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Abstract: Photovoltaic (PV) systems are weather-dependent. A solar eclipse causes significant changes in these parameters,
thereby impacting PV generation profile, performance, and power quality of larger grid, where they connect to. This study
presents a case study to evaluate the impacts of the solar eclipse of 21 August 2017, on two real-world grid-tied PV systems
(1.4 MW and 355 kW) in Miami and Daytona, Florida, the feeders they are connected to, and the management areas they
belong to. Four types of analyses are conducted to obtain a comprehensive picture of the impacts using 1 min PV generation
data, hourly weather data, real feeder parameters, and daily reliability data. These analyses include: individual PV system
performance measurement using power performance index; power quality analysis at the point of interconnection; a study on
the operation of voltage regulating devices on the feeders during eclipse peak using an IEEE 8500 test case distribution feeder;
and reliability study involving a multilayer perceptron framework for forecasting system reliability of the management areas.
Results from this study provide a unique insight into how solar eclipses impact the behaviour of PV systems and the grid, which
would be of concern to electric utilities in future high penetration scenarios.

 Nomenclature
Systems

A 1.4 MW PV system located at Miami, FL
ℬ 355 kW PV system located at Daytona, FL

Variables

%temp_coeff PV module's rated temperature coefficient
D net derate factor of the PV system
Eestimate expected energy from PV system for a year
In, RMS RMS magnitude current of the nth harmonic
Ir(t) irradiance measured in W/m2 at the time t
kWACactual(t) power generated by the PV system at the time t
kWhACactual energy produced by the PV system as observed

(kWh)
NCapSwitching, t number of switching operations at the time t
NCapSwitching

max maximum total number of capacitor switching
operations per day

NDailyCapSwitching maximum allowable number of tap changes
Nmax − tap, t maximum allowable number of tap changes
Ntaps, t number of tap changes made by the LTCs at time

t
PL load active power
pcable derate factor capturing cable losses
PDC nameplate capacity of the PV system
pdirt derate coefficient representing dirt
Pestimate(t) expected power from PV system at the time t
pinverter derate factor capturing inverter's conversion

loss, also called efficiency
Plt long-term flicker
pmismatch PV module mismatch coefficient = 

Ppanel − PMPP
PMPP

pMPP maximum power point wattage of the PV
module W

ppanel maximum wattage of the PV module W
PPV injected active power
Pst short-term flicker

PPI(t) power performance index of the PV system at
the time t

QL load reactive power
Qbase base voltage at POI
Qcb reactive power injection by capacitor banks
QPV injected reactive power
R feeder resistance
t time-step instance
T(t) PV module's temperature at the time t
Tcell_avg average temperature of a PV cell °C
Tapt tap position of the LTCs at time t
Vn, t actual bus voltage at time t
Vn

max maximum allowable node voltage

Vn
min minimum allowable node voltage

X feeder reactance
Xn, RMS RMS magnitude (either voltage or current) of

the nth harmonic
Xo, RMS RMS magnitude (either voltage or current) of

the fundamental frequency

1 Introduction
Power generation from renewable energy sources (RESs) has
become inevitable owing to the environmental impacts of
generating power from conventional sources such as coal.
However, the generation from RESs such as photovoltaic (PV)
systems is dependent on several external parameters — solar
irradiance, ambient temperature, module temperature, wind
velocity (wind speed and direction), dust, cloud cover (cloud
coverage area, cloud density, and cloud velocity), soiling, and
shading [1, 2]. Some intrinsic parameters such as conversion losses
and cabling losses, which can be summarised as derate factors, also
influence the net output from PV systems. However, the most
dominant of these factors are the irradiance, ambient temperature,
and module temperature [3]. One event that alters these parameters
over a very short duration, thereby impacting PV generation, is the
solar eclipse.

A solar eclipse occurs whenever the moon passes between the
Sun and the earth, blocking the path of the solar radiation to the
earth. The moon is capable of entirely blocking out the Sun since
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the ratio of the diameter to the distance from the earth for both the
moon and the Sun is the same. A total eclipse occurs when the
moon blocks the Sun entirely, and partial otherwise. There are
other types of solar eclipses too, but their discussion is beyond the
scope of this paper. While a solar eclipse is accurately predictable,
its impact on the smart grid has been less emphasised in the
literature.

Utilities conduct pre-eclipse studies using spatial and temporal
profiling to regularly monitor the generation profiles of PV and
profiles of connected loads. This helps system planners better to
schedule and allocate their resources to cope with the impending
impact of the eclipse. Prior to the North American 21 August 2017
eclipse, a combined loss of 3.5 GW in utility scale, 1. 5GW loss in
rooftop PV power generation in California, and a total loss of 5.2 
GW in the whole of the United States were projected [4, 5]. On the
basis of weather prediction and the projected loss of generation,
many other conventional generation sources and energy storage are
dispatched to compensate for the loss in the generation and the
change in load during the eclipse [6]. This in-depth pre-event
analysis is, however, largely restricted to utility-scale PV systems,
because there is little operational visibility on distributed PV such
as rooftop solar and small commercial systems at offices,
universities, and buildings [7]. Although not of concern now, the
dynamics will change when the penetration level (the volume of
PV-connected relative to the amount of load) of such distributed
PV systems increases drastically, wherein grid operations will be
significantly impacted [8, 9]. The steep ramp rates due to the loss
of generation and the possible change in load patterns due to the
eclipse could potentially impact the stability of the system. Hence,
there is a need to evaluate the impacts of the solar eclipse on
distributed PV systems to provide a roadmap for the utilities to
prepare for eclipses in the future.

