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Capture-Recapture models are useful in estimating unknown population sizes. A common 

modeling challenge for closed population models involves modeling unequal animal 

catchability in each capture period, referred to as animal heterogeneity. Inference about 

population size N is dependent on the assumed distribution of animal capture probabilities 

in the population, and that different models can fit a data set equally well but provide 

contradictory inferences about N. Three common Bayesian Capture-Recapture 

heterogeneity models are studied with simulated data to study the prevalence of 

contradictory inferences is in different population sizes with relatively low capture 

probabilities, specifically at different numbers of capture periods in the study. 

 

Keywords: Capture-recapture, Bayesian estimation, heterogeneity, MCMC, 

WinBUGS 

 

Introduction 

Closed Population Capture Recapture Models with Heterogeneity 

Effects 

Capture-Recapture studies are often performed on closed animal populations, 

where the population size N is assumed constant during the study. Likelihood 

models based upon the multinomial distribution can be used in these studies to 

make inferences about N. A thorough introduction of these models is given in Otis 

et al. (1978). These models allow animal capture probabilities to vary based on 

three types of effects: time effects, heterogeneity effects, and behavioral effects. 

https://dx.doi.org/10.22237/jmasm/1556668920
https://dx.doi.org/10.22237/jmasm/1556668920
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Specifically, heterogeneity effects refer to individual animals having unequal 

capture probabilities, with some animals being relatively easy to catch and others 

being relatively difficult to catch. Time effects refer to capture probabilities that 

vary by capture period. Behavioral effects refer to changes in an animal’s capture 

probability after initial capture, with some animals becoming “trap-shy” or “trap-

happy” (less likely, or more likely to be recaptured, respectively) after initial 

capture. Each type of effect can be present or absent in the model, and the subscripts 

used to describe the model indicate which effects are present. This leads to eight 

possible models, where the model with none of the three types of effects is denoted 

as M0. For example, a model with only heterogeneity effects is denoted as Mh, while 

Model Mbh refers to a model with both behavioral and heterogeneity effects present, 

but not time effects. 

Heterogeneity models have been a focus of much continued research, with 

proposed approaches differing in specification of the assumed heterogeneity in the 

population. Pledger (2000) proposed using finite mixture models to fit 

heterogeneity effects in capture-recapture data and discussed the use of Akaike's 

Information Criterion (AIC) as a model selection tool. In these finite-mixture 

models, groups of animals are assumed to exist with different capture probabilities 

between groups, but equal capture probability within each group. Other frequentist 

Mh models include logistic-normal models (Coull & Agresti, 1999) and beta-

binomial models (Dorazio & Royle, 2003). However, an important paper by Link 

(2003) showed that estimates of the population size N under Mh models depend 

heavily on the assumed distribution of capture probabilities in the population. He 

showed that different, reasonable models might fit the capture data equally well but 

result in very different inferences for N. Some work to resolve this issue has been 

done, and examples include Holzmann et al. (2006), Mao (2008), and Farcomeni 

and Tardella (2012). Nevertheless, for practitioners, the possibility of contradictory 

inferences about the population size in different heterogeneity models is both a 

theoretical and practical concern. 

An alternative to frequentist approaches for inferences about N is the 

Bayesian approach. Several Bayesian Mh models for closed populations have been 

proposed. One example developed by Ghosh and Norris (2005) involves finite 

mixture models for Mbh, of which Mh is a special case. These models are similar to 

the mixture models of Pledger (2000). Additionally, Dorazio and Royle (2003) 

proposed a Bayesian version of the beta-binomial model, and King and Brooks 

(2008) proposed a Bayesian model-averaged estimation method across the eight 

common models in Otis et al. (1978). Bayesian statistical models such as these can 

be fit using WinBUGS or OpenBUGS software. Information about the WinBUGS 
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software is available in Lunn et al. (2000), and the software is freely available at 

https://www.mrc-bsu.cam.ac.uk/software/bugs/. We focus in this paper on 

Bayesian mixture models and the beta-binomial model. These approaches differ in 

their modeling of the capture probabilities in the population, with the mixture 

models modeling heterogeneity via a finite number of subgroups in the population, 

each with its own capture probability, and with the beta-binomial model allowing 

each animal to have its own capture probability, but with the entire capture 

probability distribution being modeled via the beta distribution. We chose these 

approaches for our study due to their common use in modeling heterogeneity 

among practitioners, that they represent different approaches to modeling 

heterogeneity between a latent class approach in the mixture model and a 

continuous probability distribution in the beta-binomial model, and the fact that 

they have been the focus of comparison in past research, such as in Dorazio and 

Royle (2003) and Pledger (2005). 

