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Abstract

The purpose of this study is to ascertain the statistical and economic signi�cance

of non-traditional credit data for individuals who do not have su�cient economic

data, collectively known as the unbanked and underbanked. The consequences of

not having su�cient economic information often determines whether unbanked

and underbanked individuals will receive higher price of credit or be denied

entirely. In terms of regulation, there is a strong interest in credit models that

will inform policies on how to gradually move sections of the unbanked and

underbanked population into the general �nancial network.

In Chapter 2 of the dissertation, I establish the role of non-traditional credit

data, known as alternative data, in modeling borrower default behavior for

individuals who unbanked and underbanked individuals by taking a statistical

approach. Further, using a combined traditional and alternative auto loan data,

I am able to make statements about which alternative data variables contribute

to borrower default behavior. Additionally, I devise a way to statistically test

the goodness of �t metric for some machine learning classi�cation models to

ascertain whether the alternative data truly helps in the credit building process.

In Chapter 3, I discuss the economic signi�cance of incorporating alternative

data in the credit modeling process. Using a maximum utility approach, I show

that combining alternative and traditional data yields a higher pro�t for the

lender, rather than using either data alone. Additionally, Chapter 3 advocates

for the use of loss functions that aligns with a lender's business objective of

making a pro�t.



Index Terms � Pro�t Scoring; Unbanked; Underbanked; Alternative Credit

Data; Likelihood Ratio Test; Unscorables
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Chapter 1

Introduction

Consumer banking services fall between two groups: traditional and alternative.

Traditional banking includes mainstream banks, credit unions, and thrifts that

operate within the parameters of the Federal Deposit Insurance Corporation

(FDIC). They are governed by well de�ned federal and state regulations that

dictate their banking activities and products o�ered.

Alternative banking1 includes services that operate outside of the traditional

banking system. Some of the products they o�er include check-cashing, rent-

to-own, pawnshops, tax refund anticipation loans, etc.

Alternative banking often serves two groups of consumers: unbanked and un-

derbanked. Consumers who are unbanked have no formal relationship with a

bank. That is, they have no bank account or a credit card. Underbanked con-

sumers have a bank account but use alternative �nancial products to supplement

their credit need. Statistically, (Aitken, 2017) points out that 4.5 billion adults

1also known as fringe banking
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globally, representing 62% of the world's population, are either underbanked

or unbanked. As a result, unbanked and underbanked borrowers are missing

the opportunity to be part of the global economic stream. (Smith and Hender-

son, 2018) report that 53 million American consumers are not fully served by

traditional �nancial institutions.

A major concern surrounding alternative banking is that they are not as reg-

ulated as traditional banking. This means that a consumer who relies on al-

ternative banking may not be fully protected. Therefore, there has been a

signi�cant push by regulators to �nd opportunities that will allow unbanked

and underbanked consumers to join, participate and interact with the main-

stream economy2. This presents an opportunity for lenders to learn more about

consumers within this segment of the credit spectrum in an e�ort to meet their

economic need.

The structure of this dissertation is as follows: Chapter 1 provides a discussion

about unbanked and underbanked consumers and the role alternative data plays

in understanding them. Chapter 2 lays the foundation upon which I assess the

statistical value in alternative data. In Chapter 3, I study pro�t scoring and

argue that alternative data brings economic contribution to the credit scoring

process. Chapter 4 contains the conclusion, where the discussions throughout

the chapters are tied in together. The Appendix has results pertaining to how

robust some assumptions made in Chapter 3 are.

2De�ned as the general economic or �nancial market
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1.1 Unbanked and Underbanked Consumers

Unbanked and underbanked consumers are those who do not participate and

interact with the mainstream economy. They do not have a savings or checking

account and also use some alternative banking products to supplement their

�nancial needs. For example, the 2017 FDIC National Survey of Unbanked and

Underbanked showed that nearly 20% of households had not used mainstream

credit within the previous year.

In terms of demographics, unbanked and underbanked consumers constitute

over 24% of all minority families and 5% of Caucasian families. They are more

likely to have lower income, be less educated, unemployed, and reside in low to

moderate income neighborhoods, (FDIC, 2017).

The decision to participate in the mainstream economy carries many bene�ts.

(Rhine and Greene, 2013) cite the following:

1. Wealth creation and the accumulation of assets

2. Protection from theft and other discriminatory lending practices that may

seek to prey on consumers

3. Having the proper channel to save and deposit funds as well as cashing

checks. This ensures that consumers will not require any alternative �-

nancial services, such as check cashing, that may provide similar bene�ts

at high rates, especially during �nancial emergencies

The accumulation of wealth and asset proves exceptionally useful during retire-

ment age, when consumers can draw upon any saved reserves to supplement

�xed income or cope with unforeseen �nancial shocks.

3



The major drawback for those who do not participate in the mainstream econ-

omy is that they are susceptible to �nancial shocks that stem from natural or

man-made disasters because they do not have the protection of a depository

institution to act as a safe haven for their assets. Moreover, communities with

a functioning �nancial market become more resilient to �nancial shocks and

can even take advantage of a growing economy, (Rhine and Greene, 2013). In

the next section, I highlight some reasons why borrowers remain unbanked or

underbanked from the individual and household dynamics.

1.2 Why Some Consumers Are Unbanked or Un-

derbanked

(B. F. Hayashi and F. Hayashi, 2016), identify six reasons why some borrowers

remain at the peripheral of the traditional banking system.

The �rst and main reason why borrowers do not have a checking or savings ac-

count is because of the high cost of maintaining the account. For many borrow-

ers, the median overdraft and maintenance fee3 proves to be too much. Also,

a checking or savings account requires account holders to maintain a certain

minimum dollar amount for a speci�c period of time. Borrowers are charged

additional fees if they do not meet this threshold.

The second reason comes from borrowers's negative experience with a depository

institution. For example, some borrowers perceive banks to clear checks in a way

that leads to an overdraft fee. This unexpected fee often causes their account

to plummet into the negative. Another reason, which was uniquely cited by

3Median overdraft fee is $30
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immigrants, was that banks could not properly communicate with them because

of a language barrier.

The third reason is related to borrower proof of identi�cation. For example,

some consumers do not have the proper identi�cation card or social security

number. This reason di�ers from the rest because it is the only explanation

that is directly related to how banks use proof of identi�cation as a risk man-

agement tool for their preferred candidate. Consumers who do not meet such

quali�cations will not be able to open an account even if they want to.

Privacy, the fourth reason, is in opposition to the third reason, because it is

related to the consumer's preference. As corporate data breaches become more

common, some individuals choose not to use banks. Instead, they use cash ex-

clusively because it lacks paper trail, provides anonymity, and shields borrowers

from any fears about data breaches.

The �fth reason concerns issues related to consumer convenience, such as bank-

ing location, hours, and physical accessibility. In certain geographic areas where

consumers do not have direct access to banks, they are often propelled to �nd

a nearby depository institution that may meet their banking needs. This often

incurs an indirect cost in the form of transportation and related costs.

The sixth reason relates to features of the account generation process that un-

intentionally marginalizes certain groups of consumers. For example, some con-

sumers with little �nancial literacy may �nd the account opening process to

be cumbersome and complex. This is further compounded when complicated

account fee structures are introduced.

Although the reasons above appear on an individual level, research shows that

household dynamics provides crucial reasons why individuals become unbanked

5



or underbanked. In their study, (Rhine and Greene, 2013), suggest that changes

in marital status, loss of employment, loss of income, and loss of health insurance

contributes negatively to why individuals do not interact with the mainstream

economy. The reasons o�ered are often interrelated. For example, in the event

of a divorce, they �nd that one of the parties have a greater chance of being

unbanked or underbanked.

When there is a signi�cant decrease in consumer income, through a loss or

reduction of employment, to the level where consumers are pushed below the

poverty line, it can be expected that the likelihood of individuals becoming

unbanked will increase, especially if there are fee structures associated with the

account.

The introduction of technology into �nancial services, e�nancial services, pro-

vide additional challenge for those who cite privacy as a reason not to participate

in the mainstream economy. As a result, they may be excluded from many ben-

e�ts stemming from the use of e�nancial services. For example, in an e�ort

to lower their costs of administering welfare programs, the federal government

began to advocate the use of electronic payment as mechanism to receive funds

such as Social Security Bene�ts (Hogarth and O'Donnell, 1999). In the next

section, I explore the role of data in banking and how the advent of big data

helps to understand unbanked and underbanked consumers.

1.2.1 Role of Data in Banking

A central pillar of the traditional banking system that allows people to par-

ticipate and interact with the mainstream economy is through borrowing and

repayment cycles. To accomplish this, banks record data on current customers

6



and rely on historical data from previous customers as well as external informa-

tion from credit bureaus.

Because unbanked or underbanked consumers do not participate or interact

with the mainstream economy, they have little to no borrowing and repayment

records. Therefore, unbanked or underbanked consumers are sometimes referred

to as credit invisible or thin-�led.

As a standard, an important tool for making lending decisions is the credit score.

For thin-�led borrowers, the central issue is that they do not have su�cient

information for credit bureaus to build a reliable credit score that informs a

potential lender about their credit worthiness. However, being credit invisible

in itself does not imply that a borrower is not credit worthy. In fact, (Smith

and Henderson, 2018) documented cases where many individuals who are credit

invisible emerged as credit worthy and even became homeowners.

1.3 Other Sources of Data

While the age of big data has brought about novel algorithms for credit model-

ing, it has also introduced a question of whether consumer default behavior can

be gleaned from non-traditional data sources4, known as alternative data.

(Óskarsdóttir et al., 2019) suggest that the �best investment in better credit

scoring models ... is to leverage innovative big data sources instead.� The im-

portance of this observation is that while unbanked and underbanked borrowers

may not have su�cient traditional economic information, they may generate

alternative data that could be used to measure their creditworthiness.
4See (Anderson and Hardin, 2014), (Wei et al., 2016) and (Onay and Öztürk, 2018)
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For example, (Agarwal et al., 2018) assert that the widespread use of cellphones

provide new socio-behavioral variables that can be used to determine the credit-

worthiness of a potential borrower. They proposed a way of using phone-based

variables with existing demographic and past �nancial behavior as markers of

��nancial trouble.� Their data consisted of a combination of 82.2 million banking

transaction records with 350 million phone logs derived from 180,000 individuals

spanning 2 years. They found that phone-based data contain important signals

that can be used to gauge an individual's credit worthiness.

With the advent of social media, there has been a focus on its use for credit

modeling. (G. Guo et al., 2016) mined data from Weibo, a twitter-like platform

in China with an intention to �identify credit related evidence hidden in social

data.� They conducted an analysis which consisted of more than 7.3 million

tweets generated by 200,000 users. They found that incorporating social media

data into the credit modeling process outperformed traditional methods by as

much as 17%.

(Berg et al., 2018) analyzed the e�ectiveness of using digital footprints, infor-

mation consumers leave online when they access or register on a website, to

predict default. Using approximately 250,000 transaction data from a German

E-Commerce company, they found that information contained in digital foot-

prints complements information contained in traditional �nancial data, which

helps give a broader description of the borrower default behavior.

Having recognized this, the Board of Governors of the Federal Reserve System of

the Consumer Financial Protection Bureau (CFPB) issued a statement5 where

they acknowledged that the �use of alternative data may improve the speed and

accuracy of credit decisions and may help �rms evaluate the creditworthiness

5See (CFPB, 2019)
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of consumers who currently may not obtain credit in the mainstream credit

system.�

Following a similar sentiment, (Smith and Henderson, 2018), discussed the ques-

tion of whether thin-�led consumers can be credit worthy even without a credit

score. Using the Equifax database, they �followed two samples of thin-�le indi-

viduals with no credit scores for at least four years in order to develop a timeline

indicating when they obtained su�cient credit to qualify for a credit score.�

Their conclusion was that thin-�led consumers proved themselves to be credit-

worthy, with credit scores ranging from �below 520 to 740 and above.� Addi-

tionally, the average time it took them to obtain a credit score and be part of

the mainstream economy was between three to four years. Within the four year

span, it was reported that the majority received credit scores within the �rst

and second years. However, the use of alternative data may have shortened the

wait time.

It is evident that researchers and regulators are advocating for a new approach

to credit default modeling that takes advantage of alternative data sources.

While alternative data may prove useful, researchers and regulators have called

for caution in order to better understand variables that can legally be used as

a discriminator for default risk. Additionally, alternative data has the potential

to migrate individuals who are underbanked and unbanked into the mainstream

economy.

1.3.1 Alternative Credit Data

According to (Aitken, 2017), the goal of helping individuals who are credit

invisible can be boiled down to an exercise of making them visible. This attempt
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can be achieved in two ways:

1. The �rst involves �nding ways to identify credit worthy individuals who

would otherwise be di�cult to identify through traditional methodolo-

gies. This speaks largely to the use of innovative statistical credit scoring

methodologies that can properly discriminate between borrowers who de-

fault and those who do not.

2. The second involves recording non-traditional �nancial behaviors that

could be used to model credit. These �nontraditional behaviors� can in-

clude local public records, social networking patterns, academic achieve-

ment records, mobile phone usage, non-�nancial payment histories, and

psychometric test results.

Historically, credit models were built using traditional �nancial data. This is

de�ned as data that is �managed in the core credit �les of the nationwide con-

sumer reporting agencies� (Experian, 2015). Elements of traditional �nancial

data includes trade-line information such as debt repayment history, current

and historical account status, credit limit and credit usage information. Other

elements include credit inquiries and public records such as bankruptcies.

At the opposite end, alternative credit data refers to data used in the credit

modeling process that is not an element in the traditional data. The only

criteria is that they must meet the guidelines of the Fair Credit Reporting Act

(FCRA) - that is they must be disputable, correctable and displayable.

Within the last decade, there have been attempts to incorporate elements of

alternative data in decision making. For example, Experian has helped popu-

larized the use of RentBureau - a database that contains 24-hour rental payment
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information. The signi�cance of this database is that rental payment history

can o�er insights about loan default behavior. More importantly, it is a repre-

sentation that some non-traditional data points can be harnessed as proxy for

positive or negative credit behavior (Aitken, 2017).

Examples of alternative credit data includes mobile phone payment, cable TV

payment, tax, and deed records (Experian, 2015). Figure 1.1 illustrates some

of the di�erences between alternative and traditional data.

Figure 1.1: Traditional Credit Data vs. Alternative Credit Data (from Experian)

At the core of the issue is the predictive power of alternative data variables.