To, this effect, this paper explores the impacts of the eclipse of
21 August 2017 on two distributed PV systems from an individual
system-level up to the management-area level. The presented case
study considers systems located in Florida with different generation
nameplate capacities: 1.4 MW (system A at Miami) and 355 kW
(system ℬ at Daytona). The study is divided into four analyses
during the eclipse peak: performance measurement and relationship
analysis for the systems, power quality analysis at the point of
interconnection (POI) of system A, simulation of voltage device
operations on an IEEE 8500 test case distribution feeder network
remodelled to include real system parameters of the feeders that the
two PV systems connect to, and finally, system reliability
evaluation and forecasting for the utility management areas (Miami
and Daytona). Different datasets are used for conducting these
analyses after being subject to quality checks [10, 11]: real-time-
series PV generation data of 1 min resolution collected from cloud-
based on-site data acquisition systems (DASs) for system
performance; real-time-series average root-mean-square (RMS)
voltage, harmonics (voltage, current), and instantaneous flicker
(IFL), short-term flicker Pst , and long-term flicker Plt  data of 1 
min resolution collected from the POI of system A using a metre
for power quality analysis; smart inverter data sheets (for power-
efficiency curves), PV data sheets (for temperature-efficiency
curve), and load profile data for the voltage profile analysis;
moreover, hourly weather data from the National Climatic Data
Centre and daily reliability data for the two management areas for
the reliability analysis.

The key contributions of this paper are that it: (i) investigates
events such as solar eclipse that have short term, but high-
magnitude impacts on PV generation unlike a majority of the
literature that deals with fluctuations over longer periods of time
(Sections 2 and 3); (ii) analyses the impacts of solar eclipse on PV
systems: performance (Section 4.1), power quality at POI (Section
4.2), voltage profiles of feeders (Section 4.3), and reliability of
management areas (Section 4.4); (iii) provides a roadmap for utility
distribution planners to better handle the impacts of solar eclipses
under future high PV penetration scenarios (Section 4); (iv)
proposes power performance index (PPI), an effective metric, to
quantify instantaneous PV performance during the eclipse peak
that can be used by utilities in planning studies (Section 5.1); (v)
quantifies power quality parameters and measures deviations from

the standard values during the eclipse at existing and future high
penetration scenarios to help utilities take some proactive steps to
mitigate the possible power quality violations that could arise as a
consequence of the eclipse event. (Section 5.2); (vi) quantifies the
eclipse's impact on voltage regulating devices using real system
parameters to enable utility companies take proactive voltage
control steps through the use of smart inverter settings and optimal
coordination of other voltage regulating devices in the network
(Section 5.3); and (vii) develops regression models to analyse the
relationship between weather parameters and reliability indices of
management areas and forecast the indices, thereby helping utilities
evaluate how solar eclipses impact the stability of the grid at a
larger scale (Section 5.4). Finally, Section 6 concludes the study
and provides future directions for research in the area.

2 Related work
Studies have been conducted to determine the overall behaviour of
PV systems during an eclipse. A study monitored the performance
of a 4.85 kW PV system during the 21 August 2017 eclipse and
estimated the performance measurements using irradiance
calculation approaches [12]. However, it does not quantify the
performance of the system using one of the standard accepted
metrics such as performance ratio (PR), energy performance index,
or PPI as recognised by the industry [13–16]. A similar study of
PV performance was conducted by other authors too, but they
primarily relied on comparing the net PV generation on the day of
the eclipse versus the following: generation of the same system on
the same date of the previous year or generation of the same
system on the date prior to or next to the date of the eclipse [17,
18]. While these methods provide a visual idea about the impact of
the eclipse, they do not quantify the impacts as a measurable
metric. Furthermore, these studies limit their scope to a single
system of concern, thus not considering potential understandings of
how an eclipse could impact PV over a larger area and what that
might mean for aggregation-related studies in the future. The
performance metrics defined in Section 4.1 are derived from
industry-accepted metrics that have recently gone beyond the
traditionally used PR [14, 19]. Kumar and Sudhakar [20] evaluated
different metrics for PV performance, but it considers metrics
which have certain limitations. For example, it looks at yield and
capacity factor which depend on the PV system nameplate
capacity, PR which depends on the PV system model and the local
weather parameters, not consider PPI which is a more effective
metric to compare performances of systems of different sizes, and
system generation which is not a direct measure of performance.

Many research papers have studied the technical limitations and
unfavourable effects on power quality such as feeder voltage
variations, small range voltage fluctuations, and harmonic
injections on power system parameters resulting from intermittent
PV generation [21, 22]. None of them, however, focus on special
events such as a solar eclipse. Voltage sag, swell, and small range
voltage fluctuations are very common and could have been
observed at the POI during [23]. The semiconductor devices used
in inverter-based PV systems inject significant harmonics and
could increase the power losses on the grid [24]. It is necessary to
investigate the effects of grid-tied PV system due to different
weather related events such as solar eclipse for reliable and
continuous power supply. The extent of power quality impact
depends on network configuration, weather variability, and the
location of the PV plant. The power quality analyses were carried
out on system A at Miami.

The integration of PV systems on distribution feeders
(depending on their locations) usually have some impacts on the
operations on the voltage regulating devices such as voltage
regulators (VRs), on/off load tap changers (OLTCs), capacitor
banks, and VRs [25]. These impacts are usually observed in terms
of the number of switching operations of these devices. Owing to
PV integration, there could be an increase or decrease in the
number of switching of these devices depending on the feeder
profile, the location of the PV, and the operation of the smart
inverters. The life span of these devices usually is impacted by the
number of their switching operations. This could attract some huge
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financial cost for utility companies due to the possible need to
maintain of totally replacing these devices. Most studies reported
on the impact of the eclipse events did now show their impacts on
these voltage regulating devices [26, 27]. Usually, these switchings
are difficult to capture on a live distribution system during their
operations. The planning departments of many utility companies,
therefore, simulate these events for a study-impact analysis which
is usually not made public.

Severe weather conditions such as typhoons, ice storms, and
earthquakes have recently been considered to study the power
system reliability performance [28–30]. In [28], the effects of
different types of severe weather conditions on the reliability
performance of power system components were evaluated, and the
existing methodologies for modelling these effects were listed and
compared. A reliability assessment framework was proposed in
[29] for quantifying the power transmission system performance
under the typhoon weather. In [30], a defensive islanding-based
operational enhancement approach was developed to improve the
power system resilience to extreme weather events. This is in
contrast with the solar eclipse that only involves predictable
changes in common weather parameters such as temperature and
solar radiation. Hence, the required methods of analyses are
applicable more for analysing system reliability under common
weather conditions, not extreme. In [31], a power distribution
system reliability assessment framework was presented using time-
series common weather data. A statistical model was introduced in
[32] to predict the daily number of common weather-based power

interruptions in power distribution systems, but there is a lack of
literature which explores system reliability during eclipses.

