
Received August 8, 2019, accepted August 25, 2019, date of publication September 6, 2019, date of current version September 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939805

Prospective: A Data-Driven Technique to Predict
Web Service Response Time Percentiles
YASAMAN AMANNEJAD 1, DIWAKAR KRISHNAMURTHY2, AND BEHROUZ FAR2
1Mathematics and Computing Department, Mount Royal University, Calgary, AB T3E 6K6, Canada
2Department of Electrical and Computer Engineering, University of Calgary, AB T2N 1N4, Canada

Corresponding author: Yasaman Amannejad (yamannejad@mtroyal.ca)

ABSTRACT Delivering fast response times for user transactions is a critical requirement for Web services.
Often, a Web service has Service Level Agreements (SLA) with its users that quantify how quickly the
service has to respond to a user transaction. Typically, SLAs stipulate requirements for Web service response
time percentiles, e.g., a specified target for the 95th percentile of response time. Violating SLAs can have
adverse consequences for a Web service operator. Consequently, operators require systematic techniques to
predict Web service response time percentiles. Existing prediction techniques are very time consuming since
they often involve manual construction of queuing or machine learning models. To address this problem,
we propose Prospective, a data-driven approach for predicting Web service response time percentiles. Given
a specification for workload expected at the Web service over a planning horizon, Prospective uses historical
data to offer predictions for response time percentiles of interest. At the core of Prospective is a lightweight
simulator that uses collaborative filtering to estimate response time behaviour of the service based on
behaviour observed historically. Results show that Prospective significantly outperforms other baseline
techniques for a wide variety of workloads. In particular, the technique provides accurate estimates even for
workload scenarios not directly observed in the historical data. We also show that Prospective can provide a
Web service operator with accurate estimates of the types and numbers of Web service instances needed to
avoid SLA violations.

INDEX TERMS Performance engineering, prediction, response time percentiles, system sizing.

I. INTRODUCTION
Web services need to respond quickly to transactions issued
by their users. Long response times can frustrate a user and
can cause them to discontinue using the service. Often, Web
service operators have Service Level Agreements (SLA) with
end users that among other things specify requirements, e.g.,
acceptable thresholds, for service response times. Typically,
an SLA will stipulate targets for service response time per-
centiles. Since the objective is to avoid long response times
for users, percentiles that capture the tail of the response time
distribution, e.g., the 95th percentile, are often used while
defining SLAs.

Operators need systematic performance engineering tech-
niques to ensure that their service will meet response time
percentile requirements when deployed in production mode.
Specifically, given a planning horizon, i.e., a future time
period, and an estimate of user workload over this planning

The associate editor coordinating the review of this manuscript and
approving it for publication was Fabrizio Messina.

horizon, an operator needs predictions of the various response
time percentiles of interest. Such predictions can help the
operator take remedial actions if percentile thresholds are
likely to be exceeded. An example of a remedial action could
be scaling out the resources and using more server instances
to host the service. Operators need a performance engineering
approach to help them select the right types and numbers of
server instances to avoid exceeding response time percentile
thresholds.

Performance engineering exercises for Web services typ-
ically combine load testing and performance modeling
[1], [2]. Since load tests are very time consuming to setup
and conduct, typically only a very small number of test
workloads and system configuration settings are considered.
Consequently, a queuing model or a machine learning model,
e.g., regression model, may be used to predict the response
time behaviour of the service under workloads and system
settings that were not explored during the testing phase.
Measurements from the load tests are used to parameterize
as well as validate the predictive model.

127904 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by British Columbia's network of post-secondary digital repositories

https://core.ac.uk/display/322804719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-5668-6086

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

While modeling techniques can be effective, operators
can face many challenges in leveraging them. Specifically,
queuing analysis techniques can be time consuming since
they require an expert to author, parameterize, and validate
a model of the Web service. Similarly, applying machine
learning models requires an expert to identify the right type
of learning technique to employ. Furthermore, expertise is
needed to map workload and system characteristics to numer-
ical independent variables that are good at explaining the vari-
ation in the dependent variable, i.e., a response time percentile
of interest. This process is called featurization. Additionally,
some Machine learning and statistical techniques, e.g., least
squares regression [3] and quantile regression [4], require the
specification of a suitable performance function, e.g., linear
or polynomial, that defines how the identified independent
and dependent variables are related. Such tasks typically
require an expert and can be time consuming.

In this paper, we explore a data-driven and automated
approach called Prospective to address these limitations.
Prospective does not require an operator to author a queuing
model. Furthermore, neither does it require the operator to
explicitly define a featurization nor does it require the speci-
fication of a performance function. Prospective takes as input
historical performance data collected either from load testing
campaigns or from a live system deployment and a speci-
fication for the workload expected at the Web service over
a planning horizon. The specification describes the arrival
pattern of transactions, i.e., the time series of arrivals, and
the transaction mix, i.e., the probabilities of observing each
transaction type in the workload. Each transaction type refers
to a specific function invoked by the end user, e.g. browse and
buy in an e-commerce system. Given such a specification,
Prospective uses the historical data to offer predictions for
response time percentiles of interest for the specified work-
load. The key challenge that Prospective needs to address is
that the specification of the workload for which a prediction
is desired could be quite different from those of the workloads
used to generate the historical data.

Prospective employs a novel approach to address this chal-
lenge. The central idea behind Prospective is the combined
use of load and transaction type for predicting a transac-
tion’s response time. We define the load at any given time
instant as a vector that records the numbers of concurrent
transactions of each type at a service at that time instant.
Prospective consists of a lightweight simulator that interacts
with a collaborative filtering (CF) [5] based response time
prediction module to estimate the service’s response time
behaviour. The prediction process begins by first generating
a synthetic trace of transactions that conforms to the input
workload specification. Prospective’s simulator traverses this
trace to produce initial estimates of the loads experienced by
these transactions. Given the initial load estimated for a syn-
thetic transaction and that transaction’s type, response time
prediction is carried out by analyzing the historical data to
obtain past response times detected for the desired transaction
type and load combination. For scenarios where the historical

data has not encountered this combination, the CF method
infers the response time based on response times recorded
in the repository for similar combinations. The simulator
iteratively refines the load and response time estimates for the
synthetic transactions and then finally calculates the desired
percentiles.

Results from realistic Web service testbed based on the
RUBiS [6] benchmark application show that Prospective
achieves high accuracy for a wide variety of workloads. In all
of the experimented scenarios, we show that Prospective can
offer 95th and 99th percentile predictions with errors less than
14.1%. Furthermore, Prospective outperforms baseline tech-
niques. In particular, it is 16 times more accurate than a sim-
ilar technique from literature that is agnostic to transaction
types. Prospective is also significantly more accurate than
existing approaches in literature that are based on building
quantile regression models [7], [8]. Finally, we show how
Prospective can be used to simulate the impact of horizon-
tal scaling. Specifically, results show that the technique can
simulate common load balancing policies used in practice and
provide an operator with accurate estimates of the types and
numbers of server instances needed to avoid response time
percentile violations.

This paper represents a significant extension of the prelimi-
nary work described in our previous paper [9]. The extensions
are along the following directions:

1) We have further improved the accuracy of Prospective
by incorporating two new features. We now explore an
additional step where transaction types having similar
mean response times are automatically clustered into
a small number of transaction groups. We also study
a refinement to the earlier approach we used to auto-
matically select Prospective’s simulation parameters.
On an average, as discussed in Sec. V-C, the two new
features combined improve the mean prediction error
for the 95th and 99th percentiles from 11.0% and 14.2%
to 6.1% and 7.0%, respectively.

2) We have expanded the evaluation by experimentally
comparing Prospective with two state-of-the-art quan-
tile regression techniques [7], [8].

3) We present new experiments to characterize the sensi-
tivity of Prospective to the historical data. The results
are discussed in Sec. V-E.

4) To support system sizing questions, we have added a
new module to Prospective that can simulate common
load balancing policies used in practice. We present
new experiments in Sec. VI to show how this feature
can be used to simulate horizontal scaling scenarios and
answer system sizing questions.

5) The related work section is significantly expanded.

The remainder of this paper is organized as follows. Our
methodology is discussed in Sec. II. Sec. IV describes the
experiments used to validate Prospective. Sec. V provides
results that characterize Prospective’s prediction accuracy.
Sec. VI show how Prospective can be used to support system

VOLUME 7, 2019 127905

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

sizing exercises. Sec. VII discusses related work. Finally,
Sec. VIII provides conclusions and future work.

II. PROSPECTIVE
We propose ‘‘Prospective’’, a system for Predicting
RespOnSe Time PErcentiles using CollaboraTIVE Filter-
ing. The high level architecture of Prospective is described
in Sec.II-A. Sections II-B to II-D discuss in detail the imple-
mentation of Prospective.