Recently, TransUnion conducted a survey of more than 317 lenders concerning

how they incorporated alternative data in their lending practices (TransUnion,

2015). They revealed that using alternative data

1. Opened opportunities in new markets

2. Allowed them to reach more credit worthy individuals
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3. Situated them to be more competitive

The same survey indicated that nearly 64% of lenders saw tangible bene�ts

within the �rst year of using alternative credit data. In the next section, I

describe the data used in this analysis.

On the regulatory side, the Consumer Financial Protection Bureau (CFPB),

the Board of Governors of the Federal Reserve System and four other regu-

latory bodies have recognized the importance of extending credit to thin-�led

individuals in an e�ort to assimilate them into the mainstream economy. This

creates an opportunity where reliable credit underwriting procedures can be

combined with traditional and novel credit modeling methodologies6. In the

next section, I provide a discussion on credit scoring methodologies.

1.4 Credit Modeling

Credit scoring7 is the application of statistical methods to predict borrower

default probabilities. It consists of building various statistical models known

as scorecards that can su�ciently measure and predict a borrower's default

risk. Given a historical data, a good scorecard will aim to discriminate between

borrowers who will default and those who will not. To make a decision to extend

or decline credit, a lender uses a cuto� or threshold value8. Borrowers with

default probability less than the threshold will be given credit, while those with

a probability score greater than the threshold will be denied credit, (Thomas,

2009).

6See (CFPB, 2019)
7Or default risk modeling
8The value could be domain speci�c or from past business experience
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Since statistical techniques were �rst applied to consumer lending in the 1950's,

the credit granting process has had two components (Feelders, 2003). The �rst

component involves a quantitative method by which lenders can legally discrim-

inate between good and bad borrowers. By de�nition, good borrowers comply

with the terms of the loan contract and do not default, while bad borrowers vio-

late all or some portion of the loan contract and ultimately default. The second

component consists of the lender's observation of the borrower from loan orig-

ination to the time of loan maturity. Here, the lender observes the borrower's

�nancial or payment behavior for the purpose of cross selling other products or

most importantly to determine if they will default or not.

The use of statistical techniques to model default risk in consumer lending is

rich and continues to grow. (Cyert, H. J. Davidson, and Thompson, 1962) used

markov chains to analyze �doubtful accounts.� First, they binned a lender's

account receivables by age and then modeled the loss expectancy rate within

each bin. From there, a lender would now be able to set aside an allowance in

anticipation to potential losses given a default event.

To understand the dynamics between variables on borrower application forms,

(Sewart, Pete, 1998) applied concepts in graph theory to describe the association

between variables taken from credit card application forms. Using directed

and undirected graphs, they showed conditional dependence to improve the

understanding of the relationships between credit variables. Moreover, they

were able to model the joint-distribution of variables on the borrower application

form.

(David J. Hand and Kelly, 2002) explores the concept of super-scorecards, a

classi�cation ensemble of individual credit scoring models that yielded superior

results when compared to its components. An attractive feature of this ap-
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proach is that an arbitrary number of standalone models could be used in the

construction of the super-scorecard. Also, the proposed model is more �exible

but retains the ease of interpretability of the standard linear scorecard.

In the era of big data, machine learning models have been used in credit scoring.

For example, using a Classi�cation and Regression Tree (CART) model on com-

bined consumer banking transaction and credit bureau data, (Khandani, Kim,

and Lo, 2010) were able to detect non-linear relationships that a traditional

logistic or discriminant model will not be able to �nd. The model's accuracy

allowed them to predict default events three to twelve months in advance. (Less-

mann et al., 2015) and (Baesens, Rösch, and Scheule, 2016) provide excellent

overviews of machine learning models in the credit space.

Owing to the fact that borrowers and lenders do not often share the same ob-

jective, (Keeney and Oliver, 2005) modeled credit default by using Cooperation

Negotiation Analysis and E�cient Frontier Curves to develop a model that

identi�es and integrates both borrower and lender preferences. For example,

a borrower's preference for a lower loan price may be matched with a lender's

preference for pro�t or market share. The outcome is a win-win product that

has the potential to signi�cantly decrease probability of default. In the next

section, I provide a discussion on the economic value for a lender to consider

alternative data in the credit modeling process.

1.5 Pro�t Scoring

Although traditional credit scoring methods have largely focused on default

risk, it represents only one aspect of the entire credit granting process. In

most applications, the main objective of the lender is to maximize pro�t given
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default probabilities and other borrower characteristics, (Thomas, 2000). In

this regard, a default-centric approach alone to credit modeling may not be a

su�cient indicator for pro�t, although there may be a strong correlation between

higher levels of default probabilities and lower pro�t and vice versa.

Recent studies suggest that there has been a gradual shift from traditional

probabilistic based approach to pro�tability based approach9. This is largely

driven by the observation that traditional loss functions underlying some default

based credit models does not e�ectively capture the lender's objective. (S.

Finlay, 2010) puts it better when he describes existing loss functions as being

at best a �crude approximation� to the real objective of the lender, which is to

identify customers who will contribute to some pro�tability metric.

Often, the economic loss function is robust and well established in literature.

For example, using the Internal Rate of Rate of Return (IRR), (Serrano-Cinca

and Gutiérrez-Nieto, 2016) sought to predict expected pro�t within the con-

text of peer-to-peer lending. Using over 40,000 loan transaction records, they

found that a lender �applying a pro�t scoring system ... outperforms the results

obtained by using a traditional credit scoring system.� Other economic loss

functions that have been used include Customer Lifetime Value (CLV)10, Net

Present Value (NPV)11, and the Return On Investment (ROI)12. Therefore, the

choice of an economic loss function plays an important role in pro�t scoring.

The overarching theme throughout the dissertation is to investigate the use of

alternative data as a viable source of information for credit scoring for under-

banked and unbanked individuals. I study the topic from two di�erent perspec-

tives. The �rst, studies the statistical value of alternative data. Using the AUC
9See (D. J. Hand and Henley, 1997), (S. M. Finlay, 2008), (Devos et al., 2018), (Paula

et al., 2019) and (Kozodoi et al., 2019)
10See (Barrios, Andreeva, and Ansell, 2014)
11See (Lieli and White, 2010)
12See (Maldonado et al., 2017)
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as the goodness of �t metric, along with bootstrap hypothesis testing, I test the

value of alternative data in credit scoring. Here, I consider the use of alterna-

tive data in absence of traditional �nancial data. This is important because it

imitates current challenges lenders face in credit scoring when the borrowers are

underbanked or unbanked.

The second, examines the economic value of alternative data using the pro�t

scoring approach. I extend the work of (Lieli and White, 2010) to the under-

banked unbanked population and consider whether there is an economic value

for a lender to invest in alternative data. Here, I also focus on a sub-theme of

using loss functions that re�ect the economic objective of the lender.
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Chapter 2

Scoring The Unscored: A

Statistical Approach
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Abstract

The purpose of this chapter is to examine the e�ect of alternative data in the

credit decision process. This is especially focused on unbanked and underbanked

consumers who do not have su�cient traditional credit data. The consequence of

not having su�cient economic information often determines whether borrowers

who are credit-invisible will receive a higher price for credit or be denied entirely.

In terms of regulation, there is a strong interest in how to incorporate non-

traditional data into the credit building process. Additionally, regulators are

interested in how to migrate underbanked and unbanked borrowers into the

mainstream economy.

Using traditional and alternative auto loan data, statements can be made about

which alternative data variables contribute to borrower default behavior. I �nd

that alternative variables can complement traditional variables to gauge default

behavior. For example, when an unbanked or underbanked consumer does not

have a valid home phone number the probability of default increases by almost

4%. Also, when an unbanked or underbanked borrower does not have a valid

home address, the probability of default increases by 6.37%. This is something

that lenders can look to as a positive proxy for credit worthiness.

Index Terms � Unscorables, Alternative Data, Credit Invisible, Unbanked,

Thin Files, Machine Learning.



2.1 Introduction: An Overview Of Classi�cation

Models

In this section, I provide a brief overview of the machine learning classi�cation

models that underlies Table 2.5. Machine learning models can be grouped into

three main branches: supervised learning, unsupervised learning and reinforce-

ment learning. In supervised learning, a learner or a model, is provided with a

training data that contain features and known target labels. The objective of

the learner is to study the underlying pattern in the data so as to predict the

target labels of unseen data. Most classi�cation and regression models fall into

this category.

For unsupervised learning, a model is provided with training data with no target

labels. Here, the goal of the learner is to decipher natural relationships in the

data. An example of this approach is principal components analysis and cluster

analysis, (Hinton and Sejnowski, 1999).

In reinforcement learning, an agent or a learner must take a series of actions

that will maximize a given reward. The agent is not given instructions on which

actions to take but learns it through a system of reward and penalty. The key

di�erence between reinforcement learning and other forms of learning is that

in reinforcement learning, the agent cannot learn from examples but instead

must study their environment, (Sutton and Barto, 1998). The outline of this

chapter is as follows: Section 2.2 and Section 2.3 describes the data, modeling

methodology and the results. This is followed by the conclusion in Section 2.4.
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2.1.1 Random Forest

Proposed by (Breiman, 2001), a random forest model belong to a class of classi-

�cation algorithms that are also called ensemble methods. The rationale behind

ensemble methods is to train multiple standalone base models or classi�ers in

order to make a prediction. The �nal prediction of unseen labels or classes is

made by aggregating over the predictions of the base models. For many classi-

�cation ensemble methods, the method of aggregation is done through a simple

majority voting.

Since the base model for a random forest model is the decision tree1, it means

the �nal prediction is the mode of the prediction of each base tree. Each decision

tree model is built using a sample with replacement from the training data such

that increasing the correlation between each tree model will result in an increase

in the error rate of the random forest model.

The aim of a random forest model is to partition the dataset into smaller �pure�

groups by splitting on multiple variables. Purity is de�ned as the uniformity

of a class label within each split. Unlike some classi�cation models that use

a single linear decision boundary for prediction, tree based models divide the

feature space every time a decision is made to split on a variable. The result is

that the feature space becomes rectilinear, containing purer observations, (Loh,

2011).

In light of the goal of tree-based models, �nding the best variable to split on is

crucial. Typically, the best feature to split on is the one that optimizes some

purity or impurity measure. For random forest, an example of an impurity

measure is the gini index. The gini index is calculated as follows:

1For a discussion on the decision tree algorithm, see (Quinlan, 1986) and (Esposito,
Malerba, and Semeraro, 1997)
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Gini(t) = 1−
i=N∑
i=1

P (Ci|t)2 (2.1)

whereN corresponds to the number of classes within the data. Ci corresponds to

the class label associated with the ith observation in the data and t is a condition

of the variable. Therefore, a decision would be made to split on a variable if

it has the maximum gini index (Fawagreh, Gaber, and Elyan, 2014). For an

in-depth mathematical treatment, see (Pereira et al., 2017), (Denil, Matheson,

and De Freitas, 2014), (Chou, 1991) and (Lomax and Vadera, 2013).

Random forests have been applied in problem domains such as document classi-

�cation, employee turnover, speech recognition, remote sensing and healthcare2

with signi�cant results. For example, (Loh, 2014) remarks that on average, the

accuracy of a best decision tree model is 10% less than that of a random forest

model. They are known to be more robust than decision trees and are more

preferred compared to other classi�cation models, (Pereira et al., 2017). Com-

pared to decision trees, they are more robust to over�tting. Compared to other

classi�ers they are easy to interpret, implement and can handle large datasets,

(Gehrke, Ramakrishnan, and Ganti, 2000).

2.1.2 Support Vector Machines

For a binary classi�cation task, let X = XTR ∪ XTS be the entire dataset,

where XTR is the training data and XTS is the testing data. Then, for XTR

with N samples, de�ne {xi, yi}i=Ni=1 ∈ XTR to be a single sample with xi ∈ R

and yi ∈ {+1,−1}. The objective of support vector machines is to �nd a

2See Jain, Duin, and Mao (2000), Pereira et al. (2017), Denil, Matheson, and De Freitas
(2014), and Gao, Wen, and C. Zhang (2019)
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decision boundary or a hyperplane, f(x), inXTR that can provide the maximum

separation between the two classes, such that prediction errors, ε, are minimized.

This hyperplane is given by the following equation:

f(x) = w · x+ b (2.2)

where (·) is the dot product and w, b ∈ R. The goal of minimizing the prediction

error, ε, is achieved when the norm of w is minimized. This can be stated as

the following optimization problem

minimize
1

2
||w||2

subject to


f(x)− yi ≤ ε

yi − f(x) ≤ ε

(2.3)

To control the model from over�tting, (Vapnik, 2000) introduced a regulariza-

tion hyperparameter, c > 0. The result is that 2.3 is modi�ed to include slack

variables ψi and ψ∗i . This is shown in 2.4.

minimize
1

2
||w||2 + C

N∑
i=1

(ψi + ψ∗i )

subject to


f(x)− yi ≤ ε+ ψ∗i

yi − f(x) ≤ ε+ ψi

ψi, ψ
∗
i ≥ 0

(2.4)

A given point (xi, yi) which is geometrically closer to or on f(x) is called the

support vector. Support vectors are important because they are used for the
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prediction of unseen data. This is one of the advantages of support vector ma-

chines, namely that they do not use all of the training data but few points that

lie on the optimal separating boundary. For an in-depth treatment of support

vector machines, see (Madeo, Lima, and Peres, 2012), (Smola and Scholkopf,

2004) and (Anguita et al., 2010).

While support vector machines work well on linearly separable spaces, it re-

quires the notion of kernels, for non-linear classi�cation. A kernel is a similarity

measure that maps a data point from a non-linear space to a high dimensional

linear space, such that the new data points are linearly separable3. For a dis-

cussion on the role of kernel functions in support vector machines see (Cuentas,

Peñabaena-Niebles, and Garcia, 2017), (Goh and Lee, 2019), and (Sun and

Liang, 2015).

Since its inception, support vector machines have been applied to many disci-

plines. For example, in the �eld of engineering, (L. Zhang et al., 2013) used

support vector machine to predict product degradation and its remaining useful

life. In accounting, (Baranes and Palas, 2019) utilized support vector machines

to forecast future quarterly earnings of a company. They reported a 5% increase

in accuracy over the benchmark model. In agriculture, support vector machines

have been used detect livestock quality, including rotten or healthy vegetables,

fruits and even identify the onset of diseases in some poultry, (Nurhanna and

Othman, 2017). In healthcare, it has been used to detect long term type-2

diabetes, (Abbas et al., 2019).

Like decision trees and random forest, support vector machines are robust to

over�tting through the regularization parameter c. Also, it has capabilities to

handle non-linear classi�cation by means of a kernel function. While robust

3See (Somvanshi et al., 2017)
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kernel functions exists, it is possible to customize or even create a new kernel

function to tackle new problems. However, unlike decision trees support vector

machines are not easily interpreted.