3 Background for the case study
This section provides a brief background for the case study
including some information on the 21 August 2017 eclipse.

3.1 Eclipse of 21 August 2017

The total solar eclipse of 21 August 2017 was the first to be
observed in 26 years from the USA. It was first observed in Oregon
at 10:15 AM (Pacific Time) and last observed in North Carolina at
2:49 PM (Eastern Time). During the short period of the eclipse at
each location, the utilities were reported to have taken their PV
systems offline, wherein a surge in load was also expected. In the
state of Florida, the eclipse was only partial. The two utility
management areas considered in this paper, Miami and Daytona,
experienced an average coverage of about 80 and 89%,
respectively, as illustrated in Figs. 1 and 2. As noted in Section 1,
the two systems, the feeder model, and the management areas
considered for the case study are described in the following
sections. 

3.2 Two grid-tied PV systems A and ℬ
Table 1 summarises the key changes observed in a net generation,
average irradiance, average temperature, and average PPI of the
two PV systems under consideration. It can be observed that
system ℬ, for reasons described in Section 3.2, experienced a
greater fluctuation in module temperature, ambient temperature,
and irradiance, but recorded a lower fluctuation in its instantaneous
performance which is measured using the PPI. This metric is
discussed in detail in Section 4.1. 

The two PV systems deploy different smart inverter topologies.
While system A uses string inverters and a cluster controller to
aggregate individual inverter productions, system ℬ uses a
combination of micro-inverters and string inverters [33]. Locally
installed weather stations measure global horizontal irradiance,
module temperature, and ambient temperature with up to a
resolution of 1 min. A cloud-based DAS is used to access the raw
data for further processing and analysis, as described in [34, 35].
Systems A and ℬ are connected to feeders A and ℬ, respectively,
which are radially distributed from their substations located in
Miami and Daytona, respectively.

3.3 IEEE 8500 test feeder for systems A and ℬ
The standard IEEE 8500 test network was developed from a real
distribution feeder in the USA. The feeder has both the medium-
and low-voltage levels with the longest node being ∼17 km from
the substation (Fig. 3). It has four capacitor banks (three controlled
and one fixed), three VRs with tap-changeable substation
transformer. The feeder model also contains both balanced and
unbalanced loads [36]. For this simulation, the line characteristics
and load profiles of the feeders A and ℬ were used to modify the
standard IEEE test feeder. The two PV systems A − and ℬ  were
modelled using OpenDSS and subsequently integrated into the test
feeder. The irradiance and temperature profiles during the eclipse
were also used for the PV systems modelling. The penetration level
of the PV on this feeder is ∼37%, which is defined as the ratio of
the PV-installed nameplate capacity to the total size of the loads on
the feeder. 

3.4 Management areas comprising systems A and ℬ
The Systems A and ℬ are, respectively, located at the Miami and
Daytona management areas. For these two areas, the reliability
indices collected contain the sustained and momentary interruption
events: system average interruption duration index, customer
average interruption duration index, system average interruption
frequency index, CAIFI, and momentary average interruption
frequency index. The numbers of sustained and momentary
interruption events play a key point in reliability analysis, and other

Fig. 1  Statistics of the partial solar eclipse at the two locations
 

Fig. 2  TDD during solar eclipse period
 

Table 1 Statistics about the partial solar eclipse
Value (from 2 to 3 PM) System A System ℬ
location Miami Daytona
time at the lowest reading 3:00 PM 2:45 PM
drop in power, kW 503.4 (70.8%) 140.64 (84%)

drop in irradiance, W/m2 469.99 (70.8%) 56.3 (87.4%)

drop in ambient temperature, F 3.48 (3.8%) 6.92 (7.4%)
drop in module temperature, F 13.52 (13.1%) 25.4 (21.8%)
change in PPI 1.5% 0.3%
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reliability metrics can be calculated based on these values.
Therefore, the sustained and momentary interruption events
happening during the solar eclipse are selected for reliability
analysis. The common weather parameters such as temperature,
precipitation, air pressure, and wind speed are mainly collected
from the Miami and Daytona International Airports. Additionally,
the lightning data are provided by the control centre of the local
electric utility, which installs its own weather stations in its
different management areas.

4 Model formulation
This section describes in detail the different methods used to
evaluate system performance, power quality at the POI, voltage
device operations at the feeders, and management-area reliability.

4.1 PV system performance

Many metrics are currently used to evaluate PV system
performance [37–40]. PR is a widely used metric, defined as the
ratio of observed power (over short durations from minutes to a
day) or energy (over the long duration from months to a year) to
the expected power or energy, respectively. Given PDC, Ir(t), and
the irradiance measured at standard test conditions (STCs)
1000 W/m2 , the values of Pestimate(t) and Eestimate are calculated

using (1), considering 1 min resolution data [37]

Pestimate(t) = PDC × Ir(t)
1000 × X × D

Eestimate = PDC × X × D × ∑
i = 1

525, 600 Ir(t)
1000

(1)

where D is a function of pdirt, pmismatch, pcable, and pinverter such that
[41, 42]

D = pdirt × pmismatch × pcable × pinverter (2)

The variable X in (1) can be modified to improve the accuracy of
the estimation and takes two parameters into account: T(t) and
%temp_coeff. When X = 1, it is called uncorrected estimation, and

when X = 1 + %temp_coeff
100 T(t) − 25 , the estimation considers the

effect of T(t) by correcting it to the STC 25°C . It has been shown
that the accuracy of estimation is maximised when T(t) is corrected
instead to Tcell_avg and wind speed [43]. In this paper, T(t) is
corrected just to Tcell_avg, with all 1 min data points averaged over a
period from 01 January through 31 December 2017, for the study
(Table 2). 