A. OVERVIEW
Fig. 1 shows the architecture of Prospective. The target
application is a Web service with n types of transactions
with each transaction type assigned a unique id in the range
1 to n. Similar to other performance prediction technique,
Prospective requires that the Web service operator specifies
as input a workload specificationW over a planning horizon.
W represents the workload for which a prediction is desired.
It consists of the tuple of transaction mix M, transaction
arrival model A, and the total number of transactions N . M
defines the probabilities of observing each transaction type in
the workload. A provides a statistical model that governs the
time instants at which transactions in the workload arrive at
theWeb service, i.e., the arrival pattern.W can be obtained by
exploiting workload prediction techniques [10], [11] or using
expert knowledge. It can also be obtained by perturbing the
current workload of the service for the purpose of a sensitivity
analysis. As shown in Fig. 1, a workload generator is used to
transformW to a trace T of N workload records. Each record
pertains to a transaction and contains an id indicating the
transaction’s type and also the time at which the transaction
arrives at the Web service.

FIGURE 1. High level architecture of prospective.

From Fig. 1, Prospective predicts the response time per-
centile for an operator-defined percentile valueP. Prospective
also takes as input a historical data repository D. Each record
in the repository pertains to a transaction i. It includes the
transaction’s type k , load Li, and its load-dependant response
time resLi

i . Li is an n-dimensional vector where the jth ele-
ment in Li, Li[j], shows the number of transactions of type j

executing concurrently on the service during the execution
of transaction i. The response time of the transaction is indi-
cated by resLi

i . D can be constructed by processing trace data
Trep from a load testing campaign or the actual Web service
deployment. Prospective only requires that each line of Trep
contain the arrival instant of a transaction, its transaction type,
and its response time.

As shown in Fig. 1, the final inputs to Prospective are the
overlap parameterO and the number of iterations parameter I .
O defines the minimum overlap between the execution of
two transactions for them to be considered as concurrent
transactions during load calculations. I is the number of times
Prospective attempts to refine the response time estimates
for a transaction. O and I together provide a mechanism to
simultaneously improve prediction accuracy and limit simu-
lation time. The parameters are automatically calculated in a
pre-processing phase described in Sec. II-C.

Prospective uses a lightweight simulator in combination
with a CF based response time prediction module to estimate
response times of transactions in the input trace T. These
response times are then used to calculate the Pth percentile
of response times. Multiple independent simulation runs can
be carried out to calculate a confidence interval (CI) for the
mean. The Web service operator can use the predictions to
take system sizing and application deployment decisions.

Fig. 1 also shows the high-level interaction between the
simulator and the response time prediction modules. The
simulator module takes as input the workload trace T. It then
calculates the load Li experienced by a transaction i in the
trace and queries the response time prediction module to get a
response time estimate presLi

i at this load for the transaction.
This process is repeated for all N transactions to obtain the
response time percentile of interest. We next discuss in detail
the implementation of these two modules.

B. SIMULATOR
Algorithm 1 describes Prospective’s simulator which takes
as input the trace T, the desired percentile P, and the input
parameters derived from the pre-processing phase namely,
the overlap parameter O and the number of iterations param-
eter I . We defer the description of the pre-processing phase
to Sec. II-C. The output of Prospective is resPpredicted , a pre-
diction for the Pth percentile of response time.

As shown in Fig. 2 (a), the simulator first generates a time
line consisting of the arrival instants of all transactions in
T arranged in chronological order (lines 2-7, Algorithm 1).
It then starts processing these arrival events as described
in the second loop of Algorithm 1. Specifically, processing
each arrival instant involves calculating the response time
of that transaction and hence the time instant at which the
transaction completes, i.e., the departure time. The simulator
uses the response time prediction module to compute the
response time of that transaction using the historical repos-
itory D. As mentioned previously, to calculate the response
time of any given transaction i the simulator requires the

127906 VOLUME 7, 2019

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

Algorithm 1Main Steps of Prospective

1 Input: T, P, O, I , Output: resPpredicted
2 foreach (transaction in T) do
3 arrival ← transaction.arrivalTime
4 k ← transaction.type
5 event← createEvent(k , arrival, null)
6 AddToTimeline(event)
7 end
8 foreach event in Timeline do
9 i← i + 1
10 k← event .transactionType
11 arrivali← event .arrivalTime
12 Li← calcStartLoad(i, arrivali)
13 presLi

i ← PredictResponseTime(i, k , Li)
14 departurei← arrivali + pres

Li
i

15 foreach iteration in (1, I) do
16 Li← calcLoad(arrivali, departurei, O)
17 presLi

i ← PredictResponseTime(i, k , Li)
18 departurei← arrivali + pres

Li
i

19 end
20 RESPs.add(presLi

i)
21 end
22 resPpredicted ← calculatePercentile(RESPs, P)

FIGURE 2. Example of load and response time estimation.

load Li over the execution of that transaction. However, Li
is unknown when the simulator processes the arrival instant.
As a result, the simulator has to guessLi and iteratively refine
that estimate.

The simulator uses the known instantaneous load at the
arrival instant of i as an initial estimate of Li. The instan-
taneous load is a known quantity since the simulator knows
the arrival instants of all previous transactions and has also
calculated the departure instants of those transactions. The
simulator provides thisLi estimate as well as the transaction’s
type k as inputs to the response time prediction module
and obtains presLii as an initial response time estimate. This
response time is then used to compute an initial departure
time of transaction i. As shown in Fig. 2 (b), calculation of
the departure time (denoted by a solid grey circle) allows the
simulator to obtain a different estimate of Li that captures
other concurrently executing transactions. This triggers an

iterative process where the initial estimate of Li is refined
taking into account the departures and arrivals that hap-
pen during the newly estimated execution time line of i
(lines 16-20, Algorithm 1).

We first refine Li using O. The parameter O allows the
simulator to only include those transactions that have a sig-
nificant overlap with the execution of transaction i. For any
given transaction i and any other concurrent transaction j,
the overlap Oi,j between them is described as the difference
between the departure time of the predecessor transaction
and the arrival time of the successor transaction expressed
as a percentage of the response time of transaction i. The
simulator only considers those transaction pairs whose Oi,j
values are greater than or equal to O for computing the
load Li.
Fig. 2 (c) illustrates the use of O. In this example, transac-

tions p1 and p2 arrive prior to transaction i. The simulator has
already computed their departure times (solid black circles)
and they are both predicted to end after the arrival of i.
Transactions s1 and s2 arrive after i but their departure times
have not been estimated yet. For this example, only p2 and
s1 satisfy the acceptable overlap criterion specified by O.
Consequently, the load vector Li is updated such that the
number of transactions of the type to which p1 belongs is
decremented by 1. This ensures that p1 does not influence
the load. Similarly, the number of transactions of the type
to which s1 belongs is incremented by 1. Transaction s2 is
not involved in the load calculation since it did not meet the
overlap criterion. The updatedLi is used to calculate a revised
departure time for i, as shown in Fig. 2 (d). This refinement
process is repeated I times. A pre-processing step, outlined
next, is used to select O and I values that can yield accurate
predictions.

C. PRE-PROCESSING FOR AUTOMATED
PARAMETER SELECTION
The basic idea in this step is to use the simulator to predict the
measured response times of transactions in the historical trace
data Trep used to construct the repository D. The simulator
employs various O and I values and selects the values that
most accurately predict the historically measured response
time percentiles embodied by Trep. We now describe two
parameter selection approaches namely, arrival independent
and arrival dependent.

The basic operation mode of Prospective, as depicted
in Fig. 1, uses arrival independent parameter selection. With
this approach, the simulator takes as input a workload
trace Ttune. Each line of Ttune corresponds to a transaction
recorded in Trep. It contains the arrival instant of the trans-
action and the transaction’s type. For the sake of simplicity,
Prospective independently searches for the best O and I val-
ues. During the process for selecting the value ofO, the value
of I is set to 1. The simulator first conducts experiments
using progressively increasing O values. For each of these
experiments, we calculate over all percentiles of interest the
mean of the prediction errors (defined in Sec. IV-D). We then

VOLUME 7, 2019 127907

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

select the O value that results in the least error. The simulator
then uses this value of O and performs experiments with
progressively increasing values of I . For any given percentile
of interest, we select the I value that yields the least prediction
error.

We also study Prospective with arrival dependent parame-
ter selection where the choice ofO and I depends on the mean
transaction arrival rate λ. During parameter selection, we first
split Trep into a set of sub-traces < T1

rep, T
2
rep, . . . ,T

u
rep >,

each containing the same number of transactions. For each
sub-trace Ti

rep, we calculate the mean transaction arrival rate
λi and select O and I using a full factorial parameter sweep
over a pre-defined range of values for these parameters. The
final result after considering all the sub-traces is a look up
table τ that records the O and I values discovered for λi
∀i ∈ {1, . . . u}.

During the simulation, when arrival dependent parameter
selection is enabled, the simulator considers equal duration
transaction windows in the input trace T. For each window
w, it calculates the arrival rate λw. For any transaction i in
this window, it provides λw to the response time prediction
module in addition to the usual inputs, i.e., the load Li and
the transaction’s type k . The response time prediction module
uses the look up table τ to locate the entry whose arrival rate
is closest to λw. It then uses the O and I values pertaining
to that entry while predicting response times in that window
w. Due to its arrival dependency and the use of full factorial
parameter search, parameter selection can take a longer time
using this approach. However, it could potentially improve
prediction accuracy for workloads with highly variable trans-
action arrival patterns. We evaluate this in detail in Sec. V.