2.1.3 k-Nearest Neighbor (kNN)

The k-nearest neighbor classi�er is one of the most simplest but e�ective clas-

si�cation algorithm in data mining and pattern recognition, (Z. Guo et al.,

2019). The intuition is to classify unseen data by observing the class label of

its nearest neighbor. Formally, let xj ∈ XTS be an observation of the test-

ing data with {(xk, xl, ..., xζ)} ∈ XTR being its neighboring points. Also, let

{(yk, yl, ..., yζ)} ∈ {+1,−1} be the classi�cation label of the neighboring points.

For xj to be classi�ed as yj ∈ {+1,−1}, the k-nearest neighbor algorithm lo-

cates k points in (xk, xl, ..., xζ) and retrieves their classi�cation labels. The label

for xj is the mode of the labels of the k points in (xk, xl, ..., xζ). It is better for

k to be an odd number in order to handle cases of a tie.

For the k-nearest neighbor classi�er to work, two conditions must be met. The

�rst is a metric to compute distance in order to �nd neighboring points. While

the popular metric is the euclidean distance, there are other metrics such as

City-block, Chebychev, Minkowski, etc4. The last condition involves a function

that assigns a class to the new unseen data. The widely used choice is the

mode. For a more involved discussion on the k-nearest neighbor classi�er, see

(Laaksonen and Oja, 1996).

The most important parameter for k-nearest neighbor is the value of k, as they

directly in�uence the prediction. Changing the value of k has the potential to

4See (Imandoust and Bolandraftar, 2013), (Padraig and Delany, 2007) and (Ali, Neagu,
and Trundle, 2019)
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produce di�erent class labels. Because there is no way to select the optimal k,

one approach is to continuously select k values and record an improvement in

some selected goodness of �t metric. The value of k that gives the maximum

improvement will be selected.

k-nearest neighbor algorithms have been described as a lazy learner because it

does not learn any underlying pattern within the data until an instance of the

testing data is introduced for classi�cation. Usually this means that the training

data is stored in memory at run-time to await any testing data. This may be

problematic if the dataset is large, however, the growth of computational power

often allows this to be possible.

Because of its simplicity, k-nearest neighbor classi�er has been used in di�erent

�elds. In education, (Intan, Ghani, and Salman, 2020) used it to predict whether

children are ready, doubtful or not ready for elementary school. (Anggraini and

Tursina, 2019) also used it to predict public sentiment to a change in educational

policy in Indonesia. In the next section, I describe the data, the preprocessing

steps and the methodology.

2.2 Data Description and Cleaning

2.2.1 Data Preprocessing

The purpose for this research revolves around the question of whether alternative

data can be used as a source of data for credit decisions in the era of big data,

when traditional data is not available or observed? For individuals with little

to no credit information, the unbanked and underbanked, I will investigate if

alternative data helps in assessing their credit worthiness.
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The data was provided by �Company Z� for the exclusive purpose of research on

the condition of anonymity. It consists of non-�nancial payment streams, social

footprints and elements of traditional credit data. More speci�cally, it relates to

the application of subprime automobile transactions. There is a total of 23,981

applications and 823 variables or features.

As part of the preprocessing stage, the data was stripped of any personally

identi�able information such as names, date of birth, SSN, address and telephone

numbers. Additionally, all variables whose meaning could not be found in the

data dictionary were excluded from the data. The next step dealt with the

treatment of missing information.

Missing data is a part of almost all research studies. Although their treatments

are seldom the sole focus of substantive research, they introduce an element

of uncertainty into the model building process while a�ecting other statistical

mechanisms such as the mean, variance and standard deviation, (Mandel J,

2015). Therefore, the treatment of missing values plays an important part of

any data analysis.

According to (Acuna and Rodriguez, 2010), the treatment of missing values fall

under two categories: variable deletion or imputation. Under the �rst treatment,

a variable will be excluded from the analysis if its percentage of missing values

exceed some predetermined threshold. The drawback to this method is that

there is no objective optimal threshold.

Under the last treatment, missing values are replaced with some value through

the use of some robust statistical method. The advantage of this method is

that it is statistically motivated and backed by numerous existing computa-

tional techniques. The disadvantage is that some methods may require heavy

computational overhead cost.
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The current analysis employs a mixture of both methods. Following (Dong and

Peng, 2013), variables with more than 25% missing observations were excluded

from the analysis. This brought the number of variables to 271, of which 180

belong to traditional data and 91 contained alternative data.

The rest of the missing observations were imputed using the median, because

it is less sensitive to any outliers in the data. Also, in their analysis of various

imputation techniques, (Sessa and Syed, 2017) concluded that using the median

for imputation proved to be e�ective.

2.2.2 Variable Reduction

The next step was to reduce the number of variables for modeling purposes.

When a model is built using a large number of variables, the relationship between

the dependent and the explanatory variables becomes di�cult to ascertain. This

is further compounded when some of the explanatory variables are redundant.

It destabilizes model parameters, increases computational time and confounds

interpretation, (Nelson, 2010).

Additionally, working in high dimensional spaces presents two unique challenges:

�rst, geometric properties and interpretations are far removed and counter-

intuitive to the traditional two and three dimensional spaces. Second, current

data analysis tools, including various optimization and learning algorithms, are

designed to run on and interact with lower dimensional features5.

There are various algorithms used to select a subset of variables from some high

dimensional data. An example is the variable clustering procedure, (Svolba,

2017). The idea is to group variables in clusters such that those with similar

5See (Verleysen and François, 2005)
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information, measured by the correlation, belong to the same cluster, while

those with di�erent information are in other clusters. It works by maximizing

the variance explained by the cluster components across all clusters6.

The main drawback of the variable clustering algorithm is that the stopping

criteria depends on the speci�ed input of the user. The algorithm used in this

study provide two options for the stopping criteria:

1. It stops depending on the number of maximum clusters

2. It stops based on the percentage of explained variance

Because both criteria are speci�ed by the user before any analysis, I used the

�elbow method� to bypass the issue of the stopping criteria being dependent on

the user. The elbow method is a graphical representation of the relationship

between the percentage of variance explained across clusters, plotted on the

y-axis, versus the number of clusters generated, plotted on the x-axis.

As the relationship progresses, there will be an angle, the elbow, in the graph,

after which there is little or no change in the percentage of variance explained.

The number of clusters corresponding to the elbow will be chosen as the number

of clusters to use in the variable reduction process. This method was used

in (Purnima and Arvind, 2014) to ascertain the optimal k in their k-means

algorithm on sensor nodes used to detect variation in environmental temperature

and pressure.

Figure 2.1 shows the result of the elbow method on the alternative data

6See (Sarle, 2014)
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Figure 2.1: Alternative Data Variable Clustering

Figure 2.2 shows the result of the elbow method on the traditional data

Figure 2.2: Traditional Data Variable Clustering
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For the alternative data, the optimal number of clusters is 16, which explains

roughly 84% of variation in the data. For the traditional data, the optimal

number of clusters is 32, which explains roughly 80% of variation in the dataset.

The obtained variables and their de�nitions are in Table 5.1 and Table 5.2 of

the Appendix. From the variable clustering methodology, it can be seen that

the alternative data is more parsimonious, compared to the traditional data.

2.3 Modeling Methodology

2.3.1 Nested Logistic RegressionWith The Likelihood Ra-

tio Test

This section is principally concerned with two objectives. The �rst is to de-

termine if alternative data can be used for credit decisions in the absence of

traditional data. To that end, I will investigate whether alternative data carries

its own predictive power. That is, in the absence of traditional data, can al-

ternative data stand? The second objective is to observe some alternative data

variables that may carry information pertaining to borrower default behavior.

For the �rst objective, I will use a Nested Logistic Regression model along with

the Likelihood Ratio Test. The Likelihood Ratio Test, with its intuition based

on the likelihood function, is a hypothesis test that tries to ascertain whether

a restricted statistical model explains a data as well as a fully unrestricted

statistical model7. First, the logistic regression function for the unrestricted

model, URM , is de�ned as follows:

7See (Godfrey, 1996)
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eXβ

1 + eXβ
(2.5)

where X = x1, x2, ...xk, xk+1..., xn corresponds to variables in the combined

data and β = β1, ..., βk, βk+1..., βn represents a vector of real valued parameter

in the parameter space of the combined data.

Let x1, x2, ...xk correspond to variables in the traditional data and xk+1..., xn

represent variables in the alternative data.

Let β1..., βk = 0 be the restriction imposed on the parameter space of the

combined data. The result is that a model, RMalt, constructed on this restricted

space contains only variables in the alternative data. Then, the hypothesis

underlying the likelihood ratio test is stated as follows:

H0 :β1, ..., βk = 0

H1 :β1, ..., βk 6= 0

(2.6)

Similarly, let βk+1..., βn = 0 be the restriction imposed on the parameter space

of the combined data. The result is that a model, RMtrad, constructed on

this restricted space contains only variables in the traditional data. Then, the

hypothesis underlying the likelihood ratio test is stated as follows:

H0 :βk+1, ..., βn = 0

H1 :βk+1, ..., βn 6= 0

(2.7)

If the restriction is valid, that is, if the restricted model, RMalt or RMtrad,

explains the data as well as the unrestricted model, URM , then there should

not be a large change in their respective log likelihood values. If LU and LR

represents the log likelihood value of the unrestricted and restricted models

13



respectively, then the test is based on the di�erence of the likelihood values,

LU − LR.

The logistic regression result for the unrestricted model, URM , is provided in

Table 2.1. It should be noted that Table 2.1 contains only statistically signi�cant

variables and that URM consists of variables from the combined data.

Variables Estimates Std. Error Wald Chi.Sq Pr > Chi.Sq Marginal E�ect (%)

Intercept 1.6221 0.2611 38.5826 <.0001 -

VI01 -0.0207 0.00336 38.0401 <.0001 -0.3482%

AOT01 0.00972 0.00457 4.5194 0.0335 0.1635%

NI01 0.0697 0.00951 53.6648 <.0001 1.1721%

UT01 -0.1594 0.0299 28.3176 <.0001 -2.6808%

AT01 -0.0611 0.0192 10.0961 0.0015 -1.0281%

CN01 -0.0281 0.00913 9.4742 0.0021 -0.4726%

AP01 0.000226 0.000056 16.0066 <.0001 0.0038%

PA06 -0.0501 0.0129 14.9896 0.0001 -0.8423%

IV06 -0.0738 0.0238 9.5706 0.002 -1.2410%

AO01 0.00115 0.00034 11.5084 0.0007 0.0194%

RF01 -0.1927 0.0704 7.4854 0.0062 -3.2425%

CLA01 0.00367 0.00157 5.4385 0.0197 0.0617%

NBK01 0.000142 0.000064 4.8611 0.0275 0.0024%

RT01 -0.203 0.0992 4.1865 0.0407 -3.4153%

ADN 0.3783 0.038 99.0643 <.0001 6.3647%

LN01 -0.4079 0.1469 7.7049 0.0055 -6.8617%

SJY -0.1245 0.0346 12.921 0.0003 -2.0944%

PCV02 0.2239 0.0455 24.1651 <.0001 3.7668%

BK01 0.2385 0.0635 14.1277 0.0002 4.0127%

Table 2.1: Logistic Regression Result for Unrestricted Model

Similarly, the logistic regression result for model RMalt is shown in Table 2.2.

As with the unrestricted model above, model RMalt show variables that are

statistically signi�cant.

Variables Estimates Std. Error Wald Chi.Sq Pr > Chi.Sq Marginal E�ect (%)

Intercept 1.8105 0.252 51.6273 <.0001 -

RT01 -0.293 0.0975 9.024 0.0027 -5.0243%

ADY 0.3267 0.0347 88.396 <.0001 5.6031%

LN01 -0.3877 0.1451 7.1409 0.0075 -6.6482%

SJY -0.1767 0.0337 27.4335 <.0001 -3.0297%

NMN -0.0962 0.0429 5.0254 0.025 -1.6505%

PCV01 0.1974 0.0414 22.721 <.0001 3.3845%

BK01 0.3063 0.0619 24.4827 <.0001 5.2530%

Table 2.2: Logistic Regression Result for Alternative Data
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In like manner, the logistic regression result for model RMtrad is shown in

Table 2.3. As with both URM and RMalt, Table 2.3 show variables that are

statistically signi�cant.

Variables Estimates Std. Error Wald Chi.Sq Pr > Chi.Sq Marginal E�ect (%)

Intercept 1.2236 0.0524 545.2487 <.0001 -

VI01 -0.0209 0.00332 39.3921 <.0001 -0.3535%

AOT01 0.0094 0.00455 4.2572 0.0391 0.1593%

NI01 0.0718 0.00948 57.3623 <.0001 1.2165%

UT01 -0.1549 0.0297 27.173 <.0001 -2.6250%

AT01 -0.0579 0.0192 9.1063 0.0025 -0.9807%

CN01 -0.0286 0.00907 9.9388 0.0016 -0.4845%

AP01 0.000251 0.000057 19.7232 <.0001 0.0043%

PA06 -0.0535 0.0129 17.2532 <.0001 -0.9059%

IV06 -0.0754 0.0238 10.0479 0.0015 -1.2775%

AO01 0.00126 0.000337 14.023 0.0002 0.0214%

CLA01 0.00407 0.00156 6.8216 0.009 0.0690%

NBK01 0.00015 0.000065 5.249 0.022 0.0025%

Table 2.3: Logistic Regression Result for Traditional Data

From the results in Table 2.1, it can be seen that alternative variables make up

around 35% of all signi�cant variables that serve as a good predictor for default.

This means that alternative variables can have sizable explanatory power along

with traditional variables to gauge default probability for individuals who may

not have su�cient data to be scored using traditional methodology.

The extent to which this explanatory power holds is even more telling when the

results are interpreted using the marginal e�ect. For an additional increase in

bankruptcy, the probability of loan default increases by 4.01%.

For an additional increase of individuals whose home phone number is not valid,

the probability of default increases by almost 4%. Also, for an additional group

of borrowers who do not have a valid address, the probability of default increases

by 6.37%.

This is important because a phone number and a valid home address can be

seen as a sign of stability. Having the same working phone and a valid home
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address, especially for a long period of time, may be an indicator of a consistent

payment history. This is something that lenders can look on as a positive proxy

for credit worthiness.

Surprisingly, last name changes in the last 60 days does not increase the proba-

bility of default. This can be attributed to the fact that name changes can take

place for various reasons. A popular example is marriage, where an individual

may choose to take on the name of their spouse.

In terms of traditional variables, an additional family residential house decreases

the probability of default by -3.42%. A residential family house is additionally

seen as a sign of stability, especially when there are children involved.