Many simulation studies have compared the performance of different Mh 

models in estimating population size for simulated data sets under different data 

generating assumptions. For example, Pledger (2005) used a simulation to compare 

the performance of several Mh models, including the mixture models mentioned 

previously, and the beta-binomial models from Dorazio and Royle (2003). Her 

paper generally found that Mh models performed better than M0 models when 

heterogeneity is present in estimating the population sizes in the presented 

simulations. When comparing different types of heterogeneity models to each other, 

in some cases, the performance of the beta-binomial models of Dorazio and Royle 

was superior to the mixture model approach, but in other cases, the opposite was 

true. Among the findings in this simulation, Pledger noted that a two-point mixture 

model underestimated N when the data generating distribution had a large amount 

of probability density near zero, and the beta-binomial tended to overestimate N 

when the data generating distribution had a high degree of skewness. 

Other more recent work in evaluating performance of capture-recapture Mh 

models has been performed by Grimm et al. (2014), who evaluated the performance 

of different capture-recapture models in estimating the size of an arboreal gecko 

population, using reference population sizes constructed from a set of primary 

sampling periods as the goal of their inference. In their analyses, the mixture models 

did not perform as well as other heterogeneity models. Such field studies provide 

useful conclusions about applying methods to real data and are complementary to 

simulation studies, because real data do not require data generating assumptions as 

in simulation studies. However, the sheer volume of analyses that can be done in 
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simulation studies along with reasonable data generating assumptions also provide 

significant value in comparing different methods. 

Still, while simulation studies are often useful and insightful, one study 

typically cannot consider all possible combinations of data generating factors in 

complex situations. So, while such studies provide suggestions as to model 

performance, general conclusions often require further comparative studies to 

expand the number of cases studied. 

The number of capture periods does not vary substantially in capture-

recapture simulation studies. Increasing the number of capture periods in a study 

could be expected to improve the quality of inferential conclusions about N, both 

with accuracy of the estimation of N and decreased uncertainty about N. Increasing 

the number of capture periods is within the control of the researcher, at least to 

some extent, and for this reason it is of interest in this study. However, non-

identifiability concerns about N suggest different models may produce interval 

estimates that are highly specific but reach different conclusions about the 

population size. 

The goal of this study is to compare the performance of different Bayesian 

Mh models via simulations, particularly with different numbers of capture periods 

as a significant factor in the data generating process. The aim is to determine if 

different models converge toward contradictory inferences when the number of 

capture periods increases, where a contradictory inference would be defined as the 

non-overlap of 95% interval estimates of N between the two models. Assessing the 

relative bias of the different model estimations of N in the simulation is important, 

as well as coverage probability and average length of 95% interval estimates of N 

from the posterior distribution of each of the models we consider. 

Bayesian Closed Population Heterogeneity Models 

Bayesian statistical models involve both the likelihood function of the data given 

the model parameters and the joint prior distribution of the model parameters. For 

closed population models let k represent the number of capture periods, and for 

i = 1, 2,…, N let pi denote the probability of animal i being captured during a 

capture period in the study. This capture probability only varies by animal and not 

by capture period in model Mh. Denote the number of animals captured exactly m 

times as Zm for m = 0, 1, 2,…, k. The values Z1, Z2,…, Zk are observable, but Z0 is 

unobserved, representing the number of animals not captured during the study. 

Define Pmi as the probability that animal i is captured exactly m times for 

m = 1, 2,..., k, and i = 1, 2,…, N. For animal i, 
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under the assumption that time effects and behavioral effects are not present in the 

population. The mixture approach from Ghosh and Norris (2005) assumes a finite 
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where S = N – Z0 is the number of animals observed during at least one capture 

period, and L = 2k – 1. 

Prior distributions for the population size N is commonly chosen as 

Pr(N = n) α (1 / nδ) for n = 1, 2,…, Nmax with δ > 0 fixed at a specific value and Nmax 

fixed at a finite value based upon prior knowledge of the population size N. In a 

Bayesian model, Nmax could be chosen to be very large if little prior information is 

known about the population size to express uncertainty, whereas a smaller value 

would indicate prior information about the population size. A uniform prior 
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distribution for N is obtained with δ = 0, and choices of δ = 0.5 or δ = 1 are still 

non-informative prior distributions. 

For the mixture models, common choices for prior distributions are: 

(π1, π2,..., πr) have a joint prior distribution that is Dirichlet(χ), and the capture 

probabilities ( )
. . .

~ Beta ,
i i d

w a b  for w = 1, 2,…, r. For the beta-binomial models, a 

reasonable but noninformative prior distribution for each of α and β are 

( )
. . .

1 2, ~ Uniform ,
i i d

u u   where u2 > u1 > 0. 