D. RESPONSE TIME PREDICTION MODULE
As shown in Algorithm 2, the response time prediction mod-
ule takes as input the transaction type k of transaction i and
the load Li. The module first looks up the repository D to
check if any transactions of type k experienced the load Li
when the historical data was collected. If there is a hit for
the k and Li combination, then the module obtains a list
HLi

k containing past transaction response times observed for
this combination. Finally, a response time value is selected
at random from this list and returned as presLi

i , the response
time prediction for transaction i (lines 2-4, Algorithm 2).
If there is no hit for the desired transaction type and load
combination, then a CF based method is used to predict
response time. This involves finding similar transaction types
that have experienced the load Li in D.
The CF method relies on the computation of similarity

measures between pairs of transaction types in the system.
Two transaction types j and k are considered to be similar if
their mean response times are similar to each other for all
observed loads in the repository. Their similarity measure
S[j, k] characterizes the extent of their similarity. We use
the commonly used Pearson correlation coefficient (PCC) as
our similarity metric. Using PCC, the similarity between two

transaction types k and j is defined by Eq. 1.

S[k, j] =

∑
e∈Ekj

(resek − res
∗
k)× (resej − res

∗
j)√ ∑

e∈Ekj

(resek − res
∗
k)

2 ×
∑
e∈Ekj

(resej − res
∗
j)

2
(1)

In Eq. 1, the similarity S[k, j] between transaction types k and
j is calculated based on the mean response times of these two
transaction types for all common loads, Ekj, they have expe-
rienced before. Common loads are loads at the Web service
that both k and j have experienced in the past. resek shows
the measured response time of transaction type k under one
such load e ∈ Ekj. In Equation 1, res∗k and res

∗
j are the mean

response times of transaction types k and j under all system
loads recorded in D, respectively. As described shortly, the
similarity value between each pair of transaction types is
calculated and used within Eq. 2 to estimate the response
time. We note that the similarity measures calculation need
to be computed only once by processing the repository D.

To predict the transaction’s response time using CF the
module first generates a random number r using a uniform
distribution between 0 and 1. It then identifies NLi

k as the set
of other transaction types similar to k that have encountered
the load Li in D. For each similar transaction type j in NLi

k ,
the module then constructs a list HLi

j that contains response
times recorded for j under Li. Next, the module selects the r th

quantile of response time from this list as presLi
j . This process

is depicted in lines 6-12 of Algorithm 2.
The final step of the CF method is to aggregate all the

presLi
j values pertaining to the similar transaction types

into a single response time prediction presLi
i for the trans-

action i. This aggregation uses the similarity measures
between k and the similar transaction types recorded in NLi

k .
Specifically, we use the aggregation approach proposed by
Breese et al. [12] implemented as Eq. 2 in our context.

resLi
k = res∗k +

∑
j∈N

Li
k

(resLi
j − res

∗
j)× S[k, j]∑

j∈N
Li
k

|S[k, j]|
(2)

When no transactions in D have experienced the load Li
the module simply returns the predicted response time presLi

k
as the mean response time of all transactions of type k in
the repository D (Lines 14-16, Algorithm 2). We refer to the
percentage likelihood of this scenario as the miss rate which
provides an estimate of the error in Prospective’s prediction.

While the basic operation mode of Prospective distin-
guishes transactions based on transaction types, we also
explore another approach where similar transaction types are
further clustered into a smaller number of transaction groups.
We refer to this as the clustered approach.With this approach,
we use the well-known K-means clustering algorithm [13]
during the pre-processing step. We use a simple method
where the centroid of a cluster is the mean response time

127908 VOLUME 7, 2019

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

Algorithm 2 Response Time Prediction

1 Input: D, i, k , Li, Output: presLi
i

2 HLi
k ← query repository (k,Li)

3 if (HLi
k is not empty) then

4 presLi
i ← randomValue(HLi

k)
5 else
6 NLi

k ← query similar transactions(k , Li)

7 if (NLi
k is not empty) then

8 r ← randomNumber()
9 foreach j ∈ NLi

k do
10 HLi

j ← query repository (j,Li)

11 presLi
j ← getValue(r , HLi

j)
12 end
13 presLi

i ← adjusted value of all presLi
j (Eq. 2)

14 else
15 presLi

i ← mean response time of k
16 end
17 end

of transaction types assigned to that cluster. In this manner,
transaction types with similar mean response times get clus-
tered to the same transaction group.

With the clustered approach, the response time prediction
module first maps the input transaction type k to its transac-
tion group g. It also translates the input load vector Li into
a vector that records the numbers of concurrent transactions
belonging to each transaction group. The rest of the predic-
tion process is similar to what is outlined in Algorithm 2
except that the module operates at the granularity of trans-
action groups as opposed to transaction types. The clustered
approach could benefit scenarios where it is possible to come
up with a more compact grouping of transactions than that
suggested by the service’s URLs. We evaluate this feature in
detail in Sec. V.

III. USING PROSPECTIVE FOR HORIZONTAL SCALING
In the previous sections, we describe how Prospective can
be used for predicting the response times of transactions
submitted to a single instance of a Web service. If a predicted
response time percentile exceeds its corresponding threshold,
the service operator would typically be interested in explor-
ing horizontal scaling strategies that employ multiple server
instances. With horizontal scaling, incoming transactions are
distributed among a set of server instances based on a load
balancing policy. To support evaluation of horizontal scaling
strategies, we implement a load balancingmodule in Prospec-
tive that simulates the common load balancing policies, such
as Weighted Round Robin (WRR) and the Least Connection
(LC). The number of instances of each instance type is spec-
ified as an input to the simulation.

With the WRR policy, each server instance m has associ-
atedwith it a weightwm that determines the fraction of incom-
ing transactions assigned to that instance. Before starting the

TABLE 1. Experiment settings.

simulation process described in Sec. II-B, Prospective uses
the weights to assign each transaction in the input trace
T to a specific server instance. As a result, each instance
m gets assigned an input trace of transactions Tm. Next,
Prospective simulates the behaviour of each instance using
the traces generated in this manner. Specifically, for each
instance m Prospective uses the historical repository pertain-
ing to that instance to estimate the response times in Tm.
Finally, response times estimated in this manner are collected
from all instances to calculate the response time percentile of
interest.

The LC policy assigns an incoming transaction to the
instance that is currently handling the least number of active
transactions ν. Active transactions at an instance are those
transactions that are currently being executed at the instance.
Since the ν values depend on the response time behaviour
of individual instances, it is more challenging to simulate
LC thanWRR. To realize LC, Prospective maintains separate
transaction arrival time lines for the instances. Consider trans-
action i in T with an arrival instant of t . Prospective assigns
this transaction to the arrival time line of the instance with
the least ν at time t . We note that in contrast to the example
outlined in Fig. 2, at this point Prospective has no knowledge
about the transactions that would follow i. This is because
future arrivals at the instance depend on instantaneous values
of ν at the instances. Consequently, response time and com-
pletion time of transaction i is estimated based only on the
transactions that arrived before i at this instance. This estimate
as well as the response time estimates of the other active
transactions at this instance are continually adjusted based
on the transactions that arrive subsequently to the instance.
Response time percentiles of interest are calculated after all
transactions in T have been assigned to the instances in this
manner.

IV. EXPERIMENT SETUP
A. EXPERIMENT TESTBED
Table 1 provides details of our test environment. We use
virtual machines (VM) running on a multicore server to host
our Web servers. We use the httperf tool [14] for generat-
ing workloads. httperf is installed on a different multicore
server. Both servers are connected by an Ethernet switch
that provides dedicated 1 Gbps connectivity. Consequently,
response times measured by httperf are a reliable indicator of
the server’s performance. Finally, we implement Prospective
using a set of Python scripts.

VOLUME 7, 2019 127909

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

B. EXPERIMENT FACTORS
Table 2 lists the experiment factors and their levels. Default
levels are shown in bold.

TABLE 2. Experiment factors.

We run the RUBiS benchmark version 1.0 [6] as our
Web service. RUBiS is a popular benchmark for multi-tiered
applications and has been used extensively by others
[7], [15]–[19]. It emulates the behavior of an auction server
that allows users to browse and bid for items. The service sup-
ports 14 distinct transaction types. Examples of the supported
transactions are browsing products, searching, and viewing
bid histories.

We use the Large VM instance by default. The target
response time percentiles that we are interested in predicting
are 25th , 50th , 75th , 95th, and 99th percentiles. The 95th and
99th percentiles are commonly used in SLAs. They capture
the tail behaviour of the response time distribution and are
challenging to predict.

We study Prospective’s ability to predict the behaviour of
different types of transaction arrival patterns. Fig. 3 shows the
inter arrival time between successive transactions of a subset
of these patterns. Patterns 1 to 3 use the exponential distribu-
tion to generate inter arrival times. Their mean inter arrival
times are selected to cause low (30%), medium (50%), and
high (70%) mean per-core utilization on a large VM instance
of the RUBiS server.