2.3.2 A Discussion on Incremental Variables

In many statistical settings, a common problem is to select a subset of the vari-

ables that inform model performance. Although having many variables may

improve model performance8, they also introduce computational costs and in-

crease model complexity.

For a logistic regression, the maximum likelihood estimator, by design, does not

factor in the number of parameters. In other words, the maximum likelihood

estimator does not penalize the model for complexity.

With this in mind (Akaike, 1974) and (Schwarz, 1978) developed a criteria to

measure whether performance of models are due to incremental variables or not.

This was done by attaching a penalization term to the maximum likelihood esti-

mator. In the case of (Akaike, 1974), for each model i, let k and Mi(x1, . . . , xn)

be its dimension and maximum likelihood for variables x1, . . . , xn.
8Assuming additional models are not noise
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(Akaike, 1974) chooses the value of k for which log [Mi(x1, . . . , xn)− k] is the

largest. (Schwarz, 1978) o�ered a di�erent alternative by selecting a model for

which log
[
Mi(x1, . . . , xn)− 1

2k ∗ log(n)
]
is the largest. Although they di�er in

their penalization term, research shows that for nested models, BIC is superior9.

A lower BIC indicates that a model is preferred.

Because the likelihood ratio test depends on the value of the log-likelihood, a

summarization of all models, their log likelihoods, c-stat/AUC and BIC are

reported in Table 2.4. Looking at the AUC alone, one may be forced to the

conclusion that the unrestricted model explains the data better than the two

restricted models10. However, it can also be the case that the superior perfor-

mance is a function of the incremental number of variables.

Since the BIC penalizes models with more parameters, I use it to test this

objection. From the results in Table 2.4, the unrestricted model has the smallest

BIC, followed by the traditional data model and the alternative data model,

respectively. This means the incremental variables in the unrestricted model

carry information that helps to explain default behavior. In other words, the

increase in model performance, is due to information rather than noise.

Models Description Log Likelihood c-stat/ AUC BIC

URM Number of variables: 48 -12,378.845 0.6134 25,252
RMtrad Number of variables: 32 -12,464.22 0.5982 25,261
RMalt Number of variables: 16 -12,607.781 0.5619 25,387

Table 2.4: Nested Logistic Regression

9See (Wang and Liu, 2006)
10See the DeLong test in Section 5.2
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2.3.3 Likelihood Ratio Test Set-Up

Let x1, x2, x3, . . . , x32, x33, . . . , x48 represent the variables in model URM and

β1, β2, β3, . . . , β32, β33, . . . , β48 correspond to the coe�cients estimated through

Maximum Likelihood Estimation in the unrestricted model. Further, let x1, x2, ...x32

correspond to variables in the traditional data and x33..., x48 represent variables

in the alternative data. Then, model RMtrad is nested in model URM by re-

stricting β33, . . . , β48 = 0.

For the likelihood ratio test, let LU and Ltrad represent the log-likelihood value

for URM and RMtrad. Then the hypothesis test is stated as follows:

H0 :β33, ..., β48 = 0

H1 :β33, ..., β48 6= 0

(2.8)

The likelihood ratio is de�ned as

κ = 2(LU − Ltrad) (2.9)

Where, κ ∼ χ2 with degrees of freedom equal to the number of restricted vari-

ables imposed. For the traditional data,

LU =− 12, 378.845

Ltrad =− 12, 464.220

κ =2(−12, 378.845 + 12, 464.220) = 170.75 ∼ χ2(df = 48− 33 + 1 = 16)
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This gives a p − value < 0.00001, which is statistically signi�cant. I therefore

reject the null hypothesis, indicating that among individuals who are credit

invisible, the restricted model based on the variables in the traditional data

alone explains credit default behavior as well as the unrestricted model, based

on the combined data.

Now, a similar restriction will be placed on the variable space of the combined

data. Except this time, model RMalt is nested in model URM by restricting

β1, . . . , β32 = 0. Then, the hypothesis test is stated as follows:

H0 :β1, ..., β32 = 0

H1 :β1, ..., β32 6= 0

(2.10)

For the alternative data, the likelihood ratio test is as follows

LU =− 12, 378.845

LR =− 12, 607.781

κ =2(−12, 378.845 + 12, 607.781) = 457.872 ∼ χ2(df = 32− 1 + 1 = 32)

This gives a p − value < 0.00001, which is statistically signi�cant. I therefore

reject the null hypothesis, indicating that among individuals who are credit

invisible, the restricted model based on the variables in the alternative data

alone explains credit default behavior as well as the unrestricted model, based

on the combined data.

Putting the two results together, per the log-likelihood ratio test, restricting the

dataset to traditional or alternative variables alone explains default risk as well
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as the combined data. In other words, each dataset have their own explanatory

power and are therefore not �substitutes� of each other.

2.3.4 Testing Performance Metrics Of Machine Learning

Based Models

In this section, the focus is on devising a way for machine learning models to

make a statistical statement about a model's performance in a manner similar

to the Log-Likelihood Ratio Test. Speci�cally, this section explores the use of

AUC as the goodness of �t metric in order to make more inference regarding

alternative and traditional data. The AUC was selected because it is widely

used across many classi�cation settings11.

Machine learning models struggle to make statistical statements about model

performance. For a classi�cation task, metrics such as accuracy, recall and AUC

exists to measure a model's ability to discriminate between classes. However,

a major drawback is that there is no uniform way to statistically test these

metrics, especially when they are derived from di�erent models or classi�ers.

While there are no shortage of machine learning based models, this section will

focus on the use of Random Forests, k-Nearest Neighbor and Support Vector

Machines because of their widespread use in credit modeling (Lessmann et al.,

2015).

The drawback of these models is that they do not provide a robust statistical

test that can di�erentiate between model performance. Therefore, I design a

way to test their performance in a manner similar to the likelihood test. The

following steps provides a summary.

11See (Natole, Ying, and Lyu, 2019) and (Zhu, H. B. Zhang, and Huang, 2017)
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1. Pick the performance metric of interest - AUC

2. De�ne restricted and unrestricted hypothesis

3. Bootstrap n sub-samples from data

4. Select traditional and alternative data

5. Run machine learning model n times on traditional and alternative data

6. Collect the metric for each estimation and compute di�erence

7. Run a paired non-parametric test on the observed metric di�erence

Bootstrap sampling has been widely adopted for the use of hypothesis testing12.

In a bootstrap sampling, S random samples of size B are drawn from the orig-

inal population with replacement, each of which is used to compute some test

statistic of interest.

(R. Davidson and MacKinnon, 2007) assert that bootstrap sampling has two

drawbacks: the choice of an optimal sample size B and the number of repetition

used in the analysis. Addressing these challenges can be infeasible because their

computational cost can be very high, in terms of the time it takes to run the

algorithm.

For a discussion on the relationship between the optimal sample size, repetition

amount and algorithm run time, see (Donald W.K Andrews and Buchinsky,

2000) and (Donald W.K. Andrews and Buchinsky, 2001).

However, the standard rule of thumb is that the sample size and repetition size

should be su�ciently large. Because there is no de�nition for �largeness� in

statistics, I selected a repetition of 1,000 along with a sample size of 1,500. All

12See (Kuhn and Johnson, 2013)
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models tested were done using �ve-fold cross validation to check the robustness

of this choice.

Following the steps outlined above, the performance of interest chosen is the

AUC score. The table below shows the average AUC for all the models tested

across three di�erent datasets.

Data Metric Model Average AUC

Traditional Data AUC

Logistic Regression 0.5683

Random Forest 0.5677

Support Vector Machines 0.5677

k-Nearest Neighbor 0.5338

Alternative Data AUC

Logistic Regression 0.5439

Random Forest 0.5484

Support Vector Machines 0.5418

k-Nearest Neighbor 0.5232

Combined Data AUC

Logistic Regression 0.5798

Random Forest 0.5721

Support Vector Machines 0.5764

k-Nearest Neighbor 0.5350

Table 2.5: Bootstrap AUC Summary

From Table 2.5, the average bootstrapped AUC results for the combined data

are higher than those of alternative and traditional data across all models tested.

This is followed by average bootstrapped AUC results for the traditional data.

This seems to agree with the results in Table 2.4, showing that a better credit

scoring model may be achieved when both alternative and traditional data are

combined.

However, it is also evident that the contribution of alternative data cannot be

overlooked considering that the percentage di�erence, across all models, between

traditional data and alternative data is roughly 2%. Similarly, the percentage

di�erence, across all models, between combined data and alternative data is

roughly 3%.
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Figure 2.3: Logistic Regression AUC Distribution

2.3.5 AUC Bootstrap Distribution

This section analyzes the bootstrapped distributions of the datasets across all

models. Figure 2.3 and Figure 2.4 show the distributions of the bootstrap AUC

for the Logistic Regression and Random Forest models.

The bootstrap AUC metrics generated from the Logistic Regression model using

all three types of data shows a distinctive di�erence. The average AUC mea-

surements from the combined data is higher than that of the traditional and

alternative data.

This is the general pattern that is also re�ected in the results of the SVM

and kNN models below in Figure 2.5 and Figure 2.6. In all cases, the mean

bootstrapped AUC for the alternative data is less than that of the traditional

and combined data.
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Figure 2.4: Random Forest AUC Distribution

This is not implausible; if I take the AUC as a measurement of how well a

classi�er discriminates between two groups based on the information presented

in the group, a more established information - as represented by the traditional

data - will have a greater AUC than a less established credit information - as

represented by the alternative data.
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Figure 2.5: SVM AUC Distribution

Figure 2.6: kNN AUC Distribution
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The key takeaway from Figure 2.3 through Figure 2.6 is that both traditional

and alternative data provide their own unique information in the credit building

process.

2.3.6 AUC Bootstrap Hypothesis Testing

The previous section answered the question of the di�erence between AUC met-

rics generated by the three types of dataset using four di�erent classi�cation

models. This was largely done through the construction of AUC distributions.

This section looks at the same problem by following the procedure highlighted in

Subsection 2.3.3. Here, the non-parametric test chosen is the Wilcoxon Signed

Rank test because it is widely used in analysis that involves the AUC13 and

also because it does not impose distributional assumptions about the underly-

ing data.

Most importantly, the Wilcoxon Signed Rank test was chosen over the Mann-

Whitney-Wilcoxon test because the bootstrapping procedure introduces depen-

dence structure in the collected AUC metric. It should be noted that the

Wilcoxon Rank Test is the paired version of the Mann-Whitney-Wilcoxon test.

Developed by (Wilcoxon, 1945), the Wilcoxon Signed Rank test is used to ascer-

tain whether two groups of paired measurement come from the same distribution

or not.

In other words, it tests whether there is a di�erence between two groups of

paired measurement. Under the null hypothesis, the two groups are considered

to come from the same distribution, while the alternative hypothesis states that

the two groups do not come from the same distribution.

13See Colak et al. (2012)
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TheWilcoxon Signed Rank test follows three assumptions of the Mann-Whitney-

Wilcoxon test14. However, because it is the paired version of the Mann-Whitney-

Wilcoxon test, there is an additional assumption about the dependence structure

of the data15. The �rst assumption is that the two groups are randomly sam-

pled. Although the data under consideration is proprietary, it was randomly

sampled from a larger population to reduce sampling error.

The second assumption dictates that each observation be independent. For the

data under consideration, there are no duplicate observations. That is, each

individual appears once in the data. The third assumption says that the scale

of the population being tested be either continuous or ordinal. Since the values

of the AUC are continuous, this assumption is met as well.

The fourth assumption relates to the dependence nature of the data structure.

Because the AUC metrics were computed using bootstrapped samples, depen-

dency is introduced in the data. Putting it all together, the underlying assump-

tions of the Wilcoxon Signed Rank test has been met.

For each machine learning model, I use the Wilcoxon Signed Rank test to test

the di�erence in bootstrapped AUC between the combined and traditional data

as well as the di�erence between the combined data and alternative data. For

the purpose of clarity, let CD be �combined data�, TD be �traditional data� and

AD be �alternative data�. The null and the alternative hypothesis can be stated

as follows

H0 :AUCCD −AUCTD = AUCCD −AUCAD

H1 :AUCCD −AUCTD 6= AUCCD −AUCAD

14See (Nachar, 2008)
15See (Wilcoxon, 1945)
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Model Hypothesis p-Value

Logistic Regression
H0 : AUCCD −AUCTD = AUCCD −AUCAD 1.040 ∗ 10−89

H1 : AUCCD −AUCTD 6= AUCCD −AUCAD
Random Forest

H0 : AUCCD −AUCTD = AUCCD −AUCAD 1.321 ∗ 10−61

H1 : AUCCD −AUCTD 6= AUCCD −AUCAD
Support Vector Machine

H0 : AUCCD −AUCTD = AUCCD −AUCAD 1.057 ∗ 10−87

H1 : AUCCD −AUCTD 6= AUCCD −AUCAD
k-Nearest Neighbor

H0 : AUCCD −AUCTD = AUCCD −AUCAD 3.580 ∗ 10−19

H1 : AUCCD −AUCTD 6= AUCCD −AUCAD

Table 2.6: AUC Bootstrap Hypothesis Testing

The small p-values in Table 2.6 gives a strong indication to reject the null

hypothesis. In this case, it means that there is a di�erence in the bootstrapped

AUC between the combined and traditional as well as the di�erence between the

combined and alternative data. This con�rms the case that each data brings its

own di�erent information in the credit modeling process that helps determine

who is credit worthy and who is not.

2.4 Conclusion

This chapter of the dissertation is motivated by the use of non-traditional eco-

nomic data points that may be useful for building default based credit models

when traditional borrower information is scarce. The consequences of not hav-

ing enough �nancial information is signi�cant in two main ways. First, lack of

information often determines whether individuals who are credit invisible will

receive a higher price of credit or be denied credit entirely.

Second, there is a strong interest from regulatory agencies regarding the use of

alternative data points that carries similar economic implications that are useful

for lending decisions. From a regulatory perspective, the purpose is to gradu-
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ally build credit models that will inform policies on how to slowly incorporate

individuals who are credit invisible into the general �nancial network.

Because alternative credit data have been shown to help in this space, I combined

it with traditional credit data to ascertain the credit worthiness of borrowers.

Using the likelihood ratio test through the logistic regression, I �nd that alter-

native variables can complement traditional variables to gauge default behavior

for those who are credit invisible.

For further analysis of this �nding, I used three machine learning models - ran-

dom forest, support vector machines and k-nearest neighbor - to describe default

behavior for individuals who are credit invisible. To make any statement about

the complimentary nature of the alternative and traditional data, I established

a way to statistically test the goodness of �t statistic that is similar in spirit to

the likelihood ratio test.