Simulation Design and Results 

Simulation Study Purpose and Design 

Link (2003) showed different heterogeneity models could fit capture-recapture data 

comparably well via the AIC criterion, but give different inferences about N. An 

example was given where this could occur even when k, the number of capture 

periods, was twenty, which is large. The question arises how often this problem of 

contradictory inferences would arise as a function of k. It would be necessary to 

determine if many different data sets would have this contradictory inference 

problem, with different numbers of capture periods as one factor in the simulation 

design, and how the true distribution of capture probabilities in simulated 

populations would affect the rates of contradictory inferences among different Mh 

models fit to the data. This leads to comparing performance of the different models 

under our simulation conditions and determining if any conclusions could be 

reached that might recommend one of the models over the others. 

Simulation Study Design 

The factors in our simulation design were population size N (100, 500, 1000), 

theoretical average capture probability (5%, 10%), data generating model for 

capture probabilities (2 point mixture, 3 point mixture, beta, logistic), and the fitted 

model for the data (Bayesian 2 point mixture model, Bayesian 3 point mixture 

model, Bayesian beta-binomial model), and finally the number of capture periods 

(k = 6, 8, 10, 12, 14, 16). Excluding the fitted-model factor, there were 144 different 

factor combinations. Twenty-five unique data sets were randomly generated at each 

of these 144 factor combinations, and then fit each of these 3600 data sets under 

the three Bayesian Models, leading to 10800 data analyses. The data-generating 
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model for the simulation is referred to as DGM, and the theoretical average capture 

probability as average pij. 

We chose relatively small average capture probability rates, because 

situations with high heterogeneity and low average capture probabilities are known 

to be more difficult for accurate estimation of population size (Pledger, 2005). This 

permits cases where, despite a large number of capture periods in the simulated 

data, a reasonable proportion of the population remained uncaptured, so that 

differences between inferences from the different models might be clearer. 

SAS version 9.1 was used to generate the capture probabilities and capture 

histories for the different data sets. The capture probabilities were generated for a 

specific population as follows. For data in the two-point mixture model, we 

generated π* ~ Uniform(0, 1) and then computed θ1, θ2 ~ F(µ + κZi), where F is the 

Logistic distribution function, µ = F–1(0.05) or F–1(0.10) depending on whether the 

average capture probability was high or low, ( )
. . .

~ N 0,1
i i d

iZ , and κ = 0.75. 

For each simulated individual in the population in the two-point mixture 

DGM, we generated a Bernoulli random variable with π* probability of success, 

which classified the animal as being part of group 1 with capture probability θ1, or 

as being part of group 2 with capture probability θ2. For simulated data in the three-

point mixture DGM, generate π1
* ~ Uniform(0, 1), and then π2

* | π1
* ~ 

Uniform(0, 1 – π1
*), and finally π3

* = 1 – π1
* − π2

*. Capture probabilities for the 

three groups were generated similarly to the two-point mixture simulation. 

For simulated data in the beta DGM, we generated β ~ Uniform(0, 80). Then, 

we generated α | β = β(19 + 1.5 Zi)−
1 when the average capture probability was low, 

and generated α | β = β(9 + 1.5 Zi)−
1 when the average capture probability was high. 

When α was very small, defined as less than 0.1, we set α = 0.1 to keep α from 

being too small, which would result in a very limited number of simulated captures. 

For simulated data in the logistic DGM, for each simulated population we 

generated µ = F−1(0.05) + 0.5Zp for simulated populations with low capture 

probabilities, and µ = F−1(0.10) + 0.5Zp for simulated populations with high 

capture probabilities, where Zp ~ N(0, 1) and is chosen once for the simulated 

population. Then, the individual animal capture probabilities were generated as 

pi ~ F(µ + 0.5 Zi), where again ( )
. . .

~ N 0,1
i i d

iZ . 

For fitting the specific Bayesian models in WinBUGS, we chose hyper-

parameters as δ = 0.5 for the prior distribution of N, and a conditional upper bound 

on N as S + 2500. For the Bayesian Mixture models for both r = 2 and r = 3, we 

chose a = b = 0.5 for hyperparameters for capture probabilities θw and we chose 
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χ = (0.5, 0.5, 0.5) as the hyperparameters for the Dirichlet prior distribution for πi 

(i = 1, 2 for r = 2; i = 1, 2, 3 for r = 3). 

For fitting the Beta-binomial models in WinBUGS, we chose u1 = 0.1 and 

u2 = 80 as hyperparameters for the prior distribution of α, β. Three Markov Chain 

Monte Carlo (MCMC) chains were simulated with initial values for the parameters 

dispersed among the three chains. This choice follows the recommendations for 

multiple chains to be used at dispersed starting values of the parameters, as 

discussed in Gelman et al. (2014), for example. Then, 10000 observations were 

sampled from the posterior distribution using each of the three chains but discarded 

the first 2500 samples from each chain to allow the convergence of the MCMC 

chains to a stable distribution. The posterior distribution estimates were based on 

22500 total samples. The Brooks-Gelman-Rubin statistic in WinBUGS was used 

(Brooks & Gelman, 1998) to check the convergence of the posterior distributions 

of the model parameters. 