As shown in Fig. 3, patterns 4 to 7 emulate time vary-
ing arrivals, which are typical of many real Web services
[20], [21]. Patterns 4 and 5 use exponential distributions
with different means to achieve the time varying behaviour.
In pattern 4, the mean inter arrival times are chosen such that
the RUBiS server’s mean per-core utilization increases from
10% to 80%, and then decreases from 80%, to 10%. In pattern
5, the mean per-core utilization decreases from 80% to 10%
and then increases from 10% to 80%. By alternating between
very low and very high utilizations, these patterns mimic
bursty behaviour. Inter arrival times of pattern 6 and pattern
7 do not follow the exponential distribution. Pattern 6 causes
mean per-core utilization to gradually vary between 10% to
65%. Pattern 7 utilizations vary similarly but the variations
are more rapid.

Patterns 8 and 9 are used to study the impact of distri-
butions with lower and higher variability than the exponen-
tial distribution. While pattern 8 has half the coefficient of

variation (CV) of exponential, pattern 9 has two times the
CV of exponential. For these patterns we use the same mean
inter arrival time as in the default Medium − Exp pattern,
i.e., Pattern 2, to facilitate comparisons.

To demonstrate the ability of Prospective to support sys-
tem sizing exercises, we consider two additional patterns.
Patterns 10 and 11, VHigh − Exp and XHigh − Exp, are
exponential patterns (not shown in Fig. 3) that cause very
high and extreme utilizations, respectively. VHigh − Exp is
the maximum load that can be sustained on the large instance.
This in turn leads to extremely long response times on the
service. The mean arrival rate of XHigh−Exp is almost twice
that of VHigh−Exp and hence this pattern cannot be handled
using oneVM instance alone. Results involving these patterns
are discussed in Sec. VI.

We also study the sensitivity of Prospective to transac-
tion mix. We use three different mixes that differ in the
percentages of static transactions (S), i.e., transactions that
do not require dynamically generated content, and dynamic
transactions (D). Mix40S − 60D is the default browsing
mix of RUBiS. It contains 40% static transactions and 60%
dynamic transactions. This mix is used in creating the repos-
itory. Mix60S − 40D contains 60% static and 40% dynamic
transactions.Mix100S−0D contains only static transactions.
We evaluate Prospective under two different modes. Under

the basic mode, Prospective offers predictions at the granular-
ity of transaction types and uses arrival independent selection
of O an I . With the enhanced mode, it clusters transaction
types into transaction groups and also uses arrival dependent
parameter selection. In this mode, we consider 5 second
transaction windows. As described in Sec. II, we compute λw
for each such window and use that in combination with the
look up table τ to obtain the O and I values to use for that
window.

Several different baseline response time estimation
strategies are compared. The Avg-Tr approach ignores the
dependency of transaction response times on the load vector.
It estimates the response time of a transaction by computing
the mean of the response times recorded for that transaction’s
type in the historical repository. The Avg-Load approach con-
siders load but ignores transaction type. For each transaction,
it estimates the load, i.e., total number of concurrent transac-
tions. It then obtains the prediction as the mean response time
of all transactions, regardless of transaction type, that have
experienced the estimated load. We note that this approach
is similar to the approach used by Spicuglia et al. [22]. The
Avg-Tr-Load approach considers both load and transaction
type similar to Prospective. However, unlike Prospective it
merely estimates the response time of a transaction as the
mean response time of all records with the desired load and
transaction type. We note that these baseline methods all use
arrival independent parameter selection.

We also compare Prospective with two different quantile
regression approaches. The Reg-CPU approach suggested
by Watson et al. [7] relates the response time percentile to
the mean per-core utilization U of the server, as shown by

127910 VOLUME 7, 2019

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

FIGURE 3. Arrival patterns used in experiments.

the performance function in Eq. 3. The Reg-Rate approach
used by Bodik et al. [8] is similar but uses mean transaction
arrival rate λ as the independent variable, as shown in Eq. 4.
To facilitate a fair comparison, we use the same historical data
contained in Prospective’s repository to train and obtain the β
coefficients in the models. The historical data is divided into
1-second windows. Each window provides training observa-
tions that relate the dependent variable, i.e., response time
of a transaction in that window, to the independent variable,
i.e., eitherU or λ of the window. Quantile regression uses the
training data to obtain different sets of β coefficients for the
different percentiles of interest.

resPpredicted (U) = β0 + β1 × U + exp(β2 + β3 × U) (3)

resPpredicted (λ) = β0 + β1 × λ+ exp(β2 + β3 × λ) (4)

C. EXPERIMENT PROCESS
Before starting the evaluation, we need to create a historical
repository. Our intent is to create a repository that covers a
diversity of transaction types and per-core utilizations. To cre-
ate such a repository, we use the default mix,Mix40S−60D,
that contains all the RUBiS transaction types. We then sub-
mit to the service traces of transactions conforming to this
mix and having exponential inter arrival time distributions.
The mean inter arrival times are selected to generate various
per-core utilization levels (10% < per-core utilization< 90%

in steps of 5%). For each utilization level, we repeat the
experiment using 5 different samples drawn from the relevant
exponential distribution. Each run contains 9, 000 transac-
tions. As mentioned previously, a transaction trace Trep is
collected from system logs under these experiments and is
used for creating the repository. After creating the repository,
the pre-processing steps discussed previously are carried out.

For the arrival independent selection of O and I , we vary
O in steps of 10% from 10% to 90% and I in steps of 1
from 1 to 3. Since we search for O and I independently,
this translates to 11 simulation experiments to identify these
parameters. For the arrival dependent selection, we split the
trace used in the arrival independent approach into 9 smaller
sub-traces having equal number of transactions. For each
sub-trace, we use the same ranges for O and I as in the
arrival independent selection. However, since we employ a
full factorial parameter sweep, parameter selection involves
27 experiments for each sub-trace. Accounting for the smaller
traces, the arrival dependent approach needs approximately
2.5 times more experiments than the arrival independent
approach for deducing the values of O and I .

For each measurement and simulation experiment, we use
multiple statistically similar samples from the relevant arrival
model and transaction mix. Each of them involves a trace of
9, 000 transactions.We calculate themean and the 95%CI for
both the measured and predicted response time percentiles by
replicating the experiments.

VOLUME 7, 2019 127911

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

D. EVALUATION METRIC
To evaluate the accuracy of Prospective, we use the absolute
relative error of the predicted response time percentile values
as shown in Eq. 5.

errp = |
resPpredicted − res

P
measured

resPmeasured
| × 100 (5)

In Eq. 5, P represents the desired percentile level and errP
is the error for the Pth percentile response time prediction.
resPpredicted and resPmeasured are the mean of the predicted and
measured Pth percentile values.

V. RESULTS
In this section, we report the result of experiments designed
to validate Prospective.

A. PRE-PROCESSING
We first focus on selecting the O and I values. Fig. 4 shows
the selection of the overlap parameter O for three different
sub-traces with progressively increasing arrival rates namely,
Low, Medium, and High. We only show the 95th percentile
with I set to 1. Similar trends are observed for other cases.

FIGURE 4. Selecting the overlap value.

From Fig. 4,O values around 50%, 40%, and 30% yield the
lowest errors for Low, Medium, and High, respectively. For
any given arrival rate, very low values ofO cause transactions
that have very low overlap to be counted towards the load
leading to overly pessimistic response time estimates. Very
high values ignore the effects of some transactions that have
quite a bit of overlap leading to optimistic estimates. Further-
more, Fig. 4 shows that higher arrival rates benefit from lower
values of O. This suggests that a transaction’s response time
at higher loads is sensitive to even transactions that only have
a small overlap. These results motivate the arrival dependent
selection of O for scenarios experiencing high arrival rates.
Results suggest that the tuning of I is specific for each

percentile of interest. In general the value of I needs to be
greater than 1 for the extreme tail percentiles, e.g., the 99th

percentile, for better accuracy. We omit presenting detailed
results for the sake of brevity.

Finally, we focus on the clustered approachwhere Prospec-
tive assigns transaction types to transaction groups using
K-means clustering. As discussed previously, the selection

of the number of clusters, i.e., transaction groups, and the
clustering is done automatically in the pre-processing step.
In our case, when increasing the number of clusters the
mean distance of a point from its cluster centroid decreases
and stabilizes with 5 clusters. As a result, we group RUBiS
transaction types into 5 transaction groups.

B. COMPARISON WITH BASELINE AND
REGRESSION APPROACHES
In this section, we compare the baseline estimation
approaches and the state-of-the-art quantile regression tech-
niques introduced in Sec. IV-B with Prospective. We use
the basic operation mode of Prospective, which uses arrival
independent O and I and operates at the granularity of trans-
action types.We consider the default levels for the experiment
factors as shown in Table 2 and report mean prediction errors
of all percentile values.

Avg-Tr, which ignores load, produces a large mean error
of 39.8%. Avg-Load, which considers load but ignores trans-
action type, also does poorly with a mean error of 72.9%.
In contrast, Prospective yields a mean error of 4.6%. These
results establish the importance of incorporating both load
and transaction type into the prediction process.