For this, I constructed bootstrap distributions of the goodness of �t statistic, as

well as �tting a function to that distribution. The conclusion from the machine

learning models is that the alternative and traditional data each bring unique

elements to the modeling process that contributes positively to modeling default

behavior for individuals who are credit invisible.

Additionally, I am able to relate which alternative variables carry information

pertaining to credit default. For example, when an unbanked consumer does not

have a valid home phone number the probability of default increases by almost

4%. Also, when an unbanked borrower does not have a valid home address, the

probability of default increases by 6.37%.
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Chapter 3

Scoring The Unscored: A

Pro�t-Based Approach
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Abstract

This study is an extension of Chapter 2. Here, I look at borrower pro�tability

by extending the maximum utility approach of (Lieli and White, 2010) to the

subprime lending space. In Chapter 2, I established a statistical signi�cance and

the role of non-traditional credit data in modeling borrower default behavior

for individuals who are credit invisible. In this chapter, I analyze the economic

importance of incorporating alternative data in the credit modeling process.

Using a maximum utility approach, I show that there is an economic value

in alternative data. Additionally, this chapter advocates for the use of loss

functions that aligns with a lender's business objective of making a pro�t.

Index Terms � Pro�t Scoring, Pro�t Maximization, Utility Maximization



3.1 Introduction

The goal in the previous chapter was to shed some light building credit mod-

els for individuals who are credit invisible. The proposed solution was to use

non-traditional �nancial data to serve as a proxy for default behavior. The un-

derlying assumption was that a lender's decision to accept or reject a borrower

is solely in�uenced by the borrower's default probability.

However, in this chapter, I suggest that the lender is willing to consider and

integrate pro�t into their credit building process. More speci�cally, I investigate

if non-traditional data can be used to construct models that are economically

viable for the lender. If the conclusion is in the a�rmative, then it give lenders

economic incentive to invest and use non-traditional data in their credit granting

policies. Additionally, it gives policymakers another tool to use as they consider

how to solve the problem of assimilating borrowers who are credit invisible into

the mainstream economy.

A lender's credit granting policies directly in�uence their pro�t or loss: a more

restrictive policy will approve fewer borrowers and may generate fewer default

losses but also less revenue. However, a less restrictive policy will approve more

borrowers, generating higher revenues but also higher losses. It is therefore

imperative for a lender to strike a healthy balance between default rates, losses

given default and gains given loan repayment. This is true especially when the

goal is to extend credit to individuals who are credit invisible.

Underlying all credit modeling methodologies are loss functions that will ei-

ther be minimized or maximized depending on the problem of study and its

application. For a classi�cation problem, the most popular loss function is the

Maximum Likelihood Estimate. Its popularity is due to its optimal properties
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during parameter estimation1.

While that approach is extremely useful, it only helps answer the question of

whether a potential borrower will default or not in probabilistic terms. However,

if I assume, as most businesses do, that the lender seeks to maximize economic

pro�t or utility2, then the lender's pro�tability objective is simply a consequence

of a borrower's loan outcome of default or not default. For example, a lender

can only assess pro�tability after the decision to accept or reject a loan.

The drawback in traditional credit default modeling is that it does not directly

incorporate the lender's pro�tability objective into the model building process.

The process in which that is done in credit modeling is called pro�t scoring.

Pro�t scoring seeks to maximize a loss function3 that is more in line with the

lender's pro�tability objective4.

Pro�t scoring poses two major drawbacks. The �rst concerns the issue of how

to design the utility function - should it be designed on a micro or macro level?

For example, in terms of a loan application, pro�t can be measured on a per loan

basis or on a portfolio of loans. Should it capture direct or indirect pro�t? That

is, should the function measure most or all intermediary nuances through which

that pro�t was attained? This will include cost accounting for IT infrastructure,

overhead, occupancy costs, etc.

The second drawback is a consequence of the business model. In this context,

a pro�t metric is by de�nition, business-centric. That is, there is a need to be

well versed in the business model and even in the industry as a whole in order

to derive a custom utility function that can e�ectively measure pro�t. By this

1See (Myung, 2003)
2The term �pro�t� and �utility� will be used interchangeably.
3The term �loss function�, �utility function� and �objective function� will be used inter-

changeably
4See (Thomas, 2009)
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logic, a custom utility function designed to capture pro�ts for an airline industry

may not be suitable in the medical industry. Therefore it is also important to

study default in the context of pro�ts as opposed to probabilistic terms.

The outline of this chapter is as follows: Section 3.2 discusses the theoretical

foundations of a lender who seeks to maximizes pro�t. Section 3.4highlights the

data and the methodology while Section 3.4 presents the conclusion.

3.2 The Pro�t Objective Of The Lender

This section establishes the theoretical foundation needed for the pro�t scoring

approach. I will argue that it is important to use a loss function that is ap-

propriate for the application under study. Additionally, I will illustrate that a

variable cuto� value can be derived from the lender's loss function, which will

be useful to make lending decisions.

I follow the structure and notations presented in (Lieli and White, 2010) and

make the following de�nitions

� Let λ > 0 represent the loan principal

� Let r ∈ (0, 1) be the interest rate on the loan

� Let t be the maturity on the loan

Therefore, a loan is characterized by a vector Ẍ = (λ, r, t). Assume further

that the lender only issues a conventional loan that is payable in equal monthly

installment and that in the event of default, the lender stands to recover a

fraction of the principal. De�ne this recovery rate as q ∈ [0, 1].
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Let X̃ denote features from the sample data that is su�cient to predict borrower

default risk. Then, I de�ne the binary default risk variable as follows

Y =


−1 bad borrower

+1 good borrower

(3.1)

where a good borrower is de�ned to be those who did not default on the loan,

while a bad borrower defaulted. It is important to realize that Y , the outcome

variable is only observed at loan maturity. In other words, the lender does not

de�nitively know Y at the time of the loan origination. I make the following

de�nitions

� Let D = {A, R} represent the lender's decision to accept or reject a loan

application

� Let π{d∈D,y∈Y }represent the lender's pro�tability metric as a consequence

of their decision to accept or reject a loan application and their classi�ca-

tion of the borrower at maturity as good or bad

Then, Table 3.1 gives an overview of the framework of the lender's pro�tability.

The lender is only pro�table when they accept a �good borrower�, as measured

in the accept/ no default quadrant of Table 3.1, and stands to lose money when

they accept a �bad borrower�, as measured in the accept/ default quadrant of

Table 3.1. In the case where a borrower is rejected, the pro�t is de�ned to be

zero. In other words, pro�t is calculated only for those applicants who were

accepted.

Although loan pro�tability is conditioned on the lender's decision and the loan

outcome, it is also a function of borrower default features in the sample data as
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well as the characteristics of the loan contract, such as loan rate, amount and

maturity.

No Default (Y=1) Default (Y=-1)

Accept (A) π
A,1

(
X̃ = x̃, Ẍ = ẍ

)
≥ 0 π

A,−1

(
X̃ = x̃, Ẍ = ẍ

)
< 0

Reject (R) π
R,1

(
X̃ = x̃, Ẍ = ẍ

)
= 0 π

R,−1

(
X̃ = x̃, Ẍ = ẍ

)
= 0

Table 3.1: Lender's Pro�tability Scenarios

For a conventional loan with equal payments, I choose the Net Present Value

(NPV) to play dual roles. First, it acts as the lender's pro�tability metric and

secondly, it serves as the custom loss function. For such a loan, let CFk represent

the cash�ow or the equal installment payable at time k, where k ⊆ t. Then, the

NPV is de�ned as

π =

i=t∑
i=1

CFk
(1 + r)i

− λ (3.2)

Rearranging Equation 3.2 gives the following

π = CFk

i=t∑
i=1

(1 + r)−i − λ (3.3)

Because the lender is only pro�table when they accept a �good borrower�, the

accept/ no default quadrant in table Table 3.1 is calculated as follows

π
A,1

(
X̃ = x̃, Ẍ = ẍ

)
= CFk

i=t∑
i=1

(1 + r)−i − λ > 0 (3.4)

That is, the lender always stands to make a pro�t when they accept a good

borrower. However, in the event of a default, the assumption is that the lender
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can recover only a fraction of the loan. In this case, the lender can invest the

recovered amount in a risk-free government note of the same maturity as the

loan. If I denote the return on the government note as rg, then it should be

noted that rg < r.

The loss associated with the default event is calculated as follows

π
A,−1

(
X̃ = x̃, Ẍ = ẍ

)
= q ∗ λ(1 + rg)

−t − λ < 0 (3.5)

Rearranging Equation 3.5 gives the following

π
A,−1

(
X̃ = x̃, Ẍ = ẍ

)
= λ

(
q ∗ (1 + rg)

−t − 1
)
< 0 (3.6)

Because the lender cannot observe Equation 3.1 at the time of the loan applica-

tion, their best approach is to make a decision based on expected pro�t or loss.

Let α = P (Y = 1|X̃ = x̃, Ẍ = ẍ) denotes the probability of not defaulting on

the loan. Then, the lender needs to make a decision such that expected pro�t

is maximized. That is,

max
d∈{A,R}

E

(
π
D,Y
|X̃ = x̃, Ẍ = ẍ

)
= max
d∈{A,R}

{
α π
A,1
− (1− α) π

A,−1

}
(3.7)

Therefore, a lender will accept a borrower's loan application if there is an ex-

pected economic gain. This is stated as follows

α π
A,1
− (1− α) π

A,−1
> 0 (3.8)
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Here, α, known as the cuto� value, serves the purpose of regulating whom the

lender will accept or deny. Solving for it gives the following equation

α =
πA,−1

πA,−1 + πA,1

def
= c(ẍ) ∈ (0, 1) (3.9)

Simplifying that gives Equation 3.10

α =

(
1 +

πA,1
πA,−1

)−1
def
= c(ẍ) ∈ (0, 1) (3.10)

In the traditional scoring approach, the cuto� value is motivated by past busi-

ness experiences and it is often expressed as a constant number. However, as a

direct consequence of using Equation 3.3 as the loss function, Equation 3.9 and

Equation 3.10 presents a variable cuto� that is function of the loan character-

istics. As a result, two important features emerge

1. The cuto� function is directly tied to the lender's pro�tability objective.

Therefore, the lender controls whom to extend credit to based on their

custom loss function

2. The cuto� function uses borrower loan characteristics. This means that

borrowers with di�erent loan contracts will also have di�erent cuto� value

In addition to the bene�ts highlighted above, Equation 3.9 carries an intuitive

economic interpretation: the variable cuto� per applicant is a ratio between

possible losses when they default and potential gains when they do not default.
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3.3 Parameter Estimation

3.3.1 Estimation of Likelihood Parameters

According to (Myung, 2003), parameter estimation falls under two broad cat-

egories: least-squares estimation (LSE) and maximum likelihood estimation

(MLE). MLE is widely used and recognized because of its statistical proper-

ties. Additionally, MLE is often the basis for tests such as the chi-square, AIC,

BIC and the G-squared test.

Following the notation of (Myung, 2003), letX = x1, . . . , xn andW = w1, . . . , wn

represent a given data and real valued parameters. Then a probability density

function (pdf), gives the probability of observing X given W . Mathematically,

the pdf of observing each observation is expressed as if X is independently and

identically distributed

f(X W ) = f1(x1 w1) ∗ f2(x2 w2) ∗ f3(x3 w3) ∗ . . . ∗ fn(xn wn)

Given X, a likelihood function seeks to �nd a pdf that is most likely to have gen-

erated the data. LetL(W X) be the likelihood function, then the relationship

between L(W X) and f(X W ) is given as follows:

L(W X) = f(X W )

For maximum likelihood estimation, the idea is to �nd parameters W that

maximizes the likelihood function. As an optimization problem, it is stated as

argmax
W

i=n∏
i=1

fi(xi|w)
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However, for computational e�ciency, the log of the likelihood is maximized as

follows:

argmax
W

i=n∑
i=1

log (fi(xi|w))

Let yi ∈ {0, 1}, then for a logistic regression the probability distribution is given

as

P (Yi Xi) =

(
e
∑
W ·X

1 + e
∑
W ·X

)yi
∗
(
1− e

∑
W ·X

1 + e
∑
W ·X

)1−yi

The likelihood function is

L(W X) = (1− yi) ∗ log
(

1

1 + e
∑
W ·X

)
+ yi ∗ log

(
e
∑
W ·X

1 + e
∑
W ·X

)

L(W X) =


log
(

e
∑

W ·X

1+e
∑

W ·X

)
yi = 1

log
(

1
1+e

∑
W ·X

)
yi = 0

3.3.2 Estimation of Parameters That Maximizes Pro�t

Let τ(x̃, ẍ; θ) be some parametric model having T (x̃, ẍ; θ) ∈ [0, 1] as the CDF.

Although the exact nature of T (x̃, ẍ; θ) is not known, I will interpret its values

to be a conditional5 probability. As in (Lieli and White, 2010), T (x̃, ẍ; θ) is

selected to be the logistic distribution because currently, it is the industry stan-

dard6. Then a pro�t maximizing lender will prefer to maximize pro�t based on a

decision to accept or reject an applicant. This is stated as a linear programming

problem in Equation 3.11

5conditioned on X̃
6See (Baesens, Rösch, and Scheule, 2016)
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max
d∈{A,R}

E

(
π
D,Y
|X̃ = x̃, Ẍ = ẍ

)

subject to d =


R T (x̃, ẍ; θ∗) ≤ c(ẍ)

A T (x̃, ẍ; θ∗) > c(ẍ)

(3.11)

Therefore, the lender seeks to �nd an optimum parameter θ∗ that solves Equa-

tion 3.11. (Elliott and Lieli, 2013) show that, Equation 3.11 can be written

as

max
θ∗∈Θ

E {b(Y + 1− 2c(ẍ)) ∗ sign(T (x̃, ẍ; θ∗)− c(ẍ))} (3.12)

where

sign(v) =


1 v > 0

−1 v ≤ 0

(3.13)

and Y takes the same form as Equation 3.1 and b = πA,−1 + πA,1 corresponds

to the denominator of Equation 3.9. The bene�t of Equation 3.12 is that it

shows clearly the role of the variable cuto� and total pro�t as it pertains to the

lender's pro�t maximizing objective. In the next section, I will discuss the data

and methodology used for the discussion above.

3.4 Data and Methodology

The data used in this section has been described thoroughly in Section 2.2 of

Chapter 2. However, loan speci�c information such as the amount, rate and
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maturity were assigned to each borrower, in absence of observed data, based on

relevant literature and plausibility of the underlying application. As such, no

claim is made that they are realistic. Nevertheless, sensitivity analysis in the

Appendix show that the results are robust.