Simulation Study Results 

For the simulation described in the previous section, use the median of the posterior 

distribution of N as a point estimate of N due to the right-skewed nature of most of 

the posterior densities of N in the simulation. Consider the effects of the different 

factors on each of the following outcome measures: (i) the relative bias of the 

posterior median of N, (ii) coverage probability of the 95% posterior intervals for 

N in this simulation, (iii) length of 95% equal-tail posterior intervals for N, and (iv) 

the percentage of data sets for which the 95% posterior intervals for N for the three 

Bayesian models overlap. The first three outcome measures assess each model fit 

to each data set separately, and can be interpreted as assessing the bias, reliability, 

and precision of each model for a data set. The fourth outcome measure is intended 

as a comparison of the models to each other across one data set, to see the rate at 

which contradictory inferences occur. 

Summaries of the simulation results for the effects of the design factors on 

outcome measures (i) to (iii) are presented in Figures 1 to 3. Each figure is an 

interaction plot to represent the mean value of an outcome measure as a function of 

each pair of the simulation design factors. 

In each of these figures, the mean outcome measure for the simulated data 

sets is plotted against each pair of factors in the simulation design. For example, 

the upper left graph in Figure 1 shows the mean relative bias of the posterior median 

of N for data sets generated at each of the three levels of N, and for each of the three 

models fit to the data. The other graphs within Figure 1 present similar information 
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about the mean relative bias for other combinations of simulation design factors. 

From the plots in Figure 1, we can see that the relative bias is positive for N = 100 

but decreases with N for all three models. The beta-binomial model fits are 

somewhat positively biased for all three population sizes, while the 3-point mixture 

model’s relative bias approaches 0% at N = 1000, and the 2-point mixture model is 

slightly negatively biased at N = 1000. 

This positive bias is consistent with the results of Pledger (2005) because for 

most of our data sets, average capture probability is relatively small and the 

skewness of capture probabilities in some data sets is large, which led to a positive 

relative bias in estimation of population size in the simulation results described in 

that paper. The top graph in the second column plots the average biases via both 

the data generating model and the fitted model, which allows for assessments when 

the fitted model matches (and does not match) the data generating assumptions. 
 
 

 
 
Figure 1. Effects of simulation design factors on relative bias of the posterior median 
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For capture probabilities generated under a continuous probability 

distribution, the relative bias is modestly negative overall but fairly close to zero 

for the beta-binomial and three-point mixture model fits. For data generated under 

the mixture assumptions, all models show positive relative bias. The mixture 

models have biases that are closer to zero but still are positive. The third column 

shows that when average capture probability in the simulated data set is low, the 

average relative bias is positive and higher overall, but this effect varies in each of 

the plots. For example, the relative bias increases for the beta-binomial model fit 

for low average capture probabilities but is consistent for the mixture models. The 

plots in the fourth column show the effect of k, the number of capture periods. In 

terms of relative bias, there is not a significant difference at the different levels of 

k overall. A few noteworthy points are that the largest relative biases occur when k 

is small and the simulated population size is also small, and when k is small and the 

capture probabilities are generated from a mixture distribution. The largest relative 

biases occur (on average) when N is 100, and when k is 6 or 8. When k is 6, the bias 

is high regardless of whether the average capture probability is low or high, and 

when k is 8, the bias is higher for the low capture probability data sets in the 

simulation. These positive biases persist, but decline somewhat, as k increases in 

the study for these smaller populations, suggesting that the benefit of increasing k 

in practice may be more significant for smaller populations with smaller capture 

probabilities. 

In Figure 2, which measures the coverage probabilities in the simulation, a 

vertical line is placed in each graph at 95% for reference. From this figure, the 

coverage probabilities drop in the simulation as the true N increases from 100 to 

1000, although the coverage probability remains consistent and strong in the three-

point mixture model. The second column in the figure shows that the lowest 

coverage probability occurs when the beta-binomial model is fit to data generated 

under a two-point or three-point mixture model. Overall, the coverage probability 

of the three-point mixture model is consistently strong and slightly above the 95% 

nominal level. In the third column in Figure 2, the coverage probabilities remain 

fairly consistent for data with relatively high or low capture probabilities with 

slightly higher coverage probabilities at low capture probability levels. Finally, in 

the fourth column of Figure 2, the coverage probabilities drop (in aggregate) as the 

number of capture periods increase from six to sixteen. However, this decline does 

not occur for the three-point mixture model, and it is less notable when the true N 

is smaller (100 or 500) compared with the larger value of 1000. The decline in 

coverage probabilities as k increases is fairly consistent across the different data 

generating assumptions, and average capture probability levels. 
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Figure 2. Effects of simulation design factors on the coverage probability of 95% 
equal-tailed posterior intervals for N 
 