Similar to Prospective, Avg-Tr-Load considers both trans-
action type and load. Recalling from Sec. IV-B, Avg-Tr-Load
uses mean of the response times recorded for a transaction
type and load combination. In contrast, Prospective randomly
draws from a list of historical response times recorded for that
combination. Fig. 5 compares their predicted response time
distributions. From the figure, the averaging done by Avg-
Tr-Load causes probability masses to bunch together over a
few values causing the distribution to deviate significantly
from the actual measured distribution. Prospective avoids this
problem and follows the measured distribution more closely.

FIGURE 5. Comparison of response time distributions.

Next, we compare the performance of Prospective with
the two quantile regression approaches, Reg − CPU and
Reg − Rate. Table 3 shows the prediction errors of the three
approaches when we vary the mix while keeping other factors
at their default levels. From the table, all three techniques
perform comparably when predicting for the default mix,
i.e.,Mix−40S−60D. Recalling from Sec. IV, this is the mix
used to build the historical repository and train the regression

127912 VOLUME 7, 2019

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

TABLE 3. Mean prediction errors of regression models.

models. From Table 3, as expected, the accuracies of the
regression techniques suffer significantly while predicting for
the other two mixes, i.e., Mix − 60S − 40D and Mix −
100S − 0D. This is because these regression techniques do
not consider the mix in their models. Reg − CPU approach
performs better than Reg − Rate, as CPU utilization can
capture the change of mix better than arrival rate. However,
Reg− CPU requires a method to predict the CPU utilization
of the workload for which prediction is desired. In contrast
to the regression techniques, Prospective provides accurate
estimates for these non-default mixes. These results indicate
Prospective’s ability to generalize well for workloads not
directly captured by the historical repository. We explore the
impact of mix in more detail in Sec. V-D.

We also compare the sensitivity of the three approaches to
arrival patterns different than the one used to build the reposi-
tory. Recalling from Sec. IV, the repository is built by using a
set of time varying exponential transaction inter-arrival time
distributions. We use the three techniques to offer predictions
for the four non-exponential workloads, i.e., Patterns 6-9,
and default levels for other factors. For these four patterns,
Reg − CPU and Reg − Rate perform comparably and result
in mean errors of 23% and 25%, respectively. This is about 3
times higher than the mean prediction error of 7.2% that we
obtain with Prospective for these four patterns. This result
further corroborates the ability of Prospective to generalize
better than the regression approaches. The accuracy of the
regression approaches could be improved by exploring other
choices for performance functions, regression techniques,
and featurization, e.g., independent variables that explicitly
capture the mix and arrival pattern. Prospective offers an
alternative that does not require an operator to spend time
investigating such choices.

C. EFFECT OF ARRIVAL PATTERNS
Table 4 shows Prospective’s percentile prediction errors and
their mean for the different arrival patterns in the basic
mode. Patterns 1 to 5 use either exponential or time vary-
ing exponential distributions. While the repository is con-
structed using exponential distributions, the exact sequence
and inter-arrival times of transactions in the repository are
different from those of patterns 1 to 5. For example, unlike
Patterns 4 and 5, the repository does not encounter situations
where the system switches between very high and very low
utilizations. Results show that Prospective yields very good
accuracy for these patterns with the maximum mean error
being 13.2%.

Among patterns 1 to 5, the worst errors occur for cases
where the system encounters very high per-core utilizations.

For example, theHigh−Exp pattern imposes a mean per-core
utilization of 70% with peak utilizations reaching up to 90%.
The prediction errors for the 95th and 99th percentiles for this
case are 18.5% and 30.1%, respectively. Similarly, the Low−
High and High − Low represent bursty workload patterns
where the mean per-core utilization can reach an extremely
high value of 80%. The mean prediction errors for the 95th

and 99th percentiles for these two case are 15.0% and 23.5%,
respectively. We notice that at very high utilizations there is
more diversity in the number of unique load vectors that can
be encountered by the system. As a result, there is a higher
likelihood that Prospective will have a miss, i.e., not find
a match for a transaction type and load combination in the
repository either by using historical response times directly
or by applying the CF method. As discussed previously,
Prospective merely uses the mean historical response time for
the relevant transaction type as its prediction when there is a
miss. This leads to optimistic predictions for the 95th and 99th

percentiles.

TABLE 4. Prediction errors - basic prospective.

Table 4 also shows that Prospective is very accurate for the
Periodic − Gradual and Periodic − Rapid patterns, which
have non-exponential, time varying arrivals. These results
indicate that Prospective can offer predictions for inter arrival
time distributions different than that governing the repository.
Specifically, it can provide good predictions as long as there
is a good match in the repository for the transaction type and
load combinations.

Next, we focus on the impact of the variability of the
inter-arrival time distribution. From Table 4, Prospective is
very accurate for the HypoExp pattern, which imposes the
same per-core utilization as Medium − Exp but has half the
CV of exponential. The HyperExp pattern has twice the CV
as exponential and hence triggers phases with intense trans-
action arrivals where the per-core utilization of the system is
very high. As a result, Prospective is less accurate for this
case than the Medium − Exp and HypoExp cases. However,
the mean error is still only 10.2% for this case.

Summarizing, the basic operation mode of Prospective
is very accurate for cases that correspond to the utilization
ranges of real life servers [23]. Errors increase for scenarios
with very high utilizations. We next show how such high
utilization scenarios can benefit from the enhanced operation
mode of Prospective, i.e., using arrival dependentO and I and
operating at the granularity of transaction groups.

VOLUME 7, 2019 127913

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

TABLE 5. Prediction errors - enhanced prospective.

Table 5 compares Prospective’s accuracy for the different
arrival patterns while operating in the enhanced mode. In gen-
eral, Prospective is even more accurate under the enhanced
mode. The mean error over all patterns and all percentiles
decreases from 8.4% to 5.5%. The baseline operation of
Prospective has mean errors of 11.0% and 14.2% for the 95th

and 99th percentiles, respectively. In contrast, the enhanced
mode reduces themean errors for the 95th and 99th percentiles
to 6.1% and 7.2%, respectively.

From Table 5, the enhanced mode is particularly effective
for scenarios that cause high per-core utilizations. For the
High−Exp pattern, the errors for the 95th and 99th percentiles
decrease from 18.5% and 30.1% to 8.1% and 5.5%, respec-
tively. Similar improvements are also seen for the extremely
bursty Low − High and High − Low patterns as well as the
highly variable HyperExp pattern.
The reason for the effectiveness of the enhanced mode

at high utilizations is two fold. First, as noted previously,
at high utilizations there is a greater diversity in the number of
possible load vectors seen by the system. Clustering reduces
this diversity by grouping similar transaction types into the
same transaction group. This decreases the number of misses
thereby improving accuracy. Second, as shown in Sec. V-A,
high load scenarios benefit from smaller values of O when
compared to low load scenarios. By adapting the choice of O
to load, i.e., transaction arrival rate, the enhancedmode is able
to further improve accuracy. For the remainder of the paper
we use the enhanced mode of Prospective.

D. EFFECT OF TRANSACTION MIX, CF, AND
REPOSITORY EVOLUTION
To study Prospective’s sensitivity to mix, we submit each
of the mixes shown in Table 2 while using the default
Medium− Exp arrival pattern. The mixes have very different
response time behaviours. For example the 99th percentile
of the response time with Mix40S − 60D is 10 times larger
than the response time of the Mix100S − 0D. Table 6 shows
the prediction errors. As expected, Prospective offers the
most accurate predictions for the default Mix40S − 60D,
which also corresponds to the mix of the historical reposi-
tory. Predictions degrade slightly for the non-default mixes
Mix60S−40D andMix100S−0D but are still quite accurate.
Errors correlate well with themiss rates seen by the simulator.
The miss rates for Mix60S − 40D and Mix100S − 0D are

TABLE 6. Prediction errors(%) for different mixes.

12% and 4%, respectively. This suggests that the miss rate
reported by Prospective can be used by the operator to assess
predictive accuracy.

We explore Mix60S − 40D further to show the value of
incorporating the CF method into Prospective. Disabling CF
doubles the miss rate. As a result, the prediction error for the
95th percentile and the mean error increase from 8.3% and
7.5% to 16.0% and 14.1%, respectively.

We now study the impact of evolving the repository to
include a new mix. Prospective can continually expand its
repository to include new measurements, e.g., data from
the live system. To verify this, we expose the system to a
workload that uses Mix60S − 40D. We use a time varying
exponential inter arrival time distribution similar to the pro-
cess described in Sec. IV-C. Response time information from
this workload is then integrated into the repository. We then
conduct a simulation to predict for Mix60S − 40D with the
default Medium − Exp arrival pattern. Due to the expanded
repository, the error for the 95th percentile and the mean error
decrease from 8.3% and 7.5% to 5.7% and 6.0%, respectively.
These prediction errors are close to the error of the default
mix,Mix40S−60D, and shows that Prospective is robust and
can continually refine its predictions based on new data. The
expansion of the repository happens in the same way when
new arrival patterns are observed.

