part of frequency shell to be much higher than the imaginary part: Re(f) >
Im(f).[153] It means that 1/FOM has to be smaller than 1. In Figs. 6.2(a) and
(b) one can see that ∆f and 1/FOM have similar dependence on σ and k but the
maximal value of 1/FOM is shifted to higher wavenumbers as compared to ∆f .

To explain presented above results of FEM calculations an analysis of the dis-
persion relation and the �elds emitted by the SW excitations outside of the magnetic
�lm with the use of semi-analytical method described in Sec. 6.1 will be performed.
The structure with conductivity σ = 6 × 107 S/m (i.e., close to the value of Cu or
Ag) and parameters described above will be considered as a base for further analysis
of this chapter. Any variation of these parameters will be indicated.

Approximate analytical solution

Results of calculations for the structure with parameters speci�ed above, where
metal is in direct contact with ferromagnetic �lm and its thickness is much larger
than the skin depth of metal are presented in Fig. 6.3(a). The three dispersion
relations show: the results of semi-analytical calculations (which coincide with the
FEM results)�dashed line; the dispersion of SWs for the same �lm but in contact
with dielectric�solid line and in contact with perfect electric conductor (PEC)�
dotted line. One can see, that at small wavenumbers (k < k1) the dispersion of
DE wave with metallic overlayer of �nite conductivity (dashed line) follows the
dispersion in ferromagnetic �lm in contact with PEC (dotted line), while for larger
wavenumbers (k larger than k3) it follows the dispersion relation in the �lm with
both dielectric surroundings (solid line).

In order to understand the range of wavenumbers for which the SW dispersion
is under in�uence of a metal overlayer with �nite conductivity and in�nite thickness,
the penetration depth of electromagnetic �eld into a metal will be analyzed and
compare with the penetration depth into a dielectric. Decay of the electric �eld
associated with the SW excitation is exponentially depended on its wavevector and
characterized by the penetration depth. In the case of ferromagnetic �lm surrounded
by a dielectric the penetration depth is δk = 1/k. If the magnetic �lm is surrounded
by a metal, an additional attenuation of the �eld is present and this is described
by metal's skin depth δ0 [Eq. (6.13)]. The total penetration depth in this case is
δM and is related to the metal wavenumber introduced in Eq. (6.12): δM = 1/kM.
Which of the two decay contributions, k = 1/δk or 1/δ0 to kM is more important,
will determine the in�uence of a metal on the SW excitation.

In the subsequent �gures in Fig. 6.3(b) |ez(x)| (dashed line) is plotted along x
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Figure 6.3: (a) Dispersion relation of DE wave in ferromagnetic �lm of d = 30
nm thickness and saturated by the external magnetic �eld µ0H0 = 0.1 T. Solid
line shows calculations result for the �lm with both dielectric surroundings, dotted
line for a �lm covered from one side with PEC and dashed line with metal with
σ = 6 × 107 S/m conductivity. (b) Amplitude of the z component of the electric
�eld decaying with increasing distance from the surface of the ferromagnetic �lm
as exp (−x/δk)�solid line, exp (−x/δM)�dashed line and as exp (−x/δ0)�dotted
line are shown for three values of the wavenumber. It is for k1 = 0.85 × 106 m−1,
k2 = 1.76 × 106 m−1 and k3 = 3.72 × 106 m−1 marked also by vertical lines in (a),
(c) and (d). (c) R and ∆f,max as a function of the wavenumber are shown with solid
and dashed line, respectively. (d) The approximate and exact values of f and ∆f

in dependence on the k. Solid line shows fapp(k) calculated from Eq. (6.17) with δ0
estimated with Eq. (6.18), dot-dashed line with δ0 estimated with Eq. (6.19), and
dashed line shows the f(k) obtained in semi-analytical model.

axis in the space occupied by the metal (x > 0) for three values of the wavevector.
In the top �gure for k1 = 0.85 × 106 m−1, in the middle �gure for k2 = 1.76 × 106

m−1 and in the �gure at the bottom for k3 = 3.72 × 106 m−1. These wavenumbers
are marked by vertical lines also in Fig. 6.3(a). In each plot ez(x) ∝ exp (−x/δM)
dependence (dashed line) is decomposed onto two components: a decay due to nature
of DE's SW (exp (−x/δk), solid line) and due to �nite conductivity attenuation in
metal (exp (−x/δ0), dotted line). All functions are calculated with the use of semi-
analytical method and normalized so that |ez|=1 at the surface of the ferromagnetic
�lm (at x = 0). The analytical dependencies are in perfect agreement with results
obtained from FEM calculations, not shown here. The 1/e value of ez is marked by
the horizontal dashed line. One can see that in the �rst case decay is determined
by a decay in metal because δM(k1) ≈ δ0(k1) < δk(k1), in the second case the skin
depth of metal is close to the penetration depth of DE wave (δ0(k2) ≈ δk(k2)), this
is intermediate case where both sources of attenuation have the same contribution
to δM. Whereas in the third case δM(k1) ≈ δk(k3) < δ0(k3) and the total attenuation
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is due to localization of the DE excitation at this wavelength, i.e., the penetration
depth into dielectric is shorter than the skin depth of metal, an e�ect of metal is
not visible. This analysis allows to de�ne three wavenumber regions: i) k < k1,
the frequency is strongly in�uenced by metal, it corresponds to a dispersion of
ferromagnetic �lm in contact with PEC. ii) k1 < k < k2, the in�uence of metal is
visible, but not as strong as magnetic �lm would be in contact with PEC, but here
the maximal in�uence of metallization (also a maximal nonreciprocity) on SW is
expected, and iii) k3 < k, the e�ect of metal is negligible.

The quantitative contribution of a metal attenuation to the total attenuation
of SW in the region IV [Fig. 6.1] can be estimated by calculating the ratio, R, of
the electric �eld attenuation in metal due to the conductivity:

R = 1−
∫∞
0

∣∣e−kx
∣∣ dx∫∞

0
|e−kMx| dx

=
δM − δk
δM

. (6.15)

The function R changes from 0 to 1; R close to 0 means that almost all the electric
�eld attenuation is due to decay of the SW excitation, close to 1 means that almost
all electric �eld attenuation is due to the presence of metal. R as a function of
SW wavenumber is plotted in Fig. 6.3(c) with solid line. Function is monotonic
and changes from 1 at k = 0 to 0 at k → ∞, as expected. In order to obtain the
approximate value of the metallization e�ect, the frequencies in the structure with
PEC and without metal will be used, thus it will de�ne ∆f,max, i.e., a maximal
available metallization e�ect. Here, the analytical formulas for SW dispersion of an
uniform �lm surrounded by dielectrics and in direct contact with PEC will be used,
fDE(k) and fPEC(k), which are de�ned in Refs.[29] and [30], respectively. Thus,
∆f,max(k) ≡ fPEC(k)− fDE(k) and its dependence on k is shown in Fig. 6.3(c) with
dashed line. The approximate strength of the metallization e�ect, ∆f,app is then
given by:

∆f ≈ ∆f,app = ∆f,maxR = (fPEC − fDE)R

= (fPEC − fDE)
δM − δk
δM

. (6.16)

The approximate real part of SW's frequency can be also calculated with approx-
imate formulas:

f = fDE +∆f ≈ fapp

= fDE + (fM − fDE)
δM − δk
δM

, (6.17)

where δM depends on δ0 [Eq. (6.12)] and so it is still a function of f . However this
frequency can be approximated, two approaches to estimate f in Eq. (6.12) might
be used:
i) from the analytical solution for DE mode in ferromagnetic �lm surrounded by
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dielectrics:

δ0 ≈ δDE =

√
2

2πµ0fDEσ
, (6.18)

ii) from the averaged frequency of the �lm with PEC and with dielectrics:

δ0 ≈ δavrg =

√
2

2πµ0
fDE+fPEC

2
σ
. (6.19)

In Fig. 6.3(d) both, ∆f,app(k) and fapp(k) is plotted for the structure in contact
with metal, obtained from Eqs. (6.16) and (6.17) with using skin depths Eqs. (6.18)
and (6.19) (solid and dotted lines, respectively) and compare them with numerical
solutions (∆f (k) and f(k) obtained with semi-analytical method, marked by dashed
line). One could expect that the choice of f function in δ0 may in�uence results.
In fact, the di�erences are observed but these are very small and almost invisible in
frequency dependence on the wavevector due to frequency scale used in �gure [the
left scale in Fig. 6.3(d)]. However, one can see the discrepancy between numerical
results and approximate solutions in the plot of the metallization (the right scale) for
k > k1. At small k numerical and both approximate solutions are very close to each
other, this shows that the function δ0 is approximated correctly at these wavenum-
bers. The di�erences between numerical solution of ∆f (k) and ∆f,app(k) based on
DE approximation Eq. (6.18) and the average value Eq. (6.19) (both approximate
values coincide) increases up to wavenumber where ∆f reach maximal value. It is
since the frequency used in δ0 is becoming signi�cantly di�erent from right solution.
This discrepancy is eliminated when iterations of frequency are used. For large k the
∆f,app based on DE approximation is again close to numerical solution, while ∆f,app

based on average value is higher from numerical solution and this di�erence saturate
with increasing k. Also the in�uence of error in δ0 due to frequency approximation
is smaller at small k than at large k, since the value of R is larger at small k.

Maximizing the in�uence of metal

Based on the discussion from the previous subsection one can point at parameters
which will be important in order to increase the e�ect of metallization (to decrease
skin depth of metal δ0) on the dispersion of SWs and so, to increase the strength of
nonreciprocity. Since now solely FEM method will be used for analysis. According
to Eq. (6.13) the skin depth is proportional to the square root from the inverse of
frequency:

δ0 ∝
√

1

f
,

thus increasing the frequency at �xed k will lead to shorter skin depth in metal
and the e�ect of metallization will be stronger (higher attenuation due to electron
screening and higher value of function R). One can expect that the frequency at
�xed k will increase by:
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Figure 6.4: The strength of a metallization e�ect ∆f as a function of (a) k and MS,
(c) k and H0. The inverse of FOM [1/FOM] as a function of (b) k and MS, (d) k
and H0. In (a) and (b) the dashed horizontal lines mark saturation magnetization
of Py, Co and Fe.

• applaying higher bias magnetic �eld,

• using material with higher magnetization,

• increasing the thickness of the magnetic �lm.4

The results of numerical calculations con�rm the predictions. In Figs. (6.4) (a) and
(c) the ∆f is plotted in two-dimensional maps as a function of (MS, k) and (H0, k),
respectively.

In Figs. (6.4) (b) and (d) the reverse of the FOM function is plotted for the
same dependence and it can be directly compared with Gilbert damping factor,
since 1/FOM ≈ α.[154] For the structure with parameters taken from Fig. (6.3)
(a) the imaginary part of the frequency is always much smaller than the real part
and 1/FOM reaches the value 0.06 (FOM ≈ 16.7), which is of the same order as
a Gilbert damping in many ferromagnetic materials.[155, 156] In other considered
here parameters increase of 1/FOM with increase of MS and d is observed, but a
decrease with an increase of H0.

In Fig. (6.4) (a) the magnetization saturation of Fe, Co and Py are indicated.
The e�ect of metallization is negligible for thin �lms made of materials with low
magnetisation, it is already for Py. Thus, the new materials with high magnetization,
like a CoFeB alloys proposed recently for magnonics applications[157, 158] or Heusler
alloys [159, 160, 161] might be useful for a fabrication the structures with high
nonreciprocal e�ect and high velocity of SW with reasonable value of damping.

4In this chapter the investigation is limited to the thin ferromagnetic �lms (d ≤ 30 nm) when
the e�ect of its �nite conductivity on the SW propagation is negligibly as was proved by a number
of experiments on thin Py �lms. In the thicker ferromagnetic �lms the eddy currents generated in
ferromagnetic �lm can in�uence the SW dispersion.[36]
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Figure 6.5: ∆f as a function of (a) k and the thickness of the metallic layer D, (c)
k and the separation between metal and ferromagnetic �lm t. 1/FOM as a function
of (b) k and D, and (d) k and t.

In Figs. (6.5) (a)-(d) the strength of the metallization e�ect and 1/FOM in
dependance on the thickness of the metal �lm D, a metal separation from the
magnetic �lm t and a wavenumber are presented. For D dependance one can observe
a saturation of ∆f at values of order of skin depth in metal (δ0 is usually in the range
of 550-620 nm). However, a small variation of 1/FOM is still visible for thicker
metallic �lm. The interesting point is that the region on the (D, k) plane, where
1/FOM > 0.063 has widest range of k when D ≈ δ0. The t dependence of ∆f and
1/FOM is opposite to dependence on D described above. Both functions decrease
with increasing t, however they have a maximum in dependence on k, this maximum
exists for SWs with small k wavevectors, i.e., when 1

k
> t+ δ0 and shifts slightly to

the smaller k with increasing t.
In addition to the magnetization, external �eld, metallic �lm thickness and

metal separation, the change of the thickness of a ferromagnetic �lm will also have
impact on nonreciprocity e�ect at given wavevector. With the increase of thickness,
the group velocity of DE wave increases. At given wavevector the frequency of SW is
higher for thicker sample, thus the penetration depth of the excitation decreases and
an in�uence of metal is stronger. However, with the increase of ferromagnetic �lm
thickness, the in�uence of a conductivity of the ferromagnetic �lm on the disper-
sion of SWs becomes not negligible. Moreover, the damping also increases limiting
potential applications of such structures. Thus the investigations were limited to
a thin ferromagnetic �lms. The thickness dependance on nonreciprocity strength
might be also considered in nonconductive magnetic �lms, e.g., in YIG, then the
thicker sample is, the stronger e�ect is expected.[145, 149]