 

In Figure 3 the outcome measure is the length of the 95% equal tail posterior 

intervals for N in the simulation. From this figure, initially the average interval 

length increases with the true population size in the simulation, although this 

observation is not terribly surprising, as one might expect interval lengths to 

increase for larger population sizes. In the second column of Figure 3, overall the 

mean lengths of the posterior intervals are consistent for the different data 

generating assumptions. The average length is consistently shorter for the beta-

binomial model than for the mixture models. The third column in Figure 3 shows 

that the length of the intervals is somewhat longer on average for data generated 

with lower capture probabilities than for higher capture probabilities. In the fourth 

column average length of the posterior interval decreases with k across the other 

simulation design factors. 

Taken together, Figures 1, 2, and 3 provide the following general conclusions 

from this simulation study. Collectively the three-point mixture model performed 

the best in our simulations. There is some positive bias in the posterior median of 

N for this model, but it decreases with population size. Secondly, the coverage  
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Figure 3. Effects of simulation design factors on length of 95% equal-tailed posterior 
intervals for N 
 

 

probability of this model remained above the nominal 95% level even as k increased 

and as the average length of the 95% posterior interval decreased. The two-point 

mixture model performed relatively well and had smaller relative bias than the 

three-point mixture model for data generated under a mixture-distribution. 

However, the coverage probability of the 95% posterior interval for this model 

decreased more notably below the nominal 95% level as k increased. The beta-

binomial model did not perform as well as the mixture models in our simulation, 

having higher relative bias than the other models and poorer than reported coverage 

probabilities for the 95% posterior intervals for N. Specifically, the beta-binomial 

model did not fit data generated under mixture distribution assumptions well, as 

can be seen in Figures 2 and 3. 

From Figures 1 through 3, some general conclusions can be made about the 

effects of increased k in our simulation. In our simulation study, larger values of k 

did not result in significant changes in the relative bias of the posterior median, with 

the only notable reductions in the relative bias occurring when the True N in the 

simulation is 100, or for data generated under the mixture distribution assumptions. 
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The coverage probability declined with increasing k in general, especially for the 

beta-binomial model, and when the True N was 1000. As noted previously, the 

coverage probability of the posterior interval stayed consistent with the three-point 

mixture model as k increased in the simulation. The decrease in the average length 

of the 95% posterior interval as k increased in the simulation study, and that this 

occurs consistently across the different design factors in the study. 

An additional concern for practitioners is the possibility of contradictory 

inferences in these models, which was a concern introduced by Link (2003). In 

terms of the simulation, a data set produces a contradictory inference if the 95% 

equal-tail posterior intervals from two or more of the models do not overlap each 

other. When different models produce contradictory inferences in these situations, 

Link also showed that model selection criteria, such as Akaike’s Information 

Criterion could provide equal measures of fit in some of these cases. When this 

occurs, the assumption of capture probability distribution in the population 

becomes important, but in practice, it is not verifiable. However, if these situations 

are somewhat rare in practice, then they are less of a concern to practitioners. 

The rate at which these contradictory inferences occurred was examined. A 

high rate of occurrence would suggest concern for practitioners, forced to choose 

between models giving different conclusions, while a low rate of occurrence would 

suggest that the different models generally reach similar conclusions. 

Table 1 shows the percentage of simulated data sets that have one, two, and 

three overlapping posterior intervals from each of the three fitted models (beta-

binomial, and each of the two mixture models). A non-contradictory inference 

occurs when all three intervals overlap, and a contradictory inference occurs when 

fewer than three of the intervals overlap. In the simulation study, at least one 

overlap occurred for every data set. The percentages in Table 1 are calculated by 

pairwise comparison of the posterior intervals for the three models for each data set, 

and the results are grouped separately by each simulation design factor (k, True N, 

DGM, and Average Capture Probability) respectively. From Table 1, as the number 

of capture periods k increases, the rate of contradictory inferences rises modestly 

although in the vast majority of cases the three intervals overlap. Some additional 

investigation of these occurrences showed that in all cases but one, the posterior 

intervals from the two mixture models overlap, and the contradictory inference for 

the data set arises from one or both of the posterior intervals from the mixture 

models not overlapping with the interval from the beta-binomial model. The 

intervals from the mixture models overlap in virtually all of the simulated data sets 

in the study. 
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In Table 1, the percentage of contradictory inferences is higher when N is 

larger in the simulated data set, and for higher theoretical capture probabilities in 

the simulated data set (10% theoretical capture probability rate). These increased 

rates largely correspond with the reduced mean length of the posterior intervals we 

saw in Figure 3 in these cases. Also in Table 1, the rate of contradictory inferences 

is higher for data generated under mixture distribution assumptions. Collectively 

the percentages of cases where all three intervals overlapped is high (at least 94% 

of cases in our simulation in all conditions). This is encouraging but notice a 

tendency toward contradictory inferences as the number of capture periods 

increases, implying that the different models converging to different answers in 

these cases is a real possibility. 