PR, measured using (3) [39, 40], is widely used by the utilities
to measure the performance of a particular PV system; it has some
key demerits [44]: (i) highly dependent on local weather
(especially module temperature) and hence varies significantly
over the course of a year and (ii) varies depending on the
nameplate capacity of the system. Owing to these reasons, PR is
not an effective metric to compare the performance of any two
given PV systems

PR = kWhACactual
PDC

× 1000
∑t Ir(t)

(3)

There exist other metrics such as yield (PV systems of different
sizes are not directly comparable) and PR corrected to T(t) and
wind speed (PV systems employing different PV models are not
directly comparable). A new metric called the PPI is used in this
paper, which is calculated as [45]

PPI(t) = kWACactual(t)
Pestimate(t) (4)

Fig. 3  IEEE 8500 test feeder with the integration of PVs (systems A and ℬ)
 

Table 2 Power and energy estimation parameters for A
and ℬ
Parameter System A System ℬ
pdirt 0.9 0.9
pmismatch 0.97 0.97
pcable 0.99 0.99
pinverter 0.98 0.9725
%temp_coeff −0.5 −0.5
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PPI is better to compare the performance of different PV systems
because: (i) it corrects the estimation to average module
temperature to account for local variations and (ii) it is independent
of the inherent PV model. There exists the energy performance
index too, but it is used for comparing the performance of PV
systems over an aggregated period of time. Since the eclipse lasts
for a shorter period and its impacts should be evaluated over a
short duration, PPI emerges as a better metric overall.

4.2 Power quality analysis at the POI

Integration of inverter-based PV system into the grid introduces
non-sinusoidal waveforms that degrade power quality at the POI.
Indices such as average RMS voltage, total harmonic distortion
(THD) of voltage and current, total demand distortion (TDD), and
flicker – IFL, Pst, and Plt – are used to quantify the quality of
power. Several standards such as IEEE Standard 1547-2018
(voltage regulation), IEEE Standard 519-2014 (harmonics
regulation), and IEEE Standard 1453-2015 (flicker regulation)
provide a set of criteria and requirements for the interconnection of
RESs into the power grid and help in quantifying deviations from
the ideal values.

PV integration could lead to changes in feeder voltage as well
as the line loading. The voltage change at the POI can be expressed
as follows [46]:

ΔV = R(PL − PPV) + X(QL − QPV)
Vbase

(5)

THD is a comparison of total harmonic content in a voltage or
current waveform to the 60 Hz fundamental magnitude that is
expressed in (6) [47]. Typical voltage THD level varies between
0.5 and 5%, and current THD ranges from 0.5 to 80% or more,
depending on the type of load, amount of PV generation, PV
penetration level etc.

THD =
∑n = 2

∞ Xn, RMS
2

Xo, RMS
× 100% (6)

where XfundRMS and XnRMS are the RMS magnitude (either voltage
or current) of the fundamental frequency and nth harmonic,
respectively.

Current THD depends on the change of the RMS current
magnitude without considering load types (harmonic or non-
harmonic loads). Switching ON/OFF a linear load causes
significant changes in RMS current and current THD, even if the
load does not produce any harmonics. TDD is an appropriate term
to analyse harmonics in voltage or current waveforms, which
compares the root-sum-square value of the harmonic current to the
maximum demand load current as represented by (8) [47]. Changes
in non-harmonic loads do not cause any change in TDD as it is a
normalised value

TDD =
∑n = 2

∞ InRMS
2

maximum demand load current × 100% (7)

Flicker measures the level of small voltage fluctuations and
expresses the reaction of the human eye in response to a light
source. IFL quantifies a sudden voltage change. Events that cause a
dip in the voltage magnitude immediately interrupts the IFL data.
Cumulative weighted probability of flicker perception levels at 0.1,
1, 3, 10, and 50% of each 10 min time period determine the value
of Pst, which is expressed in the equation below [48]:

Pst
= 0.0314P0.1 + 0.0525P1 + 0.0657P3 + 0.28P10 + 0.08P50

(8)

where P0.1, P1, P3, ...  denote the ratio of voltage magnitude change
ΔV = Vmax − Vmin  to the base voltage Vbase . An average of Pst

over 2 h defines Plt, which is expressed in the equation below [48]:

Plt = 1
12 ∑

i = 1

12
Pst

33 (9)

4.3 Voltage device operation analysis at the feeders

Integration of PV systems on distribution feeders has some
potential impacts on the operation of the legacy devices (VRs,
capacitor banks, reactors, and LTCs) in the network [49, 50]. For
most traditional grid systems, utility companies often use OLTCs
and regulators for voltage regulation on their distribution feeders.
Switched capacitor banks are used for reactive power
compensation which consequently affects the voltage profile of the
feeder. More recently, the use of smart inverters for voltage
regulation and optimisation has become a viable option. The major
concerns with the use of VRs and OLTCs are the number of
switching operations being carried out by these devices. The life
span of VRs and OLTCs are directly impacted by the number of
switching operations per day. According to [51, 52], a high-quality
VR is capable of making 2 million mechanical switchings (273
switching operations per day) without the need for maintenance
over a 20 year life span.

Most commercially available OLTCs and VRs typically have a
total of 32 steps with a 0.625% change in voltage with each tap
step. For VRs and LTCs, the turns ratio must satisfy the constraint
expressed in the equation below [49]:

Taphigh ≥ Tapt ≥ Taplow (10)

To better restrict the number of switching operations of the tap
changers for optimal operations and simulation studies, the number
of switching operations of the LTC within a time interval t to T
should satisfy the equation below [49]:

∑
t = 1

T
Ntaps, t ≤ Nmax − tap, t (11)

where Ntaps, t is the number of tap changes made by the LTCs and
Nmax − tap, t is the maximum allowable number of tap changes.

The impact of the eclipse on the switching of the capacitor
banks can also be quantified within the period of interest. Capacitor
bank switching constraints and reactive power injection is as given
in (12) and (13), respectively [49, 50]

NDailyCap Switching = ∑
t = 1

T
NCap Switching, t ≤ NCap Switching

max (12)

Qcbmax
n ≥ Qcb

n (13)

where NDaily Cap Switching is the total number of switching steps by
the switched capacitor in a day, NCap Switching, t is the number of
switching operations at a time interval t, NCap Switching

max  is the
maximum total number of capacitor switching operations per day,
Qcb max

n  is the maximum allowable reactive power injection by a
capacitor bank and Qcb

n  is the actual reactive power injection by the
capacitor bank.