There is also another factor, not considered in this chapter, which can con-
tribute to the nonreciprocal properties of SW in thin �lms, this is an exchange
interaction. The exchange interactions result in appearing of Aexk

2 term in the
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magnetostatic SW dispersion relation.[26] Thus high exchange constant should lift
the frequency up at the �xed k and decrease δ0, so the metallization can be visible
at larger k values. However, as it was veri�ed numerically, to observe this e�ect
the value of Aex should be at least two orders of magnitude higher than that of
ferromagnetic materials considered in this chapter.
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Figure 6.6: The dispersion relation (solid line) and the 1/FOM (dashed line) of
DE's SW in the 30 nm thick CoFeB �lm with a Cu overlayer of 500 nm thickness.
The following parameters were assumed in the numerical calculations: µ0H0 = 1
T, MS = 1.43 × 106 A/m, Aex = 2.8 × 10−11 J/m and σ = 6 × 107 S/m. (b) The
nonreciprocity strength for CoFeB thin �lm in direct contact with the Cu overlayer.

On the basis of analysis presented above one can propose the material and the
structure suitable for an observation of the nonreciprocal dispersion relation of SWs
in thin ferromagnetic �lm with currently available resolution of the BLS setups.[78]
The high magnetization material was chosen, it is CoFeB alloy,[158] to be studied
at relatively high external �eld, µ0H0 = 1 T, and covered with the thick �lm of Cu.
In Fig. (6.6)(a) the dispersion relation [solid line] and 1/FOM [dashed line] is shown
for a 30 nm thick �lm with high nonreciprocal dispersion of SWs at wide wavevector
range. The nonrecirpocity strength de�ned as the di�erence between frequency of
SW propagation in +k direction and −k is shown in Fig. (6.6)(b). The maximal
nonreciprocity is found at k ≈ 2.0 × 106 1/m with f(k) − f(−k) ≈ 1.3 GHz. The
nonreciprocity higher than 0.2 GHz can be observed for wavevectors in the range of
7.0 × 106 1/m. There is also interesting e�ect related to the SW attenuation, it is
the big noreciprocity in an attenuation of SW due to the presence of metal. SWs
propagated in −k direction are almost undamped, while in +k are attenuated with
maximum 1/FOM at 4 × 106 1/m. However this maximum does not coincide with
the maximal value of a nonreciprocity strength shown in Fig. (6.6)(b).
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6.2 Magnonic Crystals with Perfect Electric Con-

ductor Overlayer

The e�ect of PEC ovelayer on MCs and appearing of nonreciprocal dispersion is
described in this subsection. The nonreciprocal properties of SWs propagating in
thin �lms of MCs are studied, with space inversion symmetry broken by a metallic
overlayer. The homogeneous yttrium iron garnet �lm in contact with a metal grid
has already been studied in transmission measurements [162, 24, 12]. The magnonic
band gaps (MBGs) have been observed but the in�uence of the nonreciprocity was
not discussed. The �nite conductivity of the metal grid was considered in reference
[163], where the strong nonreciprocity of the SW damping was predicted. In�uence
of nonreciprocity caused by a metal overlayer on SW Bragg resonances in YIG �lm
with lattice of etched grooves with the period a was recently studied experimentally
[164, 153]. It was shown, that if a dielectric spacer with thickness t is inserted
between YIG �lm and the metal overlayer, MBGs were detected only for SWs with
wavenumbers kn > 1/t where the e�ect of �nite conductivity is strong and when the
incident k+ and re�ected k− waves have similar frequency and ful�ll approximate
Bragg di�raction condition (see �gure 3 in reference [153]):

kn ≈ n
π

a
, (6.20)

where n is an integer number. For SWs with wavenumbers k < 1/t a nonreciprocity
in dispersion leads to su�ciently big di�erence in wavenumbers of k+ and k− waves.
It was concluded, that in MC with metal overlayer the Bragg resonances determined
by equation (6.20) couldn't be observed for nonreciprocal waves [153].

It will be presented in the chapter that the formation of MBG in a media with
nonreciprocal property is possible and it exists when the incident and re�ected SW
ful�ll the so-called exchange Bragg condition [131]:

k+ + k− = n
2π

a
. (6.21)

It will be shows and explained that this MBG will appear inside of the Brillouine
zone (BZ) and it is indirect band gap. It will be also shown that in the part of the
SW spectra corresponding to the half of BZ more than one MBG can exist.

Model

Finite element method (FEM) has been implemented in the frequency domain to
solve the Landau-Lifshitz (LL) and Maxwell equations to �nd the dynamical com-
ponents of the magnetization vector (m) and to obtain the dispersion relation of
one-dimensional (1D) bi-component MC shown in �gure 6.7. In the frame of this
approach the nonuniform spatial distribution of microwave magnetization as well
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coupling between dipole and exchange subsystems of the MC can be taken into ac-
count [34, 38]. This method can be used to predict the SW spectra in MCs with
nano- and meso-scale periodicity and �nite thickness. It is an important extension of
methods used previously in theoretical studies of nonreciprocal e�ects in magnonic
structures [86, 147].

Figure 6.7: A structure of 1D MC with a layer of a PEC on the top surface. The MC
is composed of alternating, in�nitely long ferromagnetic stripes that have di�erent
saturation magnetization M1 and M2. The bias magnetic �eld H0 is directed along
z axis. The SWs propagate along the y axis. The rectangular unit cell used in
numerical calculations is marked by a dashed line. The PBC are used along the y
axis.

Analyzis of the Calculation Results

To make more clear speci�c properties of nonreciprocal SW spectra, two types of
1D MCs will be discussed, which are characterized by low ∆M ≪ M1,2 and high
∆M ∼ M1,2 magnetic contrasts [∆M = |M1 − M2|, M1 and M2 are saturation
magnetizations of stripe 1 and 2] [7]. 1D MC with low magnetic contrast consists of
stripes of the same thickness d = 70 nm, width w = 300 nm (lattice constant a = 600
nm), γ = 182.2 GHz/T and the exchange constant Aex = 7×10−11 J/m but di�erent
saturation magnetization: M1 = 0.9 × 106 A/m and M2 = 1.0 × 106 A/m. These
values can correspond to iron and nickel alloys with various compositions [165]. As
an example of MC with∆M ∼M1,2 the structure composed of Co and Py stripes can
be taken, which was already investigated theoretically and experimentally [166, 86]
with parameters M1 = 1.25× 106 A/m, M2 = 0.65× 106 A/m, Aex,1 = 2.88× 10−11

J/m, Aex,2 = 1.11 × 10−11 J/m, γ = 182.2 GHz/T, w = 250 nm, a = 500 nm, d =
30 nm. All calculations were done for the external magnetic �eld µ0H0 = 0.1 T.