According to (Adams, Einav, and Levin, 2009) credit scores and loan sizes are

negatively correlated. That is, if the lender determines that the borrower is a

low default risk, as measured by a high credit score, then the lender can be

con�dent to give the borrower a higher loan amount. However loan amounts

should also take into consideration the borrower's income and other debt(s). I

do this by introducing the debt-to-income (DTI) ratio.

According to Experian7, a DTI ratio should be at or below 40% of the borrower's

income for auto loans. Therefore, the maximum allowable loan amount assigned

to an applicant was 40% of their income. Loan amounts were assigned based on

borrower's relative default risk classi�cation, as measured by their credit score.

I constructed this ranking, shown in Table 3.2, by dividing the credit score into

quartiles, with low risk individuals in the �rst quartile, followed by medium,

etc. Using this table, a borrower is who has a low default risk (as measured

by their credit score) will receive the maximum allowable loan amount, while a

borrower who has a high default risk will receive the lowest loan amount.

Credit Quartile Default Risk Loan Amount

First High (10%) * Income
Second Upper medium (20%) * Income
Third Lower medium (30%) * Income
Fourth Low (40%) * Income

Table 3.2: Default Risk Classi�cation For Loan Amount

Auto loans have �xed maturities of 36 months, 48 months, 60 months and 72
7https://www.experian.com/blogs/ask-experian/how-to-get-a-car-loan/#s3
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months. Unlike loan sizes, borrower default risk, as measured by a credit score,

and loan maturity are positively correlated8. That is, the greater a borrower's

credit score, the more time they will be assigned to repay the loan because the

lender trusts them to hold unto the loan for a longer period.

Similar to the loan sizes, I create borrower default risk by dividing their credit

score into quartiles, with low risk individuals in the �rst quartile, followed by

medium, etc. Loan maturity was assigned according to the default risk of the

borrower. For example, borrowers with low default risk have 72 months to repay

the loan, etc. This is shown in Table 3.3.

Credit Quartile Default Risk Loan maturity

First High 36 months
Second Upper medium 48 months
Third Lower medium 60 months
Fourth Low 72 months

Table 3.3: Default Risk Classi�cation For Loan Maturity

The loan rate, was calculated as being 10% more than the risk free rate9. How-

ever, because of the subprime nature of the population under study, I used a

loan rate of 11%, 15% and 20% above the risk free rate as well. The result of

this analysis is shown in the Appendix.

Following (Lieli and White, 2010), I make the assumption that recovery rates

and loan amount are inversely related. That is, a lender stands to recover more if

the borrowed amount is relatively small. For (Lieli and White, 2010), the reason

for this assumption was to �further emphasize the role of a variable cuto�.� The

table below shows the recovery rate for loan amount 10, 000λ.

8See (Kuvíková, 2015)
9https://www.treasury.gov/resource-center/data-chart-center/interest-

rates/pages/textview.aspx?data=yield
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Loan Amount Recovery Rate

λ ≤ 0.4112 0.95
0.4112 < λ ≤ 0.8223 0.90
0.8223 < λ ≤ 1.2335 0.85
1.2335 < λ ≤ 1.6446 0.80
1.6446 < λ ≤ 2.0558 0.75
2.0558 < λ ≤ 2.4670 0.70
2.4670 < λ ≤ 2.8781 0.65
2.8781 < λ ≤ 3.2893 0.60
3.2893 < λ ≤ 3.7004 0.55
otherwise 0.50

Table 3.4: Recovery Rates For Loan Amounts

3.4.1 Alternative Data Pro�t Results

The theoretical framework outlined in Subsection 3.3.2 requires the speci�cation

of a benchmark parametric model that will be used to predict the probability

of default. In this section, I present the result of the logistic regression model

for the alternative data in Table 3.5. It should be noted that the variables were

presented and discussed in Table 2.2 of Chapter 2.

Variables Estimates Std. Error Wald Chi.Sq Pr > Chi.Sq

Intercept 1.4911 0.1494 99.636 <.0001
RT01 -0.3592 0.0859 17.4913 <.0001
ADY 0.3414 0.0341 100.164 <.0001
LN01 -0.411 0.1436 8.1906 0.0042
SJY -0.1841 0.0334 30.349 <.0001
NMN -0.1036 0.0413 6.2999 0.0121
PCV01 0.2164 0.0401 29.1804 <.0001
BK01 0.3082 0.0618 24.8376 <.0001

Table 3.5: Logistic Regression Results for Alternative Data
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Next, I present the result of the pro�t based approach. To this end, 80% of the

data was used for in-sample calculations while 20% was used for out-of-sample

con�rmation. The results of the following models were built and compared

1. Model I - a logistic regression model with a constant cuto� value

2. Model II - a logistic regression model with a variable cuto� based on

Equation 3.10

3. Model III - a pro�t based model based on Equation 3.12

(a) Because of the non-smooth nature of Equation 3.11, the Simulated

Annealing algorithm was used to solve the optimization problem.

For each model the following metrics were also computed

1. Accept Ratio (AR) - Proportion of applications that were accepted

2. Reject Ratio (RR) - Proportion of applications that were rejected

3. P(A|G) - Proportion of good borrowers that were accepted

4. P(B|R) - Proportion of bad borrowers that were rejected

5. Pro�t - Average pro�t per application

6. CI.Pro�t - The con�dence interval of the pro�ts

Following, (Lieli and White, 2010), because I have no way of knowing the

lender's explicit cuto� value, the constant cuto� value under Model I was cho-

sen such that the acceptance ratio under Model I and Model II will be roughly

similar. The entire exercise was repeated 250 times and their average results

are shown Table 3.6
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Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.994 0.006 0.223 0.882 $154.60 $153.67, $155.52
Logistic Regression Variable 0.992 0.008 0.224 0.914 $157.87 $156.97, $158.85
Pro�t Based Variable 0.916 0.084 0.233 0.888 $192.18 $191.24, $193.14

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.994 0.006 0.222 0.880 $152.39 $148.87, $156.13
Logistic Regression Variable 0.992 0.008 0.223 0.915 $155.85 $151.91, $159.47
Pro�t Based Variable 0.916 0.084 0.231 0.874 $180.40 $176.87, $183.34

Table 3.6: Alternative Data Pro�t Scoring Result

From the result in Table 3.6 it can be seen that directly incorporating the

lender's pro�tability objective into the credit scoring process has the potential to

yield higher pro�ts, compared to traditional methodologies. It is also worthwhile

to note that compared to the other approaches, the pro�t based method accepted

fewer applicants but recorded larger pro�t. Considering the credit-invisible

nature of the borrowers, this means that from a risk management perspective,

a lender does not have to be overexposed to be pro�table. Additionally, in

terms of the research question, it shows that there is measurable monetary

value in alternative data and that it is in the lender's best interest to consider

incorporating it into the lending practice.

3.4.2 Traditional Data Pro�t Results

In this section, I present the result of the logistic regression model for the tra-

ditional data. The variables used in the modeling process were presented and

discussed in Table 2.3 of Chapter 2. The results are shown in Table 3.7
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Variables Estimates Std. Error Wald Chi.Sq Pr > Chi.Sq

Intercept 1.1994 0.0445 727.7369 <.0001
VI01 -0.0194 0.00279 48.6375 <.0001
AOT01 0.0125 0.00407 9.506 0.002
NI01 0.0745 0.00691 116.1444 <.0001
UT01 -0.1518 0.028 29.4561 <.0001
AT01 -0.032 0.0168 3.6165 0.0572
CN01 -0.0408 0.0058 49.3962 <.0001
AP01 0.000282 0.000054 27.0795 <.0001
PA06 -0.0479 0.012 15.9544 <.0001
IV06 -0.0569 0.0151 14.1019 0.0002
AO01 0.00125 0.000332 14.1293 0.0002
CLA01 0.0059 0.00146 16.3265 <.0001
NBK01 0.000151 0.000053 8.244 0.0041

Table 3.7: Traditional Data Logistic Regression Results

Next, I present the result of the pro�t based approach outlined in Section 3.2.

All metrics were explained in Subsection 3.3.1. It should be noted that the

entire exercise was repeated 250 times and their average results are shown in

Table 3.8

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.926 0.074 0.231 0.889 $188.66 $187.83, $189.49
Logistic Regression Variable 0.926 0.074 0.231 0.890 $190.41 $189.49, $191.38
Pro�t Based Variable 0.878 0.120 0.238 0.892 $200.99 $200.18, $201.81

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.926 0.074 0.231 0.890 $184.60 $181.27, $188.21
Logistic Regression Variable 0.926 0.074 0.231 0.890 $186.91 $184.02, $189.85
Pro�t Based Variable 0.879 0.120 0.236 0.877 $189.67 $186.75, $192.07

Table 3.8: Traditional Data Pro�t Scoring Result

As with the alternative data, a lender stands to gain more pro�t when they

incorporate their pro�tability objective into the credit modeling process. I also

observe the same phenomenon of accepting fewer applications but being more
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pro�table when compared to the other models.

3.4.3 Combined Data Pro�t Results

In this section, I present the result of the logistic regression model for the tra-

ditional data. The variables used in the modeling process were presented and

discussed in Table 2.1 of Chapter 2. The results are shown in Table 3.9

Variables Estimates Std. Error Wald Chi.Sq Pr > Chi.Sq

Intercept 1.3986 0.1565 79.8297 <.0001
RT01 -0.2718 0.0875 9.6523 0.0019
ADY 0.3446 0.0344 100.0674 <.0001
LN01 -0.4088 0.1452 7.925 0.0049
SJY -0.133 0.0341 15.1818 <.0001
NMN -0.0517 0.0419 1.5249 0.2169
PCV01 0.1877 0.0407 21.3124 <.0001
BK01 0.2389 0.0632 14.2986 0.0002
VI01 -0.0189 0.00282 45.0946 <.0001
AOT01 0.0131 0.00408 10.3753 0.0013
NI01 0.0723 0.00692 109.1011 <.0001
UT01 -0.1558 0.0281 30.7083 <.0001
AT01 -0.0316 0.0169 3.5169 0.0607
CN01 -0.0393 0.00587 44.7416 <.0001
AP01 0.000269 0.000054 24.7097 <.0001
PA06 -0.0429 0.012 12.7325 0.0004
IV06 -0.0505 0.0152 11.0225 0.0009
AO01 0.0012 0.000335 12.7652 0.0004
CLA01 0.00551 0.00147 14.0756 0.0002
NBK01 0.000144 0.000052 7.6199 0.0058

Table 3.9: Combined Data Logistic Regression Results

Next, I present the result of the pro�t based approach outlined in Section 3.2.

All metrics were explained in Subsection 3.3.1. It should be noted that the

entire exercise was repeated 250 times and their average results are shown in

Table 3.10
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Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.913 0.087 0.233 0.886 $184.62 $183.77, $185.45
Logistic Regression Variable 0.913 0.087 0.234 0.898 $202.68 $201.83, $203.57
Pro�t Based Variable 0.833 0.167 0.247 0.900 $221.44 $220.54, $222.26

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.913 0.087 0.232 0.886 $180.36 $177.03, $184.07
Logistic Regression Variable 0.913 0.087 0.233 0.897 $197.83 $194.53, $201.23
Pro�t Based Variable 0.833 0.167 0.243 0.881 $201.97 $198.46, $204.11

Table 3.10: Combined Data Pro�t Scoring Result

As in Subsection 3.3.1 and Subsection 3.3.2, there is an economic gain when the

lender considers a pro�t metric as a basis for making credit decisions. Moreover,

the combined traditional and alternative credit data has economic value that is

seen in the magnitude of the pro�t. That is, there is a progression of pro�t value

with alternative data having the least amount to the combined data having the

highest amount. This is seen in both in-sample and out-of-sample data. A

similar phenomenon was seen in Table 2.4 of Chapter 2 when the AUC was

used as the performance metric.

3.5 Conclusion

This chapter of the dissertation takes a pro�tability approach into the question

of constructing credit models when traditional borrower information is scarce.

More speci�cally, it is concerned with credit models that directly incorporates

the lender's pro�tability objective into the lending process.

This indirectly implies that minimizing the borrower default behavior may not

be the same as maximizing the lender's pro�t. This is important because any
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rational lender will seek to optimize or at least be concerned about pro�t when

dealing with individuals who are credit invisible.

Using the NPV as the pro�tability measure, I show that directly incorporating

the lender's pro�tability objective into the credit scoring process has the po-

tential to yield higher pro�ts, compared to existing methodologies. Compared

to the other approaches, the pro�t based method accepted fewer applicants but

recorded superior pro�t.

This is important because considering the credit-invisible nature of the bor-

rowers, this means that from a risk perspective, a lender does not have to be

overexposed to be pro�table. Additionally, in terms of the research question,

it shows that there is measurable monetary value in alternative data and that

it is in the lender's best interest to consider incorporating it into the lending

practice.

Moreover, the combined alternative and traditional credit data have a greater

economic value that is seen in the magnitude of the pro�t. That is, the lender

gains the highest pro�t when they incorporate both alternative and traditional

data into the credit building process. Of course, more research is needed con-

sidering that some of the data was simulated.

19



Chapter 4

Conclusion

Chapter 2 of the dissertation is motivated by investigating the statistical use-

fulness of non-traditional data for credit modeling when traditional borrower

information is scarce or unavailable. The consequences of not having enough

�nancial information is signi�cant in two main ways. First, lack of informa-

tion often determines whether individuals who are credit invisible will receive a

higher price of credit or be denied credit entirely.

Second, there is a strong interest from regulatory agencies regarding the use

of alternative data points that can be used to predict default risk for lending

decisions. From a regulatory perspective, the purpose is to gradually build

credit models that will inform policies on how to slowly incorporate individuals

who are credit invisible into the mainstream economy.

Because alternative credit data has been shown to help in this space, I contribute

to the debate and further show other alternative data variables that can act

as proxies for credit default risk. Using the likelihood ratio test, through a
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nested logistic regression model, I �nd that alternative variables can complement

traditional variables in order to gauge default behavior for those who are credit

invisible. Additionally, alternative variables contain unique information that

can help predict default risk.

For further analysis of this �nding, I used three machine learning models, ran-

dom forest, support vector machines and k-nearest neighbor, to describe default

behavior for individuals who are credit invisible. To make any statement about

the complementary nature of the alternative and traditional data, I developed

a way to statistically test the goodness of �t statistic that is similar in spirit to

the likelihood ratio test.

For this, I constructed bootstrap distributions of the goodness of �t statistic

for machine learning models in order to make statistical statements about their

performance. The conclusion from the machine learning models was that the

alternative data brings unique elements to the modeling process that contributes

to modeling default behavior for individuals who are credit invisible. This is in

agreement with the results of the log-likelihood ratio test.