The bus voltages at each node should also be within the ANSI
C84.1-2011 [50]

Vn
max ≥ Vn, t ≥ Vn

min

1.05 pu ≥ Vn, t ≥ 0.95 pu
(14)

where Vn
max is the maximum allowable node voltage (1.05 pu), Vn, t

is the actual bus voltage at the time t, and Vn
min is the minimum bus

voltage (0.95 pu).
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4.4 Reliability analysis at the management areas

The solar eclipse is usually accompanied by multiple common
weather changes such as temperature and air pressure changes and
a loss in solar irradiation. Here, the regression analysis is
implemented to model the reliability metrics of the Miami and
Daytona management areas under common weather conditions.
Given a time period T, N = (n1, …, nT) is defined to be the daily
reliability metric vector (for example, sustainable interruption), and
X = (x1, …, xT) represents a common weather parameter vector.
The relationship between N and X then can be mathematically
defined as: N = f (X, β) + ε, where f ( ⋅ ) denotes the regression
function, typically polynomial, and exponential functions [53]; β
represents the estimation parameter vector; and ε indicates a zero-
sum white Gaussian noise. In this paper, we mainly consider five
main weather parameters including the average temperature T, the
sustained wind speed W, the daily rain precipitation P, the average
air pressure A, and the daily number of lightning strikes L. Taking
the daily number of sustainable interruptions from 1 January 2015
to 30 April 2017 as N, the relationship function between N and
each weather parameter can be calculated as [54]

NT = β0
T + β1

TT + β2
TT2 + β3

TT3

NW = β0
W + β1

Wexp(β2
WW) + β3

Wexp(β4
WW)

NP = β0
P + β1

Pexp(β2
PP) + β3

Pexp(β4
PP)

NA = β0
A + β1

AA + β2
AA2 + β3

AA3

NL = β0
L + β1

LL + β2
LL2 + β3

LL3

(15)

where, for T, A, and L, the relationship function is represented as a
polynomial regression function with third degree, while, for W and
P, the relationship function is represented as the exponential
regression function with two terms.

Taking the common weather parameters T, W, P, A and L, and
their corresponding regression results NT, NW, NP, NA, and NL
derived by (15) as inputs, multilayer perceptron (MLP) is
developed for forecasting the daily number of sustainable
interruptions N. The MLP is a feed-forward neural network
containing the input, hidden, and output layers [55]. The proposed
MLP model consists of the 10 features mentioned earlier in the
input layer ℓ = 1 , one hidden layer with five units, and an output
layer Npre ℓ = 3  with 1 unit. All the weights wji

(l)  between layers
ℓ = 1 and ℓ = 3 are initialised to a set of sample values that are
drawn from specific distributions instead of being randomly
initialised. To achieve faster convergence and avoid saturation of
activation functions during training, this paper uses Xavier uniform
[56] and uniform distributions [57] to initialise the weights of MLP.
To minimise the loss function [mean-square error (MSE)] between
predicted and actual outputs during testing and training,
backpropagation (BP) is used. In the input layer, the MLP neurones
receive the common weather parameters and their regression
results for analysis. The neurones of the output layer provide the
network results for the daily number of sustainable interruptions. In
the hidden layer, the MLP neurones represent the relationship
between the inputs and outputs in the network. In addition, all MLP

neurones are implemented with non-linear activation functions
(sigmoid and hyperbolic tangent [58]) and each MLP layer is fully
connected to the next layer without the use of dropout
regularisation. The mathematical expression of the outputs of the
MLP can be defined as [54]

N = F b + ∑
j = 1

m
vj ∑

i = 1

n
G wi jxi + bj (16)

where (x1, …, xn) denotes the input vector including T, W, P, A, L,
NT, NW, NP, NA, and NL; N represents the output value; wi j,
j = 1, …, m, is the weight of connection between the ith input
neurone and the jth hidden neurone; vj is the weight of connection
between the jth hidden neurone and output neurone; b and bj are
the bias values of the corresponding output neurone and the jth
hidden neurone; and F( ⋅ ), G( ⋅ ) are the activation functions of
output and hidden neurones, respectively. An MLP architecture can
contain more than one hidden layers between the input and output
layers. In this paper, to restrict the net capacity, one hidden layer is
included in the MLP, and BP algorithm [59] is used to train the
MLP architecture parameters including wi j, vi j, b, and bj, where
i = 1, …, n and j = 1, …, m.

5 Case study results
This section discusses the results derived from applying the
formulated models to the systems of concern.

5.1 PV system performance

Table 3 shows the PPI for systems A and ℬ during the peak of the
eclipse. During the respective moments of eclipse peak (2:58 PM
for system A and 2:45 PM for system ℬ), the PPI increases, which
is reflected in the values recorded at the next minute (2:59 PM for
system A and 2:46 PM for system ℬ). Following from (4), in ideal
cases, the value of PPI must be close to unity because it is the ratio
of observed to the expected power at a given point in time.
However, the reality could be quite different, given the influence of
different external factors and errors in data acquisition. These
factors might cause the expected generation to exceed or fall short
of the actual generation, thereby tipping the ratio to be less than
unity or greater than unity, respectively. By observing the PPI
values for the two systems, it can be concluded that the values of
PPI are close to unity for system A, implying that the estimation
model shows good performance. However, the PPI values of
system ℬ exceed unity, implying the estimated values are lower
than the observed values. Investigating the factors influencing the
poor performance of the estimation model for this particular PV
system will be part of the future work. 

The variations of different measured parameters during the peak
for the two systems are shown in Fig. 4. While Figs. 4b–d show the
variations of the ambient temperature, module temperature, and
PPI from 2 to 4 PM, Fig. 4d shows the variation of PPI during the
eclipse peak minute-by-minute. The module temperature and PPI
for systems A and ℬ show a strong visual correlation while the
ambient temperature curves show a steeper dip for system ℬ than
for system A. These visual correlations imply a strong positive
relationship during the eclipse between such weather parameters of
the two geographically separate PV systems. This correlation,
though not an indication of dependency, is a marker of how the two
PV systems can be aggregated or utilised in combination during the
eclipse to address associated loads and other aspects in the future
high penetration scenarios. 