At �rst the dispersion curves within the �rst BZ for low magnetic contrast
structure is calculated. the results are shown by dots in �gure 6.8(a). For conveni-
ence, the SW dispersion for uniform magnetic �lm with saturation magnetization
MS being an average of M1 and M2, MS = (M1 +M2)/2 = 0.95 × 106 A/m, and
other chosen parameters is shown by thick solid line. Two horizontal dashed lines
pointing at fS and fex are used as reference lines. They correspond to frequencies of
short wavelength limit for MSSW (without exchange contribution) in magnetic �lm
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Figure 6.8: (a) The calculated magnonic band structure (dots) of the 1D MC with
small magnetic contrast. For convenience the position of the upper frequency limit
for MSSW fS and frequency of the �rst exchange standing spin wave fex are shown
for not metallized uniform magnetic �lm with structural parameters de�ned for MC
with average magnetization MS = M1+M2

2
= 0.95 × 106 A/m. The dispersion of

metallized homogeneous ferromagnetic �lm like this is plotted by thick continuous
line, additional thin continuous lines present solutions folded to the �rst BZ only for
primary branches, they are marked as ni±. The solid black dots described by ka �
kcII and vertical lines indicate the points for which pro�les in �gure 6.9 are plotted.
(b) The dispersion relation of Co/Py (high magnetic contrast) 1D MC with one side
metallized (solid lines) and with both dielectric surroundings (dashed lines).

with nonmagnetic dielectric surrounding 2πfS ≡ ωS = ωH + ωM/2 [29] and �rst ex-
change spin standing wave resonance mode 2πfex ≡ ωex =

√
ω∗
H(N)(ω∗

H(N) + ωM),
where ωH = γµ0H0, ωM = γµ0MS, ω∗

H(N) = ωH + γ 2Aex

MS
(πN

d
)2 and N = 1 [34, 38].

The metallization introduces strong nonreciprocity in SW spectra of thin �lm. The
MSSW group velocities (Vg = ∂ω

∂k
) at k → 0 are di�erent for opposite directions of

propagation, |V +
g | ≈ 3.1 km/s and |V −

g | ≈ 5.6 km/s. The MSSW are propagat-
ing along the metallized surface (i.e., for k−; their localization properties will be
discussed later in the chapter) possess strong hybridization with the �rst exchange
standing mode fex, leading to the exchange gap ∆fex formation at frequency fex and
k ≈ −0.7π/a, similar to the case of uniform ferromagnetic �lm [34].
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The periodicity of the structure leads to appearance of the back-folded bands.
For |k| ≤ π/a and frequency interval from 10 GHz to 26 GHz shown in �gure 6.8(a),
only back folded waves traveling along not metallized surface (i.e., traveling in k+

direction) and the �rst exchange standing mode take part in an interaction with
SWs propagating along metallized surface (i.e., traveling in k− direction). In �gure
6.8(a) dispersion curves corresponding to the MSSW of uniform �lm traveling along
free surface (k+) and having its origin at kn = −(2πn)/a are shown by thin solid
lines with numbers n = 1+...4+, where n corresponds to the order of BZ and index
"+" pointed waves traveling along positive direction of y axis. Dispersions of these
waves are folded back to the �rst BZ and these could be interpreted as MSSWs
in unmetallized uniform �lm with the wavenumbers shifted by the reciprocal lattice
vector kn. At points where dispersion of these waves cross the dispersion of n0− wave,
the condition (2) is ful�lled and resonance scattering leads to MBGs appearance.

Among these Bragg resonances two types can be distinguished. For the �rst
one nonreciprocity of SW propagation is not necessary, while for others it plays
important role. The Bragg resonances of the �rst type arise due to interaction of the
�rst standing spin wave resonance mode, fex with re�ected MSSW traveling along
the unmetallized surface (in positive y direction). Due to exchange interactions,
dispersion curves for MSSW do not have frequency limit fS for k → ∞, as it is
seen from curves pointed by n = 1+, .., n = 4+ which are shifted above the limiting
frequency fS and condition (2) can be ful�lled at frequencies close to fex. An example
of the resonances of the �rst type is shown by rectangular frame in �gure 6.8(a) with
inset, which shows the enlarge view of the dispersion. This resonance is similar to
resonance between two electromagnetic waves, with di�erent polarizations in PC,
from which at least one is folded-back to the �rst BZ [131, 133].

The resonance of the second type appears only in nonreciprocal structures.
It corresponds to interaction of SWs traveling along metallized and unmetallized
surfaces under condition (6.21) (see regions of the SW spectra marked by circles).
One can see the MBG opening in pointed regions. The values of the MBG diminished
as the number n increases from n = 1+ to n = 3+. This feature is due to decreasing of
the overlapping integral of dynamic magnetizations and �elds of interacting quasi-
surface SWs as their localization near opposite surfaces become stronger with an
increase of the wavenumber.

One of the speci�c features of MBGs opening at resonances (6.21) is indirect
character of gaps. It means, that points with Vg = 0 on dispersion curves are
characterized by di�erent wavenumbers and it also re�ects the loss of symmetry of
the SW spectra in nonreciprocal structure: ω(k) ̸= ω(−k). The indirect character
is more evident for larger MBGs (correspondent to gaps with lower numbers n)
[�gure 6.8(a)]. Because the value of the MBG increases with increasing the value of
magnetic contrast ∆M [7], one can expect that indirect character of MBG in high
contrast MC covered by PEC will be more brightly.

Now high contrast MC will be considered. In �gure 6.8(b) the calculated SW
spectra for high contrast MC contacted with one PEC and with both dielectric
surroundings is shown by solid and dashed lines, respectively. For high contrast MC
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an approach based on the use of the spectra of the partial waves of the uniform
�lm with averaged saturation magnetizations MS is not so obvious, as it was in the
case of low contrast crystal. The SW dispersion calculated for MC with dielectric
surroundings is reciprocal and MBGs between the magnonic bands are present with
minimum and maximum (points 1 and 2 in �gure 6.8(b)) at the BZ border according
with the condition (6.20). The MPG calculated for the same MC with PEC has
nonreciprocal property with pronounced shift of the maximum (or minimum) of the
�rst (or second) band from the BZ border (points 3 and 4 in �gure 6.8(b)). For
chosen parameters the minimal energy state of high energy branch and maximal
energy state of low energy branch are characterized by wavenumbers k3 ≈ −0.7π/a
and k4 ≈ −0.2π/a and MBG has the width ∆f ≈ 1.1 GHz. The interesting point is
that the metallization of the MC increases the group velocity of higher bands, e.g., in
proximity of the point 4 in �gure 6.8(b). This is an e�ect of the induced hybridization
between �rst and second band. This may imply advantages for applications in
magnetic �eld sensors, which require a high �eld sensitivity and a sharp band gap
absorption peak [24].