Also, I am able to relate which alternative variables carry information pertaining

to credit default. For example, when an unbanked consumer does not have a

valid home phone number the probability of default increases by almost 4%.

Also, when an unbanked borrower does not have a valid home address, the

probability of default increases by 6.37%.

Chapter 3 of the dissertation takes a pro�tability approach to the same research

question. More speci�cally, it is concerned with credit models that directly

incorporates the lender's pro�tability objective into the lending process. This

is important because any rational lender will seek to optimize or at least be

concerned about pro�t when dealing with individuals who are credit invisible.
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The implication is that minimizing borrower default behavior may not be the

same as maximizing the lender's pro�t.

Using the NPV as the pro�tability measure, it is shown that directly incorpo-

rating the lender's pro�tability objective into the credit scoring process has the

potential to yield higher pro�ts, compared to existing methodologies. Compared

to the other approaches, the pro�t based method accepted fewer applicants but

recorded superior pro�t.

This is important because considering the credit-invisible nature of the borrow-

ers, it means that from a risk management perspective, a lender does not have to

be overexposed to be pro�table. Additionally, in terms of the research question,

it shows that there is measurable monetary value in alternative data and that

it is in the lender's best interest to consider incorporating it into the lending

practice.

Moreover, the combined alternative and traditional credit data have a greater

economic value that is seen in the magnitude of the pro�t. That is, the lender

gains the highest pro�t when they incorporate both alternative and traditional

data into the credit building process.

It should be noted that some data points in Chapter 3 were simulated. Although

sensitivity analysis in the Appendix appears to be robust, the results should be

interpreted with caution, especially when the out of sample results appears

somewhat weaker.
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Chapter 5

Future Research

Because of the age of big data, credit risk modeling is evolving. Current research

suggests that incorporating non-traditional data sources have the potential to

improve existing models. In most cases, novel methodologies will be required to

deal with the in�ux of unseen data.

I am interested in exploring web and social media-based data to enrich the

modeling process. Some of the questions I am interested in include the extent

to which online relationships contribute to default. Speci�cally, I plan to use

network-based metrics such as centrality, communities and cliques as variables

in the model to ascertain their usefulness. This is important because it may

even help identify a network of defaulters.

Another interest of mine is to explore the role of other pro�tability metrics for

pro�t scoring. Although the current analysis used the NPV, there may be other

metrics in the literature. The real contribution here is to explore optimization

techniques that will be able to maximize pro�t.
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Using any classi�cation technique, an interesting topic to explore is to use a grid-

search approach to �nd an optimum cut-o� point and compare the corresponding

pro�t to that of the pro�t-based approach. Additionally, the idea of using a loss

function that minimizes expected loss rather than maximizing the expected

pro�t is very interesting.

Also, I am interested in extending the work to multiple periods. For example,

credit credits are known to have revolving balances. They do not follow the

same loan structure as a conventional loan. Because they show multiple periods,

the contribution lies in modeling multi-period pro�ts. It will be a novel pro�t

function that has the capability to capture pro�ts from multiple period.
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Appendix

5.1 Variable de�nitions

Table 5.1 gives the variable names and meaning for the result of the variable

clustering procedure on the alternative data in Subsection 2.2.2

Alternative Variable Meaning

RT01 Number of bank routing number changes in the last 90 days

ADY A�rmative indication of a valid address

ADN Negative indication of a valid address

HPH01 Number of home phone number changes in the last 30 days

WPH01 Number of work phone number changes in the last 30 days

LN01 Number of last name changes in the last 60 days

NHPHY A�rmative indication of a match between name and home phone number

ZP01 Number of zip code changes in the last 60 days

SNY A�rmative indication of validity of social security number

DSY A�rmative indication that a deceased identity is found with name and/or SSN

SJY A�rmative indication of evictions, liens, judgments and suits

NMN Negative indication that name and address match

WSY A�rmative indication that SSN was issued before date of birth

AC01 Number of bank account changes in the last 15 days

PCV01 A�rmative indication that home phone number is valid

PCV012 Negative indication that home phone number is valid

PD01 A�rmative indication of a match between phone and address

BK01 A�rmative indication of a bankruptcy

Table 5.1: Alternative Data Variables

Table 5.2 gives the variable names and meaning for the result of the variable

clustering procedure on the traditional data in Subsection 2.2.2
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Traditional Variable Meaning

VI01 Number of vehicle inquiries within 24 months

CMD01 Number of non-medical collections assigned within 24 months

AOT01 Number of trades open over 6 months

NI01 Number of inquiries within 30 days

UT01 Number of utility inquiries within 12 months

CA01 Amount in collections

AT01 Number of trades opened within 12 months

CN01 Number of non-medical accounts in collections

AA01 Number of trades active within 12 months

CI01 Number of collection inquiries within 12 months

CI001 Number of inquiries within 6 months

AP01 Total payments

RB01 Revolving balance with limit opened within 12 months

CNL01 Number of non-medical accounts in collections greater than $100

VIQY Number of vehicle inquiries within 14 days

TL12 Amount in collections assigned within 12 months

PA06 Number of trades rated 60 days past due

RVO Bank revolving balance with limit

IT01 Number of telecommunications inquiries within 1 month

RR01 Residential type: renting

CNM01 Number of non-medical collections assigned within 12 months

IV06 Number of vehicle inquiries within 6 months

AO01 Months since oldest trade opened

BRV01 Bank revolving balance with limit opened within 24 months

CM01 Number of inquiries within 1 month

NC001 Number of collections assigned within 12 months on original balance greater than $100

RF01 Residential type: family

IC1M Number of collection inquiries within 1 month

CLA01 Months since most recent collection assigned

RSM01 Residential type: military

NBK01 Non-bank revolving balance with limit

NBK001 Non-bank revolving balance with limit opened within 12 months

Table 5.2: Traditional Data Variables
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5.2 DeLong Test for AUC Comparison

This section explores the use of the DeLong test alluded to in Subsection 2.3.2.

The DeLong test1 is a widely used method that provides a 95% con�dence in-

terval and standard errors of the di�erence between two or more AUCs. For

comparison purposes, a visual representation of the ROC-AUC curves are pro-

vided in Figure 5.1

Figure 5.1: ROC Comparison

The standard error and the 95% con�dence interval of the AUCs are also shown

in Figure 5.2
1See (E. R. Delong, D. M. Delong, and Clarke-Pearson, 1988)
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Figure 5.2: DeLong Test Con�dence Interval

For all models, the lower limit of the con�dence interval is greater than 0.5,

implying that their performance is di�erent from random guessing. Additionally,

using the chi-square test with two degrees of freedom, it is statistically signi�cant

that the unrestricted model is di�erent from at least one of the restricted models.

This is shown in the table below.

Figure 5.3: DeLong Test Chi-Square

Also, from the table below it can be seen that the di�erence between the un-

restricted and restricted models are statistically signi�cant. This also con�rms

the analysis of the BIC and the log-likelihood ratio test. In terms of the re-

search question, it means that alternative data and combined data carry unique

information in the credit building process.
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Figure 5.4: DeLong Test Contrast Estimation

While the DeLong test is useful to test the di�erence in correlated AUCs, its

value may be limited in the hypothesis testing outlined in Subsection 2.3.3. The

focus of Subsection 2.3.3 is to �nd a way to test model metrics across di�erent

machine learning models. Here, the DeLong test may not be appropriate if

I choose to test a di�erent metric, say accuracy, precision or recall. In other

words, the use of the DeLong test is a consequence of choosing the AUC as a

metric, rather than a research question.

Also, the DeLong test is used to test di�erence in AUC metric for nested models.

In Subsection 2.3.3, the goal is to test the di�erence of a di�erence in AUC

(or any other metric) within the context of bootstrap sampling using machine

learning models. Therefore, the DeLong test may not be applicable.

5.3 Testing Normality Assumptions

In this section, I explore whether a parametric test could be used to test the

di�erence in AUC between the combined and traditional data, as well as the

combined and alternative data for the hypothesis testing outlined in Subsection

2.3.3. Although non-parametric tests do not make distributional assumptions,

it also has less power compared to their parametric counterparts.
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Normality tests fall under two broad categories: graphical and hypothesis tests.

Under graphical tests, a researcher concludes that a sample is normally dis-

tributed by looking at histograms, Q-Q plots or box plots. While this may serve

as a good starting point, it does not provide conclusive proof that the sample is

normal. This is because by nature graphical interpretations are subjective and

may require knowledge in statistics to be fully appreciated2.

Hypothesis tests for normality assumptions tend to be more robust than their

visual counterparts because they are often backed by statistical theory. Over the

years, many tests have been developed to test for normality assumptions. For

a good overview, see (Rani Das, 2016) and (D'Agostino and Stephens, 1987).

For this analysis, I combined both approaches. It should be noted that the goal

is not to test whether AUCs generated from individual datasets are normally

distributed, but whether the di�erence in AUC between datasets are normally

distributed. For the visual approach, I used the histogram and the Q-Q plot.

The results are shown below.

2See (Yap and Sim, 2011)
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For the logistic regression, the histogram does not show large deviations from a

classical normal distribution. Particularly, the histogram is not skewed. This is

also con�rmed by the Q-Q plot, except for small deviations on the tail. Using

the visual approach, the conclusion is that the di�erence in AUC between the

combined and traditional data is normally distributed. The same conclusion is

also valid for the di�erence in AUC between the combined and alternative data.

For the random forest model, the histogram does not show large deviations from

a normal distribution. Particularly, there is not abnormal tail behavior. This

is also con�rmed by the Q-Q plot, where the quantiles are shown to be on the

line y = x, with slight deviation in the case of the combined and alternative

data. Using the visual approach, the conclusion is that the di�erence in AUC

between the combined and traditional data is normally distributed. The same

conclusion is also valid for the di�erence in AUC between the combined and

alternative data.

For the SVM model, the histogram does not show large deviations from a normal
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distribution. It is hard to determine if there is abnormal tail behavior. However,

the Q-Q plot for the AUC di�erence between the combined and traditional data

shows some skewed behavior. In this case, it is not conclusive that the di�erence

in AUC between the combined and traditional data is normally distributed. The

Q-Q plot for the AUC di�erence between the combined and alternative data does

not show skewed behavior. In this case, I will conclude that the di�erence in

AUC between the combined and alternative data is normally distributed.

For the kNN model, the histogram does not show large deviations from a normal

distribution and there is no abnormal tail behavior. The Q-Q plot con�rms this

as well, where the quantiles are shown to be on the line y = x. Using the visual

approach, the conclusion is that the di�erence in AUC between the combined

and traditional data is normally distributed. The same conclusion is also valid

for the di�erence in AUC between the combined and alternative data.
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While the visual tests for normality has been done, I also show the hypothesis

test for normality assumptions. Although normality tests are many, research

shows that the Shapiro-Wilk test is the preferred test3. For each model, I

describe two hypothesis test. The null hypothesis of the �rst test is that the AUC

di�erence between the combined and traditional data are normally distributed,

while the alternative hypothesis states that they are not normally distributed.

The null hypothesis of the second test is that the AUC di�erence between the

combined and alternative data are normally distributed, while the alternative

hypothesis states that they are not normally distributed. The result of the

hypothesis test in Table 5.3 con�rms the result of the graphical test. With the

exception of the di�erence in AUC between the combined and traditional data

using SVM, I fail to reject the null hypothesis that the AUC di�erences are

normal4.
3See (Ghasemi and Zahediasl, 2012)
4Although I report the Shapiro-Wilk test, I also conducted a KS test, D'Agostino's k2 test

and Anderson-Darling test. Their conclusion were the same as the Shapiro-Wilk test
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Model Hypothesis p-Value

Logistic Regression

H0 : AUCCD −AUCTD = N(µ, σ)
0.3872

H1 : AUCCD −AUCTD 6= N(µ, σ)
H0 : AUCCD −AUCAD = N(µ, σ)

0.3151
H1 : AUCCD −AUCAD 6= N(µ, σ)

Random Forest

H0 : AUCCD −AUCTD = N(µ, σ)
0.5759

H1 : AUCCD −AUCTD 6= N(µ, σ)
H0 : AUCCD −AUCAD = N(µ, σ)

0.6812
H1 : AUCCD −AUCAD 6= N(µ, σ)

Support Vector Machine

H0 : AUCCD −AUCTD = N(µ, σ)
0.0033

H1 : AUCCD −AUCTD 6= N(µ, σ)
H0 : AUCCD −AUCAD = N(µ, σ)

0.4313
H1 : AUCCD −AUCAD 6= N(µ, σ)

k-Nearest Neighbor

H0 : AUCCD −AUCTD = N(µ, σ)
0.6706

H1 : AUCCD −AUCTD 6= N(µ, σ)
H0 : AUCCD −AUCAD = N(µ, σ)

0.4051
H1 : AUCCD −AUCAD 6= N(µ, σ)

Table 5.3: Result of Normality Test

5.4 The Cost of Alternative Data

The use of alternative data in the credit space is becoming prevalent and has

been shown to contribute positively to the credit lending process. For example,

according to a report5 by TransUnion, more than 317 lenders revealed that using

alternative data opened opportunities in new markets, allowed them to reach

more credit worthy individuals and situated them to be more competitive.

Like all data, the costs associated with alternative data may include recording,

storing, analyzing and maintenance6. Whether the cost outweighs the bene�t

goes beyond the focus of this research. Although the cost associated with data

may be many, I focus on computational cost. Therefore, I have conducted

an empirical experiment of computational cost as a function of incremental

5See (TransUnion, 2015)
6See (Haug, Zachariassen, and Liempd, 2011)
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variables in a model. Here, the assumption is that increasing the number of

variables also increases the computational cost.

To achieve this, I construct a nested logistic regression model with 8,10 and

16 variables across all data, using the variable clustering algorithm used in

Subsection 2.2.2. The results are shown in Table 5.4, Table 5.5 and Table 5.6.

In all models, the highest AUC is seen when using the combined data followed

by the traditional and alternative data.

Models Description Log Likelihood c-stat/AUC BIC

URM Number of variables: 8 -12,449.060 0.6018 24,989
RMtrad Number of variables: 8 -12,541.278 0.5856 25,173
RMalt Number of variables: 8 -12,592.499 0.5572 25,276

Table 5.4: Logistic Regression With 8 Variables

Models Description Log Likelihood c-stat/AUC BIC

URM Number of variables: 10 -12,452.534 0.6011 25,061
RMtrad Number of variables: 10 -12,525.827 0.5887 25,163
RMalt Number of variables: 10 -12,612.556 0.5521 25,336

Table 5.5: Logistic Regression With 10 Variables

Models Description Log Likelihood c-stat/AUC BIC

URM Number of variables: 16 -12,430.282 0.6045 25,032
RMtrad Number of variables: 16 -12,495.689 0.5931 25,163
RMalt Number of variables: 16 -12,607.781 0.5619 25,387

Table 5.6: Logistic Regression With 16 Variables

The key takeaway is that restricting the variable space � and therefore account-

ing for computational cost � results in a model where credit default behavior

is maximally explained by a combined force of alternative and traditional data.