E. SENSITIVITY TO REPOSITORY CONTENT
In this experiment, we study the sensitivity of Prospective
to the contents of the repository in more detail. For this
purpose, we compare the prediction accuracy for the Low −
Exp, Medium − Exp, and High − Exp patterns when the
repository contains different sets of historical data. Recalling
from Sec. IV, these workloads cause per-core utilizations
of 30%, 50%, and 70%, respectively. All other factors are
set at their default levels. For this experiment, as shown
in Table 7, we use 7 different controlled sets of traces to popu-
late the repository. All traces are generated using exponential
inter-arrival times and the default mix. The sets differ in the
range of per-core utilizations they cause on the system. For
example,C3 causes two distinct periods of activity withmean
per-core utilizations of 10% and 90%. C7 is the default trace
used to generate the repository for the experiments presented
in the previous sections.

For the various repositories we consider, Fig. 6a and Fig.
6b show the miss rate and mean prediction error, respectively.
From the figures, the miss rate and prediction error are high
with C1 when the repository only contains data for low
per-core utilization. Interestingly, miss rate decreases and
accuracy improves for all three workloads forC2 even though

127914 VOLUME 7, 2019

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

TABLE 7. Repository content.

FIGURE 6. Results with different repository content.

the repository only contains data pertaining to the extreme
90% per-core utilization. As stated previously, the num-
ber of unique load vectors increases with utilization. As a
result, C2 yields more load vectors than C1 thereby helping
Prospective. From Fig. 6a and Fig. 6b, miss rate decreases
and accuracy improves significantly with C3, which captures
behaviour under both low, i.e., 10%, and extreme, i.e., 90%,
per-core utilizations. Covering a wide range of utilizations
yields a diverse set of load vectors to the repository which
in turn helps improve accuracy.

F. DISCUSSION
From the results, Prospective significantly outperforms other
baseline techniques. In particular, unlike the existing quan-
tile regression-based approaches, Prospective is able to offer
accurate predictions even for arrival patterns and mixes not
directly captured in the repository.

The use of load vectors in combination with CF helps offer
accurate predictions for a given arrival pattern and mix even
if that pattern and mix have not been explicitly observed in
the past. Specifically, Prospective modulates the progression
of load vectors during a simulation to implicitly consider the
impact of both the arrival pattern and the mix. For example,
a synthetic input trace with a highly variable arrival pattern

causes Prospective to generate a highly variable progression
of load vectors thereby helping to capture the impact of the
variability. Similarly, a mix that favours one particular trans-
action type will cause Prospective to generate a progression
of load vectors where that transaction type dominates.

Prospective is a data-driven technique and therefore, simi-
lar to any other data-driven technique depends on the qual-
ity of the historical repository. Data-driven techniques are
usually sensitive to the quality of their data. The superiority
of Prospective is in mitigating this sensitivity through the
CF technique. Where possible, Prospective exploits existing
historical response time measurements for the transaction
type and load vector combinations generated during simu-
lation. For example, while predicting for Mix60S − 40D in
Sec. V-D, 76% of the combinations generated by Prospective
during the simulation are already present in the repository
even though the repository is generated using a different mix.
For combinations not observed previously, it exploits a novel
CF based method to estimate response times. Considering the
sameMix60S−40D example from Sec. V-D, our CF method
allowed predictions to be generated for approximately half of
the 24% of combinations not present in the repository.

The main reasons for the superiority of the technique can
be summarized as follows:

• Prospective’s response time prediction process consid-
ers the transaction type. This improves accuracy since
different transaction types can stress system resources
differently.

• The load vector used during prediction records the num-
bers and types of concurrent transactions observed in the
system. Themix of the incoming workload can affect the
mix of the transactions observed in the population vec-
tor. Therefore, it can capture the impact of the workload
mix.

• The population vectors can also capture the arrival rate
of transactions. The higher the transaction arrival rate is,
there is more chance to observe vectors with a higher
number of transactions in them.

• Moreover, the population vectors can capture the effect
of arrival patterns. For example, a high variability in a
bursty workload is reflected as higher variability in the
vectors experienced by the system.

• The use of the population vectors in conjunction with
CF, helps our system to offer predictions for a given
workload even if that workload has not been explicitly
observed in the past.

VI. USING PROSPECTIVE FOR SYSTEM SIZING
We now demonstrate how Prospective can be used for hor-
izontal scaling to mitigate violation of a response time per-
centile target. Specifically, we show how one can estimate
the number and type of server instances with minimum cost
to achieve a target response time percentile. This feature can
enable self-organization in could services.

VOLUME 7, 2019 127915

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

We consider two different types of VM instances for the
RUBiS service namely, Large (L) and Small (S). We assume
that the cost of acquiring one Large instance is greater than the
cost of acquiring two Small instances and lower than the cost
of three Small instances. Given this assumption, Prospective
searches for the system configuration with a minimum cost
that meets the SLA requirements. Accordingly, we create a
repository for Large and another repository for Small using
the methodology described in Sec. IV-C.

We use an iterative sizing approach to determine a hor-
izontal scaling strategy. We start by simulating the service
deployed on a single Large instance. If there is a violation,
we explore the addition of another instance. We define this
as scaling step. At each scaling step, we explore first the
addition of a Small instance. If simulation of this config-
uration suggests that the violation persists, we remove the
Small instance from the configuration and explore instead the
addition of a Large instance. If the violation still persists even
with the addition of the Large instance, we initiate one more
scaling step to provision an additional instance. The process
is repeated until Prospective indicates no violation.

We study both the WRR and LC load balancing policies.
From Table 1, the Large instance has twice the number
of cores and memory as the Small instance. Consequently,
a Large instance in a configuration will handle twice the num-
ber of transactions as the Small instance in the configuration.

Our goal is to realize a system that meets a 95th percentile
response time target of 10 ms. We consider three workloads
namely, High− Exp, VHigh− Exp, and XHigh− Exp. Both
High−Exp and VHigh−Exp violate the target while using a
single Large instance. As mentioned in Sec. IV, XHigh−Exp
cannot be sustained by a single Large instance alone.

Fig. 7 shows the configurations suggested by Prospective
while using WRR. Prospective indicates that the 95th per-
centile for theHigh−Expworkload is just under the target of
10.0 ms when using a configuration with one instance each
of Large and Small, i.e., L-S in Fig. 7. The VHigh − Exp
and XHigh−Exp workloads require 2 and 3 Large instances,
respectively. Note that in Fig. 7, the measured and predicted
values for XHigh − Exp are shown only for configurations
that can sustain this workload.

To validate Prospective’s predictions, we measure the per-
formance of all configurations evaluated by Prospective for

FIGURE 7. 95th percentiles of WRR for different configurations.

FIGURE 8. Response times under WRR and LC.

all three workloads. We use the HAProxy [24] load bal-
ancer configured with WRR. From Fig. 7, the 95th per-
centiles obtained from Prospective are close to the measured
percentiles for every configuration explored. Measurements
show that the configurations suggested by Prospective are the
configurations with the minimum cost that will not violate
the target 95th percentile. We repeated the same experiments
with the LC policy. As with WRR, predictions closely match
measurements.

Detailed analysis also reveals that LC yields lower mea-
sured response times than WRR and that Prospective is
able to capture this behaviour. As an example, we refer to
Fig. 8, which focuses on the predicted and measured 95th

percentile response times of both policies for the High−Exp
workload under the L − S configuration. From the figure,
both the measured and predicted response times with LC
are lower than their corresponding values with WRR. This
shows that Prospective is able to successfully predict the
measured behaviour of improved response times with LC.
Overall, Prospective has comparable response time prediction
accuracies for WRR and LC with the accuracy of LC being
slightly lower due to its higher complexity. Over the scaling
steps shown in Fig. 7, predictions under LC have only 1.9%
higher error on average than those under WRR.

VII. RELATED WORK
A large body of work has focused on the problem of select-
ing services that meet end user response time requirements
[25]–[34]. Such selection approaches can be used to recom-
mend Web services [25]–[31], automate the service compo-
sition [32] and runtime management [33], [35] of complex
service chains to meet cost and response time requirements.
In contrast to our work, these studies do not focus on pre-
dicting the impact of workload characteristics and system
configurations on Web service performance.

Several studies have proposed novel instrumentation tech-
niques to characterize the performance of Web services
[36], [37]. Li et al. propose WebProphet to predict the page
load time percentiles of popular services such as Google
Maps [36]. Jiang et al. develop WebPerf to estimate a
cloud-based Web service’s response time distribution under
various cloud configurations and runtime conditions [37].
Prospective differs from WebProphet and WebPerf in that it

127916 VOLUME 7, 2019

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

does not require specialized binary instrumentation to offer
performance predictions.

Analytic queuing modeling techniques have been fre-
quently used in literature for performance prediction [1], [38],
[38]. With this approach, key workload characteristics and
system configuration parameters are reflected into a Queuing
NetworkModel (QNM) [39]. The QNM is often solved using
Mean Value Analysis (MVA) [39].WhileMVA has been used
extensively, it is not intended for predicting response time
percentiles.