Figure 6.9: (a)-(c) The spatial distribution of the magnetization component∣∣Re(m′
y)
∣∣ for three values of ki wavenumber (in units of π/a) across the thickness of

the MC (left plots) and along the y axis (right plots). The wavevectors are indicated
by vertical dashed line on the �g 6.8(a). The path along which the distributions are
plotted is indicated on the unite cell of MC by dotted lines in (d).

To receive insight in character of propagating SWs from di�erent bands in the
BZ lets consider the spatial distribution of the real part of the periodic Bloch function
of the dynamic magnetization componentm′

y(x, y) (
∣∣Re(m′

y)
∣∣) for low magnetization

contrast MC. In �gures 6.9(a)-(c) the function
∣∣Re(m′

y)
∣∣ of two lowest modes across

the MC thickness and along the periodicity are plotted for three wavenumbers ka,
kb and kc indicated in �gure 6.8(a) by vertical dashed lines. The paths in MC along
which the plots are made are marked by vertical dashed lines in �gure 6.9(d).
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For ka = −0.28π/a the amplitude of SW is a quasi-uniform function of y for
the mode I (�gure 6.9(a)). The distortion from the uniform shape is due to di�erent
values of saturation magnetizations in materials 1 and 2. The distribution of the
second mode has two nodal points along the y axis. This suggests that its e�ective
wavenumber is larger than π/a and appear as a solution in the �rst BZ due to back-
folding of the band. The e�ective wavenumber is kaII = ka + 2π/a. The dynamic
component of the magnetization is neither uniform nor exponentially decaying across
the thickness as could be expected for MSSW mode. This is ascribed to the role of
exchange interactions, which have a minor in�uence on the dispersion relation but
are su�cient to modify the pro�le of modes, as it was shown in references [34, 38]
for thin �lms.

For kb = −0.36π/a [�gure 6.9(b)] the hybridization is very strong. The SW
amplitude modulus shows the larger amplitude of the �rst mode in material with
low saturation magnetization and of the second mode within material with higher
saturation magnetization. For kc = −0.44π/a [�gure 6.9(c)] the distortion from
quasi-uniform distribution of the second mode along y axis suggests, that hybrid-
ization between the �rst and second mode is still present and on the other hand
the hybridization between second and third mode starts to play role. It is due to
the non-symmetrical band structure when the density of MBGs within one BZ is
increased. We might observe hybridizations between more than two SWs.

6.3 Magnonic Band Gaps in Metallized YIG Mag-

nonic Crystals

This nonreciprocity remains even for large wavenumbers in a ferromagnetic �lm with
a metal overlayer of �nite conductivity σ separated by a distance t [32]. However,
in this case the nonreciprocity will occur in a limited wavenumber range, as it was
described in the subsection 6.1. The exchange interaction in�uences mainly the
localization of SW amplitude, while the dispersion relation remains nonreciprocal
and almost unchanged in the considered wavenumber range [146].

In an yttrium iron garnet (YIG) �lm (of thickness d = 7.7 µm) with a silver
overlayer (of conductivity σ = 6 ×107 S/m and thickness D = 5 µm) at a nonzero
distance (t = 18 µm) from the YIG surface the SW dispersion is nonreciprocal only
for wavenumbers below k2, as shown in Fig. 6.10(b). The plot presents the SWs
frequency f in the DE geometru versus the wavenumber in a YIG �lm without
or with an Ag overlayer (solid and dashed line, respectively). As a quantitative
measure of the nonreciprocity strength, a factor ∆f (k) ≡ fmetal(k)− fdielectric(k)
is introduced, where fmetal(k) and fdielectric(k) denote the dispersion relations of
the YIG �lm surrounded by dielectrics on both sides and with a metallic over-
layer, respectively. The wavenumber dependence of ∆f in the YIG �lm is shown in
Fig. 6.10(c). One can see that ∆f increases from 0 at k = 0 to a maximal value of
0.35 GHz at k = k1. Having reached the maximum, ∆f decreases smoothly to 0 as
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Figure 6.10: (a) Ferromagnetic �lm of thickness d saturated by external magnetic
�eldH and covered with a nonmagnetic metallic �lm of conductivity σ and thickness
D. The metal is separated from the ferromagnetic �lm by the distance t = 18 µm.
(b) The dispersion relation of SWs propagating perpendicularly to H in a YIG thin
�lm (d = 7.7 µm) surrounded by dielectrics on both sides (solid line) and with a
thick Ag overlayer (σ = 6×107 S/m and D = 5 µm) (dashed line). For wavenumbers
k > k2 the e�ect of the metallic overlayer is minor. (c) The nonreciprocity strength
∆f as a function of the wavenumber for a YIG �lm with an Ag overlayer; k1 indicates
the wavevector for which ∆f is maximal, i.e., the metallic overlayer has the maximal
in�uence on the SW dispersion relation.

the wavenumber continues to grow.
Considering the limited range of wavenumbers for which ∆f is signi�cantly dif-

ferent from 0, and their small values, optimization of the structure seems unavoidable
for the experimental observation of the nonreciprocity of the SW dispersion relation.
In particular, it will be required in studies of SWs in nano-patterned magnetic struc-
tures to exploit the nonreciprocal properties for applications in integrated magnonic
devices [167, 84, 22]. For application purposes the nonreciprocity strength should
be studied along with the losses of SWs resulting from eddy currents induced in the
metallic overlayer; however, such studies, discussed elsewhere [129], are beyond the
scope of the present paper.

Here, theoretically and experimentally the in�uence of the nonreciprocal dis-
persion relation of SWs on the frequency of magnonic band gaps of a one-dimensional
magnonic crystal is studied. Recent experimental studies of the in�uence of the non-
reciprocity caused by a metal overlayer on SW Bragg resonances in a YIG �lm with
a lattice of etched grooves [164, 153] have shown that if a dielectric spacer is inserted
between the YIG �lm with a corrugated surface and the metal overlayer, magnonic
band gaps occur, but only for SWs with large wavenumbers. This corresponds to
k > k2, a range in which the e�ect of the conductivity on the dispersion relation is
negligible (see Fig. 6.10(b)). In papers [86, 8] it was shown theoretically that thin
bi-component magnonic crystals with a PEC overlayer should have magnonic band
gaps. Moreover, it was demonstrated [8] that the nonreciprocity caused by the PEC
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shifts the minimums and maximums of the magnonic bands from the boundary of the
Brillouin zone. This provides the mechanism of formation of the indirect magnonic
band gaps found in calculations. However, the existence of magnonic band gaps
in magnonic crystals with a nonreciprocal dispersion relation has not been veri�ed
experimentally to date. The present paper is the �rst to report their experimental
observation in such structures.