This also con�rms the result in the dissertation that there are elements in al-

ternative data that contributes to the modeling of borrower default behavior.
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5.5 Sensitivity Analysis

5.5.1 Pro�t Scoring - 500 Repetitions with loan rate 10%

above risk free rate

This section presents the work in Subsection 3.4.1 through Subsection 3.4.3,

except that entire exercise was repeated 500, 750 and 1000 times using a loan

rate of 10% above the risk-free rate. Their results are shown below for the

Alternative, Traditional and Combined Data.

5.5.1.1 Alternative Data - 500 repetitions with loan rate 10% above

risk free rate

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.994 0.006 0.223 0.882 $154.31 $153.60, $154.95
Logistic Regression Variable 0.992 0.008 0.224 0.915 $157.64 $156.99, $158.30
Pro�t Based Variable 0.914 0.086 0.233 0.887 $191.59 $191.20, $192.54

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.995 0.005 0.222 0.884 $153.50 $150.95, $156.22
Logistic Regression Variable 0.993 0.007 0.223 0.913 $156.79 $154.20, $159.42
Pro�t Based Variable 0.914 0.086 0.231 0.873 $180.34 $178.71, $183.37

Table 5.7: Alternative Data Pro�t Result - 500 Iterations
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5.5.1.2 Traditional Data - 500 repetitions with loan rate 10% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.926 0.074 0.231 0.890 $188.54 $187.98, $189.09
Logistic Regression Variable 0.926 0.074 0.231 0.890 $190.20 $189.54, $190.88
Pro�t Based Variable 0.879 0.120 0.238 0.892 $200.67 $200.06, $201.14

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.926 0.074 0.231 0.888 $185.46 $182.95, $187.85
Logistic Regression Variable 0.926 0.074 0.231 0.889 $187.73 $185.52, $189.74
Pro�t Based Variable 0.880 0.120 0.236 0.877 $190.37 $188.48, $192.41

Table 5.8: Traditional Data Pro�t Result - 500 Iterations

5.5.1.3 Combined Data - 500 repetitions with loan rate 10% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.913 0.087 0.233 0.886 $184.44 $183.83, $184.99
Logistic Regression Variable 0.913 0.087 0.234 0.898 $202.47 $201.90, $203.04
Pro�t Based Variable 0.832 0.168 0.247 0.900 $221.34 $220.74, $221.90

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.913 0.087 0.232 0.884 $181.23 $178.86, $183.61
Logistic Regression Variable 0.913 0.087 0.233 0.896 $198.60 $196.47, $200.99
Pro�t Based Variable 0.833 0.167 0.243 0.880 $201.92 $198.99, $202.91

Table 5.9: Combined Data Pro�t Result - 500 Iterations
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5.5.2 Pro�t Scoring - 750 repetitions with loan rate 10%

above risk free

5.5.2.1 Alternative Data - 750 repetitions with loan rate 10% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.994 0.006 0.223 0.882 $154.62 $154.09, $155.15
Logistic Regression Variable 0.992 0.008 0.224 0.915 $157.96 $157.47, $158.51
Pro�t Based Variable 0.914 0.086 0.233 0.887 $191.87 $191.29, $192.38

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.995 0.005 0.223 0.883 $152.29 $150.06, $154.40
Logistic Regression Variable 0.992 0.008 0.223 0.912 $155.61 $153.43, $157.75
Pro�t Based Variable 0.914 0.086 0.231 0.874 $180.03 $178.71, $182.30

Table 5.10: Alternative Data Pro�t Result - 750 Iterations

5.5.2.2 Traditional Data - 750 repetitions with loan rate 10% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.926 0.074 0.231 0.890 $188.39 $187.90, $188.87
Logistic Regression Variable 0.926 0.074 0.231 0.890 $190.07 $189.54, $190.58
Pro�t Based Variable 0.879 0.121 0.238 0.891 $200.57 $200.21, $201.09

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.926 0.074 0.231 0.888 $185.94 $183.88, $187.92
Logistic Regression Variable 0.926 0.074 0.231 0.889 $188.25 $186.60, $189.95
Pro�t Based Variable 0.880 0.120 0.236 0.877 $190.52 $189.26, $192.29

Table 5.11: Traditional Data Pro�t Result - 750 Iterations

38



5.5.2.3 Combined Data - 750 repetitions with loan rate 10% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.913 0.087 0.233 0.886 $184.31 $183.87, $184.76
Logistic Regression Variable 0.913 0.087 0.234 0.898 $202.33 $201.85, $202.85
Pro�t Based Variable 0.833 0.167 0.247 0.900 $221.27 $220.78, $221.72

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.913 0.087 0.232 0.884 $181.86 $179.91, $183.93
Logistic Regression Variable 0.913 0.087 0.234 0.896 $199.14 $197.03, $201.12
Pro�t Based Variable 0.833 0.167 0.243 0.880 $201.75 $199.63, $202.99

Table 5.12: Alternative Data Pro�t Result - 750 Iterations
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5.5.3 Pro�t Scoring - 1000 repetitions with loan rate 10%

above risk free

5.5.3.1 Alternative Data - 1000 repetitions with loan rate 10% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.994 0.006 0.223 0.882 $154.71 $154.24, $155.16
Logistic Regression Variable 0.992 0.008 0.223 0.915 $158.04 $157.59, $158.49
Pro�t Based Variable 0.915 0.085 0.233 0.888 $192.24 $191.60, $192.58

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.994 0.006 0.223 0.881 $151.99 $150.10, $153.79
Logistic Regression Variable 0.992 0.008 0.2232 0.912 $155.31 $153.56, $157.14
Pro�t Based Variable 0.914 0.086 0.231 0.874 $180.12 $178.56, $181.69

Table 5.13: Alternative Data Pro�t Result - 1000 Iterations

5.5.3.2 Traditional Data - 1000 repetitions with loan rate 10% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.926 0.074 0.231 0.889 $188.36 $187.94, $188.77
Logistic Regression Variable 0.926 0.074 0.231 0.890 $189.93 $189.45, $190.38
Pro�t Based Variable 0.879 0.121 0.238 0.891 $200.63 $200.22, $201.01

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.926 0.074 0.231 0.887 $185.99 $184.32, $187.76
Logistic Regression Variable 0.926 0.074 0.231 0.889 $188.18 $186.72, $189.57
Pro�t Based Variable 0.880 0.121 0.236 0.877 $190.79 $189.10, $191.85

Table 5.14: Traditional Data Pro�t Result - 1000 Iterations
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5.5.3.3 Combined Data - 1000 repetitions with loan rate 10% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.913 0.087 0.233 0.886 $184.31 $183.90, $184.75
Logistic Regression Variable 0.913 0.087 0.234 0.898 $202.28 $201.86, $202.70
Pro�t Based Variable 0.833 0.168 0.247 0.900 $221.34 $220.85, $221.69

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.913 0.087 0.233 0.885 $181.80 $179.98, $183.51
Logistic Regression Variable 0.913 0.087 0.234 0.896 $199.08 $197.48, $200.73
Pro�t Based Variable 0.832 0.168 0.243 0.880 $201.63 $200.21, $203.09

Table 5.15: Combined Data Pro�t Result - 1000 Iterations
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5.5.4 Pro�t Scoring - Alternative Data with 250 Repeti-

tions

This section presents the work in Subsection 3.3.1 through Subsection 3.3.3,

except that entire exercise was repeated 250 times using a loan rate of 11%,

15% and 20% above the risk-free rate. The results are shown below for the

Alternative, Traditional and Combined Data.

5.5.4.1 Alternative Data - 250 repetitions with loan rate 11% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.998 0.002 0.223 0.906 $219.66 $218.65, $220.70
Logistic Regression Variable 0.997 0.003 0.223 0.870 $221.23 $220.21, $222.25
Pro�t Based Variable 0.931 0.069 0.231 0.870 $251.03 $250.27, $252.39

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.999 0.001 0.222 0.897 $217.44 $213.33, $221.60
Logistic Regression Variable 0.997 0.003 0.222 0.894 $218.94 $214.83, $223.26
Pro�t Based Variable 0.931 0.069 0.230 0.879 $236.69 $233.46, $241.08

Table 5.16: Alternative Data Pro�t with 11% Loan Rate

5.5.4.2 Alternative Data - 250 repetitions with loan rate 15% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 1 0 0.222 NaN $485.20 $483.83, $486.66
Logistic Regression Variable 1 0 0.222 NaN $485.20 $483.83, $486.49
Pro�t Based Variable 0.958 0.041 0.230 0.908 $495.16 $493.75, $496.45

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 1 0 0.222 NaN $482.46 $477.21, $488.12
Logistic Regression Variable 1 0 0.222 NaN $482.46 $476.99, $487.95
Pro�t Based Variable 0.958 0.042 0.227 0.890 $486.06 $480.98, $491.47

Table 5.17: Alternative Data Pro�t with 15% Loan Rate
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5.5.4.3 Alternative Data - 250 repetitions with loan rate 20% above

risk free

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 1 0 0.222 NaN $818.93 $817.00, $820.75
Logistic Regression Variable 1 0 0.222 NaN $818.93 $817.05, $820.79
Pro�t Based Variable 0.994 0.006 0.223 0.973 $830.41 $828.51, $832.49

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 1 0 0.222 NaN $815.41 $808.06, $822.51
Logistic Regression Variable 1 0 0.222 NaN $815.41 $808.43, $823.07
Pro�t Based Variable 0.994 0.006 0.223 0.905 $816.15 $808.83, $822.84

Table 5.18: Alternative Data Pro�t with 20% Loan Rate
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5.5.5 Pro�t Scoring - Traditional Data with 250 repeti-

tions

5.5.5.1 Traditional Data - 250 repetitions with loan rate 11% above

risk free rate

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.949 0.051 0.229 0.893 $243.56 $242.61, $244.49
Logistic Regression Variable 0.948 0.052 0.229 0.901 $248.01 $247.21, $248.91
Pro�t Based Variable 0.902 0.098 0.236 0.901 $265.03 $263.97, $265.87

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.949 0.051 0.228 0.895 $239.25 $235.68, $243.60
Logistic Regression Variable 0.948 0.052 0.229 0.900 $243.99 $240.54, $247.60
Pro�t Based Variable 0.902 0.098 0.2331 0.880 $249.48 $246.51, $253.07

Table 5.19: Traditional Data Pro�t with 11% Loan Rate

5.5.5.2 Traditional Data - 250 repetitions with loan rate 15% above

risk free rate

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.982 0.018 0.225 0.899 $492.65 $491.37, $493.96
Logistic Regression Variable 0.982 0.018 0.225 0.912 $498.98 $497.61, $500.24
Pro�t Based Variable 0.971 0.029 0.227 0.944 $512.25 $511.11, $513.67

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.982 0.018 0.224 0.900 $486.18 $480.80, $491.47
Logistic Regression Variable 0.982 0.018 0.225 0.913 $492.70 $487.79, $497.74
Pro�t Based Variable 0.971 0.029 0.226 0.900 $494.64 $488.99, $498.98

Table 5.20: Traditional Data Pro�t with 15% Loan Rate
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5.5.5.3 Traditional Data - 250 repetitions with loan rate 20% above

risk free rate

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.992 0.008 0.223 0.911 $822.34 $820.48, $824.10
Logistic Regression Variable 0.992 0.008 0.224 0.931 $824.06 $822.25, $825.79
Pro�t Based Variable 0.985 0.015 0.225 0.969 $839.58 $837.95, $841.53

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.992 0.008 0.223 0.911 $813.19 $806.26, $819.80
Logistic Regression Variable 0.992 0.008 0.223 0.930 $815.38 $808.62, $822.29
Pro�t Based Variable 0.985 0.015 0.224 0.919 $821.50 $815.27, $828.83

Table 5.21: Traditional Data Pro�t with 20% Loan Rate
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5.5.6 Pro�t Scoring - Combined Data with 250 Repeti-

tions

5.5.6.1 Combined Data - 250 repetitions with loan rate 11% above

risk free rate

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.939 0.060 0.229 0.889 $243.68 $242.75, $244.62
Logistic Regression Variable 0.939 0.060 0.230 0.903 $254.60 $253.64, $255.50
Pro�t Based Variable 0.861 0.141 0.243 0.907 $277.90 $277.21, $279.13

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.939 0.060 0.229 0.889 $238.97 $234.98, $242.67
Logistic Regression Variable 0.939 0.060 0.230 0.901 $249.57 $245.62, $253.38
Pro�t Based Variable 0.861 0.140 0.240 0.884 $255.53 $251.50, $258.72

Table 5.22: Combined Data Pro�t with 11% Loan Rate

5.5.6.2 Combined Data - 250 repetitions with loan rate 15% above

risk free rate

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.980 0.020 0.225 0.910 $492.74 $491.43, $494.04
Logistic Regression Variable 0.980 0.020 0.225 0.915 $497.01 $495.67, $498.30
Pro�t Based Variable 0.941 0.061 0.233 0.937 $517.35 $516.19, $518.84

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.980 0.020 0.225 0.911 $486.64 $481.71, $492.11
Logistic Regression Variable 0.980 0.020 0.225 0.914 $490.08 $486.12, $496.42
Pro�t Based Variable 0.941 0.060 0.229 0.893 $491.87 $486.23, $496.21

Table 5.23: Combined Data Pro�t with 15% Loan Rate
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5.5.6.3 Combined Data - 250 repetitions with loan rate 20% above

risk free rate

Model Cuto� AR RR P(A|G) P(B|R) Pro�t CI.Pro�t

IN-SAMPLE RESULTS
Logistic Regression Constant 0.991 0.009 0.22356 0.906 $821.02 $819.20, $822.86
Logistic Regression Variable 0.991 0.009 0.22371 0.923 $823.44 $821.72, $825.22
Pro�t Based Variable 0.987 0.013 0.22488 0.968 $835.22 $833.17, $836.72

OUT-OF-SAMPLE RESULTS
Logistic Regression Constant 0.991 0.008 0.223 0.907 $811.94 $805.18, $819.25
Logistic Regression Variable 0.991 0.009 0.223 0.926 $814.61 $808.15, $821.67
Pro�t Based Variable 0.987 0.013 0.223 0.905 $815.82 $809.10, $822.92

Table 5.24: Combined Data Pro�t with 20% Loan Rate
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