To further explore the relationship between irradiance, ambient
temperature, and module temperature for Systems A and ℬ (a total
of six variables), bi-variate scatter plots were done for both during
the eclipse duration between 2:00 and 3:00 PM as well as during
eclipse peak between 2:40 and 3:00 PM, which is illustrated in
Figs. 5a and b, respectively. The plots show a 6 × 6 matrix with the
probability density function of the six variables along the primary
diagonal, scatter plots with model fitting below the diagonal, and
the Pearson correlation coefficient above the diagonal. The model

Table 3 PPI for systems A and ℬ
Time, PM System A System ℬ
2:44 1.071 9.975
2:45 1.103 10.018
2:46 1.107 10.319
2:47 1.101 9.452
2:57 1.084 9.676
2:58 1.082 9.447
2:59 1.091 9.629
3:00 1.091 9.885
The bold values show the peaks of the solar eclipse at the locations of systems A and
B and their respective PPIs.
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fitting shows that all of the relations between parameters within
and between the systems are linear. However, this relationship
changes during the eclipse peak where the ambient temperature of
the system A has a curvilinear relationship with other parameters
of both A and ℬ. Overall, the correlation coefficients of the
parameters of the two systems show a drop during the eclipse peak,
suggesting the two systems have a less strong positive relationship

during this period, and hence could be used in aggregation-related
studies. For example, the power from system A could be used to
meet the deficit observed at system ℬ provided the cost of power
transfer is less than other alternatives. 

Fig. 4  Profiles of different parameters during eclipse peak
(a) Irradiance, (b) Ambient temperature, (c) Module temperature, (d) PPI

 

Fig. 5  Relationship between the different weather parameters during the eclipse period and peak
(a) Bi-variate scatter plots during the eclipse period, (b) Bi-variate scatter plots during eclipse peak
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5.2 Power quality analysis at the POI

Impacts of the eclipse on power quality metrics at the POI of
system A are analysed in the following sections. Observations on
the average RMS voltage, harmonics (both voltage and current),
TDD, and flicker are also discussed.

5.2.1 Average voltage: PV generation affects the feeder voltage
where it is connected to. According to IEEE Standard 1547-2018,
the feeder voltage at a low-voltage distribution network can vary
within ±5% of the base voltage. Therefore, the minimum and
maximum allowable ranges of average RMS voltage at the POI are
265 and 292 V, respectively. The average RMS voltage at the POI
during the eclipse is illustrated in Fig. 6a. The average voltage was
expected to drop at maximum coverage due to reduced generation,
but an opposing trend of voltage change is observed. The system A
has a marginal impact on voltage change at the POI during the
eclipse. 

5.2.2 Harmonics: Current THD is expected to increase rapidly
during the eclipse peak due to low solar irradiance and PV
generation because THD is inversely proportional to the
fundamental RMS current value of PV inverters [24, 33]. On the
other hand, voltage THD should vary very little as the voltage at
the POI is allowed to change in small ranges. The voltage and
current THDs during the eclipse are shown in Figs. 6b and c,
respectively. The measured voltage THD varies between 3.4 and
4%, which is within the IEEE Standard 1547-2018 for voltage
THD (5%). A large range of current THD value (from 2 to 35%)
was observed during the eclipse. Several sharp spikes were
identified in Fig. 6c because current distortion is very sensitive to
the frequent changes of incident solar radiation (caused by cloud

movements) [60]. To investigate the current distortion impact of
the solar eclipse, the TDD is plotted as shown in Fig. 7. The TDD
curve is relatively flat during the eclipse, except for some minor
fluctuations. If the PV system A provides a larger percentage of
the total demand current, the TDD effect would become prominent.

5.2.3 Flicker: Figs. 6d and 8a, b show three flicker indices during
the eclipse that express small voltage variations at the POI. Both
Pst and Plt are within 1.0 and 0.8, respectively, and are within the
IEEE Standard 1453-2015 voltage fluctuation limit. The variations
observed in these three figures seem very small, but the scenario
could be different at high penetration during the solar eclipse. 

The values of different power quality parameters at the POI of
system A during the start, end, and peak of the eclipse, along with
the corresponding IEEE standards limits, are presented in Table 4.
It clearly indicates that the quality of power at the POI of system A
during the eclipse was within allowable IEEE standard at the
existing penetration level. 

5.3 Voltage regulating devices operation and analysis

The sharp ramps in irradiance and, consequently, the generation of
the PV systems during an eclipse has some impacts on the voltage
profile of the network, the operations of the legacy voltage control
devices (VRs and OLTCs), and losses in the network. The severity
of these impacts depends, among others, on the location of the POI
of the systems, the penetration level of these systems, the control
setting of the voltage regulation devices, the level of ramping of
the power generation from the systems, and the load profile of the
network.

Fig. 6  Profiles of different power quality metrics at POI during solar eclipse period of grid-tied system A
(a) Average RMS voltage, (b) Voltage THD, (c) Current THD, (d) IFL

 

Fig. 7  TDD during solar eclipse period
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5.3.1 VR and LTC operations: The dynamic changes in the
voltage profile of the network due to the ramp in power output of
the PV systems cause the LTCs and VRs to tap change in other to
control the voltage within the ANSI C84.1-2011 voltage standard.
Fig. 9 and Fig. 10 show the various tap changing done by the VRs
and the substation transformer LTC. For the feeders under study,
substation transformer did not tap at all. Obviously, this is due to
the relatively far distance between the PVs and the substation, and
the presence of other voltage control devices close to the PVs to
affect some voltage regulation. A tap change on the substation
transformer is always the last resort for voltage control because a
change in tap affects the whole feeder voltage downstream the
network. Of the three VRs downstream the feeder, Vreg 3 tapped
the most (seven times on phase A, five times on phase B and none
on phase C) during the eclipse. This was due to its proximity to
system A (coupled with its relatively large size compared with
system ℬ) and Cap 0. Vreg 3 tapped three times on phase A, no
tap change on phase B, and phase C during the simulated event.
Vreg 4 did not tap change at all during the simulated event. This
could be partly due to the voltage control action done by Cap 3. 