Experiment

The experimental results has been obtained by Kotelnikov Institute of Radio Engin-
eering and Electronics, Saratov branch, Russian Academy of Sciences. The studied
magnonic crystal (Fig. 6.11(a)) was based on an epitaxial structure consisting of a
7.7 µm thick yttrium iron garnet (YIG) �lm grown on gadolinium gallium garnet
(GGG). An array of 80 µm wide and 1.5 µm deep grooves with a lattice constant
of 150 µm was introduced by chemical etching on the YIG surface. This magnonic
crystal was placed on two prototype models of delay lines, coplanar (Fig. 6.11(b))
and microstripe waveguides (Fig. 6.11(c)), on input and output transducers with
a width w ≈ 30 µm and a length of 4 mm. The two transducers were separ-
ated by a distance S = 4 mm. The YIG �lm had a saturation magnetization of
MS = 0.141 × 106 A/m, a ferromagnetic resonance width µ0∆H ≈ 0.035 mT, and
planar dimensions 15 mm × 5 mm. The whole structure was placed in the gap of
an electromagnet so that the external magnetic �eld was oriented along the grooves
and parallel to the transducers. The �eld was strong enough to saturate the sample
(µ0H = 41.6 mT). The amplitude�frequency characteristics S21(f) of the delay line
prototype models were measured by an Agilent E5071C-480 network analyzer.

The two di�erent types of delay lines (microstripe and coplanar) were used to
measure the transmission of SWs in the MC without and in contact with a metallic
overlayer, thus without and with a nonreciprocal dispersion relation, respectively,
for waves propagating in opposite directions. The transmission spectra measured
with the coplanar and microstripe waveguides are shown in Fig. 6.11(d) and (e),
respectively. Magnonic band gaps, indicated by low S21, are found in both trans-
mission spectra. Moreover, the measured gaps lie in the frequency and wave-vector
ranges in which strong nonreciprocity of the dispersion relation should already occur
in the MC with the metallic overlayer (see Fig. 6.10(c)). Comparing the frequency
position of the magnonic band gaps (indicated by colored bars), one can see that
the gaps in a metalized MC are shifted to higher frequencies as compared to the
respective magnonic band gaps found in microstripe measurements.

Magnonic band structure of metallized magnonic crystals

The numerical calculations were performed of the magnonic band structure of the
one-dimensional magnonic crystal shown in Fig. 6.11(a), with and without metallic
layer on top of the �lm. The wave equation for the electric �eld vector E obtained
from the Maxwell equations need to be solved in order to calculate the SW dispersion
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Figure 6.11: (a) The structure of the one-dimensional YIG-based MC with a peri-
odically corrugated surface used in the experiments. The dimensions of the sample
are speci�ed in micrometers. (b), (c) Two con�gurations, with a coplanar line (plate
2) and a microstripe line (plate 1), used in the measurements of the SW transmis-
sion in the MC in and without contact with the metal, respectively. (d), (e) The
transmission spectra (S21) versus the SW frequency f measured with the coplanar
and microstripe lines. The colored bars indicate the magnonic band gaps.

relation:

∇× (µ̂−1
r ∇× E)− (2πf)2

√
ϵ0µ0

(
ϵ0 −

iσ

(2πf)ϵ0

)
E = 0, (6.22)

where µ0 and ϵ0 denote the vacuum permeability and permittivity, respectively, and
σ is the conductivity, di�erent from zero only in the metallic overlayer. The per-
meability tensor µ̂(r) is obtained from the linearized damping-free Landau-Lifshitz
equation without exchange interaction [118]:

µ̂(r) =

 µxx(r) iµxy(r) 0
−iµyx(r) µyy(r) 0

0 0 1

 , (6.23)

where

µxx(r) =
γµ0H(γµ0H + γµ0MS)− (2πf)2

(γµ0H)2 − (2πf)2
, (6.24)

µxy(r) =
γµ0MS2πf

(γµ0H)2 − (2πf)2
, (6.25)

µyx(r) = −µxy(r), (6.26)

µyy(r) = µxx(r), (6.27)

MS is the saturation magnetization, and γ the gyromagnetic ratio. The equation
(A.2), with the Bloch theorem applied, yields a linear eigenequation for the frequency
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or a quadratic equation for the wavenumber [66]. The eigenequation is solved by
the �nite element method with the use of a commercial COMSOL software. The
SW dispersion relations calculated from these equations are shown in Fig. 6.12(a)
and (b).

A reciprocal band structure (with f(k+) = f(k−)) was obtained in the mag-
nonic crystal without metallic overlayer (Fig. 6.12(b)) with magnonic band gaps open
at the boundary (�rst gap) and center of the Brillouin zone. The �rst gap ranges
from 2.925 GHz to 2.975 GHz, and the second one from 3.125 GHz to 3.15 GHz.
When the MC is covered with an Ag �lm the slope of the dispersion relation branch
for waves propagating in the positive direction is signi�cantly increased, while the
k− branch remains almost unchanged. Thus, the k+ and k− + G branches cross
within the BZ at much higher frequencies than in the case of the reciprocal struc-
ture. The resulting magnonic band gap is an indirect gap and its opening requires
the ful�llment of the Bragg condition [8]:

k+ + k− = nG,

where G is the shortest reciprocal lattice vector, G = 2π/a = 0.419 × 105 m−1,
and n = 1 for the �rst gap. Ranging from 3.05 GHz to 3.09 GHz, this band gap
is shifted to higher frequencies by ca. 0.75 GHz as compared with the MC without
metallic overlayer. This shift is in agreement with the experimental results presented
in Fig. 6.11(d). Considering that this change in the position of the magnonic band
gap results from the change in the dispersion relation for k+ waves, this shift can
be also treated as a measure of nonreciprocity. In fact, it is close to the value of the
nonreciprocity strength introduced in Fig. 6.10(c).

The results of the investigation of the in�uence of the metallic overlayer on
the SW dispersion relation in ferromagnetic thin �lms were presented. By analyzing
the electric �eld component within the �nite-conductivity metallic layer the extent
of the nonreciprocity was estimated in such structures versus various parameters,
including the magnetic saturation of the ferromagnetic �lm, the conductivity of the
metallic layer, its thickness and distance from the ferromagnetic �lm, and the in-
plane external magnetic �eld. Using an approximate analytical formula for the SW
frequency, a structure in which the e�ect of the metallization is signi�cant in a wide
wave-vector range was de�ned and should be measurable by standard experimental
techniques suitable for the measurement of SWs.