Modeling techniques that are considerably more com-
plex than MVA have been proposed for predicting response
time percentiles [40]–[46]. The models involved in these
techniques require considerable effort and expertise to con-
struct. Furthermore, in general, techniques based on analytic
queuing models often make simplifying assumptions. These
assumptions impact accuracy and limit applicability [47].

Queuing modeling techniques require an operator to man-
ually construct and validate a model. Typically, the pro-
cess of model building and validation is iterative. This
process is time consuming and requires experts in perfor-
mancemodeling. To address this problem, several researchers
have proposed techniques to automatically build queuing
models based on historical system response time measure-
ments [48], [49]. However, the models resulting from these
techniques are capable of only predicting mean response
times.

Queuing simulations are used in situations where it is dif-
ficult to abstract a system using an analytic model. Spicuglia
et al. propose an automated simulation approach that does not
require explicit model construction to predict response time
percentiles of cloud applications [22]. Similar to our work,
the authors uses results from controlled load tests to drive
a simulation that estimates transaction response times. The
technique presented in their paper can only handle a single
transaction type. As we show in Sec. V, not distinguishing
between transaction types can cause significant prediction
errors.

Machine learning provides an alternative to analytic and
simulation based queuing modeling techniques. Techniques
such as regression analysis [7], [8], [50], [51], Support Vec-
tor Machines (SVM) [15], [52], Artificial Neural Networks
(ANN) [15], and Bayesian networks [53] have been used in
literature for performance prediction.

Watson et al. use quantile regression to relate percentiles
of response time metrics as a function of system resource
utilizations [7]. Bodik et al. also use quantile regression
to predict the 99th percentile of response times of a Web
application as a function of the mean transaction arrival
rate [8]. Uttamchandani et al. propose a black box perfor-
mance modeling technique for storage systems that exploits
SVM regression [52]. These regression approaches require
an expert to identify appropriate workload parameters, e.g.,
resource utilization and mean transaction arrival rate, as part
of a featurization process. Furthermore, one has to specify an
appropriate performance function, e.g., a kernel in the case

of SVM, that captures how the response time percentile of
interest relates to the workload parameters.

Several researchers have used regression approaches that
do not require the specification of a performance function
[50], [51]. For example, Wang et al. use the Classification
And Regression Trees (CART) technique to predict the mean
and 90th percentile response times of a storage system [50].
The authors show that the accuracy of CART models is
acceptable when the workload for which prediction is offered
is similar to the workload used to train the model.

Kundu et al. explore the use of an ANN to predict the
response time percentiles of a virtualized RUBiS Web ser-
vice as a function of the hardware resources assigned to
that service [15]. The authors show that splitting the feature
space into different regions and building a sub-model for
each region yields better accuracy than using a single global
model. However, needs excessive training data. Furthermore,
they state that careful tuning of the ANN, e.g., selecting an
appropriate activation function, is required for obtaining good
prediction accuracy.

In summary, applying machine learning requires operator
intervention for tasks that can have a big impact on accuracy
such as selecting an appropriate learning technique, featur-
ization, performance function selection, and model struc-
ture tuning. This motivates the need for approaches such as
Prospective that do not burden the operator with such tasks.

VIII. CONCLUSION AND FUTURE WORK
In this paper we address the key requirement of building a
prediction tool that does not require aWeb service operator to
perform time consuming tasks such as model building, featur-
ization, performance function selection, and model structure
tuning. Prospective applies a novel technique based on CF
to predict workload scenarios not directly observed in the
historical data. The use of load vectors in combination with
CF helps offer accurate predictions for a given arrival pattern
and mix even if that pattern and mix have not been explicitly
observed in the past. Specifically, Prospective modulates the
progression of load vectors during a simulation to implicitly
consider the impact of both the arrival pattern and the mix.

Results show that Prospective outperforms other baseline
techniques. It is effective for a wide variety of workloads
including those that exhibit highly variable transaction arrival
patterns. The technique is robust and is able to improve its
predictions continually based on new data. Prospective also
reports the miss rate metric, which helps an operator assess
the accuracy of a prediction.We show how the load balancing
module of Prospective can be leveraged in system sizing exer-
cises to determine the numbers and types of server instances
needed for meeting a response time percentile requirement.
In future, our research will be complemented along several
dimensions. Future research will validate Prospective for
other types of applications. We will also explore different
ways of featurizing arrival pattern and mix and compare the
accuracy of these alternatives.

VOLUME 7, 2019 127917

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

REFERENCES
[1] D. Krishnamurthy, J. Rolia, and M. Xu, ‘‘WAM—The weighted average

method for predicting the performance of systems with bursts of cus-
tomer sessions,’’ IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 718–735,
Sep./Oct. 2011.

[2] G. Casale, N. Mi, L. Cherkasova, and E. Smirni, ‘‘Dealing with burstiness
inmulti-tier applications:Models and their parameterization,’’ IEEE Trans.
Softw. Eng., vol. 38, no. 5, pp. 1040–1053, Sep. 2012.

[3] N. R. Draper, H. Smith, and E. Pownell, Applied Regression Analysis,
vol. 3. New York, NY, USA: Wiley, 1966.

[4] R. Koenker, Quantile Regression, no. 38. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

[5] F. Ricci, L. Rokach, and B. Shapira, Introduction to Recommender Systems
Handbook. Boston, MA, USA: Springer, 2011.

[6] RUBiS: Rice University Bidding System. Accessed: Aug. 1, 2019. [Online].
Available: http://rubis.ow2.org/

[7] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang,
‘‘Probabilistic performance modeling of virtualized resource allocation,’’
in Proc. 7th Int. Conf. Auton. Comput., 2010, pp. 99–108.

[8] P. Bodık, C. Sutton, A. Fox, D. Patterson, and M. Jordan, ‘‘Response-time
modeling for resource allocation and energy-informed SLAs,’’ in Proc.
Workshop Stat. Learn. Techn. Solving Syst. Problems (MLSys), Whistler,
BC, Canada, 2007, pp. 1–4.

[9] Y. Amannejad, D. Krishnamurthy, and B. Far, ‘‘Predicting Web service
response time percentiles,’’ in Proc. Int. Conf. Netw. Service Manage.
(CNSM), Oct./Nov. 2016, pp. 73–81.

[10] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, ‘‘Workload pre-
diction using ARIMA model and its impact on cloud applications’ QoS,’’
IEEE Trans. Cloud Comput., vol. 3, no. 4, pp. 449–458, Aug. 2015.

[11] V. Debusschere and S. Bacha, ‘‘Hourly server workload forecasting up to
168 hours ahead using seasonal ARIMA model,’’ in Proc. IEEE Int. Conf.
Ind. Technol., Mar. 2012, pp. 1127–1131.

[12] J. S. Breese, D. Heckerman, and C. Kadie, ‘‘Empirical analysis of predic-
tive algorithms for collaborative filtering,’’ in Proc. 14th Conf. Uncertainty
Artif. Intell., 1998, pp. 43–52.

[13] J. MacQueen, ‘‘Some methods for classification and analysis of multi-
variate observations,’’ in Proc. 5th Berkeley Symp. Math. Statist. Probab.,
Oakland, CA, USA, vol. 1, 1967, pp. 281–297.

[14] D. Mosberger and T. Jin, ‘‘Httperf—A tool for measuring Web server
performance,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3,
pp. 31–37, 1998.

[15] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta, ‘‘Modeling
virtualized applications using machine learning techniques,’’ ACM SIG-
PLAN Notices, vol. 47, no. 7, pp. 3–14, Mar. 2012.

[16] A. Bahga and V. K. Madisetti, ‘‘Synthetic workload generation for cloud
computing applications,’’ J. Softw. Eng. Appl., vol. 4, no. 7, p. 396, 2011.

[17] Z. Gong, X. Gu, and J.Wilkes, ‘‘PRESS: Predictive elastic resource scaling
for cloud systems,’’ in Proc. Int. Conf. Netw. Service Manage. (CNSM),
Oct. 2010, pp. 9–16.

[18] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin, ‘‘Performance
evaluation of virtualization technologies for server consolidation,’’ HP
Labs, Palo Alto, CA, USA, Tech. Rep. HPL-2007-59R1, 2007, p. 137.

[19] W. Zhang, Y. Shi, Y. Zheng, L. Liu, and L. Cui, ‘‘Resource and performance
prediction at high utilization for N-tier cloud-based service systems,’’ in
Proc. Australas. Comput. Sci. Week Multiconf., 2017, p. 43.

[20] V. Almeida, M. F. Arlitt, and J. Rolia, ‘‘Analyzing a Web-based system’s
performance measures at multiple time scales,’’ ACM SIGMETRICS Per-
form. Eval. Rev., vol. 30, pp. 3–9, Sep. 2002.

[21] N. D. Mickulicz, P. Narasimhan, and R. Gandhi, ‘‘To auto scale or not
to auto scale,’’ in Proc. 10th Int. Conf. Auton. Comput. (ICAC), 2013,
pp. 145–151. [Online]. Available: https://www.usenix.org/conference/
icac13/technical-sessions/presentation/mickulicz

[22] S. Spicuglia, M. Björkqvist, L. Y. Chen, and W. Binder, ‘‘Catching the
response time tail in the cloud,’’ in Proc. Int. Symp. Integr. Netw. Manage.
(IM), May 2015, pp. 572–577.