For all four of these explanatory factors, differences in the rates of 

contradictory inferences are statistically significant when analyzed via a frequentist 

binary logistic regression model. 
 
 
Table 1. Percentages of overlap among 95% equal-tailed posterior intervals for N for 
each of the three Bayesian models 
 

 Overlapping intervals (compared pairwise) 

K Zero overlaps One overlap Two overlaps Three overlaps 

6 captures 0.00% 0.17% 0.17% 99.67% 

8 captures 0.00% 0.00% 0.83% 99.17% 

10 captures 0.00% 0.17% 1.33% 98.50% 

12 captures 0.00% 0.83% 1.33% 97.83% 

14 captures 0.00% 0.17% 3.00% 96.83% 

16 captures 0.00% 0.83% 4.00% 95.17% 
     

True N Zero overlaps One overlap Two overlaps Three overlaps 

100 0.00% 0.00% 0.08% 99.92% 

500 0.00% 0.00% 1.00% 99.00% 

1000 0.00% 1.83% 4.25% 94.67% 
     

Average pij Zero overlaps One overlap Two overlaps Three overlaps 

Low 0.00% 0.22% 1.11% 98.67% 

High 0.00% 0.50% 2.44% 97.06% 
     

DGM Zero overlaps One overlap Two overlaps Three overlaps 

Beta 0.00% 0.89% 3.56% 95.56% 

Logistic 0.00% 0.11% 2.44% 97.45% 

Mixture r = 2 0.00% 0.22% 0.56% 99.22% 

Mixture r = 3 0.00% 0.22% 0.56% 99.22% 
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Real Data Analysis 

To illustrate the results of increased capture periods for real data sets, two real data 

sets were analyzed using each of the three models. The first data set is a deer mice 

data set as discussed in Otis et al. (1978). The second is a data set from Karanth et 

al. (2004), who used photographic and capture-recapture methods to estimate the 

density of a tiger population in Central India. 

The deer mice data had 38 mice captured over six nightly capture periods. 

Assume closure of the population for this analysis. This data set was analyzed using 

each of the three models by first analyzing only the first two capture periods, then 

analyzing the first three capture periods, and so on, sequentially until all six capture 

periods were analyzed. This demonstrates how the estimates of N and the 95% 

equal-tailed posterior intervals for N change for each model as k increases. 

Presented in Table 2 are the results of the analysis of the deer mice data. The 

posterior medians of N are consistently a bit higher for the mixture models than for 

the beta-binomial model, but at the end of all six captures the point estimates are 

close for all three models. Given that 38 mice were eventually captured in this study, 

the posterior median is below the true population size for all models when k = 2, 

and for the beta-binomial model up through k = 5 captures. The 95% equal-tailed 

posterior interval for N is below the true population size for the beta-binomial 

model when k = 2. 
 
 
Table 2. Posterior median and 95% posterior intervals (in brackets) of population size for 
deer mice data 
 

 Fitted model 

k Mixture r = 2 Mixture r = 3 Beta-binomial 

2 captures 31 34 27 
 (24, 657) (24, 345) (24, 36) 

3 captures 43 46 33 
 (30, 855) (31, 434) (30, 41) 

4 captures 39 42 34 
 (33, 497) (33, 271) (33, 40) 

5 captures 38 40 37 

 (36, 90) (36, 133) (36, 50) 

6 captures 43 46 43 

  (39, 195) (39, 215) (39, 82) 
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Another notable difference is that the length of the 95% equal-tailed posterior 

intervals for the mixture models being consistently larger than that of the beta-

binomial model. The length of the posterior intervals for the mixture models 

decreases as the number of capture periods increases but remains larger than that 

of the beta-binomial model. These results are consistent with the results of our 

simulation study in that the length of the posterior intervals for the beta-binomial 

model was the smallest, but it differs in that the posterior median of N for the beta-

binomial model is below that of the mixture models. The beta-binomial model often 

had a narrower 95% posterior interval than the mixture models, but also had lower 

coverage probability than the other models. The intervals in this analysis are 

consistent with this finding in that the posterior intervals are narrower for the beta-

binomial model. It cannot be evaluated whether the intervals are accurate because 

the true population size is not known. 
 