It was shown that the results obtained by the FEM in the present study agree
with the semi-analytical data. A major advantage of the FEM is its applicability, in
the present formulation, to various structures, including magnonic crystals,[8] mul-
tilayered structures, ferromagnetic �lms with layers of various conductivity, �lms
with corrugated surfaces or in contact with a metallic grid. These additional struc-
tural variations might further increase the nonreciprocal e�ect. The results presen-
ted can be of use for the development of devices exploiting the nonreciprocity of
the SW dispersion relation. The proposed structure, based on a CoFeB thin �lm,
can be further explored for magnonic applications[15] by periodic patterning of the
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Figure 6.12: Magnonic band structure of the MC shown in Fig. 6.11(a), based on
a YIG �lm with a corrugated surface (a) with and (b) without metallic overlayer.
Color bars indicate magnonic band gaps. Vertical dashed lines represent Brillouin
zone boundaries: π/a, 2π/a and 3π/a. In (b) the metallic layer is assumed to be 10
µm above the YIG surface.

ferromagnetic �lm or patterning of the metallic cover layer.
The impact of a perfect metal overlayer on the spin wave dispersion relation

of 1D bi-component magnonic crystals with high and low magnetic contrasts was
investigated theoretically. In both cases one can found the nonreciprocal band struc-
ture where the Bragg resonances of the nonreciprocal spin waves take place under
ful�llment of the so-called exchange Bragg condition and are characterizing by indir-
ect magnonic band gap shifted from BZ border. Speci�c features of nonreciprocity
in low contrast magnonic crystals lead to appearance of several magnonic band gaps
located within the �rst BZ for waves propagating along metallized surface, while
they are absent for waves traveling along unmetallized surface of MC. This property
can lead to multimode hybridizations e�ects which are only possible because of the
periodicity of the system and the folding of the dispersion branches to the �rst BZ.

In order to observe nonreciprocal magnonic band structure experimentally one
need to consider the in�uence of �nite conductivity and damping of SWs. Finite
conductivity, overlayer thickness, skin depth and MC lattice constant must be prop-
erly adjusted to receive in�uence of metal layer mainly on dispersion but not on
the losses of SWs [145]. These requirements demand the well designed structure
of a MC to observe the indirect magnonic band gap formation in the �rst BZ with
the Brillouin Light Scattering measurements [168] or with the broad-band ferromag-
netic resonance [55]. When the �nite conductivity is taken into account, the e�ect
of metallization disappears for waves with large wavevectors. Thus, on one hand the
lattice constant need to be chosen so the wavevector is big enough to measure it, but
small enough that the e�ect of metallization is still present. However, the occurrence
of magnonic band gaps was demonstrated experimentally in a one-dimensional YIG-
based MC with a dispersion relation nonreciprocal due to the presence of a metallic
overlayer at the corrugated surface of the YIG �lm, con�rming the theoretical pre-
dictions. The presented results are of scienti�c and technological importance. They
explain major questions arising from previous experimental results [153].

The presented result have importance for potential applications of MCs. The
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results pointed out, that for high sensitive magnetic �eld sensors proposed recently
[24], a shape of magnonic bands near the band gap edges will have important in�u-
ence on its sensitivity. Its sensitivity might substantially depends on the direction
of propagation and a design of the device. The additional studies, theoretical and
experimental, are necessary to check if the structure proposed (1D bi-component
MC but or an array of stripes, with the homogeneous metal plate on its top or
bottom) can have better characteristics than a lattice of metallic stripes on the ho-
mogeneous ferromagnetic �lm [24]. The nonreciprocal properties of the magnonic
band structure can be also useful to design miniaturized microwave isolators and
circulators, essential elements in microwave technology. The fabrication of 1D MCs
is relatively simple nowadays and can operate without an external magnetic �eld
due to a shape anisotropy. The nonreciprocal property can be also combined with
re-programmablity [40, 108, 81, 169].



Chapter 7

Summary

In this thesis the dispersion properties of the spin waves excitation were studied
in the �nite thickness ferromagnetic �lm and 1D magnonic crystals. The invest-
igated samples were based on the YIG, Py and Co materials. The focus was put
on the investigation of the properties that are crucial to the potential use for MC
based devices, i.e., damping, interaction of standing spin waves with electromag-
netic wave and nonreciprocity. The numerical calculations were performed in the
frequency domain, solving the linearized Landau Lifshitz equation together with
Maxwell equations. To approach the problem, the Plane Wave Method and the Fi-
nite Element Method were applied. Several models were presented throughout the
thesis. In addition, some of the calculated data was compared with the experimental
data obtained as part of scienti�c collaboration.

The numerical calculations prove to be in the agreement with the experimental
observations and to have an important impact on the modern research in the �eld.
The standing spin waves can interact strongly with the electromagnetic waves at
GHz or sub-THz regime, leading to metamaterial posessing the negative refractive
index. The nonreciprocity of the MCs is measurable, even that the metallization
induces damping of the spin wave at wavelenght range of interest. A sensitive
magnetic �eld sensor or parts of microwave signal transfer devices were outlined as
potential applications.
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Appendix A

Application of FEM to 1D Photonic

Crystals

A simple case of application of FEM can be shown on the example of photonic
crystal (PC). The dispersion relation of EM wave is solved for the 1D PC of in�nite
thickness, characterized by the unit cell of the length a. The unit cell is composed of
equal length materials characterized by ϵ1 and ϵ2. The FEM procedure is described
in the following subsections, listed in the part 3.2 of this thesis.

De�ning a physical problem

In order to calculate the dispersion relation of light in 1D photonic ctystal, we
solved the wave equation for an electric �eld vector (e) obtained form the Maxwell
equations:

∇× (µ̂−1
r ∇× e)− (2πf)2

√
ϵ0µ0

(
ϵr −

iσ

(2πf)ϵ0

)
e = 0, (A.1)

where µ0 and ϵ0 is a permeability and permittivity of vacuum, respectively, ϵr is
relative permittivity. It will be assumed µ̂r=1, σ = 0 and e = (0, 0, ez). In 1D case
∂
∂y
=0 amd ∂

∂z
=0, giving:

∂2ez
∂x2

+ (2πf)2
√
ϵ0µ0ϵrez = 0. (A.2)

De�ning the governing equations in the weak formu-

lation

This equation can be written in the weak form [73], i.e., multiplying by the arbitrary
test vector and integrate over the domain. The domain here is a 1D photonic crystal
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Figure A.1: Generating mesh of 1D photonic crystal.

of in�nite length. According to 1.4 it is su�cient to look for the solution within the
unit cell of length a:∫ 0

a

∂2ez
∂x2

· vdx+
∫ 0

a

(2πf)2
√
ϵ0µ0ϵrez · vdx = 0. (A.3)

Taking solution in the form of Bloch wave ez(x) = e(x)eikxx∫ 0

a

∂2e

∂x2
· vdx+ 2ikx

∫ 0

a

∂e

∂x
· vdx− k2x

∫ 0

a

e · vdx+
∫ 0

a

(2πf)2
√
ϵ0µ0ϵre · vdx = 0. (A.4)

This equation can be transformed by integration by parts and using Green's
identity to the following equation:

−
∫ 0

a

∂e

∂x
· ∂v
∂x
dx+ 2ikx

∫ 0

a

∂e

∂x
· vdx− k2x

∫ 0

a

e · vdx+
∫ 0

a

(2πf)2
√
ϵ0µ0ϵre · vdx = 0. (A.5)

Discretization

In the next step of FEM procedure, the domain (a line of length a) is divided into
sub intervals, see Fig. A.1. The set of points (nods) can de�ne the sub intervals.
The solution will be written on the base of some functions for each sub intervals
separately, with the use of the value of ez at nods. The system of nodes make a grid
called a mesh.