[23] C. Delimitrou and C. Kozyrakis, ‘‘Quasar: Resource-efficient and QoS-
aware cluster management,’’ ACM SIGPLAN Notices, vol. 49, no. 4,
pp. 127–144, 2014.

[24] HAProxy: The Reliable, High Performance TCP/HTTP Load Balancer.
[Online]. Available: http://www.haproxy.org/

[25] Z. Zheng, H. Ma, M. R. Lyu, and I. King, ‘‘QoS-aware Web service rec-
ommendation by collaborative filtering,’’ IEEE Trans. Services Comput.,
vol. 4, no. 2, pp. 140–152, Apr./Jun. 2011.

[26] Z. Zheng, H. Ma, M. R. Lyu, and I. King, ‘‘Collaborative Web service QoS
prediction via neighborhood integrated matrix factorization,’’ IEEE Trans.
Services Comput., vol. 6, no. 3, pp. 289–299, Jan. 2013.

[27] Y. Hu, Q. Peng, X. Hu, and R. Yang, ‘‘Time aware and data sparsity tolerant
Web service recommendation based on improved collaborative filtering,’’
IEEE Trans. Services Comput., vol. 8, no. 5, pp. 782–794, Sep. 2015.

[28] Y. Ma, S. Wang, P. C. K. Hung, C.-H. Hsu, Q. Sun, and F. Yang, ‘‘A highly
accurate prediction algorithm for unknown Web service QoS values,’’
IEEE Trans. Services Comput., vol. 9, no. 4, pp. 511–523, Jul./Aug. 2016.

[29] X. Wu, B. Cheng, and J. Chen, ‘‘Collaborative filtering service recom-
mendation based on a novel similarity computation method,’’ IEEE Trans.
Services Comput., vol. 10, no. 3, pp. 352–365, May 2017.

[30] D. Yu, M. Wu, and Y. Yin, ‘‘A combination approach to QoS prediction
of Web services,’’ in Proc. Int. Conf. Service-Oriented Comput. Berlin,
Germany: Springer, 2012, pp. 99–106.

[31] R. Karim, C. Ding, and A. Miri, ‘‘End-to-end performance prediction for
selecting cloud services solutions,’’ in Proc. IEEE Symp. Service-Oriented
Syst. Eng. (SOSE), Mar. 2015, pp. 69–77.

[32] K. Xiong and H. Perros, ‘‘SLA-based service composition in enter-
prise computing,’’ in Proc. 16th Int. Workshop Qual. Service (IWQoS),
Jun. 2008, pp. 30–39.

[33] V. Cardellini, E. Casalicchio, V. Grassi, and F. L. Presti, ‘‘Adaptive man-
agement of composite services under percentile-based service level agree-
ments,’’ in Proc. Int. Conf. Service-Oriented Comput. Berlin, Germany:
Springer, 2010, pp. 381–395.

[34] S. Ding, Y. Li, D. Wu, Y. Zhang, and S. Yang, ‘‘Time-aware cloud ser-
vice recommendation using similarity-enhanced collaborative filtering and
ARIMA model,’’ Decis. Support Syst., vol. 107, pp. 103–115, Mar. 2018.

[35] G. H. Alférez and V. Pelechano, ‘‘Achieving autonomic Web service
compositions with models at runtime,’’ Comput. Elect. Eng., vol. 63,
pp. 332–352, Oct. 2017.

[36] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. G. Greenberg, and Y.-M. Wang,
‘‘WebProphet: Automating performance prediction for Web services,’’ in
Proc. NSDI, vol. 10, 2010, pp. 143–158.

[37] Y. Jiang, L. R. Sivalingam, S. Nath, and R. Govindan, ‘‘WebPerf: Evalu-
ating what-if scenarios for cloud-hosted Web applications,’’ in Proc. ACM
SIGCOMM, 2016, pp. 258–271.

[38] J. Rolia, G. Casale, D. Krishnamurthy, S. Dawson, and S. Kraft, ‘‘Predic-
tive modelling of SAP ERP applications: Challenges and solutions,’’ in
Proc. 4th Int. ICST Conf. Perform. Eval. Methodol. Tools, 2009, pp. 1–9.

[39] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,Quantitative
System Performance, Computer System Analysis Using Queuing Network
Models. Upper Saddle River, NJ, USA: Prentice-Hall, 1984.

[40] G. Casale, ‘‘Approximating passage time distributions in queueing models
by Bayesian expansion,’’ Perform. Eval., vol. 67, no. 11, pp. 1076–1091,
2010.

[41] R. A. Hayden, A. Stefanek, and J. T. Bradley, ‘‘Fluid computation of
passage-time distributions in large Markov models,’’ Theor. Comput. Sci.,
vol. 413, no. 1, pp. 106–141, 2012.

[42] J. F. Pérez and G. Casale, ‘‘Line: Evaluating software applications in
unreliable environments,’’ IEEE Trans. Rel., vol. 66, no. 3, pp. 837–853,
Feb. 2017.

[43] M. Grottke, V. Apte, K. S. Trivedi, and S. Woolet, ‘‘Response time distri-
butions in networks of queues,’’ inQueueing Networks. Boston,MA, USA:
Springer, 2011, pp. 587–641. doi: 10.1007/978-1-4419-6472-4_14.

[44] M. Nguyen, Z. Li, F. Duan, H. Che, and H. Jiang, ‘‘The tail at scale: How
to predict it?’’ in Proc. 8th USENIX Workshop Hot Topics Cloud Comput.
(HotCloud), 2016, pp. 1–6.

[45] U. Sharma, P. Shenoy, and D. F. Towsley, ‘‘Provisioning multi-tier cloud
applications using statistical bounds on sojourn time,’’ in Proc. 9th Int.
Conf. Auton. Comput., 2012, pp. 43–52.

[46] M. Björkqvist, N. Gautam, R. Birke, L. Y. Chen, andW. Binder, ‘‘Optimiz-
ing for tail sojourn times of cloud clusters,’’ IEEE Trans. Cloud Comput.,
vol. 6, no. 1, pp. 156–167, Aug. 2018.

[47] U. N. Bhat, ‘‘Sixty years of queueing theory,’’Manage. Sci., vol. 15, no. 6,
p. B-280, 1969.

[48] S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson, ‘‘Estimating
service resource consumption from response timemeasurements,’’ inProc.
4th Int. ICSTConf. Perform. Eval. Methodol. Tools (VALUETOOLS), 2009,
pp. 48:1–48:10. doi: 10.4108/ICST.VALUETOOLS2009.7526.

[49] T. Zheng, C. M.Woodside, andM. Litoiu, ‘‘Performance model estimation
and tracking using optimal filters,’’ IEEE Trans. Softw. Eng., vol. 34, no. 3,
pp. 391–406, May 2008.

127918 VOLUME 7, 2019

http://dx.doi.org/10.1007/978-1-4419-6472-4_14
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7526

Y. Amannejad et al.: Prospective: Data-Driven Technique to Predict Web Service Response Time Percentiles

[50] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and
G. R. Ganger, ‘‘Storage device performance prediction with CART mod-
els,’’ in Proc. Int. Symp. Modeling, Anal., Simulation Comput. Telecom-
mun. Syst. (MASCOTS), Oct. 2004, pp. 588–595.

[51] M. Courtois and M.Woodside, ‘‘Using regression splines for software per-
formance analysis,’’ in Proc. 2nd Int. Workshop Softw. Perform. (WOSP),
2000, pp. 105–114. [Online]. Available: http://doi.acm.org/10.1145/
350391.350416

[52] S. Uttamchandani, L. Yin, G. A. Alvarez, J. Palmer, and G. Agha,
‘‘CHAMELEON: A self-evolving, fully-adaptive resource arbitrator for
storage systems,’’ in Proc. USENIX Annu. Tech. Conf. (ATEC), 2005,
pp. 1–6. [Online]. Available: http://dl.acm.org/citation.cfm?id=1247360.
1247366

[53] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons, ‘‘Correlat-
ing instrumentation data to system states: A building block for automated
diagnosis and control,’’ in Proc. OSDI, vol. 4, 2004, p. 16.

YASAMAN AMANNEJAD received the Ph.D.
degree in software engineering from theUniversity
of Calgary, Canada. She is currently an Assis-
tant Professor with Mount Royal University. Her
research interests include software engineering,
data analytics, and machine learning.

DIWAKAR KRISHNAMURTHY is currently a
Professor with the University of Calgary. His
research interest includes the performance eval-
uation of software systems. He is also involved
in research projects related to cloud computing,
virtualization technologies, big data analytics, and
healthcare simulation.

BEHROUZ FAR is currently a Professor with
the University of Calgary. His research inter-
ests include engineering of intelligent, distributed
and heterogeneous networked software systems,
specifically design, and implementation and test-
ing agent-based software systems. He is also
involved with research projects related to dis-
tributed systems, intelligent transportation, cloud
computing, and bio-informatics.

VOLUME 7, 2019 127919