 
Table 3. Posterior median and 95% posterior intervals (in brackets) of population size for 
tiger data 
 

 Fitted model 

k Mixture r = 2 Mixture r = 3 Beta-binomial 

4 captures 11 11 8 
 (6, 142) (6, 95) (6, 47) 

5 captures 13 13 9 
 (7, 220) (7, 125) (7, 40) 

6 captures 20 20 16 
 (9, 327) (9, 191) (9, 103) 

7 captures 20 20 16 
 (9, 282) (9, 179) (9, 124) 

8 captures 19 19 17 
 (9, 252) (9, 169) (9, 140) 

9 captures 19 19 18 
 (9, 237) (9, 158) (9, 153) 

10 captures 24 23 23 
 (11, 274) (11, 186) (11, 215) 

11 captures 24 23 25 
 (11, 254) (11, 178) (11, 226) 

12 captures 18 18 19 
 (10, 140) (10, 108) (10, 133) 

13 captures 24 24 25 
 (13, 262) (13, 183) (13, 168) 

14 captures 24 24 25 
 (13, 247) (13, 177) (13, 175) 

15 captures 26 26 23 

  (13, 297) (13, 205) (13, 144) 
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The tiger data set had eleven distinct tigers photographed during fifteen 

capture periods. For this data, Karanth et al. (2004) determined that model Mh was 

the most plausible model due to a combination of goodness of fit tests and 

knowledge of the spatial patterns of tiger movement and other factors. For this data 

set, we proceed similarly to the deer mice data by analyzing each model at each 

capture period using only the data obtained up through that period. Table 3 provides 

the results of this analysis. For this data set, the first possible value of k for analysis 

was k = 4, which was the first capture period with a recapture. There were no tigers 

sighted in capture periods, 7, 8, 9, 11, and 14, which explains the stability of the 

posterior medians at these points of the sequential analysis. In comparing the 

different models, the posterior median of N of each of the models is generally 

similar at each value of k. The length of the 95% equal-tailed posterior interval for 

N for the beta-binomial model is shorter than for the mixture models. This data set 

is again consistent with the results of our simulation study with regard to the length 

of the posterior interval for N, but in this example, the posterior medians of all three 

models are again close to each other, which differs slightly from the results of our 

simulation study. 

In both of the real data analyses, increasing k leads to an initial increase in the 

posterior median of N to presumably more accurate levels, as we know the posterior 

medians of N for the smallest k value in each data set are below the true population 

size. These posterior medians become more stable as k increases further, which 

differs somewhat from our simulation results, where the relative biases did not 

change much with increasing k. This this may be attributable to the fact that the 

smallest k in our simulations was k = 6, and the analyses of these real data sets 

started at k = 2 and 4, respectively. 

These population sizes are both likely smaller than in our simulations, 

although in many cases the 95% posterior interval does contain larger values that 

overlap with our simulated population sizes. Across both data sets, at each level of 

k, the posterior medians of N of each model are similar. The difference between the 

models is seen primarily in the width of the 95% posterior intervals for N. From a 

practical perspective, interpreting these results depends on the believability of the 

upper bound of the posterior interval, as a wide posterior interval gives less 

precision in the population size estimate. In cases like these, though, a practitioner 

may have a stronger prior opinion about the population size than we did in this 

analysis, and this opinion can be incorporated into the prior distribution for N, 

which could shorten the posterior interval of each of the models. The posterior 

distributions for N in each of these models is right-skewed, so the interval length 
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can be shortened by lowering the probability level of the interval or by choosing an 

interval other than an equal tailed interval. 

Discussion 

Capture-recapture modeling when heterogeneity is present in the population 

presents a significant challenge for population size estimation. Practitioners face 

challenges not only in deciding among the eight closed population models 

described in Otis et al. (1978) but also challenges deciding between different 

heterogeneity models. These challenges can be alleviated somewhat if a practitioner 

has information or insight about the distribution of capture probabilities in the 

population based upon knowledge of the population being studied. However, the 

possibility of different heterogeneity models arriving at different conclusions is a 

concern for practitioners as well. 

The simulation results should provide some useful guidance in these 

considerations, but as with all simulation studies, only a small number of factors 

(and levels of these factors) are considered relative to all possible factors. For 

example, the focus was on relatively smaller capture probabilities in our simulation 

design. For each data set the parameters governing the capture probabilities were 

also randomly generated, and so some data sets had more heterogeneity than others 

due to this approach. 

The three-point mixture model generally performed the best. Despite some 

positive relative bias at all population sizes, the model showed strong coverage 

probability of its 95% equal-tailed posterior interval for N along with decreasing 

average length of that interval as the number of capture periods k increased. This 

performance occurred across data sets generated under both finite mixture 

assumptions and continuous assumptions about the capture probabilities in the 

population, which may alleviate some concern from a practitioner who is unsure 

about the type of heterogeneity present in the population. 