Behavior of the function between nods can be presented by the polynomial
functions. The choice of the functions complete the discretization of the problem.
Here, the functions e can be de�ned locally, between nodal points in the form of
�rst order polynomial function basis:

ei(x) = ai1 + ai2x. (A.6)

That is in relation with function e describing whole unit cell by:

e =
N∑
i=1

ei(x). (A.7)
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The functions can be also written in the form of ei(xi) = ei1 and e
i(xi+1) = ei2

ei(x) = ei1
xi+1 − x

xi+1 − xi
+ ei2

x− xi
xi+1 − xi

, (A.8)

since:

ei1(x) = ai1 + ai2xi, (A.9)

ei2(x) = ai1 + ai2xi+1, (A.10)

ai1 =
ei1 − ei2
xi − xi+1

, (A.11)

ai2 =
ei2xi − ei1xi+1

xi − xi+1

. (A.12)

The vi is chosen to be composed of the linear functions:

vi(x) =

(
xi+1−x
xi+1−xi
x−xi

xi+1−xi

)
. (A.13)

It is in relation with global test vector v by:

v =
N∑
j=1

vj(x). (A.14)

That can be written in terms of local coordinate ζ, that is 0 at xi and 1 at
xi+1:

x = xi + ζ(xi+1 − xi), (A.15)

with following transforms:

dx = (xi+1 − xi)dζ, (A.16)

d

dx
=

1

(xi+1 − xi)

d

dζ
. (A.17)
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Setting up the matrix

The above de�nitions allow to write Eq. A.5 in the form:

N∑
i=1

N∑
j=1

(−
∫ xi

xi+1

∂ei

∂x
· ∂v

j

∂x
dx+ 2ikx

∫ xi

xi+1

∂ei

∂x
· vjdx− k2x

∫ xi

xi+1

ei · vjdx+∫ xi

xi+1

(2πf)2
√
ϵ0µ0ϵre

i · vjdx) = 0

(A.18)

and with the use of A.15-A.17:

N∑
i=1

N∑
j=1

(− 1

(xi+1 − xi)

∫ 0

1

∂ei

∂ζ
· ∂v

j

∂ζ
dζ︸ ︷︷ ︸

contributing to matrix M1

+ 2ikx

∫ 0

1

∂ei

∂ζ
· vjdζ︸ ︷︷ ︸

contributing to matrix M2

−

k2x(xi+1 − xi)

∫ 0

1

ei · vjdζ︸ ︷︷ ︸
contributing to matrix M3

+(2πf)2 (xi+1 − xi)

∫ 0

1

√
ϵ0µ0ϵre

i · vjdζ︸ ︷︷ ︸
contributing to matrix M4

) = 0.

(A.19)

The above equation might be written in form of the matrix operating on the
vector, i.e., the �rst term is evaluated for i, j = 1:

− 1

(xi+1 − xi)

(∫ 0

1

∂e11(1− ζ)

∂ζ
dζ +

∫ 0

1

∂e12ζ

∂ζ
dζ

)
·

( ∫ 0

1
∂(1−ζ)

∂ζ
dζ∫ 0

1
∂ζ
∂ζ
dζ

)
=

− 1

(xi+1 − xi)

(
e11 −e12
−e11 e12

)
= − 1

(xi+1 − xi)

(
1 −1
−1 1

)
︸ ︷︷ ︸

contributing to matrix M1

(
e11
e12

)
.

(A.20)

De�ning the boundary conditions

Taking summation from 1 to N, PBC and the fact that ei2 = ei+1
1 , the contribution

from considered �rst term of A.19 might be written in the form of matrix multiplic-
ation.



91

M1e = − 1

(xi+1 − xi)



2 −1 0 . . . . . . . . . −1

−1 2 −1
. . .

...

0 −1 2
. . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . 2 −1 0

...
. . . −1 2 −1

−1 . . . . . . . . . 0 −1 2





e12
e22
...
...
...
eN2


. (A.21)

The other contribution are calculated in the similar manner:

M2 =



0 1
2

0 . . . . . . . . . −1
2

−1
2

0 1
2

. . .
...

0 −1
2

0
. . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . 0 1

2
0

...
. . . −1

2
0 1

2
1
2

. . . . . . . . . 0 −1
2

0


, (A.22)

M3 = (xi+1 − xi)



2
3

1
6

0 . . . . . . . . . 1
6

1
6

2
3

1
6

. . .
...

0 1
6

2
3

. . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . 2
3

1
6

0
...

. . . 1
6

2
3

1
6

1
6

. . . . . . . . . 0 1
6

2
3


. (A.23)

The matrix M4 posses parameter ϵr that is de�ned in terms of ϵ1 and ϵ2. For
i < N

2
, ϵr = ϵ1. For i ≥ N

2
, ϵr = ϵ2 Thus:

M4 = (xi+1 − xi)



2ϵ1
3

ϵ1
6

0 . . . . . . . . . ϵ2
6

ϵ1
6

2ϵ1
3

−1
. . .

...

0 ϵ1
6

2ϵ1
3

. . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . 2ϵ1
3

ϵ2
6

0
...

. . . ϵ2
6

2ϵ1
3

ϵ2
6

ϵ1
6

. . . . . . . . . 0 ϵ2
6

2ϵ1
3


. (A.24)
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Thus we can write

M1e+M2e−M3e = −(2πf)2M4e. (A.25)

Solving the matrix

The eigenequation is formed by multiplying the above equation by inverse of M4:

M−1
4 M1e+M−1

4 M2e−M−1
4 M3e = −(2πf)2e. (A.26)

This eigenequation might be solved with the use of numerical methods for larger
systems. The results of the calculation of eigenvalues (ω) and eigenvectors (e) are
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showed on the Figs. A.2 and A.3 respectively. The results are in accordance with
[60]. The algorithm might be extended further, e.g., the quadratic eigenequation
might be written for k wavevector and solved after linearization. This might be
advantageous for systems where µr or ϵr are frequency dependent. In similar manner
the method might be implied for 2D or 3D geometries (where neighboring elements
are related in the matrix), or systems of equations with many variables (where size
of egienvector increase).
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