5.3.2 Capacitors operation: During the simulated eclipse
scenario, capacitors Cap 0 and Cap 3 injected reactive power into
the network. Capacitors Cap 1 and 2 injected approximately zero
amount of reactive power. The proximities of Cap 1 and Cap 2 to
the substation and the rigidity of the grid voltage upstream the
feeder could possibly explain this negligible injection of reactive
power by Caps 1 and 2. The capacitor control settings of Caps 1
and 2 prevented them also from injecting power due to the
relatively small variation in voltage before and during the eclipse.

The downstream locations of Cap 3 and 0 coupled with their
proximities to Vreg 2 and 4 and the PV systems could be
responsible for their reactive power injections. The reactive power
injections on phases B and C of Cap 0 is higher than that of phase
A. This would explain why there was a constant tapping down on
phase B and tapping up of phase A of Vreg 2. It is interesting to
note the profile of the reactive power injection by Caps 0 and 3.
During the eclipse time frame, the ramps (loss in power generation
from the PV systems) consequently led to a reduction in the
reactive power injection by the capacitors. The constant reactive
power injection as seen for the first 500 min of Caps 0 and 3 was
due to the relatively constant voltage of the feeder prior to power
generation by the PVs.

5.3.3 Voltage profile: The feeder voltages (on the buses) plotted
against their distances from the substation are as shown in Figs. 11
and Fig. 12. PV systems ℬ and A are ∼3.75 and 12.5 km from the
substation, respectively. The two plots (Figs. 11 and 12) show that
the voltage profile at the instant when the peak of the eclipse
occurred at both PV locations. At the peak of the eclipse on PV
system A, the ramp down apparently had no voltage impact on the
voltage profile, since as expected the ramp down in generation
could only lead to a decrease in voltage at the POI. Also at this
instant at PV system ℬ, its proximity to the substation makes the
voltage at the POI much more rigid, reducing the possibility of a
fluctuation in voltage as a result of the eclipse. Also, from Fig. 12,
the peak of the eclipse on the PV system ℬ did not cause any
significant impact on the voltage profile on the feeder. At this
instant, the power on PV system A tends to ramp up which led to a
sharp increase in voltage at the POI downstream of the feeder. The

Fig. 8  Profiles of different power quality metrics at POI during solar eclipse period of grid-tied System A
(a) Pst, (b) Plt

 
Table 4 Power quality metrics statistics during the solar eclipse of 21 August 2017
Power quality metrics Phase Start time (1:26 PM) Maximum coverage (2:58 PM) End time (4:20 PM) IEEE standard
average A 283.4 286.8 284.8 265–292
RMS B 283.1 286.0 284.4 265–292
Voltage C 282.9 285.3 284.3 265–292
voltage THD, % A 3.5 3.4 3.5 5.0

B 3.7 3.6 3.7 5.0
C 3.8 3.7 3.8 5.0

current THD, % A 4.8 6.7 5.6 —
B 5.1 7.5 5.7 —
C 5.1 7.0 5.7 —

TDD A 3.5 2.6 3.2 5.0
B 3.8 2.9 3.5 5.0
C 3.6 2.7 3.4 5.0

IFL A 0.01 0.0 0.0 —
B 0.01 0.0 0.01 —
C 0.0 0.0 0.01 —

Pst A 0.09 0.09 0.09 1.0
B 0.09 0.1 0.09 1.0
C 0.08 0.08 0.08 1.0

Plt A 0.091 0.09 0.089 0.8
B 0.0945 0.0945 0.0935 0.8
C 0.0885 0.0895 0.086 0.8

 

IET Smart Grid, 2019, Vol. 2 Iss. 3, pp. 477-490
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

485



penetration level of these systems obviously did not produce any
significant impact on the voltage profile during the eclipse event.
With higher levels of penetration, these impacts could become
severe. 

5.3.4 Network losses: The time-series plot of the overall system
losses (transformer losses plus the line losses) is shown in Fig. 13.
Locating PVs downstream a feeder usually reduces the overall
system losses by improving the voltage profile downstream. This is
quite obvious from the plot. The losses are the network starts

Fig. 9  LTC and VR tap changing during the eclipse
 

Fig. 10  Capacitor bank reactive power injection during the eclipse
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reducing at the instant of aggregated PV generation from both PV
plants. The effect of the eclipse is also seen from the loss plot.
During the eclipse, the shortfall in generation from the PV led to an
increase in the overall system losses during the eclipse. 

5.4 Reliability analysis at the management areas

To evaluate the relationship between system reliability at the
management areas and common weather parameters, the daily
number of sustainable interruptions is collected from the Miami
management area ranging from 1st January 2015 to 30th April
2017. The daily number of lightning strikes L is collected from the
local utility's weather station centrally located at the Miami
management area. The other four common weather parameters
including L, W, P, and A are hourly sampled from the Miami
International Airport. After data collection, both the reliability and

common weather data are integrated as inputs to train the
regression models defined in (15).

In the proposed MLP forecasting model, the input layer
contains five types of common weather parameters and
corresponding daily numbers of sustainable interruptions derived
by their regression models. The MLP hidden layer is set with 20
neurones, and the output layer involves the target number of
sustainable interruptions. The BP algorithm is introduced to train,
validate, and test the proposed MLP forecasting model, where 70%
of the collected data is used for training, 15% of the data is
implemented for validating, and the remaining 15% is applied for
testing. For all training, validating, and testing sections, Fig. 14
compares the target numbers of sustainable interruptions with the
predicted numbers derived by the proposed MLP forecasting model
[61]. In this figure, we can find that the proposed MLP forecasting
model provides an acceptable result in comparison with the actual
numbers of sustainable interruptions in most time periods. In
particular, the proposed MLP forecasting model derives a MSE of
315.4. 