The beta-binomial model did not perform as well, with results that were more 

precise than the other models (with smallest average posterior interval length) offset 

by lower than desirable coverage probability of the posterior interval for N as k 

increased. Regarding even at the largest number of capture periods in the simulation 

(k = 16), the relative bias for the beta-binomial model was relatively large on 

average for data generated under mixture distribution assumptions. This occurs to 

some extent due to more notable right skewness in the simulation results for the 

posterior median of the beta-binomial model than in other models, as the 

overestimation from this model was more extreme in magnitude than for the other 
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models. The two-point mixture model performed reasonably well, having average 

relative bias a bit closer to zero than even the three-point mixture model. However, 

the coverage probability of the posterior interval for N declined more notably below 

the 95% nominal level as k increased. 

The other simulation design factors also affected the simulation results. 

Population size was a factor, as the relative biases of the posterior median of N were 

highest when N was 100 in the simulations and when k was 6 or 8, which were the 

smallest two levels of k in our simulation. For larger population sizes in our 

simulation, when N was 1000, the relative biases were relatively small, but the 

coverage probability of the posterior intervals declined noticeably below the 

nominal 95% level as k increased. The data generated under mixture distribution 

assumptions caused some positive bias in the posterior median of N for all the 

models, and the beta-binomial model had notably low coverage probability in the 

95% posterior interval for N for data generated under mixture assumptions. Data 

sets generated under the lower capture probability assumptions had somewhat 

higher positive bias than the higher capture probability assumptions, along with 

also having slightly higher coverage probability and length of the posterior interval. 

Increasing k did not significantly impact the relative bias, but it did result in 

increased precision (reduced length) but decreased accuracy (reduced coverage 

probability) for the 95% equal-tailed posterior interval for N in general, albeit not 

for the three-point mixture model, as mentioned before. This tendency for 

increasing k to be associated with increased precision but decreased accuracy also 

holds across the different population sizes, for the different data generating models, 

and for the different capture probability levels (low, high). 

Increasing k was associated with an increasing but not alarming rate of 

contradictory inferences between models. This introduces some caution for a 

practitioner, but the outcomes described earlier should suggest that a researcher can 

increase k, within the scope of a study, and find that even when a specific 

heterogeneity model is not known ahead of time, the study should lead to useful 

conclusions about the population size N. However, the results concur with those of 

Link (2003) in that the estimates of N from the various models do not necessarily 

converge to the same answer as k increases. 

One of the main factors noted in the coverage probability performance of 

these models in the simulation study was that for larger N and for larger k, the 

coverage probability of the beta-binomial model was lower than the reported 95% 

level when fitting data generated under mixture model assumptions. The coverage 

probabilities for the beta-binomial model were much closer to the nominal 95% rate 

for data generated with capture probabilities on a continuous distribution. This can 
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be seen in Figure 2 and suggests model mis-specification of this type became more 

prominent in larger populations and with more capture periods. This suggests for 

larger k and N, practitioners should exercise some caution in the conclusions of a 

beta-binomial model unless there is reason to believe the capture probabilities in 

the population are described by a continuous distribution rather than a finite mixture 

distribution. 

When comparing the simulation results with the real data analyses, the 

posterior medians of all three models were close to each other as k increased, but 

the lengths of the posterior intervals were considerably wider for the two mixture 

models compared with the beta-binomial model. This is consistent with the 

simulation results, although the presumed population sizes for these studies are 

likely smaller than those in the simulation study. 

A practical recommendation for a practitioner is to consider whether precision 

(a shorter posterior interval for N) or accuracy of the posterior median of N is more 

important in the context of the study. If smaller relative bias is more important in 

terms of the conclusions of the study, then increasing k to approximately 10 

improved the average relative bias across all the models when N was smaller (100), 

but a smaller number of capture periods were sufficient when N was 500 or 1000. 

The mixture models were somewhat more robust in accurate estimation of N when 

fit to data generated under continuous capture probabilities than the beta-binomial 

was when fitting data with capture probabilities from the mixture distributions. 

However, if precision of the posterior interval for N is most important, then the 

beta-binomial model was more precise on average. This precision comes with a 

cost (higher average relative bias, and lower coverage probability in our simulation 

results), but if these costs are of lower relative concern, then increasing k and using 

a beta-binomial model could be chosen reasonably by a practitioner. 

This simulation is somewhat preliminary, because more models can certainly 

be fit to these data, such as logistic-normal models, or the model-averaging 

approach proposed by King and Brooks (2008). Also, more factors may be varied 

within this simulation structure, as additional factor levels of r, k, N, and average 

pij can be studied. Furthermore, model selection continues to be a pertinent question 

for research and practitioners, and a simulation that focuses on both estimation and 

model selection may be of interest to further illuminate the problems of 

contradictory inferences in heterogeneity models. 
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