In addition, the sensitivity analysis is used to evaluate the effect
of each common weather parameter on the daily number of
sustainable interruptions. The sensitivity value is calculated by the
first-order derivative of MLP function with respect to the network
parameters. Fig. 15 presents the sensitivity of each weather
parameter response to the daily number of sustainable
interruptions. In this figure, we can find that lightning strike L is
the most important weather parameter that has an influence on the
daily number of sustainable interruptions, while the average
temperature T has the least impact on the daily number of
sustainable interruptions. This phenomenon can be explained that
most numbers of sustainable interruptions happen ranging from
June to September during 1 year, which is the raining season for
the Florida and lightning strikes happen most frequently. Since the
average temperature of Florida almost keeps between 80 and 95°F

Fig. 11  Feeder voltage profile at the peak of the eclipse on PV (system A)
 

Fig. 12  Feeder voltage profile at the peak of the eclipse on PV (system B)
 

Fig. 13  Active and reactive system losses during the eclipse
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for the most months during the year, the temperature change has
fewer impacts. 

5.5 Comparison with existing eclipse PV impact studies

The National Renewable Energy Laboratory (NREL) conducted a
pre-event analysis of the 21 August 2017 eclipse on the Western
Electricity Coordinating Council [62]. The loss in a generation was
estimated to be around 5.2 GW of which 4 GW loss was from
utility-scale PV and the rest from the distributed PV systems. The
post-event analysis based on the data collected by NREL
researchers showed that loss in utility-scale PV generation was
accurately predicted. There were no major impacts on the
reliability and the power quality of the system. Conventional power
sources such as natural gas generators and hydropower were
ramped up to mitigate the impacts of the loss in generation from
the PVs. The study provided some insights into how more accurate
future solar eclipse impact studies can be carried out. With the
increasing level of penetration, larger system-wide disturbances
and impacts are expected. Also, a post 21 August 2017 eclipse
study was carried out by Arzani et al. [63]. This paper used the
solar irradiance and temperature measurements from the solar
eclipse events, to simulate a real-time grid-connected utility-scale
PV. The study provided some insights on the spinning reserve or
sizes of storages that can be dispatched during the solar eclipse, the
necessity for coordination of these PV and energy storage systems
in other to maintain the system's stability as well as the importance
of fast frequency control during this event. Load control methods
were also discussed as effective alternative methods to address the
impact of the solar eclipse event. Most of the case studies
presented after the event was not at the device level. PV site
performance, detailed power quality analysis, and voltage

regulating device operations were not reported in details as
presented in this paper.

6 Conclusion and future work
When the penetration of distributed PV systems into the smart grid
increases, natural phenomena such as solar eclipse would have
significant impacts on the systems and the larger grid. To
demonstrate the impacts, this paper explored how the eclipse of 21
August 2017, impacted the performance of two PV systems, A
located in Miami and ℬ located in Daytona. It was observed that
System A, despite being larger in generation capacity than ℬ
showed a slower increase in performance during the eclipse peak
owing to a slower drop in irradiance, ambient temperature, and
module temperature. The steeper drop in these parameters for
system ℬ showed a pronounced effect in the PPI increase for it.
Further statistical analysis showed a strong positive relationship
between these three parameters both within and across the two
systems. This relationship can be expanded to more number of
systems over different geographical areas to enable aggregation
studies to meet dynamic demands during such predictable events.

This paper investigated the effects of the partial solar eclipse on
power quality parameters such as average RMS voltage,
harmonics, and flicker at POI of system A and presented how
those parameters vary during the eclipse period. The variability of
system power indices was found to be within allowable limits in
accordance with IEEE Standard. The results show that system A
had minimum impact on power quality metrics at the current
penetration level during the eclipse, but could have a severe effect
at high penetration scenarios.

The impact of the eclipse on the feeder was studied by
modelling the real parameters of the two feeders A − and ℬ  as
well as the PV systems A − and ℬ  into a standard IEEE 8500
test distribution network. The simulation results showed the
various impacts of the eclipse on the voltage profile as well as
operations of the voltage regulation devices in the network. The
VRs and the capacitor banks closest to the locations of the PV were
forced to operate more frequently during the severe ramp down
caused by the eclipse event. The PV system ℬ, which is close to
the substation had little impact on the voltage profile while PV
system ℬ which is further downstream from the substation caused
and an increase in the voltage at the POI during the eclipse event.
The losses in the network were also impacted by the eclipse event.
The ramping in the PV power output led to an increase in the
overall system losses during the eclipse.

Finally, the impact of the eclipse at a wider, management-area
level was analysed by first understanding the relationship between
common weather parameters and reliability indices using the
regression models. Taking the derived regression models as inputs,
we proposed an MLP to forecast the daily reliability indices using
time series of common weather data. In addition, we can derive the
sensitivity of each common weather parameter with respect to the
daily numbers of sustainable interruptions. For the utility
management area in Florida, we can find that the lightning strike is
the most important common weather parameter impacting on the
reliability performance of the smart grid distribution networks,
while the average temperature has the least impacts.

As future work, a PV generation forecasting model will be
developed to explore how the utilities can predict the generation
profiles of PV systems of different sizes and at penetration levels,
which could help in the planning processes. Factors influencing the
performance of the estimation model will also be investigated.
Furthermore, additional statistical methods such as regression and
dependency analysis will be conducted in addition to correlation
and relationship study to explore aggregation opportunities during
the eclipse to manage surges or drops in loads. This paper was
done without any voltage and frequency regulation from the smart
inverters. With increasing PV penetration, the use of smart
inverters for voltage and frequency regulation will become
inevitable. The use of the various smart inverter functionalities to
address the various challenges that will be imposed during an
eclipse event will be investigated. The optimal settings and
coordination of these devices during these events will be analysed.

Fig. 14  Comparison between the target numbers of sustainable
interruptions and the predicted numbers derived by the proposed MLP
forecasting model

 

Fig. 15  Sensitivity analysis of the daily number of sustainable
interruptions with each weather parameter
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The economic consequence of the possible reduction in a life span
of these legacy devices due to the increase in their switching will
also be of interest to many utility companies. Finally, for the
reliability analysis, other factors such as power system equipment
failure rates and ageing of distribution network components will be
considered in addition to the weather parameters for the regression
and prediction methods discussed in this paper.
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